Biosensors and Bioelectronics 246 (2024) 115829

8

Contents lists available at ScienceDirect

Biosensors&
Bioelectronics

Biosensors and Bioelectronics

journal homepage: www.elsevier.com/locate/bios l 5

ELSEVIER

t.)

Check for

Improving biosensor accuracy and speed using dynamic signal change and  [%&s
theory-guided deep learning

Junru Zhang?, Purna Srivatsa ”, Fazel Haq Ahmadzai®, Yang Liu a ¢, Xuerui Song*,
Anuj Karpatne ", Zhenyu (James) Kong ?, Blake N. Johnson %"

@ Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
b Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA

€ School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA

4 Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA

¢ Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA

ARTICLE INFO ABSTRACT

Keywords:

Machine learning
Artificial intelligence
False positive

False negative
Reliability

Surface-based biosensor
Cost function supervision

False results and time delay are longstanding challenges in biosensing. While classification models and deep
learning may provide new opportunities for improving biosensor performance, such as measurement confidence
and speed, it remains a challenge to ensure that predictions are explainable and consistent with domain
knowledge. Here, we show that consistency of deep learning classification model predictions with domain
knowledge in biosensing can be achieved by cost function supervision and enables rapid and accurate biosensing
using the biosensor dynamic response. The impact and utility of the methodology were validated by rapid and
accurate quantification of microRNA (let-7a) across the nanomolar (nM) to femtomolar (fM) concentration range
using the dynamic response of cantilever biosensors. Data augmentation and cost function supervision based on
the consistency of model predictions and experimental observations with the theory of surface-based biosensors
improved the F1 score, precision, and recall of a recurrent neural network (RNN) classifier by an average of
13.8%. The theory-guided RNN (TGRNN) classifier enabled quantification of target analyte concentration and
false results with an average prediction accuracy, precision, and recall of 98.5% using the initial transient or
entire dynamic response, which is indicative of high prediction accuracy and low probability of false-negative
and false-positive results. Classification scores were used to establish new relationships among biosensor per-
formance characteristics (e.g., measurement confidence) and design parameters (e.g., inputs and hyper-
parameters of classification models and data acquisition parameters) that may be used for characterizing
biosensor performance.

1. Introduction

Barriers to the widespread clinical, industrial, and consumer use of
biosensors (Cui et al., 2020; Dervisevic et al., 2020; Iravani, 2020; Khor
et al., 2022; Kundu et al., 2019; Tan et al., 2022), which include accu-
racy, reproducibility, and speed, have motivated the application of deep
learning in biosensing. For example, false-positive and false-negative
results associated with rapid tests for SARS-CoV-2 were widely publi-
cized during the COVID-19 pandemic (Patel et al., 2023; Un et al.,
2021). Also, time delay associated with target analyte binding poses a
barrier to rapid and continuous biosensor-based biosurveillance.
Recently, several studies showed that trained dogs perform similarly to

PCR for the detection of COVID-19, suggesting that artificial intelligence
can play a critical role in transforming the speed, accuracy, and reli-
ability of biosensors (Pirrone et al., 2023). Consideration of measure-
ment uncertainty is now being used to define biosensor performance,
such as the detection limit (Fonollosa et al., 2014; Lavin et al., 2018).
Deep learning-driven biosensing studies can be broadly classified
based on the targeted performance metric (e.g., speed or accuracy), the
structure of the biosensor data analyzed (e.g., time-series (TS) or spec-
tral data), and the learning objective (e.g., regression or classification).
While deep learning is providing new opportunities in chemical sensing
(Cho et al., 2020), such as improving the detection limit, several studies
have applied deep learning in biosensing (Ali et al., 2018;
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Gonzalez-Navarro et al., 2016; Guselnikova et al., 2019; Sagar et al.,
2020; Schackart and Yoon, 2021; Wu et al., 2019). For example,
Gonzalez-Navarro et al. predicted the amperometric response of a
glucose-oxidase biosensor with low error using an artificial neural
network (ANN) and observed a nonlinear dependence on glucose con-
centration, pH, and temperature (Gonzalez-Navarro et al., 2016).
Guselnikova et al. used an ANN to identify photoinduced DNA damage
and chemical transformations of DNA structure based on spectral data
obtained from a label-free surface-enhanced Raman scattering meth-
odology (Guselnikova et al., 2019). Ali et al. classified bacteria with
100% accuracy in training, validation, and test datasets using a
nonlinear back propagation neural network (BPNN) with impedance
data from a printed biosensor (Ali et al., 2018). Wu et al. presented a
high-throughput method that combined particle aggregation-based
biosensors with a convolutional neural network (CNN), which enabled
rapid detection of herpes simplex virus (HSV) using a biotin-tagged
antibody and holographic images (Wu et al., 2019). Sagar et al.
demonstrated microglia detection in cell culture using an ANN based on
data from a fluorescence lifetime imaging microscopy (FLIM) technique
that exhibited a True Positive Rate (TPR) greater than 0.9 (Sagar et al.,
2020). While such studies have established the value of using deep
learning to improve biosensor performance, various challenges remain,
including the creation of explainable deep learning models. A critical
review of deep learning-driven biosensing studies (see Table S1) reveals
the opportunity to leverage data augmentation and first principles, such
as ensuring that the predictions of deep learning models are consistent
with domain knowledge in biosensing.

