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Abstract

Multi-dimensional online decision making plays a crucial role in many real applications
such as online recommendation and digital marketing. In these problems, a decision at
each time is a combination of choices from different types of entities. To solve it, we
introduce stochastic low-rank tensor bandits, a class of bandits whose mean rewards can
be represented as a low-rank tensor. We consider two settings, tensor bandits without
context and tensor bandits with context. In the first setting, the platform aims to find
the optimal decision with the highest expected reward, a.k.a, the largest entry of true
reward tensor. In the second setting, some modes of the tensor are contexts and the rest
modes are decisions, and the goal is to find the optimal decision given the contextual
information. We propose two learning algorithms tensor elimination and tensor
epoch-greedy for tensor bandits without context, and derive finite-time regret bounds
for them. Comparing with existing competitive methods, tensor elimination has
the best overall regret bound and tensor epoch-greedy has a sharper dependency
on dimensions of the reward tensor. Furthermore, we develop a practically effective
Bayesian algorithm called tensor ensemble sampling for tensor bandits with context.
Extensive simulations and real analysis in online advertising data back up our theoretical
findings and show that our algorithms outperform various state-of-the-art approaches
that ignore the tensor low-rank structure.
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1 Introduction

The tensor, which is also called multidimensional array, is well recognized as a powerful tool
to represent complex and unstructured data. Tensor data are prevalent in a wide range
of applications such as recommender systems, computer vision, bioinformatics, operations
research, and etc (Frolov and Oseledets, 2017; Bi et al., 2018; Song et al., 2019; Bi et al., 2021,
2022). The growing availability of tensor data provides a unique opportunity for decision-
makers to efficiently develop multi-dimensional decisions for individuals. In this paper, we
introduce tensor bandits problem where a decision, also called an arm, is a combination of
choices from different entity types, and the expected rewards formulate a tensor. The problem
is motivated by numerous applications in which the agent (the platform) must recommend
multiple different entity types as one arm. For example, in an advertising campaign a marketer
wants to promote a new product with various promotion offers. The goal is to choose an
optimal triple user segment X offer x channel for this new product to boost the effectiveness of
the advertising campaign. At each time, after making an action, i.e., pulling the arm (user ¢,
offer j, channel k), the leaner receives a reward, e.g., clicking status or revenue, indicating the
user segment i’s feedback on promotion offer j on marketing channel k. The rewards of all
these three-dimensional arms formulate an order-three tensor, see Figure 1 for an illustration.
Similarly, a clothing website may want to recommend the triple top xbottom xshoes to a user
that fits the best together. Each arm is the triple of three entities. In these applications,
the agent needs to pull an arm by considering multiple entities together and learn to decide
which arm provides the highest reward.

Traditional tensor methods focus on static systems where agents do not interact with
the environment, and typically suffer the cold-start issue in the absence of information from
new customers, new products or new contexts (Song et al., 2019). However, in many real
applications, agents receive feedback from the environment interactively and new subjects

enter the system sequentially. See Figure 1 for an illustration of such interactive sequential
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Figure 1: An example of interactive multi-dimensional online decision making. The rewards
from all sequential multi-dimensional decisions formulate a tensor.

decision making. In each round, the agent recommends a promotion offer to a chosen user
segment in a channel, and then the agent receives a feedback from this user segment. Based
on this instant feedback, the agent needs to update the model to improve the user targeting
accuracy in the future.

Bandit problems are basic instances of interactive sequential decision making and now
play an important role in vast applications such as revenue management, online advertising,
and recommender system (Li et al., 2010; Bubeck and Cesa-Bianchi, 2012; Lattimore and
Szepesvari, 2020). In bandit problems, at each time step the agent chooses an arm/action
from a list of choices based on the action-reward pairs observed so far, and receives a random
reward that is conditionally independently drawn from the unknown reward distribution
given the chosen action. The objective is to learn the optimal arm that maximizes the
sum of the expected rewards. The heart of bandit problems is to address the fundamental
trade-off between exploration and exploitation in sequential experiments. At each time step,
after receiving the feedback from users, the agent faces a decision dilemma. The agent can
either exploit the current estimates to optimize decisions or explore new arms to improve the
estimates and achieve higher payoffs in the future. Our considered tensor bandits problem
can be viewed as a higher-order extension of the standard bandit problem, which generalizes

a scalar arm to a multi-dimensional arm and correspondingly generalizes a vector reward to



a tensor reward case.

In this article, we introduce stochastic low-rank tensor bandits for multi-dimensional
online decision-making problems. These are a class of bandits whose mean rewards can be
represented as a low-rank tensor and arms are selected from different entity types. The
assumption of low-rankness is well-adopted in the literature on tensors. It effectively reduces
model complexity and finds widespread applications in practical scenarios such as online
recommendation systems and digital marketing (Sun et al., 2017; Bi et al., 2021; Idé et al.,
2022). More practical justifications for the use of low-rank tensors can be found in the
survey paper Song et al. (2019). To balance the exploration-exploitation trade-off, we propose
two algorithms for tensor bandits, tensor epoch-greedy and tensor elimination. The
tensor epoch-greedy proceeds in epochs, with each epoch consisting of an exploration
phase and an exploitation phase. In the exploration phase, arms are randomly selected and
in the exploitation phase, arms that expect the highest reward are pulled. The number of
steps in each exploitation phase increases with number of epochs, guided by the fact that,
as the number of epochs increases, the estimation accuracy of the true reward improves
and more exploitation steps are desirable. For tensor elimination, we incorporate the
low-rank structure of reward tensor to transform the tensor bandit into linear bandit problem
with low-dimension and then employ the upper confidence band (UCB) (Lai and Robbins,
1985) to enable the uncertainty quantification. The UCB has been very successful in bandit
problems, leading to an extensive literature on UCB algorithms for standard multi-armed
bandits (Lattimore and Szepesvari, 2020). However, employing the successful UCB strategy
in low-rank tensor bandits encounters a critical challenge, as the tensor decomposition is
a non-convex problem. When the data is not uniformly randomly collected but adaptively
collected, the concentration results for the low-rank tensor components remain elusive thus far.
Our tensor elimination approach considers a tensor spectral-based rotation strategy that

preserves the tensor low-rank information and meanwhile enables uncertainty quantification.



Algorithm Regret bound
tensor epoch-greedy O(pd/2 + p(d+1)/3n2/3)
tensor elimination | O(p#? + pld=1/2pl/2)
vectorized UCB O(p® + p¥?n1/?)
matricized ESTR O(p?=1 4 p3ld=1/2p1/2)

Table 1: Regret bounds of our proposed tensor epoch-greedy and tensor elimination,
as well as the competitors vectorized UCB and matricized ESTR. Here n denotes the time
horizon, p = max{ps,...,ps} denotes the maximum tensor dimension and d denotes the
order of the reward tensor. We consider d > 3, the maximum tensor rank r = O(1), and use

O to denote O ignoring logarithmic factors.

In addition to these methodological contributions, in theory we further derive the finite-
time regret bounds of our proposed algorithms and show the improvement over existing
methods. Low-rank tensor structure has imposed fundamental challenges, as the proof
strategies for existing bandit algorithms are not directly applicable to our tensor bandits
problem. So the regret analysis of tensor bandits demands new technical tools. In theory,
we show that two existing competitors: (1) vectorized UCB which vectorizes the reward
tensor into a vector and then applies UCB (Auer, 2002); and (2) matricized ESTR which
unfolds the reward tensor into a matrix and then applies matrix bandit ESTR (Jun et al.,
2019), both lead to sub-optimal regret bounds. Table 1 illustrates the comparison of our
regret bounds and the regret bounds of these two competitors. Importantly, we prove that
tensor epoch-greedy has better dependency on tensor dimensions and worse dependency
on time horizon compared with the other methods. Therefore, it has superiority over other
methods in two scenarios: (1) when the time horizon is short, e.g., the market campaign has
a small time budget; or (2) when the dimensions are high. In contrast, the regret bound of
tensor elimination is always better than the two existing competitors due to its sharper
dependency on the dimensions, and also has advantages over tensor epoch-greedy when
time horizon is long since it has better dependency on time horizon. These theoretical
guarantees and insights are important as they help us better understand the algorithms and

when one might be preferred over the other.



Finally, we consider an interesting extension of tensor bandits when the contextual
information is available. In the aforementioned tensor bandits setting, the goal is to find
the optimal arm corresponding to the largest entry of the reward tensor. This setting is
called tensor bandits without context. When some modes of the reward tensor are contextual
information, we encounter contextual tensor bandits. Take the online advertising data
considered in Section 6 as an example. Users use the online platform on some day of the
week, and the platform can only decide which advertisement to show to this given user at
the given time. In this example, the user mode and the day-of-week mode of the reward
tensor are both contextual information and both are not decided by the platform. This
is the key difference to the user targeting example shown in Figure 1. Because of this,
many of the aforementioned methods are no longer applicable. In this paper we further
develop tensor ensemble sampling for contextual tensor bandits that utilizes Thompson
sampling (Russo et al., 2018) and ensemble sampling (Lu and Van Roy, 2017). Thompson
sampling is a powerful Bayesian algorithm that can be used to address a wide range of
online decision problems. The algorithm, in its basic form, first initializes a prior distribution
over model parameters, and then samples from its posterior distribution calculated using
past observations. Finally, an action is made to maximize the reward given the sampled
parameters. The posterior distribution can be derived in closed-form in a few special cases
such as the Bernoulli bandit (Russo et al., 2018). With more complex models such as our
low-rank tensor bandit problem, the exact calculation of the posterior distribution becomes
intractable. In this case, we consider an ensemble sampling approach (Lu and Van Roy, 2017)
that aims to approximate Thompson sampling while maintaining computational tractability.
In an online advertising application, our tensor ensemble sampling is empirically successful
and reduces the cumulative regret by 75% compared to the benchmark methods.

There are several lines of research that are related to but also clearly distinctive of the

problem we address. The first line is tensor completion (Yuan and Zhang, 2016; Song et al.,



2019; Zhang et al., 2019; Cai et al., 2021; Xia et al., 2021; Han et al., 2022). While we employ
similar low-dimensional structures as tensor completion, the two problems have fundamental
difference. First, a key assumption in existing tensor completion is to assume the observed
entries are collected uniformly and randomly (the only exception is Zhang et al. (2019) which
assumes a special cross structure of the missing mechanism). This is largely different from
our interactive online decision problem where the observed entries are collected adaptively
based on some bandit policy. The difference is analogous to that between linear regression
and linear bandit (Lattimore and Szepesvari, 2020). Second, the goal of existing tensor
completion is to predict all missing entries while the goal of tensor bandits is to find the
largest entry in the reward tensor so that the cumulative regret is minimized. Third, these
tensor completion algorithms are developed for off-line settings where data are collected all
at once. They are not applicable to our online decision problem where data enter the system
sequentially. On the other hand, existing online tensor completion (Yu et al., 2015; Ahn
et al., 2021) for streaming data could not handle our interactive decision problem due to
their uniform and random missing mechanism and non-interaction nature.

