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A B S T R A C T   

False results and time delay are longstanding challenges in biosensing. While classification models and deep 
learning may provide new opportunities for improving biosensor performance, such as measurement confidence 
and speed, it remains a challenge to ensure that predictions are explainable and consistent with domain 
knowledge. Here, we show that consistency of deep learning classification model predictions with domain 
knowledge in biosensing can be achieved by cost function supervision and enables rapid and accurate biosensing 
using the biosensor dynamic response. The impact and utility of the methodology were validated by rapid and 
accurate quantification of microRNA (let-7a) across the nanomolar (nM) to femtomolar (fM) concentration range 
using the dynamic response of cantilever biosensors. Data augmentation and cost function supervision based on 
the consistency of model predictions and experimental observations with the theory of surface-based biosensors 
improved the F1 score, precision, and recall of a recurrent neural network (RNN) classifier by an average of 
13.8%. The theory-guided RNN (TGRNN) classifier enabled quantification of target analyte concentration and 
false results with an average prediction accuracy, precision, and recall of 98.5% using the initial transient or 
entire dynamic response, which is indicative of high prediction accuracy and low probability of false-negative 
and false-positive results. Classification scores were used to establish new relationships among biosensor per
formance characteristics (e.g., measurement confidence) and design parameters (e.g., inputs and hyper
parameters of classification models and data acquisition parameters) that may be used for characterizing 
biosensor performance.   

1. Introduction 

Barriers to the widespread clinical, industrial, and consumer use of 
biosensors (Cui et al., 2020; Dervisevic et al., 2020; Iravani, 2020; Khor 
et al., 2022; Kundu et al., 2019; Tan et al., 2022), which include accu
racy, reproducibility, and speed, have motivated the application of deep 
learning in biosensing. For example, false-positive and false-negative 
results associated with rapid tests for SARS-CoV-2 were widely publi
cized during the COVID-19 pandemic (Patel et al., 2023; Un et al., 
2021). Also, time delay associated with target analyte binding poses a 
barrier to rapid and continuous biosensor-based biosurveillance. 
Recently, several studies showed that trained dogs perform similarly to 

PCR for the detection of COVID-19, suggesting that artificial intelligence 
can play a critical role in transforming the speed, accuracy, and reli
ability of biosensors (Pirrone et al., 2023). Consideration of measure
ment uncertainty is now being used to define biosensor performance, 
such as the detection limit (Fonollosa et al., 2014; Lavín et al., 2018). 

Deep learning-driven biosensing studies can be broadly classified 
based on the targeted performance metric (e.g., speed or accuracy), the 
structure of the biosensor data analyzed (e.g., time-series (TS) or spec
tral data), and the learning objective (e.g., regression or classification). 
While deep learning is providing new opportunities in chemical sensing 
(Cho et al., 2020), such as improving the detection limit, several studies 
have applied deep learning in biosensing (Ali et al., 2018; 
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Gonzalez-Navarro et al., 2016; Guselnikova et al., 2019; Sagar et al., 
2020; Schackart and Yoon, 2021; Wu et al., 2019). For example, 
Gonzalez-Navarro et al. predicted the amperometric response of a 
glucose-oxidase biosensor with low error using an artificial neural 
network (ANN) and observed a nonlinear dependence on glucose con
centration, pH, and temperature (Gonzalez-Navarro et al., 2016). 
Guselnikova et al. used an ANN to identify photoinduced DNA damage 
and chemical transformations of DNA structure based on spectral data 
obtained from a label-free surface-enhanced Raman scattering meth
odology (Guselnikova et al., 2019). Ali et al. classified bacteria with 
100% accuracy in training, validation, and test datasets using a 
nonlinear back propagation neural network (BPNN) with impedance 
data from a printed biosensor (Ali et al., 2018). Wu et al. presented a 
high-throughput method that combined particle aggregation-based 
biosensors with a convolutional neural network (CNN), which enabled 
rapid detection of herpes simplex virus (HSV) using a biotin-tagged 
antibody and holographic images (Wu et al., 2019). Sagar et al. 
demonstrated microglia detection in cell culture using an ANN based on 
data from a fluorescence lifetime imaging microscopy (FLIM) technique 
that exhibited a True Positive Rate (TPR) greater than 0.9 (Sagar et al., 
2020). While such studies have established the value of using deep 
learning to improve biosensor performance, various challenges remain, 
including the creation of explainable deep learning models. A critical 
review of deep learning-driven biosensing studies (see Table S1) reveals 
the opportunity to leverage data augmentation and first principles, such 
as ensuring that the predictions of deep learning models are consistent 
with domain knowledge in biosensing. 

