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Abstract. We compute and compare the (intersection) cohomology of various
natural geometric compactifications of the moduli space of cubic threefolds:
the GIT compactification and its Kirwan blowup, as well as the Baily–Borel
and toroidal compactifications of the ball quotient model, due to Allcock–
Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by
investigating the behavior of the cohomology under the birational maps relat-
ing the various models, using the decomposition theorem in different ways, and
via a detailed study of the boundary of the ball quotient model. As an easy
illustration of our methods, the simpler case of the moduli of cubic surfaces is
discussed in an appendix.
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CHAPTER 1

Introduction

Cubic threefolds and their moduli are one of the most studied objects in
algebraic geometry. In previous work we have investigated the relationship among
various compactifications of the moduli space M of smooth cubic threefolds, and
the purpose of this paper is now to determine the cohomology of these moduli
spaces. The first compactification which one naturally encounters is, as for all
hypersurfaces, the GIT compactification MGIT (as studied by Allcock [All03] and
Yokoyama [Yok02]). It is interesting to note that recently Liu–Xu [LX19] showed
that for cubic threefolds (and also for cubic surfaces) MGIT is equal to the moduli
space of K-stable cubics, thus providing a differential-geometric perspective on the
GIT moduli of cubics.

What makes the case of cubic threefolds especially interesting is the presence
of two period maps which lead to further natural compactifications. The first of
these period maps is given by the intermediate Jacobian and was already studied by
Clemens–Griffiths [CG72]. The Torelli theorem holds for this period map for cubic
threefolds, and one obtains an immersion M →֒ A5 into the moduli space A5 of
principally polarized abelian varieties of dimension 5. Taking the closure IJ ⊂ A5

of the locus IJ of intermediate Jacobians in suitable compactifications A5 of A5,
one obtains geometrically meaningful compactifications of M (see [CMGHL15]).

Perhaps even more surprising is that one can construct a 10-dimensional ball
quotient model B/Γ of M, by using the periods of cubic fourfolds (cf. Allcock–
Carlson–Toledo [ACT11]). This ball quotient admits naturally the Baily–Borel

compactification (B/Γ)∗ and the (unique) toroidal compactification B/Γ, which
thus provide two further compactifications of the moduli of smooth cubic three-
folds. It is, in particular, these models which we will study in this paper. The
spaces MGIT and (B/Γ)∗ are closely related, as explained in [ACT11] and [LS07].

Briefly, there exists a space M̂ dominating bothMGIT and (B/Γ)∗. In fact M̂ plays
two roles: on the one hand it is the partial Kirwan blowup of the point Ξ ∈ MGIT

corresponding to the chordal cubic, and on the other hand it is the Looijenga Q-
factorialization (cf. [Loo03]) associated to the hyperelliptic divisor H∗

h ⊂ (B/Γ)∗.
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2 1. INTRODUCTION

Both compactifications MGIT and (B/Γ)∗ are singular. The toroidal compact-

ification B/Γ is a natural (partial) desingularization of (B/Γ)∗, while a natural
(partial) desingularization of MGIT is provided by Kirwan’s blowup MK, which is
smooth up to finite quotient singularities. By construction there is a factorization

MK → M̂ → MGIT, as M̂ is nothing but an intermediary step in the construction
of the Kirwan blowup MK . The relationship among these compactifications and
IJ was the subject of our previous works [CML09, CMGHL15, CMGHL17].

In this paper we investigate this relationship further by turning our attention
to the cohomology of these moduli spaces. More precisely, we determine the (in-

tersection) cohomology of the compactifications MGIT, M̂, MK, (B/Γ)∗ and B/Γ:
Theorem 1.1. The Betti numbers of MK and B/Γ, and the intersection Betti

numbers of MGIT, M̂, and (B/Γ)∗ are as follows:

(1.1)

j 0 2 4 6 8 10 12 14 16 18 20

dimHj(MK) 1 4 6 10 13 15 13 10 6 4 1

dim IHj(MGIT) 1 1 2 3 4 5 4 3 2 1 1

dim IHj(M̂) 1 2 3 5 6 8 6 5 3 2 1

dim IHj((B/Γ)∗) 1 2 3 5 6 7 6 5 3 2 1

dimHj(B/Γ) 1 4 6 10 13 15 13 10 6 4 1

while all the odd degree (intersection) cohomology vanishes.

Convention 1.2. As usual with these type of cohomological computations, the
cohomology is always with Q coefficients. This will be our convention throughout
the paper.

Remark 1.3. The easier related case of the moduli space of cubic surfaces is
discussed in Appendix C. Specifically, as in the case of cubic threefolds, there exists
both a GIT model (one of the standard examples in classical Invariant Theory) and a
ball quotient model for the moduli space of cubic surfaces (due to Allcock–Carlson–
Toledo [ACT02]; see also [DvGK05]). However, in this lower-dimensional case,
the two models are isomorphic (cf. [ACT02]). The cohomology of the GIT model
and of its partial Kirwan desingularization were worked out by Kirwan as illustra-
tions of her general theory (see [Kir89], and also [Zha05]). On the other hand,
to our knowledge, Theorem C.1, which computes the cohomology of the associated
toroidal compactification of the ball quotient model for cubic surfaces, and Theo-
rem C.4, which computes the cohomology of the Naruki compactification for the
surface case, are new, and possibly of independent interest (see also Remark 1.5
below).

Remark 1.4. Let us briefly comment on the singularities of the various com-
pactifications that occur in our paper. First, by construction, MK and B/Γ have
only finite quotient singularities. In particular, their cohomology coincides with

their intersection cohomology (with Q coefficients). The intermediate space M̂,
which resolves the birational map MGIT

99K (B/Γ)∗, has only toric singularities.
In contrast, the two starting points of our analysis, the GIT quotient MGIT and
the Baily–Borel compactification (B/Γ)∗, have worse singularities. Specifically, the
GIT quotient MGIT has at worst finite quotient singularities along the stable lo-
cus Ms, and toric singularities along the GIT boundary, except for the point Ξ
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that corresponds to the chordal cubic threefold. Finally, (B/Γ)∗ has at worst finite
quotient singularities in the interior B/Γ, but the singularities at the two isolated
boundary points (the cusps) of (B/Γ)∗ are fairly complicated. The precise descrip-

tion of the (partial) resolutions MK → MGIT and B/Γ → (B/Γ)∗ constitutes an
important part of our paper (see esp. Sections 2 and 7 respectively).

Remark 1.5. We note that the first and the last row of this table are identi-
cal. This is to say, the Betti numbers of the two compactifications that are smooth
up to finite quotient singularities — the Kirwan blowup MK and the toroidal

compactification B/Γ of the ball quotient — coincide. This leads to the natural
question of whether these two compactifications are in fact isomorphic. Geometri-
cally, both MK and B/Γ are blowups of (B/Γ)∗ at the same two points which are
the two cusps of (B/Γ)∗. However, it is unclear whether the blowup ideals are the
same in both cases (see [LO18, §5.1] for some related computations). Similarly,
in Appendix C we show that the Betti numbers of the Kirwan blowup and of the
toroidal compactification for the moduli of cubic surfaces (see [ACT02]) are also
equal (Theorem C.1). Even in this easier case, while we expect that the Kirwan
blowup and the toroidal compactification for the moduli of cubic surfaces are in
fact isomorphic, some subtle details remain to be settled. Answering this question
will require methods very different from what we use in this paper, and we plan to
return to this question in the future.

In addition to the fact that the (intersection) Betti numbers of a moduli space
are a basic invariant of interest, there are several further reasons for our interest
in these numbers. In particular, our work here provides a better understanding
of the geometry of the birational maps among the various compactifications of
the moduli space of cubic threefolds. In general it is a natural question to ask
how different compactifications of a given moduli space, each often arising as the
result of a natural compactification process, relate to each other. One way of
understanding such relations can be via the log-MMP with respect to a suitable
linear combination of boundary divisors. This is a very active subject of research,
widely known as the Hassett–Keel program, in the case of the moduli space of
curves Mg (see eg. [HH09, HH13]). The motivation is that the log-MMP allows
one to interpolate between a known compactification (such as the Deligne–Mumford
compactification Mg) and a target compactification (such as the canonical model
Mcan

g for g ≥ 23). More recently, Laza and O’Grady [LO18, LO19] have used a
variation of log-models to understand the relationship between the GIT and Baily–
Borel compactifications for low degree (esp. quartic) K3 surfaces. It is natural to
ask whether a similar picture arises for moduli spaces of cubics (see [CML09, Sect.
7] for some further discussion). In particular, in this context the question raised by

the remark above, of whether MK and B/Γ are in fact isomorphic, seems to be the
natural starting point, and resolving it might give some indication of the properties
of the log-MMP in this case.

In another direction, our results provide a geometric approach to computing
the cohomology of an interesting ball quotient (the Allcock–Carlson–Toledo model
B/Γ for the moduli space of cubic threefolds) and its compactifications. First, since
B/Γ is a locally symmetric variety, there are several interesting questions related
to its topology. One natural question is whether its cohomology is generated by
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arithmetic cycles, i.e., Shimura subvarieties, which in this case will be sub-ball quo-
tients B′/Γ′. Our results provide a starting point for identifying some geometrically
meaningful candidates for such subvarieties (e.g., loci corresponding to cubic three-
folds with specified singularities, or cubics with specified automorphisms), although
we are far from being able to answer this question completely. Analogous questions
were considered in the case of orthogonal modular varieties (also known as type
IV or K3 type) under the heading of the Noether–Lefschetz conjecture. This was
verified by Bergeron et al. [BLMM17] who show that the cohomology of locally
symmetric varieties of type IV is generated at least up to middle dimension by
Shimura subvarieties.

Second, we note that one can also approach the computation of the intersection
cohomology of Baily–Borel compactifications via automorphic representations and
trace formulae. This has been advanced very successfully in the case of the Satake
compactification A∗

g of the moduli space of principally polarized abelian varieties,
where the intersection cohomology is completely known for g ≤ 7 (also for intersec-
tion cohomology with coefficients in any local system), see [HT18]. This, as well
as the work by Bergeron et al., relies on Arthur’s endoscopic classification of auto-
morphic representations of the symplectic group. In principle, Arthur’s method can
also be applied to the unitary group (i.e., the case of ball quotients) as was shown
by Mok [Mok15], but to the best of our knowledge the 10-dimensional case which
we treat here has not yet been approached by representation-theoretic methods.

Finally, while there has been some previous work computing the intersection
cohomology of Baily–Borel compactifications of ball quotient models, in this paper
we work out the cohomology of the toroidal compactification. To our knowledge,
this is the first nontrivial example where the intersection cohomology of the toroidal
compactification of an arithmetic ball quotient model of a moduli space has been
computed. The techniques should be applicable to other examples of interest. In
fact, as our ten-dimensional ball quotient is the largest of the ball quotient models
related to natural moduli problems, the results should be immediately applicable in
these other situations. As mentioned above, in Appendix C we for instance apply
our techniques to the ball quotient model of the moduli space of cubic surfaces.

Our approach takes as its starting point Kirwan’s general theory (see [Kir84,

Kir85]) of computing the (intersection) cohomology of GIT quotient spaces. In
her paper [Kir89] Kirwan uses her techniques to perform the computations for the
cases of cubic and quartic surfaces. Furthermore, Kirwan and her collaborators have
done such computations for Baily–Borel compactifications of the moduli space ofK3
surfaces of degree 2 (see [KL89a, KL89b]) and the Deligne–Mostow ball quotients
(see [KLW87]). Indeed, the largest Deligne–Mostow ball quotient, corresponding
to 12 points in P1, is directly related to our analysis, as it corresponds to the
hyperelliptic divisor H∗

h in (B/Γ)∗. However, our situation is that of the Baily–
Borel compactification of the ball quotient (B/Γ)∗, which is of dimension 10, and
goes beyond the Deligne–Mostow examples.

While our basic setup is similar to these works, we encounter various new phe-
nomena and complications, which make our computations considerably more intri-
cate, and in particular require a careful analysis of the geometry of our situation.
Combining Kirwan’s machinery and geometric descriptions of various unstable and
polystable loci (some available in the literature, but with further information de-

duced in this paper) allows us to compute the cohomology of MGIT, M̂, and MK.
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Next we compute the cohomology of the Baily–Borel compactification (B/Γ)∗ by
applying the decomposition theorem to the natural morphism MK → (B/Γ)∗. We

finally compute the cohomology of the toroidal compactification B/Γ by applying

the decomposition theorem to the natural morphism B/Γ → (B/Γ)∗, which is the
blowup of the two points which are the cusps of (B/Γ)∗. We note that, as for
all ball quotients, there are no choices involved in the construction of the toroidal
compactification. The computation of the cohomology of the toroidal boundary
divisors requires a careful analysis of the arithmetic and the geometry of the two
cusps. This involves the theory of Eisenstein lattices and leads to a wealth of new
geometric insights. In particular, we are led to generalize a Chevalley type result
due to Looijenga and Bernstein–Schwarzman [Loo77, FMW98, BS06] to the case
of Eisenstein lattices (see §7.2.1). Furthermore, as an immediate and easy applica-
tion of our techniques, we can for instance compute the cohomology of the toroidal
compactification of the ball quotient model of the moduli space of cubic surfaces
(Theorem C.1).

Let us briefly go over the content of our paper. We start in Chapter 2 with some
preliminaries. Specifically, we first briefly review (§2.2) the work of Allcock [All03]
and Allcock–Carlson–Toledo [ACT11] (see also Looijenga–Swierstra [LS07]) on
the moduli space of cubic threefolds and its two compact models MGIT and (B/Γ)∗.
We then review (§2.3) the basic framework of Kirwan’s method (and fix the neces-
sary notation). In particular, we introduce the space MK , the Kirwan (orbifold)
desingularization of the GIT model MGIT, that plays a key role in our analysis.

In Sections 3 and 4 we compute the cohomology of the Kirwan resolution MK .
There are two main steps in the computation. First is the computation of the
equivariant cohomology of the semi-stable locus Xss in the Hilbert scheme of cubic
threefolds (§3). This is done by computing the usual Kempf stratification of the
unstable locus, followed by an excision type argument. A key simplifying observa-
tion of Kirwan is that, for the purposes of eventually computing the intersection
cohomology (or equivalently, cf. Remark 1.4, the cohomology) of MK, one can
safely ignore unstable strata of high codimension. In fact, for the analogous com-
putation in the case of quartic surfaces quartic surfaces discussed in [Kir89], all
unstable strata can be ignored. To our surprise, this is no longer the case for the
strata of unstable cubic threefolds, leading to some additional complications in the
computation of H•(MK), since the locus of unstable cubic threefolds with a D5

singularity plays a role. The next step, after computing the equivariant cohomology
of the semi-stable locus Xss, is to compute some correction terms (§ 4) that arise
from blowing up the loci of strictly polystable points in Xss in the construction of
MK.

Once the computation of the cohomology of MK is completed, Kirwan’s setup
allows one to in principle approach the computation of the intersection cohomology
of the GIT compactification MGIT. To do this, Kirwan sets up an appropriate ap-
plication of a suitable equivariant version of the decomposition theorem. In order
to apply this, one needs to solve separate GIT problems for actions on the tangent
space of suitable normalizers of stabilizers of strictly semi-stable points. We per-
form this computation, and turn out to be lucky in that the suitable quotients of
strictly semi-stable loci are two points and a P1 in our case, which allows the com-
putation of relevant intersection local systems. Along the way, we also determine
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the intersection cohomology of M̂ as an intermediate step. This is discussed in
Chapter 5.

We then further descend the computations from MK to (B/Γ)∗. To do this,
we apply the decomposition theorem directly to the map MK → (B/Γ)∗. The
crucial point here is that the Kirwan blowup MK is smooth up to finite quotient
singularities and that the map MK → (B/Γ)∗ is a blowup in two points whose
preimages are divisors in MK. The decomposition theorem then has a simple
description in terms of the cohomology of these exceptional divisors. Since most of
the work in computing the cohomology of those exceptional divisors was already
done in the computation of the intersection cohomology of MGIT, the computation
becomes feasible. This is discussed in Chapter 6.

Finally, in Chapter 7 we compute the intersection cohomology of the toroidal

compactification B/Γ. Since B/Γ is a smooth up to finite quotient singularities,
this computation is also done by applying directly the decomposition theorem, this
time to the morphism B/Γ → (B/Γ)∗, which is also a blowup of the two cusps in
(B/Γ)∗, with the total space smooth (also up to finite quotient singularities). This

requires computing the cohomology of the two exceptional toroidal divisors of B/Γ,
which get contracted to the two cusps of (B/Γ)∗. This turns out to be an interesting
question in its own right, whose solution involves the theory of Eisenstein lattices
as well as an equivariant version (Proposition 7.12) of a Chevalley type theorem of
Looijenga [Loo77] and Bernstein–Schwarzman [BS06].

As Kirwan’s machinery involves computations with equivariant cohomology,
for convenience we have summarized in Appendix A the properties of equivariant
cohomology that we will use. To apply this general machinery, one still needs to
determine various stabilizers, normalizers, their fixed point sets, etc. Such compu-
tations, though elementary, are quite lengthy and laborious. To streamline the flow
of the text, we have gathered all such results in Appendix B. Finally, Appendix C
discusses the easier case of the moduli space of cubic surfaces, where we prove that
the cohomology of the Kirwan blowup, toroidal, and the Naruki compactifications
are all equal.
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CHAPTER 2

Preliminaries

In this section, we will review some basic facts about the moduli of cubic
threefolds (mostly due to Allcock [All03] and Allcock–Carlson–Toledo [ACT11]),
and importantly, introduce the two main actors in our paper: the GIT quotient

MGIT and the ball quotient model (B/Γ)∗ (as well as their common resolution M̂).
We then recall Kirwan’s resolution MK of MGIT, and explain its connection with

M̂.

2.1. Notation and conventions

2.1.1. The general setting. In order to keep our presentation consistent
with that of [Kir85, Kir89, MFK94], and in order to discuss some of the details
of Kirwan’s construction, we first recall the general framework. We start with a
complex projective manifold X ⊆ PN , a complex reductive group G acting alge-
braically on X , and a G-linearization of the action on the very ample line bundle
L = OPN (1)|X . A complex Lie group G is reductive if and only if it is the com-
plexification of a maximal compact subgroup, and we fix one such subgroup K. We
assume that the action and the linearization are induced by a faithful representation

ρ : G −→ GL(N + 1,C)

such that ρ(K) ⊂ U(N + 1). We fix a maximal algebraic torus T ∼= (C∗)N+1 in
G, and a corresponding maximal compact torus T in K, so that T is a maximal
compact subgroup of T. Let α0, . . . , αN ∈ t∨ be the weights of the representation of
K, lying in the dual to the Lie algebra t of T ; if (x0 : · · · : xN ) are the coordinates
on PN = PCN+1 diagonalizing the action of T , then we associate to xi the weight
αi. We fix an inner product on the Lie algebra k of K that is invariant under the
adjoint action of K (for example the Killing form), and use its restriction to t to
identify t = t∨. We also fix once and for all a positive Weyl chamber t+.

2.1.2. The case of hypersurfaces. In this paper we will be specializing to
the case of hypersurfaces of degree d in Pn, and eventually to cubic threefolds.
To keep the notation consistent with the previous subsection, and in particular
consistent with [Kir89], we take X = PH0(Pn,OPn(d)) = P Symd(Cn+1)∨, i.e.,

X = PN with N =
(
n+d
d

)
− 1, and we take G = SL(n + 1,C) acting via the

natural representation on Symd(Cn+1)∨ induced by the canonical matrix action on
(Cn+1)∨ = Cn+1. This induces a linearization of the action for OPN (1). We note
that the action of G on X is not faithful: the center of SL(n + 1,C), which is
isomorphic to Z/(n+1)Z, consisting of diagonal matrices with the same (n+1)-st
root of unity along the diagonal, acts trivially on X .

7



8 2. PRELIMINARIES

Remark 2.1. As is typical in this situation, there is some choice involved in
picking the group G. The choice of SL(n + 1,C) is preferable from the perspec-
tive of linearizations and GIT (see [MFK94, p.33 and Prop. 1.4]). On the other
hand, since the action of PGL(n + 1,C) on X is faithful, and automorphisms of
a hypersurface are identified with the stabilizer of the corresponding point under
this action, it can frequently be convenient to work with PGL(n+1,C) when com-
puting stabilizers. Finally, it turns out that sometimes the stabilizers (and related
groups) are easier to describe from the group theoretic perspective as subgroups of
GL(n+ 1,C). Since we can easily go back and forth among the various groups, we
take G = SL(n + 1,C), so as to work well in the GIT setting, and be consistent
with Kirwan’s conventions.

In this case K = SU(n+1), and T ∼= (S1)n is the subgroup of diagonal unitary
matrices with determinant 1. The root system for SU(n + 1) is of type An, with
Weyl group the symmetric group Sn+1, and we fix a positive Weyl chamber t+.
The Killing form on su(n + 1) is given by A.B = 2n tr(AB); thus when restricted
to the diagonal traceless matrices of t, identified as the hyperplane {(a0, . . . , an) ∈
Rn+1 :

∑
ai = 0} ⊆ Rn+1, the inner product on t is 2n times the standard inner

product. For simplicity, we will always use the standard inner product. To describe
the weights of the representation of SU(n + 1) concretely, we take as a basis for

Symd(Cn+1)∨ the monomials of degree d. As usual, we use the notation xI :=

xi0
0 . . . xin

n , where I = (i0, . . . , in) is a partition of d, to index our monomials. A

diagonal matrix diag(λ0, . . . , λn) acts on xI by scaling by λi0
0 . . . λin

n , and thus the
index I also gives the weight αI associated to the coordinate xI . More precisely,
the monomials naturally sit as lattice points in the non-negative quadrant of Zn+1,
and the monomials of fixed degree d can be thought of as the lattice points of a
simplex in the affine n-space whose defining equation is that the sum of coordinates
is d. We make the identification of monomials of degree d with weights in t ⊆ Rn+1

explicit with the assignment xI 7→ αI := (i0 − d/(n+ 1), . . . , in − d/(n+ 1)).

2.1.3. The case of cubic threefolds. The particular case of interest in this
paper is the case of cubic threefolds. As in the previous subsection, to fix the
notation to match [Kir89], we set throughout the paper d = 3 for the degree of the
hypersurfaces, n = 4 for dimension of the ambient P4, X = P34 = P Sym3(C5)∨ for
the parameter space for cubic threefolds, and G = SL(5,C) for the reductive group
acting on X via change of coordinates, with the canonical linearization on OP34(1).

2.1.4. Strictly polystable points. As before, let G be a reductive group
acting on a projective variety X with a G-linearized ample line bundle L. A point
x ∈ X is semi-stable if there exists an invariant section σ ∈ H0(X,Lm)G (for some
m ∈ Z+) such that σ(x) 6= 0. We denote by Xss(L), or simply Xss if no confusion
on L is possible, the set of semi-stable points. A point x ∈ Xss(L) is polystable if
the orbit G · x is closed in the locus of semi-stable points Xss(L). The stabilizer
of a polystable point is a reductive group. We recall that the points of the GIT
quotient X//LG(= Xss(L)/G) are in one-to-one correspondence with the orbits of
the polystable points. Finally, a point x ∈ Xss(L) is stable if it is polystable with
finite stabilizer. We denote by Xs(L) ⊂ Xss(L) (or simply Xs) the open subset of
stable points. The quotient Xs/G is a geometric quotient, in particular the points
of Xs/G are in one-to-one correspondence with the G-orbits in Xs(L). We will use
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the terminology of strictly polystable points for polystable points that are strictly
semi-stable (i.e., the point is polystable, and semi-stable, but is not stable).

The main tool for determining the semi-stable/stable points is Mumford’s nu-
merical criterion (e.g. [MFK94, §2.1]). For the case relevant here, the cubic three-
folds, a complete description of the semi-stable/polystable/stable points was done
by Allcock [All03] and Yokoyama [Yok02], as reviewed below.

2.2. Moduli space of cubic threefolds and its standard

compactifications MGIT and (B/Γ)∗

2.2.1. The GIT compactification MGIT. With X = P34 = P Sym3(C5)∨,
the parameter space for cubic threefolds, and G = SL(5,C) acting via change of
coordinates, as above, the natural GIT compactification for the moduli space of
cubic threefolds is denoted

MGIT := X//G .

Note that since projective space has Picard rank 1, and G = SL(5,C), there is
essentially a unique choice of linearization for defining the GIT quotient [MFK94,
Prop. 1.4, p.33]. The open subset parameterizing smooth cubics will be denoted
throughout by M, and the stable locus will be denoted by Ms = Xs/G. Clearly,
one has

M ⊂ Ms ⊂ MGIT ,

and Ms has at worst finite quotient singularities.
The GIT compactification MGIT for cubic threefolds was analyzed by Allcock

in [All03] and Yokoyama in [Yok02]. They showed that semi-stability of a cu-
bic threefold is determined by its singularities (with almost no global information
needed; this is quite special to this case). In particular, all the semi-stable cubics
have isolated singularities, with a single exception, the chordal cubic, i.e. the secant
variety of a rational normal curve in P4 (see (2.3) below for an explicit equation).
The chordal cubic is polystable, and we denote by Ξ its orbit, which we view as a
special point Ξ ∈ MGIT of the GIT quotient.

For further reference, we summarize the GIT analysis for cubic threefolds
(cf. [All03, Thms. 1.1 – 1.4]) as follows:

Theorem 2.2 (GIT compactification for cubic threefolds, [All03]). The fol-
lowing hold:

(1) A cubic threefold is GIT stable if and only if it has at worst A1, . . . , A4-
singularities.

(2) The GIT boundary MGIT − Ms consists of a rational curve T and an
isolated point ∆.

(3a) The polystable orbit parameterized by ∆ corresponds to a cubic with 3D4-
singularities, given by equation (2.1).

(3b) Under a suitable identification T ∼= P1, the polystable orbits parameter-
ized by T − {0, 1} correspond to cubics with precisely 2A5-singularities
(see (2.2) below for an explicit parameterization).

(3b’) The special point 0 ∈ T corresponds to a cubic with 2A5+A1-singularities
(i.e. the cubics with 2A5 singularities parameterized by T can acquire an
additional node for a special value of the parameter in T ∼= P1).
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(3b”) The special point 1 ∈ T corresponds to the chordal cubic (in this situation,
the 2A5 cubics specialize to a cubic with non-isolated singularities), i.e.
the point Ξ ∈ MGIT identified above.

Remark 2.3. In what follows, we will need explicit equations for the cubics in
strictly polystable orbits. Specifically, we have the following (cf. [All03, Thm. 1.2]):

(1) The polystable orbit corresponding to the isolated boundary point ∆ ∈
MGIT is the orbit consisting of cubics with three isolated D4 singularities
(a geometric condition that characterizes it, cf. [All03, Thm. 5.4]); one
such cubic is given explicitly by the polynomial

(2.1) F3D4 := x0x1x2 + x3
3 + x3

4,

with zero set V (F3D4 ), which we will call the 3D4-cubic.
(2) The curve T ⊂ (MGIT − Ms) parameterizes strictly polystable orbits

given by polynomials of the form

(2.2) FA,B = Ax3
2 + x0x

2
3 + x2

1x4 − x0x2x4 +Bx1x2x3,

with A,B not simultaneously vanishing. Specifically, one notes that the
zero set V (FA,B) is projectively equivalent to V (Fλ2A,λB) for any λ ∈ C∗.
In fact, V (FA,B) is projectively equivalent to V (FA′,B′) if and only if
A/B2 = A′/B′2. Thus, C := 4A/B2 can be taken as an affine parameter
for the rational curve T . The factor of 4 is taken for numerical conve-
nience: if C /∈ {0, 1}, then the cubic V (FA,B) has exactly two isolated A5

singularities (a geometric condition that characterizes the cubics V (FA,B),
cf. [All03, Thm. 5.7]). If C = 0 (equivalently A = 0), then the cubic
V (F0,B) has in addition to the two A5 singularities, an isolated A1 sin-
gularity. Finally, if C = 1 (e.g., (A,B) = (1,−2)), then the associated
cubic V (F1,−2) is the chordal cubic, i.e., the secant variety of the standard
rational normal curve in P4 (which is singular precisely along the rational
normal curve). Note that

(2.3) F1,−2 = det



x0 x1 x2

x1 x2 x3

x2 x3 x4


 ,

which makes the relationship to the standard rational normal curve in P4

more transparent.

2.2.2. The ball quotient model (B/Γ)∗. Looijenga–Swierstra [LS07] and
independently Allcock–Carlson–Toledo [ACT11] have constructed a ball quotient
model B/Γ, where B is a 10-dimensional complex ball, and Γ is an arithmetic group
acting on B, via the period map for cubic fourfolds. The following summarizes the
essential aspects of the ball quotient model.

Theorem 2.4 (The ball quotient model, [ACT11] and [LS07]). Let B/Γ be
the ball quotient model of [ACT11]. The following hold:

(1) The period map (defined via eigenperiods of cubic fourfolds)

P : M → B/Γ
is an open embedding with the complement of the image being the union
of two irreducible Heegner divisors Dn := Dn/Γ (called the nodal divisor)
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and Dh := Dh/Γ (called the hyperelliptic divisor), where Dn and Dh are
Γ-invariant hyperplane arrangements.

(2) The boundary of the Baily–Borel compactification (B/Γ)∗ consists of two
cusps (i.e., 0-dimensional boundary components), which we will call c3D4

and c2A5 .

The Baily–Borel compactification (B/Γ)∗ of the ball quotient model discussed
above gives a projective compactification for the moduli space of cubic threefolds
M. The main result of [ACT11] and [LS07] is that there is a simple birational
relationship between the GIT and Baily–Borel models – this is an essential result
for our analysis. We summarize their results below:

Theorem 2.5 (GIT to ball quotient comparison, [ACT11] and [LS07]). As
above, let MGIT be the GIT compactification of the moduli space of cubic three-
folds. Let (B/Γ)∗ be the Baily–Borel compactification of the ball quotient model
of [ACT11]. Then there exists a diagram

M̂
p

{{✇✇
✇✇
✇✇
✇✇
✇

q

""❋
❋❋

❋❋
❋❋

❋❋

MGIT P //❴❴❴❴❴❴❴ (B/Γ)∗

resolving the birational map between MGIT and (B/Γ)∗ such that:

(1) p : M̂ → MGIT is the Kirwan blowup of the point Ξ ∈ MGIT, correspond-
ing to the chordal cubic (see §2.3.3 below, esp. (2.13)). The exceptional
divisor E := p−1(Ξ) of this blowup is naturally identified with the moduli
space of 12 unordered points in P1.

(2) q : M̂ → (B/Γ)∗ is a small semi-toric modification as constructed by
Looijenga [Loo03]. The morphism q is an isomorphism over the interior
B/Γ and one of the two cusps of (B/Γ)∗, namely c3D4. The preimage
under q of the other cusp, c2A5, is a curve, which is identified with the

strict transform T̂ of T ⊂ MGIT under p.

In particular note that the period map P : M → B/Γ extends to a morphism
P : MGIT − {Ξ} → (B/Γ)∗. Furthermore, the following hold:

(3) Let E ⊂ M̂ be the exceptional divisor of the map p. Then the image q(E)
is the closure D∗

h in (B/Γ)∗ of the hyperelliptic divisor Dh ⊂ B/Γ, while
q is an isomorphism over Dh (i.e., q|q−1(Dh) : q

−1(Dh) ≃ Dh).
(4) q is an isomorphism over the stable locus Ms and in a neighborhood of the

point ∆, corresponding to the 3D4 cubic. The image under q of the locus
of cubics with A1, . . . , A4-singularities is (Dn − Dh)/Γ (equivalently, P
extends over Ms and P (Ms) = (B −Dh)/Γ).

(5) q maps ∆ to the cusp c3D4 of (B/Γ)∗, and the strict transform T̂ of the
curve T to the cusp c2A5.

2.3. The Kirwan blowup MK of the moduli space of cubic threefolds

2.3.1. Introduction. The first step towards understanding the cohomology
of the GIT and ball quotient models for the moduli of cubic threefolds is to pro-
duce a common resolution (with at worst finite quotient singularities). For GIT
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quotients, Kirwan [Kir85] gives a general algorithm that achieves this resolution.
Roughly speaking, one considers the GIT boundary MGIT−Ms(= T ∪{∆} in our
situation) and stratifies it in terms of the connected components R of the stabilizers
of the associated polystable orbits. Then, one proceeds by blowing up these strata,
starting with the deepest one, in a way that will be explained in detail below. In
our situation, we will see that there are three strata: Ξ, ∆ (which are points) and
T −{Ξ} (which is a curve), with associated connected components of the stabilizers
being SL(2,C), (C∗)2, and C∗, respectively.

2.3.2. The Kirwan blowup in general. We start with X , G, and L as in
the general setup of § 2.1.1. Let R be a set of representatives for the (finite) set
of conjugacy classes of connected components of stabilizers of strictly polystable
points in Xss. Denote then r the maximal dimension of the groups in R, and let
then R(r) ⊆ R be the representative of those subgroups that have dimension r.
For a given R ∈ R(r), we proceed as follows. If r = 0, then there is nothing to do.
Otherwise, set

(2.4) Zss
R := {x ∈ Xss | R fixes x} ⊂ Xss.

Kirwan shows that for all R ∈ R(r), the loci G · Zss
R are smooth and closed in

Xss [Kir85, Lem. 5.11, Cor. 5.10]. Now let π̂ : X̂ → Xss be the blowup of Xss

along G · Zss
R . Note that since G · Zss

R only depends on the conjugacy class of R,
the same is true for the blowup.

As G acts on the center of the blowup, there is an induced action of G on X̂.
Taking E to be the exceptional divisor of the blowup π̂, there is a choice of d ≫ 0
such that L̂ := π̂∗L⊗d ⊗O(−E) is ample and admits a G-linearization that makes
the following statements true [Kir85, Lem. 3.11, Lem. 6.11] (see also [Rei89]).

