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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic,
leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced
ability to spread among humans. As with many other viruses, SARS-CoV-2 utilizes heparan sulfate (HS) glycosaminogly-
can (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 recep-
tor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral
therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally
existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anti-
coagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain
(RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory
activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two
fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity
of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using
Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were
found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited
strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions
between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced,
glycan-based inhibitors as potential anti-SARS-CoV-2 agents.
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Introduction

At the end of 2019, a contagious novel coronavirus,
SARS-CoV-2, originated and rapidly disseminated across
the world, resulting in the pandemic of COVID-19. As of
April 2023, there were over 762 million confirmed cases
and more than 6.8 million deaths attributed to SARS-CoV-2
based on data from WHO Coronavirus (COVID-19) Dash-
board (https://covid19.who.int/). Multiple COVID-19 pan-
demic waves have occurred accompanied by numerous new
SARS-CoV-2 variants. According to Centers for Disease
Control and Prevention (CDC) of the US, COVID-19 was
reported as the fourth leading cause of death in the United
States in 2022. This virus exhibits a high mutation rate with
a positive-sense single-stranded RNA [1]. Mutations on the
S-protein of SARS-CoV-2, which performs vital functions
in the attachment and entry of SARS-CoV-2 into host cell,
have led to five circulating variants of concern (VOC) -
Alpha, Beta, Gamma, Delta and multiple Omicron variants
[2].

Among the Omicron variants, XBB.1.5 has been spread-
ing rapidly worldwide during the last several months. As
of April 2023, the highly transmissible XBB.1.5 variant
was projected to represent approximately 78% of US infec-
tions according to the CDC. The Omicron XBB.1.5 is a lin-
eage that has descended from the XBB (a recombinant of
BA.2.10.1 and BA.2.75) family with two mutations (G252V
and F486P) in the S-protein [3]. The presence of the uncom-
mon F486P mutation in XBB.1.5 seems to be associated
with the strength of interaction between the receptor-bind-
ing domain (RBD) of the S-protein and human angiotensin-
converting enzyme-2 (hACE2) complexes, enhancing the
ability of the virus to spread [4]. The higher ACE2 binding
affinity and the ability to escape from current monoclonal
antibodies accelerated the dominance of XBB.1.5 in many
countries.

Anionic glycans such as heparan sulfate (HS), chondroi-
tin sulfates (CS), keratan sulfates (KS), hyaluronan and
sialic acids are widely distributed in mammalian tissues [5].
Those anionic glycans serve as facilitators (and sometimes
as receptors/co-receptors) to promote pathogen attachment,
invasion, assembly, and release to host cells [6—7]. Many
studies have demonstrated that HS, a significant constituent
of the glycocalyx found in mammalian cells, interacts with
SARS-CoV-2 S-protein aiding the virus in infiltrating host
cells [8—10]. Therefore, molecules that interfere with the
binding of S-protein to HS have shown effectiveness against
SARS-CoV-2. Marine sulfated glycans garnered significant
interest as antiviral drug candidates due to their excellent
antiviral activity, low cytotoxicity, green renewable sources,
and low production costs [ 11-12]. We have shown that some
marine sulfated glycans exhibit high inhibition activity to
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previous SARS-CoV-2 strains, like WT, Delta, and Omi-
cron, by interfering with the binding of viral S-protein to
host cell [13-16].

In the current study, the binding of XBB.1.5 S-protein
RBDs to heparin (a highly sulfated HS) was analyzed in
comparison with the WT version using SPR. A collection
of marine glycans (sulfated fucans, as well as fucosyl-
ated chondroitin sulfates derived from marine echino-
derm and seaweed, Fig. 1) and two desulfated derivatives,
were prepared to investigate the inhibitory activity of
XBB.1.5 S-protein-heparin interactions. We observe that
both WT and XBB.1.5 S-protein RBDs bind to heparin with
high affinity, and the interactions can be inhibited by several
marine-sourced sulfated glycans.

