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ABSTRACT: Hydrogen gas (H,) is a clean and renewable energy source, but the lack
of efficient and cost-effective storage materials is a challenge to its widespread use.
Metal—organic frameworks (MOFs), a class of porous materials, have been extensively
studied for H, storage due to their tunable structural and chemical features. However,
the large design space offered by MOFs makes it challenging to select or design

appropriate MOFs with a high H, storage capacity. To overcome these challenges, we ———g, e e onee|
present a data-driven computational approach that systematically designs new |(MOFgeneration J \XTT ot 0
i i 1 \\ Discovery ﬂﬂnﬂﬂﬂﬂﬂ
functionalized MOFs for H, storage. In particular, we showcase the framework of a LY CITLLRLD
hybrid particle swarm optimization integrated genetic algorithm, grand canonical Monte |- - DEnEnnnE|
Carlo (GCMC) simulations, and our in-house MOF structure generation code to design (Clean Energy (Safeand cheap ) |
new MOFs with excellent H, uptake. This automated, data driven framework adds m o ‘
appropriate functional groups to IRMOEF-10 to improve its H, adsorption capacity. A | o) e

detailed analysis of the top selected MOFs, their adsorption isotherms, and MOF design

rules to enhance H, adsorption are presented. We found a functionalized IRMOEF-10

with an enhanced H, adsorption increased by ~6 times compared to that of pure IRMOF-10 at 1 bar and 77 K. Furthermore, this
study also utilizes machine learning and deep learning techniques to analyze a large data set of MOF structures and properties, in
order to identify the key factors that influence hydrogen adsorption. The proof-of-concept that uses a machine learning/deep
learning approach to predict hydrogen adsorption based on the identified structural and chemical properties of the MOF is
demonstrated.

1. INTRODUCTION vehicles according to the 2025 US Department of Energy
(DOE) target) or volumetric capacity (40 g/L) for different
applications.”™"” Specifically, MOFs have attracted an
impressive amount of attention due to their adjustable pore
size and void fraction, large volumetric surface area, high
gravimetric density, and tunable physical and chemical
p1‘0perties.l6_19 At cryogenic temperature (77 K), several
MOFs have shown H, adsorption close to or better than the
2025 DOE target (5.5 wt %), such as zirconium-based NU-
110x series,”® zinc-based IRMOF-20,>' DUT-32,** etc.
Gomez-Gualdron et al. synthesized MOF NU-1101, NU-
1102, and NU-1103 to study both the volumetric and
gravimetric hydrogen adsorption. The hydrogen adsorptions
at 5 bar and 160 K were 9.1 wt % (NU-1101), 9.6 wt % (NU-
1102), and 12.6 wt % (NU-1103), which has been attributed
to their surface area of 4340 mz/g (NU-1101), 3720 mz/g

In recent years, globally, energy consumption has reached
unprecedented proportions, resulting in environmental haz-
ards.! A variety of renewable energy sources, including solar,
wind, and hydrogen gas (H,), can assist us in not only meeting
these demands of energy consumption but also in addressing
environmental concerns.” Among all, H, is a more appealing
fuel candidate, as its combustion produces water as a
byproduct.” H, has potential applications in fuel cell vehicles,
backup power for basic infrastructure, portable power devices,
and so on."”” Further, the limited availability of H, from the
atmosphere has resulted in a need to address the increasing
challenges associated with H, capture, storage, and dispensing.
Traditionally, H, has been stored in commercial vehicles under
high pressures up to 700 bar, which is an expensive and
significant safety risk.® Thus, the need for an alternative, safe,
and adequate solution for the storage and transportation of
hydrogen is of utmost importance. Received: January 18, 2023 ICIC——-—

Recently, a number of porous and nonporous solid and Published: September 27, 2023 > il
liquid materials such as metal—organic frameworks (MOFs), %
zeolites, carbon nanotubes, complex hydrides, and ionic liquids
have been used to achieve high-density H, storage to meet the
required gravimetric capacity (5SS g/kg for light-duty fuel cell
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Figure 1. (a) Schematic of the overall framework of PSO-integrated GA combined with GCMC and the structure generator code. (b) Detailed
schematic of PSO-integrated GA framework. (c) An example of various genetic operations performed on a functionalized MOF design going from
the (i)* epoch to the (i+1)™ epoch where functional groups change according to the local best and thresholds (¢, ¢, and c,).

(NU-1102), and 6245 m?/g (NU-1103). Besides, they also
showed that surface area and pore volume are correlated.”
Ahmed et al. conducted the high-throughput computational
screening using Grand Canonical Monte Carlo (GCMC)
simulations and synthesized the best candidate, IRMOF-20 -
that showed good H, adsorption in terms of both volumetric
capacity (51.0 g/L) and gravimetric capacity (9.1 wt %) at S
bar and 160 K. Compared to IRMOF-1, IRMOF-20 has a
larger pore diameter (17.3 A vs 15.1 A), pore aperture (9.3 A
vs 7.9 A), and geometric void fraction (0.84 vs 0.81). Different
from IRMOF-5, the IRMOEF-20 linker contains sulfur atoms,
which may have a strong linker-H, interaction. All these
structural and chemical factors resulted in the higher H,
adsorption of IRMOF-20 compared with IRMOF-1 under
the same conditions.”'

Considering the pore size, void fraction, surface area, and
interactions between gas molecules and organic linkers can
alter the H, uptake, a powerful approach to control these MOF
features is the functionalization of metal nodes or organic
linkers of the existing MOFs.>*"*® For example, Chen et al.
demonstrated that functionalizing the organic linkers of MOEF-
S increased its H, uptake capacity by 84% compared to bare
unfunctionalized MOF-5.>® However, the three most critical
factors that influence the adsorption performance of function-
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alized MOFs are the type of functional groups, the quantity of
functional groups, and their locations on MOFs. By
rearranging the locations of functional sites on MOFs, an
extensive variety of hypothetical MOF structures (known as
“hMOFs”) can be generated through permutations and
combinations. For example, with 39 functional groups and
24 functionalization sites on an MOF, it is possible to create
~39*/3! = 10¥ distinct MOFs by arranging the functional
groups in various combinations. However, exploration of such
a vast design space using traditional computational and
experimental approaches could be very challenging.

Efficient exploration of this “infinite” design space can be
facilitated by optimization approaches including evolutionary
algorithms like genetic algorithms (GAs) or the metaheuristic
technique of particle swarm optimization (PSO).””*° For
instance, Collins et al. successfully explored a search space of
1.6S trillion MOF structures for exceptional CO, uptake using
a GA’' They developed an MOF functionalization GA
(MOFF-GA). This MOFF-GA uses two mating schemas and
two different mutation mechanisms along with 13 GA
parameters to optimize the MOF functionality to achieve
MOFs with good CO, uptake. They also showed that their
MOFF-GA is powerful not only to find the best functionalized
structure with large design space but also beneficial to search

https://doi.org/10.1021/acs.jctc.3c00081
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Figure 2. A schematic of the detailed outline of the workflow for generating structures.

functionalized MOF structures with good gas adsorption from
a small space of less than 1000.*" For materials design, PSO is
often coupled with different machine learning (ML)
methods.”” Dashti et al. used a PSO-Adaptive Neuro-Fuzzy
Inference System (PSO-ANFIS) to estimate CO, adsorption in
MOFs.*” Qiao et al. applied backpropagation neural network
(BPNN) and decision tree (DT) ML methods along with PSO
to investigate the xylene adsorption-based separation in MOFs,
and it turned out that PSO performed well to accelerate the
prediction from the ML methods.”* Beauregard et al. carried
out GCMC simulations for methane adsorption for over
130,000 hMOFs, and they applied the GA with random forest
(GARF) model to evolve the structure and chemical properties
of MOFs, which yielded high methane uptake successfully.”®

In this study, we have developed a hybrid optimization
algorithm by integrating GA with PSO, namely, the PSO-
integrated GA method, which is used to optimize the
combination of functional groups on MOF linkers to improve
its H, adsorption capacity. Specifically, this framework
identifies key functional groups and their appropriate location
sites on a bare MOF with the goal of enhancing H, adsorption,
as calculated by GCMC simulations. Furthermore, we develop
machine learning and deep learning models using the data
generated during this functionalized MOF design process to
demonstrate the potential of artificial intelligence in order to
replace expensive GCMC calculations.

