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Abstract—Here, we report a novel method for automated
characterization of bulk tissue 3D spatial properties based on
reverse engineering-driven non-planar tool path planning and
robotically-directed sensing. The method incorporates informa-
tion on object (e.g., tissue) and inspection tool (e.g., sensor)
geometry for automated inspection of tissue mechanical and
dielectric properties across macroscopic nonplanar domains as
large as 44 cm?. The process avoids the need for manual sensor-
tissue integration processes. The impact and the utility of the
method were demonstrated by automated mapping of 3D spatial
distributions of mechanical and dielectric properties of plant
and animal tissues using multiple complementary impedimetric-
based sensors of varying types and form factor, including rigid
micro-electromechanical systems (MEMS) and flexible multi-
functional fibers. Applications to automated characterization of
food quality (e.g., type and age) are provided, including 3D
spatial mapping of plant and animal tissue mechanical and
dielectric property distributions. Ultimately, automated methods
for 3D spatial inspection of plant and animal tissue properties
are critical to agriculture, food processing, organ transplantation,
and biomanufacturing industries.

Note to Practitioners—This article is motivated by the need
for automating the inspection of soft 3D biological objects.
Here, we present a method that generates 3D quality maps of
tissue properties using several sensors. The proposed tool path
planning program outputs a customized tissue-conforming path
for inspection based on the topographical features of the tissue.
Hence, this method enables high-throughput, spatially-resolved,
minimally-invasive, and reliable inspection of soft 3D biological
objects. Applications to inspection of food quality were provided
using two impedimetric-based sensors. Practitioners can directly
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apply the framework to inspection of other tissue properties
and soft objects. This work provides an advance in automated
methods for inspection, and real-time monitoring of tissue 3D
property distributions, which reduces the need for manual
tissue handling and requirement for sensor-product interface
prior to characterization. This work can be implemented in
various biomanufacturing applications and industries, including
food safety and quality control, tissue engineering, and organ
transplantation, to ensure the quality and safety of macroscopic
tissue-engineered medical and food products.

Index Terms— Automated sensing, bioimpedance imaging,
nonplanar path planning, high-throughput characterization,
automated inspection.

I. INTRODUCTION

UTOMATED inspection methods provide economical,

convenient, and accurate quantitative analysis of sam-
ples and products in various industries including agriculture,
pharmaceutical, and biotechnology [1], [2], [3]. Commonly,
fluorescence microscopy is used as a noninvasive inspection
tool in life-science studies as it enables the visual inspection of
biological specimens with sizes ranging from sub-micrometers
to millimeters [4]. However, recent developments in biotech-
nology have shifted the focus of inspection from molecular and
cellular products to tissue-based systems and products, includ-
ing mesoscopic (i.e., millimeter to centimeter) and macro-
scopic tissues and organs [5], [6], [7]. Impedimetric sensing
methods have emerged as versatile measurement format for
quantification and monitoring of various tissue characteristics,
including composition [8], [9], [10], cell viability [11], cell
type [12], extent of differentiation [13], [14], chemosensi-
tivity [15], and organ assessment [16]. Thus, impedimetric
sensing can be leveraged for monitoring various tissue char-
acteristics, properties, and physiological processes.

Ensuring the quality and safety of macroscopic tissue-
based products are essential in various areas including the
food industry [17], tissue engineering [18], [19], and organ
transplantation [20]. Sensing of tissue impedance via sur-
face contact electrodes, often referred to as bioimpedance
monitoring, has been leveraged for the assessment of health
and quality of animal and plant tissues, such as engineered
animal and plant tissues and foods, as it enables monitoring
of tissue composition, structure, and physiological processes
[17], [21], [22], [23], [24]. Electrical Impedance Spectroscopy
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(EIS) via surface-based two-, three- and four-electrode con-
figurations has been used as a non-destructive inspection
method to characterize various fruits and vegetables including
apples, bananas, lettuce, mangoes, and strawberries [21], [22].
For example, Chowdhury et al. showed that the electrical
impedance of bananas was correlated with the ripening process
by analyzing impedance and phase angles in a frequency range
from 50 Hz to 1 MHz for 6 days [23]. Yovcheva et al. argued
that the changes in the electrical properties of the apples can
be attributed to the changes in the relative moisture content
during aging [24]. They performed impedance measurements
in a frequency range from 30 Hz to 30 MHz on the cylindrical
samples cut from the apples with a length of 46 mm and
a diameter of 20 mm. Ibba et al. evaluated the impedance
changes on apples and bananas for 13 days and showed the
relationship between fruit ripening and the impedance in a
frequency range from 100 Hz to 85 kHz [22]. They used
a total of four electrodes placed at a 3 cm distance and
then averaged the measurements obtained from multiple two-
electrode configurations to achieve an output representing the
entire fruit. Also, Mousa et al. showed the effect of the
freezing and heating injuries on the bioimpedance of several
vegetables including tomatoes, eggplants, and cucumbers over
a frequency range of 10 Hz to 200 kHz using 2 electrodes-
configuration [25]. Recently, Yoshimoto-Haramura et al. used
bioimpedance measurements to predict the percentage of liver
steatosis which is considered a main reason for graft failure
after transplantation at multiple frequencies ranging from 2 to
100 kHz using a Fish analyzer DFA 100 which is based on
the tetrapolar circuit method [26].