The second line of related work is low-rank matrix bandit. There are some works
considering special rank-1 matrix bandits (Katariya et al., 2017b,a; Trinh et al., 2020). To
find the largest entry of a non-negative rank-1 matrix, one just needs to identify the largest
values of the left-singular and right-singular vectors. However, this is no longer applicable
for higher-rank matrices. For general low-rank matrix bandits, Kveton et al. (2017) handled
low-rank matrix bandits but imposed strong “hott topics” assumptions on the mean reward
matrix. They assumed all rows of decomposed factor matrix can be written as a convex
combination of a subset of rows. Sen et al. (2017) considered low-rank matrix bandits with
one dimension choosing by the nature and the other dimension choosing by the agent. They
derived a logarithmic regret under a constant gap assumption. However the gap may not

be specified in advance. Lu et al. (2018) utilized ensemble sampling for low-rank matrix



bandits but did not provide any regret guarantee due to the theoretical challenges in handling
sampling-based exploration. Jun et al. (2019) proposed a bilinear bandit that can be viewed as
a contextual low-rank matrix bandit. However, their regret bound becomes sub-optimal in the
context-free setting due to the use of LinUCB (Abbasi-Yadkori et al., 2011) for linear bandits
with finitely many arms. In addition, our theory shows that unfolding reward tensor into
matrix and then applying algorithm proposed by Jun et al. (2019) leads to a suboptimal regret
bound. Lu et al. (2021) further generalized Jun et al. (2019) to a low-rank generalized linear
bandit. To the best of our knowledge, there is no existing work that systematically studies
tensor bandits problem. Low-rank tensor structure has imposed fundamental challenges. It is
well known that many efficient tools for matrix data, such as nuclear norm minimization or
singular value decomposition, cannot be simply extended to tensor framework (Richard and
Montanari, 2014; Yuan and Zhang, 2016; Friedland and Lim, 2017; Zhang and Xia, 2018).
Hence existing algorithms and proof strategies for linear bandits or matrix bandits are not
directly applicable to our tensor bandits problem. Our proposed algorithms and their regret
analysis demand new technical tools.

The rest of the paper is organized as follows. Section 2 reviews some notation and tensor
algebra. Section 3 presents our model, two main algorithms and their theoretical analysis
for the tensor bandits. Section 4 considers the extension to the contextual tensor bandits.
Section 5 contains a series of simulation studies. Section 6 applies our algorithms to an online
advertising application to illustrate their practical advantages. All proofs, an analysis of
approximate Thompson sampling, and additional implementation details in the experiments

are included in the supplemental material.

2 Notation and Tensor Algebra

A tensor is a multidimensional array and the order of a tensor is the number of dimensions

it has, also referred to as the mode. We denote vectors using lower-case bold letters (e.g., x),



matrices using upper-case bold letters (e.g., X), and high-order tensors using upper-case bold
script letters (e.g., X'). We denote the cardinality of a set by |- | and write [k] = {1,2,...,k}
for an integer k > 1. For a positive scalar x, let [z] = min{z € N* : 2 > z}. We use
e; € R? to denote a basis vector that takes 1 as its j-th entry and 0 otherwise. For a vector
a € R? and s; < sy € [d], let a,,.,, be the sub-vector (a,,,a,,11,...,a,,). For an order-d
tensor X' € RP1**Pd define its mode-j fibers as the p;-dimensional vectors Xi; i 1 i1, i
and its mode-j matricization as M;(X) € RPi*P1-Pi-1pi+1Pa) where the column vectors of

M;(X) are the mode-j fibers of X. For instance, for an order-3 tensor X € RP1*P2*P3 jtg

mode-1 matricization M (X) € RP1*P2r3) is defined as, for i € [p1],7 € [pa], k € [ps],

[MI(X)]i,(j—l)pg-i—k = Xijk- (1)

For a tensor X' € RP1*P2X*Pd gnd a matrix Y € R"*P1 we define the marginal multiplication

X x1Y € RrxpexXPa gg

p1

s <i/1=1 Xi&’iz,m’iinljia)ile[m],ize[pz]--.,ide[pd}' (2)

Marginal multiplications along other modes, i.e., Xg,..., X4, can be defined similarly. For

X, Y € RPrxPadefine the tensor inner product as (X)) = Zile[m],...,ide[pd} X oiaVinig

The tensor Frobenius norm is defined as || X||r = 1/(X, X'), and the element-wise tensor max
norm is defined as || X = max;, i, | X, il

Consider again an order-d tensor X € RP***Pd_ Letting r; be the rank of matrix M;(X),

J € [d], the tensor Tucker rank of X is the d-tuple (r1,...,74). Let Uy € RP*™ 0 U, €

RPa*7d he the matrices whose columns are the left singular vectors of My(&X), ..., My(X),

respectively. Then, there exists a core tensor § € R™**"d guch that
X:S><1U1 Xo +o XdUd,

or equivalently, X, ;. = Zi/le[rl],-~~7i/d€[rd] Sit it Uiy - [Ud]idﬂ-&. The above decomposi-

tion is often referred to as the tensor Tucker decomposition (Kolda and Bader, 2009).
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3 Tensor Bandits

In this section, we first introduce tensor bandits, followed by two new algorithms — tensor
elimination and tensor epoch-greedy. We then establish the finite-time regret bounds of
these two algorithms, which reveal their different performances under different rate conditions
and provide a useful guidance for their implementations in practice.

In tensor bandits problem, the agent interacts with an environment for n time steps,
and at each step, the agent faces a d-dimensional decision, indexed by [p1] X -+ X [pg]. A
standard multi-armed bandit can be regarded as a special case of tensor bandits with d = 1.
At step t € [n] and given past interactions, the agent pulls an arm I;, which denotes a d-tuple
(i14,---,04¢) € [p1] X ... X [pa]. Correspondingly, the agent observes a reward y, € R, drawn
from a probability distribution associated with the arm I;. Specifically, denoting the true

reward tensor as X € RP1**Pd the agent at time ¢ receives a noisy reward

Y = <Xa At> + €, with A; = €1, 0 " 0€,,, (3)

[

where “o” denotes the vector outer product, e;;, € RP7 is a basis vector, j € [d], and A; is a
tensor indicating the location of the arm ;. For example, if the agent pulls I; = (i14,...,%41),
then the (i14,...,74:)-th entry of A; is 1 while all other entries are 0. In (3), € is a random
noise term, assumed to be sub-Gaussian in Assumption 1.

The goal of our work, aligned with the central task in bandit problems, is to strike the
right balance between exploration and exploitation, and to minimize the cumulative regret.

Let the arm with the maximum true reward be
(i7,...,45) = argmax (X,e; 0---0e;,)
11€[p1],...,ia€[Pal

and correspondingly, denote A* = €;x o --- o e;:. Our objective is to minimize the cumulative

regret (Audibert et al., 2009), defined as

n n

Ry, = (X, A7) =) (X, A). (4)

t=1 t=1

10



Naturally, at each step t € [n], the agent faces an exploitation-exploration dilemma, in that
the agent can either choose the arm that expects the highest reward based on historical data
(exploitation), so as to reduce immediate regret, or choose some under-explored arms to
gather information about their associated reward (exploration), so as to reduce future regret.

At first glance, the tensor bandit problem posed in (3)-(4) can be re-formulated, via
vectorization, as a standard multi-armed bandit problem of dimension p; X ... X p;. However,
applying the existing algorithms for standard multi-armed bandits to vectorized tensor
bandits may be inappropriate due to several reasons. First, the majority of existing solutions
for multi-armed bandits require a proper initialization phase where each arm is pulled at
least once, in order to give a well-defined solution (Auer et al., 2002). For tensor bandits,
such an initialization step can be computationally expensive or even infeasible, especially
when p; X ... X pg is large. Second, the vectorization approach may result in a severe loss
of information, as the intrinsic structures (e.g., low-rank) of tensors are largely ignored
after vectorization. Indeed, as commonly considered in recommendation systems and other
applications (Kolda and Bader, 2009; Allen, 2012; Jain and Oh, 2014; Bi et al., 2018; Song
et al., 2019; Xia et al., 2021; Bi et al., 2021), tensor objects usually have a low-rank structure
and can be represented in a lower-dimensional space.

In this work, we propose to retain the tensor form of X and assume that it admits the

following low-rank decomposition,
X =8 x1U; xg--- x4 Uy, (5)

where § € R™**" ig a core tensor, and U; € RP**™ . U, € RPi*" are matrices with
orthonormal columns; see more details on this decomposition in Section 2. We consider a
low-rank model where the rank r; is much smaller than p;. The low-rank assumption in (5)
exploits the structures in tensors and efficiently reduces the number of free parameters in X.
Consider a special case where r; is fixed and p; = ... = py = p for simplicity. This low-rank

modeling allows us to consider an efficient initialization phase with O(p%?) steps (see Lemma
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S3), which is much reduced comparing to the p? steps required in the simple vectorization
strategy. As demonstrate in Table 1, comparing to the vectorized solutions that ignore the
low-rank structure, our proposed low-rank tensor bandit algorithms have much improved
finite-time regret bounds.

Before discussing the main algorithms, we first describe our initialization procedure.
Thanks to the tensor low-rank structure, our initialization phase need not to pull every arm
at least once, which is required in the majority of multi-armed bandit algorithms. Define an

initial set of s; steps
& =A{t|tels]} (6)

where s; is an integer to be specified later in Assumption 3. In the initialization phase, arms
are pulled with a uniform probability, equivalent to assuming P(i;; = k) = 1/p;, k € [p;],
in (3). If some prior knowledge about the true reward tensor is available, a non-uniform

sampling can also be considered in the initialization phase.

3.1 Tensor Elimination

The upper confidence band (UCB) strategies (Lai and Robbins, 1985) have been very
successful in bandit problems, leading to an extensive literature on UCB algorithms for
standard multi-armed bandits (Lattimore and Szepesvéari, 2020). These UCB algorithms
balance between exploration and exploitation based on a confidence bound that the algorithm
assigns to each arm. Specifically, in each round of steps, the UCB algorithm constructs an
upper confidence bound for the reward associated with each arm, and the arms with the
highest upper bounds are pulled, as they may be associated with high rewards and/or large
uncertainties (i.e., under-explored). Many work have analyzed the regret bounds of UCB
algorithms and investigated their optimality (Auer et al., 2002; Garivier and Cappé, 2011).