While the majority of deep learning models remain a black box, 
domain knowledge (e.g., physics) is now being leveraged in several 
engineering applications of deep learning, including fluid mechanics, 
materials science, geology, and manufacturing (Bakhshian and Roma
nak, 2021; Daw et al., 2017; Pawar et al., 2021; Wang et al., 2020; Zhao 
et al., 2023). The concept of a physics-guided neural network (PGNN) 
was among the first approaches integrating domain knowledge with 
deep learning (Daw et al., 2017). In that work, a PGNN was used to 
predict lake temperature profiles using a physics-guided learning 
objective, which reduced prediction error by examining prediction 
consistency with physics. More recently, Zobeiry et al. developed a 
system of neural networks based on finite element modeling that 
selected parameters as features to predict material characteristics, 
including fracture energy and strain-softening parameters (Zobeiry 
et al., 2020). Pawar et al. proposed a method to guide deep learning 
models by adding physical parameters in the neural network latent 
space, including the Reynolds number and predictions from first prin
ciples of aerodynamics, which improved the prediction of aerodynamic 
forces with quantifiable uncertainty (Pawar et al., 2021). Chen et al. 
created a theory-guided neural network (TGNN) for hard constraint 
projection (HCP) that ensured the model obeyed a physical mechanism, 
which improved the efficiency and prediction accuracy relative to an 
ANN (Chen et al., 2021). Wang et al. presented a novel physics-guided 
deep learning model to predict tool wear that included physics-data 
fusion in the pre-processing stage, a physics-based model for extract
ing information from unlabeled data, and a physics-guided loss function 
that ensured consistency of predictions with physics (Wang et al., 2020). 
Zhao et al. introduced a physics-guided deep crystal generative model 
(PGCGM) for designing crystalline materials that incorporated a physics 
loss based on atomic position (Zhao et al., 2023). However, 
theory-guided deep learning has heavily leveraged simulation data and 
has not yet been leveraged in biosensing applications. 

Here, we establish a new methodology for rapid and accurate bio
sensing based on theory-guided deep learning using the biosensor dy
namic response. Consistency of deep learning model predictions with 
domain knowledge in biosensing is achieved by cost function supervi
sion. The utility and impact of the methodology are demonstrated by a 
case study on sensitive microRNA (miRNA) detection using the dynamic 
signal change of cantilever biosensors. We show that data augmentation 

can address data sparsity and class imbalance challenges that may arise 
in applying deep learning models to experimental biosensor data (e.g., 
calibration data). Considering the target analyte concentration as a 
categorical variable based on the calibration data structure enabled 
accurate classification of the dynamic biosensor response and, thus, 
quantification of target analyte concentration and false-negative and 
false-positive results. We show that the methodology also enables rapid 
and accurate RNA detection using the biosensor initial transient 
response, which reduces the time delay of surface-based affinity bio
sensors, such as those based on antibody- and nucleic acid-based bio
recognition elements. 

2. Materials and methods 

2.1. MicroRNA detection using DNA-functionalized cantilever biosensors 

The dynamic response, specifically resonant frequency (Δf) vs. time 
(t), associated with miRNA let-7a (5′ UGAGGUAGUAGGUUGUAUAGUU 
3’; 5.4 kDa) detection using DNA-functionalized cantilever biosensors 
served as the univariate TS data for this study (Johnson and Mutharasan, 
2012). Thiolated-DNA probe (HS–C6-5′ TTTTTTAACTATACAAC 3’; 7.1 
kDa) was immobilized on a 1 mm2 gold pad at the distal tip of the 
cantilever biosensor by continuous flow of a 3 μM probe solution in a 
custom flow cell during which Δf was continuously monitored. 
Following stabilization of the sensor resonant frequency, the remaining 
Au<111> sites were backfilled with 6-mercapto-1-hexanol at 730 μM in 
continuous flow. The surface probe immobilization ratio was based on 
reports and protocols of Rijal et al. (Rijal and Mutharasan, 2007). The 
data in this study were obtained from five cantilever biosensors that 
exhibited similar spectral characteristics. Multiple sensors were exam
ined to characterize the batch performance and account for accidental 
damage that may occur during experimentation (e.g., handling and 
cleaning). The miRNA detection study in buffer generated 16 dynamic 
responses that corresponded to the binding response of functionalized 
biosensors to 16 calibration standards in a continuous-flow detection 
format. Additional details of biosensor fabrication, functionalization, 
biorecognition chemistry, measurement format, and data acquisition 
system are provided in Supporting Information. The quantity and con
centration distribution of the standard solutions were selected to align 
the design of experiments with diagnostic applications, which often 
yield sparse and imbalanced data (see the Results and Discussion section 
for additional details). Specifically, the study generated 8, 1, 2, 1, and 4 
dynamic responses (i.e., univariate TS) at let-7a concentrations of 1 nM, 
100 pM, 10 pM, 1 pM, and 100 fM, respectively. 

2.2. Data pre-processing 

The dynamic biosensor response was transformed using min-max 
normalization as θ(t) = (f(t) - fi)/(ff - fi), where fi is the baseline reso
nant frequency before target analyte binding, ff is the baseline resonant 
frequency after the binding response reached steady state, and f(t) is the 
continuously monitored resonant frequency. Time t = 0 was the start of 
the binding process (i.e., the biosensor transient response). The 
normalized dynamic signal change (i.e., biosensor response) contained 
non-stationary and stationary data associated with the transient binding 
period and the baseline response after the binding reaction reached a 
steady state, respectively. 

2.3. Data augmentation 

Jittering, scaling, magnitude warping, window slicing, time warping, 
and window warping were used for data augmentation (i.e., generating 
‘augmented’ dynamic responses) (Iwana and Uchida, 2021; Um et al., 
2017). TS data augmentation was performed before normalization (i.e., 
on the raw signal). A detailed description of the augmentation methods 
can be found elsewhere (Iwana and Uchida, 2021). Random numbers 
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used in the augmentation techniques were from a normal distribution. 
The first step of the augmentation process addressed data sparsity, and 
the second step addressed class imbalance. This process increased the 
total data size (i.e., the total number of biosensor responses in the 
dataset) from 16 to 268, which was balanced across the classes. For 
example, the five class sizes after data augmentation were 56, 55, 50, 55, 
and 52, which correspond to the target analyte concentrations of 1 nM, 
100 pM, 10 pM, 1 pM, and 100 fM, respectively. Additional details 
associated with the data augmentation process are provided as Sup
porting Information. 