2. MATERIALS AND METHODS

2.1. Computational Framework and Protocol. Figure
1(a) shows our novel computational framework that seamlessly
integrates GCMC simulations with the PSO-integrated GA
framework and the in-house MOF structure generation
algorithm to efficiently explore the functionalization design
space. The PSO-integrated GA framework is used to optimize
the location and selection of available functional groups at
appropriate sites. The H, adsorption in MOFs, calculated in
GCMC simulations, acts as an objective function for
optimization. Figure 1(b) and (c) summarizes the schematic
representation of the PSO-integrated GA approach to generate
MOF-arrays for optimization with GCMC. In the following
sections, we will discuss different components of this
framework in detail.

2.1.1. Computational Details for GCMC. We performed
GCMC simulations using the LAMMPS simulations pack-
age.®” The Monte Carlo runs consisted of translation,
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rotation, insertion, deletion, random reinsertion, and regrowth
of an existing molecule on hydrogen with equal probabilities.
In order to determine the potential parameters of MOFs and
their functional groups, we applied the Universal Force Field
(UFF).*®*™* Note, the MOF atoms were fixed to their
crystallographic positions; however, the functional groups
were subjected to MD simulations. The supercell used in this
study was 33.35 X 33.35 X 33.35 A’. The cross-interactions
between nonbonded atoms were defined using Lorentz—
Berthelot (LB) combining rules.*""*> Moreover, tail-corrections
were implemented, and the interactions beyond 12.5 A were
neglected. Note, both GCMC and MD (on functional groups)
simulations were performed at cryogenic temperature con-
ditions i.e. 77 K. This temperature reduces thermal energy and
mobility of H, gas, resulting in valid measurements of
hydrogen uptake.*~** Additionally, at cryogenic temperatures,
MOF-based systems are more stable due to slower degradation
rates.* Along with most of the simulation studies, several
experimental studies are aiming to maximize the hydrogen
storage also performed under cryogenic temperature con-
ditions ie. 77 K and 1 bar.*”™* Furthermore, cryogenic
conditions have been shown to be effective in overcoming the
challenges associated with physical adsorption and facilitating
the feasibility of this method. In addition, BMW has
introduced a groundbreaking vehicle concept that incorporates
a cryo-compressed hydrogen (CcH2) storage mechanism.”® A
significant increase in storage capacity and greater thermal
endurance has been achieved due to to this innovative
technology, ultimately prolonging the life cycle of the
automotive while ensuring a high level of safety.”’™>*
Moreover, to match the set benchmark, several simulation
studies have also studied H, adsorption in MOFs at these
conditions, and therefore, for the sake of consistency, we have
performed our simulations at these conditions. Gas—gas and
gas—MOF interactions were defined using the Lennard—Jones
(LJ) potential. A three-site rigid molecule with L] 12—6
potential, with oy = 0.296 nm, eyy/k = 342 K, and hydrogen
bond length of 0.074 nm, was used to model H,.*”** The
partial charges were at the two end atoms (q = +0.4705) and at
the center of the mass (2q = —0.941) of the H, molecule,
which allowed reproduction of the quadrupole moment.">*?
The total mass of the H, molecule was placed at the center of
mass, while the two ends of H, were free of mass.

Extended Charge Equilibration Method (EQeq) charges
were implemented in our code to assign partial point charges
to MOF atoms to compute electrostatic interactions between

https://doi.org/10.1021/acs.jctc.3c00081
J. Chem. Theory Comput. 2023, 19, 6686—6703
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Figure 3. Systematic representation of functionalization of organic linkers of an MOF. (a) The elementary building block of IRMOF-10 is shown,
which is repeated in x-, y-, and z-directions periodically to generate MOF structures. The indices of the array of size 24 represent the sites of
functional groups specifically on the (b) x-linker (1—8), (c) y-linker (9—16), and (d) z-linker (17—24). Note, the elements of this array portray the
functional groups, and the numbers in parentheses of each linker denote the indices of an array (or the location of functional groups on linkers).

H, and MOFs.”* Wilmer et al. presented improved accuracy
(over the traditional charge equilibration method) and faster
computation of EQeq charge calculation, thus deeming it
suitable for high-throughput screening of MOFs. In order to
get a fair agreement in the qualitative trend, we plotted the
adsorption relative to the number of GCMC steps to identify
the plateau in the graph. As shown in Figure S5 of the SI, we
determined that a plateau formed around ~2000 GCMC steps,
and as a result, 2000 steps were sufficient for broadly screening
the MOFs. Accordingly, during the optimization cycle, we
conducted 2000 GCMC steps and simultaneously MD
simulations on the functional groups with a 0.5 fs time step
in order to allow the functional groups to move. Besides, these
2000 GCMC steps, simulation results were used for the
machine learning training shown in Section 2.2. To calculate
the adsorption isotherms, we ran the selected top 10 structures
for 500,000 GCMC steps.

To validate our simulation protocol and UFF parameters, we
have performed GCMC simulations of IRMOEF-10 to
reproduce the H, adsorption isotherm using a different
number of steps. As shown in Figure S2 in the SI, these
results are in excellent agreement with experimental results
reported by Ryan et al.”> Note that all of the GCMC
adsorption values in this work are absolute.

2.1.2. Bare MOF Assembly. In this research, a systematic
structure generation algorithm was developed to construct an
MOF (Metal—Organic Framework). The algorithm operates
by iteratively attaching linkers to metal nodes and subsequently
connecting metal nodes to the linkers, following a sequential
process. Initially, a single metal node with a number of open
sites (N,), where linkers can be attached, is placed in a
simulation cell (Figure 2). At each of these open sites of the
metal node, a linker is attached in three directions viz. x-, y-,
and z-directions, as shown in Figure 2 (second figure). The
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algorithm then searches every linker for any open sites and
attaches a metal node at each site. In the next iteration, the
metal nodes with the open sites for the connecting location for
the linkers and this process continue iteratively until a
complete MOF cell, as shown in Figure 2 (last figure), is
formed. Note, only the principal atoms of MOFs are built in
the bare MOF construction without the hydrogens on carbon
linkers. Thus, in the latter part of the protocol, to ensure that
MOFs are fully saturated (ie. no missing hydrogen), we
included hydrogens as one of the functional groups during the
functionalization process.

2.1.3. Functionalization of Bare MOF. In addition, as the
functional groups are attached to aromatic rings, they are
arranged in the same plane as the aromatic rings themselves.
The UFF force field is used to calculate the bond length
between the atoms of the functional groups and the carbon
atoms on the linker that they are attached to.*® If the atoms of
functional groups are overlapping (i.. distance is < 0.1 A),
then they were rotated about the connecting bond axis until
the overlap vanished to form a valid structure for GCMC
simulations. These functional groups on these structures were
then relaxed using a conjugate gradient (CG) algorithm
implemented in the LAMMPS code and UFF parameters while
holding IRMOF-10 atoms fixed to its crystallographic
position.®*® This further eliminated any minor overlaps
between any atoms of the functional groups. Following the
minimization step, the structures were considered to be ready
for GCMC + MD simulations. Table S1 of the SI describes the
list of functional groups used in this study with their
corresponding IDs and frequency of occurrence.

2.1.4. Functionalization of IRMOF-10. This study focuses
on functionalizing the organic linker (i.e. 4,4'-biphenyldicar-
boxylate (BPDC)) of IRMOF-10, since it offers multiple
potential sites to exploit, as shown in Figure 3. In addition to

https://doi.org/10.1021/acs.jctc.3c00081
J. Chem. Theory Comput. 2023, 19, 6686—6703


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00081?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00081?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00081?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00081?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00081?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

its simplistic structure and ease of synthesis, IRMOF-10
enables us to control and rotate the orientations of two phenyl
rings in a linker. Particularly, it allowed us to model both
natures of voids formed of two different sizes by the faces of
the BPDC linker, as shown in Figure S1 of the SI. In the BPDC
linker, there are 8 hydrogens/carbons on aromatic rings that
serve as potential functional sites, as shown in Figure 3. To
functionalize linkers of IRMOEF-10, each linker’s potential
functional sites were numbered from 1 to 8 in three directions
(x-, y-, and z-) generating an array of a total of 24 sites, as
shown in Figure 3. Furthermore, any functional group can be
chosen from a pool of 39 functional groups, including
hydrogen, and was allowed to attach to the respective carbon
site of the linker. Consequently, the MOF structure was
defined by the array of functional groups at the appropriate
locations.