Employing the successful UCB strategy in low-rank tensor bandits encounters a critical

challenge, as the tensor decomposition in (5) is a non-convex problem, the data is adaptively
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collected and the concentration results for S. , 61, e ,ﬁd, to our knowledge, remain elusive
thus far. Without such concentration results, constructing the confidence bounds becomes a
very difficult problem. One straightforward strategy is to first vectorize the tensor bandits
and then treat the problem as a standard multi-armed bandit problem. However, as discussed
before, this strategy incurs a severe loss of structural information and is demanding, in terms
of sample complexity, in its initialization phase. In our proposed approach, we consider a
tensor spectral-based rotation strategy that preserves the low-rank information and at the
same time, enables uncertainty quantification. We also consider an elimination step that
eliminate less promising arms based on the calculated confidence bounds, which further
improves the finite-time regret bound (see Theorem 1). Taken together, the proposed tensor
elimination algorithm avoids directly characterizing the uncertainty of tensor decomposition
estimators, effectively utilizes the low-rank information and achieves a desirable sub-linear
finite-time regret bound. Next, we discuss the tensor elimination algorithm in details.
The tensor elimination shown in Algorithm 1 starts with an initialization phase of
length s; and then proceeds to an exploration phase of length n,, where arms in both phases
are selected randomly. In this algorithm, the initialization phase and exploration phase
are same. We choose to separate them so that the format is consistent with the tensor
epoch-greedy algorithm introduced in next subsection. Here, s; is set to be the minimal
sample size for tensor completion and n; is chosen to minimize cumulative regret, both of
which will be specified later in Section 3.2. Based on the random samples collected from
the initialization and exploration phases, we calculate estimates 61, e ,IAJd of the matrices
Uy,..., Uy in (5) using a low-rank tensor completion method (see Appendix S.3.2). Next,
we consider a rotation technique that preserves the tensor low-rank structure, and enables
vectorization and uncertainty quantification (see Lemma 1). Specifically, given IAJJ-, j € [d],

define ﬁj 1 whose columns are the orthogonal basis of the subspace complement to the column
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Algorithm 1 Tensor elimination

1: Input: number of total steps n, number of exploration steps ni, regularization parameters
A1, A9, length of confidence intervals &, ranks ry,--- ,rq.
# initialization and exploration phases
Initialize: D = ().
fort=1,---,s1+n; do
Randomly pull an arm A; and receive its associated reward y;. Let D = DU {(y;,.A¢)}-
end for R R R
Calculate Uy, ..., U, using D, and then find U, ,..., Uy, .
# reduction phase
Construct an action set Ay as in (9) and denote ¢ = II9_,p; — II%_, (p; — r;).

10: for k =1 to logy(n) do
11:  Set V,, =diag(\y,..., A\, Aa, ..., A2) and D = ().
——

q
12:  for t =t} to min(tx41 — 1,m —ny — s1) do

13: Pull the arm A; = argmax ¢y, (a1

14: Receive its associated reward y; and update Vi = V;+A;A]. Let D = DU{(y;, A;)}.
15:  end for

16:  Eliminate arms based on confidence intervals:

Ay = {a€ Ae: (Bra) + lally 16 2 max | (B, a) — [lally€] . where  (7)

> (1 2 1 1
Br = afg;ﬂln {5( AE ):GD (yt - <At,5>) + 5&”51#”2 + 5)\2Hﬂ(q+1):ngzlpj”2}- (8)
Y, At

17: end for

subspace of IAJ]-. Consider a rotation to the true reward tensor X calculated as

Y =X x [ﬁl;ﬁu] Xg ot Xg [Gd;ﬁdﬂ € RPr>xPd

~ o~

where X1,..., x4 are as defined in (2) and [U;; U, ] is the concatenation (by columns) of
ﬁj and IAJ]- 1. Correspondingly, the reward defined in (3) can be re-written (see proof in

Appendix 5.3.1) as
Y = <)), [ﬁl; ﬁu]Teiu O:«--0 [ﬁd; ﬁdj_]—reid’t> + €.

It is seen that replacing the reward tensor X with )} and the arm e; o --- o e;, with
[[AJl; [AJu]Teiu 0---0 [ﬁd;ﬁdL]Teiw does not change the tensor bandit problem. Define

B = vec(Y) € RH?:”’J', which vectorizes the reward tensor ) such that the first IT}_,r; entries

14



of vec(Y) are V;, ., fori; € {1,...,r;}, j € [d], and denote the corresponding vectorized

arm set as
A= {VGC([ﬁl; ﬁu]Teil 0-:-0 [ﬁd§ ﬁdL]Teid)vil €pi),...,iq € [Pd]}- (9)

Correspondingly, the tensor bandits in (3) with the true reward tensor X and arm set
{ei,0---0e;,,i1 € [p1], -+ ,ia € [pa]} can be re-formulated as a multi-armed bandits with
the reward vector B and arm set A.

It is easy to see that in vec(X x; [Uy; Uy ] Xo -+ xq [Ug; Ugy]), the first H?zlrj entries
are nonzero and the last H;l:1<pj — r;) entries are zero. Such a sparsity pattern cannot be
achieved if X is vectorized directly without the rotation. From this perspective, the rotation
strategy preserves the structural information in the vectorized tensor. Specifically, when

d )
=17

estimating the reward vector 3 in (8), we apply different regularizations to the first IT
entries and the remaining ngl(pj — r;) entries, respectively.

The algorithm then proceeds to the elimination phase, where less promising arms are
identified and eliminated. This phase aims to further improve the regret bound. Given a
vector a, we define its A-norm as ||al|s = Va' Aa, where A is a positive definite matrix.
During phase k& with the arm set Ay, the confidence ellipsoid of the mean reward of each
arm a € Ay is constructed using Bk It is shown in Lemma 1 that the confidence width of
the reward of arm a is ||al|y-1&, where V' is the covariance matrix and ¢ is a fixed constant
term that does not depend on a. At each time step ¢, the algorithm (line 13) then pulls
the arm with the largest confidence interval width. The intuition of the arm selection in
this step is that arms with the highest confidence widths are likely under-explored. At the
end of phase k (line 16), we implement an elimination procedure that trims less promising
arms. Specifically, we first update the estimate Bk in (8) based on the pulled arms and their
associated rewards during phase k. Based on the estimated reward Bk, we then construct

confidence interval (7) for the mean reward of each arm and eliminate the arms whose upper

confidence bound is lower than the maximum of lower confidence bounds of all arms in A;.
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3.2 Regret Analysis of Tensor Elimination

In this section, we carry out the regret analysis of the tensor elimination. To ease notation,
we assume the tensor rank r; = ... = ry = r and the tensor dimension p; = ... = pg = p. The
results for general ranks and dimensions can be established similarly using a more involved

notation system. We first state some assumptions.

Assumption 1 (Sub-Gaussian noise). The noise term € is assumed to follow a 1-sub-

Gaussian distribution such that, for any A € R,

Elexp(Ae;)] < exp(A?/2).

Assumption 2. Assume true reward tensor X admits the low-rank decomposition in (5)

with r = O(p/ 4=V, In addition, we assume ||X|s < 1 and p¥?||X||s/||X||F = O(1).

The assumption ||X|| < 1 assumes that the reward is bounded, and it is common in the
multi-armed bandit literature (see, for example, Langford and Zhang, 2007). It implies that
the immediate regret in each exploration step is O(1). Similar boundedness conditions on
tensor entries can also be found in the tensor completion literature (see, for example, Cai
et al., 2021; Xia et al., 2021). The assumption on the rank r refers to a low-rank model
assumption and is to simplify the final sample size requirement. Moreover, p/2|| X || /|| X || 7
measures the spikiness of the true tensor and its boundedness ensures that low-rank tensor
completion based on randomly observed samples can be reliable. This condition is a typical
incoherence assumption that is used in Xia et al. (2021); Cai et al. (2021) and is also common

in other low-rank models (Negahban and Wainwright, 2012).
Assumption 3. Assume the number of steps in the initialization phase sy is
51 = Cyr-22y, (10)

where Cy is a positive constant as defined in Lemma S35.
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This assumption requires the minimal sample complexity for provably recovering a low-
rank tensor from noisy observations when the entries are observed randomly (see Lemma
S3 and Xia et al. (2021)). Such random initialization phase is standard and important in
all bandit algorithms (Lattimore and Szepesvari, 2020). As discussed before, the simple
vectorization strategy would require s; = O(p?), which is significantly larger.

The next lemma provides the confidence interval for the reward of a fixed arm a.

Lemma 1. For any fized vector a € R? and § > 0, we have that, if

¢ = 24/14108(2/8) + /M [1Brglla + V2ol Bigrrype 2 (11)

with B = vec(Y), A1 > 0 and Ay = n/(qlog(1l +n/\1)), then at the beginning of phase k

P(la”(Bx — B)| < llally1) > 1 -3,

where V, = 22:1 AGAT +diag( Ay, .o A, Aoy, M)
—_——
q

Next, we show the finite-time regret bound for tensor elimination. Recall ¢ = H;lzlpj —

Iy (pj — 15)-

Theorem 1. Suppose Assumptions 1-3 hold. Lett, =21 0 < A\ < 1/p%, Ay = n/(qlog(1+
n/\)), and

2 d )
n = | p T log 2 (p) | | (12)
15,05

where o is the smallest non-zero singular value of M;(X), j € [d]. The cumulative regret of

Algorithm 1 satisfies

d
2

d rl e Nas fd 2
P2 + (Hd log® (p)> p 2 nd+2 + \/(dlog(p) + 10g(n))2pd*1n),

i=101

R, <C (r
with probability at least 1 — dp~'° — 1/n, where C' > 0 is some constant.

The detailed proof of Theorem 1 is deferred to Appendix S.1.1. It should be noted that

this paper focuses on the high-dimensional setting, where p approaches infinity, to ensure
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the probability approaches 1. A similar prerequisite of p — oo is also essential in both the
bilinear matrix bandits (Jun et al., 2019) and low-rank tensor model (Xia et al., 2021) to
ensure that the probability approaches 1.probability approaches 1. Ignoring any logarithmic
and constant factor, the above regret bound can be simplified to

~ d-2 d 2d  d?+d _2 d—1
Rn — O(’f’ 2 p2 4 rdi2pd2 nd+2 +p 2 n

N

)- (13)

The upper bound on the cumulative regret is the sum of three terms, with the first two terms
characterizing regret from the s; initialization steps and n; exploration steps, respectively,
and the third term quantifying the regret in the n — s; — ny elimination steps. As the
regret from the exploration phase increases with n; and the regret from the elimination
phase decreases with ny, the value for n; in (12) is chosen to minimize the sum of these two

regrets. Note that after the rotation, the order of ||B1,,||2 is of O(p*2) which guides the

choice of A\;. One component of the upper bound of the cumulative regret is log (‘if;é&;)
with A = diag(A1, ..., A1, Ao, ..., A2) and Ay is chosen to minimize the upper bound of the
log term so as to minimize the upper bound of cumulative regret. Theorem 1 is derived
assuming r is considerably smaller than p. In the case of a full-rank tensor with » = p, there
is no benefit of considering a low-rank model and one could unfold the tensor into a long

vector and employ an existing bandit algorithm such as LinUCB, which has been shown to

be optimal in linear bandits.