2.4. Classification of dynamic biosensor response using deep learning for 
quantification of target analyte concentration and likelihood of false 
results 

The dynamic biosensor response was classified based on the target 
analyte concentration using a recurrent neural network (RNN), which 
enabled quantification of the target analyte concentration and the 
likelihood of false-positive and false-negative results. For the unaug
mented dataset, the 16 normalized dynamic biosensor responses (i.e., 
normalized TS data) served as the input to the RNN using a fixed window 
size (20 points), which generated 2061 time series. For example, one 
labeled time series with 67 points (time stamps) and a window size of 20 
yields (67 –20 + 1) = 48 time series (i.e., sensor signals). Given that the 
miRNA detection study characterized the biosensor dynamic response to 
calibration standards at five different concentrations (see Section 2.1), 
the classification problem included five classes based on the five unique 
labels (i.e., let-7a concentrations). Thus, the class sizes for the unaug
mented dataset after window size processing were 1090, 183, 302, 112, 
and 374, respectively. The class sizes for the augmented dataset after 
window size processing were 7630, 10,065, 7550, 6160, and 4862, 
respectively. The target analyte concentration (i.e., the class associated 
with the dynamic response) served as the output of the RNN. The RNN 
contained two hidden layers with 128 neurons per layer and used two 
prediction components (a forecasting component and a classification 
component). The prediction component utilized was dependent on the 
type of loss function used. The forecasting component was created by 
linking a fully connected layer and the hidden outputs of the RNN with 
the predicted value using a single output neuron. The classification 
component was created by connecting the final hidden layer of the RNN 
to a fully connected layer of output size equal to the number of classes to 
be predicted (five in this study). RNN with Cross-entropy (CE) Loss: The 
classification component was used. The cost function for classification 
was binary CE loss associated with the predicted class. RNN with CE and 
Mean-Squared-Error (MSE) Losses: The classification and forecasting 
components were used. The cost function used for forecasting was MSE 
loss associated with the forecasted biosensor response. The forecasting 
and classification components were executed at the same time. The CE 
and MSE losses associated with the two prediction components (i.e., the 
classification and forecasting components, respectively) were simulta
neously minimized by concurrent training of the forecasting and clas
sification components based on their shared dependence on hidden 
variables (H). 

2.5. Classification of dynamic biosensor response using theory-guided 
deep learning for quantification of target analyte concentration and 
likelihood of false results 

Theory-guided RNNs (TGRNNs) were created by modifying the 
aforementioned RNNs based on CE and MSE losses with theory-based 
losses that reward consistency of the forecasted dynamic response 
with the theory of surface-based biosensors and observed responses. We 
use the terminology ’theory-guided’ deep learning in this work rather 
than ’physics-guided’ deep learning, since domain knowledge in bio
sensing includes both physics and chemistry. Theory of surface-based 
biosensors that employ antibodies or DNA probes (as used here) shows 

that the concentration of bound target analyte monotonically increases 
with respect to time (Squires et al., 2008). Thus, a theory-based loss can 
complement or replace the MSE loss, which is the basis of the RNN 
forecasting component. TGRNN with Monotonicity Loss: The TGRNN with 
monotonicity loss used the monotonicity loss of Daw et al. (2017), which 
was calculated using only the forecasted biosensor response of the RNN. 
Each value (ti) was compared to its previous value (ti-1) in the forecasted 
response, and the ReLU function (Nair and Hinton, 2010) was applied to 
the difference (i.e., ti - ti-1) to nullify any predictions that followed an 
increasing monotonic trend (i.e., if the difference exhibited a positive 
value) and to include a loss for all the cases where monotonicity was 
violated (i.e., if the difference exhibited a negative value). TGRNN with 
Empirical-Monotonicity Loss: The TGRNN with empirical-monotonicity 
loss penalized the forecasted biosensor response when increasing 
monotonicity between the forecasted and observed dynamic biosensor 
response was violated. The loss was calculated for each window by 
taking the average ReLU outputs of the difference between the fore
casted and observed biosensor response. If the forecasted value was 
greater than or equal to the observed value, the loss contributed was 
zero. If the forecasted value was less than the observed value, the loss 
was non-zero, as calculated by ReLU. TGRNN with CE and Monotonicity 
Losses: This model contained CE and monotonicity losses. To simulta
neously minimize the monotonicity and CE losses, the forecasting and 
classification components were concurrently executed. TGRNN with CE 
and Empirical-Monotonicity Losses: This model contained CE and 
empirical-monotonicity losses. The empirical-monotonicity and CE los
ses were simultaneously minimized by concurrently executing the 
forecasting and classification components. TGRNN with CE, MSE, and 
Monotonicity Losses: This model contained CE, MSE, and monotonicity 
losses. To simultaneously minimize the CE, MSE, and monotonicity 
losses, the forecasting and classification components were concurrently 
executed. TGRNN with CE, MSE, and Empirical-Monotonicity Losses: This 
model contained CE, MSE, and empirical-monotonicity losses. To 
simultaneously minimize the CE, MSE, and empirical-monotonicity 
losses, the forecasting and classification components were concur
rently executed. TGRNN Training: The TGRNNs were trained with 1000 
epochs using an Adam optimizer. The training was stopped when the 
training loss did not improve for 50 successive epochs. Evaluation of 
Model Performance: The performance of the RNNs and TGRNNs was 
evaluated by the test classification scores (i.e., the F1 score, precision, 
and recall). The training, validation, and test datasets were obtained 
using stratified train/test split (i.e., 70%, 15%, and 15% of the data were 
used for training, validation, and test data, respectively). The stratified 
split preserved the class distribution. The test data size for the model 
using unaugmented data was 310 (15% of the data). For models using 
augmented data, the test data size was 5440 (15% of the data). Stratified 
train/test split with a fixed random state ensured that the performance 
using different loss combinations could be compared. The presented 
classification scores of F1 score, precision, and recall are the averaged 
values across all classes. The provided scores corresponded to analysis of 
the test sets unless otherwise specified. 

