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Abstract

Federated bilevel learning has received increasing

attention in various emerging machine learning

and communication applications. Recently, sev-

eral Hessian-vector-based algorithms have been

proposed to solve the federated bilevel optimiza-

tion problem. However, several important proper-

ties in federated learning such as the partial client

participation and the linear speedup for conver-

gence (i.e., the convergence rate and complexity

are improved linearly with respect to the num-

ber of sampled clients) in the presence of non-

i.i.d. datasets, still remain open. In this paper,

we fill these gaps by proposing a new federated

bilevel algorithm named FedMBO with a novel

client sampling scheme in the federated hypergra-

dient estimation. We show that FedMBO achieves

a convergence rate of O
(

1√
nK

+ 1
K +

√
n

K3/2

)

on

non-i.i.d. datasets, where n is the number of par-

ticipating clients in each round, and K is the total

number of iteration. This is the first theoretical lin-

ear speedup result for non-i.i.d. federated bilevel

optimization. Extensive experiments validate our

theoretical results and demonstrate the effective-

ness of our proposed method.

1. Introduction

Federated learning is a privacy-preserving training paradigm

over distributed networks that are designed for edge comput-

ing (McMahan et al., 2017). In federated learning, multiple

edge devices (or clients) work together to learn a global

model under the coordination of a central server. Instead of

transmitting user data directly to the central server, each
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client stores data and computes locally and only trans-

mits the privacy-preserving information. This paradigm

is increasingly attractive due to the growing computational

power of edge devices and the increasing demand for privacy

protection. Federated learning is facing more challenges

than traditional distributed optimization due to the high com-

munication cost, data and system heterogeneity, and privacy

concerns. Recent years have witnessed great progress in the

algorithmic design and system deployment to address such

challenges (Wang & Joshi, 2021; Karimireddy et al., 2019;

Stich & Karimireddy, 2020).

Recently, federated bilevel learning has received increasing

attention (Chen et al., 2018; Fallah et al., 2020; Zeng et al.,

2021) because many modern machine learning problems

naturally exhibit a bilevel optimization structure. For exam-

ple, Chen et al. 2018; Fallah et al. 2020 studied the federated

meta-learning problems, Khodak et al. 2021 proposed fed-

erated hyperparameter optimization approaches, and Zeng

et al. 2021 improved the fairness in federated learning using

a bilevel method. This motivates us to study the following

federated bilevel optimization problem.

min
x∈Rp

Φ(x) = f(x, y∗(x)) :=
1

m

m
∑

i=1

fi(x, y
∗(x)) (1a)

s.t. y∗(x) ∈ argmin
y∈Rq

g(x, y) :=
1

m

m
∑

i=1

gi(x, y), (1b)

where fi(x, y) = Efi(x, y; À
i), gi(x, y) = Egi(x, y; ·

i)
are stochastic upper- and lower-level loss functions of client

i, and m is the total number of clients. Existing federated

learning algorithms like FedAvg and its variants (McMa-

han et al., 2017) cannot be applied to solve the federated

bilevel problem Equation (1) due to the nested optimiza-

tion structure, the global Hessian inverse estimation in the

hypergradient (i.e., ∇Φ(x)) computation, and the data het-

erogeneity in both the upper- and lower-level problems.

Recently, several approaches (Tarzanagh et al., 2022; Gao,

2022; Li et al., 2022) have been proposed to efficiently solve

Equation (1). Gao 2022; Li et al. 2022 focused on the homo-

geneous setting and proposed momentum-based distributed

bilevel algorithms. In the more practical but challenging het-

erogeneous setting, Tarzanagh et al. 2022 proposed FedNest

based on an implicit differentiation based federated hyper-

gradient estimator. In the inner loop, FedNest calls T times
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Table 1. Comparison of FedMBO with existing federated bilevel algorithms. m is the total number of clients, n is the size of sampled

clients, and ϵ is the required accuracy. The dependence on » in LocalBSGVR and AdaFBiO are missing in their papers.

Algorithm Sample Complexity Partial Client Participation Linear Speedup Data Heterogeneity

LocalBSGVR (Gao, 2022) O(ϵ−3/2m−1) : 6 :

AdaFBiO (Huang, 2022) O(ϵ−3/2) : : 6

FedNest (Tarzanagh et al., 2022) O(»9ϵ−2) : : 6

FedMBO O(»9ϵ−2n−1) 6 6 6

of FedInn, which is a federated stochastic variance reduced

gradient (FedSVRG) algorithm, to solve the lower-level

problem. Then FedNest calls FedOut, which constructs a

federated hypergradient estimator, to optimize the upper-

level problem. However, FedNest fails to achieve a linear

speedup for convergence in training due to the high corre-

lation among the individual hypergradient estimators com-

puted by all clients. In addition, FedNest is restricted to

the full client participation. Then, an important question

remains:

• Can we develop an easy-to-implement federated method,

which achieves a linear speedup for convergence in

the general heterogeneous setting, and allows flexible

partial client participation?

Our contributions. In this paper, we provide an affirmative

answer to the above question by proposing a novel federated

algorithm called Federated Minibatch Bilevel Optimization

(FedMBO). Our contributions are summarized as follows.

• The proposed FedMBO follows a double-loop scheme

in bilevel optimization and consists of two important

components. For the inner loop, FedMBO adopts a sim-

ple Minibatch Stochastic Gradient Descent (SGD) algo-

rithm. Compared with FedAvg and FedSVRG, the mini-

batch SGD and its accelerated variant are more immune

to the heterogeneity of the problem (Woodworth et al.,

2020b), which is critical in achieving the linear speedup

for convergence under the bilevel optimization structure.

For the outer loop, FedMBO features a Parallel Hy-

pergradient Estimator (PHE) with a novel multi-round

client sampling scheme. Compared to IHGP (Tarzanagh

et al., 2022), our PHE procedure allows either full or par-

tial client participation, and more importantly, achieves

a variance bound linearly decreasing w.r.t. the number

of participating clients. We anticipate that PHE can be

of independent interest to other settings such as decen-

tralized or asynchronous bilevel optimization.

• We show that FedMBO achieves a convergence rate

of O
(

1√
nK

+ 1
K +

√
n

K3/2

)

and a sample complex-

ity (i.e., the number of samples to achieve an ϵ-
stationary point) of O(ϵ−2n−1), which outperforms that

of FedNest (Tarzanagh et al., 2022) by an order of n due

to the linear speedup. As shown in Table 1, compared

to the momentum-based LocalBSGVR (Gao, 2022) and

AdaFBiO (Huang, 2022), our FedMBO is more flexible

with partial client participation, and more importantly,

achieves the linear speedup for convergence even in the

presence of data heterogeneity.

• We conduct extensive experiments to validate our theo-

retical results, and further demonstrate the effectiveness

of our proposed federated hypergradient estimator and

the FedMBO algorithm.

1.1. Related Work

Bilevel optimization approaches: Bilevel optimization

was first introduced in 1970’s (Bracken & McGill, 1973)

and has been being studied in the past decades. Since

then, tremendous efforts have been made to reformulate the

bilevel problem as a single-level optimization problem and

develop efficient algorithms to solve it(Aiyoshi & Shimizu,

1984; Edmunds & Bard, 1991; Hansen et al., 1992; Shi

et al., 2005). Recently, several prevailing machine learn-

ing applications can be naturally formulated as a bilevel

programming problem (Maclaurin et al., 2015; Pedregosa,

2016; Finn et al., 2017; Franceschi et al., 2017; 2018; Ji

et al., 2020), which brings a lot of attention to the bilevel

programming in the machine learning community. On the

theoretical side, there are many existing works deriving both

asymptotic (Franceschi et al., 2018; Shaban et al., 2019; Liu

et al., 2021) and non-asymptotic (Ghadimi & Wang, 2018;

Ji et al., 2021; Hong et al., 2020; Chen et al., 2021a; Guo

& Yang, 2021; Huang et al., 2022) convergence analysis

for the deterministic or stochastic bilevel optimization. For

example, Ghadimi & Wang 2018; Hong et al. 2020; Ji et al.

2021; Arbel & Mairal 2022 proved the convergence for

SGD type of bilevel methods via the approximate implicit

differentiation (AID) approach. Yang et al. 2021; Chen et al.

2021b; Khanduri et al. 2021; Guo & Yang 2021; Dagréou

et al. 2022 adopted the variance reduction and momentum

techniques into stochastic bilevel programming to achieve

better complexity results.