Although bioimpedance monitoring enables noninvasive
and real-time characterization of bulk macroscale tissues and
organs, the majority of measurement formats are performed
at a single location and do not yield spatial information [27].
However, there remains a need to verify the spatial distribution
of tissue bioimpedance [27], in addition to other tissue prop-
erties. Scanning electrochemical microscopy (SECM), micro-
electrode arrays (MEA), and electrical impedance tomography
are among the spatial impedimetric sensing methods that have
been developed and used in various studies [27]. However,
these methods cannot be applied to generate 3D property
maps for characterization of the samples with freeform sur-
faces, since their applications are limited to samples with
flat surfaces, 2D impedance maps, and the use of fixed
multiple-electrodes probes [27], [28]. To address this chal-
lenge, conforming thin film-based systems have been utilized
for spatial mapping of bulk tissues and organs [29], yet require
manual tissue handling processes associated with sensor-tissue
integration. Hence, it is essential to develop flexible and
automated methods capable of providing mapping of bulk
tissue and organ 3D spatial properties that require minimal
manual processes (e.g., associated with sensor-tissue integra-
tion) and requirement for sensor-tissue integration prior to
characterization.

The reliability of automated tissue inspection methods
depends on precise control of the sensing tool’s position
since the performance of electrical impedance measurements
relies on the contact area between the sensing electrodes
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and the specimen [30]. Therefore, manual position control
of the sensing tool limits the accuracy and reliability of
the sensing system [30]. Recently, several researchers have
investigated robot-assisted electrical impedimetric-based sens-
ing systems [28], [30]. For example, Cheng et al. presented
an electrical impedimetric-based system that generates cross-
sectional 2D impedance maps for detection of heterogeneous
elements under the sample’s surface by scanning the target
area given by the user [28]. Penza et al. incorporated a stereo
vision system to control the motion of the robotic system for
electrical impedimetric-based scanning of a target tissue sur-
face to discriminate the tumor location [30]. Even though path
planning for electrical impedimetric-based scanning applica-
tions is an emerging area, computer-aided inspection planning
for touch-based probes and coordinate measuring machines
(CMM) has been widely studied for automated inspections
of manufactured parts [31]. The main constraint in inspection
path planning is collision detection and automatic avoidance of
obstacles since the sensing tool or tool holder may collide with
the sample and damage both the tool and sample [31], [32].
Various approaches have been proposed to generate collision-
free scanning paths for CMMs [31], [32], [33], [34], [35].
For example, Zhao et al. combined a laser scanner and a
touch-trigger probe to create collision-free inspection plans
for CMM using the product and manufacturing information
data contained in the computer-aided design (CAD) model of
the part [33]. Later, Mineo et al. proposed a Mesh Following
Technique to generate tool paths directly from the points on the
tessellated model (i.e., mesh) without curve fitting and approx-
imation steps [34]. Recently, Liu et al. presented an optimal
path planning system that minimizes the total inspection time
for free-form auto body surfaces using simulated annealing-
based optimization algorithm [32]. However, CAD or mesh
models containing the topographic information of the part are
required inputs for the inspection path planning applications.
Reverse engineering (RE) techniques, such as 3D scanning,
computed tomography, and magnetic resonance imaging, are
utilized to obtain 3D models of organs or other anatomical
structures in the absence of an existing CAD model [36], [37].
Thus, new methods for inspection path planning that synergize
with 3D scanning-based reverse engineering workflows could
enable the spatial impedimetric characterization of macroscale
tissues and organs with freeform surfaces. In addition, there
remains a need to characterize additional properties, such as
mechanical properties [18].

Here, we report a novel method for automated character-
ization of bulk tissue and organ 3D spatial properties based
on reverse engineering-driven non-planar tool path planning
and robotically-directed sensing. Our adapted point cloud-
based path planning (PCPP) algorithm generates a customized
sensing path based on the tissue surface geometry acquired
by the 3D scanning system, enabling spatially resolved high-
throughput sensing across the inspection area specified by
the user. We demonstrate automated 3D spatial mapping of
bulk tissue impedance and mechanical properties using real-
time impedimetric monitoring via multifunctional fiber and
piezoelectric cantilever sensors, respectively. Applications to
inspection of food quality were provided, including potential
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for automated inspection of meat and fruit type, composition,
and age. This work provides an advance in automated methods
for inspection, and monitoring of bulk tissue 3D spatial
properties via robotically-directed sensing, which reduces the
need for manual tissue handling and requirement for sensor-
product interface prior to characterization.

II. MATERIALS AND METHODS
A. Materials

Lead zirconate titanate (PZT-5A; 72.4 x 72.4 x 0.127 mm?)
with nickel electrodes was purchased from Piezosystems
(Woburn, MA). Borosilicate glass was purchased from VWR.
Glass cylinders and ethanol (200 proof) were from Fisher Sci-
entific. Polyurethane (Fast-Drying) was from Minwax. Epoxy
(EA 1C-LV) and cyanoacrylate (409 Super Bonder) were
from Loctite. Polycarbonate (PC) film was from Laminated
Plastics. Copper wires (16 gauge) and polyvinylidene fluo-
ride were from McMaster-Carr. 5-minute epoxy was from
Devcon. Dichloromethane was purchased from Sigma-Aldrich.
Ultrapure deionized water (DIW) was from a commercially-
available DIW system (Direct-Q 3UV; Millipore). Polylactic
acid (PLA) filament was purchased from LulzBot. Pluronic
F-127 (PF127) was from MilliporeSigma. Silicone (SI 595
CL) was from Loctite.