3. Results and Discussion 

3.1. Addressing data sparsity and class imbalance in biosensor calibration 
data via data augmentation 

The miRNA detection study using cantilever biosensors involved 16 
standard solutions. The cantilever biosensors exhibited resonant fre
quencies at 19.0 ± 0.1 and 88.4 ± 0.1 kHz, which correspond to the first 
and second bending modes, respectively. Immersion in liquid caused a 
decrease in resonant frequency and Q-value of both modes, primarily 
through an added-mass effect of the surrounding liquid. The first and 
second resonant frequencies decreased by 4.2 ± 0.7 and 16.2 ± 1.2 kHz 
(n = 3 sensors), respectively. Given its higher mass-change sensitivity, 
the second mode was used for miRNA detection. Statistical analyses of 
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the biosensor fabrication processes (e.g., variance in biosensor charac
teristics) and the miRNA detection study are presented in our previous 
work (Johnson and Mutharasan, 2012). The concentration of the stan
dards, which served as the label for the biosensor responses, ranged from 
1 nM to 100 fM, including 100 fM, 1 pM, 10 pM, 100 pM, and 1 nM. The 
dynamic responses associated with the calibration dataset ranged from 
19 to 94 min and contained 67–250 points (pts). The sampling rate 
varied from 0.24 to 1.02 pt/min. A representative dynamic response for 
each target analyte concentration is shown in Fig. 1A. 

While multiple studies have applied deep learning in medical diag
nostic applications, several have employed augmentation of image 
(Govindaraju et al., 2022) and TS data (Majidov and Whangbo, 2019) 
before model evaluation. The unaugmented dataset associated with the 
case study on miRNA detection using cantilever biosensors was sparse 
and imbalanced. For example, the calibration standard concentrations of 
1 nM, 100 pM, 10 pM, 1 pM, and 100 fM had 8, 1, 2, 1, and 4 corre
sponding TS, respectively. Thus, the dataset exhibited an imbalanced 
class distribution with more samples located near the upper and lower 
limits of the dynamic range to synergize with the variation in let-7a 
concentration across miRNA-based diagnostic assays, which can vary 
by several orders of magnitude across the nM to sub-fM range depending 
on the disease or therapeutic approach (Daneshpour et al., 2018; 
Ouyang et al., 2019; Perron et al., 2007; Simino et al., 2021; Zhang et al., 
2017). Biosensor data is often sparse and imbalanced due to measure
ment and application constraints and may also arise from data man
agement challenges, such as data loss and labeling cost. Several data 
augmentation methods for TS data were used to address the data spar
sity and class imbalance in the calibration data, which expanded the 
number of labeled dynamic responses from 16 to 268. This approach was 
consistent with previous studies that have leveraged data augmentation 
for classification models involving non-biosensing related miRNA ap
plications (Govindaraju et al., 2022; Majidov and Whangbo, 2019), 
which have used datasets containing 40–200 samples (Duffy et al., 2018; 
Duy et al., 2016). The class distribution (i.e., samples/class) of the 
augmented calibration data for concentrations of 1 nM, 100 pM, 10 pM, 
1 pM, and 100 fM was 56, 55, 50, 55, and 52, respectively. 

Normalized dynamic sensor signal change has been used in several 
sensing applications, including chemical sensing, biosensing, and elec
trophysiology. For example, normalized sensor data is extensively used 
for analysis of EEG and EMG data (Huynh et al., 2020; Jeong et al., 2018; 
Mohammadi et al., 2015; Niu et al., 2020; Yu et al., 2022). Scaled sensor 
data (e.g., shifted, normalized, dimensionless), such as TS data, have 
also been used in chemical sensing and biosensing applications (Iran
nejad et al., 2013; Mo et al., 2017; Opp et al., 2009; Stoeber et al., 2018; 
Zhang et al., 2013). A comparison of the unaugmented and augmented 
normalized biosensor responses in the 10 pM class is shown in Fig. 1B as 
a representative case. The augmented data captured the trend and fea
tures of the experimental univariate TS data. For example, the mean 

Pearson’s correlation score was greater than 0.7 for most samples, 
indicating that the augmented data represents the experimental data (i. 
e., the unaugmented dataset). 

