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ABSTRACT: Interactions between amino acids and water play an important role in determining the stability and folding/unfolding,
in aqueous solution, of many biological macromolecules, which affects their function. Thus, understanding the molecular-level
interactions between water and amino acids is crucial to tune their function in aqueous solutions. Herein, we have developed
nonbonded interaction parameters between the coarse-grained (CG) models of 20 amino acids and the one-site CG water model.
The nonbonded parameters, represented using the 12−6 Lennard Jones (LJ) potential form, have been optimized using an artificial
neural network (ANN)-assisted particle swarm optimization (PSO) (ANN-assisted PSO) method. All-atom (AA) molecular
dynamics (MD) simulations of dipeptides in TIP3P water molecules were performed to calculate the Gibbs hydration free energies.
The nonbonded force-field (FF) parameters between CG amino acids and the one-site CG water model were developed to
accurately reproduce these energies. Furthermore, to test the transferability of these newly developed parameters, we calculated the
hydration free energies of the analogues of the amino acid side chains, which showed good agreement with reported experimental
data. Additionally, we show the applicability of these models by performing self-assembly simulations of peptide amphiphiles.
Overall, these models are transferable and can be used to study the self-assembly of various biomaterials and biomolecules to develop
a mechanistic understanding of these processes.

1. INTRODUCTION
Among the hundreds of amino acids found in nature, 20 amino
acids make up all proteins in the human body.1−3 The
interactions of these amino acids with water are instrumental
for accurate protein folding and maintaining the stability of
these complex structures, thus influencing their overall
functions.4−6 For example, hydrophobic amino acids, when
clustered in the interior of cytoplasmic proteins, may form
ligand-binding pockets essential for signaling and enzyme
catalysis.7−9 Similarly, hydrophilic amino acids in the interiors
of transmembrane proteins are essential for extracellular
transport of water and ions, thus maintaining cellular
homeostasis.10,11 Moreover, interactions between amino acids
and water are advantageous in creating novel peptide-based
(macro)molecules including artificial peptide polymers and
peptide amphiphiles with unique properties and function-

alities.12−14 A combination of both hydrophilic and hydro-
phobic amino acids in elastin-like polypeptides (ELPs)�a
class of artificial peptide polymers�and their interactions with
water is believed to be responsible for their lower critical
solution temperature (LCST) behavior.13,15 In the case of
peptide amphiphiles (PAs), the sequence of peptides, their
concentration, and interactions with water results in self-
assembled structures, such as micelles, fibers, rods, and many
more, regulated by environmental conditions such as temper-
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ature and pH.16−19 Several experimental and computational
studies have shown the self-assembly of PAs into micelles and
consequently fibers, having micron-sized lengths and nano-
meter-sized diameters (1−10 nm).12,18,20−22 Moreover, self-
assembled structures of PAs have shown great promise in
biomedical applications like bone regeneration, tissue engineer-
ing, gene and drug release, regenerative medicine, etc.18,22,23

Hence, understanding amino acid−water interactions is
essential in order to gain insight into the conformations and
function of many biomolecules in aqueous solutions.
Processes such as self-assembly and folding/unfolding of

proteins occur at the length and time scales of nanometers and
microseconds, respectively.24−26 Although the development of
novel experimental methods has enabled accurate character-
ization of these self-assembled nanostructures, following the
self-assembly pathway still remains challenging.27 Conse-
quently, during the past decades, computational methods
such as coarse-grained (CG) molecular dynamics (MD)
simulations have drawn a lot of attention to provide in-depth
insights into the mechanisms governing these molecular
processes.12,14,28−32 However, the accuracy of these results
depends significantly on the intra- and intermolecular
interaction parameters between the CG beads and the solvent,
defined by the force-field (FF).24−26 Several research groups
have developed CG models of amino acids, but most of these
studies have used implicit water models, which makes it
impossible to understand the structure of the solvent at the
solute−solvent interfaces.33 Of the few models that can be
used with explicit water beads,34−36 the Martini FF, one of the
most common models for protein CG MD simulations, is also
known to have limitations like its inability to predict the Gibbs
hydration free energy of CG molecules.24,37−39 In addition,
these models may underestimate the characteristics of self-
assembled structures and may not be suitable to study elastin-
like peptides that exhibit a lower critical solution temperature
(LCST).12,40,41 Thus, it is important to develop FF parameters
to accurately model the interactions between amino acids and
water. Han et al. developed a CG protein model by employing
a united atom representation of all 20 amino acids.42 The
nonbonded interactions were tuned by fitting experimentally
obtained properties such as densities, self-solvation free
energies, and hydration free energies of over 100 organic
molecules, and the transfer free energies of side-chain
analogues of various amino acids from cyclohexane to water
were used to assess the model’s performance. Similarly, Ha-
Duong et al. introduced a numerically efficient CG water
model to simulate the solvation effects of CG protein models
developed by Basdevant et al.43,44 Their water model was
represented using polarizable pseudo-particles and accurately
described solvation properties, such as hydrophobic forces
between two hydrophobic solutes (amino acids) and electro-
static solvation free energies of 17 peptides, which were further
validated by comparison with all-atom MD simulation results.
However, these amino acid models in the CG water were not
tested for the solvation of polypeptides or investigated for
other experimental behaviors (e.g., self-assembly of peptide
amphiphiles). Furthermore, additional studies on CG protein
models can be found in several review papers.45−51

In the present study, we employed an intermediate mapping
scheme for amino acids, balancing between the united atom
model and larger CG beads used in the existing models.46,52−55

This scheme retains the overall shape and local structure (e.g.,
rings, hydrophilic/hydrophobic groups, etc.) of the amino

acids while facilitating computationally efficient MD simu-
lations of larger systems for up to several microseconds. The
FF parameters for these structurally accurate CG models of
amino acids, which can capture several experimental dipeptide
properties, including density, surface tension, and heat of
vaporization, have been previously developed in our group.56