Federated learning: At the core of federated learning is

the prevailing FedAvg algorithm and its variants (McMahan

et al., 2017; Li et al., 2020; Karimireddy et al., 2019; Mitra

et al., 2021; Acar et al., 2021; Stich, 2018; Yu et al., 2019;
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Yang et al., 2020; Qu et al., 2020) to address the communi-

cation efficiency and the data privacy concerns. We review

literature with a focus on the analysis of the linear speedup

for convergence. In the homogeneous setting, two variants

of FedAvg were proposed to achieve linear speedup (Stich,

2018; Yu et al., 2019) under the assumptions of bounded

gradient and full client participation. Later, Wang & Joshi

2021; Stich & Karimireddy 2020 removed the bounded

gradient assumption and established a convergence rate of

O(ϵ−2m−1). In the heterogeneous setting, the SCAFFOLD

algorithm (Karimireddy et al., 2019) achieves the first lin-

ear speedup convergence rate using a variance reduction

framework and is independent of the level of heterogeneity.

After that, several variants of FedAvg (Yang et al., 2020;

Qu et al., 2020) have also been proved to achieve linear

speedup. Another interesting line of work focuses on the

comparison between FedAvg and minibatch SGD (Wood-

worth et al., 2020a;b). In the homogeneous case, FedAvg

provably outperforms minibatch SGD and its accelerated

versions (Woodworth et al., 2020a). However, when the

heterogeneity level is high, FedAvg is shown to be worse

than minibatch SGD.

Distributed bilevel optimization: For the decentralized

stochastic bilevel optimization (DSBO) problem, Lu et al.

2022; Terashita & Hara 2022 studied the setting where the

clients have their own local lower problems and thus the

communication for the lower-level part can be saved, and

Yang et al. 2022; Chen et al. 2022a;b considered a more

general global setup, in which all the clients target solv-

ing a global lower-level problem together. Ji & Ying 2023

proposed a distributed bilevel method for learning the best

utility surrogate functions for network utility maximization.

The most related works to this paper is the FedNest algo-

rithm (Tarzanagh et al., 2022), which achieves a sample

complexity of O(ϵ−2). This result was further improved by

the momentum-based federated bilevel algorithms in Gao

2022; Huang 2022. A concurrent work (Xiao & Ji, 2023)

proposed an iterative differentiation-based federated bilevel

method named FBO-AggITD, which achieves the same

sampling complexity as FedNest. Our proposed FedMBO

achieves the first linear speedup result in the heterogeneous

setting.

2. Definitions and Assumptions

Throughout this paper, we make the following standard

assumptions, as typically adopted in bilevel optimization.

Definition 1. A function h : Rn1 7→ R
n2×n3 is Lipschitz

continuous with constant L if

∥h(z1)− h(z2)∥ f L ∥z1 − z2∥ ∀z1, z2 ∈ R
n1 ,

where ∥·∥ denotes the Euclidean norm of a vector or matrix

depending on the value of n3.

Definition 2. A solution x is ϵ-accurate stationary point if

E ∥∇Φ(x)∥2 f ϵ, where x is the output of an algorithm.

Let z = (x, y) ∈ R
p+q denotes all parameters.

Assumption 1. (Lipschitz properties). For all i ∈ [m] :
fi(z), ∇fi(z), ∇gi(z), ∇2gi(z) are ℓf,0, ℓf,1, ℓg,1, ℓg,2-

Lipshitz continuous, respectively.

Assumption 2. (Strong convexity) For all i ∈ [m] : gi(x, y)
is µg-strongly convex in y for any fixed x ∈ R

q .

Assumption 3. (Unbiased estimators). For all i ∈ [m] :
∇fi(z; À), ∇gi(z; ·), ∇2gi(z; ·) are unbiased estimators

of ∇fi(z), ∇gi(z), ∇2gi(z), respectively.

Assumption 4. (Bounded variances). For all i ∈ [m] :
there exist constants Ã2

f , Ã2
g,1, and Ã2

g,2, such that

EÀ ∥∇fi(z; À)−∇fi(z)∥2] f Ã2
f ,

E· ∥∇gi(z; ·)−∇gi(z)∥2 f Ã2
g,1,

E·

∥

∥∇2gi(z; ·)−∇2gi(z)
∥

∥

2 f Ã2
g,2.

Assumption 5. There exists a constant Ãg, such that

E ∥∇gi(z)−∇g(z)∥2 f Ã2
g , where the expectation E is

taken over the client index i.

Remark 1. The assumptions outlined above are quite com-

mon and have been broadly adopted in the existing literature.

Assumption 1 imposes certain levels of Lipschitz smoothness,

which is a standard condition to derive the non-asymptotic

convergence in nonconvex optimization. In addition, the

Lipshitz continuity of ∇2gi(z) enables us to control the

error between the inverse of the Hessian matrix and its

Neumann series-based approximation, as also adopted by

other non-asymptotic studies (e.g, Ji et al. 2021; Chen et al.

2021b). Assumption 2 supposes the strong convexity of the

lower-level objective g, which triggers the implicit func-

tion theorem to guarantee the hypergradient ∇Φ(x) to exist

and enjoy an explicit form. Assumptions 3 and 4 require the

stochastic estimators to be unbiased with bounded variances,

and such conditions are widely adopted in the stochastic

optimization. Assumption 5, often employed in the analysis

for partial client participation in federated learning, con-

trols the disparity between the local gradient ∇gi(z) and

the global gradient ∇g(z).

3. Algorithms

To solve the bilevel problem in Equation (1), the biggest

challenge lies in computing the federated hypergradient

∇Φ(x) = (1/m)
∑m

i=1 ∇fi(x, y
∗(x)), whose explicit

form can be obtained as follows via implicit differentiation.

Lemma 1. Under Assumptions 1 and 2, we have

∇f(x, y∗(x)) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))

×
[

∇2
yyg(x, y

∗(x))
]−1 ∇yf(x, y

∗(x)), (2)
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where ∇2
yyg(x, y) is defined as the Hessian matrix of g with

respect to y and ∇2
xyg(x, y) is defined as

∇2
xyg(x, y) :=







∂2

∂x1∂y1
g(x, y) . . . ∂2

∂x1∂yq
g(x, y)

. . .
∂2

∂xp∂y1
g(x, y) . . . ∂2

∂xp∂yq
g(x, y)






.

To employ the above lemma, several challenges arise. First,

the evaluation of the federated hypergradient in Equation (2)

requires the approximation of the minimizer y∗(x) of the

lower-level problem, which may introduce a big bias due

to the client drift. We propose to use the simple minibatch

SGD as the lower-level optimizer, as elaborated in Sec-

tion 3.1, to mitigate the impact of the lower-level client

drift on the final convergence rate. Second, the stochas-

tic approximation of the infeasible Hessian inverse matrix
[

∇2
yyg(x, y

∗(x))
]−1 ∇yf(x, y

∗(x)) in Lemma 1 often in-

volves the computation of a series of global Hessian-vector

products in a nonlinear manner, which complicates the im-

plementation and may introduce a large estimation variance.

Third, the federated hypergradient estimation may suffer

from a large bias due to both the upper- and lower-level

client drifts. In this paper, we propose a new algorithm

FedMBO, which contains two main components, i.e., a

minibatch SGD based lower-level optimizer and a novel

federated hypergradient estimator, to address the above chal-

lenges, respectively.

Algorithm 1 Heterogeneous Distributed Minibatch Bilevel

Optimization with Partial Clients Participation

1: Input: full client index set [m], partial clients n partici-

pation, batch size S of local SGD at inner loop, initial

point (x0, y0), N ∈ N
+

2: for k = 0, 1, . . .K − 1 do

3: yk,0 = yk

4: for t = 0, 1, . . . T − 1 do

5: Sample client index subset Ck,t =
{

ck,t1 , ..., ck,tn

}

with
∣

∣Ck,t
∣

∣ = n
6: for i ∈ [n] in parallel do

7: Sample batch Sk,t
i = {Àk,ti,0 , À

k,t
i,1 , . . . , À

k,t
i,S−1}

8: Compute G
k,t
i = 1

S

∑S−1

j=0
∇g

c
k,t
i

(xk, yk,t; Àk,ti,j )

9: end for

10: Gk,t = 1
n

∑n
i=1 G

k,t
i

11: yk,t+1 = yk,t − ´k,tG
k,t

12: end for

13: yk+1 = yk,T

14: {Hi} = PHE(xk, yk+1, N, n)
15: h = 1

n

∑n
i=1 Hi

16: xk+1 = xk − ³kh
17: end for

3.1. Minibatch SGD for Lower-level Updates

To efficiently solve the lower-level problem, one popular

approach is FedAvg. Starting from a common initialization,

the clients in FedAvg run multiple local SGD updates on its

own objective, which are then aggregated to update the inner

variable y. However, it has been shown in Tarzanagh et al.