B. Sensor Fabrication

Piezoelectric-excited millimeter cantilever (PEMC) sensors
and multifunctional fiber impedimetric sensors were selected
for spatiotemporal sensing of animal and plant tissue mechani-
cal properties and bioimpedance characteristics (e.g., dielectric
property), respectively. PEMC sensors were fabricated from
lead zirconate titanate (PZT) and borosilicate as described in
previous studies [38], [39]. The resulting PEMC sensor exhib-
ited a rectangular geometry of 3 x 1 x 0.127 mm?® (L-w-t),
where L, w, and ¢ represent the cantilever length, width,
and thickness, respectively. Hollow multifunctional fibers were
fabricated using PC films and copper wire as described in
previous studies [14], [40]. The resulting hollow fiber sensors
exhibited a cylindrical geometry with a diameter of 0.5 mm
and a length of 20 mm The spacing between the embedded two
copper electrodes was about 0.3 mm. Copper electrodes were
exposed by a flat cutting at the sensing end. At the other end,
20-mm-long copper wires were exposed to serve as connecting
leads by etching PC using dichloromethane. 5-min epoxy was
applied at the connecting end to prevent contact between
the two copper wires. While copper electrodes were used in
this study, the electrode material in contact with the object
can be subsequently modified, such as via physical vapor
deposition. The sensing devices were affixed to a three-axis
robot (MPS75SL; Aerotech) for the spatiotemporal biosensing
process.

C. Measurement Principle and Data Acquisition

The resonant frequency (f;,), phase angle at resonance (¢,),
and impedance (Z,) at resonance of PEMC sensors were
continuously monitored with a vector-network analyzer with

an impedance option (E5061b-005; Keysight). The sensor’s
dynamic mechanical response, here, the frequency response,
was obtained via electromechanical coupling effects using
electrical impedance analysis, which provides the electrical
impedance magnitude (|Z|) and phase angle (¢) spectra of the
piezoelectric layer (|Z] and ¢ vs. frequency (f), respectively).
Electrical impedance analysis was performed using a stimulus
amplitude of 100 mV AC and zero DC bias across a frequency
range f, = 10 kHz. Sensor signals (f,, ¢,, and Z,) were
acquired in real-time using a custom MATLAB program.

The impedance response of the multifunctional fiber sensors
was monitored using a potentiostat (Interface 1010E, Gamry
Instruments) using a two-electrode format. The two copper
electrodes served as the working and counter electrode. The
electrical impedance response of the system, which provides
the electrical impedance magnitude (| Z|) and phase angle (¢),
was obtained at 10 kHz using an AC voltage of 10 mV
and zero DC offset with a sample time of 1 s. The fixed
monitoring frequency (10 kHz) was selected as previous
studies on bioimpedance analysis on tissues and cells suggest
that the maximum relative difference is observed at 10-20 kHz
[14], [41]. The object’s tissue properties can subsequently be
quantified via calibration (see Section I).

D. Spatiotemporal Sensing Process Using Point Cloud-Based
Path Planning

Previously reported point cloud-based path planning (PCPP)
algorithm for non-planar 3D printing process [42] was mod-
ified to generate a collision-free path planning for inspection
of free-form surfaces. The workflow of the proposed method-
ology consisted of three steps: point cloud generation, regis-
tration and preliminary path planning, and collision detection
and corrections.

E. Point Cloud Generation

The point cloud generation process started by placing three
user-defined reference points (~1 mm diameter) around the
perimeter of the object using removable stickers or a black
marker, or by placing the object on a pre-marked stage.
The object was then scanned using a single camera-projector
structured-light scanning system (HP 3D Structured Light
Scanner Pro S2; HP) to acquire the point cloud data following
our previously reported protocols [43], [44], [45], [46]. The
objects were scanned by performing 1 to 4 scans over a 360°
rotational angle to capture the surface geometry from various
angles depending on the geometric complexity of the part.
The point cloud data could be acquired in a single scan if it
spans the required sensing area on the part and the reference
points. The point cloud input to the algorithm is required
to encompass the reference points, span the entire sensing
domain, and have sufficient density to effectively represent the
surface features. Later, the point cloud data was converted into
a triangulated mesh file representing the surface topography of
the object. The resulting mesh surface (S) was then transferred
to the computer-aided design (CAD) software (Rhino 6),
which here served as a platform for the implementation of
the reverse engineering-driven tool path planning program.
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F. Registration and Preliminary Conformal Path Planning

The developed algorithm was implemented using the Rhino-
Script tool of Rhinoceros 6 software. 2D filled path was
generated to encompass the sensing domain given by the user
and placed above the point cloud representation of the object
using a custom program implemented in Rhino 6. The user-
defined filled path consisted of continuous lines and curves.
The adapted PCPP program commenced with a registration
process that aligned the mesh surface (S) and user-defined
path to the robot’s reference frame and then projected the
user-defined planar path onto the mesh surface in the z-axis
direction as described in the previous study [42]. The output
of the registration step in the program was a tool path (7) on
the mesh surface, scanning through the user-defined inspection
area with a zigzag pattern, and reference frame-aligned mesh
surface $¢. The pseudo-code is provided in Algorithm 1 of
Supporting Information.

Following the registration and projection steps, inspection
distance (h), safety distance (d), and sensing tool geometry
were obtained from the user by the program. The inspection
(i.e., measurement/characterization) points (M) on the free-
form surface of the object were then generated by dividing
the path curve (T%) based on the inspection distance (k) given
by the user (i.e., one inspection point per /). The inspection
distance was set 2 — 5 mm throughout the study. The i
point in M is denoted by m; = (x;, y;, z;) i= 1,2,...,] where
[ = LL o/ hJ +1. Next, the tool path curve (T¢) was discretized
to generate motion commands capable of resolving the path,
resulting in an array of tool path points, T. The path density
was determined by the metric of two path points per sensing
tool width (w). The j® point on T is denoted by pi =}, ¥,
zj) j=1.2,....k where k = |2L,/w |+1, where L, is the total
length of the user-defined path (i.e., k points along the path).
In this study, the width of the cantilever sensor was taken as
the length of its longest edge (1 mm), and the width of the
fiber sensor as its diameter (0.5 mm). The path points in T
were then offset from the surface along the z-axis direction by
a safety distance d given by the user. The safety distance d was
set as 2 mm throughout the study since it is usually determined
as 2 - 5 mm in contact-based inspection studies [32]. However,
the proposed algorithm is capable of generating collision-free
conformal path planning for a safety distance as small as
0.6 mm as shown in a previous study [42]. The output of this
step of the program is the preliminary tool path points T and
the inspection points M (i.e., measurement/characterization
locations).