The decision to normalize the biosensor signal change is also moti
vated by the traditional approach for quantifying the target analyte 
concentration using a standard (i.e., calibration) curve. The standard 
curve for the miRNA detection study using the DNA-functionalized 
cantilever biosensors was obtained from the net shift in resonant fre
quency at steady state and the known concentration of target analyte in 
each solution tested. Specifically, the standard curve is a plot of the net 
change in resonant frequency (signal change) vs. the target analyte 
concentration. In this work, the standard curve contained 16 data 
distributed across the 100 fM – 1 nM concentration range. Linear 
regression is typically performed on the standard curve data to provide 
regression scores that can serve as measures of biosensor performance, 
such as sensitivity (defined as the slope of the regression model) or ac
curacy, which can be quantified by MSE. As we discussed, such regres
sion scores are useful (e.g., explainable), but classification scores offer 
predictive power related to false results. Thus, normalization of the 
dynamic biosensor signal change removes the traditional feature (i.e., 
biosensor net steady-state signal change) used for quantifying the target 
analyte concentration from the TS data. This allows the methodology to 
complement standard curve-based analyses in biosensing and ensures 
that the predictive power demonstrated through the biosensor dynamic 
response is not due to the commonly utilized predictive feature. The 
normalization process also accounts for performance variance among 
different biosensors, which is a characteristic of batch manufacturing. 
The error associated with each measurement can be quantified by the 
sensor noise level. Noise in this study was considered a feature of the 
signal that may have predictive power and was not removed in data pre- 
processing. The variance of repeated measurements is often provided as 
the standard deviation of the net biosensor signal change for different 
tested calibration standards using the same or different sensors and was 
reported in our previous work (Johnson and Mutharasan, 2012). Given 
that biosensor performance is traditionally assessed using linear 
regression analysis of standard curve data, regression scores are 
currently utilized to define biosensor performance, such as detection 
limit, which is related to the slope of the regression model. The corre
lation coefficient (R2) is also commonly reported. For example, the 
standard curve associated with miRNA detection in buffer gave R2 =

0.96 (Johnson and Mutharasan, 2012). While MSE, R2-adjusted, and 
R2-predicted are additional regression metrics for characterizing model 
fit and predictive power, there remains an opportunity to improve 
predictions associated with false results using classification models and 
scores. 

Fig. 1. A) Example of the raw dynamic biosensor signal change of a cantilever biosensor during let-7a detection. B) Comparison of unaugmented and augmented 
(Aug) normalized dynamic responses corresponding to detection of let-7a at 10 pM using three augmentation techniques (Aug 1: time warp, Aug 2: window slice, Aug 
3: window wrap). 
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3.2. Quantifying target analyte concentration and likelihood of false 
results via classification of dynamic biosensor response using theory-guided 
deep learning 

While theory-guided feature engineering can potentially improve the 
performance of non-deep learning models, there is no guarantee that the 
model predictions (Ŷ) will be consistent with domain knowledge. Non- 
deep learning models have the advantage of efficiency (e.g., relatively 
high speed and reduced computing power), explainability, tuning, 
interpretation, and utility with relatively fewer data (e.g., unaugmented 
calibration data), but deep learning offers compelling predictive power 
for applications that generate abundant data, such as via high- 
throughput experimentation, simulation, or data augmentation (as 
leveraged in this study). The creation of explainable deep learning 
models is an emerging trend in the data science and data-driven STEM 
communities (Hossain et al., 2020; Huang et al., 2022; Kong and Yu, 
2018). Thus, we constructed and examined the performance of a 

theory-guided recurrent neural network (TGRNN) for miRNA detection 
that quantifies the target analyte concentration and the likelihood of 
false-positive and false-negative results. 

As shown in Fig. 2A, univariate TS data associated with the 
normalized dynamic signal change were the input to the neural network. 
Domain knowledge in biosensing, specifically the monotonicity of 
surface-based biosensor temporal binding response (Squires et al., 
2008), was utilized to modify the cost function through a ‘theory loss.’ 
Monotonic binding response is a characteristic of surface-based affinity 
biosensors that employ antibodies and nucleic acid-based bio
recognition elements, such as single-stranded DNA used in the miRNA 
detection case study that generated the data for this work. Previous 
PGNNs were based on a simple multi-layer perceptron regression model 
(Daw et al., 2017), but did not employ classification. Here, we created a 
TGRNN that performs integrated forecasting and classification tasks 
based on an RNN. An RNN was selected given that dynamic biosensor 
response is TS data that exhibits temporal correlation. The TGRNN cost 

Fig. 2. Schematic of the inputs-outputs (A) and structure (i.e., input, final hidden, and output variables) (B) of the theory-guided RNN (TGRNN). C) Illustration and 
results of window size (ws) hyperparameter tuning. D) Effect of window size on the F1 score and precision of the RNN with CE loss (average time for a time window 
unit increment was 0.24–1.02 min/point). 
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function contained multiple types of losses: a CE loss, a MSE loss, and 
two losses associated with the theory of surface-based biosensors. The 
CE loss was calculated based on the target analyte concentration (Yc) (i. 
e., from the classification task). In contrast, the MSE and theory losses 
were calculated based on TS prediction (YTS) (i.e., the forecasting task). 
The TGRNN structure is shown in Fig. 2B. The TGRNN contained many 
hyperparameters (e.g., the number of layers and neurons per layer), 
which influenced the feature selection, tuning, and model performance. 
The TGRNN used in this study contained two hidden layers with 128 
neurons per layer. X(0), X(1), …, X(ws) are the sequential values in the TS, 
which are the inputs to the TGRNN, where the subscript ws stands for 
window size (i.e., the number of sequential data points input to the 
model). H and O are the intermediate outputs of the classification and 
forecasting components, respectively, and represent hidden variables of 
the TGRNN. H(0), H(1), …, H(ws) are vectors that each contain 128 hidden 
variables h(i)