Remark 1. It is worth to compare the regret bound in Eq. (13) with other strategies. As
summaized in Table 1, when d = 3 and r = O(1), vectorized UCB suffers O(p? + p*¥2nl/2).
If we unfold the tensor into a matriz and implement ESTR (Jun et al., 2019), it suffers 5(p2+
p>nl/2). Both of these competitive methods obtain significantly sub-optimal regret bounds. By
utilizing the low-rank tensor information, our bound greatly improves the dependency on the

dimension p. Moreover, our advantage is even larger when the tensor order d is larger.

Remark 2. One may wonder whether we can extend the matriz bandit ESTR (Jun et al.,

18



2019) to the tensor case. In this case, standard LinUCB (Abbasi-Yadkori et al., 2011)
algorithm could be queried to handle the reshaped linear bandits as did in the matriz bandits
(Jun et al., 2019). However, it is known that the algorithm of LinUCB is suboptimal for
linear bandits with finitely many arms and the sub-optimality will be amplified as the order
of tensor grows. Hence, using LinUCB in the reduction phase results in O(p*n'/?) for the

leading term that is even worse than vectorized UCB.

One of the key challenges in our theoretical analysis is to quantify the cumulative regret
in the elimination phase. Existing techniques are not applicable as we utilize a different
eliminator with a modified regularization strategy. Furthermore, to bound the cumulative
regret in the elimination phase, we need to bound the norm ||B.1y,p¢ |2 Which is the last
p? — q entries of vec(Y). Recall that the reward tensor ) is a rotation of true reward tensor
X. We need to derive the upper bound of the norm of rotated reward vector by exploiting
the knowledge of estimation error of X. We use the elliptical potential lemma to bound the
cumulative regret in elimination phase. Furthermore, all parameters such as the penalization

parameter Ay and exploration phase length n, are carefully selected to obtain the best bound.

3.3 Tensor Epoch-greedy and Regret Analysis

Next, we propose an epoch-greedy type algorithm for low-rank tensor bandits, and compare
its performance with tensor elimination. The epoch-greedy algorithm (Langford and
Zhang, 2007) proceeds in epochs, with each epoch consisting of an exploration phase and an
exploitation phase. One advantage of this epoch-greedy algorithm is that we do not need
to know the total time horizon n in advance. In the exploration phase, arms are randomly
selected and in the exploitation phase, arms that expect the highest reward are pulled.
The number of steps in each exploitation phase increases with number of epochs, guided
by the fact that, as the number of epochs increases, the estimation accuracy of the true

reward improves and more exploitation steps are desirable. The epoch-greedy algorithm is
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Algorithm 2 Tensor epoch-greedy

1: Input: initial set &, exploration set &;.

2: Initialize D = 0.

3 fort=1,2,...,ndo

4:  # initialization and exploration phases

5: ifte & U& then

6: Randomly pull an arm 4; and receive its associated reward y, = (X, A;) + .
7 Let D=DU{(y:, A)}.

8 end if

9:  # exploitation phase

10: if ¢ ¢ 51 U 82 then .

11: Based on D, calculate a low-rank tensor estimate X;.

12: Pull the arm (i1, ..., iq;) = argmax; ; (X, e; 0...0e;,).
13: Receive the associated reward y; = (X, €,,0...0 eid’t) + €.
14:  end if

15: end for

straightforward to implement, and we find that compared to tensor elimination, tensor
epoch-greedy algorithm has a better dependence on dimension p and a worse dependence
on time horizon n.

The detailed steps of tensor epoch-greedy are given in Algorithm 2. In the initialization
phase, i.e., t € &, arms are randomly pulled to collect samples for tensor completion. Recall

the initialization phase has s; steps. Let the index set of steps in the exploration phases be

l
82:{81+l+1+282k|l:071,...}, (14)
k=0

where s9, denotes the number of exploitation steps in the kth epoch and it increases with k. In
the exploration phase, i.e., t € &, an arm A4, is pulled (or sampled) randomly. These random
samples collected in the exploration phases are important for unbiased estimation, as they do
not depend on historical data, and their accumulation can improve estimation accuracy of
the reward tensor. Meanwhile, as the exploration phase does not focus on the best arm, each
step t € & is expected to result in a large immediate regret, though it can potentially reduce
regret from future exploitation steps. In the exploitation phase, i.e., t ¢ & U &, we construct

a low-rank estimate ??t of the reward tensor using the random samples collected thus far in
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D. Then, the arm (¢4, ...,14;) with the highest estimated reward in ./"?t is selected, i.e.,
(T1y .- ylar) = argmax<Xt, €,0...0€;,).
114.-452d
Samples in the exploitation phase will not be used to estimate the reward tensor as they are
biased and thus exploitation steps cannot improve estimation accuracy of the reward tensor.

We next derive the regret bound of proposed tensor epoch-greedy.

Theorem 2. Suppose Assumptions 1-3 hold. Let

_d+l 1 _
Sok, = [02]0 2 1 2(logp)

N[ =

(k+ 51)%-‘ , (15)

d
2

for some small constant Cy > 0. When n > Cgr%p , the cumulative regret of Algorithm 2

satisfy, with probability at least 1 — p~1°,

2 d+l 1
+8n3p 3 (rlogp)3. (16)

da—2

Rn < Coer

[S]ISW

The regret bound has two terms with the first term characterizing the regret accumulated
during the initialization phase and the second term characterizing the regret accumulated
over the exploration and exploitation phases. The first term depends on the tensor rank
r and dimension p, but not n. It clearly highlights the benefit of exploiting a tensor low-
rank structure since unfolding the tensor into a vector or a matrix requires much longer
initialization phase. The second term in the regret bound is related to time horizon n and it
increases with n at a rate of n§

It is worth to compare the leading term of regret bounds for high-order tensor bandits
of tensor elimination in Eq. (13) and tensor epoch-greedy in Eq. (16). As summaized
in Table 1, when d > 3 and r = O(1), tensor elimination suffers O(p@1/2\/n) regret
while tensor epoch-greedy suffers 6(]0(‘”1)/3712/3) regret. Although the latter one has a

sub-optimal dependency on the horizon due to the e-greedy paradigm, it enjoys a better

regret than the prior one in the high-dimensional regime (n < p9=5).
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In the theoretical analysis, a key step is to determine the switch time between the two
phases, i.e., sop. We set the length of exploitation phase to be the inverse of tensor estimation
error. Intuitively, when the tensor estimation error is large, more exploration can increase
the sample size and improve the estimation. When the tensor estimation error is small, there
is no need to perform more randomly exploration. Instead, we exploit more to reduce instant
regrets. After obtaining the regret in epoch, we need to derive the upper bound of number of
epochs. Similar to the optimal tuning procedure in explore-then-commit regret analysis, we

tune the parameter to determine the final bound of total number of exploration steps.

4 Contextual Tensor Bandits

In this section, we consider an extension of tensor bandits to contextual tensor bandits where
some modes of the reward tensor are contextual information. Take the online advertising
data considered in Section 6 as an example. Users use the online platform on some day of
the week, and the platform can only decide which advertisement to show to this given user
at the given time. In this example, the user mode and the day-of-week mode of the reward
tensor are both contextual information and both are not decided by the platform.

The above example can be formalized as contextual tensor bandits. Specifically, at time ¢,

the agent observes a dy-dimensional context (i1, -+ ,%4,¢) € [p1] X -+ X [pa,] and given the
observed context, pulls an (d — dy)-dimensional arm (igy414, - »@4t) € [Pdg+1] X -+ - X [pa). Let
It = (i14,- - ,144) collect the contextx arm information at time step ¢. Correspondingly, the

agent observes a noisy reward y, drawn from a probability distribution associated with ;. The
objective is to maximize the cumulative reward over the time horizon. This contextual tensor
bandit problem is different from the tensor bandit problems considered in Section 3, as the
agent does not have the ability to choose the context. Therefore, the tensor elimination
algorithm can not be applied to contextual tensor bandits. To tackle this problem, we

introduce a heuristic solution to contextual tensor bandits that utilizes Thompson sampling
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(Russo et al., 2018) and ensemble sampling (Lu and Van Roy, 2017).

Thompson sampling is a powerful Bayesian algorithm that can be used to address a
wide range of online decision problems. The algorithm, in its basic form, first initializes a
prior distribution over model parameters, and then samples from its posterior distribution
calculated using past observations. Finally, an action is made to maximize the reward given
the sampled parameters. The posterior distribution can be derived in closed-form in a few
special cases such as the Bernoulli bandit (Russo et al., 2018). With more complex models
such as our low-rank tensor bandit problem, the exact calculation of the posterior distribution
may become intractable. In this case, we consider an ensemble sampling approach that aims to
approximate Thompson sampling while maintaining computational tractability. Specifically,
ensemble sampling aims to maintain, incrementally update, and sample from a finite ensemble
of models; and this ensemble of models approximates the posterior distribution (Lu and
Van Roy, 2017).

Consider the true reward tensor X € RP***P4 that admits the decomposition in (5),
where the first dy dimensions of X correspond to the context and the last d — dy dimensions
correspond to the decision (or arm). At time ¢ and given the arm A; = e;,, 0---oe;,,, the
reward y; is assumed to follow y; = (X, A;) + €. To ease the calculation of the posterior
distribution, in contextual tensor bandits we consider ¢, ~ N (0, 0?). For the prior distribution

over model parameters, we assume the rows of Uy are drawn independently from

[Uli, ~ N, 071), i € [pi], k € [d].

Let H,_1 = {(As,ys)}'Z} denote the history of actionxreward up to time ¢. Given the prior

distribution, the posterior density function can be calculated as

F(Xlyr, - yea) o fyr -+ yea | X) g f([Urls.)-

We maximize f(X|yi, - ,y—1) to obtain the maximum the posteriori (MAP) estimate as
£ (0) (® 1 SR 2
g(t),Ut,---,ﬁt = argmin (— s — (X, AN + — ’U i — Wk ) 17
(S0, 0) = iy (1300 A+ 3 30 0 =) 07
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Algorithm 3 Tensor ensemble sampling

1: Input: rank ri,...,74, 0%, {fiticpy]weids {O% freg, number of models M, variance of
perturbed noise 2.

