
A Framework for Optimizing

Multilevel AC Battery Energy Storage Systems

Alireza Ramyar

Electrical Engineering

and Computer Science

University of Michigan

Ann Arbor, USA

aramyar@umich.edu

Jason B. Siegel

Mechanical Engineering

University of Michigan

Ann Arbor, USA

siegeljb@umich.edu

Al-Thaddeus Avestruz

Electrical Engineering

and Computer Science

University of Michigan

Ann Arbor, USA

avestruz@umich.edu

Abstract—Battery energy storage systems (BESS) play an
essential role in modern grids by supporting renewable power
systems, improving grid power quality through voltage and fre-
quency regulation, and supporting electric vehicle (EV) charging
stations. At the same time, and with the rapid growth of EVs,
an enormous number of EV batteries will be retired soon. These
second-use EV batteries still have approximately 80% capacity
and can be utilized in stationary applications like grid-connected
BESSs to reduce the emissions from producing new batteries
for energy storage systems. Directly producing multilevel AC
from batteries reduces cost by eliminating the need for an
explicit conventional inverter. In this paper, a framework is
presented for optimizing the multilevel integration of power
processing in BESSs, which is particularly applicable to BESSs
with heterogeneous second-use batteries.

Index Terms—battery energy storage systems, multilevel convert-
ers, partial power processing, second-use batteries, SOC balancing.

I. INTRODUCTION

Battery energy storage systems (BESS) play important roles

in grids, such as supporting renewable power systems, voltage

and frequency regulation for grid power quality improvement,

and supporting electric vehicle (EV) fast charging [1], [2].

Multilevel converters with integrated batteries are ideal archi-

tectures for grid-connected BESSs. Compared to conventional

inverters with a high voltage dc bus, multilevel converters

have better harmonic performance for the same switching fre-

quency, which makes the required filters substantially smaller

and cheaper [1], and are generally modular, which makes it

possible to use smaller, lower voltage, and faster switches.

Additionally, by integrating batteries in multilevel converters,

energy storage capacitors can be eliminated from the structure,

which also reduces costs. Furthermore, multilevel converters

provide a higher degree of freedom for state-of-charge (SOC)

balancing of the batteries, which is critical in BESSs [2].

Among Multilevel AC Battery Energy Storage Systems (MAC-

BESS), architectures based on Cascaded H-Bridges (CHB) and
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Modular Multilevel Converters (MMC) are often used [1] with

CHBs being among the best candidates [1], [2].

At the same time, the rapid growth of retired EV batteries

represents an excellent opportunity to utilize them in BESSs.

There will be 200 GWh/y of used batteries from EVs [3] by

2030, which still have approximately 80% capacity [4] that

could be used in grid-connected BESSs or other stationary

applications. Thus, reusing these batteries in second-use bat-

tery energy storage systems (2-BESS) provides a sustainable

solution that reduces the emissions from producing new bat-

teries for energy storage systems and adds economic value

to EV batteries. However, these second-use batteries have

heterogeneous characteristics (such as capacity, voltage, and

power capability), which causes some challenges that need to

be addressed.

MMCs [5], [6] and CHBs [2], [7] with integrated batteries

have been investigated in the literature. In [5], each sub-mod-

ule includes one battery, one storage capacitor, one half-bridge,

and one buck/boost indirect active interface (IAI), which

connects the battery to the half-bridge. The sub-modules of [6]

consists of one battery, one storage capacitor, one full-bridge,

and one buck/boost IAI. These structures are suitable for

applications where a common dc link exists and have more

flexibility compared to CHB-based BESSs [1]. However, they

need more active and passive components and have lower

power efficiency than CHB-based BESSs [1]. In [7], each

sub-module includes one battery and one full-bridge. In order

to achieve SOC balancing, batteries are continuously sorted

based on their SOCs, and then appropriate sub-modules are

connected to the load. In [2], batteries rotate among different

phases via a network of half-bridges and full-bridges in order

to maintain SOC balancing for all three phases.