Based on the adsorption results from the above designing
method, we analyze the frequency of the 39 functional groups
in the generated structures. The details for functionalized
MOF generation are described in Sections 2.1.2 and 2.1.3 as
well as in S1.1 of the SI. With an anticipated higher impact on
enhancing H, adsorption, the top 20 highest occurring
functional groups were shortlisted. The 19 functional groups
(without considering H) were divided into four groups: 1)
C=C and benzene containing groups; 2) long-chain hydro-
carbon groups with at least two C=C; 3) short-chain alkyl
groups; and 4) short-chain nitrogen-containing groups. The
functional groups and their frequencies are shown in Table S1
of the SI Following the completion of the determination of an
array of functional groups, our “in-house” structure generation
code attaches the selected functional groups at appropriate
locations. The X site of the functional group shown in Table
S1 of the SI will be replaced by the ring carbon atom from the
IRMOF-10 linker. Based on the van der Waals radius of each
type of atom, the valid “4MOF” structure was generated with a
minimal 0.1 between the functional groups atoms to avoid
overlapping. Later, several structural and chemical features of
the generated MOF, including void fraction (VF), surface area
(SA), and mass in “4MOFs” were calculated. In order to
facilitate the arrangement of the MOF computing cell, a
uniformly sized grid of cubical tiles of 1 each was used. We
examined every cell, in turn, to determine whether it is
occupied by an atom based on its van der Waals radius. A void
fraction was calculated by dividing the sum of the volumes of
unoccupied grid cells by the total volume of the computational
cell. Furthermore, if an occupied grid cell was adjacent to any
unoccupied grid cell, it was defined as a surface cell and used to
calculate the internal surface of the MOF. Moreover, the
straightforward calculations of the total mass and number of
carbons in a functional group were incorporated directly into
the code for the generation of the structure. These features of
the MOF accounted for the explicit prediction of H,
adsorption through ML models. Consequently, it was deemed
important to optimize an appropriate set of an array of relevant
numbers representing the location and selection of functional
groups on the linker of an MOEF. Furthermore, enclosed
herewith is the C++ source code responsible for the assembly
of the family of IRMOFs and its subsequent decoration with
functional groups. This code is included in the SI to foster its
utilization by researchers in their investigations, while also
requesting due acknowledgment of this study whenever it is
employed.
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2.1.5. FParticle Swarm Optimization (PSO) Integrated with
the Genetic Algorithm (GA). GAs are iterative processes
designed to assess the fit of data over a period of several
generations based on Darwin’s theory of natural evolution.”” In
recent years, GAs have been successfully implemented to
optimize large and complex design spaces pertaining in the
design and development of new materials including metal—
organic frameworks, metals, and their oxides and compo-
sites.””>" GAs are built through the application of rational
design principles that lead to the creation of material structures
that can be synthesized for a wide range of applications.””*"**
The use of GAs can improve MOF design processes by
enabling iterative, data-informed decisions in order to optimize
functionalization and their location.”” The need for data-
enhanced discovery methods of novel materials can be fulfilled
by improving the ability of the GA to search a large design
space by combining it with another evolutionary method, the
PSO al§orithm, which we refer to as a PSO-integrated
GA 606

The GA and PSO have been integrated in different forms
through a combination of mutation and crossover, combined
with the mechanisms of PSO.°*®* They are used for a variety
of applications including data driven biology,”® chemical
kinetics,*° cloud computing,67 and so on for various con-
strained and unconstrained optimization problems. Ali and
Tawhid proposed a hybrid Particle Swarm Optimization and
Genetic Algorithm (HPSOGA) by improving the exploration
through dimensionality reduction and the population parti-
tioning process. Specifically, a genetic mutation operator in this
algorithm prevents premature convergence. However, pop-
ulation partitioning, resembling a grid search in its approach,
may encounter limitations in effectively exploring complex
rough surfaces. Certainly, in a multidimensional space, the
exploration process can face significant difficulties since the
parameter space expands exponentially with the increase in
number of dimensions.®® Similarly, Singh and Singh presented
hybrid PSO and gray wolf optimization (known as
HPSOGWO) to improve the exploration of the parameter
space.”” However, the explicit local and global exploration of
the parameter space still remains a grand challenge. In our
current, novel framework, we borrow the concepts of particles,
local best, and global best from PSO, and the GA’s basic
concepts of mutation and crossover. Conceptually, the use of
particles enables us to run multiple GAs in parallel. The local
and global bests are associated with each particle and all of the
particles, respectively. Both local and global bests can
participate in GA operations, which further enhances the
possibilities of exploring larger design space compared to a
traditional GA. Furthermore, in addition to hyperparameter
tuning, the flexibility of starting from a specific point (array)
provides a significant advantage for the algorithm.

During the PSO-integrated GA design of MOFs, a series of
GA operations were performed upon an MOF array (of 24
size) representing the location of various functional groups on
the MOF linker. In a PSO-integrated GA, rather than a
common pool of candidates to be assessed through fitness
function, separate groups (particles) were created so that GA
operations would be performed according to both local (for
each particle) and global (including all particles) best practices.
Therefore, a total of 16 groups (N, = 16 particles) were
created in the optimizer, where each particle contained 8
children (N, = 8). Each child represents a set of “hMOFs”
parameters also known as “genes”. We performed GCMC
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Chart 1

Pseudo Code:

1: Set the initial values of the populations size P, acceleration constant c1 (local) and c2 (global)
crossover probability w, mutation probability c¢3, initial randomization threshold (c_init: Higher
value means more functional groups in initial population), number of particles (num_particles),
number of local children (n_local) and global children (n_global) in each num_particle and the
maximum number of iterations max_epochs. Define the range the genes could have i.e. min_P and
max_P. We also define the velocity of each individual as the change for each gene in the given
parameter space. Here, vel inertial, vel local, and vel global are the change in gene space after
crossover, and local and global mutations, respectively.

Start with assigning all genes as Os for every individual.

2: Assign a starting array of features as first individual, and generate a random number (rn) for the

rest of population randomly to generate P°

If rn <c_init:
Change the Os in the array of genes to = rn * (max_P-min_P) + min_P

End if

3: Evaluate the fitness function of all individuals in P® and determine the local (Biocal) and global

(Bglobal) bests.

4: Repeat
(i) Select all individuals from the population and randomly assign a number r1 and r2 in the range
()
(i) (a) Ifrl <w:
vel_inertial = (max_P - min_P)*r2 + min_P
Iterate through each individual (local and global child in each particle separately)
End If
(b) Local Mutation:
Assign a random number r_c in the range (0,1)
Ifr_c<ecl:
vel _local = Biocal
End If
(c) Global Mutation:
Assign a random number r_c in the range (0,1)
Ifr_c<ecl:
vel_global = Baiobal
End If
(d) Local and Global Cross-breeding:
Add the updated velocity to initial set of genes and bound those genes in between (min_P,
max_P)
Update P
Evaluate the fitness function of all individuals

Until Max_epochs”
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Figure 4. (a) A schematic representation of a stacked ensemble model (SEM) using RF, LGBM, and MLP as the hidden layers to output the H,

adsorption. (b) A schematic representation of the 3-D CNN model.

simulations on each child, and the final H, adsorption for each
MOF was considered to evaluate each MOF as a fitness. This
PSO-integrated GA algorithm tracks the best design parameter
(Pyest) for each particle. A PSO particle has two generations of
children: one for local evolution (N = 4) and the other for
global evolution (N, = 1) thereby adding new genes to the
particle’s gene pool. In this case, Py and its design parameters
are used at epoch (i) to determine the local children at epoch
(i+1). Similar to the local children, the global children were
created by crossing Gy, with its design parameters at epoch i.
Figure 1(b) illustrates how a child’s genetic characteristics
evolve over time through the process of crossing over and
mutations. By combining both of these factors, this algorithm
is capable of improving local genes, as well as bringing in
improved genes from the global pool. In the next step, the local
and global children were subjected to random mutations, in
which design parameters could be randomly altered, as shown
in Figure 1(c). The hyperparameters used for the PSO-
integrated GA for local and global mutations are described in
Table S2 of the SI. To shed light on the algorithm in a step-by-
step protocol, the following pseudocode for this algorithm is
provided, as shown in Chart 1.
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To make a direct comparison of the PSO-integrated GA
with a traditional GA and random baseline, as a test case, we
ran the adsorption of H, simulations for 128 candidates for
100 optimization iterations for 200 GCMC steps. These results
are discussed in Section S4.2 of the SI and suggest that the
PSO-integrated GA is an effective approach to solve complex
optimization problems, and it performs better than a
traditional GA. The frequency of occurrences of a given
functional group at the given specific location during evolution
of a traditional GA and PSO-integrated GA are presented in
Movies S5 and S6 of the SI, respectively. Movie S$
demonstrates that with a traditional GA algorithm only a
single portion of the heatmap becomes darker in color (blue),
indicating that only a limited section of the search space was
thoroughly explored. In contrast, Movie S6 for the PSO-
integrated GA shows a gradual increase in the number of
darker spots across the expansive design space, indicating that
as the algorithm evolves, more and more of the search space is
explored efficiently.