G. Conformal Path Planning

Given that the inspection process requires conformal path
planning, the program runs a collision detection and correction
step based on the surface features of the object and the sensing
tool geometry. If a collision is detected, the path points in T
are offset from the surface by modifying the x- and y-axis
coordinates to avoid a collision. Specifically, the path planning
program utilizes the mesh surface representing the surface
topography (5%), the tool path points (T), the sensing tool
geometry as input parameters, and outputs collision-free path
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points conforming to the free-form surface (p;, pjti,...,Pj+n)
that connects two consecutive inspection points (m; and m;1),
where n = 2h/w. This part of the program started by deter-
mining the infeasible inspection points (i.e., locations) that
cannot be reached by the sensing tool whose workspace is
constrained by the tool geometry and the 3-axis cartesian
robot. Two polysurfaces G and Q was generated to simulate
the tool and tool holder geometry, respectively by the program.
The center of the tool tip was positioned at each inspection
point m; to examine if there is an intersection between the tool
holder geometry (Q;) and the mesh surface (§%) representing
the object geometry. Thus, if the program detected a potential
tool-surface collision at a given inspection point, that point
m; was removed from the feasible inspection points array
M. To ensure contact between the sensor and the surface at
the inspection points, the feasible inspection points (m;) were
offset towards the object by 0.5 mm in the z-axis direction.
Next, potential collisions were detected across the tool path
points in T. Similar to the infeasibility detection method, the
tool geometry (G) was positioned along the path to simulate
the tool motion in a way that the center of the tool tip was
placed at each p; in T to detect interference between the tool
(G;) and the object surface (§9). If the program detected a
potential collision at a path point p;, then the path point was
moved laterally away from the surface by L; in the direction
of —V; to avoid interference between the tool and the surface.
L; was calculated as the distance to achieve a lateral safety
gap of 0.1 mm between the closest points on the surface and
the tool.

Vi=Pp5.¢ (1
rj=|pj.q;|-4; € (G;Np; + MV}} 2
Lj=r;—|pj.cj|+0.1 3)

where c; is the centroid of the intersection points list {G; N
S?}, and M is a number greater than the tool width w. The
corrected path points in T were calculated based on two cases
determined by the tool-object intersection:

Casel: There exists no intersection between G; and S¢.

Pj=Dpj 4)
Case2: There exists an intersection between G; and S°.
pj=pj+L;V; (5)

The pseudo-code is provided in Algorithm 2 of Supporting
Information and the flowchart of the overall methodology
is provided in Fig. 1f. The output of the program was
a collision-free conformal path planning for spatiotemporal
sensing, including the inspection points M and travel points
between the inspection points T. For a collision-free path
from m; to m;;i, the tool follows the path p; — m; —
Pj = Pj+1 —>...— Pj+n — Miy1 —> Pjin and waits ¢
seconds at each inspection point to collect the sensor response.
The wait time ¢ was set as 15 seconds for both PEMC
and fiber sensors since sensor response takes approximately
15 seconds to stabilize at the inspection points. The adapted
PCPP program outputs a g-code (e.g., GOI Xx; Yy; Zz;) as
motion control data describing the resulting path planning.
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Fig. 1. (a) Illustration of the automated method for characterization of bulk tissue 3D spatial properties via nonplanar robotically-directed sensing. Photographs
of the piezoelectric-excited millimeter cantilever (PEMC) (b) and multifunctional fiber (c) impedimetric sensors. Phase angle and impedance spectrum of the
PEMC sensor (d) and the fiber sensor (e) over the frequency range of 5 Hz-50 kHz in air. Illustration of the nonplanar inspection path generated by the
adapted PCPP nonplanar path planning algorithm (f) and tissue collision mitigation principle (g). Scale bars = 2 mm.

H. Fabrication of the Spherical Test Part

The hemisphere test part (R = 20 mm, 2 = 15 mm) was
created using CAD software (Rhino 6). The hemisphere part
was selected for characterization of the spatiotemporal sensing
algorithm since the spherical surfaces exhibit challenging topo-
graphical features for conformal path planning [47]. The test
part was fabricated using a plastic extrusion 3D printer (Mini2;
LulzBot) with vendor-recommended settings. Briefly, a linear
velocity of 60 mm/s, layer spacing of 0.18 mm, and gradual
infill density ranging from 10% to 90% were used to fabricate
the test part. Next, Pluronic F127 hydrogel (30 wt%) and RTV
silicone were conformally printed following a circular filled
pattern using the adapted PCPP algorithm across the surface
of the test part with a 20-gauge tapered tip (d = 0.6 mm),
extrusion pressure range of 8-15 psi, and printing speed of
5 mm/s. The conformal 3D printing was performed using a
custom microextrusion 3D printing system, which included a
three-axis robot (MPS75SL; Aerotech), a digital pressure reg-
ulator (Ultimus V; Nordson), and a motion controller (A3200;
Aerotech).