2022 that FedAvg introduces an undesirable hypergradient

estimation bias due to the large client drift. This is typically

caused by the multiple local updates under the data hetero-

geneity, where the local iterates of each client can drift away

from the global minimum and converge to the minimum of

their own local objectives. Thus, they proposed FedLin, as

a variant of the variance reduction method FedSVRG (Mi-

tra et al., 2021), to mitigate the impact of the client drift.

However, FedLin has a more complex implementation due

to the nest SVRG loop, and more importantly, as shown in

Tarzanagh et al. 2022, its convergence error induced by the

client drift is not linearly decreasing w.r.t. the number of

sampled clients, which is one crucial factor in missing the

linear speedup in the convergence rate.

Inspired by a recent work (Woodworth et al., 2020b), we

use the minibatch SGD as the lower-level solver, where the

clients compute their local minibatch stochastic gradients,

which are further aggregated for a one-step update on y. In

specific, we first sample a subset Ck,t =
{

ck,t1 , ..., ck,tn

}

of

clients, and each of them draws a local data batch Sk,t
i =

{Àk,ti,0 , À
k,t
i,1 , . . . , À

k,t
i,S−1} with

∣

∣Sk,t
i

∣

∣ = S and computes the

local stochastic gradient ∇gck,t
i
(xk, yk,t; Àk,ti,j ). Then, the

server aggregates the gradients as

Gk,t =
1

nS

n
∑

i=1

S−1
∑

j=0

∇gck,t
i
(xk, yk,t; Àk,ti,j ),

and further run one-step SGD to update yk,t as

yk,t+1 = yk,t − ´k,tG
k,t.

Compared with FedAvg and FedLin, the minibatch SGD

admits a simpler implementation, and more importantly, is

more resilient to the data heterogeneity by a more aggressive

single update at all clients. As will be seen later, minibatch

SGD provides a more accurate estimation of the lower-level

solution, which is necessary in achieving the linear speedup.

Remark 2. In the minibatch SGD implementation, we set

the batch size to be larger than FedAvg, and hence more

aggressive per-iteration progress is made. Thus, the com-

putational cost of minibatch SGD is comparable to FedAvg.

More importantly, minibatch SGD admits a much smaller

client drift, which is critical in achieving the linear speedup.

Remark 3. In the experiments (see Section 5), we demon-

strate the great advantages of minibatch SGD over FedAvg

in mitigating the client drift during the bilevel training, and

in improving the overall communication efficiency.
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3.2. Federated Hypergradient Procedure

In the non-federated setting, one often defines the surrogate

∇f(x, y) = ∇xf(x, y)

−∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yf(x, y) (3)

to efficiently approximate the hypergradient ∇f(x, y∗(x))
in Equation (2). Compared with Equation (2), the surrogate

simply replaces y∗(x) by its approximation y. A typical

approach for efficiently approximating the surrogate is to

use the Neumann series-based stochastic estimator.

∇f(x, y) ≈ ∇xf(x, y; À)−∇2
xyg
(

x, y, ; ·N
′
+1
)

× N

lg,1

N
′

∏

n=1

(

I − 1

lg,1
∇2

yyg(x, y; ·
n)
)

∇yf(x, y; À) (4)

where N
′

is chosen from {0, ..., N − 1} uniformly at

random and {À, ·1, ..., ·N
′
+1} are i.i.d. samples. Partic-

ularly, Ghadimi & Wang 2018; Hong et al. 2020 show that

the inverse Hessian estimation bias exponentially decreases

with the number of samples N , i.e.,

∥

∥

∥

[

∇
2

yyg(x, y)
]

−1

− E

[

N

ℓg,1

N
′

∏

n=1

(

I −
1

ℓg,1
∇

2

yyg(x, y; ·
n)
)]

∥

∥

∥

f
1

µg

(

1−
µg

ℓg

)N

(5)

where the expectation is taken with respect to both N ′ and

·. However, in the federated setting, the computation of

the hypergradient is challenging due to client drift by the

data heterogeneity, and the computation of a series of global

Hessian matrices in a nonlinear manner, as shown in Equa-

tion (4). To address such challenges, Tarzanagh et al. 2022

proposed the following federated hypergradient estimator:

hi := ∇xfi(x, y; À)−∇2
xygi(x, y; ·

N
′
+1)pN ′

where the global estimator pN ′ of the Hessian-inverse-vector

product [∇2
yyg(x, y)]

−1∇yf(x, y) takes the form of

pN ′ =
N

ℓg,1

N ′
∏

n=1

(

I − 1

ℓg,1 |Sn|

|Sn|
∑

i=1

∇2
yygi(x, y; ·i,n)

)

× 1

|S0|
∑

i∈S0

∇yfi(x, y; Ài,0),

which is constructed by computing and aggregating local

Hessian-vector products in N
′

communication rounds.

However, there are two main limitations of the above feder-

ated hypergradient estimator. First, the estimator requires

full client participation because each client i needs to com-

pute an hi. Second, the h′
is are highly correlated due to the

Algorithm 2 Parallel Hypergradient Estimator with n
Clients Participation (PHE)

1: Sample clients C0 = {c01, ..., c0n}
2: for i ∈ [n] in parallel do

3: Sample data points ¹i, ϕi

4: di = ∇yfc0i (x
k, yk+1;ϕi)

5: pi,0 = N
lg,1

∇yfc0i (x
k, yk+1; ¹i)

6: Generate Ni ∈ {0, 1, ..., N − 1} UAR

7: end for

8: for l = 1, . . . ,max {Ni, i ∈ [n]} do

9: Sample Cl = {cl1, ..., cln}
10: for i ∈ [n] in parallel do

11: Sample a data point ·i,l

12: if l f Ni then

13: pi,l =
(

I − 1
ℓg,1

∇2
yygcli(x

k, yk+1; ·i,l)
)

pi,l−1

14: else

15: pi,l = pi,l−1

16: end if

17: end for

18: end for

19: Sample Cmax{Ni}+1 = {cmax{Ni}+1
1 , ..., c

max{Ni}+1
n }

20: for i ∈ [n] in parallel do

21: Sample a data point Éi

22: Hi = di−∇2
xygcmax{Ni}+1

i

(xk, yk+1;Éi)pi,max{Ni}

23: end for

24: Return H = {Hi}i∈[n]

shared global estimation pN ′ . As a result, the variance of
1
m

∑m
i=1 hi cannot be shown to decay w.r.t. m, which turns

out to be the bottleneck for achieving the linear speedup.

To this end, we propose a new federated hypergradi-

ent estimator with a novel client sampling and commu-

nication scheme. As shown by Algorithm 2 and illus-

trated by Figure 1, each communication round l (high-

lighted by the yellow shallow in Figure 1) samples n
clients (n f m) indexed by {cl0, ..., cln}, and then the

sampled clients compute the Hessian-vector product (I −
1

ℓg,1
∇2

yygcli(x
k, yk+1; ·i,l))pi,l−1, which are used for the

Hessian-vector construction in the next communication

round. In the vertical direction of Figure 1 (i.e., from line

8 to line 18 in Algorithm 2), the clients in each column are

involved to construct an individual component Hi of the

federated hypergradient estimator. The proposed estimators

{Hi} take the form of

Hi(x
k, yk+1)

=∇xfc0i (x
k, yk+1;ϕi)−∇2

xygcmax{Ni}+1

i

(xk, yk+1;Éi)

×
[

N

lg,1

Ni
∏

l=1

(

I − 1

ℓg,1
∇2

yygCl
i
(xk, yk+1; ·i,l)

)

]

×∇yfc0i (x
k, yk+1; ¹i). (6)
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Figure 1. Illustration diagram of client sampling for the federated hypergradient estimation in Algorithm 2.