2: # nitialize M models from prior distributions

Initialize sample [Ukm]g’) ~ N(pyi, 02X) for m € [M], i € [pi], k € [d]. Normalize each

o

column of matrix ﬁ;% Initialize the core tensor SW?) =1o---01 € RM>*1Xdrd,

4: fort =1,2--- do

5. # exploitation phase

6:  Sample m ~ Unif{l,--- M}

7. Observe context ©; = (114, , ldyt)

8:  Update (Sg), Ug?n, e U(t) =) by solving (18).

9:  Choose a; = (igy414, " »lat) = ArGMAXa iy 1, i) Elpag 1] %X [pd] Ri(xy, a), where
Ri(@i,a) = 8 1 [Unalfy % - xa [O )i,

10:  Receive reward ;.

11: # perturbation phase

12:  Sample perturbation noise wy, ~ N(0,5?) for m € [M].
13: Obtain perturbed rewards ¥, = yi + wim for m € [M].
14: end for

The objective function in (17) can be equivalently written as

1 d 1

o2

(S—le[Uﬂils,.X---X )2

st
1 k=1

MH

- Pl'kz

7

s

which is a non-convex optimization problem. In our proposed algorithm, we alternatively

optimize Uy, k € [d] and S. Given all U; such that [ # k and S, we estimate the i-th row of

U, as
1 1171 & 1
(t _ vit— 1) v(t=1 - o =1 4 =, .
[Uk = |:0_2 Z 1(%3_1 ) + 0_% I} {0_2 ; 1(11,s:z)ysv + o2 Nm}a
where v(t-1 — {S(tq) x4 [U1]§:.1) o Xt [Upe 1]§k i) X o1 [U’f“]gi;i,- X Xy [Ud]EZ;})

After updating all rows of Uy, for k € [d], we then estimate S by solving (17).
Tensor ensemble sampling in Algorithm 3 consists of initialization, exploitation and
perturbation phases. In the initialization phase, we sample M models from the prior

distributions. The mean py; and variance o7 in the prior distributions could be determined
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from prior knowledge or specified so that the range of models spans plausible outcomes.
Then, at each time step ¢, a model m is uniformly sampled from the ensemble of M models.
After observing a context @; = (i14, -+ ,4yt), the agent exploits the history data of model m
to estimate the low-rank component of the reward tensor via

1 t—1 9 d 1 Dk
1 5 ~sm - X, As } + )
ity 57 2 (T = (XA} + 30555

—~ 2
Ui = 00l (19)

Compared to (17), the objective in (18) uses perturbed rewards and perturbed priors, which
helps to diversify the models and capture model uncertainty. The goal is for the ensemble to
approximate the posterior distribution and the variance among models to diminish as the
posterior concentrates. Based on the sampled model m, we pull the optimal arm a; given
the observed context x;. At the end of each time step, we perturb observed rewards for all
M models to diversify the ensemble. Our tensor ensemble sampling can be viewed as an
extension of ensemble sampling (Lu and Van Roy, 2017) for contextual bandits problem.
Note that (18) is a non-convex optimization problem, and there is no assurance of achieving
the global optimizer. However, the optimization problem in (18) is bi-convex, meaning that
the loss function is convex with respect to one set of parameters while fixing the other sets.
This attractive property guarantees that the algorithm will always converge, though possibly
to a local optimum (Xu and Yin, 2013). Whether the algorithm can reach the global optimum
depends on how close the initialization value is to the true value. The same holds for other
similar low-rank tensor estimation problems (Sun et al., 2017; Cai et al., 2021; Xia et al.,
2021). In all of our experiments, we have observed that the tensor ensemble sampling
method performs well with the random initialization utilized in Algorithm 3. It is challenging
to analytically quantify how local solutions to (18) affect the tensor ensemble sampling
method and we leave a comprehensive theoretical investigation to future work. Moreover,
our choices of Gaussian prior distribution and Gaussian perturbation noise follow from the
existing ensemble sampling literature (Lu and Van Roy, 2017; Osband et al., 2018; Kveton

et al., 2020; Dwaracherla et al., 2022; Qin et al., 2022) due to their successful empirical
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performance and ease in computation in practice.

Although tensor ensemble sampling is motivated by contextual tensor bandit prob-
lems, it can also be used to solve tensor bandits without context. In this case, the context
dimension dy = 0 and an arm A; consists of all decisions to be made. While tensor ensemble
sampling performs well empirically, its theoretical investigation is very challenging due to
the nature of the ensemble sampling framework (Lu and Van Roy, 2017) and the non-convex
optimization in low-rank tensor problems. In Section S.4 of the supplement, we present
some preliminary Bayes regret analysis of a general approximate Thompson sampling (TS)
algorithm for tensor bandits. Notably, our tensor ensemble sampling can be considered
as a specific instance of an approximate TS algorithm. Since approximate TS is a Bayesian
algorithm, following the literature in this field (Russo and Van Roy, 2016; Qin et al., 2022),
we develop a Bayes regret bound, rather than a frequentist regret bound in (4). The Bayes

regret is defined as

BR, =E[R,| =E

S (@A) —z<x,At>] |

t=1 t=1

where the expectation is taken over the reward tensor X’ under the prior distribution F,.
Different from the frequentist regret bound in (4), the Bayes regret has an additional
expectation over the reward tensor X. Theorem 3 in Section S.4.2 provides a Bayes regret
bound for a general approximate TS, BR,, < O (W + >0 E[du(P; HE)D , where
H(A*) is the entropy of optimal action A* and the second term measures the distance
between its action sampling distribution P,(-) = sample(-| Py, D;_1), and that of the standard
Thompson sampling algorithm, Pf(-) = Pr(A* € |D;_1). See Section S.4.2 for more details.

It is important to note that the above Bayesian regret bound is based on a preliminary
information-theoretic analysis and we expect its dependence on p, the dimension of the
tensor, can be further improved. Specifically, our analysis has not fully exploited the low-
rank structure of the reward tensor X'. The question of how to incorporate this low-rank

structure into the information-theoretic analysis of approximate Thompson sampling remains
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an open problem that is particularly challenging. We believe that addressing this problem will
necessitate novel insights into Bayesian inference in low-rank tensors and potentially require
additional assumptions about the prior distribution F,. Even in the low-rank matrix case,
this issue is not well understood, and we see it as an interesting but very challenging direction
for future research. Moreover, to derive an explicit regret bound for the tensor ensemble
sampling algorithm, we need to further bound the Hellinger distance term dy(P;||F;) for
the ensemble sampling algorithm. We believe that this is also a challenging problem that
requires better understanding of how perturbed rewards and priors affect the non-convex
tensor decomposition formulation (see equation (18)), as well as their connections to Bayesian
inferences in low-rank tensors. It is worth mentioning that Qin et al. (2022) has provided
a Bayes regret bound for ensemble sampling in a special linear Gaussian bandits; however,
their techniques highly depend on the structure of Gaussian linear bandits and cannot be

applied to low-rank matrix or tensor bandits. This is another interesting future direction.

5 Simulations

We carry out some preliminary experiments to compare the numerical performance of
tensor epoch-greedy, tensor elimination and tensor ensemble sampling with two
competitive methods: vectorized UCB which unfolds the tensor into a long vector and then
implements standard UCB (Auer, 2002) for multi-armed bandits, and matricized ESTR (Jun
et al., 2019) which unfolds the tensor into a matrix along an arbitrary mode and implements
ESTR for low-rank matrix bandits.

We first describe the way to generate an order-three true reward tensor (d = 3) according to
Tucker decomposition in (5). The tensor dimensions are set to be same, i.e., p; = ps = p3 = p.
The triplet of tensor Tucker rank is fixed to be r; = ry = r3 =r = 2. Denote (~]j € RPi*"i ag
i.i.d standard Gaussian matrices. Then we apply QR decomposition on ﬁj, and assign the

part as the singular vectors U;. The core tensor § € R"™*"*" is constructed as a diagonal
8 j g
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tensor with S;; = wp'®, for 1 < i < 7. Here, wp'® indicates the signal strength (Zhang and

Xia, 2018). The random noise ¢ is generated i.i.d from a standard Gaussian distribution.
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Figure 2: Cumulative regrets with varying dimension p and signal strength w. The shaded
areas represent the confidence bands.

All algorithms involve some hyperparameters, such as the length of initial explorations,
width of confidence intervals, the number of rounds of pure explorations and etc. In Section
S.5 of the appendix, we discuss the choice of hyper-parameters for tensor elimination,
tensor epoch-greedy, tensor ensemble sampling, and matricized ESTR respectively.
In Figure 2, we report the cumulative regrets of all five algorithms for four settings with
w € {0.5,0.8} and p € {15,20}. All the results are based on 30 replications. Figure 2
shows that tensor ensemble sampling outperforms all other methods in different settings.
Tensor elimination does not perform as well as tensor ensemble sampling but is better
than other methods for a long time horizon. It aligns with our theoretical findings that
tensor elimination has a better overall regret bound for long time horizon, while tensor
epoch-greedy is more competitive for small time horizon. When the tensor dimension p

increases, the advantage of tensor epoch-greedy in early stage is more apparent. This
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result agrees with our theoretical finding in that the regret bound of tensor epoch-greedy

has a lower dependency on dimension compared with other methods.

6 Applications to Online Advertising

Two real data analysis studies are conducted in the field of online advertising to assess the
proposed algorithms. The first study focuses on a contextual tensor bandit problem, while
the second study examines a non-contextual tensor bandit problem.

Our first data set comes from a major internet company and contains the impressions for
advertisements displayed on the company’s webpages over four weeks in May to June, 2016.
The impression is the number of times the advertisement has been displayed. It is a crucial
measure to evaluate the effectiveness of an advertisement campaign, and plays an important
role in digital advertising pricing. Studying online advertisement recommendation not only
brings opportunities for advertisers to increase their ad exposures but also allows them to
efficiently study individual-level behavior.

The impressions of 20 advertisements were recorded for 20 most active users. In order to
understand the user behavior over different days of a week, the data were aggregated by days
of a week. Thus, the data forms an order-three tensor of dimension 20 x 7 x 20 where each
entry in the tensor corresponds to the impression for the given combination of user, day of
week and advertisement. The goal of this real application is to recommend advertisement to
a selected user on a specific day to achieve maximum reward (impression). The user mode
and the day-of-week mode are both contextual information and the agent recommends the
corresponding optimal advertisement. Tensor elimination and matricized ESTR can only
handle the setting where the agent chooses arms without contextual information. Tensor
epoch-greedy is for context-free tensor bandits in our theory but it can also be extended to
tensor bandit with contextual information. Therefore, we compare the performance of tensor

epoch-greedy, tensor ensemble sampling and vectorized UCB in this contextual tensor
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bandits problem. The cumulative regrets of all these algorithms are shown in Figure 3.
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Figure 3: The left plot illustrates the reward tensor formulation in our online advertising
data. The right plot shows cumulative regrets of tensor epoch-greedy, tensor ensemble
sampling and vectorized UCB in the contextual tensor bandit real data.