Let R̂ be a set of representatives for the set of conjugacy classes of connected
components of stabilizers of polystable points in the semi-stable locus X̂ss. Then,
up to replacing elements of R̂ with conjugates, we have R̂ ( R [Kir85, Lem. 6.1].

Thus, by induction on the cardinality of the set R, we obtain the desired space

π : X̃ss → Xss by iteratively blowing up with respect to a smooth center, and then

restricting to the semi-stable locus. Moreover, X̃ss is equipped with a G-linearized

ample line bundle L̃, such that G acts with finite stabilizers. We define the Kirwan

blowup to be the space X̃ss//L̃G (= X̃ss/G); up to isomorphism, this is independent
of the choices [Kir85, Rem. 6.8 and p.64]. The Kirwan blowup has at worst finite
quotient singularities, and there is a birational morphism [Kir85, Cor. 6.7]:

X̃ss//L̃G −→ Xss//LG.

Remark 2.6. For later reference, we recall two further facts regarding the map
π̂ : X̂ → Xss, and the chosen linearization. First, if x̂ ∈ X̂−E, then x̂ ∈ X̂ss if and
only if G · π̂(x̂) ∩ G · Zss

R = ∅ [Rei89]. In other words, outside of the exceptional
divisor, the effect of the blowup is to destabilize exactly those strictly semi-stable
points that have orbit closure meeting the center of the blowup. Second, for any
R̂ ∈ R̂ the locus Ẑss

R̂
⊆ X̂ss is the strict transform of the locus Zss

R̂
⊆ Xss defined

by viewing R̂ as an element of R [Kir85, Rem. 6.8].

Remark 2.7. We also recall the following fact [Kir85, Lem. 8.2]: If R1, R2 ∈
R(r) are different groups of maximal dimension among elements of R, then G ·
Zss
R1

∩ GZss
R2

= ∅, and any x in G · Zss
R2

remains semi-stable after Xss is blown up
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along G · Zss
R1

. In particular we have [Kir85, Cor. 8.3]: the result of successively
blowing up Xss along G · Zss

R for each R ∈ R(r) is the same as the blowup of Xss

along
⋃

R∈R(r)G · Zss
R . Following the notation in [Kir85, Cor. 8.3], we will denote

this blowup by πr : Xr → Xss. Repeating the above process we obtain a sequence
of blowups

X̃ss := Xss
1

π1−→ Xss
2

π2−→ · · · πr−1−→ Xss
r

πr−→ Xss =: Xss
r+1 .

Note that we allow some of these blowups to be the identity if there are no relevant
subgroups in a given dimension. In short, πj is the blowup of the locus determined
by the subgroups R ∈ R of dimension j; i.e., by all R ∈ R(j). Note that in
contrast, if R1 ∈ R(r1) and R2 ∈ R(r2) for r1 6= r2, then it may happen that
G · Zss

R1
∩GZss

R2
6= ∅.

2.3.3. The Kirwan blowup of the moduli space of cubic threefolds.

We now implement the steps outlined in the previous subsection to construct the
Kirwan blowup of the moduli space of cubic threefolds. The first step is to enu-
merate the connected components of the stabilizers of polystable points. In our
situation, this is answered by the following proposition, where as is standard, we
write 1-PS for one-parameter subgroups:

Proposition 2.8 (The connected components of stabilizers R). Let V be a

strictly polystable cubic threefold. Then the connected component Stab0(V ) of the
identity in the stabilizer Stab(V ) ⊆ SL(5,C) is one of the following (up to conju-
gation):

(1) The 1-PS with weights (2, 1, 0,−1,−2):

(2.5) R2A5 := Stab0(V (FA,B)) = diag(λ2, λ, 1, λ−1, λ−2) ∼= C∗,

for 4A/B2 6= 1. We have Stab0(V ) = R2A5 (up to conjugation) if and
only if V is in the orbit of V (FA,B) with 4A/B2 6= 1; i.e., if and only if
the cubic has exactly two A5 singularities, or exactly two A5 singularities
and one A1 singularity. These are the cubic threefolds corresponding to
points on the curve (T − {Ξ}) ⊆ MGIT.

(2) The three-dimensional group

(2.6) Rc := Stab0(V (F−1,2)) ∼= PGL(2,C),

given as the copy of PGL(2,C) embedded into SL(5,C) as the image of the
SL(2,C) representation Sym4(C2) ∼= C5 (see Appendix A for more details
on dealing with equivariant cohomology of GL(n+1,C) versus SL(n+1,C),
and related issues). We have Stab0(V ) = Rc (up to conjugation) if and
only if V is in the orbit of V (FA,B) with 4A/B2 = 1; i.e., if and only
if the cubic is projectively equivalent to the chordal cubic. These are the
cubic threefolds corresponding to the point Ξ ∈ MGIT.

(3) The two-dimensional torus:

(2.7) R3D4 := Stab0(V (F3D4 )) = diag(s, t, (st)−1, 1, 1) ∼= (C∗)2.

We have Stab0(V ) = R3D4 (up to conjugation) if and only if V is in the
orbit of V (F3D4 ); i.e., if and only if the cubic has exactly 3D4 singularities.
These are the cubic threefolds corresponding to the point ∆ ∈ MGIT.
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Moreover, we have

(2.8) R2A5 ⊂ Rc, Rc ∩R3D4 = 1,

with the inclusion on the left corresponding to the fact that Ξ ∈ T ⊂ MGIT.

Proof. From the results of [All03] describing polystable cubic threefolds (see
Theorem 2.2 and Remark 2.3, above), it suffices to consider the cubic threefolds of
the form V (FA,B) (2.2), for A and B not simultaneously zero, and V (F3D4 ) (2.1).
It is obvious that each of the groups listed above is connected and stabilizes the
corresponding polystable orbit. For instance, PGL(2) acting on P4 via the Sym4

representation fixes the standard rational normal curve. Obviously, it will also fix
the secant variety of that curve, which is precisely the chordal cubic.

The converse (i.e., the fact that Stab0(V ) is precisely as listed, and not larger)
follows by a routine calculation. Many straightforward computations with matrices
will be relegated to Appendix B. For the results here, see in particular Proposi-
tion B.4, and Propositions B.1,B.3, B.6. The relationships (2.8) among the R are
straightforward from the descriptions of the groups. �

Utilizing the notation from (2.5), (2.6), and (2.7), it follows that for cubic
threefolds we may take

(2.9) R := {R2A5 , R3D4 , Rc} ←→ {C∗, (C∗)2,PGL(2,C)}
as a set of representatives for the set of conjugacy classes of connected components
of stabilizers of strictly polystable cubic threefolds. For each R ∈ R, we have the
corresponding fixed locus Zss

R , defined in (2.4). These loci can be described more
explicitly:

Proposition 2.9 (The strata Zss
R ). For cubic threefolds, the fixed loci Zss

R (2.4)
can be described as follows:

(1) Zss
R2A5

is the set of cubic threefolds defined by the cubic forms:

(2.10) F = a0x
3
2 + a1x0x

2
3 + a2x

2
1x4 + a3x0x2x4 + a4x1x2x3,

with a1, a2, a3 6= 0, (a0, a4) 6= (0, 0). For (A,B) 6= (0, 0) we have V (FA,B) ∈
Zss
R2A5

, and conversely every cubic in Zss
R2A5

is projectively equivalent to a

cubic of the form V (FA,B) with (A,B) 6= (0, 0).
(2) Zss

Rc
= {V (F1,−2)}, the chordal cubic in standard coordinates.

(3) Zss
R3D4

is the set of cubics defined by equations of the form

x0x1x2 + P3(x3, x4)

where P3(x3, x4) is an arbitrary homogeneous cubic with three distinct
roots.

Moreover, we have the following relationships among the fixed loci:

(2.11) Zss
Rc

⊂ Zss
R2A5

, Zss
R2A5

∩ Zss
R3D4

= ∅.

Proof. It is immediate to check that the groups R2A5 , R3D4 , and Rc fix
the corresponding loci Zss

R2A5
, Zss

R3D4
, and Zss

Rc
, respectively. It is a straightforward

check that these are in fact the full fixed loci; see also Propositions B.1,B.3,B.4, B.6.
The relationships (2.11) among the Zss

R are a straightforward consequence of the
descriptions above. See also Corollary B.7. �
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For the Kirwan blowup, we are actually interested in the orbits

G · Zss
R ;

in other words the loci of cubic threefolds that are projectively equivalent to the
cubics in a given stratum.

Corollary 2.10 (The orbits G · Zss
R ). For cubic threefolds, the orbits of the

fixed loci Zss
R can be described as follows:

(1) G · Zss
R2A5

is the set of polystable cubics projectively equivalent to a 2A5

cubic, a 2A5+A1 cubic, or a chordal cubic; i.e., projectively equivalent to
a cubic of the form V (FA,B) with (A,B) 6= (0, 0).

(2) G ·Zss
Rc

is the set of polystable cubics projectively equivalent to the chordal
cubic; i.e., projectively equivalent to V (F1,−2).

(3) G · Zss
R3D4

is the set of polystable cubics with 3D4 singularities; i.e., pro-

jectively equivalent to V (F3D4 ).

Moreover, we have the following relationships among the orbits:

(2.12) G · Zss
Rc

⊂ G · Zss
R2A5

, G · Zss
R2A5

∩G · Zss
R3D4

= ∅.

Proof. (1)–(3) follow directly from Proposition 2.9(1)–(3). The first inclusion
of (2.12) follows directly from that of (2.11). The equality on the right follows from
(1)–(3), since the cubics in question are not projectively equivalent. �

Now recall that the Kirwan desingularization process consists of successively
blowing up Xss along the (strict transforms of the) loci G ·Zss

R in order of dimR, to

obtain a smooth space X̃ss, and then taking the induced GIT quotient X̃ss//L̃G with

respect to a particular linearization. We denote the resulting desingularization MK

and refer to it as the Kirwan blowup of MGIT. Concretely, in our situation, this
translates into a diagram:

(2.13)

X̃ss

(BlG·Zss
R2A5

,2
(Xss

2 ))ss //

��

Xss
2 = (BlG·Zss

R3D4

(Xss
3 ))ss //

��

Xss
3 = (BlG·Zss

Rc
(Xss))ss //

��

Xss

��

MK // ̂̂M // M̂ // MGIT

Here G · Zss
R2A5 ,2

is the strict transform of the orbit G · Zss
R2A5

.

The Kirwan blowup MK is obtained by first blowing up the point Ξ ∈ MGIT

corresponding to the chordal cubic, followed by blowing up the point ∆ (which is
not affected by the first blowup), and then finally blowing up the strict transform

T̂ of T ⊂ MGIT. To be precise, we must specify the blowup ideals corresponding
to the blowups on the lower line of (2.13). These are obtained by descent modulo

the action of G from Xss of the reduced ideals defining the blowup X̃ss → Xss.
Note that the last two blowups commute (thus their order is irrelevant). Also,

the blowup of Ξ (i.e., the first blowup) coincides with the blowup M̂ constructed
by Allcock–Carlson–Toledo [ACT11] in order to resolve the birational period map
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P : MGIT
99K (B/Γ)∗ (i.e., the space discussed above in Theorem 2.5). Indeed, in

the Kirwan blowup, in light of Corollary 2.10(2), the first step is to blowup Xss

along the orbit of the chordal cubic, and then take the GIT quotient with respect to
a particular linearization, which is exactly the construction in [ACT11, §3]. The

space
̂̂M is an auxiliary space from our perspective.

2.4. The toroidal compactification

As with any locally symmetric space, the ball quotient B/Γ has not only the
Baily–Borel compactification (B/Γ)∗, but also a toroidal compactification, which
is thus another natural birational model of M. While typically the construction
of toroidal compactifications depends on certain choices, this is not the case for
ball quotients. Recall that the cusps are in 1 : 1 correspondence with Γ-orbits of
rational isotropic subspaces of the vector space on which the group Γ acts. Since
ball quotients are related to hermitian forms of signature (1, n), the only possibility
is given by isotropic lines. This means on the one hand that the Baily–Borel com-
pactification (B/Γ)∗ is obtained from the ball quotient B/Γ by adding finitely many
(in our case – two) points, that is 0-dimensional cusps, as we have discussed above.
On the other hand, from a toric point of view, we are in a 1-dimensional situation,
which allows no choices. We shall denote the (unique) toroidal compactification by

B/Γ. It comes with a natural morphism B/Γ → (B/Γ)∗. We shall discuss this in
more detail in Chapter 7.

In summary we have the following diagram illustrating the relationships among
all the models of the moduli space of cubic threefolds we have discussed so far:

(2.14) MK

π

��✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡

f
��

g

��
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺
oo //❴❴❴❴ B/Γ

��

M̂

p
{{✇✇
✇✇
✇✇
✇✇
✇

q
##❍

❍❍
❍❍

❍❍
❍❍

❍

MGIT P //❴❴❴❴❴❴❴❴ (B/Γ)∗.

While MK and B/Γ can both be viewed as blowups of the two points in (B/Γ)∗
corresponding to the two cusps of the Baily–Borel compactification, we do not

know whether the Kirwan blowup MK and the toroidal compactification B/Γ are
isomorphic (see Remark 1.5). This seems to us an interesting question in its own
right, which we plan to revisit in the future.



CHAPTER 3

The cohomology of the Kirwan blowup, part I:

equivariant cohomology of the semi-stable locus

Following Kirwan, we will compute the intersection cohomology of the GIT
quotient MGIT by first computing the cohomology of the Kirwan blowup MK.
The first step in computing the cohomology of the Kirwan blowup is to compute
the equivariant cohomology of the semi-stable locus. This is accomplished by con-
structing an equivariantly perfect stratification [Kir84, p.17] of the unstable locus,
and then using the Thom–Gysin sequence. We review the precise setup in this
section, and perform this step for the case of cubic threefolds.

3.1. The equivariantly perfect stratification and the equivariant

cohomology of the semi-stable locus in general

3.1.1. Defining the equivariantly perfect stratification Sβ. We return
to the general setup of § 2.1.1, and recall Kirwan’s equivariantly perfect stratifi-
cation of the unstable locus in X , which will allow us to compute the equivariant
cohomology of the semi-stable locus. Our presentation follows [MFK94, Ch.8 §7],
and serves primarily to fix notation. In addition, one of the main points of the
review in this section is that it is difficult to explain the terms in Kirwan’s formulas
in the case of cubic threefolds without describing the construction, and partially
explaining the proofs.

To define the stratification we first define an indexing set B. This consists of
the points in the closure t+ of the positive Weyl chamber that can be characterized
as follows: they are the closest point to the origin of the convex hull of a nonempty
set of the weights α0, . . . , αN [Kir84, Def. 3.13, and §8 p.59]. Using the inner
product on t (fixed in § 2.1.1), and the corresponding norm || · ||, we define for each
β ∈ B [MFK94, p.173], [Kir84, Exa. 3.11, Thm. 12.26]:

Zβ := {(x0 : · · · : xN ) ∈ X ⊆ PN : xj = 0 if αj .β 6= ||β||2}(3.1)

Yβ := {(x0 : · · · : xN ) ∈ X ⊆ PN : xj = 0 if αj .β < ||β||2,(3.2)

and ∃ xi 6= 0 s.t. αi.β = ||β||2}.

Since Zβ sits in projective space, for any point (x0 : · · · : xN ) ∈ Zβ there exists
some xi 6= 0 with αi.β = ||β||2. Thus we have Zβ ⊆ Yβ , and in fact there is a
retraction

pβ : Yβ → Zβ

that sends xi to 0 if αi.β > ||β||2 (see [Kir84, p.42, Def. 12.18] and [MFK94,
p.173]).

17
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Remark 3.1. To get a geometric sense of the spaces Zβ and Yβ , it can be
helpful to consider the special case of hypersurfaces of degree d in Pn. This case is
described in detail in § 3.2.1.

For each β ∈ B we set Kβ to be the stabilizer of β under the adjoint action of
the maximal compact subgroup K on its Lie algebra k (recall β ∈ t ⊆ k) [Kir84,
Def. 4.8], [MFK94, p.169]. There is an action of Kβ on Zβ [Kir84, p.25], and a
particular linearization of the action of the complexification of Kβ on Zβ that is
defined in [Kir84, §8.11], and with respect to which we obtain a semi-stable locus
Zss
β . One defines [MFK94, p.173], [Kir84, (11.2), Def. 12.20]:

Y ss
β := p−1

β (Zss
β )(3.3)

Sβ := G · Y ss
β .(3.4)

It is a fact that

(3.5) Sβ
∼= G×Pβ

Y ss
β

where Pβ is the parabolic subgroup of G that is the product of the stabilizerKβ and
the Borel subgroupB associated to the choice of T and t+ [MFK94, p.173], [Kir84,
Lem. 6.9 and §12]. In fact, the parabolic subgroup Pβ can also be described as the
subgroup of G that preserves Y ss

β [Kir84, Lem. 13.4].
An equivalent algebraic definition of Zss

β , and hence of Y ss
β and Sβ , is given

in [Kir84, Def. 12.8, Def. 12.14, Def. 12.20]. For any x = (x0 : · · · : xN ) ∈ X ⊆ PN ,
we denote by C(x) ⊆ t the convex hull of the collection of weights αi such that
xi 6= 0; we define β(x) to be the closest point to the origin in C(x). Then for
β 6= 0 we have the following description, summarizing and slightly rephrasing the
discussion of [Kir84, §12]:

Zss
β = {x ∈ Zβ : β(x) = β, and for all g ∈ G, ||β(gx)|| ≤ ||β||} .(3.6)

We will also use the fact that [Kir84, Lem. 12.13]:

(3.7) S0 = Xss and P0 = G.

Finally it is shown in [Kir84, Lem. 12.15, 12.16] that the Sβ define a G-equivariant
stratification

(3.8) X =
⊔

β∈B

Sβ = Xss ⊔
⊔

06=β∈B

Sβ .

We end by observing that one can use (3.5) to conclude that, if nonempty, Sβ

has dimension

(3.9) dimSβ = dimG/Pβ + dim Yβ .

We call the right hand side of (3.9) the expected dimension of Sβ, and denote this
as dimexp Sβ .

Remark 3.2. We order the strata Sβ as a POSET in the usual way, via inclu-

sions of closures; i.e., Sβ′ ≤ Sβ if Sβ′ ⊆ Sβ . The maximal stratum is S0 = Xss,
if it is nonempty. More generally, we can make a POSET out of B by setting
β′ ≤ β if Y β′ ⊆ Y β , and then if Sβ is nonempty, the inequality β′ < β implies

Sβ′ < Sβ . Indeed, Sβ nonempty implies that Y ss
β is a dense open subset of Y β , and

consequently Y β′ ⊆ Y ss
β , so that Sβ′ ⊆ Sβ. Note also that if β′ < β, then since

Sβ′ ⊆ GY β′ ⊆ G · Y β , we have dimSβ′ ≤ dimG/Pβ + dimYβ . In other words, we
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can say that if β′ < β, then dimexp Sβ′ ≤ dimexp Sβ, and if Sβ is nonempty, the
inequality is strict.

3.1.2. Equivariant cohomology of the semi-stable locus. The Thom–
Gysin sequence relating the cohomology of a manifold Y , a closed submanifold Z
of Y , and its complement Y − Z, is a long exact sequence of the form

· · · → Hi−d(Z;Q) → Hi(Y ;Q) → Hi(Y − Z;Q) → Hi+1−d(Z;Q) → . . .

where d is the codimension of Z in Y . The existence of such a sequence implies the
following identity for Poincaré polynomials:

tdPt(Z)− Pt(Y ) + Pt(Y − Z) = (1 + t)Q(t)

where Q(t) ∈ Q[t] has nonnegative coefficients. Applying this to the stratifica-
tion (3.8) we obtain the following identities for Poincaré polynomials and equivari-
ant Poincaré polynomials (i.e., the Poincaré polynomials for equivariant cohomol-
ogy):

Pt(X) =
∑

β

t2d(β)Pt(Sβ)− (1 + t)Q(t),

PG
t (X) =

∑

β

t2d(β)PG
t (Sβ)− (1 + t)QG(t),

where the polynomials Q(t), QG(t) ∈ Q[t] have nonnegative coefficients, and

(3.10) d(β) := codimC Sβ = dimX − (dimG− dimPβ + dimYβ),

where the equality on the right holds provided Sβ is nonempty. One then shows that
the stratification is G-equivariantly perfect [Kir84, p.17], implying that QG(t) = 0,
so that we have:

PG
t (X) =

∑

β

t2d(β)PG
t (Sβ).(3.11)

The key point in showing that the stratification is equivariantly perfect is to consider
a degenerate Morse function f : X → R given as the composition of the induced
moment map µ : X → k∨ [Kir84, (2.7)], with the modulus ||− || : k∨ → R, induced
by the Killing form. The strata Sβ , Yβ , and Zβ then have interpretations with
respect to the gradient flow to the critical sets for f [Kir84, Thm. 12.26], and one
then uses techniques from Morse theory and symplectic geometry to establish that
the stratification is equivariantly perfect [Kir84, Thm. 6.18].

Finally we observe that equation (3.11) can be rewritten as [Kir89, Eq. 3.1]:

(3.12) PG
t (Xss) = Pt(X)Pt(BG)−

∑

06=β∈B

t2d(β)PG
t (Sβ),

using (3.7), and a result of Kirwan [Kir84, Prop. 5.8] on equivariant cohomology
with respect to compact Lie groups acting on symplectic manifolds (see formu-
las (A.11) and (A.5)), to write PG

t (X) = Pt(X)Pt(BG). Note that if Sβ is empty,

our convention is that t2d(β)PG
t (Sβ) = 0.

Remark 3.3. The computation of PG
t (Xss) is an intermediate step in comput-

ing the intersection cohomology of the GIT quotient X//O(1)G, and the cohomology
of the Kirwan blowup. Both of these cohomology theories satisfy Poincaré duality,
and therefore in these applications it suffices to compute PG

t (Xss) up to degree
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equal to the complex dimension of the GIT quotient. Thus, estimating the di-
mensions via (3.9), one may in some cases ignore many if not all of the strata Sβ

in (3.12).

3.2. The equivariant cohomology of the locus of semi-stable cubic

threefolds

3.2.1. Some observations for hypersurfaces. Before moving to the case of
cubic threefolds, we start by making a few observations that hold for all hypersur-
faces. We continue using the notation from §2.1.2. Recall that X = P Symd(Cn+1)∨

is the Hilbert space of hypersurfaces of degree d in Pn, we have identified the Lie
algebra of the maximal torus of SU(n + 1) as t = {(a0, . . . , an) ∈ Rn+1 :

∑
ai =

0} ⊆ Rn+1, the inner product on t is taken to be the standard inner product, and
we make the identification of monomials of degree d with weights in t ⊆ Rn+1 via
the assignment xI 7→ αI := (i0 − d/(n+1), . . . , in − d/(n+1)). The Weyl group of
SU(n+1) is the symmetric group Sn+1 acting on t by its generators, the reflections
in the coordinate hyperplanes. The indexing set B ⊆ t+ consists of the points in
t+ that can be described as the closest point to the origin of the convex hull of a
nonempty set of the weights α0, . . . , αN , which themselves can be viewed as lattice
points in a simplex.

The sets Zβ and Yβ are defined as sets of polynomials (up to scaling) where only
certain monomials are allowed to appear with non-zero coefficients. More precisely,
Zβ is the linear subspace of P Symd(Cn+1)∨ determined by the vanishing of the
coefficients of the monomials xI whose weight αI does not lie in the affine space
orthogonal to β (i.e., the coefficient of xI is zero if αI .β 6= ||β2||), and Yβ is an open
subset of the linear subspace of PN determined by the vanishing of the coefficients
of the monomials xI whose weight does not lie on the positive side of the affine
space orthogonal to β. Said another way, Zβ is the linear span of the monomials
xI with weights αI lying in the affine space orthogonal to β (i.e., the span of the
monomials xI with αI .β = ||β2||), and Yβ is the set of polynomials that are linear
combinations of the xI with weights αI lying on the non-negative side of the affine
space orthogonal to β, and have at least one monomial xI appearing with non-zero
coefficient that has weight αI lying in the affine space orthogonal to β. A similar
description of Zss

β follows from (3.6).
We observe also that for hypersurfaces, from the definition of a parabolic sub-

group, it follows that the parabolic subgroup Pβ can be described as the subgroup

of G that preserves the linear subspace of P Symd(Cn+1)∨ that is the closure of Yβ ;
this can make the explicit computation of Pβ easier.

We define d(β) := codimC Sβ , so that if Sβ is nonempty, we obtain the conve-
nient combinatorial dimension count from (3.9):

d(β) = n(β)− dimG/Pβ(3.13)

where n(β) = dimP Symd(Cn+1)∨ − dimYβ is the number of weights αI such that
β.αI < ||β||2 [Kir89, p.47]; i.e., the number of weights lying on the negative side
of the affine space orthogonal to β. In other words, the expected codimension of
Sβ is dexp(β) = n(β) − dimG/Pβ .

Remark 3.4 (Estimating dimPβ). Clearly a key point is to estimate the di-
mension of Pβ . To this end, recall that if there is a decomposition of the vector
space Cn+1 = W ⊕W ′, and a parabolic subgroup P of SL(n + 1,C) contains the
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subgroup SL(W ) ⊕ IdW ′ , then the flag associated to P has as its smallest vector
space a vector space of dimension at least dimW . In other words, in appropri-
ate bases, P must be block upper-diagonal with a block of size at least dimW so
that the dimension of P must be at least

(
dimW

2

)
more than the dimension of the

Borel subgroup of upper triangular matrices in SL(n+ 1,C) (which has dimension(
n+2
2

)
− 1).

3.2.2. The case of cubic threefolds. We now implement all this in the case
of cubic threefolds. For dimension estimates as in Remark 3.4, note that the Borel
subgroup of upper triangular matrices has dimension 14 in this case.

Proposition 3.5 (Equivariant cohomology of the semi-stable locus). For the
moduli of cubic threefolds, the only unstable stratum Sβ that contributes to for-
mula (3.12), modulo t11, is the complex codimension 5 stratum corresponding to
general D5 cubics (corresponding to the case (b) in [All03, Lem. 3.1]), which only
contributes its equivariant H0, so that finally

(3.14) PG
t (Xss) ≡ 1 + t2 + 2t4 + 3t6 + 5t8 + 6t10 mod t11.

Proof. We are claiming that for the moduli of cubic threefolds, the only
unstable stratum Sβ that contributes to formula (3.12), modulo t11, is the complex
codimension 5 stratum corresponding to general D5 cubics (corresponding to the
case (b) in [All03, Lem. 3.1]), which only contributes its equivariant H0, so that
we have

PG
t (Xss) ≡ Pt(X)Pt(B SL(5,C))− t10 mod t11

≡ (1− t2)−1(1− t4)−1(1 − t6)−1(1 − t8)−1(1 − t10)−1 − t10 mod t11

≡ 1 + t2 + 2t4 + 3t6 + 5t8 + 6t10 mod t11.

We now explain this. To begin, recalling that Pt(X) = Pt(P34) ≡ (1 − t2)−1

mod t11 and that Pt(B SL(5,C)) = (1− t4)−1(1− t6)−1(1− t8)−1(1− t10)−1 (e.g.,
Example (A.3)), we can write (3.12) as
(3.15)

PG
t (Xss) ≡ (1 − t2)−1(1 − t4)−1 . . . (1− t10)−1 −

∑

06=β∈B

t2d(β)PG
t (Sβ) mod t11.

We will show that the strata Sβ , β 6= 0, have complex codimension d(β) at least
5, and that there is exactly one stratum of complex codimension 5. This stratum
can then only contribute its equivariant H0, which we will see is 1-dimensional,
completing the proof.

The basic tool we will use is the dimension count for the Sβ given in (3.13), and
for convenience we rewrite this with the specific numerics we have here. If we set
r(β) to be the number of weights α such that β.α ≥ ||β||2, and set p(β) = dimPβ ,
then it follows from (3.13) that if Sβ is nonempty, then

d(β) = (35− r(β)) − dimG+ p(β) = 11 + p(β)− r(β)(3.16)

≥ 25− r(β).(3.17)

From (3.17), if r(β) < 20, then d(β) > 5, so that Sβ cannot contribute to (3.15).
As before, we call the right hand side of (3.16) the expected codimension of Sβ,
i.e., the codimension of Sβ , provided it is nonempty, and denote it by dexp(β).

For our analysis, we will proceed to estimate dexp(β), starting from the maximal

β; i.e., we partially order the elements of B by setting β′ ≤ β if Y β′ ⊆ Y β , and
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start with the (possibly empty) strata Sβ , β 6= 0, such that the associated linear

spaces Y β are maximal (among the Y β with β 6= 0); see also Remark 3.2. These

maximal Y β can be described as maximal linear spaces spanned by monomials
destabilized by some 1-PS, and are classified by Allcock in [All03, Lem. 3.1]. In
terms of Allcock’s notation, r(β) is the number of black dots in the corresponding
diagram in [All03, Lem. 3.1], and the linear space Y β is given by the span of
the monomials corresponding to those black dots. We now compute the expected
codimension dexp(β) for all the cases in [All03, Lem. 3.1], enumerating in the same
way as in the reference:

(a) Let Sβ correspond to [All03, Fig. 3.1(a)]. One computes the number of
black dots in [All03, Fig. 3.1(a)] to be r(β) = 21. For the dimension of
the parabolic subgroup, it is also easy to see from [All03, Fig. 3.1(a)] that
if we write (C5)∨ = C〈x1, x2, x3〉⊕C〈x0, x4〉, then the parabolic subgroup
Pβ contains the subgroup SL(C〈x1, x2, x3〉) ⊕ IdC〈x0,x4〉, so that dimPβ

is at least 14 +
(
3
2

)
= 17 (Remark 3.4). Thus from (3.16) we have that

dexp(β) ≥ 11 + 17− 21 = 7.
(b) Now let Sβ correspond to [All03, Fig. 3.1(b)]. Here one computes r = 21,

while the parabolic subgroup can permute x3 and x4, and thus has a 2×2
block on the diagonal, so that p ≥ 14 + 1 = 15. Thus dexp(β) ≥ 5.

(c) Here r = 20, while the parabolic subgroup Pβ contains the subgroup
SL(C〈x2, x3〉) ⊕ IdC〈x0,x1,x4〉. Thus we have p ≥ 15, so that from (3.16)
we have dexp(β) ≥ 6.

(d) Here r = 18, so that as pointed out above in (3.17), the minimal estimate
p ≥ 14 suffices to give dexp(β) ≥ 7.

(e) Here r = 22, while the parabolic subgroup can permute x2, x3, x4, so that
p ≥ 17, and thus dexp(β) ≥ 6.

(f) Here r = 19, so again we can use the minimal estimate dexp(β) ≥ 6
in (3.17). (Considering the parabolic subgroup more carefully, one can
see that one can permute x1 and x2, so that p ≥ 15 and dexp(β) ≥ 7.)

We now turn our attention to the expected codimension of the strata Sβ′ , β′ 6= 0,
that do not arise in the list above. The point is that for any 0 6= β′ ∈ B, we have
β′ ≤ β for one of the β in the list above, and if β′ < β, then d(β′) ≥ dexp(β

′) ≥
dexp(β) (see, e.g., Remark 3.2).

For clarity, we summarize what we have shown, and what we will prove to
establish the proposition:

(1) For any 0 6= β′ ∈ B we have shown that d(β′) ≥ 6, unless β′ ≤ β with β
as in case (b) above, in which case we have d(β′) ≥ 5.

(2) We claim that there is exactly one β′ ≤ β with β as in case (b) above such
that d(β′) = 5.

(3) For the stratum Sβ′ in (2), we claim that the general point corresponds
to a D5 cubic, and that dimH0

G(Sβ′) = 1.

If Sβ were known to be non-empty in case (b), then (2) would follow trivially
from (1). We find it is easier to establish the weaker statement (2) directly and
argue geometrically. Let β be as in [All03, Fig. 3.1(b)]. This corresponds to the
case [All03, Thm. 3.3(iii)]: the cubic threefold contains a singularity of nullity 2
and Milnor number ≥ 5. In others words, the cubic has a double point whose
projectivized tangent cone (a quadric) has corank 2. This excludes the possibility
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of Ak singularities (as they have corank 1). Since the Milnor number is at least
5, we also exclude the D4 case, leading to D5 singularities or worse. In fact,
it is immediate to see1 that a generic point of Y β (corresponding to a generic
linear combination of the given set of monomials) gives a cubic threefold with an
isolated D5 singularity. Moreover, G · Y β contains an open subset of the cubics
with an isolated D5 singularity; i.e., a general cubic with an isolated D5 singularity
is projectively equivalent to one in Y β . Using the versal deformation space of a D5

singularity and checking that locally around a D5 cubic the space of cubics maps
surjectively onto the versal deformation space (see e.g., [CMGHL15, Fact 3.12]),
it follows that the locus G · Y β has complex codimension 5 in the space of cubics.
Thus there is a codimension 5 locus in the non-semi-stable locus X −Xss. As the
Sβ with β 6= 0, stratify the non-semi-stable locus, and have codimension at most 5,

a Zariski open subset of G · Y β must be an open subset in some stratum, say Sβ′ .
For dimension reasons, the only possibility is β′ ≤ β with β as in (b) in the list
above. For this stratum we have d(β′) = 5, and clearly since G ·Y β is connected of
codimension 5 there can be no other stratum Sβ′′ , β′′ 6= β′, with d(β′′) = 5.