3.3. Entire Procedure

The previous two sections describe the lower-level updating

procedure on y and the federated hypergradient estimator of

the proposed FedMBO method. In this section, we briefly

summarize the whole algorithm, which is formally described

in Algorithm 1. At the beginning of FedMBO, we specify

the number of participating clients n f m, the batch size S
for the minibatch SGD implemented at the inner loop, and

the constant N controlling the Hessian inverse approxima-

tion accuracy. At each round k = 0, 1, ...,K − 1, FedMBO

first runs minibatch SGD to update y, then constructs the

federated hypergraident estimator using Algorithm 2, and

finally updates the outer variable x based on the hypergradi-

ent estimator. We do not run multiple local updates in the

updates of x because the federated hypergradient estimator

h requires the global information, which is unavailable for

local updates of each client.

4. Main Results

As discussed in the previous section, Algorithm 2 gener-

ates the federated hypergradient estimators {Hi} for esti-

mating ∇f(x, y∗(x)). With slight abuse of notation, we

define Hi(x
k, yk+1) to be the output of Algorithm 2 at

the k-th round of Algorithm 1. For different i, j, we have

E
[

Hi(x
k, yk+1)

]

= E
[

Hj(x
k, yk+1)

]

and

E
[

Hi(x
k, yk+1)|Fk

]

= E
[

Hj(x
k, yk+1)|Fk

]

,

where Fk := Ã
{

y0, x0, ..., yk, xk, yk+1
}

denotes the filtra-

tion that captures all the randomness up to the k-th outer

loop. We denote H(x, y) := E
[

Hi(x
k, yk+1)|Fk

]

. Re-

ferring to Section 3.2, the resulted H(x, y) is “close” to

the surrogate function ∇f defined in Equation (3), except

for its matrix inverse approximation. Indeed, the follow-

ing Proposition 1 shows that the bias between H(x, y) and

∇f decreases exponentially with respect to N .

Proposition 1. Under Assumptions 1 to 4, we have

∥

∥H(xk, yk+1)−∇f(xk, yk+1))
∥

∥ f b,

where b = »gℓf,1 ((»g − 1) /»g)
N

and N is the input pa-

rameter to Algorithm 1.

The following two propositions explore the bounded vari-

ances of Hi. Particularly, the O(1/n) factor of the bounded

variance of the average of {Hi}i∈[n] is presented in Propo-

sition 3. Such a property highly relies on the independence

among all the hypergradient estimators and plays an es-

sential role in establishing the linear speedup. This is a

key property that can be achieved by our proposed mini-

batch SGD and PHE algorithms and is missing in FedNest

(Tarzanagh et al., 2022) in the non-i.i.d setting.

Proposition 2. Suppose Assumptions 1 to 4 hold for all

i ∈ [n]. Then, we have

E
[

||Hi(x
k, yk+1)−H(xk, yk+1)||2

]

f Ã̃2
f ,

E
[

||Hi(x
k, yk+1)||2|Fk

]

f D̃2
f ,

where the constants Ã̃2
f and D̃2

f are given by

Ã̃2
f :=Ã2

f +
3

µ2
g

[

(Ã2
f + ℓ2f,0)(Ã

2
g,2 + 2ℓ2g,1) + Ã2

f ℓ
2
g,1

]

=O(»2
g),

D̃2
f :=

(

ℓf,0 +
ℓf,0ℓg,1
µg

+
ℓf,1ℓg,1
µg

)2
+ Ã̃2

f = O(»2
g).

6
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Figure 2. Left column: Comparison among different levels of heterogeneity. Middle column: Comparison between different numbers of

total clients. Right column: Comparison among different sampling rates. The first row plots the test accuracy against the epoch. The

second plots the test accuracy against the number of communication rounds.

Proposition 3. Under Assumptions 1 to 4, we have

E





∥

∥

∥

∥

∥

1

n

n
∑

i=1

(Hi(x
k, yk+1)−H(xk, yk+1))

∥

∥

∥

∥

∥

2


 f
Ã̃2
f

n
,

where Ã̃f := Ã2

f + 3

µ2
g

(

(Ã2

f + ℓ2f,0)(Ã
2

g,2 + 2ℓ2g,1) + Ã2

f ℓ
2

g,1

)

.

We next characterize the convergence and complexity per-

formance of the proposed algorithm.

Theorem 1. Suppose Assumptions 1 to 5 hold and set

³k = min

{

³̂1, ³̂2,

√

n

K
³̂3

}

´k,t =
(5MfLy

µg
+

¸LyxD̃
2
f ³̂1

2nµg

)³k

T

for some positive constants ³̂i, i = 1, 2, 3 independent

of K, where the definition of the constant parameters

Mf , Ly, ¸, Lyx, D̃
2
f can be found in the appendix. Then,

for any K g 1, the iterates
{

(xk, yk)
}

kg0
generated by Al-

gorithm 1 satisfy

1

K

K−1
∑

k=0

E

[

∥

∥∇f(xk)
∥

∥

2
]

=

O
( ³̂3 + ³̂−1

3√
nK

+
1

min(³̂1, ³̂2)K
+ b2

)

.

where b = »glf,1 ((»g − 1) /»g)
N

and N is the controlling

input parameter to Algorithm 2,

Theorem 1 shows that for any given inner loop T , with a

proper choice of the step sizes ³k, ´k,t and hyperparameters,

the proposed FedMBO algorithm converges with a sub-

linear rate. Moreover, the major term in the error bound

O
(

1√
nK

) has a linear speedup w.r.t. the number n of the

participating clients.

Remark 4. Our theoretical analysis is mainly conducted on

the case of partial client participation, i.e. n < m. For the

full clients participation scenario, the analysis is easier and

similar results (constants slightly different) can be obtained

by following the proof steps in Appendix C.

Corollary 1. Under the same conditions as in Theorem 1,

if we set N = Ω(»g logK) and ST = Ω(»4
g), then

1

K

K−1
∑

k=0

E

[

∥

∥∇f(xk)
∥

∥

2
]

= O
(

»
5/2
g√
nK

+
»3
g

K
+

»
7/2
g

√
n

K3/2

)

.

In addition, we need K = O(»5
gϵ

−2/n) to achieve an ϵ-
accurate stationary point.

To achieve ϵ-optimal solution, the samples we require in À
and ¹ are O(»9

gϵ
−2) and O(»5

gϵ
−2) respectively. Compared

with FedNest (Tarzanagh et al., 2022) in the non-i.i.d. set-

ting, our complexity has the same dependence on » and ϵ,
but a better dependence on n due to the linear speedup. As

far as we know, this is the first linear speedup result for

non-i.i.d. federated bilevel optimization.

7
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Figure 3. Comparison between our PHE with IHGP (Tarzanagh et al., 2022) under different lower-level optimizers.

.

5. Experiments

In this section, we conduct experiments on hyper-

representation, which is an important problem in multi-task

machine learning, to validate our theoretical results. We

focus on the hyper-representation problem in the federated

setting, which can be formulated as

min
ϕ

LDv
(ϕ, É∗) =

1

m

m
∑

i=1

1

|Di
v|
∑

À∈Di
v

L(ϕ, É∗; À)

s.t. É∗ = argmin
É

1

m

m
∑

i=1

1

|Di
t|
∑

·∈Di
t

L(ϕ, É; ·),

where Di
t and Di

v are the training and the validation datasets

respectively. Specifically, the upper-level problem learns

the shared hyper feature representations using the validation

data, and the lower-level objective learns the prediction head

for each client on the training data. In all experiments, we

use a multi-layer perceptron (MLP) with 2 linear layers and

1 ReLU activation layer as our model architecture and focus

on the heterogeneous case with non-i.i.d. datasets. All ex-

periments are implemented in Python 3.7 on a Linux server

with an Nvidia GeForce RTX 2080ti GPU. Note that our

current experiments and the results in other related works

are all simulations on a single machine. The linear speedup

improvement can be shown by implementing the model

and the algorithms on a distributed setting with multiple

machines.

5.1. Case Study

In this section, we conduct experiments on several case

study to demonstrate the efficiency of our proposed algo-

rithm. We first study the impact of heterogeneity in each

client’s dataset. We fix the client sampling ratio to 10%, and

the number of clients to be 100 and sample the dataset in a

digit-based manner. In particular, the whole MNIST dataset

is split into 10 subsets, where each subset contains all im-

ages with the same digit. The data in each client is sampled

from a certain number of subsets. In a 2-digit case, for each

client, we first randomly pick 2 digits, and then sample data

from the images with these two digits. Note that the 10-digit

case is equivalent to the homogeneous case. In this way, the

number of digits measures the degree of heterogeneity. The

result is summarized in the left column of Figure 2. The

proposed algorithm performs the worst in the 1-digit case

with the highest data heterogeneity, and the performance

is improved as we increase the number of digits due to the

reduced data heterogeneity. This demonstrates the negative

impact of data heterogeneity on convergence performance.