1 , h(i)
2 , …, h(i)

128, where the index i ranges from 1 to ws (ws 
denotes window size). O(0), O(1), …, O(ws) are vectors that each contain 
128 hidden variables o(i)

1 , o(i)
2 , …, o(i)

128. Yi is the output of the TGRNN 
forecasting component and represents the predicted biosensor response 
at the next index value in the time series (i.e., tws+1). The forecasting 
component is a fully connected layer with an output dimension equal to 
the window size. The classification component contains a fully con
nected layer with an output dimension of five, corresponding to the five 
miRNA concentrations associated with the calibration study. The vari
ables c1, c2, c3, c4, and c5 are the outputs of the TGRNN classification 
component, which represent the predicted miRNA concentration (i.e., 1 
nM, 100 pM, 10 pM, 1 pM, and 100 fM, respectively). Motivated by the 
previous use of a monotonicity loss for PGNN (Daw et al., 2017), we 
examined the performance of two theory-based losses: 1) a monotonicity 
loss that examines the consistency of model predictions with theory and 
2) an ‘empirical-monotonicity’ loss that examines the consistency be
tween predictions and observations with theory. 

The TGRNN, similar to any neural network, required TS data of 
consistent length, which were created by discretizing the TS using a 
moving window. Thus, similar to other neural networks, the window 
size (ws) was a hyperparameter of the TGRNN. As shown in Fig. 2C, 
before analysis, the normalized dynamic biosensor signal change, cor
responding to a TS of length (L) (i.e., number of points) that varied 
across the TS data in all classes, was discretized by a fixed window size 
(ws), generating N = L – ws + 1 new TS of L = ws, which served as the 
input to the TGRNN. We note that this process affected the class distri
bution (balance), given the number of TS generated by the TS dis
cretization process was dependent on the length of the original 
normalized dynamic biosensor signal change. As a part of hyper
parameter tuning, we investigated the effect of window size on the 
TGRNN performance. Fig. 2D shows the effect of the window size on the 
performance of the RNN with CE loss in terms of F1 score and precision 
across the range ws = 6 to 20. The train, validation, and test F1 score and 
precision increased with increasing window size. These results show that 
the window size, which affects the amount of labeled TS data generated 
for the model, influences the performance. While a smaller window size 
increased the data size, the performance (i.e., F1 score and precision) did 
not improve. Given the results shown in Fig. 2D, all the subsequent 
TGRNNs in this work used ws = 20. 

Table S2 shows the TGRNN performance using several loss combi
nations obtained with the entire dynamic biosensor response for the 
unaugmented calibration dataset. These results establish a baseline for 
the performance without data augmentation and demonstrate the value 
of cost function supervision using domain knowledge in biosensing, 
specifically a monotonicity loss. Comparison of the TGRNN performance 
using six different cost functions (i.e., different losses and combinations 
thereof) revealed that the combination of CE and empirical- 
monotonicity losses exhibited the best performance based on the clas
sification scores (F1 score, precision, and recall). The F1 score is a 
weighted measure of model classification capability that accounts for 
the precision and recall (i.e., the extent of false positives and false 

negatives) and has been widely used to evaluate the performance of 
deep learning models for biosensing applications (Cui et al., 2020; 
Mondal et al., 2023). Precision is a measure of positive predictive value 
(i.e., false positives), and recall, also known as a true positive rate or 
sensitivity, is a measure of false negatives. High precision indicates a low 
number of false positives, and high recall indicates a low number of false 
negatives. Precision and recall have also been used in the analysis of 
deep learning models for biosensing applications (Amethiya et al., 2021; 
Cui et al., 2020; Kim, 2021). The ability to quantify and reduce false 
results, particularly false negatives, is critical in biosensing applications, 
such as medical diagnostics and biosurveillance, given the adverse 
consequences associated with decisions made from false negative results 
(Bansal et al., 1995; Berkowitz et al., 1990), such as taking no action to a 
present disease or biothreat. False positive results also have potential 
adverse consequences, such as those related to quarantine. As shown in 
Table S2, the test F1 score, precision, and recall using the CE loss were 
0.97, 0.98, and 0.97, respectively. The test F1 score, precision, and recall 
using the CE and MSE losses were all 0.98. The combination of the CE 
and empirical-monotonicity losses exhibited the best test F1 score, 
precision, and recall of 0.99. These results suggest that incorporating 
domain knowledge in biosensing with deep learning models can 
improve their predictive power. 

3.3. Rapid quantification of target analyte concentration and likelihood 
of false results using the initial transient response 

Having demonstrated the TGRNN could accurately quantify target 
analyte concentration and the likelihood of false results via precision 
and recall scores, we next examined the ability to reduce the time delay 
associated with the prediction by using only the initial transient 
response. As shown in Table S3, the TGRNN also enabled classification 
of the initial transient response from the unaugmented dataset. These 
results established a baseline for the performance using the initial 
transient response without data augmentation and demonstrated the 
value of integrating domain knowledge for cost function supervision in 
deep learning-based rapid biosensing applications. For example, the 
TGRNN with a combination of CE and monotonicity losses exhibited the 
best performance (test F1 score, precision, and recall were 0.91, 0.92, 
and 0.91, respectively; see Table S3A). 