The only thing left to show is (3), that dimH0
G(Sβ′) = 1. We have that Y ss

β′

is connected, being a Zariski open subset of a projective space. Consequently,
Sβ′ = G ·Y ss

β′ is connected. Setting EG → BG to be the universal principal bundle,
since Sβ′ ×G EG is the quotient of the connected space Sβ′ ×EG ∼hom Sβ′ , and is
therefore itself connected, it follows finally that dimH0

G(Sβ′) = 1. �

1Namely, this case corresponds to singularities of cubic threefolds with an affine equation
x2
3 + x2

4 + x1x2
2 + (h.o.t.), where higher order terms is with respect to weights (1/3, 1/3, 1/2, 1/2)

(see [All03, p. 216]). We then note that x2
3 + x2

4 + x1x2
2 + 2x3x2

1 is analytically equivalent to

(x′

3)
2 + x2

4 + x1x2
2 − x4

1, which is precisely the normal form for D5 in 4 variables.





CHAPTER 4

The cohomology of the Kirwan blowup, part II

The next, and final, step in computing the cohomology of the Kirwan blowup
is to compute some “correction” terms arising from the blowups. The key point is
that there is an equivariant version of the formula for the cohomology of a blowup,
which inductively reduces the problem to the setup of the previous section, namely,
computing the equivariant cohomology of semi-stable loci. The subtle point is that
these computations all reduce to computations on the exceptional divisors, and then
with some more work, to computations on a general normal fiber to each stratum
that is blown up. This allows one to compute everything essentially on the original
space, making the process feasible in examples. We start by reviewing the general
setup, and then specialize to the case of cubic threefolds. One of the main points
of the review in this section is that it is difficult to explain the terms in Kirwan’s
formulas in the case of cubic threefolds without describing the construction, and
partially explaining the proofs.

4.1. The correction terms in general

4.1.1. The correction terms for a single blowup. It is notationally much
easier to explain the correction terms after a single blowup. We start with this
case, and then in the next subsection explain what the formulas are for multiple
blowups.

We start here in the situation of § 2.3.2, where we have fixed a maximal dimen-
sional connected component R ∈ R of the stabilizer of a strictly polystable point,
taken the blowup

(4.1) π̂ : X̂ → Xss

along the locus G · Zss
R (2.4), and chosen a linearization of the action on an ample

line bundle L̂ on X̂, as described in § 2.3.2. For simplicity, we further assume that
Zss
R is connected.

The first observation is that from the standard argument about cohomology of
blowups of smooth loci [GH94, p.605], adapted to the G-equivariant setting, one
has [Kir85, p.67]:

(4.2) PG
t (X̂) = PG

t (Xss) + PG
t (PN )− PG

t (G · Zss
R )

where PN is the projectivization of

(4.3) N := the normal bundle to the orbit G · Zss
R

(i.e., PN is the exceptional divisor). Next, the standard Leray spectral sequence
argument for the cohomology of a projective bundle [GH94, Prop. p.606], adapted
to the G-equivariant setting, gives PG

t (PN ) = PG
t (G · Zss

R )Pt(Prk(N )−1) [Kir85,

25
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p.67], so that we have [Kir85, Lem. 7.2] 1

PG
t (X̂) = PG

t (Xss) + PG
t (G · Zss

R )(t2 + · · ·+ t2(rkN−1))(4.4)

where rkN is the complex rank of the vector bundle, which is equal to the codi-
mension of G · Zss

R .

Using (3.12) applied to X̂ , with indexing set BX̂ , and strata SX̂,β̂, and substi-

tuting into (4.4), we obtain

PG
t (X̂ss) = PG

t (Xss) + PG
t (G · Zss

R )(t2 + · · ·+ t2(rkN−1))−
∑

06=β̂∈BX̂

t2d(X̂,β̂)PG
t (SX̂,β̂),

(4.5)

where the complex codimension of the stratum SX̂,β̂ in X̂ is given by d(X̂, β̂) as

defined in (3.10), but now applied to the blowup X̂. Now let

N := N(R)(4.6)

StabG β̂ := Gβ̂(4.7)

be the normalizer of R in G, and the stabilizer of β̂ in G under the adjoint ac-
tion, respectively. Then G · Zss

R = G ×N Zss
R , and SX̂,β = G ×N∩StabG β̂ (Zss

β̂
∩

π̂−1Zss
R ) [Kir85, p.72], where Zss

β̂
⊆ X̂ is defined as in (3.6). Therefore we obtain

(see (A.3)) [Kir85, (7.13)] 2

PG
t (X̂ss) = PG

t (Xss)(4.8)

+ PN
t (Zss

R )(t2 + · · ·+ t2(rkN−1))(4.9)

−
∑

06=β̂∈BX̂

t2d(X̂,β̂)PN∩StabG β̂
t (Zss

β̂
∩ π̂−1Zss

R ).(4.10)

We now come to the more subtle point of relating the final term (4.10) to the
representation on the normal slice to the orbit. Let

(4.11) x ∈ Zss
R

be a generic point, and let Nx be the normal space to G ·Zss
R in Xss at x ∈ G ·Zss

R ;
i.e., the fiber of N at x. Then we obtain a representation

(4.12) ρ : R → GL(Nx).

We take TR to be the restriction of the maximal torus T of G under the inclusion
R ⊆ G, with maximal compact tori TR and T , respectively. This gives an inclusion
of (real) Lie algebras tR ⊆ t, and we use the metric on tR induced from that of t.
(Recall that originally in the setup we were allowed to take any Ad-invariant metric
on t, but here we must take the induced metric on tR.) Let

(4.13) B(ρ)
be the indexing set for the induced stratification of PNx: that is, B(ρ) is the set of
all β in a fixed positive Weyl chamber in tR such that β is the closest point to 0 of
the convex hull of a nonempty set of weights of the representation ρ.

1There is a typo in [Kir85, Lem. 7.2]: PG
t (Zss

R ) should be PG
t (G · Zss

R ).
2There are two typos in [Kir85, (7.13)]: the formula is missing a −PN

t (Zss
R ), and the sign

before the sum in the formula should be negative. The former is noted in [Kir89, p.50], while the
latter is essentially noted in [Kir89, (3.4)].
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Let Sβ′(ρ) for

(4.14) β′ ∈ B(ρ)
be the associated R-stratification of PNx (as defined in § 3.1.1 and (3.4)). Kirwan

shows that for β̂ ∈ BX̂ , naturally in t, we may actually take β̂ ∈ tR ⊆ t [Kir85,

Proof of Lem. 7.9, p.70], and that there is a surjective 3 map [Kir85, p.73, Lem. 7.6,
Lem. 7.9]

(4.15) B(ρ) → BX̂

taking β′ ∈ B(ρ) to the unique element β̂ ∈ BX̂ with β′ in its Weyl group orbit

W (G) · β̂; here we are identifying W (G) = W (K), where K is the maximal compact
subgroup. Note that we prefer to work with Weyl group orbits in the Lie algebra t

of the (real) maximal torus T , whereas Kirwan prefers to work with the equivalent

notion of adjoint orbits in the Lie algebra k of K. Given β̂ ∈ BX̂ , the Weyl group

orbit W (G) of β̂ decomposes into a finite number of W (R) orbits. There is a unique

β′ ∈ B(ρ) in each W (R) orbit contained in W (G) · β̂ [Kir85, Proof of Lem. 7.9,
p.71]. We let

(4.16) w(β′, R,G)

be the number of β′ ∈ B(ρ) that lie in W (G) · β̂, i.e., the number of elements in
the fiber of (4.15) containing β′, which is also equal to the number of W (R) orbits

contained in the W (G) orbit of β̂ [Kir85, p.68]4.

The fiber π̂−1(x) of π̂ : X̂ → Xss can be naturally identified with the projective

space PNx. For β̂ ∈ BX̂ , we have [Kir85, Lem. 7.9]

SX̂,β̂ ∩ PNx =
⋃

β′∈B(ρ)∩Ad(G)β̂

Sβ′(ρ);

i.e., the union is over the β′ in the fiber of (4.15) over β̂. Kirwan proves in [Kir85,

Lem. 7.11] that the codimensions d(X̂, β̂) and d(PNx, β
′) of the associated strata

SX̂,β̂ and Sβ′(ρ) are equal.

Now given β′ ∈ B(ρ), let β̂ be the unique element in BX̂ with β′ in its W (G)
orbit; i.e., the image of β′ under (4.15). Let

(4.17) StabG β′ := Gβ′

be the stabilizer of β′ under the G-adjoint action. In general N ∩ StabG β̂ 6=
N ∩ StabG β′; they may differ by conjugation by an element of the Weyl group
W (G). However, as both groups are conjugate subgroups of N = N(R), they have
well-defined actions on Zss

R (since N(R) preserves Zss
R ). Moreover, replacing Zss

β̂

(=: Zss
X̂,β̂

) with the isomorphic locus

(4.18) Zss
X̂,β′

3 For surjectivity of the map (4.15), we are assuming that X̂ is the full Kirwan blow-up.
Otherwise, (4.15) will not be surjective, and later, in (4.21), we would find that there was a

further sum of the form in (4.10), corresponding to those β̂ ∈ B
X̂

that are not in the image of

(4.15). This is further clarified in (4.22) and (4.25).
4There is a typo in [Kir89, §3, p.49]; the definition there is meant to read: w(β,R,G) is the

number of R-adjoint orbits contained in the G-adjoint orbit of β.
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defined by the element β′ ∈ W (G) · β̂ (i.e., via (3.6)), we obtain a well-defined
action of N ∩ StabG β′ on Zss

X̂,β′
∩ π̂−1Zss

R , such that

PN∩Stab β̂
t (Zss

β̂
∩ π̂−1Zss

R ) = PN∩StabG β′

t (Zss
X̂,β′ ∩ π̂−1Zss

R ).

In summary, we have [Kir85, (7.15)], [Kir89, (3.2), (3.4)]:

PG
t (X̂ss) = PG

t (Xss) “semi-stable locus”

(4.19)

+ PN
t (Zss

R )(t2 + · · ·+ t2(rkN−1)) “main term”(4.20)

−
∑

06=β′∈B(ρ)

1

w(β′, R,G)
t2d(PNx,β

′)PN∩StabG β′

t (Zss
X̂,β′ ∩ π̂−1Zss

R ) “extra term”(4.21)

For the formula above, recall that Zss
R is defined in (2.4), and the rest of the terms

are defined above in this subsection: X̂ss (4.1), N (4.6), N (4.3), ρ (4.12), β′ (4.14),
B(ρ) (4.13), w(β′, R,G) (4.16), x ∈ Zss

R (4.11), StabG β′ (4.17), and Zss
X̂,β′

(4.18).

The goal in deriving the formulas (4.19), (4.20), (4.21) above is to try to re-

duce the computation of the equivariant cohomology of the blowup X̂ss to certain
computations on X . The remark below can be quite helpful in this regard.

Remark 4.1. The restriction π̂ : (Zss
X̂,β′

∩ π̂−1Zss
R ) → Zss

R is an (N ∩StabG β′)-

equivariant fibration with fibers isomorphic to Zss
β′ (ρ) (as defined in (3.1), (3.6)

for the representation ρ) [Kir84, 8.11] [Kir89, p.50]. Moreover, if for instance
N ∩StabG β′ acts transitively on Zss

R , then letting (N ∩StabG β′)x be the stabilizer
of the general point x ∈ Zss

R (4.11) in N ∩ StabG β′, we have (e.g., (A.12))

PN∩StabG β′

t (Zss
X̂,β′ ∩ π̂−1Zss

R ) = P (N∩StabG β′)x(π̂−1(x)) = P (N∩StabG β′)x(Zss
β′ (ρ)).

Note that with the transitive group action on Zss
R , we may take any point x ∈ Zss

R to
make our computation, since this will only change the computations up to conjugate
groups, which will not affect the final outcome.

4.1.2. The correction terms in general. Having reviewed the case of a
single blowup, we now give the formulas for the cohomology of the full inductive

blowup, X̃ss. We use the notation from § 2.3.2 and especially Remark 2.7. The

relevant formula for computing the cohomology of X̃ss, generalizing (4.19) to the
full blowup, is now [Kir89, Eq. 3.2]

(4.22) PG
t (X̃ss) = PG

t (Xss) +
∑

R∈R

AR(t).

For any R ∈ R the term AR(t) in (4.22) records the change of the Betti numbers
under the blowup πdimR : XdimR → XdimR+1, as defined in Remark 2.7; more
precisely, one decomposes πdimR into individual blowups of the loci G ·Zss

R,dimR+1,
where Zss

R,dimR+1 is the strict transform of Zss
R in Xss

dimR+1, and these are the
correction terms for that blowup.
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The explicit formula for these terms, generalizing (4.20) and (4.21), is given
by [Kir89, Eq. 3.4]

AR(t) :=(4.23)

P
N(R)
t (Zss

R,dimR+1)(t
2 + · · ·+ t2(rkNR−1)) “main term”(4.24)

−
∑

06=β′∈BR(ρ)

1

w(β′, R,G)
t2d(PNx,β

′)P
N(R)∩StabG β′

t (Zss
β′,R) “extra term”(4.25)

where Zss
β′,R := Zss

Xdim R,β′∩π−1
dimRZ

ss
R,dimR+1. These terms, as well as all of the other

terms above, are described in § 4.1.1 (see especially the references after (4.21), and
also Remark 4.1, and Remark 2.7).

4.2. The main correction terms for cubic threefolds

We now compute the main terms (4.24) for the case of cubic threefolds. We
have taken R = {R2A5

∼= C∗, R3D4
∼= (C∗)2, Rc

∼= PGL(2,C)}. Since we have also
already worked out the loci Zss

R in Proposition 2.9, the main point is to understand
the normalizers N(R), and their action on the Zss

R . We will work in the order of
descending dimension of R, following the Kirwan blowup process.

4.2.1. The main correction term for Rc
∼= PGL(2,C), the chordal cubic

case. As we have seen, the first step in the Kirwan blowup process is to blow up the
locus corresponding to chordal cubics. We start by describing the main term (4.24)
for this blowup.

Proposition 4.2 (Main term for the chordal cubic). For the group Rc
∼=

PGL(2,C), the main term (4.24) is given by

P
N(Rc)
t (Zss

Rc
)(t2 + · · ·+ t2(rkNRc−1)) = (1− t4)−1(t2 + · · ·+ t24)

= t2 + t4 + 2t6 + 2t8 + 3t10 mod t11.

This will follow directly from the following lemma:

Lemma 4.3 (Proposition B.4). For Rc, the group PGL(2,C) embedded in SL(5,C)
via its Sym4 C2 (∼= C5) representation, the normalizer N(Rc) of Rc in SL(5,C) is
a split central extension

(4.26) 1 → µ5 → N(Rc) → PGL(2,C) → 1,

where µ5 is the group of 5-th roots of unity. �

The proof of the lemma is elementary, with all necessary computations given
in Proposition B.4.

Proof of Proposition 4.2. We saw in Proposition 2.9 that Zss
Rc

consists
of a single point, V (F−1,2); i.e., the chordal cubic. The stabilizer of V (F−1,2) has
connected component equal toRc, so that the dimension ofG·Zss

Rc
= dimG−3 = 21.

Thus the rank of the normal bundle to the orbit G · Zss
Rc

is rkNRc
= 34− 21 = 13.
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Next we compute P
N(Rc)
t (Zss

Rc
). Since Zss

Rc
is a point, we have

H•
N(Rc)

(Zss
Rc

) = H•(B(N(Rc)))

= H•(Bµ5)⊗H•(B PGL(2,C)) ((4.26), (A.10))

= H•(B PGL(2,C))

= Q[c] (Example A.3, A.5)

where deg c = 4. In other words P
N(Rc)
t (Zss

Rc
) = (1− t4)−1 = 1+ t4 + t8 + . . . . �

4.2.2. The main correction term for R3D4
∼= (C∗)2, the 3D4 case.

Proposition 4.4 (Main term for the 3D4 cubic). For the group R3D4
∼= (C∗)2,

the main term (4.24) is given by

P
N(R3D4)
t (Zss

R3D4,3
)(t2 + · · ·+ t

2(rkNR3D4
−1)

) = (1 − t4)−1(1 − t6)−1(t2 + · · ·+ t22)

= t2 + t4 + 2t6 + 3t8 + 4t10 mod t11.

Similarly to the chordal cubic case, this will follow directly from the elementary,
but laborious, computations leading to the descriptions of the geometry involved.
We will record the results here, while the full proofs are given in Proposition B.6
of the Appendix. We first recall the notation Sn for the “generalized permutation
matrices of size n”, which explicitly are the matrices one obtains in GL(n,C) by
permuting the columns of some diagonal matrix. Moreover, we adopt the convention
that when we write an explicit form of a collection of matrices, and then write that
it lies in a certain group, that this may impose an extra condition (eg., for a 5× 5
matrix, we may write ∈ SL to impose that it has determinant one, if it is not
automatic from the form of the matrix). We finally record that R3D4 is isomorphic
to (C∗)2, and given in coordinates by

(4.27) R3D4 = diag(s, t, s−1t−1, 1, 1) ∼= (C∗)2 .

Lemma 4.5 (Proposition B.6). In the notation above:

(1) The normalizer N(R3D4) of R3D4 in SL(5,C) is

N(R3D4) =

{(
S3

GL2

)
∈ SL(5,C)

}
.

(2) The fixed locus Zss
R3D4

is unchanged under the first blowup: Zss
R3D4,3

=

Zss
R3D4

.

(3) The normalizer acts on Zss
R3D4

transitively: Zss
R3D4

= N(R3D4)·{V (F3D4)}.
�

We will moreover need to know various other stabilizer groups. We denote by
Stab(V (F3D4)) ⊂ SL(5,C) the stabilizer of the cubic with equation F3D4, denote
Aut(V (F3D4)) its stabilizer in PGL(5,C), and let GLV (F3D4) be the stabilizer in

GL(5,C). We furthermore denote D := {diag(λ0, λ1, λ2, λ3, λ4) : λ0λ1λ2 = λ3
3 =

λ3
4} an auxiliary group for these computations, which can be explicitly written as

the direct product

(4.28) D = T3 × µ3

of the torus T3 = diag(λ0, λ1, λ
−1
0 λ−1

1 λ3
3, λ3, λ3) ∼= (C∗)3 and the group µ3 =

diag(1, 1, 1, 1, ζi) ∼= Z/3Z where ζ is a primitive 3-rd root of unity.
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Lemma 4.6 (Proposition B.6). The groups defined above are as follows.

(1) The group Stab(V (F3D4)) is equal to

(4.29) Stab(V (F3D4)) =

{(
S3

S2

)
∈ SL(5,C) : λ0λ1λ2 = λ3

3 = λ3
4

}
,

where the λi is the unique non-zero element in the i-th row.
(2) There are central extensions

(4.30) 1 → µ5 → Stab(V (F3D4)) → Aut(V (F3D4)) → 1 ,

(4.31) 1 → C∗ → GLV (F3D4 )
→ Aut(V (F3D4 )) → 1 .

(3) There is an isomorphism

(4.32) GLV (F3D4 )
∼= D ⋊ (S3 × S2) ,

where the action of S3 × S2 on D is to permute the entries; S3 permutes
the first three entries λ0, λ1, λ2, and S2, the last two, λ3, λ4. �

The proofs of the two lemma above are by (long) direct computations, given in
Proposition B.6 in the Appendix.

Remark 4.7. The reason for introducing GLV (F3D4 )
is that while there is a

short exact sequence 1 → D → Stab(V (F3D4)) → S3 × S2 → 1, this sequence does
not split. For the purposes of computing equivariant cohomology, it is just as easy
to work with central extensions, see (A.10), and so we work with GLV (F3D4 )

, where
the surjection splits, giving an easy semi-direct product with which to work.

Proof of Proposition 4.4. For brevity, we write R = R3D4 andN = N(R).
Since by Lemma 4.5(1) the group N acts transitively on Zss

R , we have dimG ·Zss
R =

dimG · {V (F3D4 )} = 24− 2 = 22. Thus the rank of the normal bundle to the orbit
G · Zss

R is rkNR = 34− 22 = 12.
Next we compute PN

t (Zss
R ). From Lemma 4.5(3), we have

H•
N (Zss

R ) = H•(B Stab(V (F3D4))) .

At the same time we have

H•(BC∗)⊗H•(B Stab(V (F3D4 )))

= H•(BC∗)⊗H•(BAut(V (F3D4 ))) ((4.30), (A.10))

= H•(BGLV (F3D4 )
) ((4.31))

= H•(BD)S3×S2 ((4.32), (A.7))

= (H•(B(T3 × µ3)))
S3×S2 ((4.28))

= H•(B(T3))S3×S2 ((A.4))

= Q[c
(1)
1 , c

(2)
1 , c

(3)
1 ]S3×S2 ,

with degree c
(i)
1 = 2. The action of S3 × S2 is given as follows. First, we ob-

serve that the action is obtained from the action of S3 × S2 on the torus T3

(e.g., Example A.4), via the identifications (4.28) and (4.32). Concretely, T3 =
diag(λ0, λ1, λ

−1
0 λ−1

1 λ3
3, λ3, λ3) ∼= (C∗)3 = diag(λ0, λ1, λ3). The action of S3 ×S2 on

T3 is to permute the entries; S3 permutes the first three entries, and S2, the last
two. Consequently, the S2 factor acts trivially on T3. To describe the action of the
S3 factor on T3 ∼= (C∗)3 = diag(λ0, λ1, λ3), let us denote S3 = 〈δ, γ : δ2 = σ3 =
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1, δσ = σ2δ〉 the standard presentation of S3. Then δ(λ0, λ1, λ3) = (λ1, λ0, λ3),
and σ(λ0, λ1, λ3) = (λ−1

0 λ−1
1 λ3

3, λ0, λ3). The action of S3 on the symmetric algebra

Q[c
(1)
1 , c

(2)
1 , c

(3)
1 ] is induced by the action of S3 on the vector space Q〈c(1)1 , c

(2)
1 , c

(3)
1 〉,

and so we see that δ and σ act by

δ =




0 1 0
1 0 0
0 0 1


 and σ =




−1 1 0
−1 0 0
3 0 1


 .

At this point, one may use Molien’s formula, or simply observe via the characters
that the representation of S3 given by the matrices above is isomorphic to the
standard representation, which decomposes as the direct sum of the trivial repre-
sentation and the representation of S3 as the dihedral group acting on the plane.

In any case, we obtain the generating function for Q[c
(1)
1 , c

(2)
1 , c

(3)
1 ]S3×S2 to be

(1− t2)−1(1− t4)−1(1− t6)−1

Thus putting everything together, we have

PN
t (Zss

R ) = (1− t2) · (1 − t2)−1(1 − t4)−1(1 − t6)−1 = (1− t4)−1(1− t6)−1

≡ 1 + t4 + t6 + t8 + t10 mod t11.

�

4.2.3. The main correction term for R2A5
∼= C∗, the 2A5 case.

Proposition 4.8 (Main term for 2A5 cubics). For the group R2A5
∼= C∗, the

main term (4.24) is given by

P
N(R2A5)
t (Zss

R2A5,2
)(t2 + · · ·+ t

2(rkNR2A5
−1)

) = (1 − t4)−1(1 + t2)(t2 + · · ·+ t18)

≡ t2 + 2t4 + 3t6 + 4t8 + 5t10 mod t11.

This will follow directly from the following lemma, which will be proven by
direct elementary computations, given in Propositions B.1 and B.3 in the Appendix.
We recall from Proposition 2.9 that Zss

R2A5
is the set of semi-stable cubics defined

by equations of the form a0x
3
2 + a1x0x

2
3 + a2x

2
1x4 + a3x0x2x4 + a4x1x2x3 = 0.

Lemma 4.9 (Propositions B.1 and B.3). For R2A5 = diag(λ2, λ, 1, λ−1, λ−2) ∼=
C∗:

(1) The normalizer N(R2A5) of R2A5 in SL(5,C) is equal to the subgroup of
SL(5,C) that is the semi-direct product

(4.33) N(R2A5)
∼= T4 ⋊ Z/2Z

of the maximal torus T4, and the involution τ : xi 7→ x4−i, with the
semi-direct product given by the homomorphism

τ 7→ (diag(λ0, λ1, λ2, λ3, λ4) 7→ diag(λ4, λ3, λ2, λ1, λ0)) .

(2) The orbit of the chordal cubic G ·Zss
Rc

meets Zss
R2A5

precisely in the divisor

defined by the equation 4a0a1a2 − a3a
2
4 = 0. Thus the strict transform

Zss
R2A5 ,2

is isomorphic to Zss
R2A5

.

(3) The quotient Zss
R2A5

/T4 is isomorphic to P1. �

For the last item we note that T4/C∗ acts on Zss
R2A5

with finite stabilizers, and

so the quotient Zss
R2A5

/T4 = Zss
R2A5

/(T4/C∗) is a well-defined variety.



4.3. THE EXTRA CORRECTION TERMS FOR CUBIC THREEFOLDS 33

Proof of Proposition 4.4. For brevity, write R = R2A5 and N = N(R).
In Lemma 4.9(2), we saw that Zss

R,2 = Zss
R , and that Zss

R has dimension 4. Now

consider the subgroup G′ ⊆ SL(5,C) consisting of those g such that g · Zss
R ⊆ Zss

R .
This group G′ has dimension 4. Indeed, we have N ⊆ G′, so that dimG′ ≥ 4.
On the other hand, the stabilizer of a general point of Zss

R is 1-dimensional (it has
connected component equal to R), so that if dimG′ ≥ 5, then the dimension of
the orbit of a general point would be ≥ 5 − 1 = dimZss

R . But then there would
be a Zariski dense subset of Zss

R corresponding to projectively equivalent cubics. It
follows that dimG · Zss

R = dimZss
R + dimG− dimG′ = 4 + 24− 4 = 24. Thus the

rank of the normal bundle to the orbit G · Zss
R is rkNR = 34− 24 = 10.

Next we compute PN
t (Zss

R ). From Lemma 4.9, we have

H•
N (Zss

R ) = (H•
T4(Zss

R ))
Z/2Z

((4.33), (A.7))

= (H•(BR)⊗H•
T4/R(Z

ss
R ))Z/2Z ((A.10))

= (H•(BR)⊗H•(P1))Z/2Z (Lemma 4.9(3), (A.8))

= (Q[c1]⊗Q[h]/h2)Z/2Z

where deg c1 = deg h = 2. Now one must trace through the constructions to find
the action of Z/2Z = 〈τ〉 on the polynomial ring. The action on the cohomology
of BR is induced by the action on R, which can easily be seen to be given by
λ 7→ λ−1. Thus the action of τ on c1 is given by τc1 = −c1. The action of τ on
the cohomology of P1 is induced by the action on P1. The action of τ on Zss

R is
given by τ(a0 : · · · : a4) = (a0 : a2 : a1 : a3 : a4). Using the locus {V (FA,B) :
(A,B) 6= (0, 0)} ⊆ Zss

R (i.e., a1 = a2 = −a3 = 1), one sees that the action on the
quotient P1 = Zss

R /T4 is trivial. Thus the action of τ on h is trivial. Thus we have

(Q[c1]⊗Q[h]/h2)Z/2Z = Q[c21]⊗Q[h]/(h2). Thus PN
t (Zss

R ) = (1− t4)−1(1+ t2). �

4.3. The extra correction terms for cubic threefolds

Having computed the main terms of the contributions AR(t) given by (4.24),
to finish the computation of H•(MK) following Kirwan’s method it thus remains
to compute the extra terms given by (4.25). A key point is to describe for each
R the representation ρ : R → Aut(Nx) on the normal slice to the orbit G · Zss

R at
a generic point x ∈ Zss

R . We start in § 4.3.1 by reviewing a general approach to
computing the tangent space to an orbit for the case of hypersurfaces. We then
utilize this in the case of cubic threefolds, and consequently obtain the extra terms.

4.3.1. Tangent spaces to orbits for hypersurfaces. Let F ∈ H0(Pn,OPn(d))
the form defining a hypersurface V (F ) ⊆ Pn. We wish to describe the tangent space
to the orbit GL(n+ 1,C) · F .

Remark 4.10. We will ultimately be interested in the normal space to the
orbit SL(n+ 1,C) · {V (F )} in PH0(Pn,OPn(d)). However, since the normal space
of any submanifold Y in projective space P(V ) can, via the Euler sequence, be
identified with the normal space to its cone C(Y ) in V , we may instead consider
the GL(n+ 1,C) orbit of F in H0(Pn,OPn(d)), rather than the SL(n+ 1,C) orbit
of V (F ) in PH0(Pn,OPn(d)).

To compute the tangent space to the GL(n + 1,C) orbit of F we work with
the Lie algebra gl(n + 1,C) and use the exponential map exp : gl(n + 1,C) →



34 4. THE COHOMOLOGY OF THE KIRWAN BLOWUP, PART II

GL(n+ 1,C). If e ∈ gl(n+ 1,C) then taking the derivative d
dt (exp(te)F )|t=0 gives

a tangent vector te in the tangent space to the orbit GL(n + 1,C) · F . Taking
a basis of gl(n + 1,C) we then obtain generators for the tangent space to the
orbit GL(n+ 1,C) · F . Concretely, with respect to the coordinates (x0 : · · · : xn),
numbering the rows and columns of matrices from 0 to n, we then take as generators
for gl(n + 1,C) the elementary matrices eij for all 0 ≤ i, j ≤ n, where eij is the
matrix with all zero entries except for the ij-the entry which is one. Given a form
F , we then denote

(DF )ij :=
d

dt
(exp(teij)F )|t=0 .

We denote by DF the associated matrix with entries (DF )ij . Finally, we conclude
that the tangent space to the orbit GL(n + 1,C) · F is given by the span of the
entries of the matrix DF .

We implement this now in the case of polystable cubic threefolds:

Example 4.11 (Tangent spaces to the orbits of strictly polystable cubic three-
folds). For a strictly polystable cubic threefold defined by a cubic form F , the
tangent space to the orbit GL(5,C) · F is given by the span of the entries of the
matrix DF . In particular we have:

(1) For F = FA,B, (A,B) 6= (0, 0), the matrix DFA,B is given by

DFA,B =




x0x
2
3−x0x2x4 x1x

2
3−x1x2x4 x2x

2
3−x2

2x4 x3
3−x2x3x4 x2

3x4−x2x
2
4

2x0x1x4+Bx0x2x3 2x2
1x4+Bx1x2x3 2x1x2x4+Bx2

2x3 2x1x3x4+Bx2x
2
3 2x1x

2
4+Bx2x3x4

3Ax0x
2
2−x2

0x4+Bx0x1x3 3Ax1x
2
2−x0x1x4+Bx2

1x3 3Ax3
2−x0x2x4+Bx1x2x3 3Ax2

2x3−x0x3x4+Bx1x
2
3 3Ax2

2x4−x0x
2
4+Bx1x3x4

2x2
0x3+Bx0x1x2 2x0x1x3+Bx2

1x2 2x0x2x3+Bx1x
2
2 2x0x

2
3+Bx1x2x3 2x0x3x4+Bx1x2x4

x0x
2
1−x2

0x2 x3
1−x0x1x2 x2

1x2−x0x
2
2 x2

1x3−x0x2x3 x2
1x4−x0x2x4




To quickly determine all linear equations satisfied by the entries of the
matrix DF , we note that since FA,B is preserved by the action of C∗ =
R2A5 , any relation decomposes under the action, given by (2.5), into linear
equations among monomials of the same weight. By inspection the weights
in the above matrix under the above action range from +4 in the bottom
left to corner to −4 in the top right corner, with entries along each diagonal
going down-and-right having the same weight. Then within each diagonal
to determine possible linear relations among the entries one first checks if
any monomial is repeated. One easily sees then that for 4A/B2 6= 1 and
(A,B) 6= (0, 0) the only possible relation could be in weight 0, i.e. among
the five entries on the main diagonal. By looking at which monomials
repeat in which entries, one finally sees that for 4A/B2 6= 1 and (A,B) 6=
(0, 0) the only linear relation satisfied by the entries of DFA,B is

(4.34) 2(DFA,B)00 + (DFA,B)11 − (DFA,B)33 − 2(DFA,B)44 = 0 .

(2) For F1,−2, i.e., A = 1 and B = −2, in addition to the linear relation (4.34),
one sees that the entries of DF1,−2 satisfies two additional linear relations
in weights 1 and −1:

(4.35)
(DF1,−2)10 + 2(DF1,−2)21 + 3(DF1,−2)32 + 4(DF1,−2)43 = 0;

(DF1,−2)34 + 2(DF1,−2)23 + 3(DF1,−2)12 + 4(DF1,−2)01 = 0 ,

and no further relations.
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(3) For F = F3D4 , the matrix DF3D4 is given by

DF3D4 =




x0x1x2 x2
1x2 x1x

2
2 x1x2x3 x1x2x4

x2
0x2 x0x1x2 x0x

2
2 x0x2x3 x0x2x4

x2
0x1 x0x

2
1 x0x1x2 x0x1x3 x0x1x4

3x0x
2
3 3x1x

2
3 3x2x

2
3 3x3

3 3x2
3x4

3x0x
2
4 3x1x

2
4 3x2x

2
4 3x3x

2
4 3x3

4




.

Since all entries of this matrix are monomial, the only possible linear
relations are pairwise equalities, up to a constant factor. One sees that
the only monomial that repeats more than once is x0x1x2, and thus the
set of linear relations satisfied by the entries of DF3D4 is

(DF3D4 )00 = (DF3D4)11 = (DF3D4)22.

4.3.2. The extra correction term for Rc
∼= PGL(2,C), the chordal cubic

case.

Proposition 4.12 (Extra term for the chordal cubic). For the group Rc
∼=

PGL(2,C), the extra term (4.25) is given by
∑

06=β′∈B(ρ)

1

w(β′, Rc, G)
t2d(PNx,β

′)P
N(Rc)∩Stabβ′

t (Zss
β′,Rc

) = 0 mod t11.(4.36)

Recall that in the formula above x is a general point of Zss
Rc

(in this case, since
Zss
Rc

consists of a single point, x corresponds to the chordal cubic), Nx is the fiber
of the normal bundle to the orbit G · Zss

Rc
at x, and ρ : Rc → Aut(Nx) is the

induced representation. The proof of the proposition will consist of showing that
the codimension d(PNx, β

′) of any stratum Sβ′(ρ) for 0 6= β′ ∈ B(ρ) is at least 6.
This will follow from the following lemma, describing the representation ρ.