From the right plot of Figure 3, we can observe that tensor ensemble sampling achieves
the lowest regret for a long time horizon. Comparing tensor epoch-greedy and vectorized
UCB, the former is better for a short time horizon. At the last time horizon, tensor ensemble
sampling is 75% lower than that of vectorized UCB and is 85.6% lower than that of
tensor epoch-greedy. The t-test of difference between the mean of final regret for tensor
epoch-greedy and tensor ensemble sampling indicates that the two means are signifi-
cantly different ( t-statistic is 1191.37 and p-value is 0). The t-test between tensor ensemble
sampling and vectorized UCB also shows significantly improvement is achieved by tensor
ensemble sampling (t-statistic is 1770.33 and p-value is 0). The success of tensor ensemble
sampling helps advertisers to better optimize the allocation of ad resources for different users
on different days. By tracking users’ behavior on ad exposures and conversions over time,
advertises can make personalized recommendation based on individual-level data. Besides,
our models are maintained and updated based on users’ feedback. Such interactive models
can be applied to other dynamic and online learning real problems.

In addition to the aforementioned contextual tensor bandit problem, we further consider

a real data analysis on non-contextual tensor bandits. The tensor data used in this study
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Figure 4: Cumulative regrets in non-contextual tensor bandit real data.

is a third-order tensor that collects information on ad clicks across 20 advertisements, 10
publishers, and 7 days of the week. A publisher refers to a specific webpage on the online
company’s website, such as the main homepage, a page dedicated to financial news, or one
dedicated to sports news. Each entry in the tensor corresponds to the number of clicks for
a particular combination of advertisement, publisher, and day. The goal of this analysis
is to identify the optimal combination of advertisement, publisher, and day that results
in the highest reward for behavioral targeting purposes (Choi et al., 2020; Rafieian and
Yoganarasimhan, 2021). For example, if we discover that a particular type of customer prefers
ad 7 on publisher j on day k of the week, we can use this information to target this customer
segment in future advertising campaigns by displaying ad ¢ on publisher j on day k of the week
to maximize the reward. Since all three modes represent actions, this is a non-contextual
tensor bandit problem. We conducted a comparison of three proposed algorithms with
two baseline models on non-contextual tensor data, and the cumulative regrets of all these
algorithms are shown in Figure 4. It is seen that both tensor ensemble sampling and
tensor elimination yielded low regret over a long time horizon, with tensor ensemble
sampling performing slightly better. Matricized ESTR has the worst performance. When the

time horizon is short, tensor epoch greedy performs better in comparison to vectorized
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UCB. These findings are consistent with those from our simulation studies.
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Supplementary Materials

“Stochastic Low-rank Tensor Bandits for
Multi-dimensional Online Decision Making”

In the appendix, we provide detailed proofs of Theorems 1-2 in Section S.1, proof of the
main lemma in Section S.2, the equivalent formulation of tensor bandits in Section S.3.1, and
the algorithm for low-rank tensor completion in Section S.3.2. Section S.4 contains a general
approximate Thompson sampling algorithm and its Bayesian regret bound, and Section S.5

includes the implementation details of all algorithms in the experiments.

S.1 Proofs of Main Theorems

S.1.1 Proof of Theorem 1

From Lemma S3 and the assumption ||| < 1, we know that with probability at least

5 p*rlog(p)
|, - ], < 0[O

By definitions, U;, U; are left singular vectors of M;(X) and M;(X,,), respectively. Here,

1- p_107

the matricization operator M(-) is defined in (1). Then we can verify
UU"M;(X) = UU UV, = UV = M(X).

Let U;, € RP*®=") be the orthogonal complement of U, fori € [d]. For an orthogonal matrix

U and an arbitary matrix X,Y, we have |[UX||r < |Ul2|X|lFr = | X||r and | XY |r >



| X ||omin(Y"). Suppose o; is the r-th singular value of M;(X). Using the above fact, we have
IMi( &) = Mi(X)]| e
> UL (Mi(Xy) = U M) |
= TLUU Mi(X)]r
> 0L Uillro, (U Mi(X)) = [T, Ui o
Therefore we have,

) A B . ~ . 5 d+1
O 0 < M) = M E e X = Bl O [ptirlogn) ()

0; g; g; ni

with probability at least 1 — p~®. As discussed in Section 3.1, we reformulate original tensor

bandits into a stochastic linear bandits with finitely many arms. Recall that 8 = vec()) with
Y =X x4 [61;ﬁu] e Xy [ﬂ—d§ﬁdJ_] € RPrxPd,
and the corresponding action set
A= {VGC([ﬁl; ﬁu]Teil 0---0 [Gd§ ﬁdj_]—reid>>il elpl,...,ia € [Pd]}-

From Eq. (S1), we have

d
1Basnell, < JTTITLTlrIS]F
=1
X0, — X%
H?:lai

2
rd/2 Cril2ps 1og" (p)
Hza‘lzlgi nil/Q ’

IA

IS1 e

(52)

with probability at least 1 — dp~™. Thus it is equivalent to consider the following linear

bandit problem:

yr = (Ai, B) + e,
where [|B(,11)p¢/|2 satisfies Eq. (S2) and A, is pulled from action set A. To better utilize the
information coming from low-rank tensor completion, we present the following regret bound
for the elimination-based algorithm for stochastic linear bandits with finitely-many arms.

The detailed proof is deferred to Section S.2.



Lemma S2. Consider the the elimination-based algorithm in Algorithm 1 with Ay = n/(klog(1+

n/A)) and Ay > 0. With the choice of & = 24/1410g(2/6) + VA1l Brqllz + VA2 |Bgs1)pe |2,

the upper bound of cumulative regret of n rounds satisfies

R, <8<2\/1410g (2log(n)pt/6) + v/ Ail|Bigll2 >\/2qnlog(1+ )+8\/_n|’:6(q+1 i l2-

with probability at least 1 — &, where ¢ = p® — (p — 7)<

Overall, we can decompose the pseudo regret Eq. (4) into two parts:
Rn - Rln + R2n + R3n7

where Ry, quantifies the regret during initialization phase, Ry, quantifies the regret dur-
ing exploration phase and R, quantifies the regret during commit phase (linear bandits

reduction). Note that ¢ < Cyp?~! for sufficient large C;. Denote

5 _ rd d/2( )
p,r Hd 10_Zp p

such that ||B(,11)pell2 < (FP,T/nil/2 from Eq. (S2). Applying the result in Lemma S2 to bound

R3,, and properly choosing 0 < \; < 1/p?, we have the following holds with probability at

least 1 — dp™1° — 1/n,

R<C(d/2d/2+ Y6, + /Tog(l 1 iTp,1 )
ny %, na/mnq \/og (log(ns)) + log(nap) \/p ns log(nap?)

J

R R ~
1n 2n Rdn

where ny = n —ny; — Cr¥?p#? and C' > 0 is an universal constant. Here, Rs, is due to the
fact that we run elimination-based algorithm for the rest ny rounds. For simplicity, we bound
all no by n as usually did for the proof of explore-then-commit type algorithm.

We optimize with respect to n; such that

_2_
nl = (nép,r)d+2~



It implies the following bound holds with probability at least 1 — dp™° — 1/n,
rd d?+d g 2

R, < O(rd/2pd/2 + (Hd p > 10gd/2(p)> e
i=17i

+ v/log(log(m)) + log(np?) /p* T log(np) )

d 2o P4d 2
< C(r"/ 2t ¢ (Hdr “log 2(19)) T2 p &2 nidE 4 \/(dlog(p) + log(n))de”n)

i=101

This ends the proof. [ |

S.1.2 Proof of Theorem 2

The proof uses the trick that couples epoch-greedy algorithm with explore-then-commit
algorithm with an optimal tuning.

Step 1. We decompose the pseudo regret defined in (4) as:

n

Ry =) (A" — A, X)

t=1

w0
[y

n

=D (AT ALK+ ) (AT AL ),

t=1 t=s1+1

where s; is the number of initialization steps. After initialization phase, from the definition
of exploration time index set in (14), the algorithm actually proceeds in phases and each
phase contains (1 + [so|) steps: one step random exploration plus [sa] steps greedy actions.
By algorithm, at phase k, the greedy action A; is taken to maximize (Aj, kal) where /?Hsl
is the low-rank tensor completion estimator at phase k based on (k 4 s;) random samples.

Therefore, we have (A, — A*, Xpis,) > 0 and
(A" = A, X) < (A" = AL X — Xy, ).
By Lemma S3 and the choice of s9; in (15), it is sufficient to guarantee
H-)?k—i-sl — X, < 1/s,

holds with probability at least 1 —p~® from Lemma S3 for any v > 1. By the Cauchy-Schwarz

inequality, we have
(A" = A, &) < ”"4* - AtHFH‘/’?’ﬁLSl - XHF < 2/,
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where for the second inequality we use the fact that both tensors A* and A; have only one entry
equal to 1 and others are 0. Denote ny =n — s; and K* = min{ K : Zle(l + [sor]) > na}.

Since we assume ||X|| < 1, the maximum gap Ay is bounded by 2. Then we have
K*
Rn S SlAmax + Z <1 . ArnaLx + (SZk—I 2/32k>
k=1
< (s14+ K*)Apax + 2K < 251 +4K™,
with probability at least 1 — K*p~.

Step 2. We will derive an upper bound for K*. Let nj = argmin,,¢ (o ,,j[u + (12 —u)/s2.].

Consider the following two cases.

1. If nj > K*, it is obvious that

2. If ny < K* —1, it holds that

K1 K*-1
* *
E Sok 2> g sok > (K™ —ny)son;,
k=1 k=n3

where the second inequality is from the fact that s is monotone increasing. By the

definition of K*, it holds that

K*—1 K*—1
ny =123 (14 [s]) = > (14 sm) = K*— 1+ (K" —n3)san;,
k=1 k=1

which implies

Overall, K* is upper bounded by nj + (ny — n3)/sns.