These MMC-based and CHB-based methods need online

SOC estimation, have relatively complicated control schemes

that cannot be easily generalized to other multilevel converters,

and sometimes rely on redundant batteries and auxiliary cir-

cuits. Furthermore, they do not address the challenges of het-

erogeneous second-use batteries. This paper presents a frame-

work for optimizing a general class of multilevel ac battery

energy storage systems, which is particularly advantageous for

systems with heterogeneous (e.g., second-use) batteries. In this
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Fig. 1. (a) Conventional CHB inverter with integrated batteries. (b) CHB inverter with partial power processing converters. (c) Output voltage and current
(for a resistive load) of a 5-level CHB inverter with SHE modulation.

paper, first, the framework is introduced; then, the optimization

is formulated by employing the framework; and finally, the

investigated framework is validated through Matlab simulation

and then demonstrated via PLECS simulation.

II. FRAMEWORK FOR OPTIMIZATION

We investigate the optimization framework for the conven-

tional CHB inverter, shown in Fig. 1(a), and the CHB inverter

with adjuvant partial power processing converters (PPPC),

shown in Fig. 1(b). In the latter case, isolated bidirectional

dc-dc converters are added (N − 1 converters, i.e., U1 to

UN-1, for N batteries, i.e., B1 to BN) to process the mismatch

power/energy among the batteries and enhance the utiliza-

tion of the batteries. Additionally, we use selective harmonic

elimination (SHE) [8] as the modulation technique. SHE is a

simple fundamental frequency modulation scheme whose goal

is to eliminate specific harmonics from the output voltage of

the multilevel inverter and reduce its total harmonic distortion

(THD). In principle, with N dc links and N H-bridges (HB),

there are N degrees of freedom (switching angles) that can be

utilized to eliminate N − 1 harmonics and set the magnitude

of the fundamental component. Figure 1(c) shows the output

waveform (ac voltage and current) of a 5-level CHB inverter

employing SHE modulation technique. In CHBs with SHE

modulation and for N batteries, there exist N HBs, 2N + 1
voltage levels, and 4N + 2 time intervals (t

Δ

1 to t
Δ

4N+2). For

the case of Fig. 1(c), there are 2 batteries, 2 HBs, 5 voltage

levels, 10 time intervals, and 1 PPPC (when used).

Although the framework is investigated for CHB inverters

with SHE modulation, it can be generalized for other multi-

level converters with various modulation techniques. Note that,

in this paper, a resistive load is chosen to simplify the analysis.

Now we are ready to introduce the notions of Charge-Vector

and Charge-Matrix as two key components of the investigated

framework.

A. Charge-Vector and Charge-Matrix

In the context of this investigation, a Battery Charge-Vector

(BCV) is defined as an N -dimensional vector whose elements

are the output charge of the batteries during the corresponding

time intervals in the modulation. The Battery Charge-Matrix

(BCM) is then defined as a matrix QB
N×(4N+2) consisting of

4N + 2 BCVs to designate the output charge of the batteries

during a complete ac cycle. For the case of Fig. 1(c) with the

configuration of Fig. 1(a) or Fig. 1(b)

QB =

[
qb1,1 qb1,2 qb1,3 ... qb1,9 qb1,10
qb2,1 qb2,2 qb2,3 ... qb2,9 qb2,10

]
, (1)

where qbn,i is the output charge of the nth battery during

the ith time interval. Similarly, a Converter Charge-Vector

(CCV) is defined as an (N − 1)-dimensional vector, whose

elements are the output charge of the converters during the

corresponding time intervals, and the Converter-Charge-Matrix

(CCM) is defined as a matrix QC
(N−1)×(4N+2) consisting of

4N +2 CCVs to designate the output charge of the converters

during a complete ac cycle. For the case of Fig. 1(c) with the

configuration of Fig. 1(b)

QC =
[
qc1,1 qc1,2 qc1,3 ... qc1,9 qc1,10

]
, (2)

where qcm,i is the output charge of the mth converter during

the ith time interval.