Lemma 4.13. For Rc = PGL(2,C), dimNx = 13, and the representation ρ of
Rc on Nx is the one induced by the SL(2,C)-representation Sym12 C2, where C2

is the standard two-dimensional representation. Consequently the weights of the
action of the maximal torus T ∼= C∗ in Rc are

−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12.

Proof. It suffices to determine the restriction of ρ to the maximal torus T
in SL(2,C) (induced by the homomorphism SL(2,C) → PGL(2,C)). Recall that
Zss
Rc

= {V (F1,−2)}, and so to describe Nx, we must simply describe the normal
space to the orbit G · V (F1,−2) at V (F1,−2).

The maximal torus T = diag(t, t−1) in SL(2,C) acts on coordinates (x0 : · · · :
x4) diagonally by (t4 : t2 : 1 : t−2 : t−4). Thus it multiplies each cubic monomial
by some power of t, so that each monomial is thus an eigenspace for the action of
T. Thus TxC35 = C35 decomposes as a sum of one-dimensional representations of
T with the following multiplicities of weights

(±12)× 1, (±10)× 1, (±8)× 2, (±6)× 3, (±4)× 4, (±2)× 4, (0)× 5.

The tangent space to the orbit G·V (F1,−2) is generated by the entries of the matrix
in Example 4.11(1). Each binomial spans an eigenspace for the action of T, and
weights of the action of T on these generators can be computed directly to be equal
to

(±8)× 1, (±6)× 2, (±4)× 3, (±2)× 4, (0)× 5.
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Now the relation (4.34) is among the weight 0 generators, and thus we may drop one
of them in forming a basis of the tangent space. The two relations (4.35) are among
generators of weights 2 and −2, respectively, so we can also drop one generator of
weight 2 and −2. In summary, the weights for T on the tangent space to the orbit
are given by

(4.37) (±8)× 1, (±6)× 2, (±4)× 3, (±2)× 3, (0)× 4.

Taking the complement of the set of weights of the representation on the tangent
space to the orbit in the set of weights of the representation on C35 gives the weights
of the action on the normal space, proving the lemma. �

Remark 4.14. We note that in fact this result already follows from the geom-
etry as described in [ACT11], where it was shown that the exceptional divisor in
MK corresponding to the chordal cubic is in fact the locus of Jacobians of hyper-
elliptic curves of genus five, which is thus the moduli space of twelve points on P1,
which is exactly the GIT quotient for the 12-th symmetric power of the standard
representation of SL(2,C) on C2.

Proof of Proposition 4.12. From the description of the weights of ρ in
Lemma 4.13, we see that we can take B(ρ) = {0, 2, 4, 6, 8, 10, 12}. We can estimate
the codimension d(β′) for β′ ∈ B(ρ) using (3.13); i.e., d(β′) = n(β′)−dim(Rc/Pβ′),
where n(β′) is the number of weights less than β′, namely 6 + β′/2, and Pβ′ is the
associated parabolic subgroup. One can check that Pβ′ is equal to the 2-dimensional
Borel subgroup consisting of upper triangular matrices; however, it suffices for our
purposes to observe that Pβ′ contains the Borel. Thus d(β′) ≥ (6+β′/2)−3+2 ≥ 6.
Thus the terms in (4.36) begin in degree≥ 2d(β′) = 12, and are zero modulo t11. �

4.3.3. The extra correction term for R3D4
∼= (C∗)2, the 3D4 case.

Proposition 4.15 (Extra term for the 3D4 cubic). For the group R3D4
∼=

(C∗)2, the extra term (4.25) is given by

−
∑

06=β′∈B(ρ)
1

w(β′,R3D4
,G)

t2d(PNx,β′)P
N(R3D4

)∩Stab β′

t (Zss
β′,R3D4

) = −t8 − 2t10 mod t11.

Recall that in the formula above, x is a general point of Zss
R3D4

(in this case,

since Zss
R3D4

consists of a single N(R3D4) orbit, so we may take x = V (F3D4)), Nx

is the fiber of the normal bundle to the orbit G · Zss
Rc

at x, and ρ : Rc → Aut(Nx)
is the induced representation. We start with the following lemma, describing the
representation ρ.

Lemma 4.16. For R3D4 = diag(λ0, λ1, λ2, 1, 1) ∩ SL(5,C) ∼= (C∗)2, and x =
V (F3D4 ), we have dimNx = 12, with an explicit basis given by
(4.38)

x3
0, x3

1, x3
2, x2

0x3, x2
1x3, x2

2x3, x2
0x4, x2

1x4, x2
2x4, x0x3x4, x1x3x4, x2x3x4.

Each element of this basis is an eigenvector for the action of R, so that under the
inclusion tR = {(α0, α1, α2, 0, 0) :

∑
αi = 0} ⊆ t = {(α0, . . . , α4) :

∑
αi = 0} ⊆

R5, and the identification tR = t∨R induced by the metric from t, the weights of the
representation

ρ : R3D4 → Aut(Nx)
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in the order of the basis elements above, are equal to (see also Figure 1):
(4.39)

(2,−1,−1, 0, 0), (−1, 2,−1, 0, 0), (−1,−1, 2, 0, 0),
(4/3,−2/3,−2/3, 0, 0), (−2/3, 4/3,−2/3, 0, 0), (−2/3,−2/3, 4/3, 0, 0)
(4/3,−2/3,−2/3, 0, 0), (−2/3, 4/3,−2/3, 0, 0), (−2/3,−2/3, 4/3, 0, 0),
(2/3,−1/3,−1/3, 0, 0), (−1/3, 2/3,−1/3, 0, 0), (−1/3,−1/3, 2/3, 0, 0).

Proof. The basis for Nx comes directly from Example 4.11(3). The identifica-

tion of tR = t∨R is given by the composition t∨R →֒ t∨
∼→ t ։ tR, where the last map is

the orthogonal projection, and the rest is immediate. This gives the weights above.
Indeed, for a basis monomial xI , writing the group as diag(eiα0 , eiα1 , eiα2 , 1, 1), the
associated weight as a linear map (viewed as either a linear map in t∨R or t∨) is given

by I.α. The orthogonal projection is given by (α0, . . . , α4) 7→ (α0− 1
3

∑2
i=0 αi, α1−

1
3

∑2
i=0 αi, α2 − 1

3

∑2
i=0 αi, 0, 0). For instance, the monomial x2

0x3 has index I =

(2, 0, 0, 1, 0), and the orthogonal projection is then (43 ,− 2
3 ,− 2

3 , 0, 0). �

β′ = 1
2 (

1
3 ,− 2

3 ,
1
3 )

β′

= 1
2 (− 2

3 ,
1
3 ,

1
3 )

β′ = 1
7 (2, 1,−3)

αx3
0
= (2,−1,−1)

αx2
0x3

= αx2
0x4

= (43 ,− 2
3 ,− 2

3 )

αx0x3x4 = (23 ,− 1
3 ,− 1

3 )

αx2x3x4 = (− 1
3 ,− 1

3 ,
2
3 )

αx3
2
= (−1,−1, 2)

αx1x3x4 = (− 1
3 ,

2
3 ,− 1

3 )

αx2
1x3

= αx2
1x4

= (− 2
3 ,

4
3 ,− 2

3 )

Figure 1. A sample codimension 4 element is given above in blue
as β′ = 1

2 (− 2
3 ,

1
3 ,

1
3 ) ∈ B. Another sample codimension 4 element

is given in green as β′ = 1
2 (

1
3 ,− 2

3 ,
1
3 ) ∈ B. A sample codimension 5

element is given in red as β′ = 1
7 (2, 1,−3) ∈ B. We have dropped

the last two 0-coordinates for brevity.

We now move to describe the indexing set B(ρ) associated to the representation
ρ, as well as various groups and loci associated to the elements β′ ∈ B(ρ). First
we note that since R is the two-dimensional torus, the Weyl chamber is all of R2.
By construction, the indexing set B(ρ) associated to the representation ρ : R3D4 →
Aut(Nx) is then the set of points β′ ∈ tR = {(α0, α1, α2, 0, 0) :

∑
αi = 0} that can

be described as the closest point to the origin (with respect to the standard metric
in R5) in a convex hull of the weights. The codimension of the associated stratum
Sβ′ is then equal to the number of weights lying on the same side as the origin
from the orthogonal complement to β′. The situation is described by the following
lemma, and the corresponding sets and weights are depicted in Figure 1.

Lemma 4.17. For the group R = R3D4
∼= (C∗)2, all codimension 4 and 5 strata

are as follows.
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(a) There are 3 codimension 4 elements β′ ∈ B: 1
2 (− 2

3 ,
1
3 ,

1
3 ) (in blue in Fig-

ure 1); 1
2 (

1
3 ,− 2

3 ,
1
3 ) (in green in the figure); and 1

2 (
1
3 ,

1
3 ,− 2

3 ) (not shown
in the figure). For each of these, w(β′, R,G) = 3;

(b) There are 6 codimension 5 elements β′ ∈ B′: 1
7 (1, 2,−3); 1

7 (2,−3, 1);
1
7 (−3, 1, 2); 1

7 (−3, 2, 1); 1
7 (1,−3, 2); 1

7 (2, 1,−3) (the last of them shown in
red in Figure 1). For each of these, w(β′, R,G) = 6.

Moreover, in each of these two cases, all the elements β′ are in the same orbit of
the Weyl group of G = SL(5,C).

Proof. To find B(ρ) one observes that since R is a torus, the Weyl chamber
is all of R2. It is easy to check from (3.6) that since R is a torus, the strata Sβ′ are
non-empty for the weights as given and shown in the picture. The fact that all 3
elements in each case lie in the same orbit of the Weyl group is also immediate, since
W (G) = S5 acts by permuting the entries, which preserves tR only for the subgroup
S3 permuting the first three entries. The weights also then easily follow. �

We now further describe the relevant fixed point sets and the action of the
stabilizers. Since all β′ in the case (a) or in case (b) lie in the same orbit of the
Weyl group, it is enough to work with one representative for each case.

Lemma 4.18 (Lemmas B.8 and B.9). In the notation above:

(1) For β′ = 1
2 (− 2

3 ,
1
3 ,

1
3 ) (case (a)), we have

Zss
β′ = {[a : b] ∈ PC〈x1x3x4, x2x3x4〉 : a 6= 0, b 6= 0} ∼= C∗.

(2) For β′ = 1
7 (2, 1,−3) (case (b)), we have

Zss
β′ = {[a : b : c] ∈ PC〈x0x3x4, x

2
1x3, x

2
1x4〉 : a 6= 0, and (b, c) 6= (0, 0)} ∼= A2 − {0}.

(3) For either β′, the group N ∩ StabG β′ acts transitively on Zss
R .

(4) The action of (N ∩StabG β′)x on Zss
β′ is induced by change of coordinates,

via the inclusion (N ∩ StabG β′)x ⊆ SL(5,C) and the description of the
loci above in terms of cubic forms. For β′ = 1

2 (− 2
3 ,

1
3 ,

1
3 ) (case (a)), the

group (N ∩ StabG β′)x acts transitively on Zss
β′ , and the stabilizer of the

point (1 : 1) ∈ Zss
β′ is given explicitly as (C∗ × µ15)× (S2 × S2). �

We note that for case (b), more details on the action of (N ∩StabG β′)x on Zss
β′

will not be needed.
The proof of the lemma is elementary, with all necessary computations given

in Lemmas B.8 and B.9 in the Appendix, for the cases (a) and (b), respectively.

Proof of Proposition 4.15. Recall that we are trying to compute the extra
terms (4.25) contributed by the 3D4 locus:

−
∑

06=β′∈B(ρ)

1

w(β′, R,G)
t2d(PNx,β

′)PN∩StabG β′

t (Zss
β′,R).

As we saw in Lemma 4.17, there are 3 elements β′ ∈ B(ρ) with d(PNx, β
′) = 4, and 6

with d(PNx, β
′) = 5. The other β′ 6= 0 have d(PNx, β

′) ≥ 6, and will not contribute
modulo t11, and so we ignore them. We also saw that the 3 codimension 4 (resp. 6
codimension 5) elements β′ were all in the same Weyl group of G = SL(5,C) orbit,
and so we are free to work with one representative from each orbit. Finally, we
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showed for the β′ of codimension 4 and 5 that N ∩ StabG β′ acts transitively on
Zss
R , so that by Remark 4.1,

PN∩StabB β′

r (Zss
β′,R) = P

(N∩StabB β′)x
t (Zss

β′ ).

Let us consider first P
(N∩StabB β′)x
t (Zss

β′ ) for the codimension 5 loci. Since we have

from Lemma 4.18(2) that Zss
β′ is connected, it follows that P

(N∩StabB β′)x
t (Zss

β′ ) =

1 + O(t). Thus the codimension 5 extra term is −∑6
i=1

1
6 t

10(1 + . . . ). Now

let us consider P
(N∩StabB β′)x
t (Zss

β′ ) for the codimension 4 loci. Take the repre-

sentative β′ = 1
2 (− 2

3 ,
1
3 ,

1
3 ). By Lemma 4.18(4), the action of (N ∩ StabB β′)x

on Zss
β′ is transitive, with the stabilizer equal to (C∗ × µ15) × (S2 × S2). Thus

P
(N∩StabB β′)x
t (Zss

β′ ) = Pt(BC∗) = (1− t2)−1. In summary, we have

(“extra term” codim 4) −
3∑

i=1

1

3
t8(1 + t2 + . . . )

(“extra term” codim 5) −
6∑

i=1

1

6
t10(1 + . . . )

This completes the proof of the proposition. �

4.3.4. The extra correction term for R2A5
∼= C∗, the 2A5 case.

Proposition 4.19 (Extra term for the 2A5 cubics). For the group R2A5
∼= C∗,

the extra term (4.25) is given by

−
∑

06=β′∈B(ρ)

1

w(β′, R2A5 , G)
t2d(PNx,β

′)P
N(R2A5)∩Stab β′

t (Zss
β′,R2A5

) ≡ −t10 mod t11.

This will follow from the next lemma.

Lemma 4.20. For R2A5 = diag(λ2, λ, 1, λ−1, λ−2) ∼= C∗, dimNx = 10, and the
weights of the representation ρ of R2A5 on Nx are

−6,−5,−4,−3,−2, 2, 3, 4, 5, 6.

Proof. The proof is essentially the same as that of Lemma 4.13. The vector
space TxC35 = C35 decomposes as a sum of one-dimensional representations of
R = R2A5 with the following multiplicities of weights

(±6)× 1, (±5)× 1, (±4)× 2, (±3)× 3, (±2)× 4, (±1)× 4, (0)× 5.

The tangent space to the orbit GL(5,C) ·FA,B of a general FA,B is generated by the
entries of the matrix in Example 4.11(1). Each binomial spans an eigenspace for
the action of R, and weights of the action of R on these generators can be computed
directly to be equal to

(±4)× 1, (±3)× 2, (±2)× 3, (±1)× 4, (0)× 5.

Now the relation (4.34) is among the weight 0 generators, and thus we may drop
one of them in forming a basis of the tangent space. In summary, the weights for
R on the tangent space to the orbit GL(5,C) · FA,B are given by

(±4)× 1, (±3)× 2, (±2)× 3, (±1)× 4, (0)× 4.
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Recall, however, that the relevant normal space Nx is the normal space in X
to the orbit G · Zss

R of the fixed set Zss
R . We know that Zss

R /G is one-dimensional
(corresponding to the curve T of cubics). Thus the tangent space Tx(G ·Zss

R ), when
lifted to C35, is the sum of TFA,B

(GL(5,C) · FA,B) together with a tangent vector
representing the direction along Zss

R /G; in other words a tangent vector which
comes from varying 4A/B2. As such a tangent vector we can take the deformation
which simply deforms the cubic FA,B by changing the coefficient A. Clearly the

derivative in this direction is equal to d
dAFA,B = x3

2. This is weight 0 (and, as
expected, does not lie in the span of the weight 0 space of the orbit). Thus the lift
to C35 of the tangent space to the orbit G · Zss

R is given by a space with weights

(±4)× 1, (±3)× 2, (±2)× 3, (±1)× 4, (0)× 5.

Taking the complement of the set of weights of the representation on the tangent
space in the set of weights of the representation on C35 gives the weights of the
representation on the normal space. �

Proof of Proposition 4.19. From the description of the weights of ρ in
Lemma 4.20, we see that we can take B(ρ) = {±2,±3,±4,±5,±6}. We can
compute d(β′) := codimC dimSβ′ for β′ ∈ B(ρ) using the definition (3.4); i.e.,
d(β′) = n(|β′|), where n(|β′|) is the number of weights less than |β′|, namely
5 + |β′| − 2 ≥ 5. Thus the terms in the formula in Proposition (4.19) begin in
degree ≥ 2d(β′) = 10, and we must only compute for β′ = ±2.

One immediately obtains w(β′, R2A5 , G) = 2. Finally, it is easy to see that Zss
β′,R

is connected, since Zss
R is connected, and one can check that Zss

β′
∼= C is connected.

Thus we have P
N(R2A5)∩StabG β′

t (Zss
β′,R) = 1 + . . . , completing the proof. �

4.4. Putting the terms together to compute the cohomology of MK

We now put together the results in the previous sections to complete the proof
of Theorem 1.1 for MK. Recall that MK has only finite quotient singularities,
so the cohomology satisfies Poincaré duality. Consequently, as dimMK = 10, it
suffices to compute Pt(MK) modulo t11. We have:

Pt(MK) = PG
t (X̃ss) ≡

1 + t2 + 2t4 + 3t6 + 5t8 + 6t10 (Semi-stable locus, Prop. 3.5)

+ t2 + t4 + 2t6 + 2t8 + 3t10 (Main term, chordal cubic, Prop. 4.2)

+ t2 + t4 + 2t6 + 3t8 + 4t10 (Main term, 3D4 cubic, Prop. 4.4)

+ t2 + 2t4 + 3t6 + 4t8 + 5t10 (Main term, 2A5 cubics, Prop. 4.8)

− 0 (Extra term, chordal cubic, Prop. 4.12)

− t8 − 2t10 (Extra term, 3D4 cubic, Prop. 4.15)

− t10 (Extra term, 2A5 cubics, Prop. 4.19)

≡1 + 4t2 + 6t4 + 10t6 + 13t8 + 15t10 mod t11.

This completes the proof of Theorem 1.1 for MK.



CHAPTER 5

The intersection cohomology of the GIT moduli

space MGIT

Our next goal is to compute the intersection cohomology of the GIT moduli
space MGIT by comparing this with the (intersection) cohomology of the Kirwan
blowup MK. We recall that MK is smooth up to finite quotient singularities, which
implies that cohomology and intersection cohomology coincide. The starting point
lies in Kirwan’s techniques [Kir86, Kir89], which in turn use the decomposition
theorem in a subtle way. To carry this out requires a thorough understanding of the
geometric situation, and it turns out that this analysis is rather involved. However,
these geometric details will come in handy also in Chapter 6 where we compute the
intersection cohomology of the Baily–Borel compactification (B/Γ)∗.

5.1. Obtaining the intersection cohomology of the GIT quotient from

the cohomology of the Kirwan blowup, in general

5.1.1. Intersection cohomology for a single blowup. As before, it is
notationally easier to explain the formulas after a single blowup. We start with
this case, and then in the next subsection explain what the formulas are for a
sequence of blowups.

We start again in the situation of § 2.3.2, where we have fixed a maximal
dimensional connected component R ∈ R of the stabilizer of a strictly polystable
point, taken the blowup

(5.1) π̂ : X̂ → Xss

along the locus G · Zss
R (2.4), and chosen a linearization of the action on an ample

line bundle L̂ on X̂, as described in § 2.3.2. For simplicity, we further assume that
Zss
R is connected (which is the case for all R for the moduli of cubic threefolds, as

computed in the previous section); see [Kir86, Rem. 1.19] for the necessary modi-
fications if Zss

R is disconnected. Considering GIT quotients, we have the following

41
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diagram [Kir86, Diag. 1] summarizing the situation:

X̂ss // //

π̂

����

X̂//L̂G

π̂G

����

EssR2

dd■■■■■■
// //

π̂

����

E//L̂G
+ �

88qqqqq

π̂G

����

N̂

cccc●●●●●●
// //

T (π̂) ����

N̂//L̂G

88 88qqqq

T (π̂)G����

N
{{{{✈✈
✈✈
✈

// // N//LG

&& &&◆◆
◆◆◆

G · Zss
R

lL
yytt
tt

// // ZR//LN� t

&&◆◆
◆◆◆

Xss // // X//LG

Most of the notation in the diagram has been introduced before, but here we
recall some of the definitions, and explain the remaining notation. We have set
N to be the normal bundle to G · Zss

R in Xss, we defined E to be the exceptional

divisor of the blowup π̂ : X̂ → Xss, Ess to be the intersection of E with X̂ss, and
set N̂ to be the normal bundle to Ess in X̂ss. The morphism T (π̂) : N̂ → N is
induced by the differential of π̂. The G-actions extend naturally to all of the spaces
in the diagram, and the linearizations are induced via pull-back along the respective
morphisms. The groupN is defined to be the normalizer ofR, and we have identified
G · Zss

R //LG = Zss
R //LN via the identification G · Zss

R = G×N Zss
R [Kir85, p. 72].

The goal is to use the decomposition theorem of Beilinson, Bernstein, Deligne,
and Gabber [BBD82] to compare the intersection cohomology groups IH•(X̂//L̂G)
and IH•(X//LG). The interaction between the general theory and Kirwan’s results
is outlined in [Kir86, Rem. 2.2, p. 484]. Here we will review the outline of Kirwan’s
argument, as this helps clarify the meaning of terms appearing in the formulas,
particularly when we move to the specific case of cubic threefolds.

Immediately from the decomposition theorem, since π̂G is a birational mor-
phism, one has that IH•(X//LG) is a direct summand of IH•(X̂//L̂G), and thus
the goal is to determine the extra summands precisely. In other words, denoting
IPt the intersection Poincaré polynomial, we can write

(5.2) IPt(X//LG) = IPt(X̂//L̂G)−BR(t),

for some polynomial BR(t) with non-negative integral coefficients, and our aim is
to compute this polynomial.

The first observation is the following. Given a fibred product diagram

(5.3) E � � //

��

Û � � //

��

V̂

f

��

C
� � // U

� � // V

where f : V̂ → V is a birational morphism of projective varieties that is an iso-
morphism on the complement of a closed subvariety C ⊆ V , and U ⊆ V is an open
neighborhood of C, then [Kir86, Lem. 2.8]:

(5.4) dim IHi(V ) = dim IHi(V̂ )− dim IHi(Û ) + dim IHi(U).
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We note that this is a slightly more general statement than [Kir86, Lem. 2.8], but
that proof goes through unchanged to prove (5.4).

In our situation, we apply this for U being an open neighborhood of ZR//LN

in X//LG, so that Û := π̂−1
G (U) is its inverse image in X̂//L̂G, which is an open

neighborhood of E//L̂G in X̂//L̂G, so that we obtain

(5.5) dim IHi(X//LG) = dim IHi(X̂//L̂G)− dim IHi(Û) + dim IHi(U).

Kirwan then shows that there is an open neighborhood U as above that is homeo-
morphic to N//LG, and furthermore such that its preimage Û is homeomorphic to

N̂//L̂G [Kir86, Lem. 2.9, and p. 487]. This establishes [Kir86, Cor. 2.11]:

(5.6) dim IHi(X//LG) = dim IHi(X̂//L̂G)−dim IHi(N̂ //L̂G)+dim IHi(N//LG).

Now we use the fact that N//LG ∼= (N|Zss
R
)//LN and N̂//L̂G

∼= (N̂ |π̂−1Zss
R
)//L̂N

[Kir86, p. 493, and 1.7, p. 476], and the fact that the intersection cohomology of the
quotient by a finite group is the subset of intersection cohomology that is invariant
under the finite group [Kir86, Lem. 2.12], to conclude that

IH•(N//LG) ∼= [IH•((N|Zss
R
)//LN0)]

π0N

IH•(N̂ //L̂G) ∼= [IH•((N̂ |π̂−1Zss
R
)//L̂N0)]

π0N(5.7)

where N0 ⊂ N is the connected component of the identity, and π0N = N/N0 is
the group of connected components of N . A Leray spectral sequence argument for
the morphisms (N|Zss

R
)//LN0 → ZR//LN0 and (N̂ |π̂−1Zss

R
)//L̂N0 → ZR//LN0 yields

[Kir86, p. 493, Lem. 2.15, Prop. 2.13]:

IH•((N|Zss
R
)//LN0) ∼= IH•(Nx//R)⊗H•(ZR//LN0)(5.8)

IH•((N̂ |π̂−1Zss
R
)//L̂N0) ∼= IH•(N̂x//R)⊗H•(ZR//LN0)(5.9)

We emphasize here that we do not projectivize Nx or N̂x. Here, as in (4.11),
x is a general point of Zss

R , and the fiber Nx has an action ρ : R → GL(Nx)
as described in (4.12), which is used as the linearization. The quotient Nx//R is
defined to be Spec(Sym• N∨

x )R, the spectrum of the invariant ring (which is why

we are not indicating a linearization in the notation), and similarly for N̂x//R. We
are also using the fact established in the proof of [Kir86, Prop. 2.13] that ZR//LN0

has at worst finite quotient singularities, so that its cohomology and intersection
cohomology are equal.

Combining this with (5.7) yields [Kir86, 2.20, p. 494, Lem. 2.15]:

IH•(N//LG) ∼= [IH•(Nx//R)⊗H•(ZR//LN0)]
π0N(5.10)

IH•(N̂//L̂G) ∼= [IH•(N̂x//R)⊗H•(ZR//LN0)]
π0N .(5.11)

Finally one shows that IH•(N̂x//R) ∼= IH•(P(Nx)//R) [Kir86, Lem. 2.15], and
that there is a natural surjection

IHi(P(Nx)//R) → IHi(Nx//R)
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whose kernel is isomorphic to IHi−2(P(Nx)//R) if i ≤ dimP(Nx)//R and to IHi(P(Nx)//R)
otherwise [Kir86, Cor. 2.17]. Putting this all together we have [Kir86, Prop. 2.1]:

dim IHi(X//LG) = dim IHi(X̂//L̂G)

−
∑

p+q=i

dim
[
Hp(ZR//LN0)⊗ IH q̂(P(Nx)//R)

]π0N
(5.12)

where q̂ = q−2 for q ≤ dimP(Nx)//R and q̂ = q otherwise. Reiterating from above,
x is a general point of Zss

R , the fiber Nx has an action ρ : R → GL(Nx) as described
in (4.12), which is used as the linearization, N0 ⊂ N is the connected component
of the identity, and π0N := N/N0. The action of π0N on H•(ZR//LN0) is induced
from the given action of N on Zss

R , and the action on the tensor product is induced
via a Leray spectral sequence (see (5.7) and (5.11)).

Remark 5.1. If the action of π0N on the tensor product Hp(ZR//LN0) ⊗
IH q̂(P(Nx)//R) is trivial on the second factor, then we can conclude from (5.12)
that [Kir86, Cor. 2.28]:

dim IHi(X//LG) = dim IHi(X̂//L̂G)

−
∑

p+q=i

dimHp(ZR//LN) · dim IH q̂(P(Nx)//R)

so that

IPt(X//LG) = IPt(X̂//L̂G)− Pt(ZR//LN) bR(t)︸ ︷︷ ︸
“BR(t)”

(5.13)

where BR(t) is the product indicated above, and the coefficients of the polynomial
bR(t) are essentially the shifted intersection Betti numbers of the GIT quotient
P(Nx)//R defined as follows. Denoting c = dimP(Nx)//R, and denoting these
intersection Betti numbers as
(5.14)
IPt(P(Nx)//R) = 1+b1t+b2t

2+b3t
3+· · ·+bc−1t

c−1+bct
c+bc+1t

c+1+bc+2t
c+2+· · ·+t2c,

the polynomial bR(t) is defined as
(5.15)

bR(t) := t2+b1t
3+· · ·+bc−3t

c−1+bc−2t
c+bc+1t

c+1+bc+2t
c+2+· · ·+t2c

We recall here that the intersection cohomology always satisfies Poincaré duality,
and thus we could have written bj = b2c−j instead.

Remark 5.2. We remark that the spectral sequence argument for the mor-
phism (N̂ |π−1Zss

R
)//L̂N0 → ZR//LN0 that yielded (5.9) also shows that if ZR//LN0

is simply connected, then the action of π0N on the tensor product splits, and we
can conclude from (5.12) that

dim IHi(X//LG) = dim IHi(X̂//L̂G)

−
∑

p+q=i

dimHp(ZR//LN) · dim[IH q̂(P(Nx)//R)]π0N

so that

IPt(X//LG) = IPt(X̂//L̂G)− Pt(ZR//LN) bR(t)︸ ︷︷ ︸
“BR(t)”

(5.16)
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where BR(t) is the product indicated above, and the coefficients bi of the poly-
nomial bR(t) are the dimensions of the π0N -invariant subspace of the intersection

cohomology: bi := dim[IH î(P(Nx)//R)]π0N , shifted as before in (5.15). In other

words, we replace (5.14) with IP π0N
t (P(Nx)//R), and then bR(t) is obtained from

this as in (5.15).

5.1.2. The correction terms in general. Having reviewed the case of a
single blowup, we now give the formulas for the cohomology utilizing the full Kirwan
blowup. We use the notation from § 2.3.2 and especially Remark 2.7; recall in

particular that X̃//L̃G denotes the Kirwan blowup, and X̃ and L̃ are the iterated

blowup and linearization, respectively, playing the roles of X̂ and L̂ in the discussion
of the single blowup above. From (5.2), we have

(5.17) IPt(X//LG) = Pt(X̃//L̃G)−
∑

R∈R

BR(t),

and our goal is to describe the polynomials BR(t) more precisely.
The relevant formula for computing the intersection cohomology ofX//LG from

that of the full Kirwan blowup X̃ss//L̃G, generalizing (5.12), is [Kir86, Thm. 3.1]:

dim IHi(X//LG) = dimHi(X̃//L̃G)

−
∑

R∈R

∑

p+q=i

dim[Hp(ZR,dimR+1//LN
R
0 )⊗ IH q̂R(P(NR

x )//R)]π0N
R

.(5.18)

The notation is explained after (5.12), where now the superscript R indicates the
corresponding object with respect to the given group R. For instance, q̂R = q − 2
for q ≤ dimP(NR

x )//R and q̂R = q otherwise. The notation ZR,dimR+1 indicates
the strict transform of ZR in XdimR+1 under the appropriate sequence of blowups
in the inductive process (see § 2.3.2 and especially Remark 2.7).

Remark 5.3. If for some R ∈ R the action of π0N
R on the tensor product

Hp(ZR,dimR+1//LN0) ⊗ IH q̂(P(NR
x )//R) is trivial on the second factor, one can

simplify the corresponding term in (5.18) using Remark 5.1. In particular, if for
all R ∈ R the action of π0N

R on the tensor product Hp(ZR,dimR+1//LN
R
0 ) ⊗

IH q̂(P(NR
x )//R) is trivial on the second factor, then we have

dim IHi(X//LG) = dimHi(X̃//L̃G)

−
∑

R∈R

∑

p+q=i

dimHp(ZR,dimR+1//LN
R) dim IH q̂R(P(NR

x )//R)

so that

IPt(X//LG) = Pt(X̃//L̃G)−
∑

R∈R

Pt(ZR,dimR+1//LN
R)bR(t)︸ ︷︷ ︸

“BR(t)”

(5.19)

where BR(t) is the product indicated above, and bR(t) is defined as in (5.15). If each
of the ZR,dimR+1//LN

R
0 in (5.18) is simply connected, then the direct generalization

of Remark 5.2 holds.
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5.2. The intersection cohomology of the GIT quotient for cubic

threefolds

We now apply this in the case of the GIT moduli space of cubic threefolds
MGIT, for which (5.17) gives

(5.20) IPt(MGIT) = Pt(MK)−
∑

R∈R

BR(t).

In our case R = {R2A5
∼= C∗, R3D4

∼= (C∗)2, Rc
∼= PGL(2,C)}, and to compute

the terms BR(t), we utilize (5.18), for most of which the computations have in
fact already been done. Indeed, as we will see, we have already checked in the
previous section that the quotients ZR,dimR+1//LN0 are simply connected, so that
applying Remark 5.3, we can utilize (5.19), and thus all that remains is to compute
the intersection cohomology of the GIT quotients P(NR

x )//R. We will work out
the terms BR(t) in the order of descending dimension of R, following the Kirwan
blowup process.

5.2.1. The correction term BR(t) for Rc
∼= PGL(2,C), the chordal cubic

case.

Proposition 5.4 (The BR(t) term for the chordal cubic). For the group Rc
∼=

PGL(2,C), we have

(1) ZRc
//O(1)N

Rc is a point.

(2) IPt(P(NRc
x )//Rc) = 1+ t2+2t4+2t6+3t8+3t10+2t12+2t14+ t16+ t18.

(3) The action of π0N
Rc on IH•(P(NRc

x )//Rc)) is trivial.

The term BRc
(t) is equal to

Pt(ZRc
//O(1)N

Rc)bRc
(t) ≡ t2 + t4 + 2t6 + 2t8 + 3t10 mod t11.

Proof. For brevity, let us write R = Rc, N = NRc , and NRc
x = Nx. By

Proposition 2.9(2), ZR is a point, and thus ZR//O(1)N is a point, proving (1). Now
the representation ρ : R → Nx was worked out in Lemma 4.13 to be the representa-
tion of PGL(2,C) induced by the SL(2,C)-representation Sym12 C2, where C2 is the
standard two-dimensional representation. Thus P(Nx)//R is the GIT moduli space
of 12 unordered points in P1, the intersection cohomology of which was worked out
in [Kir89, Table, p. 40] (see also [Bri73] and [LS86]), giving (2).