Materials and methods
Materials

Eight marine glycans, IbSF, desIbSF, IbFucCS, desIbFucCS,
PpFucCS, LvSF, HfSF, and HfFucCS, were purified from
sea cucumbers 1. badionotus and P. pygmaea, sea urchin
L. variegatus, and the Florida sea cucumber H. floridana,
in Dr. Pomin’s laboratory at the University of Mississippi.
Two fucoidans (RPI-27 and RPI-28) were purified in Dr.
Jin’s Lab from seaweed Saccharina japonica. The SARS-
CoV-2 S-protein RBD wild-type (WT) was expressed in
Expi293F cells in Bates lab at the University of Missis-
sippi. The S-protein RBD XBB.1.5 of SARS-CoV-2 was
purchased from Sino Biological Inc. (Wayne, PA, USA).
The recombinant wild-type S-protein RBD is composed
of 234 amino acids and is estimated to have a molecular
weight of 26.72 kDa. The recombinant XBB.1.5 S-protein
RBD is composed of 234 amino acids and is estimated to
have a molecular weight of 26.58 kDa (see the amino acid
sequences in Fig. 2). Porcine intestinal heparin with an aver-
age molecular weight of 15 kDa was from Celsus Laborato-
ries (Cincinnati, OH, USA). Streptavidin (SA) sensor chips
were purchased from Cytiva (Uppsala, Sweden). SPR mea-
surements were conducted using a BIAcore T200 or 3000
SPR instrument (Cytiva, Uppsala, Sweden). SPR data pro-
cessing was carried out using Biaevaluation software, ver-
sion 4.0.1 or 3.2.

Heparin SPR chip preparation

Biotinylated heparin: a solution was prepared by combin-
ing 500 ug of heparin and 500 pg of amine-PEG;-Biotin
(Thermo Scientific, Waltham, MA, USA) in 100 puL of
water, following 2.5 mg NaCNBH; was added to start the
reaction. The reaction was at 70 °C for 24 h, then additional
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Fig. 1 Chemical structures of heparin and marine sulfated glycans

2.5 mg NaCNBH; was added to continue the reaction for
24 h. Once the reaction was finished, the biotinylated hepa-
rin was desalted using a 3000 molecular weight cut-off
membrane and freeze dried. The following procedure was
employed to make heparin chip by immobilizing heparin on
SA surface: Flow cells 2 to 4 were carefully infused with a
solution of biotinylated heparin (0.1 mg/mL) in HBS-EP™*
buffer, with a volume of 20 uL at a flow rate of 10 pL/min. A
reference flow cell 1 was prepared by an injection of 20 uL
of saturated biotin.

Binding kinetics and affinity measurement on
interaction between S-protein RBD and heparin

The S-protein RBDs were diluted in HBS-EP + buffer (150
mM NaCl, 10 mM HEPES, 0.05% v/v Surfactant P20, pH,
7.4). Various concentrations of S-protein RBD were injected
at a flow rate of 30 pL/min. After each injection, a consis-
tent buffer was directed flowed over the sensor surface for a
duration of 3 min to perform dissociation. To regenerate the
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SPR chip, a volume of 30 pL of 2 M NaCl was injected into
each channel. All responses were monitored as sensorgrams
at 25 °C.

Inhibitory effects of the marine sulfated glycans on
the interactions between heparin and the S-protein
RBD

To assess the inhibitory activity between the S-protein RBD
and heparin, a mixture of S-protein RBD at a concentration
of 1 uM and various glycans at a concentration of 5 ug/mL
was prepared in HBS-EP* buffer (pH 7.4). The mixture was
then injected to the heparin chip at a flow rate of 30 uL/min.
A NaCl solution (2 M) was injected in a volume of 30 uL.
to regenerate the sensor surface after each binding analysis.
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Fig.2 Omicron phylogenetic tree and S-protein RBD amino acid mul-
tiple sequence alignment. (A) Omicron phylogenetic tree, adapted
from Nextstrain and CoVariants. (B) Mutation profile of S-protein