While the majority of deep learning models remain a black box,
domain knowledge (e.g., physics) is now being leveraged in several
engineering applications of deep learning, including fluid mechanics,
materials science, geology, and manufacturing (Bakhshian and Roma-
nak, 2021; Daw et al., 2017; Pawar et al., 2021; Wang et al., 2020; Zhao
et al., 2023). The concept of a physics-guided neural network (PGNN)
was among the first approaches integrating domain knowledge with
deep learning (Daw et al., 2017). In that work, a PGNN was used to
predict lake temperature profiles using a physics-guided learning
objective, which reduced prediction error by examining prediction
consistency with physics. More recently, Zobeiry et al. developed a
system of neural networks based on finite element modeling that
selected parameters as features to predict material characteristics,
including fracture energy and strain-softening parameters (Zobeiry
et al., 2020). Pawar et al. proposed a method to guide deep learning
models by adding physical parameters in the neural network latent
space, including the Reynolds number and predictions from first prin-
ciples of aerodynamics, which improved the prediction of aerodynamic
forces with quantifiable uncertainty (Pawar et al., 2021). Chen et al.
created a theory-guided neural network (TGNN) for hard constraint
projection (HCP) that ensured the model obeyed a physical mechanism,
which improved the efficiency and prediction accuracy relative to an
ANN (Chen et al., 2021). Wang et al. presented a novel physics-guided
deep learning model to predict tool wear that included physics-data
fusion in the pre-processing stage, a physics-based model for extract-
ing information from unlabeled data, and a physics-guided loss function
that ensured consistency of predictions with physics (Wang et al., 2020).
Zhao et al. introduced a physics-guided deep crystal generative model
(PGCGM) for designing crystalline materials that incorporated a physics
loss based on atomic position (Zhao et al, 2023). However,
theory-guided deep learning has heavily leveraged simulation data and
has not yet been leveraged in biosensing applications.

Here, we establish a new methodology for rapid and accurate bio-
sensing based on theory-guided deep learning using the biosensor dy-
namic response. Consistency of deep learning model predictions with
domain knowledge in biosensing is achieved by cost function supervi-
sion. The utility and impact of the methodology are demonstrated by a
case study on sensitive microRNA (miRNA) detection using the dynamic
signal change of cantilever biosensors. We show that data augmentation
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can address data sparsity and class imbalance challenges that may arise
in applying deep learning models to experimental biosensor data (e.g.,
calibration data). Considering the target analyte concentration as a
categorical variable based on the calibration data structure enabled
accurate classification of the dynamic biosensor response and, thus,
quantification of target analyte concentration and false-negative and
false-positive results. We show that the methodology also enables rapid
and accurate RNA detection using the biosensor initial transient
response, which reduces the time delay of surface-based affinity bio-
sensors, such as those based on antibody- and nucleic acid-based bio-
recognition elements.

2. Materials and methods
2.1. MicroRNA detection using DNA-functionalized cantilever biosensors

The dynamic response, specifically resonant frequency (4f) vs. time
(1), associated with miRNA let-7a (5 UGAGGUAGUAGGUUGUAUAGUU
3’; 5.4 kDa) detection using DNA-functionalized cantilever biosensors
served as the univariate TS data for this study (Johnson and Mutharasan,
2012). Thiolated-DNA probe (HS-Cg-5 TTTTTTAACTATACAAC 3’; 7.1
kDa) was immobilized on a 1 mm? gold pad at the distal tip of the
cantilever biosensor by continuous flow of a 3 pM probe solution in a
custom flow cell during which Af was continuously monitored.
Following stabilization of the sensor resonant frequency, the remaining
Au<111> sites were backfilled with 6-mercapto-1-hexanol at 730 pM in
continuous flow. The surface probe immobilization ratio was based on
reports and protocols of Rijal et al. (Rijal and Mutharasan, 2007). The
data in this study were obtained from five cantilever biosensors that
exhibited similar spectral characteristics. Multiple sensors were exam-
ined to characterize the batch performance and account for accidental
damage that may occur during experimentation (e.g., handling and
cleaning). The miRNA detection study in buffer generated 16 dynamic
responses that corresponded to the binding response of functionalized
biosensors to 16 calibration standards in a continuous-flow detection
format. Additional details of biosensor fabrication, functionalization,
biorecognition chemistry, measurement format, and data acquisition
system are provided in Supporting Information. The quantity and con-
centration distribution of the standard solutions were selected to align
the design of experiments with diagnostic applications, which often
yield sparse and imbalanced data (see the Results and Discussion section
for additional details). Specifically, the study generated 8, 1, 2, 1, and 4
dynamic responses (i.e., univariate TS) at let-7a concentrations of 1 nM,
100 pM, 10 pM, 1 pM, and 100 M, respectively.

2.2. Data pre-processing

The dynamic biosensor response was transformed using min-max
normalization as 9(t) = (f(t) - f)/(ff - f), where f; is the baseline reso-
nant frequency before target analyte binding, f;is the baseline resonant
frequency after the binding response reached steady state, and f{(t) is the
continuously monitored resonant frequency. Time t = 0 was the start of
the binding process (i.e., the biosensor transient response). The
normalized dynamic signal change (i.e., biosensor response) contained
non-stationary and stationary data associated with the transient binding
period and the baseline response after the binding reaction reached a
steady state, respectively.