Second, we study the impact of different client sampling

ratios. We fix the 2-digit sampling strategy for each client

and the total number of clients to be 100. From the middle

column of Figure 2, it is seen that the case of 50% client

sampling ratio performs the best. Therefore, increasing the

sampling ratio helps the performance of our algorithm.

Finally, we test the impact of different numbers of total

clients. We fix a 2-digit sampling strategy for each client

and the client sampling ratio to be 10%. We select n ∈
{50, 100, 500} for the test. As shown in the right column

of Figure 2, the performance of our proposed algorithm

becomes better as we increase the number of clients.

5.2. Comparison with FedNest

We compare our approaches with FedNest (Tarzanagh et al.,

2022) in the non-i.i.d. setting. We notice that Tarzanagh et al.

2022 also proposed a Lite FedNest (LFedNest) to reduce

the communication rounds. However, LFedNest diverges in

some of our non-i.i.d experiments and performs worse than

the FedNest. So we focus on the comparison of FedNest and

our proposed algorithm only. Two major components of the

FedNest algorithm are IHGP for estimating the hypergradi-

ent and FedSVRG (or FedLin) for solving the lower-level

problem. We compare the performance among different

pairs of PHE, IHGP, and MinibatchSGD, FedSVRG, Fe-

dAvg. In this case, we set the number of total clients to

100 and the sampling ratio to be 10%. For the dataset of

each client, we first sort the MNIST dataset according to

their labels and then equally split it into 100 subsets and

assign one subset to each client. In this way, we guarantee

a high-level heterogeneity among all the clients. We set

8
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T = 5 for all cases and fine-tune the step sizes so that each

setting achieves its best performance.

In Figure 3, we plot the loss and test accuracy against epoch

and communication round respectively. The left figure plots

the loss against the communication round. From the left

figure, we conclude that among all the settings, the proposed

PHE + MinibatchSGD converges the fastest. The middle

figure plots the loss against data epochs and shows that

the MinibatchSGD for the lower-level problem achieves

similar performance to FedSVRG and both are better than

the FedAvg Algorithm. The right figure shows that PHE +

MinibatchSGD achieves the best test accuracy among all

algorithms.

6. Conclusion

This paper studies the federated bilevel optimization prob-

lem in the presence of data heterogeneity, and proposes a

novel federated bilevel algorithm named FedMBO. We show

that FedMBO is flexible with partial client participation and

achieves a linear speedup for convergence. Numerical ex-

periments are conducted to demonstrate the advantages of

our proposed algorithms. We anticipate that our theoreti-

cal results and the proposed hypergradient estimator can be

applied to other distributed scenarios such as decentralized

bilevel optimization.
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Supplementary Materials

A. Supporting Lemmas

The following two lemmas are commonly used in the previous literature on (federated) bilevel optimization. We refer to the

corresponding works for detailed proofs.

Lemma 2. ([Ghadimi & Wang 2018, Lemma 2.2]) Under Assumptions 1 and 2, we have

||∇Φ(x1)−∇Φ(x2)|| f Lf ||x1 − x2||,
||y∗(x1)− y∗(x2)|| f Ly||x1 − x2||,

where

Lf :=lf,1 +
lg,1(lf,1 +Mf )

µg
+

lf,0
µg

(lg,2 +
lg,1lg,2
µg

) = O(»3
g),

Ly :=
lg,1
µg

= O(»g).

For all i ∈ [m], we have

||∇fi(x1, y)−∇fi(x1, y
∗(x1))|| f Mf ||y − y∗(x1)||,

||∇fi(x1, y)−∇fi(x2, y)|| f Mf ||x1 − x2||,

where the constant Mf is given by

Mf := lf,1 +
lg,1lf,1
µg

+
lf,0
µg

(lg,2 +
lg,1lg,2
µg

) = O(»2
g)

and ∇fi is defined as

∇fi(x, y) := ∇xfi(x, y)−∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yfi(x, y).

Proof of Lemma 2. The proof is similar to Lemma 2.2 in Ghadimi & Wang 2018.

Lemma 3. ([Chen et al. 2021a, Lemma 2]) Under Assumptions 1 to 3, we have

||∇y∗(x1)−∇y∗(x2)|| f Lyx||x1 − x2||,

where the constant Lyx is given by

Lyx :=
lg,2 + lg,2Ly

µg
+

lg,1
µ2
g

(lg,2 + lg,2Ly) = O(»3
g).

Proof of Lemma 3. The proof is similar to Lemma 2 in Chen et al. 2021a.

B. Proof of Proposition in Section 4

Proof of Proposition 1. The independency of c0i , c
max{Ni}+1
i , cℓi , ℓ = 1, ..., n, Ni and their data points sample is guaranteed

based on the algorithmic design in Algorithm 2. Therefore, we have

H(xk, yk+1) := E
[

Hi(x
k, yk+1)|Fk

]

=∇xf(x
k, yk+1)−∇2

xyg(x
k, yk+1)E

[

N

lg,1

Ni
∏

l=1

(

I − 1

ℓg,1
∇2

yygCl
i
(xk, yk+1; ·i,l)

)∣

∣

∣
Fk

]

∇yf(x
k, yk+1).

From the definition of ∇f , we have

∥

∥H(xk, yk+1)−∇f(xk, yk+1))
∥

∥

12
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f
∥

∥∇2
xyg(x

k, yk+1)
∥

∥ ·
∥

∥

∥

∥

∥

E

[

N

lg,1

Ni
∏

l=1

(

I − 1

ℓg,1
∇2

yygCl
i
(xk, yk+1; ·i,l)

)
∣

∣

∣
Fk

]

−
[

∇2
yyg(x, y)

]−1

∥

∥

∥

∥

∥

·
∥

∥∇yf(x
k, yk+1)

∥

∥

f ℓf,0ℓg,1
µg

(

1− µg

ℓg

)N
,

where we have applied the Assumption 1 and Equation (5) to the last inequality.

Then, the proof is complete.

Proof of Proposition 2. Following Hong et al. 2020, Lemma 1, we can derive

E
[

||Hi(x
k, yk+1)−H(xk, yk+1)||2

]

f Ã̃f , (7)

where Ã̃2
f := Ã2

f + 3
µ2
g

[

(Ã2
f + ℓ2f,0)(Ã

2
g,2 + 2ℓ2g,1) + Ã2

f ℓ
2
g,1

]

.

From the definition in Equation (3), we have

∥

∥∇f(x, y)
∥

∥ =
∥

∥∇xf(x, y)−∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yf(x, y)

∥

∥

f ∥∇xf(x, y)∥+
∥

∥∇2
xyg(x, y)

∥

∥

∥

∥[∇2
yyg(x, y)]

−1
∥

∥ ∥∇yf(x, y)∥

f ℓf,0 +
ℓf,0ℓg,1
µg

, (8)

where the last inequality comes from Assumptions 1 and 2.

Now we derive the bound of Hi(x
k, yk+1) as follows,

E
[

||Hi(x
k, yk+1)||2|Fk

]

=
∥

∥H(xk, yk+1)
∥

∥

2
+ E

[

||Hi(x
k, yk+1)−H(xk, yk+1)||2|Fk

]

f
(∥

∥H(xk, yk+1)−∇f(x, y)
∥

∥+
∥

∥∇f(x, y)
∥

∥

)2
+ Ã̃2

f

f
(

»gℓf,1 ((»g − 1) /»g)
N
+ ℓf,0 + ℓg,1

1

µg
ℓf,0
)2

+ Ã̃2
f

f
(

ℓf,0 +
ℓf,0ℓg,1
µg

+
ℓf,1ℓg,1
µg

)2
+ Ã̃2

f ,

where the first inequality is based on the result of Equation (7) and the second inequality is based on Proposition 1

and Equation (8).

Then, the proof is complete.