As shown in Fig. 1(c), each time interval corresponds to

a specific voltage level in the modulation. As an example,

t
Δ

1 , t
Δ

3 , and t
Δ

7 correspond to voltage levels of 0, 2, and

−1, respectively. At each time interval and based on the

corresponding voltage level, specific numbers of sub-modules

are required to be connected to the load. For example, 0, 2,

and 1 sub-modules must be connected to the load during t
Δ

1 ,

t
Δ

3 , and t
Δ

7 , respectively. In the context of this investigation,
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a Load Charge-Vector (LCV) is defined as an N -dimensional

vector, which designates the connection of the sub-modules

to the load during the corresponding time intervals. As an

example, for t
Δ

1 the only possible LCV is [0 0]T; at t
Δ

3

the only possible LCV is [ql3 ql3]
T; and for t

Δ

7 , [ql7 0]T and

[0 ql7]
T are two possible LCVs, where ql3 and ql7 are the

charges transferred to the load by each sub-module connected

to the load during time intervals t
Δ

3 and t
Δ

7 , respectively.

A Load Charge-Matrix (LCM) is then defined as a matrix

QL
N×(4N+2) consisting of 4N + 2 LCVs to designate the

connection of the sub-modules to the load during a complete

ac cycle, and the set of all the possible LCMs is called Load

Charge-Matrix Space (LCMS). Note that all the LCMs in

LCMS comply with the shape and phase of the output current.

For instance,

[
0 ql2 ql3 ql4 0 0 0 ql8 ql9 0
0 0 ql3 0 0 0 ql7 ql8 0 0

]
and[

0 0 ql3 ql4 0 0 ql7 ql8 0 0
0 ql2 ql3 0 0 0 0 ql8 ql9 0

]
are two possible

LCMs for Fig. 1(c), where ql2, ql3, ql4, ql7, ql8, and ql9 are the

charges transferred to the load by each sub-module connected

to the load during time intervals t
Δ

2 , t
Δ

3 , t
Δ

4 , t
Δ

7 , t
Δ

8 , and t
Δ

9 ,

respectively. It is worth noting that KCL enforces

QL = QB, (3)

and

QL = QB +

[
QC

0

]
−

[
0
QC

]
, (4)

in Fig. 1(a) and Fig. 1(b), respectively.

B. Optimization Design

In this investigation, a Gaussian statistical distribution is

used for the capacity of the batteries. Additionally, we choose

the current capability of the batteries to be limited to a certain

C-rate (i.e., 0.1) relative to the battery’s capacity at the time

of the operation to manage the degradation of the batteries.

For simplicity, the voltages of the batteries are assumed to

be homogeneous (equal), which, together with the current

capability of the batteries, leads to the statistical distribution

of the power capability of the batteries. The goal of the

optimization is to maximize the power utilization (Up) and

energy utilization (Ue) of the BESS. For a MAC-BESS, Up is

defined as the peak ac output power of the BESS normalized

by the sum of the intrinsic power capability of the batteries. Ue

is defined as the total extracted energy from the BESS prior

to one of the batteries reaching its minimum allowed depth

of discharge normalized by the sum of the available energy

of the batteries. The decision variables are QL, QB, and QC

(when used).

1) Without Partial Power Processing Converters: For a

CHB inverter without PPPCs, shown in Fig. 1(a), Up is the

same for any given QL. In other words, the BESS output

current is always limited by the current capability of the

weakest battery, which is independent of QL (the connection

of the sub-modules to the load). So, Monte Carlo simulations

are performed to obtain the average Up over the samples drawn

from the power capability statistical distribution.

Ue can be optimized in a 2-step process as follows. Here,

QL and QB are the decision variables. The goal is to minimize

the deviation of individual SOCs from the average SOC, or

in other words, make the battery SOCs closer to each other.