Results and discussion

Mutations in XBB S-protein RBD and variants of
SARS-CoV-2

Throughout the pandemic of COVID-19, numerous SARS-
CoV-2 variants have shown up and posed weighty chal-
lenges to both human health and global healthcare systems.
Several of these variants pose a significant threat due to
their heightened transmissibility, reduced vaccine and
antibody effectiveness and increased virulence. Five vari-
ants of concern (VOC) have been declared by the WHO,
namely Alpha, Beta, Gamma, Delta and Omicron. Omicron
was named in November 2021 after being detected in both
South Africa and Botswana. Studies showed that this variant
has many mutations leading to an increased risk of reinfec-
tion and transmissibility [17—18]. Omicron rapidly spread
worldwide and became the main variant. As the pandemic
evolved, a number of new Omicron subvariants emerged,
including BA.1, BA.2, BA.2.75, BA.2.12.1, BA4, BA.S
and XBB (Fig. 2A). XBB emerged and rose to prominence
in India and Singapore in September 2022, and soon thereaf-
ter this variant became the dominant variant in several coun-
tries [19]. By the end of 2022, XBB’s sublineage XBB.1.5
outcompeted other VOCs, and became the most dominant
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RBD of WT and XBB.1.5 strains. Multiple sequence alignment was
carried out by Clustal Omega (1.2.4). Asterisks (*) indicate positions
with a single, fully conserved residue

variant in the USA. Sequence comparison between WT and
XBB.1.5 showed that 21 amino acid mutations emerged in
the S-protein RBD (Arg319-Phe541, Fig. 2B). Among these
amino acid mutations, XBB.1.5 harbors an F486P muta-
tion, which enables the XBB.1.5 outcompete other Omicron
variants.

Binding kinetics and affinity measurement of
heparin-SARS-CoV-2 S-proteins interactions

Heparin/HS is a group of highly sulfated, polydisperse,
linear polysaccharides which consist of variably repeating
disaccharide building blocks, D-glucuronic acid (GlcA) or
L-iduronic acid linked to N-acetylated or N-sulfated glu-
cosamine [20]. Heparin/HS can be widely found through-
out the extracellular matrix, as well as on the surfaces of
mammalian cells. Through binding and regulating a wide
range of proteins, heparin/HS regulates various biological
processes, such as blood coagulation, tumor metastasis and
pathogen invasion [21]. Heparan sulfates are covalently
attached to various core proteins presented in the extra-
cellular matrix and on the cell surfaces, forming HS pro-
teoglycans (HSPGs), which play critical roles in pathogen
infection, especially in cellular attachment. Many studies
suggest that the highly negatively charged and ubiquitously
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Fig.3 SPR sensorgrams of S-protein RBD of WT and XBB.1.5 binding to heparin. SPR sensorgrams of S-protein RBD binding with heparin; (A)
WT and (B) XBB.1.5. Concentrations of S-protein RBD (from top to bottom) are 1000, 500, 250, 125, and 63 nM, respectively

Table 1 Kinetic data of interactions of S-protein RBD of WT and
XBB.1.5 with heparin

k, (M~ 1sh ky(1/5) Kp(M)
WT 3.3x10° 1.2%x1073 3.5%1077
(£2D)* (£4.1x107%)* (£4.0x1078) **
XBB 2.1%x10% 3.4x1073 1.6x1077
(+250)* (£2.3x107%)* (£2.9%1078) **

* The data with () in parentheses are the standard deviations (SD)
from global fitting of five injections. **Standard deviation (SD) on
triplicated experiments

expressed HSPGs provide an ideal adhesive primary attach-
ment point for viruses [22-25]. Heparin, the highest sul-
fated GAG, is well studied as an anticoagulant, and heparin
and its analogs are inhibitors to different viruses through
blocking viral-HSPGs interactions. Our previous studies
showed that full-length heparin and its oligomers can inter-
act with some viral proteins, such as monkeypox A35/A29
proteins, SARS-CoV-2 S-proteins and the glycoproteins of
respiratory syncytial virus [16, 26-27]. In this study, a SPR
chip immobilized with heparin was prepared to assess the
binding kinetics of heparin and S-protein interactions using
S-protein RBD from WT and XBB.1.5 variants. Sensor-
grams for interactions of heparin with these two S-protein
RBDs are presented in Fig. 3.