Herein, using these transferable CG amino acid models, we
developed the nonbonded interaction parameters between
amino acids and our 2:1 mapped water model such that they
can capture the Gibbs hydration free energy of dipeptides
obtained from all-atom (AA) MD simulations. Note, our CG
water model has demonstrated accurate reproduction of
various important physical, structural, dynamical, and
thermodynamic properties of water, and it has been used
with different soft-material systems.24,25,33,57−59 In the present
study, to validate the accuracy and test the transferability of the
newly developed interaction parameters between amino acid
and water CG beads, we calculated the hydration free energies
of the analogues of their side chains, which showed a good
agreement for most cases with an error within 10% as
compared to their experimental values. We have employed
these parameters in CG MD simulations to study the self-
assembly of two different PAs, namely, c16-AHL3K3-CO2H
and (AF)6H5K15 (also known as FA32), thus demonstrating
their applications in studying self-assembly processes on
biomolecules.12

2. METHODS AND COMPUTATIONAL DETAILS
2.1. Force-Field Equations. In order to conduct CG MD

simulations, we used CG mapping schemes that were previously
developed in our group, including a one-site water model representing
two water molecules in one CG bead59 and CG amino acids
possessing 2:1, 3:1, and 4:1 mapping schemes at most (having 2, 3,
and 4 heavy atoms in one bead with their associated hydrogens).56

The mapping schemes of the 20 amino acids used in this study are
shown in Table S1. Note that all of the CG beads were parameterized
to be charge-neutral in order to accelerate MD simulations by
eliminating the time-consuming electrostatic energy calculations.
Hence, similar to many existing CG models, they cannot be used to
study processes driven by pH and/or where pH plays a critical
role.45−47,49,50,60 Moreover, charge neutrality also limits their
applications in investigating systems where electrostatic interactions
are critical. Consequently, caution must be exercised when using these
models to ensure that they are suitable to solve the problem at hand.

The FF equation used to define the interactions between CG beads
is presented below
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Here, the first three terms represent energy contributions from
bonded interactions between CG beads�including bonds, angles,
and dihedrals. The nonbonded self- and cross-interactions are
represented through the 12−6 Lennard Jones (LJ) potential as
shown in the last term of eq 1. The variable εij is the potential well
depth, which describes the strength of interaction energy between two
beads, σij is the finite distance where the potential between two beads
is equal to zero, and rij represents the distance between the centers of
two interacting beads.61,62 The 12−6 LJ equation was utilized to
represent the cross-interactions between CG amino acid and water
beads to maintain consistency with their respective self-interaction
FFs developed earlier.57,59 The Lorentz−Berthelot (LB) combining
rule is a common method used to determine the parameters for cross-
interactions between different types of beads in molecular
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simulations.63,64 Using this method, εij and σij between two atoms i
and j can be calculated using equations

= ( )ij ii jj
1/2

(2)

= +1/2( )ij ii jj (3)

These values, calculated for the different interacting bead pairs in our
amino acid−water systems, provided a good starting point for further
optimization of cross-interactions in our study by reproducing Gibbs
hydration free energy values of amino acid dipeptides.
2.2. Computational Details of Gibbs Hydration Free Energy

Simulations. Reproducing the solvation free energy has been
successfully employed for tuning the solvent−solute interactions in
several previous studies.24,59,65−67 Gibbs hydration free energies of
amino acid dipeptides were calculated through AA adaptive biasing
force (ABF) MD simulations using the CHARMM FF and TIP3P
water model. The same dipeptides, as utilized in our group previously
to establish bonded parameters for CG amino acids,56 were chosen to
calculate the AA free energies. Chemical structures and the
corresponding CG representations for these dipeptides are presented
in Table S2. The values obtained from the AA simulations were used
as targets to optimize CG amino acid−water interactions.

All MD simulations in this study were conducted using the NAMD
2.14 software and the Colvars package.68−70 The ABF simulations
were performed in the NVT ensemble, where the temperature was
maintained using the Langevin thermostat.71 A switching function was
applied to change the functional form of van der Waals interaction
(VDW) at a distance of 9 Å so that the VDW potential energy could
be truncated at a cutoff distance equal to 12 Å. A pair list distance was
also used at 15 Å, which refers to the distance within which NAMD
searches for the atoms that interact through the VDW potential. For
AA simulations, we used a time step equal to 1 fs, while for CG
simulations, the time step was chosen to be 10 fs. The initial solvation
configuration files of the solvation of amino acids in water were
generated using the Packmol software.72

A schematic of the simulation setup to perform ABF simulation is
illustrated in Figure 1. Initially, one dipeptide molecule of amino acid

was solvated in the center of a box of water with 40 Å × 40 Å × 40 Å
dimensions. This box contained 950 CG water beads (1900 AA water
molecules). The air−water interface was created by extending the z-
direction to 80 Å. Then, the molecule was transferred from water to
vacuum by moving it along the z-axis at a 35 Å distance from the
center of mass of the water box. This 35 Å is also referred to as the
reaction coordinate (RC), which is a measure of the distance between
the center of mass of the water box and that of a CG amino acid
molecule in the z-direction. The periodic boundary condition was
applied in three directions. The Gibbs hydration free energy profile
was obtained along the z-axis from zero (COM of water box) to 35 Å
(vacuum). To enhance the efficiency of ABF simulations, the entire
RC was also divided into seven consecutive 5 Å wide windows. For
each of these windows, a separate MD simulation was conducted with

the simulation run equal to 20 ns at a temperature equal to 300 K.
Consequently, the total simulation time for obtaining the hydration
free energy of one amino acid dipeptide was equal to 140 ns. Gibbs
hydration free energy for each amino acid was obtained from three
independent sets of simulations and was averaged out in order to
reduce the statistical error.