1. Characterization of Test Part and Tissue Properties

The proposed methodology was applied to characterize a
test part and multiple foods, including animal and plant tissue.

(meat), and plant tissue (fruit). Food (meat — beef and fruit —
avocado) was obtained from a local grocer and maintained
at room temperature for 1 h prior to characterization. The
characterization process was completed on the objects using a
3-axis robotic system with a feed rate of 1 mm/s throughout the
study. Prior to freezing-thawing treatment of the food (meat)
samples, the bioimpedance distribution was first characterized
at room temperature. The food samples were subsequently
stored at -18° C for 24 hours and then at 4° C for 24 hours.
The sample was then maintained at room temperature for
1 hour prior to characterization. The total inspection time was
25 seconds per inspection point. The temporal resolution of
the system is determined by the sensing tool’s sampling rate
and stabilization time. The PEMC sensor response to contact
with samples of varying Young’s modulus was calibrated by
micro-indentation studies on polydimethylsiloxane (PDMS)
standards [48]. The sensor signals were continuously recorded
during the calibration process. The signals were first allowed
to stabilize with the PEMC sensor positioned above the surface
of the PDMS standard (formed in a single well of a standard
6-well plate). The sensor was then lowered at a constant
rate using a manual micromanipulator until sample contact,
which was identified as the position at which the PEMC
sensor signal underwent a change greater than 10 times the
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signal-to-noise ratio. This initial contact position was referred
to as the position associated with zero strain. The sensor
signals were then allowed to stabilize. The sensor response was
then continuously recorded as the penetration depth underwent
several step changes. Neglecting the thickness of the PEMC
coating, the microcontact area for the PEMC sensor was
wi(0.127 mm?).

J. Data Analysis and Image Processing

The sensor signals were continuously recorded during the
spatiotemporal sensing process. Thus, the sensor data at the
inspection points (i.e., when the sensor was in contact with
the object) was isolated from the sensor data in air (i.e., when
the sensor was traveling to the next inspection point) using
the peak analyzer in Origin Pro 2021, and the average sensor
response was recorded for each inspection point. The sensor
response could not be recorded when the sensor failed to be
in contact with the sample. Hence, the sensor response data
was matched with the inspection points using the timestamps.
The inspection points on the test part were next categorized as
Pluronic F127 hydrogel and silicone based on the correspond-
ing material type at that point using image analysis. Similarly,
the points on the animal tissue were labeled as muscle and
adipose tissue. Photographs of the tissue were acquired by
using a digital camera (D7200; Nikon) from the top view
before the spatiotemporal sensing process. The photographs
were analyzed using image analysis software (ImageJ; NIH)
and CAD software (Rhinoceros 6). The adipose tissue was
first isolated using the ‘color threshold’ command to filter the
white color associated with the adipose tissue. The filtered
image was then transferred to CAD software along with the
inspection points to detect the corresponding tissue type. The
same process was applied to the test part to isolate the Silicone
material using image analysis and to categorize the inspection
points.

K. Statistical Analysis

Statistical analysis was completed in Origin Pro 2021.
Student’s or Welch’s t-test was used for the experiments except
for the before/after freezing the animal tissue experiment
where paired t-test was used. *, **, and *x*:* indicate a p-value
(p) less than 0.05, 0.01, and 0.001, respectively. The number
of inspection points (n) is specified for each experiment.

III. RESULTS AND DISCUSSION

A. Concept of Robotically-Directed Nonplanar Tissue
Property Inspection via Real-Time Combinatorial
Impedimetric Sensing

Monitoring of spatial distributions of tissue property is
typically done using conforming sensor arrays, which requires
manual integration of sensors with target tissue and continu-
ous sensor-tissue contact. An automated robotically-directed
sensing method offers the ability to choose dynamic sam-
pling locations and have minimal impact on the surface of
the tissue. As shown in Fig. 1, the automated method for
characterization of bulk tissue and organ 3D spatial properties

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

begins with nonplanar toolpath generation for the robotically-
directed sensing process. A nonplanar inspection path was
generated across the object (e.g., tissue) surface for PEMC
and fiber sensors (see Fig. la-c) based on point cloud data to
cover the user-defined inspection area and safety tolerance (d).
PEMC sensors facilitate the characterization of hydrogel vis-
coelastic properties via electrical impedance spectroscopy and
real-time monitoring of circuit (sensor) resonant frequency,
quality factor, and phase angle across the 10 — 50 kHz fre-
quency range [49], [50], [S51]. Multifunctional fibers facilitate
characterization of tissue bioimpedance via electrochemical
impedance spectroscopy and real-time impedimetric monitor-
ing of circuit (sensor) impedance at a fixed frequency (10 kHz)
[14], [41], [52]. PEMC sensors and multifunctional fiber
sensors have been used previously for long-term liquid-based
and in vivo sensing studies. Thus, the sensors are attractive
sensors for automated inspection of tissue properties. Phase
angle and impedance spectrums of the PEMC and fiber sensors
over the frequency range of 5 Hz - 50 kHz in air are provided
in Fig. 1d and e, respectively. An illustration of the inspection
path generated by the adapted PCPP algorithm is shown in
Fig. 1f and g, which avoids potential tissue damage via
tool collision. A description of the adapted PCPP algorithm
for tissue inspection path generation is also provided in
Fig. 2.

