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Abstract

Multi-dimensional online decision making plays a crucial role in many real applications
such as online recommendation and digital marketing. In these problems, a decision at
each time is a combination of choices from different types of entities. To solve it, we
introduce stochastic low-rank tensor bandits, a class of bandits whose mean rewards can
be represented as a low-rank tensor. We consider two settings, tensor bandits without
context and tensor bandits with context. In the first setting, the platform aims to find
the optimal decision with the highest expected reward, a.k.a, the largest entry of true
reward tensor. In the second setting, some modes of the tensor are contexts and the rest
modes are decisions, and the goal is to find the optimal decision given the contextual
information. We propose two learning algorithms tensor elimination and tensor

epoch-greedy for tensor bandits without context, and derive finite-time regret bounds
for them. Comparing with existing competitive methods, tensor elimination has
the best overall regret bound and tensor epoch-greedy has a sharper dependency
on dimensions of the reward tensor. Furthermore, we develop a practically effective
Bayesian algorithm called tensor ensemble sampling for tensor bandits with context.
Extensive simulations and real analysis in online advertising data back up our theoretical
findings and show that our algorithms outperform various state-of-the-art approaches
that ignore the tensor low-rank structure.
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1 Introduction

The tensor, which is also called multidimensional array, is well recognized as a powerful tool

to represent complex and unstructured data. Tensor data are prevalent in a wide range

of applications such as recommender systems, computer vision, bioinformatics, operations

research, and etc (Frolov and Oseledets, 2017; Bi et al., 2018; Song et al., 2019; Bi et al., 2021,

2022). The growing availability of tensor data provides a unique opportunity for decision-

makers to efficiently develop multi-dimensional decisions for individuals. In this paper, we

introduce tensor bandits problem where a decision, also called an arm, is a combination of

choices from different entity types, and the expected rewards formulate a tensor. The problem

is motivated by numerous applications in which the agent (the platform) must recommend

multiple different entity types as one arm. For example, in an advertising campaign a marketer

wants to promote a new product with various promotion offers. The goal is to choose an

optimal triple user segment×offer×channel for this new product to boost the effectiveness of

the advertising campaign. At each time, after making an action, i.e., pulling the arm (user i,

offer j, channel k), the leaner receives a reward, e.g., clicking status or revenue, indicating the

user segment i’s feedback on promotion offer j on marketing channel k. The rewards of all

these three-dimensional arms formulate an order-three tensor, see Figure 1 for an illustration.

Similarly, a clothing website may want to recommend the triple top×bottom×shoes to a user

that fits the best together. Each arm is the triple of three entities. In these applications,

the agent needs to pull an arm by considering multiple entities together and learn to decide

which arm provides the highest reward.

Traditional tensor methods focus on static systems where agents do not interact with

the environment, and typically suffer the cold-start issue in the absence of information from

new customers, new products or new contexts (Song et al., 2019). However, in many real

applications, agents receive feedback from the environment interactively and new subjects

enter the system sequentially. See Figure 1 for an illustration of such interactive sequential
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Figure 1: An example of interactive multi-dimensional online decision making. The rewards
from all sequential multi-dimensional decisions formulate a tensor.

decision making. In each round, the agent recommends a promotion offer to a chosen user

segment in a channel, and then the agent receives a feedback from this user segment. Based

on this instant feedback, the agent needs to update the model to improve the user targeting

accuracy in the future.

Bandit problems are basic instances of interactive sequential decision making and now

play an important role in vast applications such as revenue management, online advertising,

and recommender system (Li et al., 2010; Bubeck and Cesa-Bianchi, 2012; Lattimore and

Szepesvári, 2020). In bandit problems, at each time step the agent chooses an arm/action

from a list of choices based on the action-reward pairs observed so far, and receives a random

reward that is conditionally independently drawn from the unknown reward distribution

given the chosen action. The objective is to learn the optimal arm that maximizes the

sum of the expected rewards. The heart of bandit problems is to address the fundamental

trade-off between exploration and exploitation in sequential experiments. At each time step,

after receiving the feedback from users, the agent faces a decision dilemma. The agent can

either exploit the current estimates to optimize decisions or explore new arms to improve the

estimates and achieve higher payoffs in the future. Our considered tensor bandits problem

can be viewed as a higher-order extension of the standard bandit problem, which generalizes

a scalar arm to a multi-dimensional arm and correspondingly generalizes a vector reward to
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a tensor reward case.

In this article, we introduce stochastic low-rank tensor bandits for multi-dimensional

online decision-making problems. These are a class of bandits whose mean rewards can be

represented as a low-rank tensor and arms are selected from different entity types. The

assumption of low-rankness is well-adopted in the literature on tensors. It effectively reduces

model complexity and finds widespread applications in practical scenarios such as online

recommendation systems and digital marketing (Sun et al., 2017; Bi et al., 2021; Idé et al.,

2022). More practical justifications for the use of low-rank tensors can be found in the

survey paper Song et al. (2019). To balance the exploration-exploitation trade-off, we propose

two algorithms for tensor bandits, tensor epoch-greedy and tensor elimination. The

tensor epoch-greedy proceeds in epochs, with each epoch consisting of an exploration

phase and an exploitation phase. In the exploration phase, arms are randomly selected and

in the exploitation phase, arms that expect the highest reward are pulled. The number of

steps in each exploitation phase increases with number of epochs, guided by the fact that,

as the number of epochs increases, the estimation accuracy of the true reward improves

and more exploitation steps are desirable. For tensor elimination, we incorporate the

low-rank structure of reward tensor to transform the tensor bandit into linear bandit problem

with low-dimension and then employ the upper confidence band (UCB) (Lai and Robbins,

1985) to enable the uncertainty quantification. The UCB has been very successful in bandit

problems, leading to an extensive literature on UCB algorithms for standard multi-armed

bandits (Lattimore and Szepesvári, 2020). However, employing the successful UCB strategy

in low-rank tensor bandits encounters a critical challenge, as the tensor decomposition is

a non-convex problem. When the data is not uniformly randomly collected but adaptively

collected, the concentration results for the low-rank tensor components remain elusive thus far.

Our tensor elimination approach considers a tensor spectral-based rotation strategy that

preserves the tensor low-rank information and meanwhile enables uncertainty quantification.
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Algorithm Regret bound

tensor epoch-greedy Õ(pd/2 + p(d+1)/3n2/3)

tensor elimination Õ(pd/2 + p(d−1)/2n1/2)

vectorized UCB Õ(pd + pd/2n1/2)

matricized ESTR Õ(pd−1 + p3(d−1)/2n1/2)

Table 1: Regret bounds of our proposed tensor epoch-greedy and tensor elimination,
as well as the competitors vectorized UCB and matricized ESTR. Here n denotes the time
horizon, p = max{p1, . . . , pd} denotes the maximum tensor dimension and d denotes the
order of the reward tensor. We consider d ≥ 3, the maximum tensor rank r = O(1), and use

Õ to denote O ignoring logarithmic factors.

In addition to these methodological contributions, in theory we further derive the finite-

time regret bounds of our proposed algorithms and show the improvement over existing

methods. Low-rank tensor structure has imposed fundamental challenges, as the proof

strategies for existing bandit algorithms are not directly applicable to our tensor bandits

problem. So the regret analysis of tensor bandits demands new technical tools. In theory,

we show that two existing competitors: (1) vectorized UCB which vectorizes the reward

tensor into a vector and then applies UCB (Auer, 2002); and (2) matricized ESTR which

unfolds the reward tensor into a matrix and then applies matrix bandit ESTR (Jun et al.,

2019), both lead to sub-optimal regret bounds. Table 1 illustrates the comparison of our

regret bounds and the regret bounds of these two competitors. Importantly, we prove that

tensor epoch-greedy has better dependency on tensor dimensions and worse dependency

on time horizon compared with the other methods. Therefore, it has superiority over other

methods in two scenarios: (1) when the time horizon is short, e.g., the market campaign has

a small time budget; or (2) when the dimensions are high. In contrast, the regret bound of

tensor elimination is always better than the two existing competitors due to its sharper

dependency on the dimensions, and also has advantages over tensor epoch-greedy when

time horizon is long since it has better dependency on time horizon. These theoretical

guarantees and insights are important as they help us better understand the algorithms and

when one might be preferred over the other.
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Finally, we consider an interesting extension of tensor bandits when the contextual

information is available. In the aforementioned tensor bandits setting, the goal is to find

the optimal arm corresponding to the largest entry of the reward tensor. This setting is

called tensor bandits without context. When some modes of the reward tensor are contextual

information, we encounter contextual tensor bandits. Take the online advertising data

considered in Section 6 as an example. Users use the online platform on some day of the

week, and the platform can only decide which advertisement to show to this given user at

the given time. In this example, the user mode and the day-of-week mode of the reward

tensor are both contextual information and both are not decided by the platform. This

is the key difference to the user targeting example shown in Figure 1. Because of this,

many of the aforementioned methods are no longer applicable. In this paper we further

develop tensor ensemble sampling for contextual tensor bandits that utilizes Thompson

sampling (Russo et al., 2018) and ensemble sampling (Lu and Van Roy, 2017). Thompson

sampling is a powerful Bayesian algorithm that can be used to address a wide range of

online decision problems. The algorithm, in its basic form, first initializes a prior distribution

over model parameters, and then samples from its posterior distribution calculated using

past observations. Finally, an action is made to maximize the reward given the sampled

parameters. The posterior distribution can be derived in closed-form in a few special cases

such as the Bernoulli bandit (Russo et al., 2018). With more complex models such as our

low-rank tensor bandit problem, the exact calculation of the posterior distribution becomes

intractable. In this case, we consider an ensemble sampling approach (Lu and Van Roy, 2017)

that aims to approximate Thompson sampling while maintaining computational tractability.

In an online advertising application, our tensor ensemble sampling is empirically successful

and reduces the cumulative regret by 75% compared to the benchmark methods.

There are several lines of research that are related to but also clearly distinctive of the

problem we address. The first line is tensor completion (Yuan and Zhang, 2016; Song et al.,
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2019; Zhang et al., 2019; Cai et al., 2021; Xia et al., 2021; Han et al., 2022). While we employ

similar low-dimensional structures as tensor completion, the two problems have fundamental

difference. First, a key assumption in existing tensor completion is to assume the observed

entries are collected uniformly and randomly (the only exception is Zhang et al. (2019) which

assumes a special cross structure of the missing mechanism). This is largely different from

our interactive online decision problem where the observed entries are collected adaptively

based on some bandit policy. The difference is analogous to that between linear regression

and linear bandit (Lattimore and Szepesvári, 2020). Second, the goal of existing tensor

completion is to predict all missing entries while the goal of tensor bandits is to find the

largest entry in the reward tensor so that the cumulative regret is minimized. Third, these

tensor completion algorithms are developed for off-line settings where data are collected all

at once. They are not applicable to our online decision problem where data enter the system

sequentially. On the other hand, existing online tensor completion (Yu et al., 2015; Ahn

et al., 2021) for streaming data could not handle our interactive decision problem due to

their uniform and random missing mechanism and non-interaction nature.