2.3. ANN-Assisted PSO Algorithm for Parameter Develop-
ment. For optimizing amino acid−water interactions in our CG
models, we calculated σ values between interacting bead pairs using
the LB combining rule and optimized the ε values between amino
acid beads and the one-site water model to reproduce hydration free
energies of amino acid dipeptides. Equation 4 was used to calculate
the errors between free energies obtained from AA and CG
simulations

=
| |

×

error %
(CG hydration free energy AA hydration free energy)

AA hydration free energy

100 (4)

It is important to note that the focus of parameter tuning was
specifically on developing the interactions between CG beads of
amino acids and water models. These interactions were defined using
a pair-specific nonbonded LJ parameter defined using the NBFIX
(nonbonded fix) method, a commonly used approach in several all-
atom force fields.73−75 NBFIX allows for the adjustment of
nonbonded interactions between specific atom pairs or groups to
better reproduce experimental data and to improve the accuracy of
simulations.

In order to automate and accelerate the process of optimizing ε
values, the artificial neural network (ANN)-assisted particle swarm
optimization (PSO) algorithm was utilized. The rationale behind
employing the ANN-assisted PSO in our parametrization process lies
in the optimization of multiple parameters for various amino acids,
shown in Table 1, with several parameters being shared between
multiple amino acids. Thus, even though we have only used the Gibbs
Free energy for each dipeptide as a target property, these large
number of parameters (total 36) between CG beads necessitate the
utilization of advanced optimization techniques. This is mainly
because traditional trial-and-error, manual approaches for parameter
development can be time-consuming and challenging. Based on our
group’s prior experience,24,56−59,76−78 we used ANN-assisted PSO to
accelerate the parameter development process.

The PSO algorithm, inspired by the motion of a flock of birds
searching for food, was employed to generate 31 initial sets of
parameters (birds).28,56−59,76−78 Note that these initial sets of ε values
were randomly chosen from the optimization ranges for each of the
variables to be optimized. After generating the initial parameters, MD
simulations were performed to calculate the resulting free energy
values, and the corresponding errors were calculated. This algorithm
further iterated the parameter values until the error was within an
acceptable threshold (<5%) or the total number of iterations (300)
was achieved. More details can also be found in Section S1, and a
flowchart demonstrating the working of the PSO algorithm is
presented in Figure S1.

Typically, ANN consists of one input layer, one output layer, and
multiple hidden layers, with the number of input and output nodes
equal to the number of target properties and variables.79 Herein, we
used a network comprising one node in the input layer (Gibbs
hydration free energy), and the number of nodes in the output layer
was equal to the total number of ε parameters between CG amino
acid beads and water for a given amino acid. More details of the ANN
model can be found in Section S2, and a schematic of the model is
illustrated in Figure S2. Although the PSO algorithm implemented
with 31 particles is instrumental in efficiently exploring the parameter
space and accelerating the optimization of force-field (FF)
parameters, incorporating ANN within the PSO framework offers
several advantages. The ANN model not only expedites the
optimization process by achieving a satisfactory minimal error sooner
than using PSO alone, but also provides guidance in model

Figure 1. Schematic representation of obtaining Gibbs hydration free
energy for an amino acid molecule in a water box. The blue beads
illustrate water molecules and the yellow beads represent CG
dipeptide molecules. The z-direction, depicted by an arrow, shows
the reaction coordinate (RC), which is at a 35 Å distance.
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development and improves the accuracy of predictions, particularly
when the given ranges for PSO do not encompass the best parameter
values. Hence, the integration of ANN with PSO, known as ANN-
assisted PSO, optimizes the force-field parameters more effectively,
leading to enhanced efficiency and accuracy in the parametrization
process. Following every iteration of PSO, the input and output data
(nonbonded interaction parameters and hydration free energy values,
respectively) were used as output and input, respectively, to train an
ANN model on the fly. The prediction from ANN (a new set of
parameters) was further used in the next optimization PSO iteration
as an additional particle (set of parameters), which made the total
number of birds equal to 32. If the result from the ANN bird was
better than from PSO birds, it indicated that ANN guided the swarm
of the birds. A combined schematic for the ANN-assisted PSO
algorithm is presented in Figure 2.

2.4. Chemical Transferability of FF Parameters. The newly
developed FF parameters that govern the cross-interactions between
amino acids and water were evaluated for their transferability by
calculating the Gibbs hydration free energies of 18 analogues of amino
acid side chains. These analogues and their CG mapping schemes are
shown in Table S3. The reason behind calculating the free energy of
the amino acid side-chain analogues, as part of the test process, stems
from our previous study that developed nonbonded interaction
parameters between CG beads used to represent amino acids.56,80

Specifically, nonbonded interactions were optimized against exper-
imental data (density, surface tension, and heat of vaporization) for
analogues�molecules that possess chemical structures similar to the
structures the CG amino acid beads represent. Then, these CG beads
from analogues were used to construct the amino acid di- and
tripeptides that could reproduce densities obtained from all-atom MD
simulations. As the CG beads in these amino acids originated from

Table 1. ε and σ values calculated from the LB Rule, along with the optimized ε valuesa

amino acid
system bead

ε (kcal/mol)
obtained from LB

rule
optimized ε
(kcal/mol)

σ (Å) obtained
from LB rule

AA hydration free
energy (kcal/mol)

CG hydration free energy
(kcal/mol) using optimized ε

error in
hydration free

energy

alanine
(ala−ala−ala)

NCC1 −0.996 −1.03 4.025 −16.940 ± 0.951 −16.576 ± 0.203 2.150
NCC2 −0.996 −0.67 4.025

asparagine
(asn−asn)

CON2 −1.138 −1.35 4.055 −25.271 ± 0.1529 −25.963 ± 0.847 2.741

aspartic acid
(asp−asp)

COO2 −0.998 −1.22 4.019 −22.473 ± 1.050 −23.936 ± 0.567 6.511

glutamine
(gln−gln)

CON1 −1.115 −1.34 3.722 −25.154 ± 0.694 −25.715 ± 0.163 2.231

histidine
(his−his)

NCR1 −0.926 −0.96 3.557 −27.861 ± 0.526 −27.867 ± 0.419 0.020
NCR2 −0.710 −0.83 3.805
CCR1 −0.591 −0.52 4.089

isoleucine
(ile−ile)