B. Validation of the Automated Method for Characterization
of Bulk Tissue 3D Spatial Mechanical Properties Using a
Test Part

Having described the measurement principle, we next
validated the method by characterization of 3D test parts
that exhibited varying spatial distributions of tissue property.
To establish a 3D test part that exhibited a distribution of
mechanical properties, patterns of hydrogel and silicone were
printed onto a 3D test part. The materials in the regions
from the inner circle through the outer circle were hydrogel,
silicone, and hydrogel, respectively (Fig. 3a and b). The
inspection path corresponding to a distance of 2 mm between
adjacent inspection (i.e., measurement/characterization) points
is shown in Fig. 3a and b. Fig. 3c shows the representa-
tive temporal PEMC sensor resonant frequency and phase
angle responses for three measurement events. The spatial
distribution of the sensor response at each measurement loca-
tion is obtained based on the known relationship between
measurement time and tool path location. The ability of the
PEMC sensor to detect the stiffness of the sample through
microcontact measurement is shown in Fig. 3d. Fig. 3e shows
the 3D spatial distribution of the PEMC sensor phase angle
response across the test part from a top-down perspective.
Fig. 3f and g highlight the 3D spatial distributions of the
PEMC sensor phase angle and resonant frequency responses,
responses, respectively. The material type corresponding to
each inspection point obtained using image analysis is also
highlighted in Fig. 3h. As shown in

Fig. 3i, the phase angle of the sensor in Pluronic F127
hydrogel (n = 85 inspection points) was significantly dif-
ferent than the phase angle in silicone (n = 94 inspec-
tion points) (p< 0.001), which has a significantly lower
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Fig. 2. Description of the adapted PCPP program for nonplanar inspection path generation.
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Highlight of the automated method for characterization of soft object 3D spatial properties via nonplanar robotically-directed sensing on the test

part with a spherical surface. a) Photograph and associated scanning data. b) Rendered projected tool path data onto point cloud data. c¢) Partial time-series
data showing the observed cantilever impedance phase angle and resonant frequency as the tool travels through the inspection points collecting data in air
and on the sample. d) Calibration of PEMC sensor for characterization of material Young’s modulus via microcontact measurement using PDMS standards.
e) 2D spatial distribution of phase angle at the inspection points on the object. 3D spatial map of the phase angle (f) and the resonant frequency (g) across
the object. h) 2D map of the material types corresponding to each inspection point. Comparison of the phase angle (i) and the resonant frequency (j) of the

cantilever sensor on Silicone and Pluronic F127. (***p < 0.001).

modulus (0.02-0.03 vs. 1.6-4.1 MPa) [53], [54], [55]. The
estimated boundaries between materials are highlighted in
Fig. 3e. A comparison of the estimated boundaries with
the part’s 3D spatial distribution of properties is shown
in Fig. 3h. We note that while the PEMC sensor phase
angle response exhibited a significant correlation with the
mechanical properties (Fig. 3j), the resonant frequency

response did not provide a direct correlation, which is
consistent with previous studies. For example, the phase
angle and the frequency changed from ¢ = —85.79 =+
0.96° and f = 58.63 = 1.56 kHz, respectively, to ¢ =
—86.42 + 0.82° and f = 58.63 £ 1.56 kHz as the sensor
moved from contact with Pluronic F127 (G’ = 28.6 kPa) [56]
to silicone (E = 0.44 MPa) [44].
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Fig. 4. Application of the automated inspection method for characterization of meat tissue and food (meat) quality to obtain bulk tissue 3D spatial mechanical
properties via nonplanar robotically-directed sensing using PEMC sensors. Photograph (a) and associated scanning data (b) of the food sample (muscle tissue).
(c) Rendered projected tool path data onto point cloud data. d) 2D spatial distribution of the resonant frequency of the cantilever sensor at the inspection
points on the sample. 3D spatial map of the phase angle (e) and the resonant frequency (f) across the sample. g) 2D map of the tissue types corresponding to
each inspection point. Comparison of the phase angle (h) and the resonant frequency (i) of the cantilever sensor on muscle and adipose tissue. (**p < 0.01).

C. Automated Characterization of Muscle Tissue and Food
(Meat) Quality (Adipose (Fat)-to-Muscle Tissue Distribution)
via Robotically-Directed Conformal Sensing Using PEMC
Sensors

Having demonstrated that the method enables mapping of
the non-uniform mechanical property distribution of a test part
that coincided with the non-uniform distribution of hydrogel
and elastomer coatings, we next applied the method for char-
acterizing the spatial distribution of mechanical and dielectric
properties of natural tissues. The composition of meat prod-
ucts, such as the adipose tissue (fat) ratio, is recognized as
being an important quality measure since adipose tissue carries
an important contribution to the taste [17], [57], [58], [59]. The
resulting adipose (fat)-to-muscle tissue ratio can be used as an
estimator for the sensory quality of meat [17], [57], [58], [59].
The tool path associated with the nonplanar inspection of the
meat sample is shown in Fig. 4a-c. The Young’s modulus of
adipose and muscle tissue has been previously characterized
as 2-4 and 12-18 kPa, respectively [60], [61], [62]. Thus,
the results associated with Fig. 3 suggest that the method
may facilitate automated characterization of the adipose tissue
distribution throughout the muscle tissue. Recall, our control
studies shown in Fig. 3 show that robotically-directed sensing
via PEMC sensors facilitates resolution of the 3D spatial dis-
tribution of a soft object’s mechanical properties. The spatial

distributions of the phase angle and the resonant frequency of
the PEMC sensor across the meat are presented in Fig. 4d-f
(see Video S1). The estimated boundaries between the tissue
contents are highlighted on the 2D property map of the meat
in Fig. 4d. Fig. 4g shows the tissue type distribution on the
inspection points. As shown in Fig. 4h and i, the difference in
the PEMC sensor phase angle on muscle and adipose tissue
was not significant, while the resonant frequency on muscle
(n = 170 inspection points) was significantly different than
on adipose tissue (n = 35 inspection points) (p= 0.003) (¢ =
—87.05 £ 0.39° and f = 49.37 &+ 0.54 kHz for muscle tissue
vs. ¢ = —87.19 £ 0.57° and f = 49.83 £ 0.76 kHz for
adipose tissue).