All the batteries are assumed to have initial SOCs of 1 at the

beginning of the first cycle, i.e., batteries are fully charged

relative to their capacity at the time of the operation.

• Optimization Formulation

min
QL,QB

N∑
n=1

(
SOCn − SOC

)2

(5a)

subject to : SOC =

∑N

n=1 SOCn

N
, (5b)

SOCn =
Cn − 〈�1, QB

n,:〉

Cn

, n = 1, 2, · · · , N, (5c)

QL = QB, QL ∈ LCMS, (5d)

where �1 denotes the (4N + 2)-dimensional all-ones vector,

〈, 〉 denotes the inner product, N is the number of batteries,

SOCn is the SOC of the nth battery at the end of one cycle (a

scalar), SOC is the average of SOC1 · · · SOCn (a scalar), Cn

is the capacity of the nth battery at the time of the operation

(a scalar), and QB
n,: denotes the nth row of QB. As mentioned

in Section II-A, constraint (5d) enforces KCL. Additionally,

QL ∈ LCMS in constraint (5d) means that QL complies with

the shape and phase of the output current. In the first step,

we set the battery capacities to the expected values using

the distribution flattening method [9] and find the QL that

minimizes (5a). Note that, the objective function of (5a) is

surrogate for −1×Ue, meaning that optimizing one optimizes

the other one too. To make the optimization tractable, we first

select the best QL from a random subset of LCMS. We then

perform a coordinate ascent around this QL until it converges

to the local optimum QL*.

In the second step, the elements of QL are fixed to the

elements of QL*, meaning that for each time interval, the same

sub-modules as in QL* are selected for QL to be connected to

the load. We then perform Monte Carlo simulations to obtain

the average Ue over the samples drawn from the capacity

statistical distribution.

2) With Adjuvant Partial Power Processing Converters:

For a CHB inverter with PPPCs, shown in Fig. 1(b), Ue of

100% is enforced by introducing suitable constraints into the

optimization that ensures SOC balancing at the end of each ac

cycle. Note that having the same SOCs for all the batteries at

the end of each cycle is analogous to Ue of 100% because all

the batteries reach their minimum allowed depth of discharge

simultaneously. Again, all the batteries are assumed to have

initial SOCs of 1 at the beginning of the first cycle. Up is

optimized in a 2-step process as follows. Here, the decision

variables are QL, QB, and QC.
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• Optimization Formulation

max
QL,QB,QC

N∑
n=1

⎛
⎝4N+2∑

i=1

QL
n,i

⎞
⎠ (6a)

subject to : −

(
Pn

V

)
T

Δ

� QB
n,: �

(
Pn

V

)
T

Δ

, (6b)

−

(
Rp

V

)
T

Δ

� QC
m,: �

(
Rp

V

)
T

Δ

, (6c)

〈�1, QB
n,:〉

Cn

=
〈�1, QB

1,:〉

C1
, (6d)

QL = QB +

[
QC

0

]
−

[
0
QC

]
, QL ∈ LCMS, (6e)

QC
m,i

t
Δ

i

=
QC

m,1

t
Δ

1

, (6f)

for all1 ≤ n ≤ N, 1 ≤ m ≤ N − 1, 1 ≤ i ≤ 4N + 2,

where �1 denotes the (4N + 2)-dimensional all-ones vector,

V is the batteries’ voltage (a scalar), Rp is the upper bound

for the power converter ratings (a scalar), and Pn is the power

capability of the nth battery (a scalar). T
Δ

is a (4N + 2)-di-

mensional vector containing all the time intervals defined as

T
Δ

=
[
t
Δ

1 t
Δ

2 · · · t
Δ

4N+2

]
. (7)

Constraint (6b) limits the power capability of the batteries,

and constraint (6c) limits the power converter ratings to an

upper bound. Constraint (6d) enforces SOC balancing at the

end of an ac cycle, and constraint (6e) enforces KCL. Again,

QL ∈ LCMS means that QL complies with the shape and phase

of the output current.