The association and dissociation rates (ka and kd) as well
as the binding equilibrium dissociation constant (K, = ka/
kd) were used to evaluate the interaction between the SARS-
CoV-2 S-protein RBD (wild-type and XBB.1.5 variant) and
heparin. The interaction kinetics were analyzed using a 1:1
Langmuir binding model, and the results are presented in
Table 1. The binding affinities of S-protein RBD with hepa-
rin are nanomolar: XBB.1.5 (K, = 160 nM) is slightly stron-
ger than WT (K, = 350 nM). From Fig. 2 we can find that
among these 20 mutations on S-protein RBD region, half
of the mutations result in reduced amino acid hydrophilic-
ity, while others enhanced the hydrophilicity. Among amino

acids from N440 to T500, there are nine mutations, eight of
which enhance hydrophilicity. Notably, F486P is known to
aid the virus escape the immune system’s detection. Interac-
tions between protein and heparin are mainly based on the
electrostatic attraction, and therefore, negatively charged
GAGs are expected to interact with positively charged
amino acids such as lysine (K), arginine (R), and histidine
(H). Comparing the sequences of S-protein of XBB with
WT (Fig. 2), an additional six positively charged amino acid
residues are found on the XBB RBD, which can enhance
heparin binding affinity. Based on the theoretical binding
modeling of the Omicron S protein RBD and heparin oligo-
saccharides using AutoDock Vina, the amino acid residues,
such as R355, R577 and R357 in BA.2.12.1 RBD and R346,
K440, K444 in BA.4/BA.5 RBD, make up a potential bind-
ing sites for heparin and heparan sulfate [27].

Inhibitory activity of Isostichopus badionotus-
sourced sulfated glycans, IbSF, IbSFucCS on
S-protein RBD binding to heparin

Sulfated fucan (IbSF) and fucosylated chondroitin sulfate
(IbSFucCS) from sea cucumber /. badionotus, initially iden-
tified by Chen et al. [28-29]. (see structures in Fig. 1). Both
IbSF and IbFucCS demonstrated effective anticoagulant and
antithrombotic activities. Our previous study demonstrated
that these two marine sulfated glycans also were promising
inhibitors towards monkeypox virus (MPXV). The desul-
fated forms of IbSF and IbFucCS (desIbSF desIbFucCS)
were prepared as described previously [30], and showed
weak competitive inhibition activity between surface
heparin and A29 and A35 proteins of [16]. Pomin’s group
indicated that IbSF and IbFucCS showed excellent SARS-
CoV-2 inhibition activity on both WT and Delta variants, by
disrupting the binding of virus on the surface of host cells
[15].
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SPR solution/surface competition experiments were used
to test the ability of 1. badionotus-derived glycans (IbFucCS,
IbSF, and the desulfated analogues desIbFucCS and desIbSF)
to inhibit the interactions between RBD of S-proteins (WT
and XBB.1.5) and immobilized heparin (Fig. 4A, C). 1 uM
RBD proteins were premixed with Ib glycans (5 pg/mL)
(WT and XBB.1.5 individually) and injected to heparin
chip. Both Ib-sourced sulfated glycans, IbSF and IbFucCS,
significantly inhibited the binding of surface-immobilized
heparin to the RBD of S-proteins (WT and XBB.1.5). Sol-
uble heparin demonstrated a 53.4% and 54.6% reduction in
the binding of the WT and XBB.1.5 variants of the SARS-
CoV-2 S-protein, respectively, to heparin immobilized on
the surface. (Fig. 4B, D). IbSF and IbFucCS exhibited a
higher inhibition activity of WT S-protein binding to immo-
bilized heparin, with 94.8% and 99.5%, respectively. At the
same time, IbSF and IbFucCS, also demonstrated a high
level of inhibitory effectiveness, with normalized XBB.
1.5 ratio of 92.5% and 91.3%, respectively. The chemically
desulfated derivatives, desIbSF and desIbFucCS, exhibited
significantly lower competitive inhibition of heparin bind-
ing to both WT and XBB.1.5 S-proteins. Our results indi-
cate that sulfation of these marine-sourced glycans perform
an important role in the interaction of S-proteins.
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Fig. 4 Solution competition between heparin and Ib glycans. (A) SPR
sensorgrams of the WT SARS-CoV-2 S-protein RBD-heparin interac-
tion competing with different Ib glycans. The concentration of the WT
SARS-CoV-2 S-protein RBD was 1 pM mixed with 5 pg/mL of dif-
ferent Ib glycans. (B) Bar graphs (based on triplicate experiments with
standard deviation) of normalized WT SARS-CoV-2 S-protein RBD
binding preference to surface heparin by competing with different Ib
glycans. (C) SPR sensorgrams of the XBB.1.5 SARS-CoV-2 S-protein