Proof of Proposition 3. Note that if we choose to sample the clients with replacement in Algorithm 2, then apparently {Hi}
are pairwise independent random variables (refer to Figure 1). From Proposition 2, we have the variances of {Hi}i=1,...,n

are bounded by a constant Ã̃2
f . Therefore, we have

E

∥

∥

∥

1

n

n
∑

i=1

(Hi(x
k, yk+1)−H(xk, yk+1))

∥

∥

∥

2

=
1

n2

n
∑

i=1

E
∥

∥Hi(x
k, yk+1)−H(xk, yk+1)

∥

∥

2

+
1

n2

∑

1fi ̸=jfn

E

[

E

〈

Hi(x
k, yk+1)−H(xk, yk+1),Hj(x

k, yk+1)−H(xk, yk+1)
〉

|Fk
]

f
Ã̃2
f

n
,

where the last inequality follows because Hi −H and Hj −H are independent conditioning on Fk.

Then, the proof is complete.

13
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C. Convergence Proofs

Proof of Lemma 1. This result has been well-known in the literature on bilevel optimization. See, e.g., Ghadimi & Wang

2018 for its proof.

Lemma 4. Suppose Assumptions 1 to 4 hold, Algorithm 1 guarantees:

E
[

f(xk+1)
]

− E[f(xk)] f ³kM
2
fE

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+ (³2
kLf − ³k

2
)E
[

∥

∥H(xk, yk+1)
∥

∥

2
]

− ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+ ³kb
2 +

³2
kLf Ã̃

2
f

n
.

Proof of Lemma 4. Based on the smoothness property of the objective function Φ established in Lemma 2, we have

E
[

f(xk+1)
]

− E
[

f(xk)
]

fE
[〈

xk+1 − xk,∇f(xk)
〉]

+
Lf

2
E

[

∥

∥xk+1 − xk
∥

∥

2
]

=− E

[〈

1

n

n
∑

i=1

³kHi(x
k, yk+1),∇f(xk)

〉]

+
Lf

2
E





∥

∥

∥

∥

∥

1

n

n
∑

i=1

³kHi(x
k, yk+1)

∥

∥

∥

∥

∥

2


 . (10)

To bound the first term of Equation (10), we have

− E

[

〈 1

n

n
∑

i=1

³kHi(x
k, yk+1),∇f(xk)

〉

]

=− E

[

1

n

n
∑

i=1

³kE
[

ïHi(x
k, yk+1),∇f(xk)ð|Fk

]

]

=− E
[〈

³kH(xk, yk+1),∇f(xk)
〉]

=− ³k

2
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

− ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+
³k

2
E

[

∥

∥H(xk, yk+1)−∇f(xk)
∥

∥

2
]

=− ³k

2
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

− ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+
³k

2
E

[

∥

∥H(xk, yk+1)−∇f(xk, yk+1) +∇f(x, yk+1)−∇f(xk)
∥

∥

2
]

f− ³k

2
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

− ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+ ³kE

[

∥

∥H(xk, yk+1)−∇f(xk, yk+1))
∥

∥

2
]

+ ³kE

[

∥

∥∇f(xk, yk+1)−∇f(xk)
∥

∥

2
]

f− ³k

2
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

− ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+ ³kb
2 + ³kM

2
fE

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

,

where the last inequality is due to Lemma 2 and Proposition 1. The second term of Equation (10) can be bounded as

Lf

2
E





∥

∥

∥

∥

∥

1

n

n
∑

i=1

³kHi(x
k, yk+1)

∥

∥

∥

∥

∥

2




=
³2
kLf

2
E





∥

∥

∥

∥

∥

1

n

n
∑

i=1

(Hi(x
k, yk+1)−H(xk, yk+1) +H(xk, yk+1))

∥

∥

∥

∥

∥

2




f³2
kLfE





∥

∥

∥

∥

∥

1

n

n
∑

i=1

(Hi(x
k, yk+1)−H(xk, yk+1))

∥

∥

∥

∥

∥

2


+ ³2
kLfE

[

∥

∥H(xk, yk+1)
∥

∥

2
]

=
³2
kLf Ã̃

2
f

n
+ ³2

kLfE

[

∥

∥H(xk, yk+1)
∥

∥

2
]

,

14
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where we use Proposition 3 in the last equality. Combining the above inequalities yields

E[f(xk+1)]− E[f(xk)] f ³kM
2
fE

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+ (³2
kLf − ³k

2
)E
[

∥

∥H(xk, yk+1)
∥

∥

2
]

− ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+ ³kb
2 +

³2
kLf Ã̃

2
f

n
.

Then, the proof is complete.

Lemma 5. Suppose Assumptions 1 to 5 hold and 0 < ´k,t f 1
2lg,1

, the iterates of Algorithm 1 guarantees:

E

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

f
(

T−1
∏

t=0

(1− ´k,tµg)

)

E

[

∥

∥yk − y∗(xk)
∥

∥

2
]

+
4(Ã2

g,1 + Ã2
g)

nS

T−1
∑

t=0

´2
k,t.

Proof of Lemma 5. We first show

E

∥

∥

∥

∥

∥

1

nS

n
∑

i=1

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

∥

∥

∥

∥

∥

2

f
2(Ã2

g,1 + Ã2
g)

nS
. (11)

By the algorithm update, we have

E

∥

∥

∥

∥

∥

1

nS

n
∑

i=1

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

∥

∥

∥

∥

∥

2

=
1

n2

n
∑

i=1

E

∥

∥

∥

∥

∥

1

S

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

∥

∥

∥

∥

∥

2

+
1

n2

∑

1fi ̸=jfn

E

〈

1

S

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

,
1

S

S−1
∑

s=0

∇ygck,t
j

(

xk, y∗(xk); Àk,tj,s

)

〉

=
1

n2S2

n
∑

i=1

S−1
∑

s=0

E

∥

∥

∥
∇ygck,t

i

(

xk, y∗(xk); Àk,ti,s

)∥

∥

∥

2

+
1

n2

∑

1fi ̸=jfn

E

〈

1

S

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

,
1

S

S−1
∑

s=0

∇ygck,t
j

(

xk, y∗(xk); Àk,tj,s

)

〉

f 2

n2S2

n
∑

i=1

S−1
∑

s=0

E

∥

∥

∥
∇ygck,t

i

(

xk, y∗(xk); Àk,ti,s

)

−∇ygck,t
i

(

xk, y∗(xk)
)

∥

∥

∥

2

+
2

n2S2

n
∑

i=1

S−1
∑

s=0

E

∥

∥

∥
∇ygck,t

i

(

xk, y∗(xk)
)

−∇yg
(

xk, y∗(xk)
)

∥

∥

∥

2

+
1

n2

∑

1fi ̸=jfn

E

〈

1

S

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

,
1

S

S−1
∑

s=0

∇ygck,t
j

(

xk, y∗(xk); Àk,tj,s

)

〉

f
2(Ã2

g,1 + Ã2
g)

nS

+
1

n2

∑

1fi ̸=jfn

E

〈

1

S

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

,
1

S

S−1
∑

s=0

∇ygck,t
j

(

xk, y∗(xk); Àk,tj,s

)

〉

, (12)

where the second equality comes from the pairwise independence between À, and the last inequality is due to Assumptions 4

and 5. We next show the second term in Equation (12) equal to zero:

∑

1fi ̸=jfn

E

〈

1

S

S−1
∑

s=0

∇ygck,t
i

(

xk, y∗(xk); Àk,ti,s

)

,
1

S

S−1
∑

s=0

∇ygck,t
j

(

xk, y∗(xk); Àk,tj,s

)

〉
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=
∑

1fi ̸=jfn

E

〈

∇ygck,t
i

(

xk, y∗(xk)
)

,∇ygck,t
j

(

xk, y∗(xk)
)

〉

=
∑

1fi ̸=jfn

∑

1fp ̸=qfm

E

[〈

∇ygck,t
i

(

xk, y∗(xk)
)

,∇ygck,t
j

(

xk, y∗(xk)
)

〉

|ck,ti = p, ck,tj = q
]

· P(ck,ti = p, ck,tj = q)

=
∑

1fp ̸=qfm

E
[〈

∇ygp
(

xk, y∗(xk)
)

,∇ygq
(

xk, y∗(xk)
)〉]

∑

1fi ̸=jfn

P(ck,ti = p, ck,tj = q)

=
∑

1fi ̸=jfn

P(ck,ti = 1, ck,tj = 2)
∑

1fp ̸=qfm

E
[〈

∇ygp
(

xk, y∗(xk)
)

,∇ygq
(

xk, y∗(xk)
)〉]

f
∑

1fi ̸=jfn

P(ck,ti = 1, ck,tj = 2)E

∥

∥

∥

∥

∥

m
∑

p=1

∇gp(x
k, y∗(xk))

∥

∥

∥

∥

∥

2

= 0,

where the third equality is based on the fact that P(ck,ti = p, ck,tj = q) is constant cross different combination (p, q) and the

last equality is due the optimality condition of the lower level problem. Next we show that for any t ∈ {0, ..., T − 1},

E

[

∥

∥yk,t+1 − y∗(xk)
∥

∥

2
]

f (1− ´k,tµg)E
[

∥

∥yk,t − y∗(xk)
∥

∥

2
]

+
4´2

k,t(Ã
2
g,1 + Ã2

g)

nS
.