In the first step, we set the battery capacities and power

capabilities to the expected values using the distribution flat-

tening method [9] and find the QL that maximizes (6a). Note

that, the objective function of (6a) is surrogate for Up. Again,

to make the optimization problems tractable, we select the best

QL from a random subset of LCMS. For each QL, a Linear

Programming (LP) problem is solved; then, the optimal QL

is selected among the solutions of LP problems to obtain the

best objective function value (i.e., Up). At the end of the first

step, we perform a coordinate ascent around this QL until it

converges to QL*.

In the second step, the elements of QL are fixed to the

elements of QL*, meaning that for each time interval, the same

sub-modules as in QL* are selected for QL to be connected

to the load. We then perform Monte Carlo simulations on the

same optimization problem, i.e., (6), to obtain the average Up

over the samples drawn from the capacity and power capability

statistical distributions. It is worth noting that each Monte

Carlo instance is an LP problem.

Note that we select the upper bound for the power converter

ratings, i.e., Rp, for each optimization instance. We sweep this

bound relative to the sum of the intrinsic power capability of

the batteries and repeat the entire process to find the tradeoff

between the power converter rating (determined by converter

processed power) and Up (battery power capability that is

utilized). Additionally, the PPPCs can be chosen to have either

constant or variable power flow during an ac cycle; thus,

we consider CHB with both variable PPPCs (VPPPC) and

constant PPPCs (CPPPC) and compare the results. Constraint

(6f) enforces the power converters to have constant power flow

during an ac cycle. Note that this constraint is not enforced

when we use VPPPCs.

3) Effect of Output Current’s Magnitude and Phase: It is

worth noting that we solve the optimization to obtain the

maximum Up of the BESS, which gives us the maximum

output current that BESS can provide. To maintain the BESS

maximum output current, the PPPCs should have certain

output current values obtained from optimization. When the

magnitude of the BESS output current changes, the output

current of the PPPCs should follow the changes. Thus, in

a BESS, the magnitude of the output current should be fed

back to set the output currents of the PPPCs accordingly. The

simulation results in the following Section demonstrate the

effect of the output current’s magnitude changes. Changing the

output current’s phase changes QL and consequently LCMS.

However, the optimization formulations remain the same. We

can solve the optimization for different phase values and

make a lookup table. In a BESS, the output current’s phase

can be fed back to set the output current of the PPPCs to

corresponding values from the lookup table.

III. SIMULATION RESULTS

In order to evaluate the investigated framework, Monte

Carlo simulations were performed in Matlab to compare the

performance of CHB without PPPCs (with optimal QL), CHB

with VPPPCs, and CHB with CPPPCs. Figures 1(a) and 1(b)

show the schematics of the architectures for Monte Carlo

simulations. Additionally, CHB with CPPPCs, shown in Fig.

1(b), was modeled and simulated in PLECS for full-load

and half-load conditions. For all the Matlab and PLECS

simulations, a 15-level (7 batteries) CHB inverter with SHE

modulation and ac frequency of 60 Hz was used. For the

batteries, we used the parameters of the battery modules

in TESLA Model S EVs, i.e., 24 V and 250 Ah. Gaussian

statistical distributions with μcapacity of 1.00 × 250Ah and

σcapacity of 0.10× 250Ah, 0.15× 250Ah, 0.20× 250Ah, and

0.25×250Ah were used for the capacity of the batteries. The

output voltage of the CHB is a 15-level ac waveform with a

THD of 5.66 % and a fundamental component of 171 V peak

(121 V rms). For simplicity, the load is assumed to be resistive,

so the output voltage and current have the same shape and

phase.

A. Optimization Results

In Fig. 2 and Fig. 3, normalized aggregate converter rating is

defined as the sum of the ratings of the converters normalized

by the sum of the intrinsic power capability of the batteries.