2.2. Machine Learning and a Deep Learning
Approach to Predict H, Adsorption. In principle, machine
learning (ML) and deep learning (DL) models can be used to
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replace computationally inefficient GCMC calculations for H,
gas adsorption. Here, five different ML and DL models were
developed and compared for their ability to accurately predict
H, gas adsorption. These constitute (a) a Random Forest
(RF) model, (b) a Light Gradient Boosting Machine (LGBM)
model, (c) a multilayer perceptron (MLP) model, (d) a
stacked ensemble model (SEM), and (e) a 3-D convolutional
neural network (CNN) model.

RF models combine several decision trees into an ensemble
approach in order to create a predictive model. In general, the
final prediction of RF flows either from voting by the members
of the tree and picking the majority vote for a classifier or an
averaged value for a regression.70 As a result, RF models are
simple to construct yet robust against overfitting, making
reliable predictions with sufficiently large training data sets. As
a result of its simplistic architecture, it is one of the fastest ML
methods. The LGBM is one popular algorithm based on
gradient boosting machine (GBM). It is a highly efficient
decision tree, which shows good performance on the
predicating CO,”" and arsenic’* adsorption using an MOF.
Compared with the RF model, it may perform better because
the LGBM trains the gradient boosting trees in a sequential
manner; each tree was trained to correct the errors of the
previous tree. The MLP is a feed forward artificial neural
network (ANN), which has been widely used in MOF
adsorption studies.”””* It consists of an input layer, one or
multiple hidden layers, and an output layer. Each layer is fully
connected to the one before it. Anderson et al. have applied
the MLP to study the adsorption isotherm for different small
adsorbates at different pressures in an MOF. Their MLP model
performs accurate prediction, on average, of adsorption
isotherms in MOFs for adsorbates not in training data.”

One of the previous studies in our group demonstrated the
feasibility of the SEM combined with MD for predicting
contact angles and hydrogen bonding in a water droplet.”” In
the SEM, there are several layers of interconnected models,
each layer containing a different ML model, as shown in Figure
4(a). More specifically, the first three ML models were trained
using the features and properties as inputs and outputs.
However, in the SEM, the outputs from the first three models
were used as input, and subsequently, an MLP model was built
to give adsorption as output in the final step of evaluation. A
further enhancement of the prediction accuracy of the ML
model is achieved by combining these predicted properties of
the ML model in the first layer and feeding them into the ML
model of the second layer as input and so on. It is through this
process of stacking ML models in one or more layers that
prediction accuracy is enhanced.”® All four models were built
and trained using the Scikit-Learn Python package.”””® The
12878 “hMOFs” data set from GCMC was split into two
subdata sets, 80% for training and the rest 20% for testing. 10-
fold cross-validation was performed on the training data for
each model to ensure their validity. The input features have 29
descriptors, including the functional groups at 24 different
functional sites, the total mass of the functionalized “hMOFs”,
the surface area (in A?), and total void fraction (TVE) of the
MOF as well as void fractions of two different pores of MOFs
(VF1 and VF2). The volumetric adsorption was used as the
label for training. In order to determine the best hyper-
parameters, a grid search algorithm was implemented to alter
the following hyperparameters: (1) RF: n_estimators {50, 100,
200}, max_depth {None, 5,10}, and max features {‘auto’,
‘sqrt’, ‘log2’}, (2) LGBM: learning rate {0.01, 0.05, 0.1},
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n_estimators {100, 200, 300}, num_ leaves {S, 10, 20},
max_depth {None, S, 10}, (3) MLP: hidden layer sizes
{(10,), (10, 30), (10, 30, 10)}, activation {‘relu’, ‘tanh’}, solver
{*adam’, ‘sgd’}, alpha {0.0001, 0.001, 0.01, 0.1, 1}, learnin-
g rate {constant, adaptive}.

Further, deep learning techniques include convolutional
neural networks (CNNs), which are typically used for image
classification and recognition tasks, where the input data
consists of 2D arrays of pixel values (e.g,, a 32 X 32 X 3 image
has 32 rows, 32 columns, and 3 color channels).79 Never-
theless, CNNs are also capable of processing 3D data such as
medical images or point clouds. It is the spatial characteristics
of functional groups that remain an integral part of MOFs that
determines their hydrogen adsorption capabilities. Thus,
determining these features remains a crucial task in training
an ML model. CNN through its three-dimensional grid
approach maps the 3D shape and size of the functional groups
through voxelization of the grid if an atom is present. In
addition to incorporating these structural properties, we
accounted for chemical characteristics by voxelizing the grids
according to atom types and the origin of those atoms to the
respective functional groups. For example, the labels of atom
C1 (spl hybridized carbon) were considered as atom type 12,
which was affiliated with F.G. number 9 and appended
together resulting in label “912” for the grid. In this regard, we
were able to emphasize the importance of both functional
groups as well as atom type and hybridization. The voxelization
and the overview of convolutional approaches are illustrated in
Figure 4(b). We employed a 3D kernel of size 3 X 3 X 3 and
exponential linear unit (ELU) activation function. A five-
layered convolution neural network with 32, 64, 128, 256, and
512 channels was utilized, each followed by the MaxPooling
layer. Since we have modeled F.G. as flexible, in order to
incorporate the dynamical changes in the F.G. influenced by
the H, adsorption, in 3D CNN, the last S frames spanning the
last 500 steps of GCMC simulation were used for each
structure for voxelizing 3D grid. Note, due to the restrictions
on the computational resources, we have used only ~9000
MOFs (~45,000 frames) to train 3D CNN models.

To evaluate the performance of each ML model, we use R*
score, mean absolute percentage error (MAPE), root mean
squared error (RMSE), and mean absolute error (MAE),
which their details are described in Section S3.1 of the SI.

3. RESULTS AND DISCUSSION

3.1. PSO-Integrated GA Optimization. In this study, the
top 19 functional groups with the highest frequency of
occurrences (see Table S1 of the SI) in addition to hydrogen
were shortlisted and utilized in the optimization cycles. As a
starting point, we used a known array that was anticipated to
give higher adsorption, and for the remaining 127 arrays,
random numbers were generated. This starting point was
determined based on initial random runs performed with the
39 functional groups. Here, we performed two separate cycles
of the PSO-integrated GA framework to discover new
functionalized MOFs with enhanced H, adsorption. In
Cycle-1, the optimization cycle ran for 39 epochs (iterations),
with 128 functionalized MOFs in each epoch, totaling 4992
structures. Additionally, a restart Cycle-2 was implemented,
with the best candidate from Cycle-1 used as the initial starting
point. Here, we implemented a code to ensure that none of the
structures from Cycle-1 were repeated by generating new
random arrays in the case of any repetition. Thus, an additional

https://doi.org/10.1021/acs.jctc.3c00081
J. Chem. Theory Comput. 2023, 19, 6686—6703


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00081/suppl_file/ct3c00081_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00081?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

(@)  Void Fraction (b) Mass (c) Gravimetric SA (d)  Volumetric SA
-EI 24 0.80 -E|24 26000 -EI 24 ’é‘ -El 24 2600;‘«
o2 o2 . 2000 D2 e g2 2400 §
c 20 o’ g 20 ¢ 3 < 20 Ex 20 E
o ] 20005 6 w08 9 200 =
H 1 w5 [ b
B8 5 B8 S B8 s B 2000 2
g 0708 g a0z £ s 5 o
Q16 g ds 5 216 3 @6 1800 §
T ST 18000 9 g w0 & 8
® 0655 ® 44 g Ou Y] 1600 3
K] . >y . 16000 = g L ¢
= T (3 T = 2600 & = T

12 . 12 2 12 o 12 1400 &
] . e w0 © ot e g ] g
€] o 3N E ol o 2% £ > Ew 1200 5

3 8

H RN 3 N 1200 3 205 32 V. S
0 glbe 0 gl 0 ol O b 1000

8 055 8 8 8
> 10 15 20 25 30 > 10 15 20 25 30 > 10 15 20 25 30 > 10 15 20 25 30

Gravimetric adsorption (mg/gm) Gravimetric adsorption (mg/gm) Gravimetric adsorption (mg/gm) Gravimetric adsorption (mg/gm)
Figure S. Dependence of volumetric and gravimetric adsorption with their correlation with (a) void fraction, (b) mass, (c) gravimetric surface area
2 . 2 3

(m*/g), and (d) volumetric surface area (m*/cm?).