Now, since ZR//O(1)N is a point, we obtain from (5.18) that the correction term

is equal to BR(t) =
∑

i t
i[dim IH î(P(Nx)//R)]π0N , where the action is induced by

an action of π0N on P(Nx)//R. It follows from Lemma 4.3 that π0N consists of
scalar matrices of the form ζi · Id, where ζ is a primitive fifth root of unity. Their
action is evidently trivial, proving (3). Finally, by Remark 5.3 we conclude that
BR(t) = bR(t), where bR(t) is worked out from (2) via (5.15) to be

bR(t) = t2 + t4 + 2t6 + 2t8 + 3t10 + 2t12 + 2t14 + t16 + t18,

completing the proof. �

5.2.2. The correction term BR(t) for R3D4
∼= (C∗)2, the 3D4 case.

Proposition 5.5 (The BR(t) term for the 3D4 cubic). For the group R3D4
∼=

(C∗)2, we have

(1) ZR3D4
//O(1)N

R3D4 is a point.
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(2) IP π0N
R3D4

t (P(NR3D4
x )//R3D4) = 1 + t2 + 2t4 + 3t6 + 3t8 + 3t10 + 3t12 +

2t14 + t16 + t18.

The term BR3D4
(t) is given by

BR3D4
(t) ≡ t2 + t4 + 2t6 + 3t8 + 3t10 mod t11.

Proof. For brevity, let us write R = R3D4 , N = NR3D4 , and NR3D4
x = Nx.

We have seen in Lemma 4.5(3) that N acts transitively, so that ZR//O(1)N is a
point, while the representation ρ : R → Nx was worked out in Lemma 4.16. The
quotient P(Nx)//R is a projective toric variety; the intersection cohomology can be
worked out either torically, or via the general Kirwan process described in § 3.1.

The latter approach is quite elementary in this case, and so we sketch that here.
First, from the description of the weights of the action in Lemma 4.16, it is clear
that there are no strictly semi-stable points in P(Nx) (this could also be deduced
from the fact that we have locally already arrived at the full Kirwan blowup). Thus
the GIT quotient has at worst finite quotient singularities. In any case, we have
IPt(P(Nx)//R) = Pt(P(Nx)//R) = PR

t (P(Nx)
ss). But then using (3.12), we have

IPt(P(Nx)//R) = PR
t (P(Nx)

ss) = Pt(P(Nx))Pt(BR)−
∑

06=β′∈B(ρ)

t2d(β
′)PR

t (Sβ′)

= Pt(P11)Pt(B(C∗)2)−
∑

06=β′∈B(ρ)

t2d(β
′)PR

t (Sβ′)

≡ Pt(P11)Pt(B(C∗)2)− 3t8 − 3 dimH1
(C∗)2(Sβ′)t9 mod t10(5.21)

where in (5.21), in the notation of Lemma 4.17, β′ is as in case (a), one of the
exactly three 0 6= β′ ∈ B(ρ) with d(β) ≤ 4, with isomorphic corresponding strata;
since P(Nx)//R has dimension 9, it suffices by Poincaré duality to compute up to
t9. We can in fact conclude that the coefficient −3 dimH1

(C∗)2(Sβ′) of t9 is zero,

since it must be non-negative (but it turns out this coefficient does not contribute
to the final answer anyway).

Now, since ZR//O(1)N is a point, we obtain from (5.18) that the correction term

is equal to BR(t) =
∑

q t
q[dim IH q̂(P(Nx)//R)]π0N , where the action is induced by

an action of π0N on P(Nx)//R. It follows from Lemma 4.5(1) (see also the compu-
tations in Proposition B.6(2)) that π0N ∼= S3 acts on P(Nx)//R via permutation of
the coordinates x0, x1, x2. In the context of (5.21), the action on the cohomology
of P11 is trivial, the action permutes the Sβ′ , and acts on the torus (C∗)2 in the fol-
lowing way. The involution δ given by x0 ↔ x1 acts by (λ0, λ1) 7→ (λ1, λ0), and the
cyclic permutation σ given by x0 7→ x1 7→ x2 7→ x0 acts by (λ0, λ1) 7→ (λ−1

0 λ−1
1 , λ0).

Thus the action of S3 on the cohomology of B(C∗)2 is induced by the action of S3

on the vector space Q〈c(1)1 , c
(2)
1 〉 by the matrices

δ =

(
0 1
1 0

)
, σ =

(
−1 1
−1 0

)
.

Looking at the characters, we see that this is the dihedral representation of S3,
which has generating function (1− t4)−1(1− t6)−1 (the standard representation of
S3 has generating function (1− t2)−1(1− t4)−1(1− t6)−1, and is the direct sum of
the trivial representation and the dihedral representation).
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Putting this back together with (5.21), we obtain

IP
π0N

t (P(Nx)//R) ≡ (1 − t2)−1 · (1 − t4)−1(1− t6)−1 − 1

3

(
3t8 − 3 dimH1

(C∗)2(Sβ′)t9
)

≡ 1 + t2 + 2t4 + 3t6 + 3t8 − dimH1
(C∗)2(Sβ′)t9 mod t10.

As noted above, dimH1
(C∗)2(Sβ′) = 0, but we have included it here again for clarity

with respect to deducing the invariants from (5.21). This concludes the proof of
(2).

Now, computing the numerics as in (5.15), we find finally that

BR(t) ≡ t2 + t4 + 2t6 + 3t8 + 3t10 mod t11

completing the proof (and explaining the claim above that the coefficient of t9

in (5.21) is irrelevant). �

5.2.3. The correction term BR(t) for R2A5
∼= C∗, the 2A5 case. In this

section we denote by ẐR2A5
the strict transform of ZR2A5

in the blowup along the
chordal cubic locus.

Proposition 5.6 (The BR(t) term for 2A5 cubics). For the group R2A5
∼= C∗,

we have

(1) ẐR2A5
//O(1)N

R2A5 ∼= P1.

(2) IP π0N
R2A5

t (P(NR2A5
x )//R2A5) = 1+t2+2t4+2t6+3t8+2t10+2t12+t14+t16.

The term BR2A5
(t) is given by

BR2A5
(t) = t2 + 2t4 + 3t6 + 4t8 + 4t10 mod t11

Proof. For brevity, let us write R = R2A5 , N = NR2A5 , and NR2A5
x = Nx.

The same argument as used in Proposition B.3 for the proof of Lemma 4.9(3)

shows that ẐR//O(1)N is a rational normal projective variety of dimension 1; i.e.,

P1. Now the representation ρ : R → Nx was worked out in Lemma 4.20. The
quotient P(NR

x )//R is a projective toric variety, and as in the previous case it is quite
elementary to use our prior computations to compute its intersection cohomology
via the general Kirwan process described in § 3.1.

Indeed, from the description of the weights of the action in Lemma 4.20 (or
from the fact that we have arrived at the Kirwan blowup) it follows that there are
no strictly semi-stable points in P(Nx), so that the GIT quotient has at worst finite
quotient singularities. Thus IPt(P(Nx)//R) = Pt(P(Nx)//R) = PR

t (P(Nx)
ss), and

using (3.12) yields

IPt(P(Nx)//R) = PR
t (P(Nx)

ss) = Pt(P(Nx))Pt(BR)−
∑

06=β′∈B(ρ)

t2d(β
′)PR

t (Sβ′)

= Pt(P9)Pt(BC∗)−
∑

06=β′∈B(ρ)

t2d(β
′)PR

t (Sβ′)

≡ Pt(P9)Pt(BC∗) mod t9(5.22)

since from Lemma 4.20 there are no 0 6= β′ ∈ B(ρ) with d(β) ≤ 4; since P(Nx)//R
has complex dimension 8, it suffices by Poincaré duality to compute modulo t9.

Now, since ẐR//O(1)N
R is simply connected, as described in Remark 5.3 the

action of π0N splits into an action on the base and an action on the fiber, so
that to compute BR(t), it suffices to compute IP π0N

t (P(Nx)//R). We have seen
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in Lemma 4.9 (see Proposition B.3 for more details) that π0N ∼= Z2, and acts on
P(Nx)//R via permutation of the coordinates x0, x1, x2, x3, x4 ↔ x4, x3, x2, x1, x0.
In the context of (5.22), the action of this involution on the cohomology of P9 is
trivial, and acts on the torus C∗ by λ 7→ λ−1. Thus the action of Z2 on H•(BC∗) =
Q[c1] (deg c1 = 2) is induced by the action of Z2 on the vector space Q〈c1〉 by
c1 7→ −c1 (see Example A.4). Thus H•(BC∗)Z2 = Q[c21], with generating function
(1− t4)−1.

Putting this together with (5.22) we obtain

IP π0N
t (P(Nx)//R) ≡ (1− t2)−1 · (1 − t4)−1

≡ 1 + t2 + 2t4 + 2t6 + 3t8 mod t9(5.23)

completing the proof of (2).
From this we obtain the polynomial bR(t) = t2 + t4 + 2t6 + 2t8 + 3t10 + 2t12 +

2t14 + t16 + t18, as in (5.15) (with c = 9). We find finally that

BR(t) ≡ (1 + t2) · (t2 + t4 + 2t6 + 2t8 + 2t10)

≡ t2 + 2t4 + 3t6 + 4t8 + 4t10 mod t11.

�

5.3. Putting the terms together to compute the cohomology of MGIT

We now put together the results in the previous sections to complete the proof
of Theorem 1.1 for MGIT. Recall that the intersection cohomology of MGIT sat-
isfies Poincaré duality. Consequently, as dimMGIT = 10, it suffices to compute
IPt(MGIT) up to t10. We have:

IPt(MGIT) ≡
≡ 1 + 4t2 + 6t4 + 10t6 + 13t8 + 15t10 (Kirwan blowup, Theorem 1.1)

− (t2 + t4 + 2t6 + 2t8 + 3t10) (Correction term, chordal cubic, Prop. 5.4)

− (t2 + t4 + 2t6 + 3t8 + 3t10) (Correction term, 3D4 cubic, Prop. 5.5)

− (t2 + 2t4 + 3t6 + 4t8 + 4t10) (Correction term, 2A5 cubic, Prop. 5.6)

≡ 1 + t2 + 2t4 + 3t6 + 4t8 + 5t10 mod t11.

This completes the proof of Theorem 1.1 for MGIT.

Remark 5.7. Recall from (4.22) that Pt(MK) = PG
t (Xss) +

∑
R∈R AR(t)),

where AR(t) is the difference of the “main term” and the “extra term” (see (4.24)
and (4.25)). From (5.20) we have IPt(MGIT) = Pt(MK) −∑

R∈R BR(t), so that
finally

IPt(MGIT) = PG
t (Xss) +

∑

R∈R

(AR(t)−BR(t)).

From [Kir86, Thm. 2.5], one knows that all the coefficients of the polynomial∑
R∈R(AR(t)−BR(t)) are non-positive (note that in examples, the individual terms

AR(t) − BR(t) may have positive coefficients, e.g., [Kir89, 6.5]). In our situation
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we have

ARc
(t)−BRc

(t) ≡ 0 mod t11

AR3D4
(t)−BR3D4

(t) ≡ −t8 − t10 mod t11

AR2A5
(t)−BR2A5

(t) ≡ 0 mod t11.

In other words, up to t10 (which is all that matters due to Poincaré duality), the
intersection cohomology of MGIT agrees with the equivariant cohomology of the
semi-stable locus, except for a correction in real codimensions 8 and 10, coming
from the blowup of the 3D4 locus.

5.4. The intersection cohomology of M̂
Since the space M̂ is an intermediate step in the Kirwan blowup, obtained after

one blows up only the chordal cubic point Ξ ∈ MGIT, its intersection cohomology
appears as an intermediate stage in our computations above, simply by taking only
the blowup step corresponding to Rc, dealt with in Propositions 4.12 and 5.4. Thus
we have

IPt(M̂) ≡1 + t2 + 2t4 + 3t6 + 4t8 + 5t10 (IPt(MGIT), Theorem 1.1)

+ t2 + t4 + 2t6 + 2t8 + 3t10 (Correction term BRc
, Proposition 5.4)

≡1 + 2t2 + 3t4 + 5t6 + 6t8 + 8t10 mod t11.

This completes the proof of Theorem 1.1 for M̂.



CHAPTER 6

The intersection cohomology of the ball quotient

In this section we use the decomposition theorem in a different way to com-
pute the intersection cohomology of the Baily–Borel compactification (B/Γ)∗ of
the ball quotient model B/Γ of M. For a paper addressing similar situations com-
puting intersection cohomology of arithmetic quotients via the Kirwan blowup,
see [KLW87].

6.1. A special case of the decomposition theorem

There is a special case of the decomposition theorem that will be quite useful
for us in computing cohomology of the Baily–Borel and toroidal compactifications
of the ball quotient.

We start by recalling that if f : V̂ → V is a map from a variety V̂ of dimension n,
smooth up to finite quotient singularities, to a possibly singular variety V that is
the blowup of a (not necessarily smooth) point p ∈ V to an exceptional divisor

E ⊂ V̂ , smooth up to finite quotient singularities (cf. Diagram (5.3), with C = p),
then the decomposition theorem gives the following. Writing Pt(E) =

∑
ejt

j , the
decomposition theorem gives (e.g., [GH17, Lem. 9.1]):
(6.1)

Pt(V̂ ) = IPt(V )+e2n−2t
2+e2n−3t

3+· · ·+en+1t
n−1+ent

n+en+1t
n+1+· · ·+e2n−2t

2n−2.

In other words, the correction terms for Pt(V̂ ) in degree ≥ n = dim V̂ are the Betti

numbers of E, and in degree ≤ n are set up so that Poincaré duality holds for V̂ .
We note that by Poincaré duality on E, we have e2n−2−i = ei.

6.1.1. Comparing to Kirwan’s computation. We now observe that we
have already seen another approach to computing Pt(V̂ ) in (6.1). Indeed, let U ⊆ V

be any open neighborhood of p and let Û := f−1(U) (cf. Diagram (5.3), with

C = p). Then from (5.4), we have IPt(V̂ ) = IPt(V ) + IPt(Û) − IPt(U). Using

the fact that V̂ is smooth up to finite quotient singularities, we immediately get
Pt(V̂ ) = IPt(V ) +Pt(Û)− IPt(U). If we assume now that Û retracts onto E, then
we have

(6.2) Pt(V̂ ) = IPt(V ) + Pt(E)− IPt(U).

Remark 6.1. Combining (6.1) and (6.2) we find

(6.3) Pt(E)−IPt(U) = e2n−2t
2+e2n−3t

3+· · ·+en+1t
n−1+ent

n+· · ·+e2n−2t
2n−2.

We now compare this description of the decomposition theorem for the blowup
of a point to the general setup of the Kirwan blowup machinery, which will provide
us with an alternative viewpoint, and enable us to use some of the previous com-
putations to deal with (B/Γ)∗. To make this comparison, let us return to Kirwan’s
general situation, for a single blowup, as in Chapter 5.1.1. We are further assuming
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that the morphism π̂G : X̂//L̂G → X//LG is such that X̂//L̂G is smooth up to finite
quotient singularities, that the center of the blowup ZR//LG is a point, and that
the exceptional divisor E//L̂G is smooth up to finite quotient singularities. In this
situation, (6.2) translates to

(6.4) Pt(X̂//L̂G) = IPt(X//LG) + Pt(E//L̂G)− IPt(N//G)︸ ︷︷ ︸
BR(t)

,

where we are using the fact mentioned in deducing (5.6) from (5.4), that there
is an appropriate open neighborhood U ⊆ X//LG of ZR//LG with U homeomor-
phic to N//G. Alternatively, this is (5.6) together with the fact that E//L̂G

∼=
N̂//G [Kir86, Lem. 2.15] (see also [Kir86, p.494]). We note here that in this spe-
cial case, the formula (6.1) follows from (6.4) using (5.10) and (5.11), and the shift
in degrees mentioned after those equations.

The main point for us, however, is the converse statement, that (6.1) gives an
alternative approach to computing BR(t), assuming one knows Pt(E//L̂G). Indeed,
if Pt(E//L̂G) =

∑
ejt

j , then combining (6.4) and (6.3), one sees that BR(t) =
e2n−2t

2 + e2n−3t
3 + · · · + en+1t

n−1 + ent
n + · · · + e2n−2t

2n−2, where here n =
dimX//LG. Moreover, (5.11) asserts that the cohomology of the exceptional divisor
is given in our special situation as

(6.5) Hi(E//L̂G) =
∑

p+q=i

[
Hp(ZR//LN0)⊗ IHq(P(N̂x)//R)

]π0N

.

We also note that Remarks 5.1 and 5.2 give analogous statements for Hi(E//L̂G)
in this situation.

6.2. The intersection cohomology of the ball quotient

We start by recalling the birational maps relating the Kirwan blowup, GIT,
and Baily–Borel compactifications, and introduce the notation for them (see also
§ 2):

(6.6) MK

π

��✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡

f
��

g

��
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺

M̂

p
{{✇✇
✇✇
✇✇
✇✇
✇

q
##●

●●
●●

●●
●●

●

MGIT (B/Γ)∗

Here π is the Kirwan blowup, the geometry of which has been the focus of the

paper up to this point. The space M̂ resolves the birational map from MGIT to
(B/Γ)∗, and has been described above in §2.2, following [ACT11]. The map p is
the blowup of the point Ξ ∈ MGIT that corresponds to the chordal cubic, to a

divisor Dh ⊂ M̂.
Recall that T ⊂ MGIT is the rational curve of cubics with 2A5 singularities,

which contains the point Ξ corresponding to the chordal cubic. Let then T̂ =

Zss
T,1 ⊂ M̂ be the strict transform of the curve T under the map p. The map q

then consists simply of blowing down the curve T̂ to a point c2A5 , this point being
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one of the two cusps of (B/Γ)∗. The other cusp c3D4 of (B/Γ)∗ corresponds to
the 3D4 cubic. Thus the exceptional divisor of the map g consists of two disjoint
irreducible components D3D4 and D2A5 , contracted to the two points that are the
corresponding cusps of (B/Γ)∗.

To compute the intersection cohomology of (B/Γ)∗, we apply the decomposition
theorem to the map g : MK → (B/Γ)∗. The advantage of working with this map
instead of with q is that the domainMK is smooth up to finite quotient singularities,
thus its intersection cohomology is equal to its cohomology, and the intersection
complex is trivial. We will show that both exceptional divisors D2A5 , D3D4 ⊂ MK

of the map g : MK → (B/Γ)∗ are smooth up to finite quotient singularities, and
thus we will be able to use (6.1).

The divisor D3D4 is smooth up to finite quotient singularities, since it is ob-
tained as an exceptional divisor in the Kirwan blowup process π, which is not
modified after it is introduced (one can also check directly that in the divisor’s
description as a GIT quotient, it has no strictly semi-stable points at the stage it
is first introduced, and is not modified by the subsequent blowups). The divisor
D2A5 is similarly seen to be smooth up to finite quotient singularities, since it is
obtained as the last step of the Kirwan blowup process (one can also check directly
that in the divisor’s description as a GIT quotient, it has no strictly semi-stable
points at the stage it is first introduced).

We now compute the contribution to Pt(MK) due to the divisor D3D4 . In
fact, in this case, rather than using (6.1), and computing Pt(D3D4), we will use a

slightly different approach. Since π(D3D4) ∈ MGIT and f(D3D4) ∈ M̂ are both
points and p is locally an isomorphism near those points, and since q is locally an

isomorphism near the points f(D3D4) ∈ M̂ and c3D4 ∈ (B/Γ)∗, the term BR3D4
(t)

in Proposition 5.5 is precisely the contribution for the blowup g, over the cusp c3D4 ,
namely

(6.7) t2 + t4 + 2t6 + 3t8 + 3t10 mod t11

For the contribution of the divisor D2A5 the situation is a little trickier, so that
we will have to use (6.1), and compute Pt(D2A5). The situation is more complicated

because f(D2A5) = T̂ is a curve, contracted by q to the point c2A5 ∈ (B/Γ)∗, and
moreover, since the map p is not an isomorphism in a neighborhood of T and T̂
(one must take into account the blowup of the point Ξ). Nevertheless, we have
essentially already computed Pt(D2A5). Indeed, from (6.5), Proposition 5.6, and
Remark 5.2 we see that

Pt(D2A5) = Pt(P1) IP π0N
t (P(Nx)//R)(6.8)

≡ (1 + t2)(1 + t2 + 2t4 + 2t6 + 3t8) mod t9 (From (5.23))

≡ 1 + 2t2 + 3t4 + 4t6 + 5t8 mod t9 .(6.9)



54 6. THE INTERSECTION COHOMOLOGY OF THE BALL QUOTIENT

Summarizing, we obtain

IPt((B/Γ)∗) ≡
≡ 1 + 4t2 + 6t4 + 10t6 + 13t8 + 15t10 (Kirwan blowup MK, Theorem 1.1)

− (t2 + t4 + 2t6 + 3t8 + 3t10) (D3D4 contribution, (6.7))

− (t2 + 2t4 + 3t6 + 4t8 + 5t10) (D2A5 contribution, (6.9), (6.1))

≡ 1 + 2t2 + 3t4 + 5t6 + 6t8 + 7t10 mod t11.

Remark 6.2. We remark that thus IPt(M̂)−IPt((B/Γ)∗) = t10; in particular,
this difference is not zero. Even though the map q is small (being a contraction of
a curve in a 10-fold to a point), it does not induce an isomorphism in intersection
cohomology, which is possible for a small map whose domain is not smooth.

Remark 6.3. Frances Kirwan suggested a small variation on how to estab-

lish (6.8). The main claim is that the map f |D2A5
: D2A5 → T̂ = P1 is a fibration.

To see this, one interprets this map as a GIT quotient of the locus in P34 of all 2A5

cubics by the normalizerN2A5 . The extra involution σ that appears in the stabilizer
of the special point (as explained in the appendix) is contained in N2A5 (recall that
σ acts diagonally, while the normalizer is a Z/2Z extension of the maximal diagonal
torus). Thus in thinking about the GIT quotient by N2A5 , this extra involution
plays no role. Thus we have a fibration, with fibers isomorphic to P(Nx)//R)/π0N .
In (5.23) we have computed the invariant part of the cohomology of these fibers.
Notice, crucially, that this cohomology is zero in all odd degrees. Thus the spectral
sequence computing the cohomology of D2A5 , as a fibration over P1, is completely
degenerate, and we obtain (6.8).



CHAPTER 7

The cohomology of the toroidal compactification

In this section we will compute the cohomology of the toroidal compactification
of the ball quotient, completing the proof of Theorem 1.1.

The starting point of our discussion is the [ACT11] ball quotient model B/Γ
for the moduli of cubic threefolds (see Chapter 2). We recall that this locally sym-
metric variety B/Γ is associated to an Eisenstein lattice Λ (see §7.1.1, esp. (7.4))
of signature (1, 10), that we will review below. Similar to the better known case
of K3 surfaces, the cusps of the Baily–Borel compactification (B/Γ)∗ correspond
to Γ-conjugacy classes of primitive isotropic subspaces in Λ. By [ACT11], there
are exactly two cusps, that we label c2A5 and c3D4 respectively, in accordance with

Theorem 2.5. The toroidal compactification, which we denote here by B/Γ, is a

partial resolution B/Γ → (B/Γ)∗ of the two cusps. Unlike in the Siegel or the
orthogonal case, there are no choices involved, and one can thus speak about the
toroidal compactification B/Γ. The reason for the uniqueness is that all cones
which are used in the toroidal compactification have dimension 1. For this reason
it also holds that B/Γ only has finite quotient singularities and, therefore, its sin-
gular cohomology and intersection cohomology coincide. From the general theory
(see [AMRT10]; see also [Beh12] for the ball quotient case), the two exceptional

divisors of B/Γ → (B/Γ)∗ are quotients of 9-dimensional abelian varieties by fi-
nite groups (Proposition 7.8). In each of the two cases occurring here, the relevant
abelian variety is in fact (Eω)

9, where Eω is the elliptic curve with j-invariant equal
to 0, namely the quotient of the complex numbers by the Eisenstein integers. The
content of the first subsection of this section is the identification of the two finite
groups Γ2A5 and Γ3D4 acting on (Eω)

9 for the two cusps c2A5 and c3D4 respec-
tively. In the second subsection, by adapting a well-known theorem of Looijenga
(see [Loo77], [FMW98, Thm. 2.7]), we are able to compute the cohomology of
these two exceptional divisors (Eω)

9/Γ2A5 and (Eω)
9/Γ3D4 . Finally, combining

this with an application of the decomposition theorem, we conclude the proof of
Theorem 1.1.

7.1. The arithmetic of the two cusps of B/Γ
In this subsection, we discuss the structure of the toroidal compactification for

the ball quotient model B/Γ for cubic threefolds. To start, we briefly recall the
notion of Eisenstein lattice, and the relationship to the even Z-lattices endowed
with an order 3 isometry. We follow with the classification of the cusps of (B/Γ)∗,
which is closely related to the classification of the Type II boundary components for
the Baily–Borel compactification for cubic fourfolds (see [Laz10, §6.1]). Using some

ideas from [Beh12], we can describe the two exceptional divisors of B/Γ → (B/Γ)∗
(Proposition 7.8).
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7.1.1. Eisenstein Lattices. Let E be the ring of Eisenstein integers

E := Z[ω], ω = e
2πi
3 .

By an Eisenstein lattice G we understand a free E module, endowed with an hermit-
ian form taking values in E . Throughout, we will make the additional convention
that the Hermitian form takes values in θE , where θ = ω − ω2(=

√
−3), i.e.,

〈−,−〉 : G × G → θE ;
this should be understood as an analogue of even lattices over Z. In particular,
note that then ‖x‖2 = 〈x, x〉 ∈ 3Z.

Associated to an Eisenstein lattice G, there is a usual Z-lattice, that we denote
GZ. Simply, GZ is the underlying free Z-module. On GZ, we define a bilinear
symmetric form

(−,−) := −2

3
Re〈−,−〉 : GZ × GZ → Z.

Under our convention on the hermitian form, GZ is an even lattice. Note that GZ

comes endowed with an order 3 isometry ρ ∈ O(GZ), namely

(7.1) ρ(x) := ω · x,
where the multiplication is the multiplication by scalars in the Eisenstein module
G. Clearly, ρ acts on GZ fixing only the origin (i.e., ρ(x) 6= x for any x 6= 0).
Conversely, given an even lattice GZ together with an order 3 isometry ρ (fixing
only the origin), we can define an Eisenstein lattice G reversing the process above.
More precisely, the Eisenstein structure on GZ is determined by (7.1). Then, the
hermitian form is given by

(7.2) Re〈x, y〉 = −3

2
· (x, y), i · Im〈x, y〉 = θ

2
· ((ρ− ρ2)x, y).

Finally, we note that an isometry φ of G induces an isometry of GZ, commuting
with ρ, and conversely. In other words,

(7.3) Aut(G, 〈−,−〉) = {φ ∈ O(GZ) | φρ = ρφ}.
By abuse of notation, we will denote by

O(G) := Aut(G, 〈−,−〉)
the group of isometries (N.B. O(G) is a unitary group, and not an orthogonal group).

We now introduce the Eisenstein lattices relevant to our discussion. First, we
consider the following definite lattices (defined in terms of Gram matrices):

E1 : (3), E2 :

(
3 θ
θ̄ 3

)
, E3 :



3 θ 0
θ̄ 3 θ
0 θ̄ 3


 , E4 :




3 θ 0 0
θ̄ 3 θ 0
0 θ̄ 3 θ
0 0 θ̄ 3


 .

The underlying Z lattices (Ei)Z are A2(−1), D4(−1), E6(−1), and E8(−1) respec-
tively. Conversely, we note that the lattices A2(−1), D4(−1), E6(−1) and E8(−1)
admit (up to conjugacy) a unique order 3 isometry fixing only the origin, and thus
they admit a unique Eisenstein structure (e.g. [HKN10, Lem. 3]).

We also consider the indefinite (signature (1, 1)) lattice H defined by

H :

(
0 θ
θ̄ 0

)
,
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whose underlying Z lattice is 2U (two copies of the hyperbolic plane).
The Eisenstein lattice used by Allcock–Carlson–Toledo [ACT11] to define the

ball quotient model B/Γ for the moduli of cubic threefolds is

(7.4) Λ := E1 + 2E4 +H,

with associated Z lattice

ΛZ
∼= A2(−1) + 2E8(−1) + 2U,

which is precisely (up to a sign) the lattice of the primitive middle cohomology of
a smooth cubic fourfold. Returning to the construction of B/Γ, we recall

B := B10 := {[z] : z2 > 0}+ ⊂ P(Λ⊗E C),

and Γ = O(Λ) acts naturally (properly discontinuously) on B.
Finally, let us recall some basic terminology from Nikulin’s theory for even Z-

lattices that will be needed later. Let M be an even non-degenerate Z-lattice. The
dual lattice is M∨ = HomZ(M,Z). Using the quadratic form, the dual M∨ has the
following description

M∨ = {w ∈ M ⊗Z Q | (v, w) ∈ Z for all v ∈ M} ,
in particular M ⊂ M∨ ⊂ M ⊗Z Q. The discriminant group is the finite group
AM := M∨/M . A key insight of Nikulin is that the quadratic form on M induces
a finite quadratic form

qM : AM → Q/2Z .

For example, if M = E6(−1), then AM
∼= Z/3 and qM (ξ) = − 4

3 ∈ Q/2Z for ξ a
generator of AM . We also recall that for v ∈ M , the divisibility div v is the positive
generator of the ideal (v,M) ⊂ Z, i.e., the biggest natural number by which all
integers (v,m) for m ∈ M are divisible. Note that v

div v ∈ M∨, and then via the
projection M∨ → AM = M∨/M we obtain an element in AM . In fact, every
element of AM arises in this way. If v ∈ M is primitive, then the order of (the
class of) v

div v in AM is precisely div v. Returning to the M = E6(−1) example,
we see that div v ∈ {1, 3} for v ∈ M primitive. Furthermore, if v is primitive with
div v = 3, then (the class of) v

3 is a generator of AM . Using qM
(
v
3

)
= − 4

3 ∈ Q/2Z,
one concludes v2 = −12 (mod 18). For M = E6(−1), there exists indeed an
element v of norm −12 and divisibility 3.

Remark 7.1. Most of the above discussion can be adapted to the case of
Eisenstein lattices. Here, for v in an Eisenstein lattice G, we define div v as the
generator of the ideal 〈G, v〉 ⊂ θE . Clearly θ divides div v, and div v divides ‖v‖2.
Similarly, following the conventions in [All00, p.285], [MOT15, p.8645] we define
G∗ = HomE(G, E), and under the identification G∗ = {ν ∈ G ⊗E Q(ω) : 〈λ, ν〉 ∈
E ∀ λ ∈ G}, we naturally obtain a Hermitian form on G∗ making it an Eisenstein
lattice (with our conventions). Under the θ-value assumption on the Hermitian
form, it holds that

1

θ
G ⊂ G∗ ⊂ G ⊗E Q(ω) .

Thus, the natural “unimodularity” condition in this setup is θG∗ ∼= G. For the
lattices considered here, E4 and H satisfy this condition, while E1, E2, and E3 do
not. Note that under the natural identification G⊗E Q(ω) = G⊗E E ⊗ZQ = G⊗ZQ,
we have (θG∗)Z = (GZ)

∨ [MOT15, p.8645], so that the notions of unimodularity in
the Eisenstein, and underlying integral case, agree. Finally, we observe that under
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our θ-value assumption on the Hermitian form, it is typically more convenient to
work with G′ := HomE(G, θE) = {ν ∈ G ⊗E Q(ω) : 〈λ, ν〉 ∈ θE ∀ λ ∈ G}. Clearly
G′ = θG∗, the unimodularity condition becomes G′ ∼= G, and we have (G′)Z = (GZ)

∨.

7.1.2. Identification of the two cusps of (B/Γ)∗. As mentioned above,
a cusp of the Baily–Borel compactification corresponds to a primitive isotropic
subspace (automatically of rank 1) F ⊂ Λ, considered up to the action of Γ. As
a consequence of [ACT11] (see Theorem 2.5), we know that there are precisely
two cusps, and thus two possible F . Our goal here is to describe these two cases
explicitly. First, we note that a standard invariant that in many cases suffices to
distinguish the Baily–Borel cusps is the definite lattice F⊥/F of rank 9, where F⊥

denotes the orthogonal complement of F in Λ (N.B. since F is isotropic, F ⊂ F⊥).
A weaker invariant is the associated Z-lattice (F⊥/F)Z (negative definite of rank
18). An even weaker invariant is R

(
(F⊥/F)Z

)
, i.e. the sublattice of (F⊥/F)Z

spanned by roots (i.e., −2 classes). In our situation this weak invariant suffices to
distinguish the cusps, as there are only two of them.

Lemma 7.2. With notation as above (e.g., F is the isotropic subspace associated
to the corresponding cusp), the following hold:

i) for the cusp c2A5 of (B/Γ)∗, R
(
(F⊥/F)Z

) ∼= 2E8(−1) +A2(−1);

ii) for the cusp c3D4 of (B/Γ)∗, R
(
(F⊥/F)Z

) ∼= 3E6(−1).

Proof. By Theorem 2.5, we know that c2A5 and c3D4 correspond to semi-
stable cubic threefolds with 2A5 singularities and 3D4 singularities respectively.
The ball quotient model B/Γ for cubic threefolds is obtained by considering the
eigenperiods (see [DK07]) of cubic fourfolds with a µ3 action (namely, to a cubic
threefold V (f3(x0, . . . , x4)) one associates the cubic fourfold V (f3(x0, . . . , x4) +
x3
5)). This construction is compatible with GIT and Baily–Borel compactifications.