2.3. Data augmentation

Jittering, scaling, magnitude warping, window slicing, time warping,
and window warping were used for data augmentation (i.e., generating
‘augmented’ dynamic responses) (Iwana and Uchida, 2021; Um et al.,
2017). TS data augmentation was performed before normalization (i.e.,
on the raw signal). A detailed description of the augmentation methods
can be found elsewhere (Iwana and Uchida, 2021). Random numbers
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used in the augmentation techniques were from a normal distribution.
The first step of the augmentation process addressed data sparsity, and
the second step addressed class imbalance. This process increased the
total data size (i.e., the total number of biosensor responses in the
dataset) from 16 to 268, which was balanced across the classes. For
example, the five class sizes after data augmentation were 56, 55, 50, 55,
and 52, which correspond to the target analyte concentrations of 1 nM,
100 pM, 10 pM, 1 pM, and 100 fM, respectively. Additional details
associated with the data augmentation process are provided as Sup-
porting Information.

2.4. Classification of dynamic biosensor response using deep learning for
quantification of target analyte concentration and likelihood of false
results

The dynamic biosensor response was classified based on the target
analyte concentration using a recurrent neural network (RNN), which
enabled quantification of the target analyte concentration and the
likelihood of false-positive and false-negative results. For the unaug-
mented dataset, the 16 normalized dynamic biosensor responses (i.e.,
normalized TS data) served as the input to the RNN using a fixed window
size (20 points), which generated 2061 time series. For example, one
labeled time series with 67 points (time stamps) and a window size of 20
yields (67 —20 + 1) = 48 time series (i.e., sensor signals). Given that the
miRNA detection study characterized the biosensor dynamic response to
calibration standards at five different concentrations (see Section 2.1),
the classification problem included five classes based on the five unique
labels (i.e., let-7a concentrations). Thus, the class sizes for the unaug-
mented dataset after window size processing were 1090, 183, 302, 112,
and 374, respectively. The class sizes for the augmented dataset after
window size processing were 7630, 10,065, 7550, 6160, and 4862,
respectively. The target analyte concentration (i.e., the class associated
with the dynamic response) served as the output of the RNN. The RNN
contained two hidden layers with 128 neurons per layer and used two
prediction components (a forecasting component and a classification
component). The prediction component utilized was dependent on the
type of loss function used. The forecasting component was created by
linking a fully connected layer and the hidden outputs of the RNN with
the predicted value using a single output neuron. The classification
component was created by connecting the final hidden layer of the RNN
to a fully connected layer of output size equal to the number of classes to
be predicted (five in this study). RNN with Cross-entropy (CE) Loss: The
classification component was used. The cost function for classification
was binary CE loss associated with the predicted class. RNN with CE and
Mean-Squared-Error (MSE) Losses: The classification and forecasting
components were used. The cost function used for forecasting was MSE
loss associated with the forecasted biosensor response. The forecasting
and classification components were executed at the same time. The CE
and MSE losses associated with the two prediction components (i.e., the
classification and forecasting components, respectively) were simulta-
neously minimized by concurrent training of the forecasting and clas-
sification components based on their shared dependence on hidden
variables (H).

2.5. Classification of dynamic biosensor response using theory-guided
deep learning for quantification of target analyte concentration and
likelihood of false results

Theory-guided RNNs (TGRNNs) were created by modifying the
aforementioned RNNs based on CE and MSE losses with theory-based
losses that reward consistency of the forecasted dynamic response
with the theory of surface-based biosensors and observed responses. We
use the terminology ’theory-guided’ deep learning in this work rather
than ’physics-guided’ deep learning, since domain knowledge in bio-
sensing includes both physics and chemistry. Theory of surface-based
biosensors that employ antibodies or DNA probes (as used here) shows
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that the concentration of bound target analyte monotonically increases
with respect to time (Squires et al., 2008). Thus, a theory-based loss can
complement or replace the MSE loss, which is the basis of the RNN
forecasting component. TGRNN with Monotonicity Loss: The TGRNN with
monotonicity loss used the monotonicity loss of Daw et al. (2017), which
was calculated using only the forecasted biosensor response of the RNN.
Each value (t;) was compared to its previous value (t;.;) in the forecasted
response, and the ReLU function (Nair and Hinton, 2010) was applied to
the difference (i.e., t; - ti7) to nullify any predictions that followed an
increasing monotonic trend (i.e., if the difference exhibited a positive
value) and to include a loss for all the cases where monotonicity was
violated (i.e., if the difference exhibited a negative value). TGRNN with
Empirical-Monotonicity Loss: The TGRNN with empirical-monotonicity
loss penalized the forecasted biosensor response when increasing
monotonicity between the forecasted and observed dynamic biosensor
response was violated. The loss was calculated for each window by
taking the average ReLU outputs of the difference between the fore-
casted and observed biosensor response. If the forecasted value was
greater than or equal to the observed value, the loss contributed was
zero. If the forecasted value was less than the observed value, the loss
was non-zero, as calculated by ReLU. TGRNN with CE and Monotonicity
Losses: This model contained CE and monotonicity losses. To simulta-
neously minimize the monotonicity and CE losses, the forecasting and
classification components were concurrently executed. TGRNN with CE
and Empirical-Monotonicity Losses: This model contained CE and
empirical-monotonicity losses. The empirical-monotonicity and CE los-
ses were simultaneously minimized by concurrently executing the
forecasting and classification components. TGRNN with CE, MSE, and
Monotonicity Losses: This model contained CE, MSE, and monotonicity
losses. To simultaneously minimize the CE, MSE, and monotonicity
losses, the forecasting and classification components were concurrently
executed. TGRNN with CE, MSE, and Empirical-Monotonicity Losses: This
model contained CE, MSE, and empirical-monotonicity losses. To
simultaneously minimize the CE, MSE, and empirical-monotonicity
losses, the forecasting and classification components were concur-
rently executed. TGRNN Training: The TGRNNs were trained with 1000
epochs using an Adam optimizer. The training was stopped when the
training loss did not improve for 50 successive epochs. Evaluation of
Model Performance: The performance of the RNNs and TGRNNs was
evaluated by the test classification scores (i.e., the F1 score, precision,
and recall). The training, validation, and test datasets were obtained
using stratified train/test split (i.e., 70%, 15%, and 15% of the data were
used for training, validation, and test data, respectively). The stratified
split preserved the class distribution. The test data size for the model
using unaugmented data was 310 (15% of the data). For models using
augmented data, the test data size was 5440 (15% of the data). Stratified
train/test split with a fixed random state ensured that the performance
using different loss combinations could be compared. The presented
classification scores of F1 score, precision, and recall are the averaged
values across all classes. The provided scores corresponded to analysis of
the test sets unless otherwise specified.