(C)] (b) © (d)
-E‘ 2 2600~ 22 I 26000 E “ z
Ch 2400 5 s 22 080 s 22 24000 o2 000 &
2 &2 2 = 2 T
€20 E 20 €20 8 g2 =
H 2200 3 § o § o 27000% o 2800 §
] - -] ] g
g_ 18 2000 5 g 18 § E.‘“ zoooog g 1 §

16 1800 § 16 ° 16 S 16 8
§ 1:: § 070 é 18000 1 § 2600 ‘:a
'! 14 1600 ; ‘! 14 ’g .E 14 150002 v 14 oo g

5 = g T °
5 12 1400 E £ 12 0.65 £ 12 w0 £ 12 téu
€0 12005 E o E w0 €10 s
3 S 3 060 =2 12000 3 2200 &
0 s 1000 S 3 . S s . % & .
> 060 065 070 075  0.80 > 10000 12500 15000 17500 20000 22500 25000 > 2200 2400 2600 2800 3000 > 7 1000 1250 1500 1750 2000 2250 2500
Void fraction Total mass of MOF (Da) Gravimetric surface area (m?/gm) Volumetric surface area (m?/cm?)
~(e - = ~(h
- @ ~® e) (b
o 2600 ~ O o 26000 o -
2 a2 2 o z
o £ o 0s0 O =) 3000 §
E 30 2600,‘3 E 30 E 30 24000 _ E 30 ~
E : £ E < E
2200 = c e e

S 3 8 0158 8 55 o0 s L2 200 §
g 2000 5 8 g ‘é 200005 @ M
H 5 -] 5 & g
0 20 1908 820 0703 @ 20 18000 0 @ 20 2600 £
° 5T >T 5 O a
11 1600 2 ® 0 16000 E ® g
v Y oo ] = g
‘£ 15 1400 5 & 15 065 F ‘£ 15 8 L5 2400 g
£ g s H 140002 & E
£ 20 3 € £ E 2
£ s £ 060 T 10 12000 .E 10 2200 5
2 L 000”3 . H . H .
G 0.60 0.65 0.70 0.75 0.80 G 10000 12500 15000 17500 20000 22500 25000 G 2200 2400 2600 2800 3000 G 1000 1250 1500 1750 2000 2250 2500

Void fraction Total mass of MOF (Da)

Gravimetric surface area (m?/gm) Volumetric surface area (m?/cm?)

Figure 6. Dependence of volumetric and gravimetric adsorption with their correlation with (a, e) void fraction, (b, f) mass, (c, g) gravimetric

surface area (m’/g), and (d, h) volumetric surface area (m’/cm?).

8832 new structures were run to make a total of 13,824
structures in Cycle-1 and Cycle-2. In the optimization, all 128
“hMOFs” (from every epoch) were subjected to GCMC
simulations to determine their absolute hydrogen adsorption in
each epoch. GCMC simulations were used as the fitness
function for PSO-integrated GA since absolute H, adsorption
at 1 bar and 77 K was the only evaluating factor for each MOF.
Particularly, in both cycles, our structure generation code
generated these initial structures comprising the following
features in the range: (a) total void fraction (TVF): ~0.55 to
~0.85, (b) total mass (M,): 10,000 to 26,000 Da, (c)
gravimetric total surface area (GTSA): ~2,200 m*/g to ~3,000
m?/g, and (d) volumetric total surface area (VTSA): ~1,000
m*/cm? to ~2,500 m*/cm®. Note, the range of these features is
known to influence H, adsorption in MOFs.” While the design
space spans across 20%*/3! MOFs, with the use of the PSO-
integrated GA algorithm, the exploration of only 12,878 MOFs
yielded us the best adsorption MOF. This highlights the
effectiveness and efficiency of optimization algorithms as a tool
for solving complex problems in the field of MOFs and other
materials discovery.

Absolute hydrogen capacity in terms of the number of
molecules was converted to volumetric and gravimetric
adsorption capacity to compare with the DOE target.*’
According to their respective volumes and masses, unit cells
of the MOF were used in the simulations. The best volumetric
adsorption of each epoch starting from 18.86 g/L went on to
increase until 22.44 g/L in the optimization, as plotted in
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Figure S4 of the SI. Further, the corresponding gravimetric
adsorption was 31.72 mg/g. This MOF comprises 18
functional groups and six nonfunctionalized sites. In this
structure, penta-1,3-diene, phenylacetylene, and unsaturated
linear carbon chain functional groups appeared more
frequently, while methyl, ethyl, pyrrole, and ethyl amine were
present in fewer numbers on the bare MOF. Besides, when
MOFs were ranked based on their gravimetric adsorption, an
MOF structure with the gravimetric and volumetric adsorption
of 32.82 and 21.17 g/L, respectively, was also found during
optimization. This MOF includes 17 functional groups and
seven nonfunctionalized sites. This MOF is notable for its
higher occurrence of smaller functional groups like methyl,
which decreases the overall weight of the MOF. However,
there are fewer occurrences of smaller unsaturated carbon
chains like acetylene, propyne, and styrene on the bare MOF.
Note that these adsorption values were only after 2,000 steps
of GCMC run, which we have further validated in the longer
GCMC runs as discussed in Section 3.5 below.

Figure 5(a)-(d) broadly investigates the trend of the
absolute volumetric adsorption with respect to gravimetric
adsorption obtained from the GCMC calculations with the
MOF features (on the color bar) across the set of all MOFs
generated in this study. The highest volumetric and gravimetric
adsorption was evident for a ‘sweet-spot’ for TVF in the range
~0.65 to ~0.71, for mass (16,000 to 20,000 Da) and VTSA
(1,600 to 2,000 m?/cm®). However, due to the lack of a
discernible trend for GTSA, it can be concluded that a ‘sweet-
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Figure 7. Dependence of volumetric adsorption on the features of MOF i.e. (a) TVF, (b) mass, (c) GTSA, and (d) VTSA correlating with the
epochs of optimization cycles is shown. The evolution of occurrences of MOFs within specific ranges of the features mentioned above is shown in