C2E2 −0.636 −0.51 4.037 −9.157 ± 0.666 −9.54 ± 0.255 4.185

leucine
(leu−leu)

C41 −0.902 −0.73 4.426 −10.020 ± 0.365 −9.718 ± 0.445 3.021

phenylalanine
(phe−phe)

BZF1 −0.605 −0.5 3.875 −12.971 ± 0.985 −13.584 ± 0.381 4.731
BZF2 −0.605 −0.5 3.875
TL2F −0.756 −0.64 4.141

serine (ser−ser) COH1 −0.904 −1.12 3.749 −19.787 ± 0.643 −20.371 ± 0.366 2.949
threonine
(thr−thr)

CCOH −0.956 −1.01 4.001 −18.222 ± 0.682 −19.690 ± 0.230 8.054

tryptophan
(trp−trp)

TOL4 −0.817 −0.76 4.284 −21.329 ± 0.425 −21.186 ± 1.35 0.668
PL1 −1.105 −0.90 3.558
TL2W −0.756 −0.62 4.141

tyrosine
(tyr−tyr)

COH3 −0.917 −0.91 3.733 −22.416 ± 0.473 −22.503 ± 0.867 0.389
BZY −0.605 −0.59 3.875
TL2Y −0.756 −0.71 4.141

valine (val−val) C3E2 −0.725 −0.58 4.363 −9.924 ± 0.384 −9.437 ± 0.377 4.916
glycine
(gly−gly)

GNC −0.879 −0.76 3.796 −12.824 ± 0.680 −12.503 ± 0.226 2.505
GNT −0.828 −0.83 3.815

lysine (lys−lys) NC2 −0.828 −1.2 3.815 −22.135 ± 0.1934 −21.606 ± 0.341 2.391
proline
(val−pro−leu)

PNC −0.828 −0.62 3.815 −14.107 ± 0.7211 −14.707 ± 0.117 4.249
PS −0.796 −0.53 4.203

methionine
(met−met)

CS −0.894 −0.75 4.021 −12.331 ± 0.469 −12.351 ± 0.383 0.161

arginine
(ala−arg)

RS1 −0.625 −0.63 4.055 −23.898 ± 0.836 −23.526 ± 0.066 1.559
RS2 −0.879 −0.72 3.796
RS3 −1.115 −1.02 3.902

cysteine
(cys−cys)

SC −0.993 −0.75 3.989 −13.278 ± 0.700 −13.567 ± 0.451 2.177

backbone CO −0.874 −0.77 4.056
NC −0.879 −0.60 3.796

termini COO1 −1.196 −1.14 3.854
NCT −0.828 −0.75 3.815

aFree energy values calculated from all-atom models and for CG models using optimized ε values are represented.
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Figure 2. Schematic representation of the ANN-assisted PSO algorithm.

Figure 3. Schematic AA and CG mapping structures of c16-AHL3K3-CO2H (A, B) and (AF)6H5K15 (C, D), respectively.
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these analogues, we believe that they served as a valuable means to
assess the accuracy and transferability of the newly developed
parameters. The approach mentioned in Section 2.2 was used to
conduct these free energy simulations and the results were compared
to published experimental values.
2.5. Applications of FF Parameters to Study the Self-

Assembly of Peptide Amphiphiles. The developed FF parameters
between amino acids and water were further used to perform MD
simulations investigating the self-assembly behaviors of two PA
systems, namely, c16-AHL3K3-CO2H and FA32.12,81−83 The PA c16-
AHL3K3-CO2H includes a hydrocarbon tail, represented by C3E and
C3M CG beads that were developed in our research group.24 These
hydrocarbon beads interact with water molecules through a 12−6 LJ
potential, which was fine-tuned to accurately reproduce the
experimentally measured Gibbs hydration free energies of various
hydrocarbons. The parameters for the hydrocarbon beads, including
their ε and σ values are listed in Table S4. The hydrophobic tail is
connected to a polypeptide chain made up of four different amino
acids: alanine, histidine, leucine, and lysine. We mapped the peptide
chain of the molecule using our CG models and utilized the tuned CG
parameters for the interaction between the amino acids and water.
Because the backbone of all four amino acids was represented by the
same CG beads (NC and CO), we were able to use our CG mapping
to simulate the combination of these peptides. Similarly, FA32
consists of 32 amino acids, including alanine, phenylalanine, histidine,
and lysine. Due to their hydrophobic nature, alanine and phenyl-
alanine are expected to form the core of the self-assembled structure,
while lysine, a hydrophilic amino acid, is expected to be present at the
interface between the self-assembled structure and water. The CG
mapping schemes for c16-AHL3K3-CO2H and FA32 are shown in
Figure 3.12,81−85

In the case of c16-AHL3K3-CO2H simulations, 150 CG PAs were
randomly and homogeneously dispersed in an initial box size of 87 Å
× 114 Å × 185 Å containing 27,850 one-site water beads. The CG
MD simulations were conducted for 5 μs in an NPT ensemble at 340
K temperature. On the other hand, for the simulations of FA32, nine
different concentrations were used because it is known that the
concentration of peptides is a crucial determinant in governing the
process of assembly. We used 12, 18, 24, 30, 36, 42, 48, 54, and 60 PA
molecules inside a box of 180 Å × 180 Å × 180 Å containing 85,000
one-site water beads. Employing our amino acid models, a relaxed
single chain was represented using 127 beads, as compared to 583 all-
atoms. Each simulation was performed at 310 K in the NPT ensemble

for 3.5 μs. In both self-assembly simulations, the pressure was kept
constant at 1 atm, and Langevin thermostat and barostat were used
for temperature and pressure control, respectively.70 The simulations
were stable with a time step of 5 fs and periodic boundary conditions
were applied in all three dimensions to simulate an infinite system.
The cutoff distance used to truncate the VDW interactions was 12
Å,86 and “exclude 1−2” was used for nonbonded interactions.82,83