Note that, for the economy of scale, all the converters are

assumed to have the same rating, i.e., the highest rating among

the converters.
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Fig. 2. Comparison of battery power utilization for CHB without PPPCs
(with optimal QL), CHB with VPPPCs, and CHB with CPPPCs when
heterogeneity is: (a) 10 % (μcapacity = 1 p.u., σcapacity = 0.10 p.u.), (b)
15 % (μcapacity = 1 p.u., σcapacity = 0.15 p.u.), (c) 20 % (μcapacity = 1 p.u.,
σcapacity = 0.20 p.u.), and (d) 25 % (μcapacity = 1 p.u., σcapacity = 0.25 p.u.).
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Fig. 3. Comparison of battery energy utilization for CHB without PPPCs
(with optimal QL), CHB with VPPPCs, and CHB with CPPPCs when
heterogeneity is: (a) 10 % (μcapacity = 1 p.u., σcapacity = 0.10 p.u.), (b)
15 % (μcapacity = 1 p.u., σcapacity = 0.15 p.u.), (c) 20 % (μcapacity = 1 p.u.,
σcapacity = 0.20 p.u.), and (d) 25 % (μcapacity = 1 p.u., σcapacity = 0.25 p.u.).
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As shown, CHB with CPPPCs and VPPPCs show a bet-

ter Up than CHB without PPPCs. This superiority increases

when the batteries become more heterogeneous, i.e., when

the battery capacity variation increases, as illustrated in Fig.

4. Furthermore, CHB with CPPPCs and VPPPCs have Ue of

100 % for all the normalized aggregate converter ratings and

all the battery capacity variation values, which is expected

because SOC balancing is enforced by the constraints of

the optimization. Although having the same SOC for all the

batteries is desirable in BESSs, especially for stochastic loads,

we can relax the SOC balancing constraints to increase Up.

This way, we can compromise between Ue and Up based on

the cost of batteries and power converters.

Additionally, CHB with VPPPCs has a better Up than CHB

with CPPPCs. This observation is also not surprising because

the feasibility region of the optimization problem for CHB

with CPPPCs is a subset of the feasibility region of the

optimization problem for CHB with VPPPCs. Thus, for a given

Up, a higher power converter rating is needed for CPPPCs

compared to the required converter rating of VPPPCs. As an

example, for battery capacity variation of 20 % and at Up of

92 %, the normalized aggregate converter rating for VPPPC

and CPPPC is 0.28 and 0.4, corresponding to PPPCs with

power ratings of 196 W and 280 W, respectively. However,

faster converters are required for the VPPPCs. So, the choice

of CPPPCs or VPPPCs is a tradeoff between processed power

and the switching frequency of the converters and depends on

the dynamics of the load. As a reference, for a CHB with

SHE modulation and 7 batteries in a grid with ac frequency

of 60 Hz, the switching frequency of the VPPPCs should

be at least 30 KHz, which is straightforward for such small

converters.

As shown in Fig. 4, when the battery capacity heterogene-

ity increases from 10 % (i.e., μcapacity = 1 p.u., σcapacity =
0.10 p.u.) to 25 % (i.e., μcapacity = 1 p.u., σcapacity = 0.25 p.u.),

Up decreases 7 %, 11 %, and 21 % for CHB with VPPPCs,

CHB with CPPPCs, and CHB without PPPCs, respectively.

Additionally, Ue decreases 9 % for CHB without PPPCs, while

it always equals 100 % for CHB with VPPPCs and CHB with

CPPPCs. This shows that CHB with VPPPCs and CPPPCs

are also less impacted by increasing battery heterogeneity

compared to CHB without PPPCs.