Note that

E
∥

∥yk,t+1 − y∗(xk)
∥

∥

2

=E

∥

∥

∥

∥

∥

yk,t − ´k,t

n

n
∑

i=1

Gk,t
i − y∗(xk)

∥

∥

∥

∥

∥

2

=E
∥

∥yk,t − y∗(xk)
∥

∥

2 − 2´k,tE

〈

1

n

n
∑

i=1

Gk,t
i , yk,t − y∗(xk)

〉

+ ´2
k,tE

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Gk,t
i

∥

∥

∥

∥

∥

2

=E
∥

∥yk,t − y∗(xk)
∥

∥

2 − 2´k,tE
〈

∇yg(x
k, yk,t), yk,t − y∗(xk)

〉

+ ´2
k,tE

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Gk,t
i

∥

∥

∥

∥

∥

2

f(1− ´k,tµg)
∥

∥yk,t − y∗(xk)
∥

∥

2 − 2´k,tE
[

g(xk, yk,t)− g(xk, y∗(xk))
]

+ ´2
k,tE

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Gk,t
i

∥

∥

∥

∥

∥

2

, (13)

where Gk,t
i = 1

S

∑S−1
s=0 ∇ygck,t

i
(xk, yk,t; Àk,ti,s ) as defined in Algorithm 1. We use the fact that Gk,t

i is an unbiased gradient

estimator in the third equality and employ the µg-strong convexity of g(x, y) with respect to y in the last inequality. To

bound the last term in Equation (13), we have

E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Gk,t
i

∥

∥

∥

∥

∥

2

=E

∥

∥

∥

∥

∥

1

nS

n
∑

i=1

S−1
∑

s=0

[

∇ygck,t
i
(xk, yk,t; Àk,ti,s )−∇ygck,t

i
(xk, y∗(xk); Àk,ti,s ) +∇ygck,t

i
(xk, y∗(xk); Àk,ti,s )

]

∥

∥

∥

∥

∥

2

f2E

∥

∥

∥

∥

∥

1

nS

n
∑

i=1

S−1
∑

s=0

[

∇ygck,t
i
(xk, yk,t; Àk,ti,s )−∇ygck,t

i
(xk, y∗(xk); Àk,ti,s )

]

∥

∥

∥

∥

∥

2

+ 2E

∥

∥

∥

∥

∥

1

nS

n
∑

i=1

S−1
∑

s=0

[

∇ygck,t
i
(xk, y∗(xk); Àk,ti,s )

]

∥

∥

∥

∥

∥

2

f 2

nS

n
∑

i=1

S−1
∑

s=0

E

∥

∥

∥
∇ygck,t

i
(xk, yk,t; Àk,ti,s )−∇ygck,t

i
(xk, y∗(xk); Àk,ti,s )

∥

∥

∥

2

+
4(Ã2

g,1 + Ã2
g)

nS
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f4lg,1
nS

n
∑

i=1

S−1
∑

s=0

E

[

gck,t
i
(xk, yk,t; Àk,ti,s )− gck,t

i
(xk, y∗(xk); Àk,ti,s )−

〈

∇ygck,t
i
(xk, y∗(xk); Àk,ti,s ), y

k,t − y∗(xk)
〉]

+
4(Ã2

g,1 + Ã2
g)

nS

=4lg,1E
[

g
(

xk, yk,t
)

− g
(

xk, y∗(xk)
)]

+
4(Ã2

g,1 + Ã2
g)

nS
,

where the second inequality uses the previous result of Equation (11) and the third inequality uses Lemma 1 in (Woodworth

et al., 2020b). Plugging this into Equation (13) and enforcing ´k,t f 1
2lg,1

yield

E
∥

∥yk,t+1 − y∗(xk)
∥

∥

2

f(1− ´k,tµg)
∥

∥yk,t − y∗(xk)
∥

∥

2
+ 2´k,t(2´k,tlg,1 − 1)E

[

g(xk, yk,t)− g(xk, y∗(xk))
]

+
4´2

k,t(Ã
2
g,1 + Ã2

g)

nS

f(1− ´k,tµg)
∥

∥yk,t − y∗(xk)
∥

∥

2
+

4´2
k,t(Ã

2
g,1 + Ã2

g)

nS
. (14)

Applying recursion on Equation (14), we obtain

E

[

∥

∥yk,T − y∗(xk)
∥

∥

2
]

f
(

T−1
∏

t=0

(1− ´k,tµg)

)

E

[

∥

∥yk,0 − y∗(xk)
∥

∥

2
]

+
4(Ã2

g,1 + Ã2
g)

nS

T−1
∑

t=0

´2
k,t,

which completes the proof.

Remark 5. In the case of full client participation and the clients are sampled without replacement, from the similar analysis

above, we have

E

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

f
(

T−1
∏

t=0

(1− ´k,tµg)

)

E

[

∥

∥yk − y∗(xk)
∥

∥

2
]

+
4Ã2

g,1

nS

T−1
∑

t=0

´2
k,t.

Especially Assumption 5 is released for this scenario.

Lemma 6. Suppose Assumptions 1 to 4 hold, Algorithm 1 guarantees:

E

[

∥

∥yk+1 − y∗(xk+1)
∥

∥

2
]

fa1(³k)E
[

∥

∥H(xk, yk+1)
∥

∥

2
]

+ a2(³k, n)E
[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+ a3(³k, n)Ã̃
2
f ,

where

a1(³k) := L2
y³

2
k +

Ly³k

4Mf
+

Lyx³
2
k

2¸
,

a2(³k, n) := 1 + 4MfLy³k +
¸LyxD̃

2
f³

2
k

2
,

a3(³k, n) :=
³2
kL

2
y

n
+

Lyx³
2
k

2¸n
,

for any ¸ > 0.

Proof of Lemma 6. Note that

E

[

∥

∥yk+1 − y∗(xk+1)
∥

∥

2
]

= E

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+ E

[

∥

∥y∗(xk+1)− y∗(xk)
∥

∥

2
]

(15a)

+ 2E
[

ïyk+1 − y∗(xk), y∗(xk)− y∗(xk+1)ð
]

. (15b)

17
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To bound the second term of Equation (15a), we have

E

[

∥

∥y∗(xk+1)− y∗(xk)
∥

∥

2
]

fL2
yE

[

∥

∥xk+1 − xk
∥

∥

2
]

fL2
yE

[

∥

∥³kH(xk, yk+1)
∥

∥

2
]

+
³2
kL

2
yÃ̃

2
f

n
.

To bound Equation (15b), we have

E
[

ïyk+1 − y∗(xk), y∗(xk)− y∗(xk+1)ð
]

= −E[ïyk+1 − y∗(xk),∇y∗(xk)(xk+1 − xk)ð] (16a)

− E
[

ïyk+1 − y∗(xk), y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)ð
]

. (16b)

After plugging the updating step of xk into Equation (16a), we have

− E
[〈

yk+1 − y∗(xk),∇y∗(xk)(xk+1 − xk)
〉]

= −E
[〈

yk+1 − y∗(xk), ³k∇y∗(xk)H(xk, yk+1)
〉]

f E
[∥

∥yk+1 − y∗(xk)
∥

∥

∥

∥³k∇y∗(xk)H(xk, yk+1)
∥

∥

]

f LyE
[∥

∥yk+1 − y∗(xk)
∥

∥

∥

∥³kH(xk, yk+1)
∥

∥

]

(a)

f 2µE
[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+
L2
y³

2
k

8µ
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

f 2MfLy³kE

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+
Ly³k

8Mf
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

,

where Young’s inequality is applied in the inequality (a), and the last inequality comes from setting µ = MfLy³k.