3. RESULTS AND DISCUSSION
3.1. Optimized Parameters between CG Amino Acid

and Water Beads. Prior to the PSO optimization, the LB
combining rule was employed to obtain σ and ε values
between various amino acids and water beads, as shown in
Table 1. Figure S3 shows the comparison between AA and CG
free energies obtained from the LB combining rule for
representative amino acids, namely, asparagine, aspartic acid,
cysteine, glutamic acid, glycine, and phenylalanine. As can be
seen, the values of Gibbs hydration free energies of amino acid
dipeptides (tabulated in Table S4), obtained from these
preliminary CG simulations, did not show good agreement
with the AA values (minimum error = 25% and maximum
error = 136%). This suggests that the ε and σ parameters
between the amino acids and the water beads, obtained from
the LB rule, could not reproduce the target free energy values
obtained from AA MD simulations. This is consistent with
several previous studies that have reported the failure of the LB
rule to capture the experimental properties of gas mixtures and
hydrocarbons.24,87,88 Therefore, in the present study, it was
necessary to optimize the parameters using the ANN-assisted
PSO algorithm to improve the accuracy of the simulated
values. Keeping σ values equal to those obtained from the LB
mixing rule, the optimization ranges of ε values were chosen to
be approximately ±25% of those obtained by the LB
combining rule.
The optimized ε values obtained using the ANN-assisted

PSO method, as well as σ values calculated using the LB
mixing rule, are tabulated in Table 1. The parameter file is also
provided in the SI. The Gibbs free energy for 20 dipeptide
amino acids obtained from CG MD simulations using the

Table 2. Free Energy Values of Analogues of Amino Acid Side Chains Calculated from CG Models Using Optimized ε Values
along with the Experimental Values Reported in the Literature91−96

amino acid side-chain analogues
experimental hydration free energy of analogues

(kcal/mol)
hydration free energy of analogues from MD

(kcal/mol) error

alanine N-butylamine −4.30 −4.67 ± 0.16 8.46
asparagine acetamide −9.68 −8.73 ± 0.11 9.86
aspartic acid acetic acid −6.486 −6.29 ± 0.17 2.95
cysteine methanethiol −1.24 0.43 ± 0.33 65.81
glutamine propionamide −9.38 −8.66 ± 0.72 7.63
phenylalanine toluene −0.76 −0.72 ± 0.18 5.18
serine methanol −5.06 −4.81 ± 0.042 4.98
threonine ethanol −4.88 −3.40 ± 0.19 30.29
tyrosine m-cresol −6.11 −5.51 ± 0.08 9.78
valine 2,3-dimethylbutane 4.20 1.85 ± 0.16 55.99
glutamic acid,
C-terminus

propionic acid −6.36 −5.81 ± 0.23 8.64

lysine butylamine −4.30 −7.06 ± 0.16 64.09
histidine pyridine −4.7 −4.72 ± 0.14 0.36

pyrrole −4.79 −4.64 ± 0.12 3.09
toluene −0.76 −0.73 ± 0.24 4.25

tryptophan pyrrole −4.79 −4.36 ± 0.10 8.99
toluene −0.76 −0.79 ± 0.16 4.13

glycine, N-terminus N-butylamine −4.30 −4.29 ± 0.39 0.23
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optimized ε parameters along with the results from AA MD
simulations is also shown in Table 1. Figure S4 also illustrates
the comparison between the free energy profiles of AA and CG
simulations. To reduce statistical error, we conducted three
independent AA and CG MD simulations, with different initial
configurations, for each of the amino acids (total simulation
time 15.960 μs). Using the optimized ε values, the results
demonstrated a remarkable consistency between the CG and
AA free energies, with errors of less than 5%.
As shown in Table 1, the optimized parameters for each

amino acid were able to capture the essential features of their
respective side chains, such as hydrophobicity and hydro-
philicity. For instance, the magnitude of optimized ε
parameters for hydrophobic amino acids such as phenylalanine
(Phe), isoleucine (Ile), leucine (Leu), valine (Val), and proline
(Pro) beads are relatively lower than those of hydrophilic
amino acids such as serine (Ser), asparagine (Asn), glutamine
(Gln), and threonine (Thr). These smaller magnitudes of ε
values indicate a higher degree of hydrophobicity for the
aforementioned hydrophobic amino acids.89,90 Conversely, the
larger magnitudes of the optimized parameters for hydrophilic
amino acids pointed to strong hydrophilicity.89,90 Overall, the
use of dipeptides during the optimization process allowed us to
tailor the CG model to accurately represent the unique features
of each amino acid, including their side-chain characteristics.
3.2. Chemical Transferability of New FF Parameters.

To further validate and evaluate the transferability of the newly
developed ε and σ parameters, the Gibbs hydration free
energies of the analogues of the amino acid side chains were
calculated using the CG models and compared with the
experimental values reported in the literature.91−96 The
mapping scheme for these analogues is shown in Table S3
and their free energy values are shown in Table 2. Remarkably,
for the majority of analogues (14 out of 18), the error between
the experimental and simulated values was less than 10%.
These findings demonstrate the chemical transferability of the
new FF parameters for use with other molecules. The
analogues of cysteine, threonine, valine, and lysine side chains,
namely, methanethiol, ethanol, 2,3-dimethylbutane, and butyl-
amine, respectively, exhibited higher errors. Thus, for these
four analogues, the ε and σ parameters between amino acid
and water did not show acceptable transferability and further
refinement of the parameters may be necessary to improve the
accuracy of their simulations. It is worth noting that while most
of the MD simulations were conducted at 300 K, simulations

for some, including acetamide, methanethiol, and propiona-
mide, were performed at different temperatures (358, 278, and
356 K, respectively) due to their nonliquid nature at 300 K.
These findings suggest that the optimized CG parameters
demonstrate good chemical transferability and may be used for
other molecules.