The second line of related work is low-rank matrix bandit. There are some works

considering special rank-1 matrix bandits (Katariya et al., 2017b,a; Trinh et al., 2020). To

find the largest entry of a non-negative rank-1 matrix, one just needs to identify the largest

values of the left-singular and right-singular vectors. However, this is no longer applicable

for higher-rank matrices. For general low-rank matrix bandits, Kveton et al. (2017) handled

low-rank matrix bandits but imposed strong “hott topics” assumptions on the mean reward

matrix. They assumed all rows of decomposed factor matrix can be written as a convex

combination of a subset of rows. Sen et al. (2017) considered low-rank matrix bandits with

one dimension choosing by the nature and the other dimension choosing by the agent. They

derived a logarithmic regret under a constant gap assumption. However the gap may not

be specified in advance. Lu et al. (2018) utilized ensemble sampling for low-rank matrix

7



bandits but did not provide any regret guarantee due to the theoretical challenges in handling

sampling-based exploration. Jun et al. (2019) proposed a bilinear bandit that can be viewed as

a contextual low-rank matrix bandit. However, their regret bound becomes sub-optimal in the

context-free setting due to the use of LinUCB (Abbasi-Yadkori et al., 2011) for linear bandits

with finitely many arms. In addition, our theory shows that unfolding reward tensor into

matrix and then applying algorithm proposed by Jun et al. (2019) leads to a suboptimal regret

bound. Lu et al. (2021) further generalized Jun et al. (2019) to a low-rank generalized linear

bandit. To the best of our knowledge, there is no existing work that systematically studies

tensor bandits problem. Low-rank tensor structure has imposed fundamental challenges. It is

well known that many efficient tools for matrix data, such as nuclear norm minimization or

singular value decomposition, cannot be simply extended to tensor framework (Richard and

Montanari, 2014; Yuan and Zhang, 2016; Friedland and Lim, 2017; Zhang and Xia, 2018).

Hence existing algorithms and proof strategies for linear bandits or matrix bandits are not

directly applicable to our tensor bandits problem. Our proposed algorithms and their regret

analysis demand new technical tools.

The rest of the paper is organized as follows. Section 2 reviews some notation and tensor

algebra. Section 3 presents our model, two main algorithms and their theoretical analysis

for the tensor bandits. Section 4 considers the extension to the contextual tensor bandits.

Section 5 contains a series of simulation studies. Section 6 applies our algorithms to an online

advertising application to illustrate their practical advantages. All proofs, an analysis of

approximate Thompson sampling, and additional implementation details in the experiments

are included in the supplemental material.

2 Notation and Tensor Algebra

A tensor is a multidimensional array and the order of a tensor is the number of dimensions

it has, also referred to as the mode. We denote vectors using lower-case bold letters (e.g., x),
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matrices using upper-case bold letters (e.g., X), and high-order tensors using upper-case bold

script letters (e.g., X ). We denote the cardinality of a set by | · | and write [k] = {1, 2, . . . , k}

for an integer k ≥ 1. For a positive scalar x, let dxe = min{z ∈ N+ : z ≥ x}. We use

ej ∈ Rp to denote a basis vector that takes 1 as its j-th entry and 0 otherwise. For a vector

a ∈ Rd and s1 ≤ s2 ∈ [d], let as1:s2 be the sub-vector (as1 , as1+1, . . . , as2). For an order-d

tensor X ∈ Rp1×···×pd , define its mode-j fibers as the pj-dimensional vectors Xi1,...,ij−1,·,ij+1,...,id ,

and its mode-j matricization as Mj(X ) ∈ Rpj×(p1···pj−1pj+1···pd), where the column vectors of

Mj(X ) are the mode-j fibers of X . For instance, for an order-3 tensor X ∈ Rp1×p2×p3 , its

mode-1 matricization M1(X ) ∈ Rp1×(p2p3) is defined as, for i ∈ [p1], j ∈ [p2], k ∈ [p3],

[M1(X )]i,(j−1)p3+k = Xi,j,k. (1)

For a tensor X ∈ Rp1×p2×···×pd and a matrix Y ∈ Rr1×p1 , we define the marginal multiplication

X ×1 Y ∈ Rr1×p2×···×pd as

X ×1 Y =
( p1∑
i′1=1

Xi′1,i2,...,idYi1,i′1

)
i1∈[r1],i2∈[p2]...,id∈[pd]

. (2)

Marginal multiplications along other modes, i.e., ×2, . . . ,×d, can be defined similarly. For

X ,Y ∈ Rp1×···×pd , define the tensor inner product as 〈X ,Y〉 =
∑

i1∈[p1],...,id∈[pd]Xi1,...,idYi1,...,id .

The tensor Frobenius norm is defined as ‖X‖F =
√
〈X ,X〉, and the element-wise tensor max

norm is defined as ‖X‖∞ = maxi1,...,id |Xi1,...,id |.

Consider again an order-d tensor X ∈ Rp1×···×pd . Letting rj be the rank of matrixMj(X ),

j ∈ [d], the tensor Tucker rank of X is the d-tuple (r1, . . . , rd). Let U1 ∈ Rp1×r1 , . . . ,Ud ∈

Rpd×rd be the matrices whose columns are the left singular vectors of M1(X ), . . . ,Md(X ),

respectively. Then, there exists a core tensor S ∈ Rr1×···×rd such that

X = S ×1 U1 ×2 · · · ×d Ud,

or equivalently, Xi1,...,id =
∑

i′1∈[r1],...,i′d∈[rd] Si′1,...,i′d [U1]i1,i′1 · · · [Ud]id,i′d . The above decomposi-

tion is often referred to as the tensor Tucker decomposition (Kolda and Bader, 2009).
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3 Tensor Bandits

In this section, we first introduce tensor bandits, followed by two new algorithms – tensor

elimination and tensor epoch-greedy. We then establish the finite-time regret bounds of

these two algorithms, which reveal their different performances under different rate conditions

and provide a useful guidance for their implementations in practice.

In tensor bandits problem, the agent interacts with an environment for n time steps,

and at each step, the agent faces a d-dimensional decision, indexed by [p1] × · · · × [pd]. A

standard multi-armed bandit can be regarded as a special case of tensor bandits with d = 1.

At step t ∈ [n] and given past interactions, the agent pulls an arm It, which denotes a d-tuple

(i1,t, . . . , id,t) ∈ [p1]× . . .× [pd]. Correspondingly, the agent observes a reward yt ∈ R, drawn

from a probability distribution associated with the arm It. Specifically, denoting the true

reward tensor as X ∈ Rp1×...×pd , the agent at time t receives a noisy reward

yt = 〈X ,At〉+ εt, with At = ei1,t ◦ · · · ◦ eid,t , (3)

where “◦” denotes the vector outer product, eij,t ∈ Rpj is a basis vector, j ∈ [d], and At is a

tensor indicating the location of the arm It. For example, if the agent pulls It = (i1,t, . . . , id,t),

then the (i1,t, . . . , id,t)-th entry of At is 1 while all other entries are 0. In (3), εt is a random

noise term, assumed to be sub-Gaussian in Assumption 1.

The goal of our work, aligned with the central task in bandit problems, is to strike the

right balance between exploration and exploitation, and to minimize the cumulative regret.

Let the arm with the maximum true reward be

(i∗1, . . . , i
∗
d) = argmax

i1∈[p1],...,id∈[pd]

〈X , ei1 ◦ · · · ◦ eid〉

and correspondingly, denote A∗ = ei∗1 ◦ · · · ◦ ei∗d . Our objective is to minimize the cumulative

regret (Audibert et al., 2009), defined as

Rn =
n∑
t=1

〈X ,A∗〉 −
n∑
t=1

〈X ,At〉. (4)
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Naturally, at each step t ∈ [n], the agent faces an exploitation-exploration dilemma, in that

the agent can either choose the arm that expects the highest reward based on historical data

(exploitation), so as to reduce immediate regret, or choose some under-explored arms to

gather information about their associated reward (exploration), so as to reduce future regret.

At first glance, the tensor bandit problem posed in (3)-(4) can be re-formulated, via

vectorization, as a standard multi-armed bandit problem of dimension p1× . . .× pd. However,

applying the existing algorithms for standard multi-armed bandits to vectorized tensor

bandits may be inappropriate due to several reasons. First, the majority of existing solutions

for multi-armed bandits require a proper initialization phase where each arm is pulled at

least once, in order to give a well-defined solution (Auer et al., 2002). For tensor bandits,

such an initialization step can be computationally expensive or even infeasible, especially

when p1 × . . .× pd is large. Second, the vectorization approach may result in a severe loss

of information, as the intrinsic structures (e.g., low-rank) of tensors are largely ignored

after vectorization. Indeed, as commonly considered in recommendation systems and other

applications (Kolda and Bader, 2009; Allen, 2012; Jain and Oh, 2014; Bi et al., 2018; Song

et al., 2019; Xia et al., 2021; Bi et al., 2021), tensor objects usually have a low-rank structure

and can be represented in a lower-dimensional space.

In this work, we propose to retain the tensor form of X and assume that it admits the

following low-rank decomposition,

X = S ×1 U1 ×2 · · · ×d Ud, (5)

where S ∈ Rr1×···×rd is a core tensor, and U1 ∈ Rp1×r1 , . . . ,Ud ∈ Rpd×rd are matrices with

orthonormal columns; see more details on this decomposition in Section 2. We consider a

low-rank model where the rank ri is much smaller than pi. The low-rank assumption in (5)

exploits the structures in tensors and efficiently reduces the number of free parameters in X .

Consider a special case where ri is fixed and p1 = . . . = pd = p for simplicity. This low-rank

modeling allows us to consider an efficient initialization phase with O(pd/2) steps (see Lemma
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S3), which is much reduced comparing to the pd steps required in the simple vectorization

strategy. As demonstrate in Table 1, comparing to the vectorized solutions that ignore the

low-rank structure, our proposed low-rank tensor bandit algorithms have much improved

finite-time regret bounds.

Before discussing the main algorithms, we first describe our initialization procedure.

Thanks to the tensor low-rank structure, our initialization phase need not to pull every arm

at least once, which is required in the majority of multi-armed bandit algorithms. Define an

initial set of s1 steps

E1 = {t | t ∈ [s1]}, (6)

where s1 is an integer to be specified later in Assumption 3. In the initialization phase, arms

are pulled with a uniform probability, equivalent to assuming P(ijt = k) = 1/pj, k ∈ [pj],

in (3). If some prior knowledge about the true reward tensor is available, a non-uniform

sampling can also be considered in the initialization phase.

3.1 Tensor Elimination

The upper confidence band (UCB) strategies (Lai and Robbins, 1985) have been very

successful in bandit problems, leading to an extensive literature on UCB algorithms for

standard multi-armed bandits (Lattimore and Szepesvári, 2020). These UCB algorithms

balance between exploration and exploitation based on a confidence bound that the algorithm

assigns to each arm. Specifically, in each round of steps, the UCB algorithm constructs an

upper confidence bound for the reward associated with each arm, and the arms with the

highest upper bounds are pulled, as they may be associated with high rewards and/or large

uncertainties (i.e., under-explored). Many work have analyzed the regret bounds of UCB

algorithms and investigated their optimality (Auer et al., 2002; Garivier and Cappé, 2011).

Employing the successful UCB strategy in low-rank tensor bandits encounters a critical

challenge, as the tensor decomposition in (5) is a non-convex problem, the data is adaptively
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collected and the concentration results for Ŝ, Û1, . . . , Ûd, to our knowledge, remain elusive

thus far. Without such concentration results, constructing the confidence bounds becomes a

very difficult problem. One straightforward strategy is to first vectorize the tensor bandits

and then treat the problem as a standard multi-armed bandit problem. However, as discussed

before, this strategy incurs a severe loss of structural information and is demanding, in terms

of sample complexity, in its initialization phase. In our proposed approach, we consider a

tensor spectral-based rotation strategy that preserves the low-rank information and at the

same time, enables uncertainty quantification. We also consider an elimination step that

eliminate less promising arms based on the calculated confidence bounds, which further

improves the finite-time regret bound (see Theorem 1). Taken together, the proposed tensor

elimination algorithm avoids directly characterizing the uncertainty of tensor decomposition

estimators, effectively utilizes the low-rank information and achieves a desirable sub-linear

finite-time regret bound. Next, we discuss the tensor elimination algorithm in details.