D. Automated Characterization of Plant Tissue and Food
(Fruit) Quality (Ripeness) via Robotically-Directed
Conformal Sensing Using PEMC Sensors

Having applied the method to automated characterization
of bulk muscle tissues that exhibit a variation of surface
height across a 44 cm? area, we next applied the method to
characterization of bulk plant tissues that exhibit increasingly
complex shape. Several studies show that the changes in the
mechanical properties and electrical impedance of fruits are
correlated with the physiological state of the fruits such as
apples, bananas, and avocados [22], [63], [64], [65], [66], [67].
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Fig. 5.

Application of the automated inspection method for characterization of plant tissue and food quality (fruit ripeness) to obtain bulk tissue 3D spatial

mechanical properties via nonplanar robotically-directed sensing using PEMC sensors. Photograph (a) and associated scanning data (b) of the fruit sample
(avocado). ¢) Rendered projected tool path data onto point cloud data. d) Photograph showing the PEMC sensor at an inspection point on the fruit during
the characterization process. 3D spatial map of the resonant frequency and phase angle across the unripe (e) and ripe fruit (f). Comparison of the resonant
frequency (g) and the phase angle (h) of the cantilever sensor across the unripe and ripe fruit. (***p < 0.001).

Fig. 5a-d show the application of the automated process for
spatial tissue property inspection to characterization of fruit
quality, specifically, the ripeness of avocados. Fig. Se and f
show the spatial distribution of the PEMC sensor resonant
frequency and phase angle across the unripe and ripe avo-
cado, respectively. While the change in phase angle response
between the unripe and ripe samples was insignificant,
as shown in Fig. 5g-h, the resonant frequency of the PEMC
sensor on the unripe avocado (n = 114 inspection points; f =
50.27 £ 0.93 kHz) was significantly different than on the ripe
avocado (n = 103 inspection points; f = 48.67 + 2.49 kHz)
(p< 0.001).

E. Automated Characterization of Muscle Tissue and Food
(Meat) Quality (Bioimpedance Distribution) via
Robotically-Directed Conformal Sensing Using
Multifunctional Fiber Sensors

Having established that PEMC sensors facilitate automated
characterization of bulk tissue 3D spatial mechanical proper-
ties of multiple tissue and food types, we next examined the
ability to characterize additional bulk properties via alternative
sensor selection, such as multifunctional fibers (see Fig. 1).
Fig. 6a-d show application of the method to characterization of
meat quality via automated mapping 3D spatial bioimpedance

distribution using multifunctional fiber sensors. The electrical
impedance of meat (i.e., bioimpedance) can be utilized as a
freshness indicator in quality control, since freezing and thaw-
ing of meat disrupts cellular structure because of ice crystal
formation [17], [68]. Hence, freezing processes impact the
dielectric properties of composite tissues, such as meat [25].
Bioimpedance analysis has also been used to characterize the
adipose tissue (fat) composition in meat products given that
the water content and dielectric properties differ in muscle
and adipose tissues [17], [57]. The spatial distributions of the
tissue impedance (i.e., bioimpedance) at 10 kHz and phase
angle based on the multifunctional fiber sensor before and after
the freeze-thaw cycle are shown in Fig. 6e and f, respectively
(see Video S2). Fig. 6g shows that the meat exhibited a higher
bioimpedance after freezing-thawing treatment than before the
freezing. The bioimpedance was significantly different on the
meat before (n 167 inspection points) and after (n
167 inspection points) (|Z| = 0.13 £+ 0.09 MQ vs. |Z|
0.25 £+ 0.08 M<, respectively; p< 0.001). The difference in
phase angle before and after the temperature treatment was
not significant.

Similar to the tissue type characterization using the can-
tilever sensor (Fig. 3), we also examined whether the phase
angle and impedance are significantly different on adipose
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Fig. 6. Application of the automated inspection method for characterization of meat tissue and food quality (meat freshness) to obtain bulk tissue 3D spatial
mechanical properties via nonplanar robotically-directed sensing using multifunctional fiber sensors. Photograph (a) and associated scanning data (b) of the
meat. (c) Rendered projected tool path data onto point cloud data. (d) Photograph showing the fiber sensor above an inspection point on the meat during
the spatiotemporal sensing process. 3D spatial map of the impedance and phase angle before (e) and after (f) freezing and thawing of the meat. Comparison
of the impedance (g) and the phase angle (h) of the fiber sensor across the meat before and after freezing and thawing. (***p < 0.001). (i) Photograph of
the meat. (j) 2D map of the tissue types corresponding to each inspection point. 2D spatial distribution of the impedance (k) and phase angle (1) of the fiber

sensor at the inspection points on the meat. Comparison of the impedance (m) and the phase angle (n) of the fiber sensor on muscle and adipose tissue.
(***p < 0.001).

and muscle tissue after freezing and thawing using the data the meat and tissue types obtained by image processing on

shown in Fig. 6f. Fig. 61 and j show the top view of the inspection points, respectively. Fig. 6k and 1 show 2D
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spatial property maps for impedance and phase angle across
the meat, respectively. The estimated boundaries between the
tissue types are highlighted in Fig. 6k and 1. As shown in
Fig. 6m and n, the impedance and phase angle on muscle
(n = 133 inspection points) were significantly different than
on adipose tissue (n = 34 inspection points) (p< 0.001).
Specifically, the sensor exhibited an impedance and phase
angle of |Z] = 0.24 £+ 0.08 MQ and ¢ = -63.72 £ 19.34°,
respectively, on muscle tissue, while it exhibited |Z| = 0.30 &
0.07 MQ and ¢ = -80.73 £ 15.59° on adipose tissue.