(e-h).
spot’ for GTSA does not exist. As a result, attempting to to the gravimetric adsorption is evident in Figure 6(e), (f), and
optimize GTSA may not be a viable option since there is no (h). Moreover, as mentioned above, the increased void
specific target for which to aim for. Furthermore, a distinct fraction, decreased mass, and VTSA, due to the decreased
color gradient, blue to red as we move from left to right in functional groups, resulted in a color trend (blue to red and
Figure 5(a), suggests that with an increase in void fraction, the vice versa) as we move from right to left. As anticipated, no
gravimetric adsorption increases. This increased void fraction evident trend can be observed in the graphs relating to the
could be due to the decreased number of functional groups, GTSA. In addition, we illustrate the effect of other parameters
thereby decreasing the mass of the MOF and resulting in on the absolute uptake shown in Figure S6 and Figure S7 of
increased gravimetric adsorption. Therefore, a similar color the SI. These graphs suggest that the ranges of ~0.67—0.71,
gradient was observed for the mass and VTSA in Figure 5(b) ~17,500 Da—20,000 Da, and ~1,750—2,100 for the TVF,
and (d). Finally, it can be concluded that the discernible trends mass, and VTSA of a unit cell, respectively, may be optimal for
in adsorption are greatly influenced by factors such as the void high H, adsorption. Note, the overlap of points from over the
fraction, mass, and VT SA. These features play a significant role epochs of optimization cycles suggests that the optimization
in determining the adsorption behavior. may have reached the “point of saturation” by 108 epochs. The
Figure 6(a)-(h) demonstrates the dependence of H, following section further sheds light on the evolution of
adsorption of each MOF from the entire set of structures functional groups and thus the MOF features during the MOF
from PSO-integrated GA run in relation to their void fractions, design using PSO-integrated GA framework.
mass, VTSA, and GTSA. With an increase in the void fraction 3.2. Evolution of Functional Groups in the PSO-
(from ~0.58 to ~0.67), mass (from ~10,000 Da to ~19,000 Integrated GA Algorithm. The evolution of the PSO-
Da), and VTSA (from ~1,000 m*/cm® to ~2,000 m?/cm?), integrated GA algorithm can be quantified by analyzing the
the absolute adsorption capacity of the MOFs increased from occurrences of the MOFs in the specific ranges of the features
~8.2 g/L to ~22 g/L, as shown in Figure 6(a), (b), and (d), of MOF. For that purpose, we have plotted volumetric
respectively. However, further increases in the void fractions, adsorption w.r.t. TVF, mass, GTSA, and VTSA corresponding
mass, and VT SA led to the reduction of the absolute hydrogen to each epoch color-coded from blue (epoch number 1) to red
adsorption capacities. Essentially, this is due to the fact that as (epoch number 108) in Figure 7(a)-(d). More details can be
the surface area increases, the exposure of unsaturated carbon found in Movies S1—S4 in the SI. Further, the number of
atoms increases, resulting in more hydrogen adsorption sites.”! occurrences of MOFs in the ranges of TVF, mass, GTSA, and
The presence of double and triple bonds between carbon VTSA as the epochs progress is shown in Figure 7(e)-(h). As
atoms allows unsaturated carbon chains, such as acetylene, discussed in the previous sections, the ‘sweet-spot’ for TVF in
propyne, penta-1,3-diene, and styrene, to have a greater the range (~0.67—0.70) was indeed achieved by the PSO-
electron density than saturated carbon chains. Consequently, integrated GA algorithm as shown by appearances of dark red
the unsaturated carbon atoms and hydrogen molecules have colored points in Figure 7(a). This can be confirmed by the
stronger interactions because of the increased electron density, peaks appearing at epochs > 100 marked by dark green colored
resulting in improved hydrogen sorption.81 Eventually, further bars in Figure 7(e). Further, for initial few epochs (<10), we
increase in the VTSA beyond ~2,000 m’/cm’ leads to a observed that the majority (75%) of the structures were
decreased void fraction (to ~0.6), leading to smaller pores and generated in the TVF range of ~0.71 to ~0.78, whereas as the
less volumetric space available for hydrogen adsorption. Thus, PSO-integrated GA progressed, the structures generated in the
a “sweet spot” exists for optimal adsorption marked by the range of ~0.64 to ~0.70 increased significantly. Therefore, in
purple circle in Figure 6, suggesting that MOFs comprising addition to the adsorption, this optimization cycle targeted the
only specific ranges in their void fraction, mass, and surface “center of percussion” for void fraction in this range. It was
areas may yield higher adsorption. Similar behavior pertinent interesting to note that no trend was apparent in the
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volumetric adsorption with respect to gravimetric total surface
area, and consequently no ‘sweet-spot’ could be attained.
However, for the case of VTSA, the number of structures has
gradually increased in the “sweet-spot” range of 1,750—2,100
m?/g. Note that the peaks appearing at the ~39th epoch for
mass (10,000—16,000 Da) and VTSA (1000—1750 m?/cm?),
shown in Figure 7 (f) and (h), correspond to the restart of the
optimization cycle. The results of this analysis indicate that
while optimizing H, adsorption as expected, the other
structural parameters of MOFs such as total void fraction,
mass, and VTSA were also changed.

To understand the evolution of functional groups and
functionalization sites on the linker, we plotted the progression
of genes during the PSO-integrated GA run. Figure 8(a) shows
that functional groups phenylacetylene, Penta-1,3-diene, 1,3,5-
Heptatriene, and methyl (IDs: 1, 5, 7, and 12) appeared more
frequently compared to the other functional groups, as either
they were smaller in size (like methyl) and/or they had
unsaturated linear carbon chains, which assisted in enhancing
the H, adsorption. Another interesting observation was that
functional groups with IDs 1 to 11 appeared more often
compared to those with IDs 12 to 19. This can be attributed to
the higher adsorption driven by the larger exposure to the
linear unsaturated carbon chains (for F.G. IDs: 1 to 11), as
opposed to the saturated carbon chains (IDs: 12 to 14) and
amine-based functional groups (IDs: 15 to 19). Moreover, in
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the case of the functionalization sites, the site numbers 1, 7, 9,
and 17 were occupied more often in the optimization cycle, as
shown in Figure 8(b). These linker sites correspond to the x-
linker (sites 1 and 7), y-linker (site 9), and z-linker (site 17).
This phenomenon can be attributed to the decreased
likelihood of larger functional groups occupying adjacent
sites, as they are prone to overlap. To avoid this, it is more
common to have one site of a linker in each direction as this
allows for larger functional groups to be attached without
overlapping. The combination of top occurring functional
groups and sites generated the MOFs within the ‘sweet-spot’ of
void fraction (even though it was not targeted), making this
combination appear more frequently in the optimization. This
outcome further demonstrates the effectiveness of this specific
combination of functional groups in achieving the desired
results.

3.3. Analysis of the Selected Top 200 MOFs. Figure
9(a) shows the importance of the location of the functional
groups at each site in influencing H, adsorption. Specifically, it
summarizes the dependence of average adsorption for the
given functional groups at a particular site on the linker. The
darker blue boxes, for example, for the location of functional
group (or F.G.) number 1 at site number 18 primarily may
drive the increased adsorption in the top selected MOFs.
Figure 9(b) denotes the occurrence of the MOFs with the
given functional groups at a particular site on the linker. The
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highest number of occurrences of 185 MOFs out of the top
200 consisted of functional group 1 (phenylacetylene) at site
number 4, highlighted by the dark pearl-blue pixel in Figure
9(b). This was followed by F.G. S (Penta-1,3-diene) at site 20
(170 occurrences highlighted by the dark blue), F.G. 1
(phenylacetylene) occurring at site 16, and F.G. 11
(1,3,5,7,9,11-Dodecahexaene) occurring at site 11 for 132
and 123 MOFs (emerald green squares), respectively.
However, it was interesting to note that their corresponding
adsorption in Figure 9(a) represented by the lighter green
shades was comparatively lower. Moreover, the darkest blue
shade for FG-1 at site 18 mentioned earlier occurred for only 2
of 200. This clearly indicates that the adsorption within the
MOFs is not significantly influenced by a single functional
group at a specific site alone but rather by a combined effect of
a set (or subsets) of functional groups at their appropriate
locations. Therefore, we have carefully inspected and presented
a Venn diagram to identify these subsets of functional groups,
as shown in Section 3.4.

Indeed, the H, molecule is a nonpolar molecule, of which
adsorption depends on their interactions with relatively weak
polarizing centers.*> Additionally, at cryogenic temperature (77
K), the high accessible adsorption surface and low bulk density
result in a significant amount of H, adsorption. As a result of
these nonpolar functional groups like phenylacetylene, Penta-
1,3-diene, and 1,3,5,7,9,11-Dodecahexaene, which offer a high
specific exposed area of unsaturated carbons, the H,
adsorption in our MOFs is enhanced.” Similarly, the long-
chain unsaturated alkenes, here particularly 1,3,5,7,9,11-
Dodecahexaene (FG-11), could reach the central area of the
pore enabling the higher adsorption of H, molecules in that
region at low pressures.’” At lower pressures, hydrogen
adsorption is primarily driven by electrostatic interactions
and is less affected by the presence of larger voids.'” In fact,
most of the top MOFs with the highest volumetric capacity
were decorated with these functional groups.