Step 3. From (S3), the cumulative regret can be bounded by

R, <251+ 4 min <u+ (ng — u)/52u>.

u€[0,nz2]
The second term above is essentially the regret for explore-then-comment type algorithm

with the optimal tuning for the length of exploration. Plugging the definition of s,, in (15)

5



and letting u = n/ss,, we have
b5 Gl 1
K*/2 <nj <n*Pp 3 (rlogp)s.

dt1 1
Thus, we choose o = log(2n?/?p 3 (rlogp)3p) such that K*p~® < 1/p. Plugging in s, =
Cor®?p¥? | we have

d+1 L
R, < Oyl d/2+8<n2/3p 3 (rlogpﬁ)

with probability at least 1 — 1/p. This ends the proof. [ |

S.2 Proof of Lemma S2

Before we prove it, we introduce some notations first. For a vector x and matrix V', we define
x|y = V& TVa as the weighted ¢y-norm and det(V') as its determinant. Let K = [log,(n)]|
and t; = 2871, Denote z* = argmax,, (a, 3).

We have the following regret decomposition by phases:

n K tg41—1
anz<x — A, B Z Z - A, B
t k=0 t=ty

where ,@k is the ridge estimator only based on the sample collected in the current phase,
defined in Eq. (8). According to Lemma 7 in (Valko et al., 2014), for any fixed z € RP and

any 0 > 0, we have, at phase k,
P27 (By — B)] < llally1€) =14, (54)

where € = 24/1410g(2/3) + vV A1]|Brqll2 + \/)\_2||,8(q+1):pd||2. Applying Eq. (54) for 2* and Ay,
we have with probability at least 1 — Kp?d,

K tpy1—1 K
<SS @ = 4GB+ Dt — ) (7 s + A )€
k=0 t=ty k=0

By step (7) in Algorithm 1, we have

(@ = A Be) < ("l + 1A )€
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According to Lemma 8 in Valko et al. (2014), for all the actions x € Ay, defined in Eq. (7),

ty

1
2 2
[y < P Z B

ot 41

Then using the elliptical potential lemma (Lemma 19.4 in Lattimore and Szepesvari (2020)),

with probability at least 1 — Kp?d, we have

K
Ra <23 (s — 1) (0 s + Al )€
k=0

K 1 det(V;
< 4Z(tk+1 - tk)\/tk —tr1 log ( d(j;ﬁ((/\k)))&
k=0

where A = diag(A1,..., A1, A2, ..., A2). According to Lemma 5 in (Valko et al., 2014), we

have

<C(1;ett((‘//\k))> < klog(1+ )\1 )+ Z log(1 + /\2)

i=k+1

d . .
where Y7, t; <T. With the choice of s,

det(Vk)) n
<klog(1+ 5+ 37 5 < oplo
(det(A) a1+ /\1 Zk;l A2 s+ 30
We know that t,41 —t, = 287! and t;, — t;_; = 2¥72. Then one can have
K
t — ) — ok/2 <
;( k1 — L) F —5— Z V.

Overall, with probability at least 1 — Kp?d, we have

R, < 8\/2knlog (45 (2»/14log 2/8) + V1Bl + V2ol Bk 1902

S(2y/ THoBIoB(m/B) + v/ 1Buala) 2 log(1-+ 1)+ 5VEn Byl
This ends the proof. [ |

S.3 Auxiliary Results

S.3.1 An equivalent formulation of tensor bandits

E{)

We write ﬂ'l 1y ﬂ'd 1 as the orthogonal basis of the complement subspaces of 61, .

By definitions [IAJ IAJ' 1] is an orthogonal matrix for all j € [d] such that



Denote a rotated true reward tensor as
V=X [U;U ] xq[Ug Ugy] € RV2Pe,
where X is the marginal multiplication defined in Eq. (2). Denote
& = [61; ﬁu]Tem ©---0 [ﬁdS ﬁdj_]—reidta & = €, 0" --0€;,.
We want to prove
(V&) = (X, &).

To see this, we use a fact of the Kronecker product (see details in Section 2.6 in (Kolda and
Bader, 2009)). Let Z; € RI>Iv and A € R/»*I for all n € [N]. Then, for any n € [N],

we have

Zy=Z; x1 AW ..oxy AN
-
e M, (2) = A(n)Mn(Zl) (A(N) Q... .0 A" g A) . g A(l)) ’

where M,,(2) is the mode-n matricization and ® is a Kronecker product. Denote H =

[U,Us, ]| ® -+ ® [Ug; Ugy]. By a matricization of Y, € along the first mode, we have
(V.&) = (Mi(Y), Mi(&1))
= ([Uy; U JMy(X)H T [O; Uy )My (E)HT)
= trace (HMl(X)T[ﬁl; IAJM]T[IAL; ﬁu]./\/ll(é’g)HT>
- trace(HMl(X)TMl(Eg)HT>
= (X X1 Lgeg X2 [UgUs ] -+ x4 [Ug; Ugy], €5, 0 -0 [Ug; Ugs] e, )

Recursively using the above arguments along each mode, we reach our conclusion.

S.3.2 Tensor completion algorithm and guarantee

For the sake of completeness, we state the tensor completion algorithm in (Xia et al., 2021).

The goal is to estimate the true tensor X € RP***Pd from

Yt = <XaAt>+€t7t:17"'7T7

8



where A; = e;,, 0...0e;,. This is a standard tensor completion with uniformly random
missing data. The algorithm consists of two stages: spectral initialization and power iteration.

Spectral initialization. We first construct an unbiased estimator Xj,; for X as follows:

1n1 = pd Z ytAt

For each j € [d], we construct the following U-statistic:

R — (M— AT
=Ty | 2 MM,

where M, is the mode-j matricization defined in Eq. (1). Compute the eigenvectors of
{ﬁ};ﬁ1 with eigenvalues greater than J, and denote them by {ﬁg-o)}?zl

d

Power iteration. Given {U =1 X can be denoised via projections to j-th mode.

For [ =1,2,..., we alternatively update {U(l 2 d _, as follows,

A~ A~

ﬁg-l) = first r; left singular vectors of M; (Xml X jr< (Uglfl))T X jr>j (UEAlfl))T)

The iteration is stopped when either the increment is no more than the tolerance ¢, i.e.,

o @850 O], 50 @) 0 2 9
or the maximum number of iterations is reached. With the final estimates ﬁl, . ,ﬁd, it is
natural to estimate S and X as S = XmlxlU ><dU X:§><1 [AJl deAJd. [ |

Lemma S3. Suppose Assumptions 1-2 holds. Suppose )?T 18 the low-rank tensor estimator
constructed from T uniformly random samples by Algorithm 1 in Xia et al. (2021). Then for
any o > 1, if the number of samples T > Coa’r\@=2/2pd/2 for sufficiently large constant Cy,

the following holds with probability at least 1 — p~@,
1 — X [arplogp
— s <O\ ————, (56)
1| T
where Cy is an absolute constant.

Lemma S3 is a direct application of Corollary 2 in Xia et al. (2021) with some constant

terms ignored.



S.4 Approximate Thompson Sampling and Its Bayesian
Regret Bound

This section presents analysis of a broad approximate Thompson sampling (TS) algorithm for
tensor bandits. Notably, our tensor ensemble sampling in Algorithm 3 can be considered
as a specific instance of an approximate TS algorithm. The approximate TS algorithm is
introduced in Section S.4.1, followed by its Bayesian regret bound in Section 5.4.2. A detailed

proof of the regret bound is provided in Section S.4.3.

S.4.1 Approximate Thompson Sampling

The general approximate Thompson sampling algorithm is described in Algorithm 4. Note
that we define D;_; as the “history” (i.e. the action-reward trajectory) at the beginning
of time ¢t. Algorithm 4 takes two inputs: the first input is a prior distribution P, over the
reward tensor X', and the second input is an action sampling oracle sample. In particular,
the action sampling oracle maps a prior distribution P, and a “history” D;_; to a probability
distribution over the actions. At each time step ¢, Algorithm 4 proceeds as follows: it first
samples an action A; based on sample, then it pulls arm A; and receives reward y,;, and

finally it updates the “history” based on the action-reward pair (A, y;).

Algorithm 4 Approximate TS for tensor bandits

: Input: prior F, over the reward tensor X, an action sampling oracle sample
. Initialize D, as the empty sequence
cfort=1,2,--- do
Sample arm A; ~ sample(-| Py, Di—1)
Pull arm A; and receive reward
Update D, = append(D;_1, (A, yt))
end for

e g ey

Note that many algorithms can be viewed as a special case of Algorithm 4 with a particular
choice of sample. For instance, let Pr(A* € -|D;_1) denote the posterior distribution over the
optimal action A*, then if we choose sample(-| Py, D;—1) = Pr(A* € :|D;_1), then Algorithm 4

reduces to the standard Thompson sampling algorithm. Hence, Algorithm 4 can be viewed

10



as a generalization of the standard Thompson sampling algorithm. Moreover, as we will
show later, we can bound the performance of Algorithm 4 based on the ”distance” between
its action sampling distribution sample(-| Py, D;—1), and that of the standard Thompson
sampling algorithm, Pr(A* € :|D, ;). That is why it is referred to as the approximate
Thompson sampling algorithm. It is also seen that the tensor ensemble sampling algorithm
(Algorithm 3) can be viewed as another special case of Algorithm 4. In particular, Algorithm 3

implicitly defines an action sampling function via an ensemble of tensors.

S.4.2 Bayes Regret Bound

We now establish a general regret bound for Algorithm 4. To simplify the exposition, we

make the following assumption:

Assumption 4 (Bounded reward). For all X' € support(F), and all action A, we assume

that y = (X', A) + € € [0, 1] with probability 1.

Note that this bounded reward assumption is non-essential, and it is assumed to simplify
the exposition. In particular, it is satisfied by assuming the noises are sub-Gaussian as in
Assumption 1 and the boundedness of tensor X’ in Assumption 2.

Following the literature in this field (Russo and Van Roy, 2016; Qin et al., 2022), we

develop a Bayes regret bound for Algorithm 4. The Bayes regret is defined as
BR, =E [Rn] =E [Z?:l <X7 A*> - Z?:l <X’ At” ) (87)

where the expectation is over the reward tensor X under the prior distribution Fy. Different
from the frequentist regret bound in (4), the Bayes regret has an additional expectation over

the reward tensor X. To simplify the exposition, we define
Pr(-) =Pr(A* € -|D;_1) and P,(-) = sample(-| Py, D;_1). (S8)

Recall that the Hellinger distance between P} and P, is defined as

SHIATDENDS (\/P{‘(a) - \/E(a))Q- (S9)
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Note that the Hellinger distance is symmetric. Moreover, Lemma 2.4 in Tsybakov (2009)
shows that the Hellinger distance can be bounded by KL divergences in both directions: for
any P; and any P;, we have dfj(P;||P;) < min {dky (P} || P), dkr(P||P;)} . Then we have

the following Bayes regret bound for Algorithm 4:

Theorem 3. Assume that p1 = ps = --- = pg = p, and the bounded reward assumption

(Assumption /) holds, then under Algorithm j, we have

BR,, < /p?H(A*)n/2 + 2§njE [du(F7IIR)]

where H(A*) is the entropy of A* under the prior distribution.