In summary, this study was motivated by the need for
creating new methods for inspecting the material properties
of soft objects, such as biomanufactured and natural tissues
(e.g., connective tissue or food) or organs, without the need for
placing fixed measurement devices on the object (e.g., using
a conforming wearable sensor or sensor array). However, the
current inspection methods for soft objects are traditionally
based on non-contact image analysis, which may or may not
involve path planning, or wearable sensors (e.g., conforming
sensor arrays) that are fixed to the object. While image-
based methods may provide indirect characterization of some
material properties and performance-quality characteristics,
contact-based sensing modalities provide expanded oppor-
tunities to interrogate material properties. While wearable
sensors provide a useful form factor, wearable sensing can
pose challenges associated with sensor-object interactions and
flexibility in measurement location if the application involves a
case where maintained integration of the sensor may affect the
object quality (e.g., tissue quality) or function. The knowledge
gap that impedes overcoming these challenges of inspecting
soft objects and spatially monitoring the material properties
of soft objects is the lack of understanding for how the
design characteristics and transduction mechanisms of contact-
based material property sensors can inform non-planar path
planning algorithms. The aim of this study was to create and
validate an automated method for characterizing the spatial
distribution of a soft 3D object’s material properties in two
common sensor form factors (e.g., cantilever- and fiber-based
contact sensors). Accomplishing this aim required creating a
non-planar path planning method for milli- to micro-scale
contact-based property sensors, which required establishing
new path planning parameters driven by object geometry, sen-
sor geometry, and the transduction mechanism of the sensor.
Given the extensive use of 3D scanning in biomedical-oriented
reverse engineering applications, we adapted a non-planar path
planning method based on structured-light scanning that was
initially created for conformal additive manufacturing appli-
cations by introducing new path planning parameters based
on the design, transduction mechanism, and measurement
requirements of sensor-based measurement tools for material
property characterization.

The contributions (i.e., advantages) of this method stem
from the use of a robotically-directed sensing principle and
reverse engineering-driven path planning method. While the
use of wearable sensors or conformal sensor arrays for material
property sensing require placement on the object, and often
fixation to the object, this method avoids the need for sensor
placement and fixation to the object. Thus, it can address

challenges associated with sensor placement on soft objects,
such as associated with mechanical mismatch or damaged
caused by sensor removal. Another advantage of this method
based on robotically-directed sensing using non-planar path
planning arises from the flexibility offered in the sensing loca-
tion. For example, the spatial distribution of inspection loca-
tions (i.e., spatial resolution) associated with wearable sensors
or conformal sensor arrays is fixed following fabrication and
placement and fixation to the object. In addition, the spatial
resolution is determined by the design of the sensor array (e.g.,
spacing of array elements). In contrast, the spatial resolution
for property inspection using this method is based on the
performance of the motion control system (e.g., precision and
accuracy) and selected path planning parameters, which can
be rapidly tuned and modified to achieve alternative sensing
locations or spatial resolution of measured properties. Given
the ability to avoid need for sensor placement on objects and
achieve high spatial resolution of property inspection based on
the robotically-directed sensing and flexibility in rapid tuning
and control of the measurement locations via path planning,
this method has advantages in inspection applications that
involving moving (e.g., deforming) soft objects. For example,
the path planning method only requires time associated with
point cloud data acquisition and processing (e.g., registration,
if required) and computational time for the point cloud-based
path planning algorithm, [42] which means that the tool path
could be potentially updated prior to moving the sensor to the
next measurement location.

The path planning algorithm could potentially be improved
by incorporating feedback from the contact pressure of the
sensor during sensing. In addition, the method can also be
improved by use of a five-axis robot that would allow for
improved control of the sensor-object contact angle during
inspection. Adhesion between materials that may be on the
surface of the soft object and sensor components may also lead
to irreversible changes in the sensor signal that may require
in situ sensor cleaning or replacement. Inspection of reflective
or transparent soft objects may also pose a challenge to the
method associated with acquisition of point cloud data, which
is the driver to the point cloud-based path planning method.
Object movement during inspection may also pose a challenge,
but could be mitigated by running the point cloud-based path
planning method in a closed loop [69].

IV. CONCLUSION

This work presented an automated method for character-
izing the spatial distribution of material properties of non-
planar macroscale tissues. Importantly, the method facilitates
automated inspection of spatial tissue quality without the
need for manual or prolonged sensor-tissue integration. The
utility and impact of the method was validated by application
to automated inspection of food quality based on the use
of multiple impedimetric sensors that facilitate monitoring
complementary tissue quality attributes, including 3D spatial
distribution of mechanical properties and bioimpedance.

Here, we reported a novel method based on reverse
engineering-driven non-planar path planning and robotically-
directed sensing for automated inspection of 3D spatial
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material property distributions. This method is potentially
useful for automated inspection of foods and tissue-based
products, such as additively manufactured implantable and
consumable tissues and organs. Future studies may focus
on developing closed-loop controlled inspection system by
integrating displacement or pressure sensor feedback into
the proposed conformal sensing methodology to ensure both
sensor-tissue contact and constant contact pressure. Closed-
loop controlled inspection systems may enable sensing on
tissues and organs that are challenging for the 3D scanning
process [69].
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