3. Results and Discussion

3.1. Addressing data sparsity and class imbalance in biosensor calibration
data via data augmentation

The miRNA detection study using cantilever biosensors involved 16
standard solutions. The cantilever biosensors exhibited resonant fre-
quencies at 19.0 & 0.1 and 88.4 + 0.1 kHz, which correspond to the first
and second bending modes, respectively. Immersion in liquid caused a
decrease in resonant frequency and Q-value of both modes, primarily
through an added-mass effect of the surrounding liquid. The first and
second resonant frequencies decreased by 4.2 + 0.7 and 16.2 + 1.2 kHz
(n = 3 sensors), respectively. Given its higher mass-change sensitivity,
the second mode was used for miRNA detection. Statistical analyses of
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the biosensor fabrication processes (e.g., variance in biosensor charac-
teristics) and the miRNA detection study are presented in our previous
work (Johnson and Mutharasan, 2012). The concentration of the stan-
dards, which served as the label for the biosensor responses, ranged from
1 nM to 100 fM, including 100 fM, 1 pM, 10 pM, 100 pM, and 1 nM. The
dynamic responses associated with the calibration dataset ranged from
19 to 94 min and contained 67-250 points (pts). The sampling rate
varied from 0.24 to 1.02 pt/min. A representative dynamic response for
each target analyte concentration is shown in Fig. 1A.

While multiple studies have applied deep learning in medical diag-
nostic applications, several have employed augmentation of image
(Govindaraju et al., 2022) and TS data (Majidov and Whangbo, 2019)
before model evaluation. The unaugmented dataset associated with the
case study on miRNA detection using cantilever biosensors was sparse
and imbalanced. For example, the calibration standard concentrations of
1 nM, 100 pM, 10 pM, 1 pM, and 100 fM had 8, 1, 2, 1, and 4 corre-
sponding TS, respectively. Thus, the dataset exhibited an imbalanced
class distribution with more samples located near the upper and lower
limits of the dynamic range to synergize with the variation in let-7a
concentration across miRNA-based diagnostic assays, which can vary
by several orders of magnitude across the nM to sub-fM range depending
on the disease or therapeutic approach (Daneshpour et al.,, 2018;
Ouyang et al., 2019; Perron et al., 2007; Simino et al., 2021; Zhang et al.,
2017). Biosensor data is often sparse and imbalanced due to measure-
ment and application constraints and may also arise from data man-
agement challenges, such as data loss and labeling cost. Several data
augmentation methods for TS data were used to address the data spar-
sity and class imbalance in the calibration data, which expanded the
number of labeled dynamic responses from 16 to 268. This approach was
consistent with previous studies that have leveraged data augmentation
for classification models involving non-biosensing related miRNA ap-
plications (Govindaraju et al., 2022; Majidov and Whangbo, 2019),
which have used datasets containing 40-200 samples (Duffy et al., 2018;
Duy et al., 2016). The class distribution (i.e., samples/class) of the
augmented calibration data for concentrations of 1 nM, 100 pM, 10 pM,
1 pM, and 100 fM was 56, 55, 50, 55, and 52, respectively.

Normalized dynamic sensor signal change has been used in several
sensing applications, including chemical sensing, biosensing, and elec-
trophysiology. For example, normalized sensor data is extensively used
for analysis of EEG and EMG data (Huynh et al., 2020; Jeong et al., 2018;
Mohammadi et al., 2015; Niu et al., 2020; Yu et al., 2022). Scaled sensor
data (e.g., shifted, normalized, dimensionless), such as TS data, have
also been used in chemical sensing and biosensing applications (Iran-
nejad et al., 2013; Mo et al., 2017; Opp et al., 2009; Stoeber et al., 2018;
Zhang et al., 2013). A comparison of the unaugmented and augmented
normalized biosensor responses in the 10 pM class is shown in Fig. 1B as
a representative case. The augmented data captured the trend and fea-
tures of the experimental univariate TS data. For example, the mean
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Pearson’s correlation score was greater than 0.7 for most samples,
indicating that the augmented data represents the experimental data (i.
e., the unaugmented dataset).