3.3. Application of Newly Developed FFs to Study
the Self-Assembly of Peptide Amphiphiles. To test the
applicability of the new optimized nonbonded parameters
between amino acids and water, we performed the self-
assembly of two PAs in water. Specifically, we selected two
different PAs, namely, c16-AHL3K3-CO2H14 and FA32, that
form fibers and micelles, respectively, in the presence of
water.12,81−85 In general, interactions between water and the
hydrophilic and hydrophobic portions of the PAs are known to
play an important role in the self-assembly process.

3.3.1. Self-Assembly of c16-AHL3K3-CO2H. Our group has
performed CG MD simulations of the self-assembly of c16-
AHL3K3-CO2H PA molecules using the amino acid and water
interaction parameters obtained with LB combining rule for 15
μs at 340 K.97 Experimentally, these PAs are known to self-
assemble to form nanofibers.12 However, in CG MD
simulations using LB combining rule, no such nanofibers
were observed. Instead, the PAs quickly formed micelle-like
structures and bundled together into windowpane structures.97

These dynamic and unstable assemblies persisted throughout
the simulation, continually breaking apart and regrouping,
clearly demonstrating the need to improve the interaction
parameters between amino acid and water models to obtain
experimentally observed nanofibers.
Herein, we employed our newly developed nonbonded

parameters in the PA self-assembly simulation. As illustrated by
the snapshots of the structural evolution at different time steps
in Figure 4 and a movie provided in SI (c16-AHL3K3-
CO2H.avi), we showed that the randomly dispersed PAs
aggregated together in the early stages of the self-assembly and
later formed micelles. We observed that after ∼47 ns, two
separate micelles were formed, which got closer to each other
in the z-direction. Finally, after ∼128 ns of the simulation time,
the two micelles were in close proximity to each other and
aggregated to form one larger micelle at ∼269 ns. Since we
used periodic boundary conditions, the large micelle interacted
with its periodic image and formed a perfect fiber in the x-
direction, which was found to stabilize after ∼985 ns. This self-
assembly process of micelle, and subsequently, fiber formation

Figure 4. Snapshots of the structural evolution at different time steps from 0 to 3 μs and the final self-assembled fiber. Snapshot (A) shows the
randomly dispersed PAs. Snapshots (B, C) suggest the formation and merging of two separate micelles that aggregate together to form one larger
micelle as illustrated in snapshot (D). Snapshot (E) shows the large micelle interacting with its periodic image, resulting in the formation of a fiber
(illustrated in snapshot (F)). Dashed lines illustrate the periodic boundaries. Hydrophilic amino acids are shown in cyan, and the hydrophobic tail
of PA is shown in red. The CG water molecules are not shown for clarity. Snapshots of the side and front view of the final self-assembled fiber are
shown in snapshots (G, H) after 5 μs.

Biomacromolecules pubs.acs.org/Biomac Article

https://doi.org/10.1021/acs.biomac.3c00441
Biomacromolecules 2023, 24, 4078−4092

4084

https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00441/suppl_file/bm3c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00441/suppl_file/bm3c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00441/suppl_file/bm3c00441_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig4&ref=pdf
pubs.acs.org/Biomac?ref=pdf
https://doi.org/10.1021/acs.biomac.3c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


has been previously reported in several experimental and
computational studies.12,98−102 We monitored various stages in
the self-assembly process, including micelle and fiber formation
by examining the structural and solvation behavior of the
particles in the system. Figure 4G,H illustrates the snapshots of
the side and front view of the assembled fiber after 5 μs.
Figure 5A−D shows the density profiles of the PA molecules

wherein the self-assembly process can be clearly observed. The
formation of two separate micelles is shown by distinct broad
peaks at ∼47 ns (Figure 5B). With time, these two peaks
merge together at ∼128 ns, demonstrating the formation of a
larger micelle (Figure 5C). Finally, at ∼985 ns, the micelles
from periodic images merge and form a fiber (Figure 5D).
Note, since the density profiles do not include periodic images,

an illustration of an extended plateau is not possible. Figure S5
shows the density profiles for the hydrophobic tails of the PAs
(C16) at different time steps, exhibiting similar trends, albeit
with narrower peaks. We calculated the aggregation number of
the two initially formed micelles, which consisted of ∼90 and
∼60 PAs�in excellent agreement with experimental and
computational data reported in the literature.22,103−105

To quantitatively analyze the PA self-assembly process, we
employed the density-based spatial clustering of application
with noise (DBSCAN) method to examine the self-assembly
process of PA molecules.106,107 DBSCAN is a popular machine
learning-based data clustering algorithm, widely used for the
grouping of closely packed data points and thus can be used to
count the clusters of molecules.106,107 We defined a cluster to

Figure 5. Bead density profiles for PA molecules at various time steps, illustrating the evolution of the self-assembly process (A−D) and the
number of clusters of PA molecules versus time for the self-assembly process of c16-AHL3K3-CO2H (E).

Figure 6. RDF of hydrophilic (lysine) and hydrophobic (hydrocarbon chain) regions of PA at various time steps.
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be the aggregation of three or more PAs when the distance
between their hydrophobic centers of masses was less than 20
Å. Details of this method can be found in Section S3. As shown
in Figure 5E, the number of clusters (Nc) formed in the system
decreased as the simulations progressed. During the initial ∼50
ns, the number of clusters decreased sharply from six clusters
to two, which implies the formation of two micelles. Then, it
further decreased to one, showing the formation of one large
micelle and subsequently a fiber. This graph was consistent
with our other observations as well as the reported literature.12

The diameter of self-assembled fibers is an important
characteristic that influences their properties and functions.108

Experimental and computational studies have been previously
conducted to measure the diameters of these fibers. In an
experimental study on the self-assembly of c16-AHL3K3-
CO2H, it was observed that these molecules self-assembled to
form fibers with an approximate diameter of ∼69 Å.81