@ Springer

= deslbFucCS

= deslbFucCS

Inhibitory activity of Holothuria floridana-sourced
glycans, HfSF and HfFucCS on S-protein RBD binding
to heparin

HfSF and HfFucCS, from the sea cucumber H. floridana
were first reported by Shi et al. 2019 [31] (see structures
in Fig. 1). Excellent inhibitory activities against certain
SARS-CoV-2 variants and MPXV were observed for these
Hf derived glycans [15, 16]. (Dwivedi et al., 2022; He et
al., 2023).

Again, we used solution/surface competition SPR to
examine the effectiveness of HfSF and HfFucCS in inhibit-
ing the interactions between RBD of S-proteins (WT and
XBB.1.5) and heparin. 5 pg/mL of these Hf derived gly-
cans was premixed with 1 uM S-proteins (WT and XBB.1.5
individually) and injected to heparin chip. Solution com-
petition SPR results are indicated in Fig. 5SA, C. Heparin
reduced the binding of WT and XBB.1.5 S-proteins to sur-
face-immobilized heparin by 53.4% and 54.5% correspond-
ingly. HfSF and HfFucCS exhibited remarkable efficacy
in inhibiting the binding of wild-type S-protein to heparin
immobilized on the surface, demonstrating percentages
of 88.9% and 93.1%, respectively. Meanwhile, HfSF and
HfFucCS also showed good results for the inhibitions of
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Fig.5 Solution competition between heparin and Hf glycans. (A) SPR
sensorgrams of the WT SARS-CoV-2 S-protein RBD-heparin interac-
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SARS-CoV-2 S-protein RBD was 1 pM mixed with 5 pg/mL of differ-
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binding preference to surface heparin by competing with different Hf
glycans. (C) SPR sensorgrams of the XBB.1.5 SARS-CoV-2 S-protein

XBB.1.5 S-protein binding to heparin immobilized on the
surface, with 84.0% and 83.8%, respectively (Fig. 5B, D).

Inhibitory activity of sulfated glycans, LvSF and
PpFucCS on S-protein RBD binding to heparin

Sulfated fucan LvSF is a polysaccharide extracted from
Lytechinus variegatus a species of sea urchin [32],, while
the fucosylated chondroitin sulfate PpFucCS is extracted
from Pentacta pygmaea, a species of sea cucumber (see
structures in Fig. 1) [33].

To perform solution/surface competition SPR, 5 pg/mL
glycans (LVSF or PpFucCS) was premixed with 1 uM RBD
of S-proteins (WT and XBB.1.5). Solution competition
results between these marine-sourced glycans and hepa-
rin are shown in Fig. 6A, C. PpFucCS and LvSF exhibited
remarkable efficacy in inhibiting the binding of WT S-pro-
tein to surface-immobilized heparin, demonstrating 97.9%
and 86.0% respectively. Meanwhile, PpFucCS and LvSF
demonstrated excellent outcomes inhibiting the binding of
XBB.1.5 S-protein to heparin immobilized on the surface,
achieving inhibitions of 91.5% and 88.6% respectively.
(Fig. 6B, D).