One immediately checks that the construction associates to a cubic threefold with

2A5 (resp. 3D4) singularities a semi-stable cubic fourfold with 2Ẽ8 (resp. 3Ẽ6)
singularities. Now the claim follows from the classification of Type II boundary
components for cubic fourfolds (and the discussion of their geometric meaning)
in [Laz10, §6.1]). �

Remark 7.3. For further reference, let us note the following. Let (D/Γ′)∗ be
the Baily–Borel compactification for the moduli of cubic fourfolds (as discussed,
this is associated to the lattice ΛZ(−1) = 2E8 +A2 + 2U). By construction, there
exists a natural morphism

A : (B/Γ)∗ → (D/Γ′)∗ ,

which is generically an embedding (in fact, a normalization of the image). The
two cusps of the Baily–Borel compactification (B/Γ)∗ map to points on the Type II
components of (D/Γ′)∗ (corresponding to the fact that FZ is an isotropic rank 2 sub-
space of ΛZ). The lemma above says that A(c2A5) ∈ II2E8+A2 and A(c2A5) ∈ II3E6

respectively (where II indexed by a root lattice denotes a Type II boundary com-
ponent in (D/Γ′)∗). It is well known (in full generality) that the Type II boundary
components of (D/Γ′)∗ are modular curves, while here in fact II2E8+A2 , II3E6

∼=
h/ SL(2,Z). It is then clear (by construction) that the A(c2A5 ) and A(c3D4) map to
the special points on II2E8+A2 and II3E6 respectively corresponding to j-invariant
equal to 0.
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It remains now to identify two possibilities of primitive isotropic subspaces
F ⊂ Λ such that the associated invariant R((F⊥/F)Z) is as in Lemma 7.2. The
first case is immediate.

Lemma 7.4 (2A5 cusp). If F is an isotropic subspace in the summand H of
2E4 + E1 +H = Λ, then F⊥/F ∼= 2E4 + E1. Hence F defines the cusp c2A5 .

Proof. This is clear. �

For the second case (cusp c3D4), the argument is more lengthy, and we begin
with some preliminary discussion. We know that once we have found F , then we will
have R((F⊥/F)Z) ∼= 3E6, and in fact (F⊥/F)Z is a lattice in the genus of 2E8+A2

(see [Sca87, Ch. 5] and [Laz10, §6.1]). In other words, (F⊥/F)Z is an index
3 overlattice of 3E6. As noted in Lemma 7.2, a semi-stable cubic threefold with
3D4 singularities leads (via the Allcock–Carlson–Toledo construction of adding a

new monomial x3
5 to the defining equation) to a semi-stable cubic fourfold with 3Ẽ6

singularities, which in turns leads to the 3E6 sublattice in the vanishing cohomology.
Thus, we see that the order 3 isometry ρ on (F⊥/F)Z defining the Eisenstein lattice
F⊥/F is compatible with order 3 isometries on each of the E6 factors (giving E3
lattices). In other words, F⊥/F is an index 3 overlattice of 3E3. We will now define

an index 3 overlattice 3̃E3 of 3E3 (a posteriori, indeed F⊥/F ∼= 3̃E3). We start with
three copies of E3, or equivalently with three copies of E6(−1) each endowed with
an isometry ρ of order 3 (fixing only the origin). By Nikulin theory, see [Nik79,

§1.4] there exists an index 3 overlattice ˜3E6(−1) of 3E6(−1). Indeed, overlattices of
3E6(−1) correspond to isotropic subgroupsH ⊂ A3E6(−1) of the discriminant group
by taking the inverse image of H under the projection (3E6(−1))∨ → A3E6(−1).
Here we take the subgroup H generated by the diagonal embedding of AE6(−1)

into A(3E6(−1)). In fact, up to isometries of 3E6(−1) this is the only isotropic

subgroup. Explicitly, we can find elements zi ∈ E6(−1)(i) (the ith copy) with

z2i = −12 and div zi = 3. Then ˜3E6(−1) is the lattice generated by 3E6(−1) and
z1+z2+z3

3 (inside 3E6(−1)⊗Q). Note also that for each of the E6(−1) components,
the isometry ρ acts trivially on the discriminant (simply, the automorphism group
of the discriminant AE6(−1)

∼= Z/3 has order 2, while ρ has order 3). This means

that ρ (defined component-wise) on 3E6(−1) extends to an isometry of ˜3E6(−1)

whose only fixed point is the origin, thus giving the Eisenstein lattice 3̃E3 (recall
the hermitian form is determined as in (7.2)) and in fact this is the only such
overlattice.

Remark 7.5. Note that zi as above are chosen such that zi
3 generate the

discriminant of the respective copy of E6(−1). The condition div zi = 3 guarantees
that zi

3 ∈ E6(−1)∨, and then its projection into AE6(−1)
∼= Z/3Z is a generator.

Note also that zi is divisible by θ when we view E6(−1)(= E3) as an Eisenstein
lattice; indeed, we compute

1

3
(θ · zi) =

1

3
(ρ(zi)− ρ2(zi)) =

ρ(zi)

3
− ρ2(zi)

3
= 0 ∈ AE6(−1) ,

or equivalently θ ·zi = 3vi for some vi ∈ E6(−1)(i), and then zi = −θvi (this relation
makes sense even over Z, by interpreting θ as the endomorphism ρ−ρ2; over E , ρ is
the multiplication ω, and thus ρ− ρ2 is the multiplication by θ ∈ E). Returning to
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˜3E6(−1) and the companion Eisenstein lattice 3̃E3, we note that the discriminant of
˜3E6(−1) is Z/3 and it is generated by the class of z1−z2

3 . Furthermore, the following
hold

• (z1 − z2)
2 = z21 + z22 = −24.

• z1 − z2 ∈ ˜3E6(−1) is primitive and div(z1 − z2) = 3 (even in ˜3E6(−1)).
• (z1 − z2) = θ · (v1 − v2).

In terms of the Hermitian norm, note that ‖z1−z2‖2 = 36, and then ‖v1−v2‖2 = 12.

The lattice 3̃E3 satisfies the following key property.

Proposition 7.6. There is an isomorphism of indefinite Eisenstein lattices

(7.5) Λ(∼= E1 + 2E4 +H) ∼= 3̃E3 +H.

Proof. Let us first note that the underlying Z-lattices are indeed isomorphic,
i.e., forgetting the Eisenstein structure, it holds that

A2(−1) + 2E8(−1) + 2U ∼= ˜3E6(−1) + 2U .

Indeed, the two lattices have the same signature and isomorphic discriminant
groups (together with the quadratic from on it), thus they are in the same genus
(see [Nik79, Cor. 1.9.4]). Since the signature is indefinite, this genus contains only
one element (see [Nik79, Cor. 1.13.3]).

To lift this isometry to an isometry of Eisenstein lattices, we would need to
know that (up to the action of the orthogonal group) there exists a unique Eisen-
stein structure on the Z-lattice A2(−1) + 2E8(−1) + 2U . We were not able to
find such a result in the literature, but a related result is known: an even indefinite
unimodular lattice (e.g., 2E8(−1)+2U) admits at most one Eisenstein lattice struc-
ture (see [Bas07, Lem. 2.6]). Since E1 +2E4 +H is the direct sum of a unimodular
Eisenstein lattice 2E4 + H (with underlying unimodular Z-lattice 2E8(−1) + 2U)
and a rank 1 lattice E1 spanned by a norm 3 vector v, it suffices to find a vector

3̃E3 + H such that ‖w‖2 = 3 and (w)⊥
3̃E3+H

is unimodular. This in turn is equiv-

alent to ‖w‖2 = 3 and divw = 3. By the discussion of Remark 7.5, one sees that
w′ = v1 − v2 (with the notations of the remark) satisfies the right divisibility con-
dition, but not the norm condition. However, we can correct the norm by taking
w = w′ + θu with u ∈ H and ‖u‖2 = −3. This completes the proof. �

As a consequence of the above proposition, we conclude:

Corollary 7.7 (3D4 cusp). If F is an isotropic subspace of the summand H
of the sum 3̃E3 +H ∼= Λ, then F⊥/F ∼= 3̃E3. Hence F defines the cusp c3D4 .

Proof. This is clear. �

7.1.3. Structure of the two boundary divisors of B/Γ. We denote the

two boundary divisors of B/Γ corresponding to the cusps c2A5 and c3D4 by T2A5

and T3D4 , respectively. To be able to treat both cusps simultaneously we write

(7.6) Λ = G +H
where G = E1 + 2E4 or G = 3̃E3, respectively. As before, we can choose a rank 1
primitive isotropic subspace F ⊂ H, and then G ∼= F⊥/F .
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We denote by Eω the elliptic curve with an order 3 automorphism and note
that

Eω = C/E .
We can write

(Eω)
9 = Eω ⊗E G = C9/G.

This description defines a natural action of O(G) on the 9-dimensional abelian
variety (Eω)

9. The aim of this subsection is to prove the following

Proposition 7.8. The following holds:

(1) T2A5
∼= (Eω ⊗E (E1 + 2E4))/O(E1 + 2E4) (∼= (Eω)

9/O(E1 + 2E4));
(2) T3D4

∼= (Eω ⊗E 3̃E3)/O(3̃E3) (∼= (Eω)
9/O(3̃E3)).

Proof. We will give the proof for both cusps simultaneously. For this we pick
an isomorphism as in (7.6) and an isotropic vector h in H. As a matter of notation,
by F we will denote the cusp given by the isotropic line F = Eh. Now we choose
b1 := h and extend this to a basis of Λ such that the hermitian form with respect
to this basis has the Gram matrix

Q =




0 0 θ
0 B 0

θ̄ 0 0




Here b2, . . . , b10 form a basis of G, and B is the Gram matrix of G with respect
to this basis. In order to understand the boundary we first have to determine
certain subgroups of O(Λ) related to the cusp F (here we will only be dealing
with the integral groups). The first is the stabilizer subgroup N(F ) corresponding
to F , i.e. the subgroup of O(Λ) fixing the line spanned by h. A straightforward
calculation, see [Beh12, Sec. 4], gives

(7.7) N(F ) =



g ∈ O(Λ) : g =




u v w
0 X y
0 0 s





 .

Note that, in particular, this implies that X ∈ O(G). Its unipotent radical is given
by

(7.8) W (F ) =



g ∈ N(F ) : g =




1 v w
0 1 y
0 0 1







and finally the center of the unipotent radical is

(7.9) U(F ) =



g ∈ W (F ) : g =




1 0 w
0 1 0
0 0 1


 , w ∈ Z





∼= Z.

We have already introduced coordinates (z0 : z1 : · · · : z10) on B ⊂ P(Λ ⊗E C) and
we can assume that z10 = 1. The first step in the toroidal compactification is to
take the partial quotient of B by U(F ). This is given by

(7.10)
B → C∗ × C9

(z0, . . . , z9) 7→ (t0 = e2πiz0 , z1, . . . , z9).

Adding the toroidal boundary means adding the divisor {0} × C9, and we will use
z1, . . . , z9 as coordinates on this boundary divisor. The quotient N(F )/U(F ) then
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acts on B/U(F ) and this quotient gives the toroidal compactification of B near
the cusp F . Here we are only interested in the structure of the boundary divisor
and hence in the action of N(F )/U(F ) on {0}×C9. A straightforward calculation
shows that

(7.11) g =




u v w
0 X y
0 0 s


 : z 7→ 1

s
(Xz + y)

where z = (z1, . . . , z9). We first look at the normal subgroupW (F ), matrices whose
elements act as follows

g =




1 v w
0 1 y
0 0 1


 : z 7→ z + y.

Since g ∈ O(Λ) we have y ∈ E9 and we claim that all vectors in E9 appear as entries
in matrices g ∈ W (F ). Indeed a straightforward calculation, see [Beh12, Sec. 4],
shows that the condition that g ∈ O(Λ) is

By + v̄tθ = 0, ȳtBy + θ̄w + θw̄ = 0.

Given y we define v by v̄t = − 1
θBy. This is in E9 since the coefficients of By have

values in θE . Finally, we must check that we can find a suitable element w ∈ E .
We know that ȳtBy ∈ 3Z and hence we can write ȳtBy = 3n for some integer n.
Hence we can take w = − 1

2 +
i
2

√
3n ∈ E if n is odd and w = i

2

√
3n ∈ E if n is even,

respectively . This shows that

C9/W (F ) ∼= (Eω)
9.

Next we consider the action of the subgroup


g ∈ O(Λ) : g =




1 0 0
0 X 0
0 0 1





 .

which acts on (Eω)
9 as claimed in the proposition.

It remains to consider elements of the form

g =




u 0 0
0 1 0
0 0 s


 ∈ N(F ).

The condition that such a matrix lies in O(Λ) is that sū = 1 with s ∈ E . Hence
s is a power of ω and these elements act on (Eω)

9 by multiplication with powers
of ω. But by (7.11) these elements are already in O(G) and hence we do not get a
further quotient, and the claim follows. �

7.1.4. Isometry groups associated to the two cusps. We now discuss the

isometry groups O(2E4+ E1) and O(3̃E3) associated to the two cusps c2A5 and c3D4

respectively (see Proposition 7.8). As we will discuss below, these groups are easily
determined once the isometry groups of the basic lattices E3 and E4 are understood.
It turns out that the lattices E3 and E4 are special lattices, they are “root lattices”
in the sense of Eisenstein lattices. Consequently, the associated isometry groups
O(Ei) are essentially the complex reflections W (Ei) generated by the roots (W (Ei)
is the analogue for Eisenstein lattices of the usual Weyl group).
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To start our discussion of the isometry groups, let us recall that the role of
reflections is taken by triflections. First, an Eisenstein root is an element r ∈ G
with ‖r‖2 = 〈r, r〉 = 3. Note that r, when viewed as an element of GZ, is then a root
in the usual sense, i.e. r2 = (r, r) = −2. The role of the (−2)-reflections is taken
by triflections. To explain these, let r be an Eisenstein root in the above sense and
define

Rr : x 7→ x− (1− ω)
〈r, x〉
〈r, r〉 x.

This defines an isometry of order 3 (called a triflection). For an Eisenstein lattice
G, we define

W (G) ⊂ O(G)
to be the subgroup of isometries generated by triflections Rr in all roots r defined
above. Note that it follows, for instance, that W (E3) is the subgroup of W (E6)
consisting of the elements that commute with ρ (similar statements hold for all En
for n = 1, . . . , 4).

We will now discuss the isometry group of the relevant Eisenstein lattices.
Clearly

(7.12) O(E1) = W (E1)× Z/2Z ∼= Z/3Z× Z/2Z

where the factors are generated by multiplication by ω and −1, respectively. The
(complex) Weyl groupsW (E3) andW (E4) are well known complex reflection groups,
typically denoted by L3 and L4 (see [Dol08, Table 2]), and described as follows.

Proposition 7.9. The following holds:

(1) The Weyl group W (E3) is a group of order 23 · 34 = 648. It is isomorphic
to U(3,F4), respectively a semidirect product of an extra special group of
order 27 and exponent 3 with SL(2,F3).

(2) O(E3) ∼= W (E3)⋊ Z/2Z.

Proof. For the first item see for example [LT09, Thm. 8.42]. For the second
item, we recall that the underlying Z-lattice is E6(−1). It is well known that
O(E6(−1)) = W (E6(−1))⋊Z/2Z, with the Z/2Z factor corresponding to the outer
automorphism τ given by the symmetry of the Dynkin diagram. To recover the
groups W (E3) and O(E3), we note that the Eisenstein structure on E6(−1)(= E3)
determines an order 3 element ρ ∈ W (E6(−1)). Then, W (E3) can be obtained as
the centralizer of ρ in W (E6(−1)) (e.g. [Dol08, Ex. 9.5]). Similarly, O(E3) is the
centralizer of ρ in O(E6(−1)) (see (7.3)). Finally, a direct calculation shows that τ
commutes with the order 3 automorphism ρ which defines the Eisenstein structure
on E6(−1). Item (2) follows. �

Proposition 7.10. The following holds:

(1) The Weyl group W (E4) has order 27 · 35 · 5 = 155, 520. It is isomorphic
to Z/3Z× Sp(4,F3).

(2) W (E4) = O(E4).
Proof. This follows from [All00, Thm. 5.2] (see also [LT09, Thm. 8.43]). �

With these preliminaries, we can now conclude the computation of the groups
of isometries occurring for the two cusps of the ball quotient model.

Proposition 7.11. The following holds:
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(1) O(E1 + 2E4) ∼= W (E1)× (W (E4)×2 ⋊ S2)

(2) O(3̃E3) ∼= (W (E3)×3 ⋊ S3)⋊ Z/2Z.

Here Sn denotes the symmetric group in n elements.

Proof. Let G be a definite Eisenstein lattice. We start with two basic remarks.
Firstly, the set of Eisenstein roots R(G) is finite, and in fact (under our scaling
assumptions) coincides (set-theoretically) with the set of −2 roots for the Z-lattice
GZ. Indeed, this follows from (7.2). Secondly, any isometry φ ∈ O(G) preserves the
set of roots (φ(R(G)) = R(G)). Furthermore, if the set of roots R(G) generates G
(over Q(ω)), then φ is determined uniquely by the action of φ on the finite set R(G).
In our situation, G = 2E4+E1 or G = 3̃E3, and we know R(GZ) = 2E8(−1)+A2(−1)
and R(GZ) = 3E6(−1) respectively (see Lemma 7.2), where we denote by R(GZ)
the sublattice of GZ spanned by the roots R(GZ). Thus, given φ ∈ O(2E4 + E1)
(or φ ∈ O(3̃E3) respectively), after a permutation (giving the S2 and S3 factors
above), we can assume that φ preserves the irreducible root summands 2E4 + E1
(and respectively each of the three E3 in 3̃E3). Then the isometry φ is determined by
the action of φ on the summands E1, E4 and E3 respectively (which were described in
Propositions 7.10 and 7.9); see also [HKN10, Lem. 1] for a related argument. This
shows immediately that the isometries of E1+2E4 are as claimed. We have also seen

that any isometry of 3̃E3 is the extension of an isometry of 3E3. Now, an isometry

of 3E3 lifts to 3̃E3 if and only if the induced isometry on the discriminant preserves
the defining subgroup H ⊂ A3E6(−1)

∼= (Z/3)3. This immediately shows that

W (E3)×3⋊S3 ⊂ O(3̃E3). To complete the proof we recall from Proposition 7.9 that
O(E3) ∼= W (E3)⋊Z/2Z where the Z/2Z-factor is generated by the involution τ given
by the symmetry of the Dynkin diagram. Since τ acts by −1 on D(E6(−1)) ∼= Z/3Z
it follows that only the identity and the diagonal element (τ, τ, τ) extend to 3̃E3.
This gives the extra factor of Z/2Z and completes the proof. �

7.2. The cohomology of the toroidal boundary divisors

We will compute the cohomology of the toroidal compactification B/Γ by apply-

ing the decomposition theorem to the map B/Γ → (B/Γ)∗ and using our knowledge
of the cohomology of (B/Γ)∗ (see § 6). For this we require the knowledge of the
cohomology of the two toroidal boundary divisors T2A5 and T3D4 . Since the lattices
involved in the definition of the two exceptional divisors (see Proposition 7.8) are
essentially direct sums of E3 and E4 lattices, the main ingredient needed to com-
pute the cohomology of T2A5 and T3D4 respectively is the cohomology of the spaces
(Eω ⊗E Ek)/W (Ek) for k = 3, 4. These are quotients of abelian varieties by finite
groups, and it turns out that these spaces are equivariantly isogenous to weighted
projective spaces of dimension k (see Proposition 7.12 and (7.16), below, for a
precise statement), and thus they have simple cohomology, making the remaining
computations routine.

7.2.1. An Eisenstein analogue of Chevalley’s theorem. The fact that
(Eω ⊗E E∗

k )/W (Ek) for k = 3, 4 have the same cohomology as weighted projective
spaces of dimension k is an analogue over E of a Chevalley type Theorem due to
Looijenga [Loo77]. Specifically, we recall that if R is an irreducible ADE root
lattice (we make this assumption for simplicity) and E is an elliptic curve, then
(E ⊗Z R∨)/W (R) ∼= WPr, where WPr denotes a weighted projective space of
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dimension r equal to the rank of R (see [FMW98, Thm. 2.7]). In the Eisenstein
case, we get that the quotients are equivariantly isogenous to weighted projective
spaces; in particular we obtain:

Proposition 7.12. Let Eω be the elliptic curve with j-invariant 0. Then:

(1) H•((Eω ⊗E E3)/W (E3)) ∼= H•(WP(1, 2, 2, 3))
(2) H•((Eω ⊗E E4)/W (E4)) ∼= H•(WP(2, 3, 4, 5, 6)).

Proof. Chevalley type theorems for complex reflection groups acting on pro-
jective varieties were obtained by Bernstein and Schwarzman [BS06]. In particular,
the fact that the cohomology of (Eω⊗Ek)/W (Ek) agrees with that of weighted pro-
jective space (in much more generality) follow from [BS06, §2.3].

For the reader’s convenience, we sketch a geometric proof of the two cases that
are needed in our paper, following the outline of [FMW98]. For simplicity, we will
discuss only the E3 case, the other case being obtained by minor changes. Let us
discuss first the situation over Z (i.e., the classical setup of Looijenga), namely the
statement that (E⊗Z E

∨
6 )/W (E6) ∼= WP(1, 1, 1, 2, 2, 2, 3) (N.B. for the moment, E

is any (fixed) elliptic curve).
We consider the moduli of anticanonical pairs1, with E fixed,

PE = {(S,E) | S is a degree 3 del Pezzo surface, and E ∈ | −KS|} .
This moduli space has two different descriptions. On the one hand, as an in-
stance of Pinkham’s general theory of deformations of singularities with C∗-action
(see [Pin74]), we obtain a GIT description as PE = B−//C∗, where B−

∼= C7 is
the negative weight deformation space for the versal deformation of the singularity

of type Ẽ6 (the affine cone over the elliptic curve E ⊂ P2). (In general, the versal
deformation space of a singularity is a germ. However, for singularities with C∗-
action, there is an induced C∗-action, which allows one to globalize the negative
weight subspace. Thus, in the case of quasi-homogeneous hypersurface singulari-

ties, one can take B− to be an affine space.) The versal deformations of Ẽ6 are
easily described explicitly, and as a consequence one gets

(7.13) PE
∼= WP(1, 1, 1, 2, 2, 2, 3).

(We refer to [Laz09] for further related discussion.) On the other hand, one gets a
period map

ΦE : PE → HomZ(E6(−1), E)/W (E6)(7.14)

(S,E) → H2(S,E)

which can be explained as follows: Firstly, W (E6) is the monodromy group act-
ing on the primitive cohomology E6(−1) ∼= H2(S,Z)0 of the del Pezzo surface S.
Secondly, from the exact sequence of a pair one gets

0 → H1(E) → H2(S,E) → H2(S)0 → 0,

where we are using that H2(S)0 = ker(H2(S) → H2(E)). This shows that the
mixed Hodge structure on H2(S,E) is an extension of a trivial weight 2 Hodge

1In general, an anticanonical pair (S,D) is a rational surface S together with a reduced

anticanonical cycle D ∈ | −KS |. Clearly, D is either a smooth elliptic curve (as in our case) or a
cycle of rational curves. The latter case is sometimes known also as Looijenga pair. The moduli
of anticanonical pairs is well understood: the case when D is smooth is essentially reviewed here,
while the harder case when D is singular is treated in [GHK15], [Fri13].
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structure (type (1, 1)) by the elliptic curve E. Carlson [Car85] showed that these
type of extensions are classified by HomZ(H

2(S)0, E). Since the elliptic curve
E is fixed, the monodromy W (E6) acts naturally on H2(S)0 ∼= E6(−1) and on
HomZ(H

2(S)0, E). Thus, the period space (i.e., the period domain modulo mon-
odromy) for ΦE is HomZ(E6(−1), E)/W (E6), showing that the period map above
is well defined. Let us then note that in fact the period map ΦE has an easy geo-
metric description. Namely, by identifying H2(S)0 with Pic(S)0, i.e., degree 0 line
bundles on S with respect to the polarization −KS, and E with Pic0(E), one sees
that the “period point”

Ψ := ΦE(S,E) ∈ HomZ(H
2(S)0, E)

is just the natural restriction morphism

Ψ : Pic(S)0 → Pic0(E)

L → L|E .(7.15)

Finally, an easy Torelli type theorem (essentially, the surface S is the blow-up of
6 points in P2 which lie on a smooth cubic curve C ∼= E) establishes that ΦE is
an isomorphism. (We refer to [Car85] and [Fri84] for details of the period map
construction and the Torelli theorem. In particular, we note that our case is one
of the main examples in [Car85].) Comparing the GIT (7.13) and Hodge theo-
retic (7.14) descriptions of PE , one obtains the claimed result (E⊗ZE

∨
6 )/W (E6) ∼=

WP(1, 1, 1, 2, 2, 2, 3).
Returning to our situation, i.e., the Eisenstein analogue of the above argument,

we proceed as follows. We specialize to the case E = Eω , and we define Pω
Eω

to be
the subspace of PEω

corresponding to pairs (S,Eω) for which the µ3-action on Eω

extends (linearly) to S. It is easy to see that we can choose a normal form for S as
follows

S = V ((x3 + y3 + z3) + a1txy + a2t
2x+ a3t

2y + a4t
3) ⊂ P3 ,

with the elliptic curve Eω being the hyperplane at infinity (t = 0). Since Eω is
fixed, the only transformation allowed is the rescaling of t. This shows that Pω

Eω

∼=
WP(1, 2, 2, 3) (and this is a natural subspace of PEω

∼= WP(1, 1, 1, 2, 2, 2, 3)). Let
us now discuss the restriction of the period map ΦEω

to the subspace Pω
Eω

⊂ PEω
.

By definition Pω
Eω

is the locus of pairs (S,Eω) that admit an order 3 automorphism
f . Since f preserves KS, we see that f∗ acts as an order 3 isometry, call it ρ,
on H2(S)0 ∼= E6(−1). On the other hand, the restriction of f to Eω acts as
multiplication by ω. Since f acts compatibly on the pair (S,E), we get (f∗L)|E =
f∗(L|E), which in turn is equivalent to saying (compare (7.15))

Ψ(ρ(L)) = ω ·Ψ(L) .
We conclude that the period domain for the restricted period map ΦEω|Pω

Eω
is the

ω-eigenspace in (Eω ⊗Z E∨
6 ) (w.r.t. the action induced by ρ on the second factor).

In short we have

(7.16) WP(1, 2, 2, 3) ∼= Pω
Eω

∼= (Eω ⊗Z E∨
6 )ω/W (E3),

where the subscript indicates the ω-eigenspace.
We now recall the identification E∨

6 = ((E3)Z)∨ = (E ′
3)Z from Remark 7.1.

By considering the eigenspaces for the ω action on the right factor of E ⊗Z (E ′
3)Z,
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we obtain inclusions E3 →֒ E ′
3 →֒ (E ⊗Z (E ′

3)Z)ω = (E ⊗Z E∨
6 )ω , with torsion co-

kernels. Tensoring with Eω ⊗E −, we obtain isogenies Eω ⊗E E3 ։ Eω ⊗E E ′
3 ։

(Eω ⊗Z E∨
6 )ω, which are W (E3)-equivariant. Since isogenies give isomorphisms on

the cohomology of abelian varieties with rational coefficients, we have the identifi-
cations H•(Eω ⊗E E3)/W (E3)) = H•(Eω ⊗E E3))W (E3) = H•((Eω ⊗Z E

∨
6 )ω)

W (E3) =
H•((Eω ⊗Z E∨

6 )ω/W (E3)) = H•(WP(1, 2, 2, 3)). �

7.2.2. The cohomology of the divisors T2A5 and T3D4 . We are now ready
to compute the topology of the toroidal boundary components. The result is the
following

Proposition 7.13. The cohomology of the toroidal boundary divisors T2A5 and
T3D4 is given by the following table:

(7.17)

j 0 2 4 6 8 10 12 14 16 18

dimHj(T2A5) 1 2 3 4 5 5 4 3 2 1

dimHj(T3D4) 1 1 2 3 3 3 3 2 1 1

All odd cohomology vanishes.

Proof. As discussed in Proposition 7.12, the quotients (Eω ⊗E Ei)/W (Ei) ∼=
(Eω)

i/W (Ei) (for i = 3, 4) have the cohomology of weighted projective spaces.
Hence, as graded vector spaces, we have

(7.18) H•((Eω)
i/W (Ei),Q) ∼= Q[x]/(xi+1).

We shall first treat the case T2A5 . It follows from Proposition 7.7 and Lemma 7.11
that

(7.19) T2A5
∼= Eω/W (E1)× ((Eω)

4/W (E4))×2/S2.

We shall first compute the cohomology of the second factor. For this we have to
consider the S2 invariant parts of a tensor product Q[x]/(xi+1)⊗Q[y]/(yi+1). The
invariants in each degree are given by 1 in degree 0, x+ y in degree 1, x2 + y2, xy
in degree 2, x3 + y3, x2y + xy2 in degree 3, and x4 + y4, x3y + xy3, x2y2 in degree
4. Hence, using Poincaré duality we see that all the odd cohomology vanishes, and
that the entire cohomology is equal to

(7.20) Pt

((
(Eω)

4/W (E4)
)×2

/S2

)
= 1+t2+2t4+2t6+3t8+2t10+2t12+t14+t16.

The cohomology of the first factor is that of P1, equal to 1+ t2, and an application
of the Künneth formula therefore gives

(7.21)
Pt(T2A5) = (1 + t2) · (1 + t2 + 2t4 + 2t6 + 3t8 + 2t10 + 2t12 + t14 + t16)

= 1 + 2t2 + 3t4 + 4t6 + 5t8 + 5t10 + 4t12 + 3t14 + 2t16 + t18.

We shall now treat the second boundary component T3D4 . We first note that the

inclusion 3E3 ⊂ 3̃E3 gives us an étale 3 : 1 map

(7.22) C9/3E3 ∼= (Eω)
9 → C9/3̃E3.

To compute the cohomology of T3D4 is equivalent to computing the invariant co-

homology of C9/3̃E3 under the group O(3̃E3) ∼= (W (E3)×3 ⋊ S3)⋊Z/2Z. Since the
covering group of the étale 3 : 1 map (7.22) acts by translation on the product of
elliptic curves, and hence trivially on cohomology, this is equivalent to computing
the invariant cohomology of C9/3E3 ∼= (Eω)

9. We will first restrict to the subgroup
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W (E3)×3 ⋊ S3. Again using the fact that each factor (Eω)
3/W (E3) has the coho-

mology of a weighted projective space, and counting invariants under the symmetry
group S3 as above, we obtain for the invariant cohomology

(7.23) Pt

(
(Eω)

9
)W (E3)

×3
⋊S3

= 1+t2+2t4+3t6+3t8+3t10+3t12+2t14+t16+t18.

It remains to consider the action of the outer automorphism τ (see the proof of
Proposition 7.11), which acts diagonally on the triple product. Note, however, that
(Eω)

3/W (E3) has 1-dimensional cohomology in even degree and no odd cohomology.
Hence τ acts trivially on the cohomology of (Eω)

3/W (E3), and this finishes the
proof. �

Remark 7.14. Note that the Betti numbers of T3D4 and T2A5 agree with those
of D3D4 and D2A5 , given by formulas (6.7) and (6.9), respectively.

7.3. The cohomology of the toroidal compactification

At this point, we can conclude the computation of the cohomology of the

toroidal compactification B/Γ. This completes the proof of our main Theorem 1.1:

Theorem 7.15. The cohomology of the toroidal compactification B/Γ of the
ball quotient is given by

(7.24)
j 0 2 4 6 8 10 12 14 16 18 20

dimHj(B/Γ) 1 4 6 10 13 15 13 10 6 4 1

All odd cohomology vanishes.

Proof. We recall that the toroidal compactification B/Γ is smooth up to finite

quotient singularities, and that the morphism B/Γ → (B/Γ)∗ is the blowup of two
points. Hence we can apply the decomposition theorem in the form of [GH17,

Lem. 9.1], i.e. we are in the special case of §6.1, to the morphism B/Γ → (B/Γ)∗.
We thus compute

Pt(B/Γ) ≡
≡ 1 + 2t2 + 3t4 + 5t6 + 6t8 + 7t10 (IPt((B/Γ)∗), from the previous section)

+ t2 + t4 + 2t6 + 3t8 + 3t10 (T3D4 contribution, from Proposition 7.13)

+ t2 + 2t4 + 3t6 + 4t8 + 5t10 (T2A5 contribution, from Proposition 7.13)

≡ 1 + 4t2 + 6t4 + 10t6 + 13t8 + 15t10 mod t11

by applying equation (6.1) to determine the contribution to the cohomology of B/Γ
from each of the two exceptional divisors. �



APPENDIX A

Equivariant cohomology

In this appendix we review a few basic facts from the theory of equivariant
cohomology. The first subsection, §A.1, is a review of [AB83, §13]. In §A.2, we
review some results concerning the equivariant cohomology of Lie groups. In §A.3
we recall [Kir84, Prop. 5.8] concerning equivariant cohomology for quotients of
symplectic manifolds by compact Lie groups. These results are all standard by
now, but unfortunately, we are not aware of a reference where the results are all
stated. As is the case throughout the paper, for a topological space X , we use the
convention H•(X) = H•(X,Q).

A.1. Review of Atiyah–Bott

For any topological group G, a classifying space BG is defined as the base
of a left principal G-bundle EG → BG whose total space EG is contractible. A
classifying space is unique up to homotopy, so that in particular H•(BG) depends
only on G. For every topological group G a classifying space exists [Mil56].

Example A.1. The principal GL(n,C)-bundle induced by the universal vector
bundle En over the Grassmannian Gr(n,C∞) makes Gr(n,C∞) into a classifying
space for GL(n,C). The cohomology can be described as H•(BGL(n,C),Z) ∼=
Z[c1, . . . , cn] with ci taken to have degree 2i. From this one can deduce that
Pt(BGL(n,C)) = (1− t2)−1(1− t4)−1 . . . (1− t2n)−1.