B. PLECS Simulation Results

A sample battery set was instantiated from the battery

capacity statistical distribution for a battery supply with 20 %

capacity variation. Then, by using the results of Section III-A,

the power flow of the converters was optimized to obtain

the maximum Up for the case of CHB with CPPPCs at 0.4

normalized aggregate converter rating. The results were then

used for the PLECS simulation to demonstrate the function-

ality of the structure. In the following simulations, the goal is

to demonstrate that all the constraints (batteries’ power limit,

converters’ power limit, batteries’ SOC balancing constraints,

and KCL constraints) are met in a circuit. C-Scripts were
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Fig. 4. Comparison of: (a) battery power utilization, and (b) battery energy
utilization as a function of battery capacity heterogeneity for CHB without
PPPCs (with optimal QL), CHB with VPPPCs, and CHB with CPPPCs.
Normalized aggregate converter rating is 0.4 for CHB with VPPPCs and CHB
with CPPPCs.

written in PLECS to generate the switching commands based

on QL*.

1) Full Load: Figures 5 and 6 show the results of the

PLECS simulation for the full load case. As shown, the

output voltage of the CHB is a 15-level ac waveform with

a fundamental component of 171 V peak (121 V rms). For

the instantiated battery set, the BESS current capability is

25.24A, which is approximately 0.1 × 250A. Note that the

C-rates of the batteries were set to 0.1 relative to the batteries’

capacity at the time of the operation. For a MAC-BESS, the

BESS current capability is defined as the sum of the intrinsic

power capability of the batteries over the peak of the multilevel

output voltage, i.e., 24V × 7. From Fig. 5(b), Up equals
23.41 A×24 V×7
25.24 A×24 V×7 = 92.75%, which approximately equals Up in

Fig. 2(c), i.e., 92.24 %. Recall that 92.24 % is the average Up

over Monte Carlo simulations. As shown in Figures 5(c) and

6, the currents of the PPPCs and batteries are always below

their limits. Furthermore, all the batteries have the same SOC

trajectory, which shows that the batteries will be discharged

simultaneously, and Ue is 100 %.
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Fig. 5. PLECS simulation results for full load: (a) output voltage of the BESS, (b) output current of the BESS, and (c) output current of the converters.
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Fig. 6. PLECS simulation results for full load: current of (a) battery 1 (the weakest battery), (b) battery 2, (c) battery 3, (d) battery 4, (e) battery 5, (f) battery
6, (g) battery 7 (the strongest battery), and (h) SOC of batteries.

2) Half Load: Figures 7 and 8 show the result of the

PLECS simulation for the half load case. In this simulation, the

BESS output current’s peak value is set to half of the BESS

output current’s peak value of the previous simulation, i.e.,

the full load case; consequently, the PPPCs’ output currents

were halved. As shown, the output voltage of the CHB is a

15-level ac waveform with a fundamental component of 171 V

peak (121 V rms). Additionally, the currents of the PPPCs

and batteries are always below their limits, as illustrated in

Figures 7(c) and 8. Furthermore, all the batteries have the

same SOC trajectory, which shows that the batteries will be

discharged simultaneously, and Ue is 100 %. Although the

batteries discharge slower than the full load case, Ue does not

change when the magnitude of the output current changes.

In this case, Up equals 11.70 A×24 V×7
25.24 A×24 V×7 = 46.35%, which is

half of Up for the full load case, i.e., 92.75 %. As mentioned

in Section II-B3, Up obtained from optimization gives us the

maximum output current that BESS can provide, which we

termed full load. When the output current decreases from this

maximum value, Up drops.

IV. CONCLUSION

This paper investigates a framework for optimizing mul-

tilevel ac battery energy storage systems. Through our sim-

ulation validation, we showed that by adding partial power

processing converters to a multilevel inverter, optimizing the

power flow of these converters, and optimizing the switching

sequence of the inverter’s sub-modules, we could achieve

perfect SOC balancing among the batteries while maximiz-

ing the output power of the battery energy storage system.

Furthermore, the functionality of the proposed structure and

framework was demonstrated through simulation.
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