Control Heparin HfSF HfFucCS

RBD-heparin interaction competing with different Hf glycans. The
concentration of the XBB.1.5 SARS-CoV-2 S-protein RBD was 1 uM
mixed with 5 pg/mL of different Hf glycans. (D) Bar graphs (based
on triplicate experiments with standard deviations) of the normalized
XBB.1.5 SARS-CoV-2 S-protein RBD binding preference to surface
heparin by competing with different Hf glycans. Statistical analysis
was performed using an unpaired two-tailed t-test (*: p <0.05 com-
pared with the control)

Inhibitory activity of fucoidans: RPI-27 and RPI-28
on S-protein RBD binding to heparin

RPI-27 and RPI-28 are sulfated heteropolysaccharides
extracted from the brown seaweed, Saccharina japonica.
The structure of these glycans are comprised of two variet-
ies of polysaccharide frameworks: (1) a sulfated glucurono-
mannan and a glucuronomannan backbone consisting of
4-linked GlIcA and 2-linked mannose (Man) repeats, along
with a sulfated mannopyranose residue at the first C-6 posi-
tion from the non-reducing end, (2) a glucuronan composed
of GIcA units linked together in a 3-linked backbone. Sev-
eral additional branched chains, including GlcA-(1—3)-
Man-(1—4)-GlcA, Man-(1—3)-GlcA-(1—4)-GlcA,
Fuc-(1—4)-GlcA, and Fuc-(1—3)-Fuc. (Fig. 1) [34]. RPI-
27 and RPI-28 share the same structure but have a differ-
ent average molecular weight with 100 kDa and 12 kDa
respectively.

In this competition SPR analysis, RPI-27 and RPI-28
glycans (5 pg/mL) was premixed with 1 pM RBD of S-pro-
teins (WT and XBB.1.5 individually). Solution competition
results between these glycans and heparin are indicated in
Fig. 7A, C. RPI-27 and RPI-28 exhibited high inhibition of
WT RBD of S-protein binding to heparin, with 83.7% and
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Fig. 6 Solution competition between heparin and PpFucCS and LvSF.
(A) SPR sensorgrams of the WT SARS-CoV-2 S-protein RBD-hepa-
rin interaction competing with different PpFucCS and LvSF. The con-
centration of the WT SARS-CoV-2 S-protein RBD was 1 pM mixed
with 5 pg/mL of different PpFucCS and LvSF glycans. (B) Bar graphs
(based on triplicate experiments with standard deviation) of normal-
ized WT SARS-CoV-2 S-protein RBD binding preference to surface
heparin by competing with different PpFucCS and LvSF glycans. (C)
SPR sensorgrams of the XBB.1.5 SARS-CoV-2 S-protein RBD-hepa-

75.4%, respectively. Meanwhile, RPI-27 and RPI-28 also
showed good inhibitions of XBB.1.5 RBD of S-protein
binding to heparin, with 68.3% and 74.4%, respectively
(Fig. 7B, D).

The inhibitory effects of all eight sulfated glycans derived
from marine sources (IbSF, IbFucCS, HfSF, HfFucCS,
PpFucCS, LvSF, RPI-27, PRI-28) were observed in their
ability to inhibit the interactions between SARS-CoV-2
RBD of S-proteins (both WT and XBB.1.5) and heparin.
Nonetheless, the binding activity of both RBD of S-proteins
to surface-immobilized heparin was noticeably diminished
in the chemically desulfated glycans (desIbSF and desIb-
FucCS). Our study shows that sulfo group plays critical
roles in the inhibitory activity of sulfated glycans derived
from marine. The inhibition activity of all eight sulfated gly-
cans sourced from the marine was remarkably effective in
inhibiting the binding of surface-immobilized heparin with
both wild-type and XBB.1.5 RBD of S-proteins. IbFucCS,
out of the three distinct fucosylated chondroitin sulfates
derived from marine sources, displayed the highest sulfation
level (96% branching disulfated fucoses) and demonstrated
best inhibitory activity against WT S-protein. HfFucCS
(80% branching disulfated fucoses) shows slightly better
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rin interaction competing with different PpFucCS and LvSF glycans.
The concentration of the the XBB.1.5 SARS-CoV-2 S-protein RBD
was 1 uM mixed with 5 pg/mL of different PpFucCS and LvSF gly-
cans. (D) Bar graphs (based on triplicate experiments with standard
deviations) of the normalized XBB.1.5 SARS-CoV-2 S-protein RBD
binding preference to surface heparin by competing with different
PpFucCS and LvSF glycans. Statistical analysis was performed using
an unpaired two-tailed t-test (*: p <0.05 compared with the control)