The tensor elimination shown in Algorithm 1 starts with an initialization phase of

length s1 and then proceeds to an exploration phase of length n1, where arms in both phases

are selected randomly. In this algorithm, the initialization phase and exploration phase

are same. We choose to separate them so that the format is consistent with the tensor

epoch-greedy algorithm introduced in next subsection. Here, s1 is set to be the minimal

sample size for tensor completion and n1 is chosen to minimize cumulative regret, both of

which will be specified later in Section 3.2. Based on the random samples collected from

the initialization and exploration phases, we calculate estimates Û1, . . . , Ûd of the matrices

U1, . . . ,Ud in (5) using a low-rank tensor completion method (see Appendix S.3.2). Next,

we consider a rotation technique that preserves the tensor low-rank structure, and enables

vectorization and uncertainty quantification (see Lemma 1). Specifically, given Ûj, j ∈ [d],

define Ûj⊥ whose columns are the orthogonal basis of the subspace complement to the column
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Algorithm 1 Tensor elimination

1: Input: number of total steps n, number of exploration steps n1, regularization parameters
λ1, λ2, length of confidence intervals ξ, ranks r1, · · · , rd.

2: # initialization and exploration phases
3: Initialize: D = ∅.
4: for t = 1, · · · , s1 + n1 do
5: Randomly pull an arm At and receive its associated reward yt. Let D = D∪{(yt,At)}.
6: end for
7: Calculate Û1, . . . , Ûd using D, and then find Û1⊥, . . . , Ûd⊥.
8: # reduction phase
9: Construct an action set A1 as in (9) and denote q = Πd

j=1pj − Πd
j=1(pj − rj).

10: for k = 1 to log2(n) do
11: Set Vtk = diag(λ1, . . . , λ1︸ ︷︷ ︸

q

, λ2, . . . , λ2) and D = ∅.

12: for t = tk to min(tk+1 − 1, n− n1 − s1) do
13: Pull the arm At = argmaxa∈Ak

‖a‖V −1
t

.

14: Receive its associated reward yt and update Vt+1 = Vt+AtA
>
t . Let D = D∪{(yt, At)}.

15: end for
16: Eliminate arms based on confidence intervals:

Ak+1 =
{
a ∈ Ak : 〈β̂k, a〉+ ‖a‖V −1

t
ξ ≥ max

a∈Ak

[
〈β̂k, a〉 − ‖a‖V −1

t
ξ
]}
, where (7)

β̂k = argmin
β

{1

2

∑
(yt,At)∈D

(
yt − 〈At,β〉

)2
+

1

2
λ1‖β1:q‖2 +

1

2
λ2‖β(q+1):Πd

j=1pj
‖2

}
. (8)

17: end for

subspace of Ûj. Consider a rotation to the true reward tensor X calculated as

Y = X ×1 [Û1; Û1⊥]×2 · · · ×d [Ûd; Ûd⊥] ∈ Rp1×···×pd ,

where ×1, . . . ,×d are as defined in (2) and [Ûj; Ûj⊥] is the concatenation (by columns) of

Ûj and Ûj⊥. Correspondingly, the reward defined in (3) can be re-written (see proof in

Appendix S.3.1) as

yt =
〈
Y , [Û1; Û1⊥]>ei1,t ◦ · · · ◦ [Ûd; Ûd⊥]>eid,t

〉
+ εt.

It is seen that replacing the reward tensor X with Y and the arm ei1 ◦ · · · ◦ eid with

[Û1; Û1⊥]>ei1,t ◦ · · · ◦ [Ûd; Ûd⊥]>eid,t does not change the tensor bandit problem. Define

β = vec(Y) ∈ R
∏d

j=1 pj , which vectorizes the reward tensor Y such that the first Πd
j=1rj entries

14



of vec(Y) are Yi1,...,id for ij ∈ {1, . . . , rj}, j ∈ [d], and denote the corresponding vectorized

arm set as

A :=
{

vec
(

[Û1; Û1⊥]>ei1 ◦ · · · ◦ [Ûd; Ûd⊥]>eid

)
, i1 ∈ [p1], . . . , id ∈ [pd]

}
. (9)

Correspondingly, the tensor bandits in (3) with the true reward tensor X and arm set

{ei1 ◦ · · · ◦ eid , i1 ∈ [p1], · · · , id ∈ [pd]} can be re-formulated as a multi-armed bandits with

the reward vector β and arm set A.

It is easy to see that in vec(X ×1 [U1;U1⊥]×2 · · · ×d [Ud;Ud⊥]), the first Πd
j=1rj entries

are nonzero and the last Πd
j=1(pj − rj) entries are zero. Such a sparsity pattern cannot be

achieved if X is vectorized directly without the rotation. From this perspective, the rotation

strategy preserves the structural information in the vectorized tensor. Specifically, when

estimating the reward vector β in (8), we apply different regularizations to the first Πd
j=1rj

entries and the remaining Πd
j=1(pj − rj) entries, respectively.

The algorithm then proceeds to the elimination phase, where less promising arms are

identified and eliminated. This phase aims to further improve the regret bound. Given a

vector a, we define its A-norm as ‖a‖A =
√
a>Aa, where A is a positive definite matrix.

During phase k with the arm set Ak, the confidence ellipsoid of the mean reward of each

arm a ∈ Ak is constructed using β̂k. It is shown in Lemma 1 that the confidence width of

the reward of arm a is ‖a‖V −1ξ, where V is the covariance matrix and ξ is a fixed constant

term that does not depend on a. At each time step t, the algorithm (line 13) then pulls

the arm with the largest confidence interval width. The intuition of the arm selection in

this step is that arms with the highest confidence widths are likely under-explored. At the

end of phase k (line 16), we implement an elimination procedure that trims less promising

arms. Specifically, we first update the estimate β̂k in (8) based on the pulled arms and their

associated rewards during phase k. Based on the estimated reward β̂k, we then construct

confidence interval (7) for the mean reward of each arm and eliminate the arms whose upper

confidence bound is lower than the maximum of lower confidence bounds of all arms in Ak.
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3.2 Regret Analysis of Tensor Elimination

In this section, we carry out the regret analysis of the tensor elimination. To ease notation,

we assume the tensor rank r1 = . . . = rd = r and the tensor dimension p1 = . . . = pd = p. The

results for general ranks and dimensions can be established similarly using a more involved

notation system. We first state some assumptions.

Assumption 1 (Sub-Gaussian noise). The noise term εt is assumed to follow a 1-sub-

Gaussian distribution such that, for any λ ∈ R,

E[exp(λεt)] ≤ exp(λ2/2).

Assumption 2. Assume true reward tensor X admits the low-rank decomposition in (5)

with r = O(p1/(d−1)). In addition, we assume ‖X‖∞ ≤ 1 and pd/2‖X‖∞/‖X‖F = O(1).

The assumption ‖X‖∞ ≤ 1 assumes that the reward is bounded, and it is common in the

multi-armed bandit literature (see, for example, Langford and Zhang, 2007). It implies that

the immediate regret in each exploration step is O(1). Similar boundedness conditions on

tensor entries can also be found in the tensor completion literature (see, for example, Cai

et al., 2021; Xia et al., 2021). The assumption on the rank r refers to a low-rank model

assumption and is to simplify the final sample size requirement. Moreover, pd/2‖X‖∞/‖X‖F

measures the spikiness of the true tensor and its boundedness ensures that low-rank tensor

completion based on randomly observed samples can be reliable. This condition is a typical

incoherence assumption that is used in Xia et al. (2021); Cai et al. (2021) and is also common

in other low-rank models (Negahban and Wainwright, 2012).

Assumption 3. Assume the number of steps in the initialization phase s1 is

s1 = C0r
(d−2)/2pd/2, (10)

where C0 is a positive constant as defined in Lemma S3.
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This assumption requires the minimal sample complexity for provably recovering a low-

rank tensor from noisy observations when the entries are observed randomly (see Lemma

S3 and Xia et al. (2021)). Such random initialization phase is standard and important in

all bandit algorithms (Lattimore and Szepesvári, 2020). As discussed before, the simple

vectorization strategy would require s1 = O(pd), which is significantly larger.

The next lemma provides the confidence interval for the reward of a fixed arm a.

Lemma 1. For any fixed vector a ∈ Rpd and δ > 0, we have that, if

ξ = 2
√

14 log(2/δ) +
√
λ1‖β1:q‖2 +

√
λ2‖β(q+1):pd‖2, (11)

with β = vec(Y), λ1 > 0 and λ2 = n/(q log(1 + n/λ1)), then at the beginning of phase k

P(|a>(β̂k − β)| ≤ ξ‖a‖V −1
t

) ≥ 1− δ,

where Vt =
∑t

s=1 AsA
>
s + diag(λ1, . . . , λ1︸ ︷︷ ︸

q

, λ2, . . . , λ2).

Next, we show the finite-time regret bound for tensor elimination. Recall q = Πd
j=1pj−

Πd
j=1(pj − rj).

Theorem 1. Suppose Assumptions 1-3 hold. Let tk = 2k−1, 0 < λ1 ≤ 1/pd, λ2 = n/(q log(1+

n/λ1)), and

n1 =

⌈
n

2
d+2 rd

Πd
j=1σj

p
d2+d

2 logd/2(p)

⌉
, (12)

where σj is the smallest non-zero singular value of Mj(X ), j ∈ [d]. The cumulative regret of

Algorithm 1 satisfies

Rn ≤ C
(
r
d
2p

d
2 +

( rd

Πd
i=1σi

logd/2(p)
) 2
d+2

p
d2+d
d+2 n

2
d+2 +

√
(d log(p) + log(n))2pd−1n

)
,

with probability at least 1− dp−10 − 1/n, where C > 0 is some constant.

The detailed proof of Theorem 1 is deferred to Appendix S.1.1. It should be noted that

this paper focuses on the high-dimensional setting, where p approaches infinity, to ensure
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the probability approaches 1. A similar prerequisite of p→∞ is also essential in both the

bilinear matrix bandits (Jun et al., 2019) and low-rank tensor model (Xia et al., 2021) to

ensure that the probability approaches 1.probability approaches 1. Ignoring any logarithmic

and constant factor, the above regret bound can be simplified to

Rn = Õ(r
d−2

2 p
d
2 + r

2d
d+2p

d2+d
d+2 n

2
d+2 + p

d−1
2 n

1
2 ). (13)

The upper bound on the cumulative regret is the sum of three terms, with the first two terms

characterizing regret from the s1 initialization steps and n1 exploration steps, respectively,

and the third term quantifying the regret in the n − s1 − n1 elimination steps. As the

regret from the exploration phase increases with n1 and the regret from the elimination

phase decreases with n1, the value for n1 in (12) is chosen to minimize the sum of these two

regrets. Note that after the rotation, the order of ‖β1:q‖2 is of Õ(pd/2) which guides the

choice of λ1. One component of the upper bound of the cumulative regret is log
(

det(Vk)
det(Λ)

)
with Λ = diag(λ1, . . . , λ1, λ2, . . . , λ2) and λ2 is chosen to minimize the upper bound of the

log term so as to minimize the upper bound of cumulative regret. Theorem 1 is derived

assuming r is considerably smaller than p. In the case of a full-rank tensor with r = p, there

is no benefit of considering a low-rank model and one could unfold the tensor into a long

vector and employ an existing bandit algorithm such as LinUCB, which has been shown to

be optimal in linear bandits.

Remark 1. It is worth to compare the regret bound in Eq. (13) with other strategies. As

summaized in Table 1, when d = 3 and r = O(1), vectorized UCB suffers Õ(p3 + p3/2n1/2).

If we unfold the tensor into a matrix and implement ESTR (Jun et al., 2019), it suffers Õ(p2+

p3n1/2). Both of these competitive methods obtain significantly sub-optimal regret bounds. By

utilizing the low-rank tensor information, our bound greatly improves the dependency on the

dimension p. Moreover, our advantage is even larger when the tensor order d is larger.

Remark 2. One may wonder whether we can extend the matrix bandit ESTR (Jun et al.,
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2019) to the tensor case. In this case, standard LinUCB (Abbasi-Yadkori et al., 2011)

algorithm could be queried to handle the reshaped linear bandits as did in the matrix bandits

(Jun et al., 2019). However, it is known that the algorithm of LinUCB is suboptimal for

linear bandits with finitely many arms and the sub-optimality will be amplified as the order

of tensor grows. Hence, using LinUCB in the reduction phase results in O(p2n1/2) for the

leading term that is even worse than vectorized UCB.