We next investigated the minimum duration of the initial transient 
response that enabled accurate and resilient biosensing using the 
TGRNNs and the effect of data augmentation on performance. The 
TGRNN performance using the first 15 and 10 min of the initial transient 
response is shown in Table S3B and C, respectively. As shown in 
Table S3B, the TGRNN with CE and empirical-monotonicity losses using 
the first 15 min of the initial transient response gave the best test F1 
score and recall of 0.89 and 0.88, respectively. The highest precision was 
obtained using only the RNN with CE loss. Alternatively, the RNN with 
CE and MSE losses using the first 10 min of the initial transient response 
gave the best test F1 score, precision, and recall of 0.6, 0.59, and 0.59, 
respectively (see Table S3C). The performance using an initial transient 
period less than 10 min with the unaugmented dataset was not further 
examined due to the large decrease in performance between 15 and 10 
min. 

Having examined the performance of the TGRNN with different loss 
combinations using the entire and initial transient responses from the 
unaugmented calibration dataset, we next examined the effect of data 
augmentation on performance. The performance obtained using the 
entire response and the initial 20, 15, and 10 min of the transient 
response with the augmented calibration dataset is shown in Table 1A-D, 
respectively. The training and validation losses are provided in Fig. S1 
for 10 min as a representative case, which showed that the model was 
not overfitting the data based on the similarity of the loss values and 
trends. The best test precision, recall, and F1 score obtained with the 
entire biosensor response were 0.93 for TGRNNs with CE and mono
tonicity losses as well as CE and empirical-monotonicity losses. The best 

J. Zhang et al.                                                                                                                                                                                                                                   



Biosensors and Bioelectronics 246 (2024) 115829

7

performance using the first 20 min of the biosensor response with data 
augmentation was obtained with the RNN with CE loss as well as the 
TGRNNs with CE and both types of theory losses (test F1 score, preci
sion, and recall = 0.97). With data augmentation, the best performance 
was obtained using the first 15 and 10 min of the initial transient 
biosensor response. The best performance using the first 15 min of the 
initial transient response with data augmentation was obtained using 
the TGRNN with CE and monotonicity losses (test F1 score, precision, 
and recall = 0.98). The best performance using the first 10 min of the 
initial transient response with data augmentation was obtained using 
the RNN with CE and MSE losses (test F1 score, precision, and recall =
0.98). The TGRNNs with CE and empirical-monotonicity losses as well 
as CE, MSE, and empirical-monotonicity losses gave comparable per
formance (0.97). Given that accurate and reliable results were obtained 
using the first 10 min of the initial transient response, this work shows 
that theory-guided deep learning can potentially be utilized to signifi
cantly reduce the time-to-results (i.e., mitigate the time delay) and false 
results of surface-based biosensors. We observed that the deep learning 
models that incorporated multiple (e.g., competing) losses, such as with 
combined CE, MSE, and theory losses, may lead to fluctuations in the 
training and validation trends (see Fig. S1). For example, a monotonicity 
loss is a generalizable theory loss associated with the behavior of func
tions that describe domain knowledge and can sometimes contradict the 
characteristics of observed real-world data, which may exhibit signa
tures associated with experimental sources of measurement uncertainty 

(e.g., sensor noise). Thus, the performance of the TGRNNs may be 
potentially further improved by consideration of the theory that drives 
measurement noise in biosensors (Hassibi et al., 2007). Overall, the 
results presented in Table 1 demonstrate that data augmentation and 
theory-guided loss can improve the predictive power of deep learning 
models using both the entire and initial transient dynamic biosensor 
response. 

As shown in Fig. 3, the performance obtained using the unaugmented 
experimental data was positively correlated with the data acquisition 
time (see Fig. 3. A, C, and E). In contrast, as shown in Fig. 3B, D, and F, 
the performance obtained using data augmentation improved with 
decreasing data acquisition time, suggesting the ability to perform rapid 
and accurate biosensing using less than 10 min of the initial transient 
response. The relationships among classification scores and data 
acquisition time shown in Fig. 3, which are relations among biosensor 
performance measures and a design parameter, can define new 
biosensor performance measures related to biosensor accuracy and 
reliability. For example, the derivative of the transfer functions (i.e., 
input-output relations) shown in Fig. 3 can be used to quantify the 
sensitivity of a biosensor’s accuracy to data acquisition time (i.e., 
detection time). Such relations, in combination with application- 
dependent performance thresholds (e.g., minimum allowable false- 
negative results), can potentially help guide biosensor design and 
characterize biosensor performance. 

In this work, the goal was to demonstrate the value of classification 

Table 1 
Model performance using the entire biosensor response (A) and the first 20 min (B), 15 min (C), and 10 min (D) of the initial transient response using augmented 
biosensor data. Bold black font highlights the best performance, respectively.  