inhibitory activity than PpFucCS (70% branching disulfated
fucoses) against both WT and XBB.1.5. Clearly, sulfation
levels/patterns are an important factor for the inhibitory
activities of marine-sourced FucCS glycans. Despite shar-
ing the same fucan tetrasaccharide repeating unit, IbSF,
LvSF and HfSF differ in their sulfation patterns and are less
sulfated than heparin. The higher sulfated LvSF has penta-
sulfated tetrasaccharide building blocks, while the building
blocks of IbSF and HfSF consist of tetrasulfated tetrasac-
charides. Among them, IbSF showed the highest inhibi-
tory activity, while LvSF and HfSF exhibited comparable
inhibitory activities. This suggests that sulfation pattern has
amore pronounced effect on the interactions with S-proteins
of SARS-Cov-2 than the degree of sulfation. Although HfSF
and LvSF are not statistically different, but slightly weaker
than IbSF, these marine sulfated glycans show statistically
different (stronger) inhibitions as compared to heparin. RPI-
27 and RPI-28 showed similar inhibitory activity, indicating
that no obvious correlations between this seaweed-derived
fucoidan molecular weight and binding properties. Despite
the strong inhibitory activity of the binding properties of
all the sulfated glycans evaluated against viral proteins in
the SPR-based assay on surface-immobilized heparin do
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Fig. 7 Solution competition between heparin and RPI-27/ RPI-28. (A)
SPR sensorgrams of the WT SARS-CoV-2 S-protein RBD-heparin
interaction competing with RPI-27/ RPI-28. The concentration of the
WT SARS-CoV-2 S-protein RBD was 1uM mixed with 5 pg/mL of
different RPI-27/ RPI-28 glycans. (B) Bar graphs (based on tripli-
cate experiments with standard deviation) of normalized WT SARS-
CoV-2 S-protein binding preference to surface heparin by compet-
ing with different RPI-27/ RPI-28 glycans. (C) SPR sensorgrams of
the XBB.1.5 SARS-CoV-2 S-protein—heparin interaction competing

not show any distinct correlations with their structural fea-
tures. Our previous study revealed similar outcomes regard-
ing the inhibitory effects of these sulfated glycans against
other emerging SARS-CoV-2 variants and the Monkeypox
virus [16]. It is known that sulfation levels (electronegativ-
ity density) are not the only factor for enhancing affinity
for protein interactions. The overall structure found in the
binding unit of the sulfated polysaccharide is the key factor
regulating the binding quality. In fact, the addition of sulfate
group(s) at certain sites of the composing monosaccharides
of the binding units can lead to a deleterious outcome as
shown before for the marine sulfated glycans in interactions
with blood (co)-factors [35] and heparin hexasaccharides in
interactions with fibroblast growth factor-1 [36].

It is well known that heparin binding proteins (HBP)
require minimum chain size of heparin oligosaccharide
and most of the interactions are chain size dependent. In
our previous competition SPR studies using heparin oligo-
saccharides, indicated that high affinity binding of SARS-
Cov-2 S-protein RBDs to heparin requires chain length
greater than 18 [37]. The MWs of the marine sulfated
glycans are the following: IbSF (>100 kDa), IbFucCS
(~75 kDa), HfSF (>100 kDa), HfFucCS (~ 50 kDa), LvSF
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with different RPI-27/ RPI-28 glycans. The concentration of the the
XBB.1.5 SARS-CoV-2 S-protein RBD was 1uM mixed with 5 pg/mL
of different RPI-27/ RPI-28 glycans. (D) Bar graphs (based on tripli-
cate experiments with standard deviations) of the normalized XBB.1.5
SARS-CoV-2 S-protein RBD binding preference to surface heparin by
competing with different RPI-27/ RPI-28 glycans. Statistical analysis
was performed using an unpaired two-tailed t-test (*: p <0.05 com-
pared with the control)