More generally if G acts on a topological space X on the right, and a choice
of classifying space BG has been made, then we define XG := X ×G EG := (X ×
EG)/G, which is a locally trivial fibration overBG with fiberX and structure group
G. The G-equivariant cohomology of X is defined to be the ordinary cohomology
of XG:

(A.1) H•
G(X) := H•(XG).

In particular we have H•(BG) = H•
G(∗), where ∗ is a topological space with one

point. Moreover, it is well known (e.g., [Wei94, Thm. 6.10.5]) that H•(BG) ∼=
H•

gp
(G,Q); i.e., that the cohomology of the classifying space is given by the group

cohomology.
If the quotient map X → X/G is a right principal G-bundle, for instance if G

is a compact Lie group acting freely on a manifold X , then

(A.2) H•
G(X) ∼= H•(X/G).

Indeed, since X → X/G is a right principal G-bundle, applying X ×G − to the
canonical morphism EG → ∗, we obtain that the morphism XG = X ×G EG →
X ×G ∗ ∼= X/G is a locally trivial fibration with contractible fiber EG. Thus there
is a homotopy equivalence XG ≃ X/G.
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Note that if G is a compact Lie group acting properly on a manifold X , with
finite stabilizers, then (A.2) still holds. In this case, the fiber of XG → X/G over
a point [x] ∈ X/G is isomorphic to EG/Gx, which satisfies Hi(EG/Gx) = 0, i ≥ 1;
thus one may conclude via the Leray spectral sequence.

Another useful observation is the following. If G is a subgroup of a topological
group G′, and G′ → G′/G is a principal G-bundle, for instance if G is a closed
subgroup of a Lie group G′, then

(A.3) H•
G(X) ∼= H•

G′(X ×G G′).

The proof is as follows: Since G′ → G′/G is a principal G-bundle, we have that
EG′ → EG′/G is a principal G-bundle as well, so that we may take EG = EG′.
Thus we have (X ×G G′)G′ := (X ×G G′)×G′ EG′ ∼= X ×G EG′ = XG.

As an immediate application, if a Lie group G acts transitively on X with
X = x·G for some x ∈ X , and Gx is the stabilizer of x, then X ∼= Gx\G ∼= x×Gx

G,
so that (A.3) gives

(A.4) HGx
(x) ∼= HG(X).

A.2. Compact and complex Lie groups

Here we focus on the situation where K is a subgroup of a topological group
G such that the quotient map G → G/K is a principal K-bundle; for instance K
is a closed subgroup of a Lie group G. In this situation EG → EG/K is also a
principal K-bundle, so we may take EK = EG. Since X × EG → X × BG is a
principal G-bundle, we have that

XK = (X × EG)/K −→ (X × EG)/G = XG

is a locally trivial fibration with fiber G/K.
Under various assumptions on G and K we can deduce some further conse-

quences. For instance, if G is a connected Lie group and K is a maximal compact
subgroup, then

(A.5) H•
G(X) ∼= H•

K(X).

Indeed in this case XK → XG is a homotopy equivalence, since G/K is homeomor-
phic to Rn for some n.

Example A.2. Since U(n) is a maximal compact subgroup of GL(n,C), we
have from (A.5) and Example A.1 that H•(BU(n),Z) ∼= Z[c1, . . . , cn] with ci taken
to have degree 2i. From this one can deduce that Pt(BU(n)) = (1 − t2)−1(1 −
t4)−1 . . . (1− t2n)−1.

Example A.3. Identifying S1 = U(1) with the group of n × n diagonal ma-
trices with all entries equal, the surjective multiplication homomorphism SU(n) ×
S1 → U(n) has kernel isomorphic to the group µn of n-th roots of unity. The
Lyndon/Hochschild–Serre spectral sequence (e.g., [Wei94, Thm. 6.8.2]) for the nor-
mal subgroup µn of SU(n)×S1 then degenerates, since the higher group cohomology
for µn, being torsion, vanishes with Q-coefficients (e.g., [Wei94, Cor. 6.3.5]), giv-
ing an isomorphism H•

gp
(U(n)) ∼= H•

gp
(SU(n)×S1). Finally, as H•

gp
(SU(n)× S1) ∼=

H•
gp
(SU(n))⊗H•

gp
(S1) (e.g., [Wei94, Exe. 6.1.10]), we obtain

(A.6) H•(BU(n)) = H•(BSU(n))⊗H•(BS1).
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Since H•(BS1) ∼= H•(B U(1)) ∼= Q[c1], we have Pt(B SU(n)) = (1 − t4)−1 . . . (1 −
t2n)−1. As SU(n) is a maximal compact subgroup of SL(n), one has Pt(B SL(n)) =
Pt(B SU(n)) and H•(BGL(n,C)) = H•(BSL(n,C)) ⊗ H•(BC∗). Using the short
exact sequence 1 → µn → SL(n,C) → PGL(n,C) → 1, similar arguments show that
H•

gp
(PGL(n,C)) = H•

gp
(SL(n,C)), so that H•(B PGL(n,C)) = H•(B SL(n,C)).

If K is a closed normal subgroup of a Lie group G, and G/K is a finite group,
then

(A.7) H•
G(X) = (H•

K(X))(G/K).

Indeed in this case XK → XG is a principal bundle for the finite group G/K. Note
that the action of G/K on H•

K(X) is induced by an action of G/K on XK . As a
particular example, if G is finite, one obtains as a special case

(A.8) H•
G(X) = H•(X)G = H•(X/G).

Example A.4. Suppose we have G = K ⋊F , where K is a compact Lie group
and F is a finite group. Let φ : F → Aut(K) be the homomorphism associated to
the semidirect product. This induces a homomorphism Φ : F → Aut(BK), giving
the action of F onH•(BK) such thatH•(BG) = H•(BK)F . WhenK = T = (S1)r

is a compact torus, this can be made more explicit. We have Aut(T ) = GL(r,Z),
and BT =

∏r BS1 =
∏r P∞

C
. The canonical action of Aut(T ) on BT is given, for

each φ ∈ Aut(T ), by sending a right principal H-bundle P → B to P ×H,φH . More

concretely, H•(BT ) = Sym• H2(BT ) = Sym• Q〈c(1)1 , . . . , c
(r)
1 〉 = Q[c

(1)
1 , . . . , c

(r)
1 ],

deg c
(i)
1 = 2, i = 1, . . . , r. Viewing φ ∈ Aut(T ) = GL(r,Z) ⊆ GL(r,Q) as a

matrix, we obtain an action of φ on Qr = Q〈c(1)1 , . . . , c
(r)
1 〉 = H2(BT ) by matrix

multiplication. This induces an action of φ on H•(BT ) = Sym• H2(BT ), which one
can check agrees with the canonical action under these identifications. Similarly,
if K = T × Γ for a finite abelian group Γ, and T a compact torus as above, then
H•(BK)F = H•(BT )F , where the action of F on BT is induced by the action of
F on T , viewing T as the connected component of the identity.

If K is a compact connected Lie group and T is a maximal torus in K,

(A.9) H•
T (X) = H•

K(X)⊗H•(K/T ).

Indeed, in this case the fibration XT → XK has fiber given by the flag variety
K/T . A direct computation (see e.g., [Kir84, p.35]) shows that the associated
Leray spectral sequence degenerates, giving (A.9).

We focus again on the situation where K is a subgroup of a topological group
G such that the quotient map G → G/K is a principal K-bundle; for instance K
is a closed subgroup of a Lie group G. If K is central and contained in the kernel
of the map G → Aut(X), then

(A.10) H•
G(X) = H•(BK)⊗H•

G/K(X).

Indeed, we start with the observation that, with G acting on E(G/K) via the
quotient map to G/K, we have that EG × E(G/K) is contractible with a free
G-action. Thus we have

X ×G EG ≃ X ×G (EG× E(G/K)) = ((X × EG× E(G/K))/K)/(G/K)

= ((X ×K EG)× E(G/K))/(G/K) = (X ×K EG)×G/K E(G/K)

≃ (X ×K EK)×G/K E(G/K),
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where in the last step we are using that EG ≃ EK (§ A.2). Now using the fact that
K acts trivially on X , we obtain that this is equal to (X × BK) ×G/K E(G/K).
Considering BK as the universal base for principal K-bundles, and that the action
of G/K on a K-principal bundle is given via conjugation, then the fact that K is
central implies that the action of G/K on BK is homotopic to the trivial action.
Thus we finally arrive at BK × (X ×G/K E(G/K)), completing the proof. 1

Example A.5. There is a central extension 1 → µn → SL(n,C) → PGL(n,C) →
1. Consequently, since H•(Bµn) = Q, we have that if PGL(n,C) acts on X , then
H•

PGL(n,C)(X) = H•
SL(n,C)(X), for the induced SL(n,C) action. Note, in particu-

lar, that applying this to the case where X is a point gives H•(B PGL(n,C)) =
H•(B SL(n,C)) (Example A.3).

A.3. Kirwan’s result for compact groups acting on symplectic

manifolds

For a compact symplectic manifold X acted on by a compact connected Lie
group K such that the moment map exists, it is shown in [Kir84, Prop. 5.8] that
the Leray spectral sequence for the fibration XK → BK degenerates, giving

(A.11) H•
K(X) ∼= H•(BK)⊗H•(X).

If K is disconnected, setting K0 to be its identity component, it follows from (A.11)
and (A.7) that H•

K(X) is the invariant part of H•(BK0)⊗H•(X) under the action
of the finite group K/K0.

A.4. Fibrations

Suppose we have a right G-equivariant fibration

F //

��

X
π��

y // Y

with G acting transitively on Y , and with stabilizer Gy of a point y ∈ Y . Then we
have the following equality of equivariant Poincaré polynomials:

(A.12) PG(X) = PGy (F ).

This is straightforward from the definitions.

1 Alternatively, as suggested to us by Frances Kirwan, one can consider the Leray spectral
sequence for the fibration X ×G (EG× E(G/K)) → EG/K = BK with fiber X ×G/K E(G/K),

and use Deligne’s argument as in [Kir84, p.35] to show the spectral sequence degenerates.



APPENDIX B

Stabilizers, normalizers, and fixed loci for cubic

threefolds

In this section we compute some stabilizers, normalizers, and fixed loci for
cubic threefolds, which have appeared in the main body of the paper. While the
computations are fairly elementary, they are nevertheless somewhat lengthy, and
we have included the details here for the convenience of the reader.

B.1. Connected component C∗

We recall that 2A5 cubics of the form V (FA,B) are given by equations (2.2),
and that for 4A/B2 6= 1 such a cubic has either exactly two A5 singularities, or two
A5 singularities and an A1 singularity. We continue to denote by Aut(V (FA,B)) ⊆
PGL(5,C) and by Stab(V (FA,B)) ⊂ SL(5,C) the stabilizers of such a cubic, and

recall that by definition R2A5 := Stab0(V (FA,B)) is the connected component of
the stabilizer. All these are computed by the following proposition, which enhances
the statement of Lemma 4.9(1) with more computations.

Proposition B.1. For a cubic of the form V (FA,B) with 4A/B2 6= 1:

(1) The connected component of the stabilizer is the 1-PS

(B.1) R2A5 = diag(λ2, λ, 1, λ−1, λ−2) ∼= C∗

(i.e. the 1-PS with weights (2, 1, 0,−1,−2)). For a polystable cubic V , we
have Stab0(V ) = R2A5 (up to conjugation) if and only if V is in the orbit
of V (FA,B) with 4A/B2 6= 1. These are the cubics corresponding to points
on the curve (T − {Ξ}) ⊆ MGIT.

(2) If 4A/B2 6= 0, 1,∞, then the stabilizer Aut(V (FA,B)) ⊆ PGL(5,C) is

Aut(V (FA,B)) ∼= R2A5 ⋊ Z/2Z ∼= C∗ ⋊ Z/2Z,

where the involution is τ : xi 7→ x4−i, and the semi-direct product is
given by the homomorphism Z/2Z → Aut(C∗) defined by τ 7→ (λ 7→ λ−1).
Furthermore, we have

1 → µ5 → Stab(V (FA,B)) → Aut(V (FA,B)) → 1.

(3) If 4A/B2 = ∞, then

Aut(VF1,0 )
∼= (C∗ × Z/2Z)⋊ Z/2Z,

where the second Z/2Z factor corresponds to the automorphism τ that
exists for a generic C (and thus also for C = ∞), while the first Z/2Z
factor is given by the involution σ : (x0 : x1 : x2 : x3 : x4) 7→ (x0 : −x1 :
x2 : x3 : x4), which commutes with the diagonal action of C∗.
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(4) The normalizer N(R2A5) is equal to

N(R2A5)
∼= T4 ⋊ Z/2Z ,

where T4 is the maximal torus, and the Z/2Z factor corresponds to the
involution τ : xi 7→ x4−i.

Remark B.2. Before proceeding with the proof, we note that the above does
not cover the case of automorphisms for C = 4A/B2 = 1, i.e. the case of the
chordal cubic F1,−2. Indeed, in Kirwan’s machinery this is a separate blowup, and
will be treated separately in the next proposition, Proposition B.4 — the proof of
which uses this proposition.

Proof. Allcock [All03, Thm. 5.4] states that the automorphism group of a
general FA,B is as stated in (2), and that the automorphism group of F1,0 is as
stated in (3) — we have just included an explicit description.

For completeness, we give a determination of the automorphism group for the
case C = 0, i.e., for the 2A5 +A1 case:

F0,1 = x0x
2
3 + x2

1x4 − x0x2x4 + x1x2x3.

We make the following geometric observation, as mentioned in [All03]. Any auto-
morphism must map singularities of the cubic to singularities, and so must its in-
verse. One easily checks that F0,1 has A5 singularities at the points (1 : 0 : 0 : 0 : 0)
and (0 : 0 : 0 : 0 : 1), and an A1 singularity at (0 : 0 : 1 : 0 : 0) (which is not there
for cubics FA,B with A 6= 0). Thus for any automorphism γ ∈ Aut(VF0,1 ), either γ
or τ ◦ γ must fix each of these three points. Thus, after possibly composing with τ ,
such an automorphism must have the form

g :=

(
∗ ∗ 0 ∗ 0
0 ∗ 0 ∗ 0
0 ∗ ∗ ∗ 0
0 ∗ 0 ∗ 0
0 ∗ 0 ∗ ∗

)
.

Denoting coefficients of this matrix by aij for 0 ≤ i, j ≤ 4, we see for example that
the coefficient of the monomial x0x

2
1 in F0,1(gx) would be equal to a00a

2
13. Since

this coefficient must be zero, while a00 cannot be zero in such an invertible matrix,
it implies that a13 = 0. Similarly from the coefficient of x4x

2
3 in F0,1(gx) being zero

we deduce that a31 = 0. Continuing in this way, one sees finally that the matrix
a must be diagonal. Denoting this diagonal matrix then by diag(λ0, λ1, λ2, λ3, λ4),
and requiring the matrix to act on F0,1 by scaling it by some a, we get the equations

λ0λ
2
3 = a; λ4λ

2
1 = a; λ0λ2λ4 = a; λ1λ2λ3 = a.

As we are interested in the automorphisms in PGL(5,C), all λi are non-zero, and
we can always rescale to make λ2 = 1. We then express everything in terms of
λ1. From the last equation one gets λ3 = aλ−1

1 , from the second equation one

gets λ4 = aλ−2
1 , substituting λ3 in the first equation yields λ0 = aλ−2

3 = a−1λ2
1,

and thus the third equation finally yields a = λ0λ4 = a−1λ2
1aλ

−2
1 = 1, so that the

matrix is diagonal of the form diag(λ2, λ, 1, λ−1, λ−2), i.e., lies in the generic C∗

stabilizer.
We finally prove (4), that is determine the normalizer N = N(R2A5). For

this we do a direct computation. Indeed, a matrix n = (nij)0≤i≤j≤4 lies in N if
and only if for any s ∈ T there exists an s′ ∈ T such that nsn−1 = s′, where we
think of s ∈ T as the diagonal matrix diag(s2, s, 1, s−1, s−2). If this is the case, the
map s 7→ s′ gives a homomorphism of the torus. Since conjugating by n−1 gives
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an inverse, this homomorphism must be an isomorphism, and thus we must have
either s′ = s or s′ = s−1. Furthermore, note that the involution j that gives the
permutation of coordinates xi 7→ x4−i satisfies jsj = s−1, and thus for any n such
that nsn−1 = s−1 we have (nj)s(nj)−1 = s. This implies that the normalizer N is
a semidirect product of its subgroup N0 consisting of n such that nsn−1 = s for
all s ∈ T, and the Z/2Z generated by j. Finally, the matrix equality ns = sn for
any n ∈ N0 translates into the equalities nijs

2−i = nijs
2−j for all 0 ≤ i ≤ j ≤ 4

for the entries of the matrix, which must be valid for arbitrary s. Thus for i = j
there is no restriction on nij , while for i 6= j we must have nij = 0. This implies
that N0 ⊂ G consists of diagonal matrices, and is thus the maximal torus T4, and
N = T4 ⋊ Z/2Z, as claimed. �

We now describe the fixed locus, and the action of the normalizer on it, sup-
plementing the statement of Lemma 4.9(2), (3) with more details.

Proposition B.3. (1) The fixed locus Zss
R2A5

(2.4) is the set of cubics

defined by equations of the form

(B.2) F = a0x
3
2 + a1x0x

2
3 + a2x

2
1x4 + a3x0x2x4 + a4x1x2x3,

with a1, a2, a3 6= 0, (a0, a4) 6= (0, 0). For (A,B) 6= (0, 0) we have V (FA,B) ∈
Zss
R2A5

, and conversely every cubic in Zss
R2A5

is projectively equivalent to a

cubic of the form V (FA,B) with (A,B) 6= (0, 0).
(2) The orbit of the chordal cubic meets Zss

R2A5
in the divisor defined by the

equation
4a0a1a2 + a3a

2
4 = 0.

(3) Zss
R2A5

/N(R2A5)
∼= P1. We also have Zss

R2A5
/T4 ∼= P1.

Proof. We prove (1) by describing all semi-stable cubics that are stabilized by
R = R2A5 = diag(λ2, λ, 1, λ−1, λ−2). To be stabilized by this torus, the monomials
must all be of the same weight with respect to that torus. If they all have the
same non-zero weight, then they would be unstable with respect to the 1-PS R,
and therefore unstable. So we are reduced to looking for the monomials of weight
0 with respect to that torus. We obtain the projective space of weight 0 monomials
for R:

ZR = P4 = {a0x3
2 + a1x0x

2
3 + a2x

2
1x4 + a3x0x2x4 + a4x1x2x3 = 0}.

We next use Allcock’s description of the unstable locus. For this, we note that
conveniently, the monomials in question are indicated in black squares in [All03,
Fig. 3.2(c)]. Now, returning to [All03, Fig. 3.1], describing unstable cubics, we have
that [All03, Fig. 3.1(a)] implies the cubic is unstable if (a1, a3) = (0, 0), [All03,
Fig. 3.1(b)] implies the same if a3 = 0, [All03, Fig. 3.1(c)] implies the same if
a1 = 0, [All03, Fig. 3.1(d)] implies the same if (a0, a4) = (0, 0), [All03, Fig. 3.1(e)]
implies the same if a2 = 0, and [All03, Fig. 3.1(f)] implies the same if (a0, a4) =
(0, 0). Thus in summary, the cubic is unstable if at least one of a1, a2, a3 is 0, or
if (a0, a4) = (0, 0). Therefore, conversely, let us assume that a1, a2, a3 6= 0, and
(a0, a4) 6= (0, 0). Then using the maximal torus T4, we can easily put the equation
for the cubic in the form FA,B, with (A,B) 6= (0, 0). As Allcock has shown these are
all polystable, we see that every point in Zss

R is semi-stable (in fact, polystable).
Moreover, we see that every cubic in Zss

R can be taken to a cubic of the form
V (FA,B) by the action of the maximal torus T4.
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(2) We now want to identify the orbit of the chordal cubic inside of Zss
R . The

claim is that

G · {V (F−1,2)} ∩ Zss
R = {4a0a1a2 + a3a

2
4 = 0} ⊆ Zss

R .

Given a cubic in Zss
R , we saw in the proof of (1) that we could take it into a cubic

of the form V (FA,B) using just the maximal torus. So to determine if (a0 : · · · : a4)
defines a cubic in the orbit of the chordal cubic, it suffices to consider the maximal
torus orbit, and see whether one can take the cubic into one defined by FA,B

with 4A/B2 = 1; in other words, to see when the torus takes (a0 : · · · : a4) into
(A : 1 : 1 : −1 : B) with 4A/B2 = 1. The torus diag(s0, . . . , s4) acts on (a0 : · · · : a4)
by

a0 7→ a0s
3
2

a1 7→ a1s0s
2
3

a2 7→ a2s
2
1s4

a3 7→ a3s0s2s4

a4 7→ a4s1s2s3.

It is immediate to check that if (a0 : · · · : a4) = (A : 1 : 1 : −1 : B) with 4A/B2 = 1,
then the full orbit satisfies the given equation (a 2A5 cubic is chordal if and only
if 4A/B2 = 1). Conversely, let us show that if (a0 : · · · : a4) satisfies the given
equations, then we can find diag(s0, . . . , s4) taking (a0 : · · · : a4) into the form
(A : 1 : 1 : −1 : B). The first thing to note is that if a4 or a0 is zero, then the
equation 4a0a1a2 + a3a

2
4 = 0 implies both are zero (since the other ai are assumed

non-zero), so we can assume none of the ai are zero. We want s0, . . . , s4 such that:

a1s0s
2
3 = 1

a2s
2
1s4 = 1

a3s0s2s4 = −1

4a0s
3
2 − a24s

2
1s

2
2s

2
3 = 0.

Canceling s22, we can take the last equation as 4a0s2 − a24s
2
1s

2
3 = 0. In other words,

we have

s0 =
1

a1s23

s4 =
1

a2s21

s2 = − 1

a3s0s4

s2 =
a24s

2
1s

2
3

4a0
.

Taking s1 and s3 arbitrary defines s0, s4, s2 via the first three equations. Then one
can check that the last equation holds, since by assumption 4a0a1a2 + a3a

2
4 = 0.

(3) Since N is 4-dimensional, and the stabilizer of a generic point (which is con-
tained in N) is 1-dimensional, it follows that the quotient Zss

R /N is 1-dimensional.
As this quotient is clearly unirational and normal (it is the quotient of a normal
space by a reductive group action), it must be an open subset of P1. Since the copy
of P1 ⊆ Zss

R given by V (FA,B) for (A,B) 6= (0, 0) surjects onto the quotient, the
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quotient is also compact, and is therefore isomorphic to P1. The identical proof
works for the quotient Zss

R2A5
/T4 ∼= P1. �

B.2. Connected component PGL(2,C)

Proposition B.4. For the cubic of the form V (F1,−2) (2.2); i.e., the chordal
cubic, the connected component of the stabilizer is

(B.3) Rc := Stab0(V (F1,−2)) ∼= PGL(2,C)

given as the copy of PGL(2,C) embedded into SL(5,C) via the representation Sym4(C2)
(∼= C5). For a polystable cubic V , we have Stab0(V ) = Rc (up to conjugation) if
and only if V is in the orbit of V (FA,B) with 4A/B2 = 1; i.e., if and only if the cubic
is projectively equivalent to the chordal cubic. These are the cubics corresponding
to the point Ξ ∈ MGIT. Moreover, we have

(1) The full stabilizer group of V (F1,−2) in PGL(5,C) is PGL(2,C), and thus
there is a split central extension

(B.4) 1 → µ5 → Stab(V (F1,−2)) → PGL(2,C) → 1.

(2) The normalizer N(Rc) is equal to the stabilizer Stab(V (F1,−2)).
(3) The fixed locus is Zss

Rc
= {V (F1,−2)}; i.e., it is the point corresponding to

the chordal cubic.

Proof. The fact (B.3) follows from [All03]. Indeed, the stabilizer in PGL(5,C)
of the cubic V (F1,−2) is computed in [All03, Thm. 5.4] to be PGL(2,C) embed-

ded via the Sym4-representation. This immediately gives (B.4): to show that the
connected component of the identity is PGL(2,C), it suffices to construct a section
of (B.4). For this, observe that the standard representation of SL(2,C) on C2 in-
duces a homomorphism SL(2,C) → SL(Sym4 C2), with kernel equal to µ2; in other
words, the image is PGL(2,C), providing the section.

For (2) it is convenient to recall the Sym4 C2 representation of SL(2,C) explic-
itly. The matrix

(
a b
c d

)
∈ SL(2,C)

acts on C2 by sending homogeneous coordinates (t0 : t1) to (at0 + bt1 : ct0 + dt1).
Then, in terms of the standard basis for Sym4 C2:

(t40 : t30t1 : t20t
2
1 : t0t

3
1 : t41),

the action of

(
a b
c d

)
is given by the rule:

t40 7→ (at0 + bt1)
4 = a4t40 + 4a3bt30t1 + 6a2b2t20t

2
1 + 4ab3t0t

3
1 + b4t41

t30t1 7→ (at0 + bt1)
3(ct0 + dt1) = . . .

...
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Thus the induced homomorphism SL(2,C) → SL(5,C) is given explicitly by:
(B.5)


 a b

c d


7→




a4 a3c a2c2 ac3 c4

4a3b 3a2bc+ a3d 2abc2 + 2a2cd bc3 + 3ac2d 4c4d
6a2b2 3ab2c+ 3a2bd b2c2 + 4abcd+ a2d2 3bc2d+ 3acd2 6c2d2

4ab3 b3c+ 3ab2d 2b2cd+ 2abd2 3bcd2 + ad3 4cd3

b4 b3d b2d2 bd3 d4




.

The kernel is given by the matrix

(
−1 0
0 −1

)
confirming that the image of

SL(2,C) in SL(5,C) is PGL(2,C).
We now move on to the proof of (2). We first introduce the matrix τ which is

the matrix associated to the involution sending xi to x4−i; note that τ is the image

of the matrix

(
0 i
i 0

)
in SL(2,C). This will be needed in the proof of the next

claim.
Since Rc being the connected component is clearly normal in Stab(V (F1,−2)),

we have Stab(V (F1,−2)) ⊆ N(Rc) = N . For the converse, we argue with two claims:

Claim 1: For any n ∈ N , there is a g ∈ Rc with ng ∈ T4 ∩N , where T4 is the
maximal torus.

Indeed, any element n ∈ N must conjugate the standard maximal torus T ⊂
PGL(2,C), which is embedded into SL(5,C), into some torus T′ ⊂ SL(5,C). Since
all such tori are conjugate under the action of PGL(2,C), this means there must
exist some g′ ∈ PGL(2,C) such that n′ := ng′ fixes the maximal torus T as a
set, which is simply to say that n′ lies in the normalizer of R2A5 , computed in
Proposition B.1 to be the subgroup generated by T4 and τ . Thus for i ∈ {0, 1}, we
have n′′ := ng′τ i ∈ T4. We may as well replace g′ with g = g′τ ∈ PGL(2,C).

Claim 2: T4 ∩N ⊆ 〈µ5,PGL(2,C)〉 = Stab(V (F1,−2)).

This will suffice to prove (2), since then for any n ∈ N , there is a g ∈ Rc

such that ng = s ∈ Stab(V (F1,−2)). Since Rc ⊆ Stab(V (F1,−2)), we have n ∈
Stab(V (F1,−2)).

Thus we just need to show the claim. For this we consider the special case
of upper triangular matrices ( 1 t

0 1 ) ∈ SL(2,C) for arbitrary t ∈ C. The fourth
symmetric power of such a matrix gives its action as an element Mt of SL(5,C):
(B.6)

Mt◦




x0

x1

x2

x3

x4




=




1 4t 6t2 4t3 t4

0 1 3t 3t2 t3

0 0 1 2t t2

0 0 0 1 t
0 0 0 0 1




◦




x0

x1

x2

x3

x4




=




x0 + 4t x1 + 6t2x2 + 4t3x3 + t4x4

x1 + 3t x2 + 3t2x3 + t3x4

x2 + 2t x3 + t2x4

x3 + t x4

x4




.

and we need to check whether a diagonal matrix d ∈ T4 (where T4 is the maximal
torus of SL(5,C)), can conjugate Mt to the action of some element of SL(2,C).
Since conjugating an upper triangular matrix with 1’s on the diagonal by a diagonal
matrix leaves it upper-triangular with 1’s on the diagonal, we need to check when
for any t ∈ C there exists a t′ ∈ C such that dMtd

−1 = Mt′ . Again, t 7→ t′ is then an
isomorphism of the additive group, so that it is either the identity or t 7→ −t. If the
map on t is the identity, i.e., if for any t the identity dMtd

−1 = Mt, holds, then the
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equality of the last columns of these matrices yields that each di/d4 must be equal to
one, so that all di are equal, and thus d is scalar multiplication by an arbitrary 5th
root of unity. We note that such a scalar multiplication is not an element of SL(2,C)
because it is easily checked not to be an element of the diagonal maximal torus T as
above. On the other hand, for the case when for any t the identity dMtd

−1 = M−t

holds, looking again at the last column of these matrices shows that d0 = d2 =
d4 = −d3 = −d1, so that d is the product of diag(1,−1, 1,−1, 1) and an arbitrary
scalar fifth root of unity. However, the diagonal matrix diag(i,−i) ∈ SL(2,C) gives
rise precisely to the matrix diag(1,−1, 1,−1, 1) under the fourth symmetric power
map, and thus this diagonal matrix is already accounted for by the SL(2,C).

(3) We now determine the set of cubics fixed by the action of PGL(2,C). Let
V be such a cubic. Since R2A5 ⊆ PGL(2,C), we must have that V ∈ Zss

R2A5
. If V

were not in the orbit of the chordal cubic, then we have seen in Proposition B.1
that the stabilizer would have dimension 1, which would be a contradiction. Thus
V is in the orbit of the chordal cubic, say V = g ·V (F1,−2). But then the connected
component RV of the stabilizer of V is equal to gRcg

−1. If V is fixed by Rc, then
for dimension reasons, we must have RV = Rc, so that g is in the normalizer of Rc.
But we saw in (1) that N(Rc) = Stab(V (F1,−2)), so that V = V (F1,−2). �

Remark B.5. Recall that in the construction of the Kirwan blowup MK, one
first blows up the point Ξ ∈ MGIT corresponding to the chordal cubic, followed by
a blowup of the strict transform of the rational curve T parameterizing 2A5 cubics
(the point ∆, corresponding to the 3D4 cubic, can be dealt with separately). To

fix notation, let D̂c be the exceptional divisor of the blowup of Ξ, and let T̂ be the

strict transform of T in this blowup. We explain here that T̂ meets D̂c in a single
point.

On the one hand, by investigating the proof of Proposition B.3(3), describing
T as the quotient Zss

R2A5
/N(R2A5), one can show that T is locally unibranched

near Ξ, and thus that T̂ meets D̂c in a single point. On the other hand, this can

alternatively be seen via the identification of D̂c with the GIT of 12 points on P1.

More precisely, this one point of intersection of T̂ and D̂c can be identified
as follows. By construction, and smoothness of the Kirwan blowup up to finite

quotient singularities, every point of intersection of T̂ with the exceptional divisor

D̂c must have a stabilizer containing C∗. On the other hand, since the exceptional
divisor does not intersect the locus of 3D4 cubics, and there are no further blowups

in constructing MK, any point on D̂c with a C∗ contained in its stabilizer must be

contained in T̂ . Now, since D̂c is isomorphic to the GIT quotient of 12 points in
P1, the only strictly semi-stable points are where precisely 6 of the 12 points have
come together; moreover, one can see immediately that for such a point to have
an infinite stabilizer requires the remaining 6 points to also have come together.
Thus the only strictly semi-stable points are where the 12 points were separated

in two groups of 6. In other words, T̂ ∩ D̂c is the strictly semi-stable point of D̂c

corresponding to the case where the 12 points were separated in two groups of 6.

Having explained that T̂ ∩D̂c consists of a single point, we now point out further

that with the identification of D̂c as the GIT of 12 points in P1, the stabilizers

of all of the points of T̂ can be described uniformly (as extension of C∗ as in

Proposition B.1). Indeed, consider this point T̂ ∩ D̂c. By acting by PGL(2,C), we
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can move the two underlying points (of the pairs of 6 points) to 0 and ∞ ∈ P1,
respectively, so that C∗ acts by rescaling the coordinate z, and there is an extra
involution z 7→ 1/z, so that the stabilizer of these two 6-tuples of points (recall that
the points are unlabeled) is C∗ ⋊ Z/2Z.

Recalling that the automorphisms of the chordal cubic were identified with
the automorphisms of the rational normal curve, we can describe this group as
follows. One can identify the rational normal curve explicitly in coordinates as
(t40 : t30t1 : t20t

2
1 : t0t

3
1 : t41) as done in the proof of Proposition B.4. Then the action

of the involution τ is induced by the involution (t0 : t1) 7→ (t1 : t0) on P1, and

thus the stabilizer of the point T̂ ∩ D̂c can be identified concretely as a subgroup
of PGL(5,C), and is the same as for points of T with C 6= 0, 1,∞ (as described in
Proposition B.1(1)).

B.3. Connected component (C∗)2

We now give the computations for the 3D4 case, proving Lemmas 4.5 and 4.6
and providing some more information. We use the notation for the groups involved
in the statements of these lemmas.

Proposition B.6. (1) For the cubic of the form V (F3D4 ) (2.1), i.e.,
with 3D4 singularities, the connected component R3D4 of the stabilizer
in SL(5,C) is given by equation (4.27). For a polystable cubic V , we have

Stab0(V ) = R3D4 (up to conjugation) if and only if V is in the orbit of
V (F3D4 ); i.e., if and only if the cubic has exactly 3D4 singularities. These
are the cubics corresponding to the point ∆ ∈ MGIT.