The decision to normalize the biosensor signal change is also moti-
vated by the traditional approach for quantifying the target analyte
concentration using a standard (i.e., calibration) curve. The standard
curve for the miRNA detection study using the DNA-functionalized
cantilever biosensors was obtained from the net shift in resonant fre-
quency at steady state and the known concentration of target analyte in
each solution tested. Specifically, the standard curve is a plot of the net
change in resonant frequency (signal change) vs. the target analyte
concentration. In this work, the standard curve contained 16 data
distributed across the 100 fM - 1 nM concentration range. Linear
regression is typically performed on the standard curve data to provide
regression scores that can serve as measures of biosensor performance,
such as sensitivity (defined as the slope of the regression model) or ac-
curacy, which can be quantified by MSE. As we discussed, such regres-
sion scores are useful (e.g., explainable), but classification scores offer
predictive power related to false results. Thus, normalization of the
dynamic biosensor signal change removes the traditional feature (i.e.,
biosensor net steady-state signal change) used for quantifying the target
analyte concentration from the TS data. This allows the methodology to
complement standard curve-based analyses in biosensing and ensures
that the predictive power demonstrated through the biosensor dynamic
response is not due to the commonly utilized predictive feature. The
normalization process also accounts for performance variance among
different biosensors, which is a characteristic of batch manufacturing.
The error associated with each measurement can be quantified by the
sensor noise level. Noise in this study was considered a feature of the
signal that may have predictive power and was not removed in data pre-
processing. The variance of repeated measurements is often provided as
the standard deviation of the net biosensor signal change for different
tested calibration standards using the same or different sensors and was
reported in our previous work (Johnson and Mutharasan, 2012). Given
that biosensor performance is traditionally assessed using linear
regression analysis of standard curve data, regression scores are
currently utilized to define biosensor performance, such as detection
limit, which is related to the slope of the regression model. The corre-
lation coefficient (R?) is also commonly reported. For example, the
standard curve associated with miRNA detection in buffer gave R? =
0.96 (Johnson and Mutharasan, 2012). While MSE, Rz—adjusted, and
R%-predicted are additional regression metrics for characterizing model
fit and predictive power, there remains an opportunity to improve
predictions associated with false results using classification models and
scores.
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Fig. 1. A) Example of the raw dynamic biosensor signal change of a cantilever biosensor during let-7a detection. B) Comparison of unaugmented and augmented
(Aug) normalized dynamic responses corresponding to detection of let-7a at 10 pM using three augmentation techniques (Aug 1: time warp, Aug 2: window slice, Aug

3: window wrap).
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3.2. Quantifying target analyte concentration and likelihood of false
results via classification of dynamic biosensor response using theory-guided
deep learning

While theory-guided feature engineering can potentially improve the
performance of non-deep learning models, there is no guarantee that the
model predictions (1) will be consistent with domain knowledge. Non-
deep learning models have the advantage of efficiency (e.g., relatively
high speed and reduced computing power), explainability, tuning,
interpretation, and utility with relatively fewer data (e.g., unaugmented
calibration data), but deep learning offers compelling predictive power
for applications that generate abundant data, such as via high-
throughput experimentation, simulation, or data augmentation (as
leveraged in this study). The creation of explainable deep learning
models is an emerging trend in the data science and data-driven STEM
communities (Hossain et al., 2020; Huang et al., 2022; Kong and Yu,
2018). Thus, we constructed and examined the performance of a
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theory-guided recurrent neural network (TGRNN) for miRNA detection
that quantifies the target analyte concentration and the likelihood of
false-positive and false-negative results.