Figure 9(c) outlines the correlation, determined by the
Pearson correlation coefficient (PCC), among the features
(TVF, mass, VTSA, GTSA, VF1, and VF2) of the top selected
200 MOFs and their corresponding H, adsorption (volumetric
(adsvol) and gravimetric (adswt)). The correlation coefficient
of +1 and —1 suggests that the two properties have positive or
negative linear relationships between them. Furthermore, a
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negative relationship is evident for these properties with the
void fractions with VTSA and mass (PCCyrsarve: —0.84,
PCCpppss.rve: —0.94). This observation can be interpreted as
the increase in the functional groups resulting in a decrease in
the void fraction and an increase in the total surface area in the
top 200 MOFs. It was interesting to note that the gravimetric
adsorption is linearly correlated with a total void fraction
(PCCrypagswt: 0-79), while it is negatively correlated with
volumetric total surface area (PCCyrga.agews: —0.62) and mass
(PCCuss-adswt: —0.84), indicating that increasing functional
groups contribute to MOF mass and thus decreasing
gravimetric sorption. Moreover, the sky-blue shaded plots for
volumetric adsorption dependence on the properties of MOFs
(PCCrv-adswor: 003, PCCorsp-adsvol: 0-16, PCCyrspaaswor: 0-06,
PCCass-adsvor: —0-05) indicate that none of the properties are
linearly correlated with the absolute adsorption. And the
volumetric adsorption cannot be single-handedly determined
by one factor (property).

3.4. Coupling of Functional Groups at Appropriate
Sites. Further, to investigate the occurrence of particular
combinations of functional groups at appropriate sites, we plot
the Venn diagram of the location of given functional groups, as
shown in Figure 10. The top 200 MOFs with the highest
adsorption in this study were selected, and the arrays (genes)
were systematically inspected. Out of 200 MOFs, the
occurrence of any functional at the one-particular site was
determined, and the top 5 occurrences were selected. As
mentioned in Section 3.3, the top S occurrences include
phenylacetylene and penta-1,3-diene occurring in 185 and 170
MOFs out of 200 at sites 4 (here we term it as FG1-S4) and 20
(FGS-S20), respectively. Moreover, the next 3 combinations
include 1,3,5-Heptatriene (FG7), 1,3,5,7,9,11-Dodecahexaene
(FG11) and again phenylacetylene (FG1) at sites 2 (S2), 11
(S11), and 16 (S16, respectively, for 118 (FG7-S2), 123
(FG11-S11), and 132 (FG1-S16) MOFs of 200.

Particularly, we found that functional group numbers 7
(1,3,5-Heptatriene), 11 (1,3,5,7,9,11-Dodecahexaene), and $
(Penta-1,3-diene) at linker sites 2, 11, and 20 occurred for 118,
123, and 170 MOFs, respectively, out of 200. In addition,
functional group 1 (phenylacetylene) occurred at sites 4 and
16 both 185 and 132 times, respectively. To determine the
coupling of functional groups in an MOF array, we inspected
the overlap among them.
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Figure 11. (a) The adsorption of the top 10 structures at 1 bar and 77 K is shown. (b) The adsorption isotherms for pressures ranging from 0.1 to
100 bar at 77 K for structure number 9 (which demonstrated the highest uptake at 1 and 77 K) are shown.

Figure 10(a) suggests that 57 MOFs of the top 200 have all
of the aforementioned functional groups at their respective
sites. This resulted in average adsorption of 21.1 g/L at 1 bar
and 77 K, in 2000 GCMC steps. Evidently, the higher the
surface area exposed by the carbons in functional groups, the
higher the H, adsorption. Moreover, the average adsorption of
each of the subsets is shown in Figure 10(b). These data
indicate the adsorption values with their corresponding
confidence in the subsets. For instance, 28.5% of the top
MOFs (for all ie. FG7-S2, FG1-S4, FG11-S11, FG1-S16, and
FGS-S20) show an adsorption of 21.11 g/L; however, only 1%
of the MOFs show 21.26 g/L (FG7-S2, FG1-S4, FG11-S11,
and FG1-516).

3.5. Adsorption Isotherms. The top 10 structures from
the optimization cycle (top S from Cycle-1 and top S from
Cycle-2) were identified, selected, and run for 500,000 GCMC
steps. The final adsorption values are presented as bar plots
with their standard deviations in Figure 11(a). We observed
that 8 out of these top 10 structures had these functional
groups connected at their appropriate sites (i.e. FG7-S2, FG1-
S4, FG11-S11, FG1-S16, and FGS5-S20). In this study, we
designed an MOF with the highest volumetric adsorption,
marking the first instance of such a design (25.76 g/L
corresponding to 37.09 mg/g, which showed highest
gravimetric adsorption too, at low pressure, ie. at 1 bar and
77 K) for structure number 9 exhibiting these desired
functionalization characteristics. It was interesting to note
that VF1 (void fraction for pore 1) and VF2 (void fraction for
pore 2) were fairly similar i.e. 0.695 and 0.68. Therefore, the
similar range of void fractions of types 1 and 2 suggests (VF1
~ VF2) that higher adsorption may be established in an MOF
where both the pores of MOF are uniformly functionalized.
Moreover, the top 10 structures’ volumetric adsorption ranged
from 21.89 g/L to 25.76 g/L, and gravimetric adsorption
ranged from 31.45 mg/g to 37.09 mg/g, which were
considerably fair for 1 bar pressure DOE targets.” In particular,
out of these 10 MOFs, S MOFs were generated with an
absolute volumetric capacity greater than 24 g/L (and 7 MOFs
with a gravimetric capacity greater than 32 mg/g) at 1 bar and
77 K. Compared to the unfunctionalized IRMOEF-10, with H,
absolute adsorption of 4.15 g/L and 1.8 mg/g, the function-
alized MOFs generated in this study were ~6 times higher.
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The understanding of the effect of surrounding temperature
and pressure may assist us to control the amount of deliverable
H, capacity of MOFs by pressure swing adsorption (PSA) or
temperature swing adsorption (TSA). Thus, to further probe
the mechanism and validate the adsorption in these structures,
the top 10 candidates from the optimization cycle were
selected and run for 500,000 GCMC steps. We have employed
a broad range of pressures to investigate adsorption isotherms,
particularly, 0.1—100 bar at 77 K. The detailed arrays for these
10 structures are shown in Table S3 of the SI. As per results
shown in Figure 11, adsorption increases linearly from 9.07 to
25.76 g/L in the range of 0.1 to 1 bar, whereas for the range of
P ~ 1 to 40 bar, i.e. at higher pressures, isotherms fluctuate
around a constant value. Note that at low pressures,
physisorption is the dominant mechanism of adsorption,
where the H, molecules interact with the surface of the
MOF through van der Waals and electrostatic forces,"” since
MOFs with smaller pores may exhibit stronger adsorption due
to the increased surface area to volume ratio and the greater
interaction between the H, molecules and the MOF surface.
Additionally, the 3-site model incorporates the quadrupole
moment of H, (which is relatively an accurate description of
charge distribution) enabling stronger electrostatic interactions
with MOF. The hMOFs studied here have increased surface
area, and therefore, at lower pressures, we observe a linear
trend of increase in adsorption. As the pressure continues to
increase, the role of the surface area in the adsorption process
diminishes. This results in the formation of a plateau, where
the adsorption of H, reaches a constant and stable value (i.e.
~4S g/L), fluctuating only slightly for pressures beyond 40 bar
(i.e. P ~ 40 to 100 bar).