Equation (16b) can be further bounded as follows,

− E
[〈

yk+1 − y∗(xk), y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)
〉]

f E
[∥

∥yk+1 − y∗(xk)
∥

∥

∥

∥y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)
∥

∥

]

f Lyx

2
E

[

∥

∥yk+1 − y∗(xk)
∥

∥

∥

∥xk+1 − xk
∥

∥

2
]

f ¸Lyx

4
E

[

∥

∥yk+1 − y∗(xk)
∥

∥

2 ∥
∥xk+1 − xk

∥

∥

2
]

+
Lyx

4¸
E

[

∥

∥xk+1 − xk
∥

∥

2
]

f
¸LyxD̃

2
f³

2
k

4
E

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+
Lyx³

2
k

4¸
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

+
Lyx³

2
kÃ̃

2
f

4¸n
,

where Proposition 2 is applied in the last inequality.

Combining and rearranging the above inequalities complete the proof.

Proof of Theorem 1. Motivated by Chen et al. 2021a; Tarzanagh et al. 2022, we define the following Lyapunov function

W k := f(xk) +
Mf

Ly

∥

∥yk − y∗(xk)
∥

∥

2
.

The difference between the two Lyapunov functions is bounded as

W k+1 −W k = f(xk+1)− f(xk) +
Mf

Ly
(
∥

∥yk+1 − y∗(xk+1)
∥

∥

2 −
∥

∥yk − y∗(xk)
∥

∥

2
).

From Lemma 4 and Lemma 6, we obtain

E
[

W k+1
]

− E
[

W k
]

f³kb
2 +

³2
kLf Ã̃

2
f

n
+ ³kM

2
fE[
∥

∥yk+1 − y∗(xk)
∥

∥

2
]

18
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+ (³2
kLf − ³k

2
)E
[

∥

∥H(xk, yk+1)
∥

∥

2
]

− ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+
a1(³k)Mf

Ly
E

[

∥

∥H(xk, yk+1)
∥

∥

2
]

+
a2(³k, n)Mf

Ly
E

[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

+
a3(³k, n)Mf Ã̃

2
f

Ly

− Mf

Ly
E
[
∥

∥yk − y∗(xk)
∥

∥

]

=³kb
2 + (

³2
kLf

n
+

a3(³k, n)Mf

Ly
)Ã̃2

f − ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]

+ (³2
kLf − ³k

2
+

a1(³k)Mf

Ly
)E
[

∥

∥H(xk, yk+1)
∥

∥

2
]

(17a)

+ (³kM
2
f +

a2(³k, n)Mf

Ly
)E
[

∥

∥yk+1 − y∗(xk)
∥

∥

2
]

− Mf

Ly
E
[∥

∥yk − y∗(xk)
∥

∥

]

. (17b)

Note that Equation (17a) f 0 if

³k f ³̂1 :=
1

2Lf + 4MfLy +
2MfLyx

Ly¸

(18)

We enforce ³k f ³̂1 in the following context.

Based on Lemma 5, Equation (17b) can be further bounded as

Equation (17b) f4(³kM
2
f +

a2(³k, n)Mf

Ly
)
T´2

k,t(Ã
2
g,1 + Ã2

g)

nS

+
Mf

Ly

(

(MfLy³k + a2(³k, n)) (1− ´k,tµg)
T − 1

)

E
[∥

∥yk − y∗(xk)
∥

∥

]

. (19)

If ´k,t f 1
µg

, Equation (19) is nonpositive if

(1 + 5MfLy³k +
¸LyxD̃

2
f³

2
k

2
)(1− ´k,tµg)

T − 1 f 0

⇐ 5MfLy³k +
¸LyxD̃

2
f³

2
k

2
f T´k,tµg

⇐ ´k,t g
(

5MfLy

µg
+

¸LyxD̃
2
f³k

2µg

)

³k

T

For simplicity, we remove the subscript t from ´k,t and enforce

´k = ¯́³k

T

where

¯́ :=
5MfLy

µg
+

¸LyxD̃
2
f ³̂1

2µg
, (20)

which will imply another requirement on ³k since ´k should be less than 1
2lg,1

as a condition of Lemma 5, i.e.,

³k f ³̂2 :=
T

2lg,1 ¯́
. (21)

After rearranging, we obtain

E
[

W k+1
]

− E
[

W k
]

f³kb
2 +

(

³2
kLf

n
+

a3(³k, n)Mf

Ly

)

Ã̃2
f − ³k

2
E

[

∥

∥∇f(xk)
∥

∥

2
]
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+ 4

(

³kM
2
f +

a2(³k, n)Mf

Ly

)

T´2
k(Ã

2
g,1 + Ã2

g)

nS
.

Then telescoping gives

1

K

K−1
∑

k=0

E

[

∥

∥∇f(xk)
∥

∥

2
]

f 2
∑K−1

k=0 ³k

(△w) + 2b2 +
2

∑K−1
k=0 ³k

K−1
∑

k=0

(

³2
kLf

n
+

a3(³k, n)Mf

Ly

)

Ã̃2
f

+
8

∑K−1
k=0 ³k

K−1
∑

k=0

(

³kM
2
f +

a2(³k, n)Mf

Ly

)

T´2
k(Ã

2
g,1 + Ã2

g)

nS
,

where △w := W 0 − E
[

WK
]

. We enforce ³k f
√

n
K ³̂3 for some positive constant ³̂3, which implies

2
∑K−1

k=0 ³k

(△w) = O
(

1

min(³̂1, ³̂2)K
+

1

³̂3

√
nK

)

(22a)

2
∑K−1

k=0 ³k

·
K−1
∑

k=0

(
³2
kLf

n
+

a3(³k, n)Mf

Ly
)Ã̃2

f = O
(

2
∑K−1

k=0 ³k

·
K−1
∑

k=0

³2
k

n

)

= O
(

³̂3√
nK

)

(22b)

8
∑K−1

k=0 ³k

·
K−1
∑

k=0

(³kM
2
f +

a2(³k, n)Mf

Ly
)
T´2

k(Ã
2
g,1 + Ã2

g)

nS
= O

(

4
∑K−1

k=0 ³k

K−1
∑

k=0

³2
k

STn
+

³3
k

STn
+

³4
k

STn

)

= O
(

³̂3

ST
√
nK

+
³̂2
3

STK
+

√
n³̂3

3

STK3/2

)

(22c)

Therefore, we obtain

1

K

K−1
∑

k=0

E

[

∥

∥∇f(xk)
∥

∥

2
]

= O
(

³̂3 + ³̂−1
3√

nK
+

1

min(³̂1, ³̂2)K
+ b2

)

.

Then, the proof is complete.

Proof of Corollary 1. Enforcing ¸ =
Mf

Ly
in Equation (18), Equation (21) and Equation (20), yields ³̂1 = O(»−3

g ),

³̂2 = O(T»−3
g ) and ¯́ = O(»4).

Expanding Equation (22), we have

2
∑K−1

k=0 ³k

(△w) = O(
1

min(³̂1, ³̂2)K
+

1

³̂3

√
nK

)

2
∑K−1

k=0 ³k

·
K−1
∑

k=0

(
³2
kLf

n
+

a3(³k, n)Mf

Ly
)Ã̃2

f

= O
(

2
∑K−1

k=0 ³k

·
K−1
∑

k=0

»3
g³

2
k

n
+

»5
g³

2
k

n

)

= O
(

»5
g³̂3√
nK

)

8
∑K−1

k=0 ³k

·
K−1
∑

k=0

(³kM
2
f +

a2(³k, n)Mf

Ly
)
T´2

k(Ã
2
g,1 + Ã2

g)

nS

= O
(

4
∑K−1

k=0 ³k

·
K−1
∑

k=0

¸ ¯́2

nST
³2
k +

(

M2
f
¯́2

nST
+

¸MfLy
¯́2

nST

)

³3
k +

¸2 ¯́2LyzD̃
2
f

nST
³4
k

)

= O
(

4
∑K−1

k=0 ³k

·
K−1
∑

k=0

»9
g

nST
³2
k +

»12
g

nST
³3
k +

»15
g

nST
³4
k

)
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= O
(

»9
g

ST
√
nK

³̂3 +
»12
g

STK
³̂2
3 +

»15
g

√
n

STK3/2
³̂3
3

)

After enforcing ST = Ω(»4), ³̂3 = O
(

»
−5/2
g

)

, and N = Ω(»g logK), which implies b = 1
K1/4 , we have

1

K

K−1
∑

k=0

E

[

∥

∥∇f(xk)
∥

∥

2
]

= O
(

»
5/2
g√
nK

+
»3
g

K
+

»
7/2
g

√
n

K3/2

)

.

Then, the proof is complete.
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