As shown in Fig. 2A, univariate TS data associated with the
normalized dynamic signal change were the input to the neural network.
Domain knowledge in biosensing, specifically the monotonicity of
surface-based biosensor temporal binding response (Squires et al.,
2008), was utilized to modify the cost function through a ‘theory loss.’
Monotonic binding response is a characteristic of surface-based affinity
biosensors that employ antibodies and nucleic acid-based bio-
recognition elements, such as single-stranded DNA used in the miRNA
detection case study that generated the data for this work. Previous
PGNNs were based on a simple multi-layer perceptron regression model
(Daw et al., 2017), but did not employ classification. Here, we created a
TGRNN that performs integrated forecasting and classification tasks
based on an RNN. An RNN was selected given that dynamic biosensor
response is TS data that exhibits temporal correlation. The TGRNN cost
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Fig. 2. Schematic of the inputs-outputs (A) and structure (i.e., input, final hidden, and output variables) (B) of the theory-guided RNN (TGRNN). C) Illustration and
results of window size (ws) hyperparameter tuning. D) Effect of window size on the F1 score and precision of the RNN with CE loss (average time for a time window
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function contained multiple types of losses: a CE loss, a MSE loss, and
two losses associated with the theory of surface-based biosensors. The
CE loss was calculated based on the target analyte concentration (Y;) (i.
e., from the classification task). In contrast, the MSE and theory losses
were calculated based on TS prediction (Yrs) (i.e., the forecasting task).
The TGRNN structure is shown in Fig. 2B. The TGRNN contained many
hyperparameters (e.g., the number of layers and neurons per layer),
which influenced the feature selection, tuning, and model performance.
The TGRNN used in this study contained two hidden layers with 128
neurons per layer. X, Xc1), ..., Xcws) are the sequential values in the TS,
which are the inputs to the TGRNN, where the subscript ws stands for
window size (i.e., the number of sequential data points input to the
model). H and O are the intermediate outputs of the classification and
forecasting components, respectively, and represent hidden variables of
the TGRNN. Hg), H1), ..., Hes) are vectors that each contain 128 hidden
variables h%i), h?i), ey h}i) , where the index i ranges from 1 to ws (ws
denotes window size). O, O, ..., Ocws) are vectors that each contain
128 hidden variables 0f), 0%, ..., 0}3%. Y; is the output of the TGRNN
forecasting component and represents the predicted biosensor response
at the next index value in the time series (i.e., tys;1). The forecasting
component is a fully connected layer with an output dimension equal to
the window size. The classification component contains a fully con-
nected layer with an output dimension of five, corresponding to the five
miRNA concentrations associated with the calibration study. The vari-
ables c3, cg, c3, ¢4, and c5 are the outputs of the TGRNN classification
component, which represent the predicted miRNA concentration (i.e., 1
nM, 100 pM, 10 pM, 1 pM, and 100 fM, respectively). Motivated by the
previous use of a monotonicity loss for PGNN (Daw et al., 2017), we
examined the performance of two theory-based losses: 1) a monotonicity
loss that examines the consistency of model predictions with theory and
2) an ‘empirical-monotonicity’ loss that examines the consistency be-
tween predictions and observations with theory.

The TGRNN, similar to any neural network, required TS data of
consistent length, which were created by discretizing the TS using a
moving window. Thus, similar to other neural networks, the window
size (ws) was a hyperparameter of the TGRNN. As shown in Fig. 2C,
before analysis, the normalized dynamic biosensor signal change, cor-
responding to a TS of length (L) (i.e., number of points) that varied
across the TS data in all classes, was discretized by a fixed window size
(ws), generating N = L — ws + 1 new TS of L = ws, which served as the
input to the TGRNN. We note that this process affected the class distri-
bution (balance), given the number of TS generated by the TS dis-
cretization process was dependent on the length of the original
normalized dynamic biosensor signal change. As a part of hyper-
parameter tuning, we investigated the effect of window size on the
TGRNN performance. Fig. 2D shows the effect of the window size on the
performance of the RNN with CE loss in terms of F1 score and precision
across the range ws = 6 to 20. The train, validation, and test F1 score and
precision increased with increasing window size. These results show that
the window size, which affects the amount of labeled TS data generated
for the model, influences the performance. While a smaller window size
increased the data size, the performance (i.e., F1 score and precision) did
not improve. Given the results shown in Fig. 2D, all the subsequent
TGRNNS in this work used ws = 20.

Table S2 shows the TGRNN performance using several loss combi-
nations obtained with the entire dynamic biosensor response for the
unaugmented calibration dataset. These results establish a baseline for
the performance without data augmentation and demonstrate the value
of cost function supervision using domain knowledge in biosensing,
specifically a monotonicity loss. Comparison of the TGRNN performance
using six different cost functions (i.e., different losses and combinations
thereof) revealed that the combination of CE and empirical-
monotonicity losses exhibited the best performance based on the clas-
sification scores (F1 score, precision, and recall). The F1 score is a
weighted measure of model classification capability that accounts for
the precision and recall (i.e., the extent of false positives and false
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negatives) and has been widely used to evaluate the performance of
deep learning models for biosensing applications (Cui et al., 2020;
Mondal et al., 2023). Precision is a measure of positive predictive value
(i.e., false positives), and recall, also known as a true positive rate or
sensitivity, is a measure of false negatives. High precision indicates a low
number of false positives, and high recall indicates a low number of false
negatives. Precision and recall have also been used in the analysis of
deep learning models for biosensing applications (Amethiya et al., 2021;
Cui et al., 2020; Kim, 2021). The ability to quantify and reduce false
results, particularly false negatives, is critical in biosensing applications,
such as medical diagnostics and biosurveillance, given the adverse
consequences associated with decisions made from false negative results
(Bansal et al., 1995; Berkowitz et al., 1990), such as taking no action to a
present disease or biothreat. False positive results also have potential
adverse consequences, such as those related to quarantine. As shown in
Table S2, the test F1 score, precision, and recall using the CE loss were
0.97,0.98, and 0.97, respectively. The test F1 score, precision, and recall
using the CE and MSE losses were all 0.98. The combination of the CE
and empirical-monotonicity losses exhibited the best test F1 score,
precision, and recall of 0.99. These results suggest that incorporating
domain knowledge in biosensing with deep learning models can
improve their predictive power.