A 

Model Loss (Augmented Entire Response) Train Validation Test 

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score 

CE 0.84 0.84 0.84 0.82 0.82 0.82 0.81 0.81 0.81 
CE & MSE 0.95 0.95 0.95 0.92 0.92 0.92 0.92 0.92 0.92 
CE & EMP_MONO 0.96 0.96 0.96 0.94 0.94 0.94 0.93 0.93 0.93 
CE & MONO 0.95 0.95 0.95 0.93 0.93 0.93 0.93 0.93 0.93 
CE, MSE, & EMP_MONO 0.92 0.92 0.92 0.89 0.89 0.89 0.89 0.89 0.89 
CE, MSE, & MONO 0.9 0.9 0.9 0.87 0.87 0.87 0.87 0.87 0.87  

B 

Model Loss (Augmented 20 min) Train Validation Test 

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score 

CE 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97 
CE & MSE 0.99 0.99 0.99 0.96 0.96 0.96 0.96 0.96 0.96 
CE & EMP_MONO 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97 
CE & MONO 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97 
CE, MSE, & EMP_MONO 0.99 0.99 0.99 0.95 0.95 0.95 0.96 0.96 0.96 
CE & MSE, & MONO 0.98 0.98 0.98 0.95 0.95 0.95 0.95 0.95 0.95  

C 

Model Loss (Augmented 15 min) Train Validation Test 

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score 

CE 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97 
CE & MSE 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97 
CE & EMP_MONO 0.99 0.99 0.99 0.97 0.97 0.97 0.96 0.96 0.96 
CE & MONO 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 
CE, MSE & EMP_MONO 0.98 0.98 0.98 0.96 0.96 0.96 0.95 0.95 0.95 
CE, MSE, & MONO 0.98 0.98 0.98 0.95 0.95 0.95 0.95 0.95 0.95  

D 

Model Loss (Augmented 10 min) Train Validation Test 

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score 

CE 1 1 1 0.98 0.98 0.98 0.97 0.97 0.97 
CE & MSE 1 1 1 0.98 0.98 0.98 0.98 0.98 0.98 
CE & EMP_MONO 1 1 1 0.98 0.98 0.98 0.97 0.97 0.97 
CE & MONO 1 1 1 0.98 0.98 0.98 0.96 0.96 0.96 
CE, MSE, & EMP_MONO 1 1 1 0.96 0.96 0.96 0.97 0.97 0.97 
CE, MSE, & MONO 0.99 0.99 0.99 0.96 0.96 0.96 0.96 0.96 0.96  
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scores in biosensing, which are directly related to the extent of false- 
positive and false-negative results, and the ability to reduce the proba
bility of false predictions (i.e., results) by integrating domain knowledge 
in biosensing with deep learning. Thus, the focus of this work was 
methodology development for improving the biosensor performance 
attributes of accuracy, reliability, and speed using engineering-driven 
data science models. The structure of our classification problem was 
constrained by the structure of the input data used and the posed clas
sification problem. Thus, samples below the 100 fM range were not 
examined. While detection limit improvement was not the focus of this 
study, using this methodology we were able to quantify how often 
samples in each class would be properly classified. This methodology 
may also be used to improve the detection limit if experimental data 
were obtained (i.e., more samples were tested) from concentrations 
lower than 100 fM. In future studies, measurements obtained from 
samples of lower concentration than the detection limit that give net 
shifts that are statistically insignificant from samples at or near the 
detection limit of the biosensor would be ideal for improving biosensor 

detection limit using the proposed method. 

4. Conclusions 

AI-guided biosensing studies often use deep learning models, such as 
ANNs, that are agnostic to the theory of processes that drive data gen
eration. Thus, there is no guarantee that predictions are consistent with 
domain knowledge in biosensing. Here, we demonstrated the ability to 
improve biosensor performance, specifically to improve accuracy, 
reduce the likelihood of false results, and reduce biosensor time delay (i. 
e., data acquisition time), by guiding deep learning models with domain 
knowledge in biosensing. Consistency of deep learning model pre
dictions with the theory of surface-based biosensors was achieved by 
cost function supervision using monotonicity constraints. In combina
tion with data augmentation, TGRNNs based on integrated forecasting 
and multi-class classification tasks were applied to rapid and accurate 
miRNA quantification. Using the biosensor initial transient response, we 
also demonstrated the opportunity to leverage theory-guided deep 

Fig. 3. TGRNN performance comparison for different loss combinations. Comparison of performance using unaugmented (experimental) data in terms of F1 score 
(A), precision (C), and recall (E). Comparison of performance with data augmentation in terms of F1 score (B), precision (D), and recall (F). Abbreviations: Cross- 
entropy loss (CE); cross-entropy and mean-squared-error losses (CM); cross-entropy and empirical-monotonicity losses (CEP); cross-entropy and monotonicity los
ses (CMO); cross-entropy, mean-squared-error, and empirical-monotonicity losses (CME); cross-entropy, mean-squared-error, and monotonicity losses (CMM). 
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learning to mitigate biosensor time delay. The key contribution of our 
work lies in demonstrating the value of integrating domain knowledge 
in data-driven biosensing studies (here, done via cost function supervi
sion of deep learning models), which can further improve biosensor 
performance, and demonstrating the complementarity of classification 
models and scores to traditional regression analysis of standard curve 
data. Our future work will leverage first principles of sensor noise gen
eration for cost function supervision, extend the method to other 
biosensor data types, examine temporally-dependent losses, involve new 
classes associated with known false responses, and focus on improving 
class-wise prediction accuracy based on class-dependent measurement 
error. 
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