(2) The normalizers and stabilizers in SL(5,C), PGL(5,C), GL(5,C) are as
given in Lemma 4.6, described as certain central extensions in terms of
the group D defined there.

(3) The fixed locus Zss
R3D4

is the set of cubics defined by equations of the form

x0x1x2 + P3(x3, x4)

where P3(x3, x4) is an arbitrary homogeneous cubic with three distinct
roots, and the normalizer N(R3D4) acts on it transitively, as stated in
Lemma 4.5 (3).

Proof. (1) and (2): We compute explicitly all the groups involved. We first
derive the stabilizer group GLV (F3D4 )

of V (F3D4) in GL(5,C). To begin, it is clear
that the group

(B.7)

{(
S3

S2

)
: λ0λ1λ2 = λ3

3 = λ3
4

}
⊆ GL(5,C)

stabilizes V (F3D4 ). We wish to show that this is all of the matrices in the stabilizer.
For this, we observe that any symmetry must permute the 3 singularities of the
cubic, and thus permute the points (1 : 0 : 0 : 0 : 0), (0 : 1 : 0 : 0 : 0) and
(0 : 0 : 1 : 0 : 0). This forces a matrix stabilizing V (F3D4) to be of the form:

(
S3 ∗
0 GL2

)
.

Such a transformation sends the monomial x0x1x2 to (λ0x0 + ∗x3 + ∗x4) · (λ1x1 +
∗x3+ ∗x4) · (λ2x2 + ∗x3+ ∗x4), where all the λ’s are non-zero, and ∗ are the entries
of the unknown 2 × 3 block of the matrix. Furthermore, x3 and x4 are sent to
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linear combinations of only x3 and x4. Thus all entries ∗ must be equal to zero, or
otherwise applying this transformation to F3D4 would give a cubic with non-zero
coefficient of some monomial xaxbxc with 0 ≤ a < b ≤ 2 and 3 ≤ c ≤ 4. Thus we
have deduced that the matrix stabilizing V (F3D4) must actually be of the form

(
S3 0
0 GL2

)
.

However, for a matrix in GL2 acting on the span of x3 and x4 to stabilize x3
3 + x3

4,
it must lie in S2, or some cross terms would appear, and thus the stabilizer can
only contain matrices of the form

(
S3 0
0 S2

)
.

Finally the conditions λ0λ1λ2 = λ3
3 = λ3

4 are obvious. This completes the proof
that the stabilizer group is as claimed.

We now want to describe the structure of the stabilizer group GLV (F3D4 )
in

GL(5,C) more precisely. There is clearly a left exact sequence

1 → D → GLV (F3D4 )
→ S3 × S2 → 1

where D is the subgroup of diagonal matrices in GLV (F3D4 )
, and the map to S3×S2

is the one taking a generalized permutation matrix to the associated permutation
matrix. There is an obvious section S3×S2 → GLV (F3D4 )

, viewing S3×S2 as block
diagonal permutation matrices. This means

GLV (F3D4)
∼= D ⋊ (S3 × S2)

where the action of S3 × S2 on D is to permute the entries.
We now wish to describeD. Concretely,D = {diag(λ0, λ1, λ2, λ3, λ4) : λ0λ1λ2 =

λ3
3 = λ3

4}. Fixing the torus T3 = diag(λ0, λ1, λ
−1
0 λ−1

1 λ3
3, λ3, λ3) ∼= (C∗)3, we have

T3 ⊆ D, and we now describe the quotient. Given an element of D, then up to
elements of T3, we may assume it is of the form diag(1, 1, λ2, 1, λ4). But then we
must have 1 · 1 · λ2 = 13 = λ3

4, so that λ2 = 1 and λ4 is a 3-rd root of unity. Fixing
the group µ3 = diag(1, 1, 1, 1, ζi) ∼= Z/3Z where ζ is a primitive 3-rd root of unity,
we have

D = T3 × µ3.

We determine the normalizer N(R3D4) by an explicit computation. Indeed, if
a matrix n = (nij)0≤i≤j≤4 lies in N , then for any (s1, s2) ∈ T2 we have

(B.8) diag(s1, s2, s
−1
1 s−1

2 , 1, 1) · n = n · diag(t1, t2, t−1
1 t−1

2 , 1, 1)

for some (t1, t2) ∈ T2. We first observe that (B.8) immediately implies that for any
0 ≤ i ≤ 2 and 3 ≤ j ≤ 4 we must have nij = 0. Furthermore, we note that this
equality implies no restrictions whatsoever on the entries n33, n34, n43, n44, which
can thus be arbitrary. The map f : (s1, s2) 7→ (t1, t2) is an automorphism of T2,
which is to say that t1 = sa1s

b
2 and t2 = sc1s

d
2 for some matrix

(
a b
c d

)
∈ SL(2,Z).

By writing down the conditions for the entries nij with 0 ≤ i ≤ j ≤ 2 of the
matrix, we see that these elements can be non-zero only if the map f permutes
the three diagonal entries s1, s2, s

−1
1 s−1

2 . Conversely, any such permutation lies in
the normalizer with respect to GL(5,C). If this permutation, as an element of
S3, is even, we compose n with this permutation of coordinates x0, x1, x2; if such
a permutation is odd, we compose n with this permutation of x0, x1, x2, together
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with changing the signs of x0, x1, x2 (so that the resulting transformation is still
in SL(5,C)). Thus N is a semidirect product of S3 and of the normal subgroup
N0 ⊂ N for which f is the identity map. Finally, if f is the identity map, so that
t1 = s1 and t2 = s2, then clearly (B.8) implies that the submatrix (nij)0≤i≤j≤2 is
diagonal. Thus finally N0 is the intersection of T3 × GL(2,C) with SL(5,C), and
thus N is as claimed.

(3) We now describe the fixed locus Zss
R3D4

. As usual, to be semi-stable, and

fixed by R3D4
∼= (C∗)2, the cubic must be defined by monomials of weight 0 with

respect to any 1-PS in R3D4 . It is easy to see that the only such monomials are

x0x1x2 + P3(x3, x4)

where P3(x3, x4) is a homogeneous cubic. Allcock has shown that these are semi-
stable if and only if P3(x3, x4) has 3 distinct roots; i.e., the cubic has exactly 3D4

singularities. More precisely, as mentioned earlier, [All03, Thm. 4.1] shows that
the orbit of V (F3D4 ) is closed in the semi-stable locus. But any cubic as above with
P3(x3, x4) having multiple roots is in the closure of the orbit of V (F3D4 ), but does
not have 3D4 singularities, which is a contradiction.

Finally, the matrices of the form
(

Id3 0
0 SL2

)

that lie in the normalizer clearly act transitively on Zss
R3D4

. �

Corollary B.7. We have the following relationships among the fixed loci:

(B.9) Zss
Rc

⊂ Zss
R2A5

, Zss
R2A5

∩ Zss
R3D4

= ∅.

Proof. The inclusion on the left follows immediately from the first inclusion
in (2.8). For the equation on the right in (B.9), suppose that x ∈ Zss

R2A5
∩ Zss

R3D4
,

and let V be the corresponding cubic. Then Aut0(V ) ⊇ R2A5 ∪ R3D4 , and one
can see this implies it contains a 3-torus isomorphic to (C∗)3. On the other hand,
V degenerates to a polystable cubic, and consequently we have that Aut0(V ) is
contained in a conjugate of R for some R ∈ R. For dimension reasons, it would
have to be contained in a conjugate of Rc = SL(2,C), but this does not contain a
3-torus. �

We recall from Lemma 4.5 the normalizer

N = N(R3D4) =

{(
S3

GL2

)
∈ SL(5,C)

}
,

and define a subgroup N0:

N0 :=

{(
T3

GL2

)
∈ SL(5,C)

}
.

Recall also that the stabilizer Gx = G3D4 of x = V (F3D4) in G = SL(5,C) is:

GF3D4 =

{(
S3

S2

)
∈ SL(5,C) : λ1λ2λ3 = λ3

4 = λ3
5

}
.

Here λi is the unique non-zero entry in column i. We now compute the relevant
stabilizers and their action, proving Lemma 4.18 and providing more details. We
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record two propositions, separately for the cases when β′ correspond to the codi-
mension 4 and codimension 5 strata, as in the cases (a) and (b) of Lemma 4.17,
respectively.

Lemma B.8. For β′ = 1
2 (− 2

3 ,
1
3 ,

1
3 ) (case (a) of Lemma 4.17), we have

(1)

StabG β′ =








C∗

GL2

GL2


 ∈ SL(5,C)



 ,

N ∩ StabG β′ =








C∗

S2
GL2


 ∈ SL(5,C)



 .

(2) The group N ∩ StabG β′ acts transitively on Zss
R .

(3) The stabilizer of a point is

(N∩StabG β′)x=GF3D4
∩N∩StabG β′=








C∗

S2
S2


∈SL(5,C):λ1λ2λ3=λ3

4=λ3
5





.

(4) The locus Zss
β′ is

Zss
β′ = {[a : b] ∈ PC〈x1x3x4, x2x3x4〉 : a 6= 0, b 6= 0} ∼= C∗.

(5) The action of (N ∩StabG β′)x on Zss
β′ is induced by change of coordinates,

via the inclusion (N ∩ StabG β′)x ⊆ SL(5,C), and the description of the
loci above in terms of cubic forms. In fact that (N ∩ StabG β′)x acts
transitively on Zss

β′ , and the stabilizer of the point (1 : 1) ∈ Zss
β′ is given by

((N∩StabG β′)x)(1:1)=








C∗

S2
S2


∈SL(5,C):λ0λ1λ2=λ3

3=λ3
4, λ1=λ2





.

Here λi is the unique non-zero entry in column i. In fact we have

((N ∩ StabG β′)x)(1:1) ∼= (C∗ × µ15)× (S2 × S2) ,

where C∗ = diag(λ−2, λ, λ, 1, 1), µ15 = diag(ζ3i, 1, 1, ζi, ζ−4i) for ζ a prim-
itive 15-th root of unity, and the first (resp. second) copy of S2 is the
subgroup of ((N ∩ StabG β′)x)(1:1) generated by the matrix




−1
0 1
1 0

−1
−1




,



resp.




−1
1

1
0 −1
−1 0







.

The results for the codimension 5 orbits are as follows.

Lemma B.9. For β′ = 1
7 (2, 1,−3) (case (b) of Lemma 4.17), we have

(1)

StabG β′ = N0 =

{(
T3

GL2

)
∈ SL(5,C)

}
,

N ∩ StabG β′ = N0 =

{(
T3

GL2

)
∈ SL(5,C)

}
.
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(2) The group N ∩ StabG β′ acts transitively on Zss
R .

(3) The stabilizer of a point is

(N∩StabG β′)x=GF3D4
∩N∩StabG β′=






 T3

S2


∈SL(5,C):λ1λ2λ3=λ3

4=λ3
5



.

(4) The locus Zss
β′ is

Zss
β′ = {[a : b : c] ∈ PC〈x0x3x4, x

2
1x3, x

2
1x4〉 : a 6= 0, and (b, c) 6= (0, 0)} ∼= A2 − {0}.

We prove both lemmas in parallel.

Proof. (1) Given β′, we are first looking at computing the stabilizer StabG β′

for the group G = SL(5,C) acting by the adjoint representation; i.e., conjugation.
Since all of our β′ are given explicitly as diagonal matrices, this is quite easy.
Indeed, given any diagonal matrix D = diag(d1, . . . , dn) and any n × n matrix A,
the condition that AD = DA is given by diaij = djaij . In other words: if di = dj ,
then aij may be arbitrary; if di 6= dj , then aij = 0. The rest is an elementary
computation.

(2) It is immediate that N0 acts transitively on Zss
R . Thus, since for each β′ in

either case (a) or (b) we have N0 ⊆ N ∩ StabG β′, and we are done.
(3) Recall that we computed

GF3D4 =

{(
S3

S2

)
∈ SL(5,C) : λ1λ2λ3 = λ3

4 = λ3
5

}
.

The rest follows immediately from the previous parts.
(4) This follows immediately from the definitions, by inspection of the previous

computations.
(5) (for case (a) only)We have T2 = diag(λ0, λ1, λ

−1
0 λ−1

1 , 1, 1) ⊆ (N∩StabG β′)x.
The action of T2 on Zss

β′ is given by diag(λ0, λ1, λ
−1
0 λ−1

1 , 1, 1) · (a : b) = (λ1a :

λ−1
0 λ−1

1 b), thus the action of T2 on Zss
β′ is transitive, and therefore the same is true

of (N ∩ StabG β′)x. The stabilizer ((N ∩ StabG β′)x)(1:1) is easily worked out to be
as claimed, from the previous description of (N ∩ StabG β′)x. The direct product
decomposition can be deduced as follows. First, let D′ be the diagonal matrices in
((N ∩ StabG β′)x)(1:1). There is a short exact sequence

1 → D′ → ((N ∩ StabG β′)x)(1:1) → S2 × S2 → 1 ,

and the matrices given above clearly define a section. Those matrices commute, and
commute with the diagonal matrices, and so we obtain a direct product D′ × (S2×
S2). Now we have essentially already analyzed the diagonal matrices D′; indeed we
described a group D ⊆ GL(5,C) of diagonal matrices in Proposition B.6(1), with
D′ ⊆ D ∼= (C∗)3 × µ3. One can easily deduce the structure of D′ from this. For
clarity, we reproduce the argument in this special case. Assume we have a diagonal
matrix diag(λ1, λ2, λ3, λ4, λ5) ∈ D′. Since we are only interested up to the torus
T = diag(λ−2, λ, λ, 1, 1), we may scale so that λ1 = λ2 = 1. We now have that
λ0 = λ3

3 = λ3
4, and λ0λ3λ4 = 1. Together these imply that λ4

3λ4 = 1. This implies
that λ4 = λ−4

3 . This implies λ3
3 = λ3

4 = (λ−4
3 )3 = λ−12

3 , so that λ15
3 = 1; i.e., λ3

is a 15-th root of unity. In other words, up to scaling by the torus, any diagonal
matrix in D′ is of the form diag(λ3

4, 1, 1, λ4, λ
−4
4 ) where λ4 is a 15-th root of unity.
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We may as well write:

D′ =








λ−2ζ3j

λ
λ

ζj

ζ−4j




: λ ∈ C∗, ζ = e2πi/15, j = 0, . . . , 14





.

This completes the proof. �





APPENDIX C

The moduli space of cubic surfaces

As a demonstration of the techniques developed in the paper, we briefly outline
how one obtains analogous results for the moduli space of cubic curves and surfaces.
The new results in this appendix are the computations of the Betti numbers of
the toroidal and Naruki compactifications of the moduli space of cubic surfaces
(Theorem C.1).

C.1. The moduli space of cubic curves

The case of cubic curves is trivial, but nevertheless we review this situation, for
completeness. The GIT moduli space MGIT

curve has stable points corresponding to
smooth cubic curves, and strictly semi-stable points corresponding to cubic curves
with nodes. There is a unique strictly polystable orbit, corresponding to the cubic
curve V (x0x1x2), the so-called 3A1 cubic curve. Being a normal rational projective
variety of dimension 1, we have MGIT

curve
∼= P1. The natural period map is Mcurve →

H/Γ1, taking a cubic curve to its Jacobian, with Γ1 = SL(2,Z); here Mcurve is
the locus of smooth cubic curves. As the Baily–Borel compactification (H/Γ1)

∗ is
also a normal rational projective variety of dimension 1, it is also isomorphic to
P1, and the period map extends to an isomorphism MGIT

curve
∼= (H/Γ1)

∗. Note also
that the boundary of the Baily–Borel compactification is already a divisor (it is
simply a point on a curve), and since (H/Γ1)

∗ is smooth, it is its own canonical

toroidal compactification H/Γ1 = (H/Γ1)
∗. Finally, since MGIT

curve has a strictly
polystable point, the Kirwan blowup is not just the identity map; however, since
the Kirwan blowup MK

curve is smooth, projective and of dimension 1, it is also
isomorphic to P1, so that MK

curve → MGIT
curve is an isomorphism. In other words, all

of the compactifications in question are isomorphic to P1, and the cohomology is
obvious.

C.2. The moduli space of cubic surfaces

The moduli of cubic surfaces has a number of compactifications constructed in
a similar way to those of cubic threefolds. To begin with, the GIT compactification
MGIT

surf can be described as follows (see e.g., [Muk03, §7.2(b)]). A cubic surface V
is:

• stable if and only if it has at worst A1 singularities,
• semi-stable if and only if it is stable, or has at worst A2 singularities, and
does not contain the axes of the A2 singularities,

• strictly polystable if and only if it is projectively equivalent to V (x0x1x2+
x3
3) (the so-called 3A2 cubic).

Note that it is a classical result that MGIT
surf

∼= WP(1, 2, 3, 4, 5) (see [DvGK05,
(2.4)]).

87
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By considering the triple cover of P3 branched along a cubic surface, one ob-
tains a cubic threefold, and via the period map for cubic threefolds, one obtains
a period map to a 4-dimensional ball quotient Msurf → B4/Γ4 (see [ACT02]);
here Msurf is the locus of smooth cubic surfaces. This is an open embedding, and
the complement of the image is the Heegner divisor Dn = Dn/Γ4. The rational
period map MGIT

surf 99K (B4/Γ4)
∗ to the Baily–Borel compactification extends to an

isomorphism, taking the discriminant DA1 ⊂ MGIT
surf to the divisor Dn. Under this

isomorphism, the unique strictly polystable point ∆ ∈ MGIT
surf corresponding to the

3A2 cubic is identified with the sole cusp of (B4/Γ4)
∗, which we thus denote c3A2 .

The Kirwan blowup MK
surf → MGIT

surf is a blowup with center supported at ∆.
In a different direction, Naruki [Nar82] has constructed a modular compact-

ification Ñ of the moduli space of marked cubic surfaces (this was subsequently
reworked by [HKT09] from a different perspective). There is a natural action

by W (E6) on Ñ , and denoting by N = Ñ/W (E6), we get another smooth (as
always, up to finite quotient singularities) compactification for the moduli space
of cubic surfaces. As discussed in [DvGK05], N maps to MGIT

surf
∼= (B4/Γ4)

∗,
and this map contracts a divisor to the boundary point ∆ (resp. c3A2); denot-
ing this divisor DN 3A2

, this contraction induces an isomorphism N − DN 3A2

∼=
MGIT

surf −∆ [DvGK05, §2.10]. In summary, we have a diagram (compare (2.14))

(C.1) MK
surf

{{✇✇
✇✇
✇✇
✇✇
✇

$$❏
❏❏

❏❏
❏❏

❏❏
❏
oo //❴❴❴❴ B4/Γ4

��

oo //❴❴❴❴ N

{{①①
①①
①①
①①
①①

MGIT
surf

∼ // (B4/Γ4)
∗

where B4/Γ4 is the (again, unique) toroidal compactification. The purpose of this

section is to establish that these three compactifications (MK
surf , B4/Γ4, and N )

have the same cohomology. Note that all three spaces are blowups of the point
c3A2 ∈ (B4/Γ4)

∗; we expect that they are all isomorphic, but this is not yet known
(compare Remark 1.5).

In [Kir89] and [Zha05] the (intersection) Betti numbers of the spacesMGIT
surf

∼=
(B4/Γ4)

∗ and MK
surf were computed1 :

(C.2)

j 0 2 4 6 8

dimHj(MK
surf) 1 2 2 2 1

dim IHj(MGIT
surf ) = dim IHj((B4/Γ4)

∗) 1 1 1 1 1

with all odd degree (intersection) cohomology vanishing. Note that the bottom row
is immediate, since MGIT

surf is a weighted projective space, as recalled above.

1 Note there is an error in [Kir89, Thm. 1.6, p.50, and 5.2] regarding the Betti numbers
of MK

surf , corrected in [Zha05]. Specifically, the set R of connected components of stabilizers

consists only of T2, and does not also include SO(3,C), as claimed in [Kir89, p.59]: the only
strictly polystable orbit is the orbit of the 3A2 cubic surface, with connected component of the
stabilizer given by T2. The rest of the computations in [Kir89] go through unchanged, and yield
Pt(MK

surf ) = PG
t (Xss

surf)+A
T2 (t) ≡ (1+t2+2t4)+t2 ≡ 1+2t2+2t4 mod t5; i.e., one simply does

not add the ASO(3,C)(t) ≡ t2 + t4 mod t5 contribution from the erroneous group R = SO(3,C).
The computation of IPt(MGIT

surf ) is then also corrected by omitting the terms corresponding to

R = SO(3,C), so that one obtains IPt(MGIT
surf ) = Pt(MK

surf)−BT2 (t) ≡ (1+2t2+2t4)−(t2+t4) ≡
1 + t2 + t4 mod t5; i.e., the formula for IPt(MGIT

surf ) in [Kir89, Thm. 1.6] is correct.
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For the cohomology of the toroidal compactification of the ball quotient model
B4/Γ4 of the moduli of cubic surfaces, we apply the same approach (but, of course,
with easier computational details) as for cubic threefolds (see Chapter 7). As an-
nounced, we obtain that the cohomology of the toroidal compactification coincides
with the cohomology of the Kirwan blowup MK

surf .

Theorem C.1. The Betti numbers of the toroidal compactification of the ball

quotient model B4/Γ4 of the moduli space of cubic surfaces are as follows:

(C.3)
j 0 2 4 6 8

dimHj(B4/Γ4) 1 2 2 2 1

while all the odd degree cohomology vanishes.

C.3. The proof of Theorem C.1

In this section, following the setup of §7.1, we discuss the structure of the
toroidal compactification B4/Γ4 of the ball quotient model for surfaces, and prove
Theorem C.1.

C.3.1. The Eisenstein lattice for cubic surfaces. The Eisenstein lattice
used by Allcock–Carlson–Toledo [ACT02, (2.7.1)] to define the ball quotient model
B4/Γ4 for the moduli of cubic surfaces is

(C.4) Λ = E1(−1) + 4E1
with the associated Z-lattice

ΛZ = A2 + 4A2(−1)

(see [DvGK05, §5, §6] for a discussion of the lattice ΛZ and its relevance to the
ball quotient construction). Returning to the construction of B4/Γ4, we recall

B4 := {[z] : z2 > 0}+ ⊆ P(Λ⊗E C),

and Γ4 := O(Λ) acts naturally (properly discontinuously) on B4. Let us note that
one can construct a natural W (E6)-cover

(C.5) B4/Γ
m
4 → B4/Γ4

of the ball quotient model parameterizing marked cubic surfaces (i.e., cubic surfaces
with the 27 lines labeled). This corresponds to an arithmetically defined normal
subgroup Γm

4 ⊂ Γ4 with Γ4/Γ
m
4

∼= ±1 × W (E6) (with ±1 acting trivially on B4);
we refer to [DvGK05, §6.10] and [ACT02, §3] for details.

C.3.2. Identifying the cusp of (B4/Γ4)
∗. From the description above, it is

elementary to find a representative isotropic line F ⊆ Λ defining the cusp c3A2 ,
namely the one generated by

h = (1, 1, 0, 0, 0).

One then sees immediately that

h⊥/h = 3E1,
and we recall then that (3E1)Z = 3A2(−1).
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C.3.3. The isometry group of the cusp. Clearly, O(E1) = Z3 × Z2 (com-
pare (7.12)), with Z3 acting by ω and Z2 acting by −1. It is easy to see that

(C.6) O(3E1) = O(E1)×3 ⋊ S3 = (Z3 × Z2)
×3 ⋊ S3

where the semi-direct product is given by the action of S3 on the three copies of
O(E1).

C.3.4. The structure of the toroidal boundary divisor. We denote the

boundary divisor of B4/Γ4 corresponding to the cusp c3A2 by T3A2 .

Lemma C.2. The following holds:

T3A2
∼= (Eω ⊗E 3E1)/O(3E1) (∼= (E3

ω)/O(3E1)).
Proof. The proof is analogous to that of Proposition 7.8, with a minor dif-

ference. To make this appendix accessible to readers who are primarily interested
in cubic surfaces we will give a self-contained proof here, but also comment on the
differences to the previous case. We start with Λ = E1(−1) + 4E1 and the isotropic
vector b1 := h = (1, 1, 0, 0, 0). We will denote the corresponding cusp given by the
isotropic line F = Eh by F . We then add b2, b3, b4 where each bi is a generator of a
copy of 3E1 = h⊥/h, and complement this by b5 = (1,−1, 0, 0, 0). The difference to
Proposition 7.8 is that this is a Q(

√
−3)-basis of E1(−1)+ 4E1, and not an E-basis.

With respect to this basis the hermitian form is given by

Q =




0 0 6
0 B 0
6 0 0




where

B =




3 0 0
0 3 0
0 0 3


 .

In order to determine the structure of the boundary one first has to understand
the structure of the stabilizer subgroup N(F ) corresponding to F , i.e. the subgroup
of O(Λ) fixing the line spanned by h. A straightforward calculation, see [Beh12,
Sec. 4], gives

(C.7) N(F ) =



g ∈ O(Λ) : g =




u v w
0 X y
0 0 s





 .

Note that, in particular, this implies that X ∈ O(3E). Its unipotent radical is given
by

(C.8) W (F ) =



g ∈ N(F ) : g =




1 v w
0 1 y
0 0 1







and finally the center of the unipotent radical is

(C.9) U(F ) =



g ∈ W (F ) : g =




1 0 w
0 1 0
0 0 1


 , w ∈ Z





∼= Z.
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We have natural coordinates coordinates (z0 : z1 : z2 : z3 : z4) on B ⊂ P(Λ⊗EC)
and we can assume that z4 = 1. Then we obtain a map

(C.10)
B → C∗ × C3

(z0, z1, z2, z3) 7→ (t0 = e2πiz0 , z1, z2, z3)

and adding the toroidal boundary amounts to adding {0} × C3.
The quotient N(F )/U(F ) then acts on B/U(F ) and this quotient gives the

toroidal compactification of B near the cusp F . Here we are only interested in
the structure of the boundary divisor and hence in the action of N(F )/U(F ) on
{0} × C3. By a straightforward calculation

(C.11) g =




u v w
0 X y
0 0 s


 : z 7→ 1

s
(Xz + y)

where z = (z1, z2, z3). We first look at the normal subgroup W (F ), matrices whose
elements act as follows

g =




1 v w
0 1 y
0 0 1


 : z 7→ z + y.

Since g ∈ O(Λ), we must necessarily have y ∈ E3 (where we now use the notation
E3 rather than 3E since we want to emphasize the vector space structure rather
than the lattice). This is where there is a difference to the case of cubic fourfolds:
it is no longer true that all vectors in E3 appear as entries y in matrices g ∈ W (F ).
Indeed by a straightforward calculation, see [Beh12, Sec. 4], the condition that
g ∈ O(Λ) is

By + 6v̄t = 0, ȳtBy + 6w + 6w̄ = 0.

Given y we want to define v by v̄t = − 1
6By. Since By ∈ 3 · E3 and v must be in

E3 this requires that y ∈ 2 · E3. Note that we can then also find a suitable w ∈ E .
However, scaling the lattice by a factor 2 gives isomorphic quotients showing

C3/W (F ) ∼= (Eω)
3.

The rest of the argument is now again very close to Proposition 7.8. Clearly, the
subgroup 


g ∈ O(Λ) : g =




1 0 0
0 X 0
0 0 1





 .

acts on (Eω)
3 as claimed in the proposition.

It remains to consider elements of the form

g =




u 0 0
0 1 0
0 0 s


 ∈ N(F ).

The condition that such a matrix lies in O(Λ) is that sū = 1 with s ∈ E . Hence
s is a power of ω and these elements act on (Eω)

3 by multiplication with powers
of ω. But by (C.11) these elements are already accounted for by matrices with
u = s = 1 and X ∈ O(3E) and hence we do not get a further quotient. Thus the
claim follows. �
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C.3.5. The cohomology of the toroidal boundary divisor. It is elemen-
tary to see from the descriptions above that

(E1 ⊗E Eω)/O(E1) ∼= P1.

It follows that

T3A2 = (3E1 ⊗E Eω)/O(3E1) = (P1)3/S3 = P3.

In particular, we get:

Corollary C.3. The Betti numbers of the toroidal boundary divisor T3A2 of

B4/Γ4 are given by b0(T3A2) = b2(T3A2) = b4(T3A2) = b6(T3A2) = 1 and b1(T3A2) =
b3(T3A2) = b5(T3A2) = 0.

C.3.6. The cohomology of the toroidal compactification. We can now
complete the proof of Theorem C.1 using the Decomposition Theorem for the mor-
phism B4/Γ4 → (B4/Γ4)

∗. We have

Pt(B4/Γ4) ≡ 1 + t2 + t4 (IPt((B4/Γ4)
∗), from (C.2))

+ (t2 + t4) (T3A2 = P3 contribution, from Corollary C.3)

≡ 1 + 2t2 + 2t4 mod t5

by applying equation (6.1) to determine the contribution to the cohomology of

B4/Γ4 from the exceptional divisor.

C.4. The cohomology of the Naruki compactification

For completeness, let us note that the cohomology of the Naruki compactifica-
tion N coincides with the cohomology of toroidal and Kirwan compactifications for
the moduli of cubic surfaces.

Proposition C.4. The Betti numbers of the Naruki compactification N =

Ñ/W (E6) of the moduli space of cubic surfaces are as follows:

(C.12)
j 0 2 4 6 8

dimHj(N ) 1 2 2 2 1

while all the odd degree cohomology vanishes.

Proof. The Naruki compactification Ñ is a modular compactification for the

moduli of marked cubic surfaces. Clearly, W (E6) acts on Ñ , and we have defined

N = Ñ /W (E6). On the other hand, as discussed above we recall that there
exists a marked ball quotient model B4/Γ

m
4 , which is a W (E6) cover of B4/Γ4

(see (C.5)). Then, there exists a (W (E6)-equivariant) period map Ñ → (B4/Γ
m
4 )∗

contracting 40 divisors Di in Ñ to the 40 cusps of the Baily–Borel compactification
(B4/Γ

m
4 )∗ (see [DvGK05, §2.9]2). Furthermore (cf. loc. cit.), Di

∼= (P1)3 (and the
singularities of (B4/Γ

m
4 )∗ at the 40 cusps are cones over the Segre embedding of

(P1)3). The 40 exceptional divisors Di are conjugated under the action of W (E6).
Thus, taking the quotient by W (E6), we obtain N → (B4/Γ4)

∗, which contracts a

2In [DvGK05], the image of the (extended) period map Ñ → (B4/Γm
4 )∗ is denoted by N .

For consistency with our notations, a better notation would be N ∗(= N ). Of course, N ∗ =
(B4/Γm

4 )∗ as the period map is surjective.
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divisor D to the unique cusp of (B4/Γ4)
∗. Since D is a quotient of Di

∼= (P1)3 by
a finite group that contains S3 permuting the three P1 factors, it is immediate to
see that D has the rational cohomology of P3. The claim now follows as before (see
§C.3.6). �
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[Rei89] Z. Reichstein, Stability and equivariant maps, Invent. Math. 96 (1989), no. 2, 349–

383.
[Sca87] F. Scattone, On the compactification of moduli spaces for algebraic K3 surfaces,

Mem. Amer. Math. Soc. 70 (1987), no. 374, x+86.
[Wei94] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Ad-

vanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.
[Yok02] M. Yokoyama, Stability of cubic 3-folds, Tokyo J. Math. 25 (2002), no. 1, 85–105.
[Zha05] J. Zhang, Geometric compactification of moduli space of cubic surfaces and Kirwan

blowup, ProQuest LLC, Ann Arbor, MI, 2005, Thesis (Ph.D.)–Rice University.


	Chapter 1. Introduction
	Acknowledgements

	Chapter 2. Preliminaries
	2.1. Notation and conventions
	2.2. Moduli space of cubic threefolds and its standard compactifications MGIT and (B/)*
	2.3. The Kirwan blowup MK of the moduli space of cubic threefolds
	2.4. The toroidal compactification

	Chapter 3. The cohomology of the Kirwan blowup, part I:  equivariant cohomology of the semi-stable locus
	3.1. The equivariantly perfect stratification and the equivariant cohomology of the semi-stable locus in general
	3.2. The equivariant cohomology of the locus of semi-stable cubic threefolds

	Chapter 4. The cohomology of the Kirwan blowup, part II
	4.1. The correction terms in general
	4.2. The main correction terms for cubic threefolds
	4.3. The extra correction terms for cubic threefolds
	4.4. Putting the terms together to compute the cohomology of MK

	Chapter 5. The intersection cohomology of the GIT moduli space MGIT
	5.1. Obtaining the intersection cohomology of the GIT quotient from the cohomology of the Kirwan blowup, in general
	5.2. The intersection cohomology of the GIT quotient for cubic threefolds
	5.3. Putting the terms together to compute the cohomology of MGIT
	5.4. The intersection cohomology of M"0362M

	Chapter 6. The intersection cohomology of the ball quotient
	6.1. A special case of the decomposition theorem
	6.2. The intersection cohomology of the ball quotient

	Chapter 7. The cohomology of the toroidal compactification
	7.1. The arithmetic of the two cusps of B/
	7.2. The cohomology of the toroidal boundary divisors
	7.3. The cohomology of the toroidal compactification

	Appendix A. Equivariant cohomology
	A.1. Review of Atiyah–Bott
	A.2. Compact and complex Lie groups
	A.3. Kirwan's result for compact groups acting on symplectic manifolds
	A.4. Fibrations

	Appendix B. Stabilizers, normalizers, and fixed loci for cubic threefolds
	B.1. Connected component C*
	B.2. Connected component PGL(2,C)
	B.3. Connected component (C*)2

	Appendix C. The moduli space of cubic surfaces
	C.1. The moduli space of cubic curves
	C.2. The moduli space of cubic surfaces
	C.3. The proof of Theorem C.1
	C.4. The cohomology of the Naruki compactification

	Bibliography