One of the key challenges in our theoretical analysis is to quantify the cumulative regret

in the elimination phase. Existing techniques are not applicable as we utilize a different

eliminator with a modified regularization strategy. Furthermore, to bound the cumulative

regret in the elimination phase, we need to bound the norm ‖β(q+1):pd‖2 which is the last

pd − q entries of vec(Y). Recall that the reward tensor Y is a rotation of true reward tensor

X . We need to derive the upper bound of the norm of rotated reward vector by exploiting

the knowledge of estimation error of X . We use the elliptical potential lemma to bound the

cumulative regret in elimination phase. Furthermore, all parameters such as the penalization

parameter λ2 and exploration phase length n1 are carefully selected to obtain the best bound.

3.3 Tensor Epoch-greedy and Regret Analysis

Next, we propose an epoch-greedy type algorithm for low-rank tensor bandits, and compare

its performance with tensor elimination. The epoch-greedy algorithm (Langford and

Zhang, 2007) proceeds in epochs, with each epoch consisting of an exploration phase and an

exploitation phase. One advantage of this epoch-greedy algorithm is that we do not need

to know the total time horizon n in advance. In the exploration phase, arms are randomly

selected and in the exploitation phase, arms that expect the highest reward are pulled.

The number of steps in each exploitation phase increases with number of epochs, guided

by the fact that, as the number of epochs increases, the estimation accuracy of the true

reward improves and more exploitation steps are desirable. The epoch-greedy algorithm is
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Algorithm 2 Tensor epoch-greedy

1: Input: initial set E1, exploration set E2.
2: Initialize D = ∅.
3: for t = 1, 2, . . . , n do
4: # initialization and exploration phases
5: if t ∈ E1 ∪ E2 then
6: Randomly pull an arm At and receive its associated reward yt = 〈X ,At〉+ εt.
7: Let D = D ∪ {(yt,At)}.
8: end if
9: # exploitation phase

10: if t /∈ E1 ∪ E2 then
11: Based on D, calculate a low-rank tensor estimate X̂t.
12: Pull the arm (i1,t, . . . , id,t) = argmaxi1,...,id〈X̂t, ei1 ◦ . . . ◦ eid〉.
13: Receive the associated reward yt = 〈X , ei1,t ◦ . . . ◦ eid,t〉+ εt.
14: end if
15: end for

straightforward to implement, and we find that compared to tensor elimination, tensor

epoch-greedy algorithm has a better dependence on dimension p and a worse dependence

on time horizon n.

The detailed steps of tensor epoch-greedy are given in Algorithm 2. In the initialization

phase, i.e., t ∈ E1, arms are randomly pulled to collect samples for tensor completion. Recall

the initialization phase has s1 steps. Let the index set of steps in the exploration phases be

E2 =
{
s1 + l + 1 +

l∑
k=0

s2k | l = 0, 1, . . .
}
, (14)

where s2k denotes the number of exploitation steps in the kth epoch and it increases with k. In

the exploration phase, i.e., t ∈ E2, an arm At is pulled (or sampled) randomly. These random

samples collected in the exploration phases are important for unbiased estimation, as they do

not depend on historical data, and their accumulation can improve estimation accuracy of

the reward tensor. Meanwhile, as the exploration phase does not focus on the best arm, each

step t ∈ E2 is expected to result in a large immediate regret, though it can potentially reduce

regret from future exploitation steps. In the exploitation phase, i.e., t /∈ E1 ∪ E2, we construct

a low-rank estimate X̂t of the reward tensor using the random samples collected thus far in
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D. Then, the arm (i1,t, . . . , id,t) with the highest estimated reward in X̂t is selected, i.e.,

(i1,t, . . . , id,t) = argmax
i1,...,id

〈
X̂t, ei1 ◦ . . . ◦ eid

〉
.

Samples in the exploitation phase will not be used to estimate the reward tensor as they are

biased and thus exploitation steps cannot improve estimation accuracy of the reward tensor.

We next derive the regret bound of proposed tensor epoch-greedy.

Theorem 2. Suppose Assumptions 1-3 hold. Let

s2k =

⌈
C2p

−d+1
2 r−

1
2 (log p)−

1
2 (k + s1)

1
2

⌉
, (15)

for some small constant C2 > 0. When n ≥ C0r
d−2
2 p

d
2 , the cumulative regret of Algorithm 2

satisfy, with probability at least 1− p−10,

Rn ≤ C0r
d−2
2 p

d
2 + 8n

2
3p

d+1
3 (r log p)

1
3 . (16)

The regret bound has two terms with the first term characterizing the regret accumulated

during the initialization phase and the second term characterizing the regret accumulated

over the exploration and exploitation phases. The first term depends on the tensor rank

r and dimension p, but not n. It clearly highlights the benefit of exploiting a tensor low-

rank structure since unfolding the tensor into a vector or a matrix requires much longer

initialization phase. The second term in the regret bound is related to time horizon n and it

increases with n at a rate of n
2
3 .

It is worth to compare the leading term of regret bounds for high-order tensor bandits

of tensor elimination in Eq. (13) and tensor epoch-greedy in Eq. (16). As summaized

in Table 1, when d ≥ 3 and r = O(1), tensor elimination suffers Õ(p(d−1)/2
√
n) regret

while tensor epoch-greedy suffers Õ(p(d+1)/3n2/3) regret. Although the latter one has a

sub-optimal dependency on the horizon due to the ε-greedy paradigm, it enjoys a better

regret than the prior one in the high-dimensional regime (n ≤ pd−5).
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In the theoretical analysis, a key step is to determine the switch time between the two

phases, i.e., s2k. We set the length of exploitation phase to be the inverse of tensor estimation

error. Intuitively, when the tensor estimation error is large, more exploration can increase

the sample size and improve the estimation. When the tensor estimation error is small, there

is no need to perform more randomly exploration. Instead, we exploit more to reduce instant

regrets. After obtaining the regret in epoch, we need to derive the upper bound of number of

epochs. Similar to the optimal tuning procedure in explore-then-commit regret analysis, we

tune the parameter to determine the final bound of total number of exploration steps.

4 Contextual Tensor Bandits

In this section, we consider an extension of tensor bandits to contextual tensor bandits where

some modes of the reward tensor are contextual information. Take the online advertising

data considered in Section 6 as an example. Users use the online platform on some day of

the week, and the platform can only decide which advertisement to show to this given user

at the given time. In this example, the user mode and the day-of-week mode of the reward

tensor are both contextual information and both are not decided by the platform.

The above example can be formalized as contextual tensor bandits. Specifically, at time t,

the agent observes a d0-dimensional context (i1,t, · · · , id0,t) ∈ [p1]× · · · × [pd0 ] and given the

observed context, pulls an (d−d0)-dimensional arm (id0+1,t, · · · , id,t) ∈ [pd0+1]×· · ·× [pd]. Let

It = (i1,t, · · · , id,t) collect the context×arm information at time step t. Correspondingly, the

agent observes a noisy reward yt drawn from a probability distribution associated with It. The

objective is to maximize the cumulative reward over the time horizon. This contextual tensor

bandit problem is different from the tensor bandit problems considered in Section 3, as the

agent does not have the ability to choose the context. Therefore, the tensor elimination

algorithm can not be applied to contextual tensor bandits. To tackle this problem, we

introduce a heuristic solution to contextual tensor bandits that utilizes Thompson sampling
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(Russo et al., 2018) and ensemble sampling (Lu and Van Roy, 2017).

Thompson sampling is a powerful Bayesian algorithm that can be used to address a

wide range of online decision problems. The algorithm, in its basic form, first initializes a

prior distribution over model parameters, and then samples from its posterior distribution

calculated using past observations. Finally, an action is made to maximize the reward given

the sampled parameters. The posterior distribution can be derived in closed-form in a few

special cases such as the Bernoulli bandit (Russo et al., 2018). With more complex models

such as our low-rank tensor bandit problem, the exact calculation of the posterior distribution

may become intractable. In this case, we consider an ensemble sampling approach that aims to

approximate Thompson sampling while maintaining computational tractability. Specifically,

ensemble sampling aims to maintain, incrementally update, and sample from a finite ensemble

of models; and this ensemble of models approximates the posterior distribution (Lu and

Van Roy, 2017).

Consider the true reward tensor X ∈ Rp1×...×pd that admits the decomposition in (5),

where the first d0 dimensions of X correspond to the context and the last d− d0 dimensions

correspond to the decision (or arm). At time t and given the arm At = ei1,t ◦ · · · ◦ eid,t , the

reward yt is assumed to follow yt = 〈X ,At〉 + εt. To ease the calculation of the posterior

distribution, in contextual tensor bandits we consider εt ∼ N(0, σ2). For the prior distribution

over model parameters, we assume the rows of Uk are drawn independently from

[Uk]i,· ∼ N(µk,i, σ
2
kI), i ∈ [pk], k ∈ [d].

Let Ht−1 = {(As, ys)}t−1
s=1 denote the history of action×reward up to time t. Given the prior

distribution, the posterior density function can be calculated as

f(X|y1, · · · , yt−1) ∝ f(y1 · · · , yt−1|X )Πk,if([Uk]i,·).

We maximize f(X|y1, · · · , yt−1) to obtain the maximum the posteriori (MAP) estimate as

(Ŝ(t), Û
(t)
1 , · · · , Û(t)

d ) = argmin
S,U1,··· ,Ud

( 1

σ2

t−1∑
s=1

(ys − 〈X ,As〉)2 +
d∑

k=1

1

σ2
k

pk∑
i=1

∥∥∥[Uk]i,· − µk,i
∥∥∥2

2

)
. (17)
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Algorithm 3 Tensor ensemble sampling

1: Input: rank r1, . . . , rd, σ
2, {µki}i∈[pk],k∈[d], {σ2

k}k∈[d], number of models M , variance of
perturbed noise σ̃2.

2: # initialize M models from prior distributions
3: Initialize sample [Ûkm]

(0)
i,· ∼ N(µki, σ

2
kI) for m ∈ [M ], i ∈ [pk], k ∈ [d]. Normalize each

column of matrix Û
(0)
km. Initialize the core tensor S(0)

m = 1 ◦ · · · ◦ 1 ∈ Rr1×1···×drd .
4: for t = 1, 2 · · · do
5: # exploitation phase
6: Sample m̃ ∼ Unif{1, · · · ,M}
7: Observe context xt = (i1t, · · · , id0t)
8: Update (Ŝ(t)

m̃ , Û
(t)
1m̃, · · · , Û

(t)
dm̃) by solving (18).

9: Choose at = (id0+1,t, · · · , idt) = argmaxa=(id0+1,··· ,id)∈[pd0+1]×···×[pd] R̂m̃(xt, a), where

R̂m̃(xt, a) = Ŝ(t)
m̃ ×1 [Û1m̃]

(t)
i1t,· × · · · ×d [Û

(t)
dm̃]idt,·.

10: Receive reward yt.
11: # perturbation phase
12: Sample perturbation noise ωtm ∼ N(0, σ̃2) for m ∈ [M ].
13: Obtain perturbed rewards ỹtm = yt + ωtm for m ∈ [M ].
14: end for

The objective function in (17) can be equivalently written as

1

σ2

t−1∑
s=1

(ys − S ×1 [U1]i1s,· × · · · ×d [Ud]ids,·)
2 +

d∑
k=1

1

σ2
k

pk∑
i=1

∥∥∥[Uk]i,· − µki
∥∥∥2

2
,

which is a non-convex optimization problem. In our proposed algorithm, we alternatively

optimize Uk, k ∈ [d] and S. Given all Ul such that l 6= k and S, we estimate the i-th row of

Uk as

[Uk]
(t)
i,· =

[
1

σ2

t−1∑
s=1

1(iks=i)v
(t−1)(v(t−1))> +

1

σ2
1

I

]−1{
1

σ2

t−1∑
s=1

1(i1,s=i)ysv
(t−1) +

1

σ2
µk,i

}
,

where v(t−1) =
{
S(t−1) ×1 [U1]

(t−1)
i1s,· × · · · ×k−1 [Uk−1]

(t−1)
ik−1,s,· ×k+1 [Uk+1]

(t−1)
ik+1,s,· × · · · ×d [Ud]

(t−1)
ids,·

}
.