However, self-assembly simulations carried out using the
MARTINI FF have shown the formation of hexagonally
packed fibers with ∼50 Å diameter.12,98 Herein, using our
amino acid models, we observed that the self-assembly of c16-
AHL3K3-CO2H molecules resulted in a fiber with a diameter
equal to 68.64 ± 0.69 Å, which was consistent with an
experimentally reported value of 69 Å.81 The diameter of our
simulated fiber was calculated using an ellipse fitting algorithm
that is explained in Section S4 and shown in Figure S7.
Additionally, we examined the solvation behavior of the PAs

throughout the simulation time to understand the role of water
in the process of self-assembly. The radial distribution
functions (RDFs) of both hydrophobic and hydrophilic groups
in the PAs with water are illustrated in Figure 6. As shown in
this figure, strong structural correlation was observed between
water and the hydrophobic alkyl chains at the early stages of
self-assembly (<∼2 ns). Similar observations have been
reported in past studies of self-assembling PAs, which have
been attributed to a cage-like structure of water around the
hydrophobic tail.109−111 During the self-assembly simulations,
we observed reduction of RDF peak heights between water and
hydrophobic tails, causing the hydrophobic collapse of PAs,
driven by the VDW interaction between hydrocarbons. This
led to their aggregation and the formation of micelles. We also
calculated the end-to-end distances of PAs for 10 randomly

selected molecules in the system. It was observed that the end-
to-end distance decreased from ∼29 to ∼23 Å through the
initial stages of the self-assembly (200 ps to 10 ns), indicating
the collapse of the PAs. Ultimately, interactions among the
hydrophilic amino acids and water enabled the formation of a
stable fiber consisting of hydrophobic tails of the PA in the
core and the hydrophilic groups in direct contact with
water.112

3.3.2. Self-Assembly of FA32. As another application, we
studied the effect of concentration on the final self-assembled
structures of the FA32 peptide−oligopeptide amphiphiles
composed of 32 amino acids, divided into three blocks with
hydrophobic, amphiphilic, and hydrophilic properties�in
water. Experimentally, this peptide is known to self-assemble
into cationic micelles at low concentrations.113,114 The self-
assembly of FA32 into micelles has been reported to be driven
by the hydrophobic interactions between hydrophobic side
chains in the amino acids.82 Our FF parameters allowed us to
adequately model the FA32 peptide for comprehensive
characterization of the PA self-assembly and the resulting
equilibrium structure. The process of self-assembly of peptides
at varying concentrations was examined by analyzing the
simulation trajectory to calculate several parameters, including
the number of clusters, aggregation number, as well as radii of
the micelles. Furthermore, RDFs between water and hydro-
phobic, amphiphilic, and hydrophilic blocks of the molecules
were obtained to gain insight into the solvation behavior of the
system. Initially, to study the self-assembly behavior of FA32,
we performed simulations at two different concentrations (12
and 60 FA32 molecules in a 180 Å box) using the nonbonded
interaction parameters between amino acids and water
obtained from the LB combining rule. Our simulations
resulted in the formation of micelles in both cases. However,
we observed that the hydrophobic portion of the molecules
(Ala−Phe) resided at the surface of the micelles, while the
hydrophilic portion (Lys) was located in the core of the
micelle structure. This further suggested that the parameters
obtained from the LB combining rule are not suitable to
perform these self-assembly simulations. For a visual
representation of the final structures obtained from the self-
assembly simulations, please refer to Figure S8. This insightful

Figure 7. Self-assembly of 18 FA32 polypeptides in a 180 Å water box at different time intervals during the MD simulation. Hydrophobic ala and
phe are represented by red beads. Amphiphilic his and hydrophilic lys are shown by yellow and blue beads, respectively. Water molecules are not
shown for clarity.

Biomacromolecules pubs.acs.org/Biomac Article

https://doi.org/10.1021/acs.biomac.3c00441
Biomacromolecules 2023, 24, 4078−4092

4086

https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00441/suppl_file/bm3c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00441/suppl_file/bm3c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00441/suppl_file/bm3c00441_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00441/suppl_file/bm3c00441_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00441?fig=fig7&ref=pdf
pubs.acs.org/Biomac?ref=pdf
https://doi.org/10.1021/acs.biomac.3c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


result highlights the need of fine-tuning the nonbonded
parameters between amino acids and water CG beads.
Subsequently, we conducted the self-assembly simulation

using our newly developed parameters. After the initial few
nanoseconds of self-assembly using homogeneously dispersed
systems of FA32, neighboring peptides were found to
aggregate into small clusters, driven by hydrophobic
interactions. This trend continued as the simulation pro-
gressed, with the small clusters merging into larger ones that
concentrated the hydrophobic residues at the core of these
clusters. By the time the simulation reached 2−2.5 μs, systems
at different concentrations contained one or two micelles,
formed due to the aggregation of multiple clusters, and this
number remained consistent until the end of the simulation.
Overall, for all of the concentrations, the assembly process was
observed to involve three distinct stages: the amalgamation of
small clusters, followed by the creation of large clusters, and
ultimately the formation of micelles. Note, similar observations
have been reported for the self-assembly studies performed
using the MARTINI model.82 To facilitate a more intuitive
understanding of the assembly process, visual aids were
employed. Specifically, Figure 7 represents snapshots of 18
peptides in a 180 Å box at different time intervals. Snapshots of
the final self-assembled structures at different concentrations
are also shown in Figure 8. Movies of the assembly process for
all of the systems at different concentrations are available in the
SI. Movies are titled as “FA32-”, followed by the precise
number of molecules utilized in the system across various
concentrations (FA32-12.avi, FA32-18.avi, FA32-24.avi, FA32-
30.avi, FA32-36.avi, FA32-42.avi, FA32-48.avi, FA32-54.avi,
FA32-60.avi).