3.3. Rapid quantification of target analyte concentration and likelihood
of false results using the initial transient response

Having demonstrated the TGRNN could accurately quantify target
analyte concentration and the likelihood of false results via precision
and recall scores, we next examined the ability to reduce the time delay
associated with the prediction by using only the initial transient
response. As shown in Table S3, the TGRNN also enabled classification
of the initial transient response from the unaugmented dataset. These
results established a baseline for the performance using the initial
transient response without data augmentation and demonstrated the
value of integrating domain knowledge for cost function supervision in
deep learning-based rapid biosensing applications. For example, the
TGRNN with a combination of CE and monotonicity losses exhibited the
best performance (test F1 score, precision, and recall were 0.91, 0.92,
and 0.91, respectively; see Table S3A).

We next investigated the minimum duration of the initial transient
response that enabled accurate and resilient biosensing using the
TGRNNs and the effect of data augmentation on performance. The
TGRNN performance using the first 15 and 10 min of the initial transient
response is shown in Table S3B and C, respectively. As shown in
Table S3B, the TGRNN with CE and empirical-monotonicity losses using
the first 15 min of the initial transient response gave the best test F1
score and recall of 0.89 and 0.88, respectively. The highest precision was
obtained using only the RNN with CE loss. Alternatively, the RNN with
CE and MSE losses using the first 10 min of the initial transient response
gave the best test F1 score, precision, and recall of 0.6, 0.59, and 0.59,
respectively (see Table S3C). The performance using an initial transient
period less than 10 min with the unaugmented dataset was not further
examined due to the large decrease in performance between 15 and 10
min.

Having examined the performance of the TGRNN with different loss
combinations using the entire and initial transient responses from the
unaugmented calibration dataset, we next examined the effect of data
augmentation on performance. The performance obtained using the
entire response and the initial 20, 15, and 10 min of the transient
response with the augmented calibration dataset is shown in Table 1A-D,
respectively. The training and validation losses are provided in Fig. S1
for 10 min as a representative case, which showed that the model was
not overfitting the data based on the similarity of the loss values and
trends. The best test precision, recall, and F1 score obtained with the
entire biosensor response were 0.93 for TGRNNs with CE and mono-
tonicity losses as well as CE and empirical-monotonicity losses. The best
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Table 1
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Model performance using the entire biosensor response (A) and the first 20 min (B), 15 min (C), and 10 min (D) of the initial transient response using augmented

biosensor data. Bold black font highlights the best performance, respectively.

A
Model Loss (Augmented Entire Response) Train Validation Test
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

CE 0.84 0.84 0.84 0.82 0.82 0.82 0.81 0.81 0.81
CE & MSE 0.95 0.95 0.95 0.92 0.92 0.92 0.92 0.92 0.92
CE & EMP_MONO 0.96 0.96 0.96 0.94 0.94 0.94 0.93 0.93 0.93
CE & MONO 0.95 0.95 0.95 0.93 0.93 0.93 0.93 0.93 0.93
CE, MSE, & EMP_MONO 0.92 0.92 0.92 0.89 0.89 0.89 0.89 0.89 0.89
CE, MSE, & MONO 0.9 0.9 0.9 0.87 0.87 0.87 0.87 0.87 0.87
B
Model Loss (Augmented 20 min) Train Validation Test

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
CE 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97
CE & MSE 0.99 0.99 0.99 0.96 0.96 0.96 0.96 0.96 0.96
CE & EMP_MONO 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97
CE & MONO 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97
CE, MSE, & EMP_MONO 0.99 0.99 0.99 0.95 0.95 0.95 0.96 0.96 0.96
CE & MSE, & MONO 0.98 0.98 0.98 0.95 0.95 0.95 0.95 0.95 0.95
C
Model Loss (Augmented 15 min) Train Validation Test

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
CE 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97
CE & MSE 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97
CE & EMP_MONO 0.99 0.99 0.99 0.97 0.97 0.97 0.96 0.96 0.96
CE & MONO 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98
CE, MSE & EMP_MONO 0.98 0.98 0.98 0.96 0.96 0.96 0.95 0.95 0.95
CE, MSE, & MONO 0.98 0.98 0.98 0.95 0.95 0.95 0.95 0.95 0.95
D
Model Loss (Augmented 10 min) Train Validation Test

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
CE 1 1 1 0.98 0.98 0.98 0.97 0.97 0.97
CE & MSE 1 1 1 0.98 0.98 0.98 0.98 0.98 0.98
CE & EMP_MONO 1 1 1 0.98 0.98 0.98 0.97 0.97 0.97
CE & MONO 1 1 1 0.98 0.98 0.98 0.96 0.96 0.96
CE, MSE, & EMP_MONO 1 1 1 0.96 0.96 0.96 0.97 0.97 0.97
CE, MSE, & MONO 0.99 0.99 0.99 0.96 0.96 0.96 0.96 0.96 0.96