After updating all rows of Uk for k ∈ [d], we then estimate S by solving (17).

Tensor ensemble sampling in Algorithm 3 consists of initialization, exploitation and

perturbation phases. In the initialization phase, we sample M models from the prior

distributions. The mean µki and variance σ2
k in the prior distributions could be determined
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from prior knowledge or specified so that the range of models spans plausible outcomes.

Then, at each time step t, a model m̃ is uniformly sampled from the ensemble of M models.

After observing a context xt = (i1t, · · · , id0t), the agent exploits the history data of model m̃

to estimate the low-rank component of the reward tensor via

min
S,U1,··· ,Ud

1

σ2

t−1∑
s=1

{
ỹsm − 〈X ,As〉

}2

+
d∑

k=1

1

σ2
k

pk∑
i=1

∥∥∥[Uk]i,· − [Ûk,m]
(0)
i,·

∥∥∥2

2
. (18)

Compared to (17), the objective in (18) uses perturbed rewards and perturbed priors, which

helps to diversify the models and capture model uncertainty. The goal is for the ensemble to

approximate the posterior distribution and the variance among models to diminish as the

posterior concentrates. Based on the sampled model m̃, we pull the optimal arm at given

the observed context xt. At the end of each time step, we perturb observed rewards for all

M models to diversify the ensemble. Our tensor ensemble sampling can be viewed as an

extension of ensemble sampling (Lu and Van Roy, 2017) for contextual bandits problem.

Note that (18) is a non-convex optimization problem, and there is no assurance of achieving

the global optimizer. However, the optimization problem in (18) is bi-convex, meaning that

the loss function is convex with respect to one set of parameters while fixing the other sets.

This attractive property guarantees that the algorithm will always converge, though possibly

to a local optimum (Xu and Yin, 2013). Whether the algorithm can reach the global optimum

depends on how close the initialization value is to the true value. The same holds for other

similar low-rank tensor estimation problems (Sun et al., 2017; Cai et al., 2021; Xia et al.,

2021). In all of our experiments, we have observed that the tensor ensemble sampling

method performs well with the random initialization utilized in Algorithm 3. It is challenging

to analytically quantify how local solutions to (18) affect the tensor ensemble sampling

method and we leave a comprehensive theoretical investigation to future work. Moreover,

our choices of Gaussian prior distribution and Gaussian perturbation noise follow from the

existing ensemble sampling literature (Lu and Van Roy, 2017; Osband et al., 2018; Kveton

et al., 2020; Dwaracherla et al., 2022; Qin et al., 2022) due to their successful empirical
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performance and ease in computation in practice.

Although tensor ensemble sampling is motivated by contextual tensor bandit prob-

lems, it can also be used to solve tensor bandits without context. In this case, the context

dimension d0 = 0 and an arm At consists of all decisions to be made. While tensor ensemble

sampling performs well empirically, its theoretical investigation is very challenging due to

the nature of the ensemble sampling framework (Lu and Van Roy, 2017) and the non-convex

optimization in low-rank tensor problems. In Section S.4 of the supplement, we present

some preliminary Bayes regret analysis of a general approximate Thompson sampling (TS)

algorithm for tensor bandits. Notably, our tensor ensemble sampling can be considered

as a specific instance of an approximate TS algorithm. Since approximate TS is a Bayesian

algorithm, following the literature in this field (Russo and Van Roy, 2016; Qin et al., 2022),

we develop a Bayes regret bound, rather than a frequentist regret bound in (4). The Bayes

regret is defined as

BRn = E [Rn] = E

[
n∑
t=1

〈X ,A∗〉 −
n∑
t=1

〈X ,At〉

]
,

where the expectation is taken over the reward tensor X under the prior distribution P0.

Different from the frequentist regret bound in (4), the Bayes regret has an additional

expectation over the reward tensor X . Theorem 3 in Section S.4.2 provides a Bayes regret

bound for a general approximate TS, BRn ≤ Õ
(√

pdH(A∗)n+
∑n

t=1 E
[
dH(P ∗t ‖P̄t)

])
, where

H(A∗) is the entropy of optimal action A∗ and the second term measures the distance

between its action sampling distribution P̄t(·) = sample(· |P0,Dt−1), and that of the standard

Thompson sampling algorithm, P ∗t (·) = Pr(A∗ ∈ ·|Dt−1). See Section S.4.2 for more details.

It is important to note that the above Bayesian regret bound is based on a preliminary

information-theoretic analysis and we expect its dependence on p, the dimension of the

tensor, can be further improved. Specifically, our analysis has not fully exploited the low-

rank structure of the reward tensor X . The question of how to incorporate this low-rank

structure into the information-theoretic analysis of approximate Thompson sampling remains
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an open problem that is particularly challenging. We believe that addressing this problem will

necessitate novel insights into Bayesian inference in low-rank tensors and potentially require

additional assumptions about the prior distribution P0. Even in the low-rank matrix case,

this issue is not well understood, and we see it as an interesting but very challenging direction

for future research. Moreover, to derive an explicit regret bound for the tensor ensemble

sampling algorithm, we need to further bound the Hellinger distance term dH(P ∗t ‖P̄t) for

the ensemble sampling algorithm. We believe that this is also a challenging problem that

requires better understanding of how perturbed rewards and priors affect the non-convex

tensor decomposition formulation (see equation (18)), as well as their connections to Bayesian

inferences in low-rank tensors. It is worth mentioning that Qin et al. (2022) has provided

a Bayes regret bound for ensemble sampling in a special linear Gaussian bandits; however,

their techniques highly depend on the structure of Gaussian linear bandits and cannot be

applied to low-rank matrix or tensor bandits. This is another interesting future direction.

5 Simulations

We carry out some preliminary experiments to compare the numerical performance of

tensor epoch-greedy, tensor elimination and tensor ensemble sampling with two

competitive methods: vectorized UCB which unfolds the tensor into a long vector and then

implements standard UCB (Auer, 2002) for multi-armed bandits, and matricized ESTR (Jun

et al., 2019) which unfolds the tensor into a matrix along an arbitrary mode and implements

ESTR for low-rank matrix bandits.

We first describe the way to generate an order-three true reward tensor (d = 3) according to

Tucker decomposition in (5). The tensor dimensions are set to be same, i.e., p1 = p2 = p3 = p.

The triplet of tensor Tucker rank is fixed to be r1 = r2 = r3 = r = 2. Denote Ũj ∈ Rpj×rj as

i.i.d standard Gaussian matrices. Then we apply QR decomposition on Ũj, and assign the

Q part as the singular vectors Uj. The core tensor S ∈ Rr×r×r is constructed as a diagonal
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tensor with Siii = wp1.5, for 1 ≤ i ≤ r. Here, wp1.5 indicates the signal strength (Zhang and

Xia, 2018). The random noise εt is generated i.i.d from a standard Gaussian distribution.

(a) p = 15, w = 0.5 (b) p = 20, w = 0.5

(c) p = 15, w = 0.8 (d) p = 20, w = 0.8

Figure 2: Cumulative regrets with varying dimension p and signal strength w. The shaded
areas represent the confidence bands.

All algorithms involve some hyperparameters, such as the length of initial explorations,

width of confidence intervals, the number of rounds of pure explorations and etc. In Section

S.5 of the appendix, we discuss the choice of hyper-parameters for tensor elimination,

tensor epoch-greedy, tensor ensemble sampling, and matricized ESTR respectively.

In Figure 2, we report the cumulative regrets of all five algorithms for four settings with

w ∈ {0.5, 0.8} and p ∈ {15, 20}. All the results are based on 30 replications. Figure 2

shows that tensor ensemble sampling outperforms all other methods in different settings.

Tensor elimination does not perform as well as tensor ensemble sampling but is better

than other methods for a long time horizon. It aligns with our theoretical findings that

tensor elimination has a better overall regret bound for long time horizon, while tensor

epoch-greedy is more competitive for small time horizon. When the tensor dimension p

increases, the advantage of tensor epoch-greedy in early stage is more apparent. This
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result agrees with our theoretical finding in that the regret bound of tensor epoch-greedy

has a lower dependency on dimension compared with other methods.

6 Applications to Online Advertising

Two real data analysis studies are conducted in the field of online advertising to assess the

proposed algorithms. The first study focuses on a contextual tensor bandit problem, while

the second study examines a non-contextual tensor bandit problem.

Our first data set comes from a major internet company and contains the impressions for

advertisements displayed on the company’s webpages over four weeks in May to June, 2016.

The impression is the number of times the advertisement has been displayed. It is a crucial

measure to evaluate the effectiveness of an advertisement campaign, and plays an important

role in digital advertising pricing. Studying online advertisement recommendation not only

brings opportunities for advertisers to increase their ad exposures but also allows them to

efficiently study individual-level behavior.

The impressions of 20 advertisements were recorded for 20 most active users. In order to

understand the user behavior over different days of a week, the data were aggregated by days

of a week. Thus, the data forms an order-three tensor of dimension 20 × 7× 20 where each

entry in the tensor corresponds to the impression for the given combination of user, day of

week and advertisement. The goal of this real application is to recommend advertisement to

a selected user on a specific day to achieve maximum reward (impression). The user mode

and the day-of-week mode are both contextual information and the agent recommends the

corresponding optimal advertisement. Tensor elimination and matricized ESTR can only

handle the setting where the agent chooses arms without contextual information. Tensor

epoch-greedy is for context-free tensor bandits in our theory but it can also be extended to

tensor bandit with contextual information. Therefore, we compare the performance of tensor

epoch-greedy, tensor ensemble sampling and vectorized UCB in this contextual tensor
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bandits problem. The cumulative regrets of all these algorithms are shown in Figure 3.

Figure 3: The left plot illustrates the reward tensor formulation in our online advertising
data. The right plot shows cumulative regrets of tensor epoch-greedy, tensor ensemble

sampling and vectorized UCB in the contextual tensor bandit real data.

From the right plot of Figure 3, we can observe that tensor ensemble sampling achieves

the lowest regret for a long time horizon. Comparing tensor epoch-greedy and vectorized

UCB, the former is better for a short time horizon. At the last time horizon, tensor ensemble

sampling is 75% lower than that of vectorized UCB and is 85.6% lower than that of

tensor epoch-greedy. The t-test of difference between the mean of final regret for tensor

epoch-greedy and tensor ensemble sampling indicates that the two means are signifi-

cantly different ( t-statistic is 1191.37 and p-value is 0). The t-test between tensor ensemble

sampling and vectorized UCB also shows significantly improvement is achieved by tensor

ensemble sampling (t-statistic is 1770.33 and p-value is 0). The success of tensor ensemble

sampling helps advertisers to better optimize the allocation of ad resources for different users

on different days. By tracking users’ behavior on ad exposures and conversions over time,

advertises can make personalized recommendation based on individual-level data. Besides,

our models are maintained and updated based on users’ feedback. Such interactive models

can be applied to other dynamic and online learning real problems.