(=100 kDa), PpFucCS (~50 kDa) [15, 33, 38-39]. Gen-
erally speaking, the SF molecules have high MWs above
hundred(s) of kDa while the FucCS molecules show MWs
around 50-70 kDa. Since the MWs of all FucCS and SF
molecules are commonly high, it is not believed that their
MWs are dictating the distinct interactions with the omicron
RBDs as seen in this work. Two fucoidans with different
MWs: RPI-27 (MW ~ 100 kDa) and RPI-28 (MW ~ 12 kDa),
but showed comparable inhibitory activity. In order to
obtain a whole picture on the structure-activity relationship,
more studies are needed to test the inhibitory activities using
different sizes of oligosaccharides sulfated marine glycans
in our future work.

I1C5 values for heparin, IbSF, IbFucCS and PpFucCS for
inhibition of WT/XXB.1.5 S-protein—heparin were mea-
sured (Table 2 and supplemental Figure S1 and S2). The
ICy, values agree with the inhibition activities from the sin-
gle concentration measurements.
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Table 2 IC;, values (ng/mL) of heparin, IbSF, IbFucCS and PpFucCS for inhibition on WT/XXB.1.5 S-protein RBD-heparin interaction

Heparin IbSF IbFucCS PpFucCS HfSF HfFucCS LvSF RPI27 RPI28
WT 31 17.4 6.7 6.1 23.6 20.5 22.3 25.6 28.1

(x4.D)* (£2.2)* (+0.5)* (+0.4)* (£1.4)* (£2.1)* (= 1.8)* (£2.3)* (£3.1)*
XBB.1.5 27.6 16.9 10.5 9.7 20.6 21.8 19.0 25.1 232

(£1.7)* (+1.2)* (+0.9)* (£0.7)* (£1.9)* (+1.6)* (£1.1)* (+2.6)* (+2.0)*

*Values were obtained through SPR measurements by analyzing the binding of S-protein RBD (WT or XBB.1.5) to surface heparin in competi-
tion with corresponding sulfated glycans. Standard deviations (+ SD) were calculated based on triplicate SPR measurements

Conclusion

SARS-CoV-2 RBD of S-proteins (WT and XBB.1.5)
strongly bound to surface immobilized heparin. SPR com-
petition assays were conducted to analyze the solution com-
petition between heparin immobilized on the surface and
ten sulfated glycans from marine sources (IbSF, desIbSF,
IbFucCS, desIbFucCS, PpFucCS, LvSF, HfSF, HfFucCS,
RPI-27 and RPI-28). Our finding demonstrated that all the
eight naturally occurring marine-sourced sulfated glycans
(IbSF, IbFucCS, PpFucCS, LvSF, HfSF, HfFucCS, RPI-27
and RPI-28) provided striking inhibitory activity of chip-
surface heparin binding to the WT and XBB.1.5 RBD of
S-proteins, whereas the inhibitory activity of chemically
desulfated IbSF IbFucCS (desIbSF and desIbFucCS) were
found to be very low. This data reveals that the sulfated
glycans derived from sea cucumbers and seaweed exhibit
great potential as natural inhibitors of evolving variants of
SARS-CoV-2 by efficiently attaching to viral S-proteins.
The study of molecular interactions, particularly the degree
of sulfation, will pave the way for developing novel thera-
peutic approaches to prevent and treat the rapidly evolving
SARS-CoV-2 disease. To further approve the antiviral ther-
apeutic potential of these sulfated marine glycans, detailed
structure-activity relationship, cell-based assay (in vitro)
and animal-based (in vivo) evaluation are proposed in our
future study.
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