According to PSA, the deliverable H, capacity for this
structure was 18.902 g/L as we moved from 40 to 1 bar.
However, the structure number 10 showed the highest
deliverable capacity of 23.0 g/L. The deliverable capacities
for all other MOFs range from 18.6 to 23.0 g/L and are shown
in Table S4 of the SI The adsorption isotherms for other 9
structures are shown in Figure S8 of the SI. Note, there are
relatively large differences between the adsorption obtained
from 500,000 and 2,000 step GCMC runs. However, on the
basis of a qualitative trend obtained as shown in Figure 11, we
performed a proof-of-concept study that showcases only 2000
GCMC steps are suflicient for high-throughput screening;
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however, a greater number of GCMC steps should be used to
validate the uptake capacity of that MOF. Indeed, there are
previous studies in the literature that have used ~3,000—
10,000 steps to perform high-throughput screening of MOFs
for gas adsorption.**™

3.6. ML Models to Predict H, Adsorption. As a
preprocessing step, to ensure the elimination of symmetrically
equivalent structures before ML training, all arrays of
structures underwent preprocessing using a python script,
and duplicates were removed. Specifically, we identified
structures symmetric in x-, y-, and z-directions i.e. if the
same set of numbers in columns 1 to 8,9 to 16, and 17 to 24 is
repeated in 9 to 16, 17 to 24, and 1 to 8, respectively, or in 17
to 24, and 1 to 8, and 9 to 16, respectively, then these
structures were deemed as symmetrically equivalent. The
performance of all ML and DL models developed in this study
is shown in Table 1 and Figure 12. Considering the four ML

Table 1. Comparison of Different Machine Learning Models
on H, Adsorption

Testing performance 10-fold cross-validation

models (RF, LGBM, MLP, and SEM) trained on the
functional group’s array and related structure properties,
though the R® scores showed a best value of 0.68 from
LGBM, the MAPE are less than 6%, which was good to
compare with the MAPE (~4.4% in average) predicted for
different small molecules in MOFs using MLP from Anderson
et al. work.”? We also found that the LGBM model performed
as the best of these four models. The 3D-CNN model has
significantly increased the prediction performance with an R*
score of 0.91 and MAPE of 0.017%. Instead of capturing only
the functional group’s type and site information, the 3D-CNN
model also captures the location of each functional group
related to the metal nodes and organic linkers, which
significantly affects the adsorption results due to the flexible
structure of functional groups during the GCMC simulation.
From the parity plot shown in Figure 12(e), the majority of
predicted adsorption values has a difference of less than 0.5 g/
L from the GCMC simulated adsorption results. Though the
total mass, void fraction, and surface area were not used in the
3D-CNN model for training, this information was indirectly
captured by the 3D-CNN model. For example, as we use a 70
X 70 X 70 grid mesh, each grid was filled by no more than 2

MAPE RMSE MAE MSE . .
(%) (g/L) (¢/L) R (g/L) atoms, usually 0 or 1 atom. The grids labeled with 0 could be
RE 5260 1.057 0.835 0.634 117 used to estimate the void fraction of a functionalized MOF
LGBM 4790 0.989 0789 0.680 0.979 structure. The grid labeled with the functional group atom
MLP 5.980 1220 0.980 0.540 1.490 information gives the type of the certain element, which
SEM 4.890 1011 0.809 0.670 1.034 indirectly gives the total mass. Therefore, the 3D-CNN model
3D-CNN 0017 0.381 0.289 0.910 N/A actually captures both the chemical and structural information
on the “hMOFs”, which enhanced the predictive performance
of the gas uptake which is similar to the conclusion in
Pardakhit et al. study that ML models based on structural and
(a) RF (b) LGBM (o) MLP
25 4.0 25 4.0 25 4.0
R?=0.63 R?=0.66 R?=0.53
4 35 MAPE = 4.98% 35 35
204 ° S 3.0 20 ogelts 30 20 % oo ¢ 3.0
* o & o
. 2.5 25 % 25
15 o 20 15 . 2.0 15 o . 2.0
K 0 o o ) °
. Ty 15 o o H 15 R °og‘. 15
o e 0o vo ok @
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(d) SEM (e) 3D CNN
25 4.0 - 4.0
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20
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0.0
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18

Figure 12. Testing accuracy of five models, ie. a (a) Random forest (RF) model, (b) light gradient boosting machine (LGBM) model, (c)
multilayer perceptron (MLP) model, (d) stacked ensemble model (SEM), and (e) three-dimensional convolutional neural network (3D-CNN)

model, trained in this study.
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chemical descriptors achieve reliable predictive results.”” This
further demonstrates the capability of CNN models to achieve
accurate predictions even with limited data sets (only ~9000
MOFs (~45,000 frames)).

3.7. Design Rules. According to the data generated via the
PSO-integrated GA framework, we have formulated the
following design rules and functionalization recommendations
for the synthesis of these next-generation MOFs. These criteria
may be applied to the design of experiments to test, rationalize,
modify, and repurpose the current MOFs while providing new
functional aspects specific to H, storage. A chemical rationale
and the potentiality to modify functional groups based on the
active site features specific to H, adsorption are described.
Based on the data generated during the PSO-integrated GA
framework, we provide the following design rules that may
further assist the synthesis of these MOFs:

1 Functional group selection at low pressure: It has been
reported that the high H, adsorption results from a
higher specific surface area at low pressure and cryogenic
temperature (77 K). Based on our data, the functional
groups containing unsaturated carbon rings and carbon
atoms (e.g, phenylacetylene, penta-1,3-diene, methyl,
styrene, and ethyl), due to their high specific exposed
surface area of carbons and unsaturated carbon bonds,
may enhance the H, adsorption. Moreover, the longer
linear chain alkenes, for example, decapentaene, could
improve the H, adsorption by increasing the specific
surface area by reaching the central region of voids at
low pressures.

2 Selection of sites on MOFs: The top utilized
functionalization sites were site numbers 24, 3, 14, 1,
and 11. This was in accordance with the location of
these sites being close to the metal node corner. This
allows the enhanced entrag)ment of the H, molecules in
the larger available pores.”**’

3 Selection of a combination of functional groups and site:
the 4,4’-BPDC linker could be decorated with 1,3,5-
Heptatriene and phenylacetylene at sites 2 and 4,
respectively, in the x-direction. Subsequently,
1,3,5,7,9,11-Dodecahexaene on a linker in the y-
direction at site 11 and phenylacetylene and Penta-1,3-
diene on linkers in the y- and z-directions at sites 16 and
20 result in the higher volumetric adsorption. Approx-
imately 28.5% of the top MOFs accounted for the above
configuration in the top 200 MOFs selected on the basis
of highest volumetric H, capacity.

4. CONCLUSIONS

We present a novel framework that seamlessly integrates
molecular simulations (here, GCMC) with the PSO-integrated
GA algorithm and in-house metal organic framework (MOF)
structure generation code to design MOFs with enhanced H,
uptake capacity. This framework reduced a large design space
of ~10% MOFs created while functionalizing IRMOF-10 with
39 selected functional groups. Specifically, it was able to search
for the combination of functionalization site and functional
groups by exploring only 13,824 MOFs with the aid of the
PSO-integrated GA algorithm. IRMOF-1 with the highest
volumetric and gravimetric adsorption (i.e. 25.76 and 37.08
mg/g, respectively) was ~6 times higher than those of bare/
unfunctionalized IRMOF-10 (4.1S and 13.9 mg/g, respec-
tively).
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The in-depth analysis of the top 200 MOFs showed that
unsaturated carbon atoms of long chain functional groups
assisted in enhancing the H, adsorption because of their
stronger interactions with H,. Particularly, phenylacetylene,
penta-1,3-diene, 1,3,5-Heptatriene, and 1,3,5,7,9,11-Dodeca-
hexaene were the most occurring functional groups. Moreover,
the adsorption isotherms revealed the highest volumetric and
gravimetric deliverable capacity of functionalized IRMOF-10
to be of 23.0 g/L and 37.09 mg/g, respectively.

A proof-of-concept of training machine learning models to
predict the H, adsorption, which in turn can be used as a
surrogate for GCMC simulations, is also presented. ML
models including random forests, light gradient boosting
machine, and multilayer perceptron (artificial neural networks)
were trained to achieve testing MAE values of 0.835 g/L
(MAPE = 5.26%), 0.789 g/L (MAPE = 4.79%), and 0.980 g/L
(MAPE = 5.98%), respectively. We also advanced our study
further by training a stacked ensemble model, which improved
the accuracy slightly by reducing the MAE value to 0.809 g/L
(ie. MAE reduced to 0.809 g/L and MAPE 4.89%).
However, 3-dimensional CNN, which incorporated both the
spatial (or physical) features as well as chemical characteristics
of functional groups attached to the MOFs performed the best
and exhibited an MAE of 0.289 g/L (and MAPE = 0.017%). In
the future, we envision integration of the ML methods with
PSO-integrated GA models to discover new MOF candidates
for hydrogen, carbon dioxide, ethane, and ethylene adsorption.
Moreover, this novel computational framework and ML model
development approach will be used to design new drug
molecules and polysaccharides as well as polymer grafted
nanoparticles for desired applications.
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