In addition to the aforementioned contextual tensor bandit problem, we further consider

a real data analysis on non-contextual tensor bandits. The tensor data used in this study
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Figure 4: Cumulative regrets in non-contextual tensor bandit real data.

is a third-order tensor that collects information on ad clicks across 20 advertisements, 10

publishers, and 7 days of the week. A publisher refers to a specific webpage on the online

company’s website, such as the main homepage, a page dedicated to financial news, or one

dedicated to sports news. Each entry in the tensor corresponds to the number of clicks for

a particular combination of advertisement, publisher, and day. The goal of this analysis

is to identify the optimal combination of advertisement, publisher, and day that results

in the highest reward for behavioral targeting purposes (Choi et al., 2020; Rafieian and

Yoganarasimhan, 2021). For example, if we discover that a particular type of customer prefers

ad i on publisher j on day k of the week, we can use this information to target this customer

segment in future advertising campaigns by displaying ad i on publisher j on day k of the week

to maximize the reward. Since all three modes represent actions, this is a non-contextual

tensor bandit problem. We conducted a comparison of three proposed algorithms with

two baseline models on non-contextual tensor data, and the cumulative regrets of all these

algorithms are shown in Figure 4. It is seen that both tensor ensemble sampling and

tensor elimination yielded low regret over a long time horizon, with tensor ensemble

sampling performing slightly better. Matricized ESTR has the worst performance. When the

time horizon is short, tensor epoch greedy performs better in comparison to vectorized
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UCB. These findings are consistent with those from our simulation studies.
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Supplementary Materials

“Stochastic Low-rank Tensor Bandits for

Multi-dimensional Online Decision Making”

In the appendix, we provide detailed proofs of Theorems 1-2 in Section S.1, proof of the

main lemma in Section S.2, the equivalent formulation of tensor bandits in Section S.3.1, and

the algorithm for low-rank tensor completion in Section S.3.2. Section S.4 contains a general

approximate Thompson sampling algorithm and its Bayesian regret bound, and Section S.5

includes the implementation details of all algorithms in the experiments.

S.1 Proofs of Main Theorems

S.1.1 Proof of Theorem 1

From Lemma S3 and the assumption ‖X‖∞ ≤ 1, we know that with probability at least

1− p−10, ∥∥X̂n1 −X
∥∥
F
≤ C1

√
pd+1r log(p)

n1

.

By definitions, Ui, Ûi are left singular vectors of Mi(X ) and Mi(X̂n1), respectively. Here,

the matricization operator M(·) is defined in (1). Then we can verify

UiU
>
i Mi(X ) = UiU

>
i UiΣV

>
i = U>i ΣV >i =Mi(X ).

Let Ûi⊥ ∈ Rp×(p−r) be the orthogonal complement of Ûi for i ∈ [d]. For an orthogonal matrix

U and an arbitary matrix X, Y , we have ‖UX‖F ≤ ‖U‖2‖X‖F = ‖X‖F and ‖XY ‖F ≥

1



‖X‖σmin(Y ). Suppose σi is the r-th singular value of Mi(X ). Using the above fact, we have

‖Mi(X̂n1)−Mi(X )‖F

≥‖Û>i⊥(Mi(X̂n1)− UiU>i Mi(X ))‖F

=‖Û>i⊥UiU>i Mi(X )‖F

≥‖Û>i⊥Ui‖Fσr(U>i Mi(X )) = ‖Û>i⊥Ui‖Fσi.

Therefore we have,

‖Û>i⊥Ui‖F ≤
‖Mi(X )−Mi(X̂n1)‖F

σi
=
‖X − X̂n1‖F

σi
≤ C1

σi

√
pd+1r log(p)

n1

, (S1)

with probability at least 1− p−α. As discussed in Section 3.1, we reformulate original tensor

bandits into a stochastic linear bandits with finitely many arms. Recall that β = vec(Y) with

Y = X ×1 [Û1; Û1⊥] · · · ×d [Ûd; Ûd⊥] ∈ Rp1×···×pd ,

and the corresponding action set

A :=
{

vec
(

[Û1; Û1⊥]>ei1 ◦ · · · ◦ [Ûd; Ûd⊥]>eid

)
, i1 ∈ [p1], . . . , id ∈ [pd]

}
.

From Eq. (S1), we have

∥∥β(q+1):pd

∥∥
2
≤

d∏
i=1

‖Û>i⊥Ui‖F‖S‖F

≤ ‖X̂n1 −X‖dF
Πd
i=1σi

‖S‖F

≤ rd/2

Πd
i=1σi

Cd
1r

d/2p
d2+d

2 logd/2(p)

n
d/2
1

, (S2)

with probability at least 1 − dp−α. Thus it is equivalent to consider the following linear

bandit problem:

yt = 〈At,β〉+ εt,

where ‖β(q+1):pd‖2 satisfies Eq. (S2) and At is pulled from action set A. To better utilize the

information coming from low-rank tensor completion, we present the following regret bound

for the elimination-based algorithm for stochastic linear bandits with finitely-many arms.

The detailed proof is deferred to Section S.2.
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Lemma S2. Consider the the elimination-based algorithm in Algorithm 1 with λ2 = n/(k log(1+

n/λ1)) and λ1 > 0. With the choice of ξ = 2
√

14 log(2/δ) +
√
λ1‖β1:q‖2 +

√
λ2‖β(q+1):pd‖2,

the upper bound of cumulative regret of n rounds satisfies

Rn ≤ 8
(

2
√

14 log(2 log(n)pd/δ) +
√
λ1‖β1:q‖2

)√
2qn log(1 +

n

λ1

) + 8
√

2n‖β(q+1):pd‖2.

with probability at least 1− δ, where q = pd − (p− r)d.

Overall, we can decompose the pseudo regret Eq. (4) into two parts:

Rn = R1n +R2n +R3n,

where R1n quantifies the regret during initialization phase, R2n quantifies the regret dur-

ing exploration phase and R3n quantifies the regret during commit phase (linear bandits

reduction). Note that q ≤ C1p
d−1 for sufficient large C1. Denote

δp,r =
rd

Πd
i=1σi

p
d2+d

2 logd/2(p),

such that ‖β(q+1):pd‖2 ≤ δp,r/n
d/2
1 from Eq. (S2). Applying the result in Lemma S2 to bound

R3n and properly choosing 0 < λ1 ≤ 1/pd, we have the following holds with probability at

least 1− dp−10 − 1/n,

Rn ≤ C
(
rd/2pd/2︸ ︷︷ ︸

R1n

+ n1︸︷︷︸
R2n

+ δp,rn2/n1 +
√

log(log(n2)) + log(n2pd)
√
pd−1n2 log(n2pd)

)
︸ ︷︷ ︸

R3n

,

where n2 = n− n1 − Crd/2pd/2 and C > 0 is an universal constant. Here, R3n is due to the

fact that we run elimination-based algorithm for the rest n2 rounds. For simplicity, we bound

all n2 by n as usually did for the proof of explore-then-commit type algorithm.

We optimize with respect to n1 such that

n1 = (nδp,r)
2
d+2 .
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It implies the following bound holds with probability at least 1 − dp−10 − 1/n,

Rn ≤ C
(
rd/2pd/2 +

( rd

Πd
i=1σi

p
d2+d

2 logd/2(p)
) 2
d+2

n
2
d+2

+
√

log(log(n)) + log(npd)
√
pd−1n log(npd)

)
≤ C

(
rd/2pd/2 +

( rd

Πd
i=1σi

logd/2(p)
) 2
d+2

p
d2+d
d+2 n

2
d+2 +

√
(d log(p) + log(n))2pd−1n

)
.

This ends the proof. �

S.1.2 Proof of Theorem 2

The proof uses the trick that couples epoch-greedy algorithm with explore-then-commit

algorithm with an optimal tuning.

Step 1. We decompose the pseudo regret defined in (4) as:

Rn =
n∑
t=1

〈A∗ −At,X〉

=

s1∑
t=1

〈A∗ −At,X〉+
n∑

t=s1+1

〈A∗ −At,X〉,

where s1 is the number of initialization steps. After initialization phase, from the definition

of exploration time index set in (14), the algorithm actually proceeds in phases and each

phase contains (1 + ds2ke) steps: one step random exploration plus ds2ke steps greedy actions.

By algorithm, at phase k, the greedy action At is taken to maximize 〈At, X̂k+s1〉 where X̂k+s1

is the low-rank tensor completion estimator at phase k based on (k + s1) random samples.

Therefore, we have 〈At −A∗, X̂k+s1〉 ≥ 0 and

〈A∗ −At,X〉 ≤ 〈A∗ −At,X − X̂k+s1〉.

By Lemma S3 and the choice of s2k in (15), it is sufficient to guarantee∥∥X̂k+s1 −X
∥∥
F
≤ 1/s2k,

holds with probability at least 1−p−α from Lemma S3 for any α > 1. By the Cauchy-Schwarz

inequality, we have

〈A∗ −At,X〉 ≤
∥∥A∗ −At∥∥F∥∥X̂k+s1 −X

∥∥
F
≤ 2/s2k,
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where for the second inequality we use the fact that both tensors A∗ andAt have only one entry

equal to 1 and others are 0. Denote n2 = n− s1 and K∗ = min{K :
∑K

k=1(1 + ds2ke) ≥ n2}.

Since we assume ‖X‖∞ ≤ 1, the maximum gap ∆max is bounded by 2. Then we have

Rn ≤ s1∆max +
K∗∑
k=1

(
1 ·∆max + ds2ke2/s2k

)
≤ (s1 +K∗)∆max + 2K∗ ≤ 2s1 + 4K∗,

(S3)

with probability at least 1−K∗p−α.

Step 2. We will derive an upper bound for K∗. Let n∗2 = argminu∈[0,n2][u+ (n2−u)/s2u].

Consider the following two cases.

1. If n∗2 ≥ K∗, it is obvious that

K∗ ≤ n∗2 + (n2 − n∗2)/s2n∗2
.

2. If n∗2 ≤ K∗ − 1, it holds that

K∗−1∑
k=1

s2k ≥
K∗−1∑
k=n∗2

s2k ≥ (K∗ − n∗2)s2n∗2
,

where the second inequality is from the fact that s2k is monotone increasing. By the

definition of K∗, it holds that

n2 − 1 ≥
K∗−1∑
k=1

(
1 + ds2ke

)
≥

K∗−1∑
k=1

(
1 + s2k

)
≥ K∗ − 1 +

(
K∗ − n∗2

)
s2n∗2

,

which implies

K∗ ≤ n∗2 + (n2 − n∗2)/s2n∗2
.

Overall, K∗ is upper bounded by n∗2 + (n2 − n∗2)/s2n∗2
.

Step 3. From (S3), the cumulative regret can be bounded by

Rn ≤ 2s1 + 4 min
u∈[0,n2]

(
u+ (n2 − u)/s2u

)
.

The second term above is essentially the regret for explore-then-comment type algorithm

with the optimal tuning for the length of exploration. Plugging the definition of s2u in (15)
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and letting u = n/s2u, we have

K∗/2 ≤ n∗2 ≤ n2/3p
d+1

3 (r log p)
1
3 .

Thus, we choose α = log(2n2/3p
d+1

3 (r log p)
1
3p) such that K∗p−α ≤ 1/p. Plugging in s1 =

C0r
d/2pd/2, we have

Rn ≤ C0r
d/2pd/2 + 8

(
n2/3p

d+1
3 (r log p)

1
3

)
,

with probability at least 1− 1/p. This ends the proof. �

S.2 Proof of Lemma S2

Before we prove it, we introduce some notations first. For a vector x and matrix V , we define

‖x‖V =
√
x>V x as the weighted `2-norm and det(V ) as its determinant. Let K = blog2(n)c

and tk = 2k−1. Denote x∗ = argmaxa∈A〈a,β〉.

We have the following regret decomposition by phases:

Rn =
n∑
t=1

〈x∗ − At,β〉 =
K∑
k=0

tk+1−1∑
t=tk

〈x∗ − At,β〉

=
K∑
k=0

tk+1−1∑
t=tk

(
〈x∗ − At, β̂k〉 − 〈x∗ − At, β̂k − β〉

)
,

where β̂k is the ridge estimator only based on the sample collected in the current phase,

defined in Eq. (8). According to Lemma 7 in (Valko et al., 2014), for any fixed x ∈ Rp and

any δ > 0, we have, at phase k,

P
(
|x>(β̂k − β)| ≤ ‖x‖V −1

k
ξ
)
≥ 1− δ, (S4)

where ξ = 2
√

14 log(2/δ) +
√
λ1‖β1:q‖2 +

√
λ2‖β(q+1):pd‖2. Applying Eq. (S4) for x∗ and At,

we have with probability at least 1−Kpdδ,

Rn ≤
K∑
k=0

tk+1−1∑
t=tk

〈x∗ − At, β̂k〉+
K∑
k=0

(tk+1 − tk)
(
‖x∗‖V −1

k
+ ‖At‖V −1

k

)
ξ.