In order to study the evolution of the formation of clusters
in the systems, we also conducted the DBSCAN analysis for all
of the self-assembly simulations (see Section S3).106,107 As
shown in Figure 9, we found that the number of clusters (Nc)
decreased as the simulation time progressed, ultimately leading
to the formation of one or two micelles. We observed a
constant value of Nc for the last 1−1.5 μs of CG MD
simulation time, suggesting the stability of the self-assembled
structures in the equilibrium state. Furthermore, we
determined the radii of the assembled micelles by calculating
their radii of gyration for the last 10,000 frames, corresponding
to the last 100 ns of the simulations. We tabulated the number
of self-assembled micelles, their aggregation number, and their
radius in Table 3.
Generally, we observed that the radius of the micelles

increased with an increase in the concentration. For instance,
at a concentration of 18 molecules, the micelle radius was
measured to be 22.93 ± 0.05 Å, while at a concentration of 48
molecules, the radius was 36.54 ± 0.13 Å. However, the radii
of micelles at concentrations 48 and 54 molecules were higher
than that of the concentration 60 molecules. This could be due
to the formation of a single micelle at concentrations 48 and
54, whereas two micelles are observed at concentration 60.
Note that similar to the computational study by Thota et al.
using Martini FF,82 the radii of the micelles formed in our
study are smaller compared to the experimentally reported
values of ∼50 nm (experimentally reported hydrodynamic
particle size�the diameter of a hypothetical hard sphere that
diffuses with the same speed as the particle being
measured115�is ∼102 nm).85,114

Figure 8. Final snapshots of the FA32 peptides at different concentrations containing 12, 18, 24, 30, 36, 42, 48, 54, and 60 molecules in a 180 Å
water box. Ala and phe are represented by red beads. Amphiphilic his and hydrophilic lys are shown by yellow and blue beads, respectively. Water
molecules are not shown for clarity.
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Similar to the radius, the aggregation number, representing
the number of peptides within each micelle, increased with
concentration. At a concentration of 12 molecules, the

aggregation number was 12, while at a concentration of 42
molecules, it increased to 36. The phenomenon of an increase
in radius and aggregation number with increasing concen-
tration has also been previously reported.82 As the concen-
tration of amphiphilic polypeptides increased, we observed that
the number of micelles generally increased. Specifically, at a
concentration of 12 molecules, only one micelle was observed,
while at higher concentrations of 30, 36, 42, and 60 molecules,
the system formed two micelles. Interestingly, at concen-
trations 48 and 54 molecules, initially, two micelles were
formed, but they aggregated together to form a single larger
micelle. Thota et al. have also reported a similar complex
relationship between the number of PA molecules and the
number of assembled micelles.82

Finally, to gain insight into the hydration behavior of self-
assembled structures, we conducted RDF analysis. We used the
last 1000 frames corresponding to the last 100 ns of the
simulation to evaluate the hydrophilic behavior of the
developed CG models. As shown in Figure 10, the RDF
analysis for the system containing 18 polypeptides revealed
that hydrophilic blocks of the polypeptides (lysine) are
significantly more hydrated than amphiphilic (histidine) and
hydrophobic blocks (alanine−phenylalanine). We observed a

Figure 9. Number of clusters of polypeptide molecules versus time for the self-assembly process of FA32 at different concentrations, including 12,
18, 24, 36, 42, 48, 54, and 60 molecules.

Table 3. Number of Initial PAs, Number of Micelles,
Radius, and Aggregation Number of Micelles in Nine
Different Self-Assembly Simulations Containing Different
Numbers of PA Molecules in the System

number of PAs number of micelles radius (Å)
aggregation
number

12 1 20.30 ± 0.092 12
18 1 22.93 ± 0.05 18
24 1 25.34 ± 0.16 24
30 2 24.62 ± 0.07 22

17.71 ± 0.09 8
36 2 25.31 ± 0.05 24

20.14 ± 0.10 12
42 2 29.26 ± 0.062 36

16.03 ± 0.09 6
48 1 36.54 ± 0.13 48
54 1 34.80 ± 0.11 54
60 2 30.88 ± 0.052 43

22.15 ± 0.068 17
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similar trend for all other self-assembly systems, as shown in
Figure S9. This result demonstrates the accuracy of capturing
the hydrophilic behavior of the developed CG models and
indicates that the hydrophilic amino acids were present at the
surface of micelles, forming the micellar shell. Furthermore, the
hydrophobic amino acids formed the core of the micelles,
covered by the amphiphilic peptides, and exhibited the smallest
peaks in the RDF profiles.

4. CONCLUSIONS
We developed and validated nonbonded interaction parame-
ters between CG models of 20 amino acids and 1-site CG
water model by reproducing the Gibbs hydration free energies
of dipeptides obtained from all-atom simulations. These
nonbonded interaction parameters were represented using
the 12−6 LJ potential form where σ values were obtained using
the LB combining rule, and ε values were developed using the
ANN-assisted PSO method. The developed CG models
reproduced the target Gibbs hydration free energies of
dipeptides with errors less than 5%. The newly developed
parameters were validated by calculating the hydration free
energies of 18 analogues of amino acid side chains and could
reproduce the experimental values for the majority of the
analogues (14 out of 18) with errors less than 10% indicating
their transferability to other small molecules.
Additionally, to investigate the applicability of our developed

models, self-assembly simulations of two peptide amphiphiles,
namely, c16-AHL3K3-CO2H and FA32, were performed.
These simulations resulted in experimentally observed fiber
and micelle structures for c16-AHL3K3-CO2H and FA32,
respectively. The aggregation number and diameters of
micelles and fibers were found to be in very good agreement
with previous experimental and computational studies. In
general, the visual and machine learning-based analysis
suggested that the self-assembly process involved three distinct
stages: the formation of small clusters, followed by their
amalgamation into large clusters, and ultimately the formation
of micelles. The RDF plots showed a strong structural
correlation between water and the hydrophobic portion of
the PAs at the early stages of self-assembly. With time, a
reduction in RDF peaks between water and hydrophobic
groups was observed, causing the hydrophobic collapse of PAs
and their aggregation into micelles. Hydrophilic blocks of

polypeptides were found to be significantly more hydrated than
amphiphilic and hydrophobic blocks forming the shell of
micelles and fibers.
Overall, the optimized parameters developed in this work

can be used to simulate various processes involving amino
acids, paving the way for new insights into the mechanisms
governing them.
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