performance using the first 20 min of the biosensor response with data
augmentation was obtained with the RNN with CE loss as well as the
TGRNNs with CE and both types of theory losses (test F1 score, preci-
sion, and recall = 0.97). With data augmentation, the best performance
was obtained using the first 15 and 10 min of the initial transient
biosensor response. The best performance using the first 15 min of the
initial transient response with data augmentation was obtained using
the TGRNN with CE and monotonicity losses (test F1 score, precision,
and recall = 0.98). The best performance using the first 10 min of the
initial transient response with data augmentation was obtained using
the RNN with CE and MSE losses (test F1 score, precision, and recall =
0.98). The TGRNNs with CE and empirical-monotonicity losses as well
as CE, MSE, and empirical-monotonicity losses gave comparable per-
formance (0.97). Given that accurate and reliable results were obtained
using the first 10 min of the initial transient response, this work shows
that theory-guided deep learning can potentially be utilized to signifi-
cantly reduce the time-to-results (i.e., mitigate the time delay) and false
results of surface-based biosensors. We observed that the deep learning
models that incorporated multiple (e.g., competing) losses, such as with
combined CE, MSE, and theory losses, may lead to fluctuations in the
training and validation trends (see Fig. S1). For example, a monotonicity
loss is a generalizable theory loss associated with the behavior of func-
tions that describe domain knowledge and can sometimes contradict the
characteristics of observed real-world data, which may exhibit signa-
tures associated with experimental sources of measurement uncertainty

(e.g., sensor noise). Thus, the performance of the TGRNNs may be
potentially further improved by consideration of the theory that drives
measurement noise in biosensors (Hassibi et al., 2007). Overall, the
results presented in Table 1 demonstrate that data augmentation and
theory-guided loss can improve the predictive power of deep learning
models using both the entire and initial transient dynamic biosensor
response.

As shown in Fig. 3, the performance obtained using the unaugmented
experimental data was positively correlated with the data acquisition
time (see Fig. 3. A, C, and E). In contrast, as shown in Fig. 3B, D, and F,
the performance obtained using data augmentation improved with
decreasing data acquisition time, suggesting the ability to perform rapid
and accurate biosensing using less than 10 min of the initial transient
response. The relationships among classification scores and data
acquisition time shown in Fig. 3, which are relations among biosensor
performance measures and a design parameter, can define new
biosensor performance measures related to biosensor accuracy and
reliability. For example, the derivative of the transfer functions (i.e.,
input-output relations) shown in Fig. 3 can be used to quantify the
sensitivity of a biosensor’s accuracy to data acquisition time (i.e.,
detection time). Such relations, in combination with application-
dependent performance thresholds (e.g., minimum allowable false-
negative results), can potentially help guide biosensor design and
characterize biosensor performance.

In this work, the goal was to demonstrate the value of classification
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Fig. 3. TGRNN performance comparison for different loss combinations. Comparison of performance using unaugmented (experimental) data in terms of F1 score
(A), precision (C), and recall (E). Comparison of performance with data augmentation in terms of F1 score (B), precision (D), and recall (F). Abbreviations: Cross-
entropy loss (CE); cross-entropy and mean-squared-error losses (CM); cross-entropy and empirical-monotonicity losses (CEP); cross-entropy and monotonicity los-
ses (CMO); cross-entropy, mean-squared-error, and empirical-monotonicity losses (CME); cross-entropy, mean-squared-error, and monotonicity losses (CMM).

scores in biosensing, which are directly related to the extent of false-
positive and false-negative results, and the ability to reduce the proba-
bility of false predictions (i.e., results) by integrating domain knowledge
in biosensing with deep learning. Thus, the focus of this work was
methodology development for improving the biosensor performance
attributes of accuracy, reliability, and speed using engineering-driven
data science models. The structure of our classification problem was
constrained by the structure of the input data used and the posed clas-
sification problem. Thus, samples below the 100 fM range were not
examined. While detection limit improvement was not the focus of this
study, using this methodology we were able to quantify how often
samples in each class would be properly classified. This methodology
may also be used to improve the detection limit if experimental data
were obtained (i.e., more samples were tested) from concentrations
lower than 100 fM. In future studies, measurements obtained from
samples of lower concentration than the detection limit that give net
shifts that are statistically insignificant from samples at or near the
detection limit of the biosensor would be ideal for improving biosensor

detection limit using the proposed method.

4. Conclusions

Al-guided biosensing studies often use deep learning models, such as
ANNSs, that are agnostic to the theory of processes that drive data gen-
eration. Thus, there is no guarantee that predictions are consistent with
domain knowledge in biosensing. Here, we demonstrated the ability to
improve biosensor performance, specifically to improve accuracy,
reduce the likelihood of false results, and reduce biosensor time delay (i.
e., data acquisition time), by guiding deep learning models with domain
knowledge in biosensing. Consistency of deep learning model pre-
dictions with the theory of surface-based biosensors was achieved by
cost function supervision using monotonicity constraints. In combina-
tion with data augmentation, TGRNNs based on integrated forecasting
and multi-class classification tasks were applied to rapid and accurate
miRNA quantification. Using the biosensor initial transient response, we
also demonstrated the opportunity to leverage theory-guided deep
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learning to mitigate biosensor time delay. The key contribution of our
work lies in demonstrating the value of integrating domain knowledge
in data-driven biosensing studies (here, done via cost function supervi-
sion of deep learning models), which can further improve biosensor
performance, and demonstrating the complementarity of classification
models and scores to traditional regression analysis of standard curve
data. Our future work will leverage first principles of sensor noise gen-
eration for cost function supervision, extend the method to other
biosensor data types, examine temporally-dependent losses, involve new
classes associated with known false responses, and focus on improving
class-wise prediction accuracy based on class-dependent measurement
error.
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