By step (7) in Algorithm 1, we have

〈x∗ − At, β̂k〉 ≤
(
‖x∗‖V −1

k
+ ‖At‖V −1

k

)
ξ.
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According to Lemma 8 in Valko et al. (2014), for all the actions x ∈ Ak defined in Eq. (7),

‖x‖2
V −1
k
≤ 1

tk − tk−1

tk∑
t=tk−1+1

‖xt‖2
V −1
t−1
.

Then using the elliptical potential lemma (Lemma 19.4 in Lattimore and Szepesvári (2020)),

with probability at least 1−Kpdδ, we have

Rn ≤ 2
K∑
k=0

(tk+1 − tk)
(
‖x∗‖V −1

k
+ ‖At‖V −1

k

)
ξ

≤ 4
K∑
k=0

(tk+1 − tk)

√
1

tk − tk−1

log
(det(Vk)

det(Λ)

)
ξ,

where Λ = diag(λ1, . . . , λ1, λ2, . . . , λ2). According to Lemma 5 in (Valko et al., 2014), we

have

log
(det(Vk)

det(Λ)

)
≤ k log(1 +

n

λ1

) +

pd∑
i=k+1

log(1 +
ti
λ2

),

where
∑pd

i=k+1 ti ≤ T . With the choice of λ2,

log
(det(Vk)

det(Λ)

)
≤ k log(1 +

n

λ1

) +

pd∑
i=k+1

ti
λ2

≤ 2k log(1 +
n

λ1

).

We know that tk+1 − tk = 2k−1 and tk − tk−1 = 2k−2. Then one can have

K∑
k=0

(tk+1 − tk)
1√

tk − tk−1

=
K∑
k=0

2k/2 ≤
√
n.

Overall, with probability at least 1 −Kpdδ, we have

Rn ≤ 8

√
2kn log(1 +

n

λ1

)
(

2
√

14 log(2/δ) +
√
λ1‖β1:k‖2 +

√
λ2‖β(k+1):pd‖2

)
= 8(2

√
14 log(2 log(n)pd/δ) +

√
λ1‖β1:k‖2)

√
2kn log(1 +

n

λ1

) + 8
√

2n‖β(k+1):pd‖2.

This ends the proof. �

S.3 Auxiliary Results

S.3.1 An equivalent formulation of tensor bandits

We write Û1⊥, . . . , Ûd⊥ as the orthogonal basis of the complement subspaces of Û1, . . . Ûd.

By definitions, [ÛjÛj⊥] is an orthogonal matrix for all j ∈ [d] such that

[ÛjÛj⊥][ÛjÛj⊥]> = [ÛjÛj⊥]>[ÛjÛj⊥] = Id×d.
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Denote a rotated true reward tensor as

Y = X ×1 [Û1; Û1⊥] · · · ×d [Ûd; Ûd⊥] ∈ Rp1×···×pd ,

where ×1 is the marginal multiplication defined in Eq. (2). Denote

E1 = [Û1; Û1⊥]>ei1t ◦ · · · ◦ [Ûd; Ûd⊥]>eidt , E2 = ei1t ◦ · · · ◦ eidt .

We want to prove

〈
Y , E1

〉
=
〈
X , E2

〉
.

To see this, we use a fact of the Kronecker product (see details in Section 2.6 in (Kolda and

Bader, 2009)). Let Z1 ∈ RI1×···IN and A(n) ∈ RJn×In for all n ∈ [N ]. Then, for any n ∈ [N ],

we have

Z2 = Z1 ×1 A
(1) · · · ×N A(N)

⇔Mn(Z2) = A(n)Mn(Z1)
(
A(N) ⊗ . . .⊗ A(n+1) ⊗ A(n−1) ⊗ · · · ⊗ A(1)

)>
,

where Mn(Z) is the mode-n matricization and ⊗ is a Kronecker product. Denote H =

[Û2Û2⊥]⊗ · · · ⊗ [Ûd; Ûd⊥]. By a matricization of Y , E along the first mode, we have〈
Y , E1

〉
=
〈
M1(Y),M1(E1)

〉
=
〈
[Û1; Û1⊥]M1(X )H>, [Û1; Û1⊥]M1(E2)H>

〉
= trace

(
HM1(X )>[Û1; Û1⊥]>[Û1; Û1⊥]M1(E2)H>

)
= trace

(
HM1(X )>M1(E2)H>

)
=
〈
X ×1 Id×d ×2 [Û2Û2⊥] · · · ×d [Ûd; Ûd⊥], ei1t ◦ · · · ◦ [Ûd; Ûd⊥]>eidt

〉
.

Recursively using the above arguments along each mode, we reach our conclusion.

S.3.2 Tensor completion algorithm and guarantee

For the sake of completeness, we state the tensor completion algorithm in (Xia et al., 2021).

The goal is to estimate the true tensor X ∈ Rp1×...×pd from

yt = 〈X ,At〉+ εt, t = 1, . . . , T,
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where At = ei1t ◦ . . . ◦ eidt . This is a standard tensor completion with uniformly random

missing data. The algorithm consists of two stages: spectral initialization and power iteration.

Spectral initialization. We first construct an unbiased estimator Xini for X as follows:

Xini =
p1 · · · pd

T

n∑
t=1

ytAt.

For each j ∈ [d], we construct the following U -statistic:

R̂j =
(p1 · · · pd)2

T (T − 1)

∑
1≤t 6=t′≤T

ytyt′Mj(At)Mj(A′t)>,

where Mj is the mode-j matricization defined in Eq. (1). Compute the eigenvectors of

{R̂j}dj=1 with eigenvalues greater than δ, and denote them by {Û(0)
j }dj=1.

Power iteration. Given {Û(l−1)
j }dj=1, Xini can be denoised via projections to j-th mode.

For l = 1, 2, . . ., we alternatively update {Û(l−1)
j }dj=1 as follows,

Û
(l)
j = first rj left singular vectors of Mj

(
Xini ×j′<j (Û

(l−1)
j′ )> ×j′>j (Û

(l−1)
j′ )>

)
.

The iteration is stopped when either the increment is no more than the tolerance ε, i.e.,∥∥∥Xini ×1 (Û
(l)
1 )> · · · ×d (Û

(l)
d )>

∥∥∥
F
−
∥∥∥Xini ×1 (Û

(l−1)
1 )> · · · ×d (Û

(l−1)
d )>

∥∥∥
F
≤ ε, (S5)

or the maximum number of iterations is reached. With the final estimates Û1, . . . , Ûd, it is

natural to estimate S and X as Ŝ = Xini ×1 Û
>
1 · · · ×d Û>d , X̂ = Ŝ ×1 Û1 · · · ×d Ûd. �

Lemma S3. Suppose Assumptions 1-2 holds. Suppose X̂T is the low-rank tensor estimator

constructed from T uniformly random samples by Algorithm 1 in Xia et al. (2021). Then for

any α > 1, if the number of samples T ≥ C0α
3r(d−2)/2pd/2 for sufficiently large constant C0,

the following holds with probability at least 1− p−α,

‖X̂T −X‖F
‖X‖F

≤ C1

√
αrp log p

T
, (S6)

where C1 is an absolute constant.

Lemma S3 is a direct application of Corollary 2 in Xia et al. (2021) with some constant

terms ignored.
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S.4 Approximate Thompson Sampling and Its Bayesian

Regret Bound

This section presents analysis of a broad approximate Thompson sampling (TS) algorithm for

tensor bandits. Notably, our tensor ensemble sampling in Algorithm 3 can be considered

as a specific instance of an approximate TS algorithm. The approximate TS algorithm is

introduced in Section S.4.1, followed by its Bayesian regret bound in Section S.4.2. A detailed

proof of the regret bound is provided in Section S.4.3.

S.4.1 Approximate Thompson Sampling

The general approximate Thompson sampling algorithm is described in Algorithm 4. Note

that we define Dt−1 as the “history” (i.e. the action-reward trajectory) at the beginning

of time t. Algorithm 4 takes two inputs: the first input is a prior distribution P0 over the

reward tensor X , and the second input is an action sampling oracle sample. In particular,

the action sampling oracle maps a prior distribution P0 and a “history” Dt−1 to a probability

distribution over the actions. At each time step t, Algorithm 4 proceeds as follows: it first

samples an action At based on sample, then it pulls arm At and receives reward yt, and

finally it updates the “history” based on the action-reward pair (At, yt).

Algorithm 4 Approximate TS for tensor bandits

1: Input: prior P0 over the reward tensor X , an action sampling oracle sample

2: Initialize D0 as the empty sequence
3: for t = 1, 2, · · · do
4: Sample arm At ∼ sample(· |P0,Dt−1)
5: Pull arm At and receive reward yt
6: Update Dt = append(Dt−1, (At, yt))
7: end for

Note that many algorithms can be viewed as a special case of Algorithm 4 with a particular

choice of sample. For instance, let Pr(A∗ ∈ ·|Dt−1) denote the posterior distribution over the

optimal action A∗, then if we choose sample(· |P0,Dt−1) = Pr(A∗ ∈ ·|Dt−1), then Algorithm 4

reduces to the standard Thompson sampling algorithm. Hence, Algorithm 4 can be viewed
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as a generalization of the standard Thompson sampling algorithm. Moreover, as we will

show later, we can bound the performance of Algorithm 4 based on the ”distance” between

its action sampling distribution sample(· |P0,Dt−1), and that of the standard Thompson

sampling algorithm, Pr(A∗ ∈ ·|Dt−1). That is why it is referred to as the approximate

Thompson sampling algorithm. It is also seen that the tensor ensemble sampling algorithm

(Algorithm 3) can be viewed as another special case of Algorithm 4. In particular, Algorithm 3

implicitly defines an action sampling function via an ensemble of tensors.

S.4.2 Bayes Regret Bound

We now establish a general regret bound for Algorithm 4. To simplify the exposition, we

make the following assumption:

Assumption 4 (Bounded reward). For all X ′ ∈ support(P0), and all action A, we assume

that y = 〈X ′,A〉+ ε ∈ [0, 1] with probability 1.

Note that this bounded reward assumption is non-essential, and it is assumed to simplify

the exposition. In particular, it is satisfied by assuming the noises are sub-Gaussian as in

Assumption 1 and the boundedness of tensor X ′ in Assumption 2.

Following the literature in this field (Russo and Van Roy, 2016; Qin et al., 2022), we

develop a Bayes regret bound for Algorithm 4. The Bayes regret is defined as

BRn = E [Rn] = E [
∑n

t=1 〈X ,A∗〉 −
∑n

t=1 〈X ,At〉] , (S7)

where the expectation is over the reward tensor X under the prior distribution P0. Different

from the frequentist regret bound in (4), the Bayes regret has an additional expectation over

the reward tensor X . To simplify the exposition, we define

P ∗t (·) = Pr(A∗ ∈ ·|Dt−1) and P̄t(·) = sample(·|P0,Dt−1). (S8)

Recall that the Hellinger distance between P ∗t and P̄t is defined as

dH(P ∗t ‖P̄t) =

√√√√∑
a

(√
P ∗t (a)−

√
P̄t(a)

)2

. (S9)
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Note that the Hellinger distance is symmetric. Moreover, Lemma 2.4 in Tsybakov (2009)

shows that the Hellinger distance can be bounded by KL divergences in both directions: for

any P ∗t and any P̄t, we have d2
H(P ∗t ‖P̄t) ≤ min

{
dKL(P ∗t ‖P̄t),dKL(P̄t‖P ∗t )

}
. Then we have

the following Bayes regret bound for Algorithm 4:

Theorem 3. Assume that p1 = p2 = · · · = pd = p, and the bounded reward assumption

(Assumption 4) holds, then under Algorithm 4, we have

BRn ≤
√
pdH(A∗)n/2 + 2

n∑
t=1

E
[
dH(P ∗t ‖P̄t)

]
,

where H(A∗) is the entropy of A∗ under the prior distribution.