The proof for Theorem 3 is provided in Section S.4.3. Note that under the prior distribution
P,, X is a random variable. Consequently, A*, which is the index of a maximum element' of

X, is also a random variable. Since H(A*) < dlogp, Theorem 3 immediately implies that

BR, < O (\/dpdn + Xn:]E [dH(P;HPt)]) .

Finally, note that in the standard Thompson sampling algorithm, we have P;(-) = Bi(-),
thus, BR,, < O <\/dp_dn), which is sublinear in n and matches the regret bound of vectorized
UCB. Note that the analysis in Theorem 3 does not exploit the possible low-rank structure
of the reward tensor X. Incorporating this low-rank structure into this information-theoretic
analysis of approximate Thompson sampling is very challenging, and we believe that it will
require novel insights on Bayesian inference in low-rank tensors, and possibly additional
assumptions on the prior distribution Fy. To the best of our knowledge, this issue is not well
understood even in the low-rank matrix case. This is an interesting but challenging direction
for future work.

Theorem 3 is a general Bayes regret bound for approximate Thompson sampling algorithms,

based on the quality of the action sampling distribution. To derive an explicit regret bound for

"When there are multiple maximum elements in X, we assume that there is a fixed tie-breaking rule to
choose A*.
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the tensor ensemble sampling algorithm (Algorithm 3), we need to further bound the Hellinger
distance term for the ensemble sampling algorithm. This is also challenging and it requires
better understanding of how perturbed rewards and priors affect the tensor decomposition
(see equation (18)), as well as their connections to Bayesian inferences in low-rank tensors.
This is another interesting direction for future research. It is worth mentioning that Qin et al.
(2022) has provided a Bayes regret bound for ensemble sampling in linear bandits; however,
their techniques highly depend on the structure of Gaussian linear bandits and cannot be

applied to low-rank matrix or tensor bandits.

S.4.3 Proof for Theorem 3

Our proof utilizes the information-theoretic tool in Qin et al. (2022) which provided a Bayes
regret bound for ensemble sampling in linear bandits.
We start by defining some notations. For any time ¢ and any action a, define y,, as the

observed reward if the agent takes action a at time t. Then, by definition, we have

BR, = Z]E [Ye.ax — Yr.a,] = Z]E [E: [ye.ac — ye.a,l] 5

t=1 t=1

where E;[-] is a shorthand notation for E[- | D;_1]. Note that by definition of the Bayes regret,
the expectation is also over the reward tensor X. Following Lemma 1 in Qin et al. (2022),
we can decompose BR,, into a “main regret term” and an “approximation error term”.

Specifically, for any t = 1,2,...,n, we have
E; [ye,a+ — Y.a,] = Gi + Ji,
where G is the main regret term defined as
G, = Z \/ Pt*(a)pt(a) (Et [Y1,al A" = a] — E¢ [Yr.a]) (S10)
and J; is the “approximatiofl error term” defined as
5= 5 (VE@ - /P@)) (VE@E k" =+ PGB D) 10

The following lemma bounds G; based on the information gain in A*.
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Lemma S4. For each time t =1,2,...,n, with probability 1, we have

Gt S \/pd ]It (A*v (Ata yt7At)) /27

where 1; (A*; (At ye.a,)) = L(A*; (At yr.a,) | Di—1 = Di—1) is the conditional mutual informa-

tion between A* and (Ay, yr,a,) conditioning on the given history Dy_y.

Proof. We follow the proof of Lemma 2 in Qin et al. (2022). In particular,

I (A% (A yia)) (A" Ay) + L(A g a, | A))
b *
(:) Ht(A §yt,At|At)

= Z pt(a)]lt(A*S yt,a’At = Cl)
= > Pa)l(A%; ra)
— Z Pi(a)P;(a*)dkr (Pri(yeq € -| A* = a*) || Pre(ysa € 7)), (512)

where (a) follows from the chain rule of mutual information; (b) follows from the fact that A*
and A; are conditionally independent given D;_; so that I;(A*; A;) = 0; and (c) follows from
the fact that A; is conditionally independent of A* and y;, given D;_y. Since vy, € [0, 1],

from Pinsker’s inequality, we have

1
Ei[yral A" = a*] — E¢[yra] < \/§dKL (Pre(yea € - | A* = a*) || Pry(ysa € -)).

Consequently we have

I (A% (Ag, yea,)) > 2 Z Pi(a)P; (a*) (Eulyral A" = a”] — Eqfyia)”.

a,a*

On the other hand, recall that

G = Z \/ Pr(a)Pi(a) (B¢ [yra| A" = a] — Eq [yra]) -

Without loss of generality, we index the actions as a = 1,2, ..., p% Following Russo and

Van Roy (2016); Qin et al. (2022), we define the p? x p? matrix M as
Mg,or = Pi(a) Py (a*) (E, Yol A" = a"] — E¢ [yr4])
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for all a,a* =1,2,...,p% where M, 4+ is the (a, a*)-th element in M. Hence, G; = trace(M),
while T, (A*; (As, y.a,)) > 2|[M]|%. Hence, we have

G? - trace(M)? (2 rank(M) (2) P’
I (A% (Apyea)) = 2IMIE — 0 20 7 27

where (a) follows from trace(M) < y/rank(M)||M]||r (Fact 10 in Russo and Van Roy (2016)),

and (b) follows from rank(M) < p? since M is a p? x p? matrix. This concludes the proof. [

Based on Lemma S4, and following Lemma 3 in Qin et al. (2022), we can show that

S E[G) < VpH(AIn 2,

t=1

which is based on Cauchy-Schwarz inequality and the chain rule of the mutual information.

Finally, we bound the approximation error term:

Lemma S5. Forallt =1,2,...,n, we have
E[J) < 2E [dn(P!|P.)]
Summing over t gives the second term in the regret bound of Theorem 5.

Proof. We follow the proof of Lemma 4 in Qin et al. (2022). Recall that

5= 3 (V@ - Pd)) (VI lal4” = al + BB )
> (VA -y %))2 \/Z P (@)E? [yeal A = a) + \/Z B0 ]
¢ > (VA - \/Pm))Q \/Z Pr(o) + \/Z Py(a)

=2du(F;[| 7). (S13)

INE

Note that inequality (a) follows from the Cauchy—Schwarz inequality, and inequality (b)
follows from y;, € [0, 1]. Taking the expectation, we have E [J;] < 2E [du(P}[|F)].

Since i, E[Gy] < \/p™H(A*)n/2, and E [J;] < 2E [du(F;||P,)], Theorem 3 is proved. O
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S.5 Implementation Details in Simulations

Before discussing the choices of hyperparameters in the experiments, we would like to mention
that parameter tuning in bandit problems is uniquely challenging, as decisions are made in
real time and are based on rewards observed from the past. In a bandit environment, once a
parameter is used on partial datasets and a decision is made based on it, the regret resulting
from that decision is irreversible. Hence, it is not feasible to select hyperparameters using
traditional offline methods such as cross validation.

Next we discuss the choice of hyper-parameters for our tensor elimination, tensor
epoch-greedy, tensor ensemble sampling in the experiments, and also conducted sensitiv-
ity tests on the choice of these parameters. Finally, we discuss how to select hyper-parameters

in the competitive methods.

e The algorithm tensor epoch-greedy has two hyperparameters, a positive constant
Cy that determines the length of the initialization phase s; = Cyr(@2/2p(d=2) and
a positive constant C5 that determines the length of the exploitation phase sop =
[C’gp_%r_%(logp)_%(k + 81)%—‘ , both are derived in Theorem 2. In our theoretical
analysis, the specific choices for Cy and C5 do not affect the order of the derived
regret bound. We let Cj; = 1 and found that it gave enough number of steps in the
random initialization phase. For (5, we conducted a sensitivity analysis to evaluate the
performance of tensor epoch-greedy with regard to varying values of Cs. As shown
in Figure 5(a), the regret of tensor epoch-greedy is not sensitive to different values

of C5. Hence, we have chosen to fix C;, = 1 in all numerical experiments.

e The algorithm tensor elimination has one hyperparameter ¢y used to determine the
number of the exploration steps coni, where n; follows the theoretical value defined in
Theorem 1 and ¢y > 0 is a small constant. For ¢y, we carried out a sensitivity analysis
to evaluate the performance of tensor elimination with regard to varying values

of ¢p. From Figure 5(b), there is no significant difference between cumulative regrets
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(a) tensor epoch-greedy parameter Co (b) tensor elimination parameter ¢
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Figure 5: Top left: Cumulative regrets of different constant multiplier C5 in tensor
epoch-greedy. Top right: Cumulative regrets of different exploration length constant
multiplier ¢y in tensor epoch-elimination. Bottom left: Cumulative regrets of different
variance of perturbation noise o2 in tensor ensemble sampling. The shaded areas represent
the confidence bands. The simulation setting is same as that in Section 5 with dimension
p1 =pe =p3 =20 and w = 0.8.

under different values of ¢y. Hence, we have chosen to fix ¢ = 0.5 in all numerical

experiments.

e The algorithm tensor ensemble sampling has two hyperparameters including the
ensemble size M and the variance of perturbation noise o2. We set M as a relative
large number M = 100 to better approximate posterior distribution and found that
it gave a good performance. For 62, we performed a sensitivity analysis to evaluate
the performance of tensor ensemble sampling with regard to varying values of 2.
As shown in Figure 5(c), the regret of tensor ensemble sampling is not sensitive to

different values of 2. We have chosen to fix 52 = 0.1 in all numerical experiments.

Similar to tensor elimination, the competitive method matricized ESTR also has a pa-

rameter ¢q in the initial exploration length. In our experiments, we selected the parameters
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co € {0.1,0.3,0.5,0.7,0.9} that resulted in the lowest cumulative regret for matricized
ESTR, making the comparison favorable to matricized ESTR. Besides, we set the ridge
regularization parameter \; = 0.1 for both tensor elimination and matricized ESTR.
Finally, determining the appropriate rank is still an unresolved issue even in traditional
low-rank tensor models, and existing theoretical studies usually assume prior knowledge of
the true rank (Sun et al., 2017; Zhang and Xia, 2018; Zhang et al., 2019; Xia et al., 2021;
Cai et al., 2021; Han et al., 2022). In this paper, we adopt this convention and assume prior
knowledge of the true ranks for all experiments. However, in practice, one can employ some
ad-hoc methods to determine the ranks using uniformly collected samples in the initialization

and exploration stages.
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