The proof for Theorem 3 is provided in Section S.4.3. Note that under the prior distribution

P0, X is a random variable. Consequently, A∗, which is the index of a maximum element1 of

X , is also a random variable. Since H(A∗) ≤ d log p, Theorem 3 immediately implies that

BRn ≤ Õ

(√
dpdn+

n∑
t=1

E
[
dH(P ∗t ‖P̄t)

])
.

Finally, note that in the standard Thompson sampling algorithm, we have P ∗t (·) = P̄t(·),

thus, BRn ≤ Õ
(√

dpdn
)

, which is sublinear in n and matches the regret bound of vectorized

UCB. Note that the analysis in Theorem 3 does not exploit the possible low-rank structure

of the reward tensor X . Incorporating this low-rank structure into this information-theoretic

analysis of approximate Thompson sampling is very challenging, and we believe that it will

require novel insights on Bayesian inference in low-rank tensors, and possibly additional

assumptions on the prior distribution P0. To the best of our knowledge, this issue is not well

understood even in the low-rank matrix case. This is an interesting but challenging direction

for future work.

Theorem 3 is a general Bayes regret bound for approximate Thompson sampling algorithms,

based on the quality of the action sampling distribution. To derive an explicit regret bound for

1When there are multiple maximum elements in X , we assume that there is a fixed tie-breaking rule to
choose A∗.
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the tensor ensemble sampling algorithm (Algorithm 3), we need to further bound the Hellinger

distance term for the ensemble sampling algorithm. This is also challenging and it requires

better understanding of how perturbed rewards and priors affect the tensor decomposition

(see equation (18)), as well as their connections to Bayesian inferences in low-rank tensors.

This is another interesting direction for future research. It is worth mentioning that Qin et al.

(2022) has provided a Bayes regret bound for ensemble sampling in linear bandits; however,

their techniques highly depend on the structure of Gaussian linear bandits and cannot be

applied to low-rank matrix or tensor bandits.

S.4.3 Proof for Theorem 3

Our proof utilizes the information-theoretic tool in Qin et al. (2022) which provided a Bayes

regret bound for ensemble sampling in linear bandits.

We start by defining some notations. For any time t and any action a, define yt,a as the

observed reward if the agent takes action a at time t. Then, by definition, we have

BRn =
n∑
t=1

E [yt,A∗ − yt,At ] =
n∑
t=1

E [Et [yt,A∗ − yt,At ]] ,

where Et[·] is a shorthand notation for E[· | Dt−1]. Note that by definition of the Bayes regret,

the expectation is also over the reward tensor X . Following Lemma 1 in Qin et al. (2022),

we can decompose BRn into a “main regret term” and an “approximation error term”.

Specifically, for any t = 1, 2, . . . , n, we have

Et [yt,A∗ − yt,At ] = Gt + Jt,

where Gt is the main regret term defined as

Gt =
∑
a

√
P ∗t (a)P̄t(a) (Et [yt,a|A∗ = a]− Et [yt,a]) (S10)

and Jt is the “approximation error term” defined as

Jt =
∑
a

(√
P ∗t (a)−

√
P̄t(a)

)(√
P ∗t (a)Et [yt,a|A∗ = a] +

√
P̄t(a)Et [yt,a]

)
(S11)

The following lemma bounds Gt based on the information gain in A∗.
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Lemma S4. For each time t = 1, 2, . . . , n, with probability 1, we have

Gt ≤
√
pd It (A∗; (At, yt,At)) /2,

where It (A∗; (At, yt,At)) = I (A∗; (At, yt,At) | Dt−1 = Dt−1) is the conditional mutual informa-

tion between A∗ and (At, yt,At) conditioning on the given history Dt−1.

Proof. We follow the proof of Lemma 2 in Qin et al. (2022). In particular,

It (A∗; (At, yt,At))
(a)
= It(A∗;At) + It(A∗; yt,At |At)
(b)
= It(A∗; yt,At |At)

=
∑
a

P̄t(a)It(A∗; yt,a|At = a)

(c)
=
∑
a

P̄t(a)It(A∗; yt,a)

=
∑
a,a∗

P̄t(a)P ∗t (a∗)dKL (Prt(yt,a ∈ · |A∗ = a∗) ‖Prt(yt,a ∈ ·)) , (S12)

where (a) follows from the chain rule of mutual information; (b) follows from the fact that A∗

and At are conditionally independent given Dt−1 so that It(A∗;At) = 0; and (c) follows from

the fact that At is conditionally independent of A∗ and yt,a given Dt−1. Since yt,a ∈ [0, 1],

from Pinsker’s inequality, we have

Et[yt,a|A∗ = a∗]− Et[yt,a] ≤
√

1

2
dKL (Prt(yt,a ∈ · |A∗ = a∗) ‖Prt(yt,a ∈ ·)).

Consequently we have

It (A∗; (At, yt,At)) ≥ 2
∑
a,a∗

P̄t(a)P ∗t (a∗) (Et[yt,a|A∗ = a∗]− Et[yt,a])2 .

On the other hand, recall that

Gt =
∑
a

√
P ∗t (a)P̄t(a) (Et [yt,a|A∗ = a]− Et [yt,a]) .

Without loss of generality, we index the actions as a = 1, 2, . . . , pd. Following Russo and

Van Roy (2016); Qin et al. (2022), we define the pd × pd matrix M as

Ma,a∗ =
√
P̄t(a)P ∗t (a∗) (Et [yt,a|A∗ = a∗]− Et [yt,a])
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for all a, a∗ = 1, 2, . . . , pd, where Ma,a∗ is the (a, a∗)-th element in M. Hence, Gt = trace(M),

while It (A∗; (At, yt,At)) ≥ 2‖M‖2
F . Hence, we have

G2
t

It (A∗; (At, yt,At))
≤ trace(M)2

2‖M‖2
F

(a)

≤ rank(M)

2

(b)

≤ pd

2
,

where (a) follows from trace(M) ≤
√

rank(M)‖M‖F (Fact 10 in Russo and Van Roy (2016)),

and (b) follows from rank(M) ≤ pd since M is a pd×pd matrix. This concludes the proof.

Based on Lemma S4, and following Lemma 3 in Qin et al. (2022), we can show that

n∑
t=1

E[Gt] ≤
√
pdH(A∗)n/2,

which is based on Cauchy-Schwarz inequality and the chain rule of the mutual information.

Finally, we bound the approximation error term:

Lemma S5. For all t = 1, 2, . . . , n, we have

E [Jt] ≤ 2E
[
dH(P ∗t ‖P̄t)

]
.

Summing over t gives the second term in the regret bound of Theorem 3.

Proof. We follow the proof of Lemma 4 in Qin et al. (2022). Recall that

Jt =
∑
a

(√
P ∗t (a)−

√
P̄t(a)

)(√
P ∗t (a)Et [yt,a|A∗ = a] +

√
P̄t(a)Et [yt,a]

)
(a)

≤

√√√√∑
a

(√
P ∗t (a)−

√
P̄t(a)

)2
√∑

a

P ∗t (a)E2
t [yt,a|A∗ = a] +

√∑
a

P̄t(a)E2
t [yt,a]


(b)

≤

√√√√∑
a

(√
P ∗t (a)−

√
P̄t(a)

)2
√∑

a

P ∗t (a) +

√∑
a

P̄t(a)


= 2dH(P ∗t ‖P̄t). (S13)

Note that inequality (a) follows from the Cauchy–Schwarz inequality, and inequality (b)

follows from yt,a ∈ [0, 1]. Taking the expectation, we have E [Jt] ≤ 2E
[
dH(P ∗t ‖P̄t)

]
.

Since
∑n

t=1 E[Gt] ≤
√
pdH(A∗)n/2, and E [Jt] ≤ 2E

[
dH(P ∗t ‖P̄t)

]
, Theorem 3 is proved.
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S.5 Implementation Details in Simulations

Before discussing the choices of hyperparameters in the experiments, we would like to mention

that parameter tuning in bandit problems is uniquely challenging, as decisions are made in

real time and are based on rewards observed from the past. In a bandit environment, once a

parameter is used on partial datasets and a decision is made based on it, the regret resulting

from that decision is irreversible. Hence, it is not feasible to select hyperparameters using

traditional offline methods such as cross validation.

Next we discuss the choice of hyper-parameters for our tensor elimination, tensor

epoch-greedy, tensor ensemble sampling in the experiments, and also conducted sensitiv-

ity tests on the choice of these parameters. Finally, we discuss how to select hyper-parameters

in the competitive methods.

• The algorithm tensor epoch-greedy has two hyperparameters, a positive constant

C0 that determines the length of the initialization phase s1 = C0r
(d−2)/2p(d−2) and

a positive constant C2 that determines the length of the exploitation phase s2k =⌈
C2p

−d+1
2 r−

1
2 (log p)−

1
2 (k + s1)

1
2

⌉
, both are derived in Theorem 2. In our theoretical

analysis, the specific choices for C0 and C2 do not affect the order of the derived

regret bound. We let C0 = 1 and found that it gave enough number of steps in the

random initialization phase. For C2, we conducted a sensitivity analysis to evaluate the

performance of tensor epoch-greedy with regard to varying values of C2. As shown

in Figure 5(a), the regret of tensor epoch-greedy is not sensitive to different values

of C2. Hence, we have chosen to fix C2 = 1 in all numerical experiments.

• The algorithm tensor elimination has one hyperparameter c0 used to determine the

number of the exploration steps c0n1, where n1 follows the theoretical value defined in

Theorem 1 and c0 > 0 is a small constant. For c0, we carried out a sensitivity analysis

to evaluate the performance of tensor elimination with regard to varying values

of c0. From Figure 5(b), there is no significant difference between cumulative regrets
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(a) tensor epoch-greedy parameter C2 (b) tensor elimination parameter c0

(c) tensor ensemble parameter σ̃2

Figure 5: Top left: Cumulative regrets of different constant multiplier C2 in tensor

epoch-greedy. Top right: Cumulative regrets of different exploration length constant
multiplier c0 in tensor epoch-elimination. Bottom left: Cumulative regrets of different
variance of perturbation noise σ̃2 in tensor ensemble sampling. The shaded areas represent
the confidence bands. The simulation setting is same as that in Section 5 with dimension
p1 = p2 = p3 = 20 and w = 0.8.

under different values of c0. Hence, we have chosen to fix c0 = 0.5 in all numerical

experiments.

• The algorithm tensor ensemble sampling has two hyperparameters including the

ensemble size M and the variance of perturbation noise σ̃2. We set M as a relative

large number M = 100 to better approximate posterior distribution and found that

it gave a good performance. For σ̃2, we performed a sensitivity analysis to evaluate

the performance of tensor ensemble sampling with regard to varying values of σ̃2.

As shown in Figure 5(c), the regret of tensor ensemble sampling is not sensitive to

different values of σ̃2. We have chosen to fix σ̃2 = 0.1 in all numerical experiments.

Similar to tensor elimination, the competitive method matricized ESTR also has a pa-

rameter c0 in the initial exploration length. In our experiments, we selected the parameters
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c0 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} that resulted in the lowest cumulative regret for matricized

ESTR, making the comparison favorable to matricized ESTR. Besides, we set the ridge

regularization parameter λ1 = 0.1 for both tensor elimination and matricized ESTR.

Finally, determining the appropriate rank is still an unresolved issue even in traditional

low-rank tensor models, and existing theoretical studies usually assume prior knowledge of

the true rank (Sun et al., 2017; Zhang and Xia, 2018; Zhang et al., 2019; Xia et al., 2021;

Cai et al., 2021; Han et al., 2022). In this paper, we adopt this convention and assume prior

knowledge of the true ranks for all experiments. However, in practice, one can employ some

ad-hoc methods to determine the ranks using uniformly collected samples in the initialization

and exploration stages.
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