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Abstract

Federated bilevel optimization (FBO) has shown great potential recently in machine
learning and edge computing due to the emerging nested optimization structure in
meta-learning, fine-tuning, hyperparameter tuning, etc. However, existing FBO
algorithms often involve complicated computations and require multiple sub-loops
per iteration, each of which contains a number of communication rounds. In
this paper, we propose a simple and flexible FBO framework named SimFBO,
which is easy to implement without sub-loops, and includes a generalized server-
side aggregation and update for improving communication efficiency. We further
propose System-level heterogeneity robust FBO (ShroFBO) as a variant of SimFBO
with stronger resilience to heterogeneous local computation. We show that SimFBO
and ShroFBO provably achieve a linear convergence speedup with partial client
participation and client sampling without replacement, as well as improved sample
and communication complexities. Experiments demonstrate the effectiveness of
the proposed methods over existing FBO algorithms.

1 Introduction

Recent years have witnessed significant progress in a variety of emerging areas including meta-
learning and fine-tuning [11, 52], automated hyperparameter optimization [13, 10], reinforcement
learning [31, 21], fair batch selection in machine learning [54], adversarial learning [76, 40], AI-
aware communication networks [27], fairness-aware federated learning [75], etc. These problems
share a common nested optimization structure, and have inspired intensive study on the theory
and algorithmic development of bilevel optimization. Prior efforts have been taken mainly on
the single-machine scenario. However, in modern machine learning applications, data privacy
has emerged as a critical concern in centralized training, and the data often exhibit an inherently
distributed nature [70]. This highlights the importance of recent research and attention on federated
bilevel optimization, and has inspired many emerging applications including but not limited to
federated meta-learning [9], hyperparameter tuning for federated learning [25], resource allocation
over communication networks [27] and graph-aided federated learning [71], adversarial robustness on
edge computing [46], etc. In general, the federated bilevel optimization problem takes the following
mathematical formulation.

min
x∈Rp

Φ(x) = F
(
x, y∗(x)

)
:=

n∑

i=1

pifi(x, y
∗(x)) =

n∑

i=1

piEξ

[
fi
(
x, y∗(x); ξi

)]

s.t. y∗(x) = argmin
y∈Rq

G(x, y) :=

n∑

i=1

pigi(x, y) =

n∑

i=1

piEζ

[
gi(x, y; ζi)

]
(1)
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Figure 1: Comparison of AID-based federated hypergradient estimation (FHE) in FedNest [65] (left),
ITD-based FHE in AggITD [69] (middle) and our proposed SimFBO (right) at each iteration.

where n is the total number of clients, the outer- and inner-functions fi(x, y) and gi(x, y) for each
client i take the expectation forms w.r.t. the random variables ξi and ζi, and are jointly continuously
differentiable. However, efficiently solving the federated problem in eq. (1) suffers from several
main challenges posed by the federated hypergradient (i.e., ∇Φ(x)) computation that contains
the second-order global Hessian-inverse matrix, the lower- and upper-level data and system-level
heterogeneity, and the nested optimization structure. To address these issues, [25, 65, 24, 22] proposed
approximate implicit differentiation (AID)-based federated bilevel algorithms, which applied the idea
of non-federated AID-based estimate in [15] to the federated setting, and involve two sub-loops for
estimating the global lower-level solution y∗(x) and the Hessian-inverse-vector product, respectively.
[69] then proposed AggITD by leveraging the idea of iterative differentiation, which improved the
communication efficiency of AID-based approaches by synthesizing the lower-level optimization and
the hypergradient computation into the same communication sub-loop. However, some limitations
still remain in these approaches.

• First, the sub-loops, each with a large number of communication rounds, often compute products
of a series of matrix-vector products, and hence can complicate the implementation and increase
the communication cost.

• Second, the practical client sampling without replacement has not been studied in these methods
due to challenges posed by the nested structure of AID- and ITD-based federated hypergradient
estimators.

• Third, as observed in the single-level federated learning [67], in the presence of heterogeneous
system capabilities such as diverse computing power and storage, clients can take a variable
number of local updates or use different local optimizers, which may make these FBO algorithms
converge to the stationary point of a different objective.

1.1 Our Contributions

In this paper, we propose a communication-efficient federated bilevel method named SimFBO, which
is simple to implement without sub-loops, flexible with a generalized server-side update, and resilient
to system-level heterogeneity. Our specific contributions are summarized below.

A simple and flexible implementation. As illustrated in Figure 1, differently from AID- and
ITD-based approaches that contain multiple sub-loops of communication rounds at each iteration,
our proposed SimFBO is simpler with a single communication round per iteration, in which three
variables y, x and v are updated simultaneously for optimizing the lower- and upper-level problems,
and approximating the Hessian-inverse-vector product. SimFBO also includes a generalized server-
side update on x, y, v, which accommodates the client sampling without replacement, and allows for
a flexible aggregation to improve the communication efficiency.

Resilient server-side updates to system-level heterogeneity. In the presence of heterogeneous
local computation, we show that the naive server-side aggregation can lead to the convergence
to a stationary point of a different objective. To this end, we propose System-level heterogeneity
robust FBO (ShroFBO) building on a normalized version of the generalized server-side update with
correction, which provably converges to a stationary point of the original objective.
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Algorithm
System-level
heterogeneity

Partial
participation

Without
replacement

Linear
speedup

Samples
complexity

Communication
complexity

FedNest [65] ✗ ✗ ✗ ✗ O(ϵ−2) O(ϵ−2)

FBO-AggITD [69] ✗ ✗ ✗ ✗ O(ϵ−2) O(ϵ−2)

FedBiO [36] ✗ ✗ ✗ ✓ O(ϵ−2.5n−1) O(ϵ−1.5)

FedMBO [24] ✗ ✓ ✗ ✓ O(ϵ−2P−1) O(ϵ−2)

SimFBO (this paper) ✗ ✓ ✓ ✓ O(ϵ−2P−1) O(ϵ−1)

ShroFBO (this paper) ✓ ✓ ✓ ✓ O(ϵ−2P−1) O(ϵ−1)

Table 1: Comparison of different federated bilevel algorithms in the setting with heterogeneous data.
We do not include the methods with momentum-based acceleration for a fair comparison. P ≤ n is
the number of sampled clients in each communication round.

Convergence analysis and improved complexity. As shown in Table 1, our SimFBO and ShroFBO
both achieve a sample complexity (i.e., the number of samples needed to reach an ϵ-accurate stationary
point) of O(ϵ−2P−1), which matches the best result obtained by FedMBO [24] but under a more
practical client sampling without replacement. Moreover, SimFBO and ShroFBO both achieve the
best communication complexity (i.e., the number of communication rounds to reach an ϵ-accurate

stationary point) ofO(ϵ−1), which improves those of other methods by an order of ϵ−1/2. Technically,
we develop novel analysis in characterizing the client drifts by the three variables, bounding the
per-iteration progress in the global y and v updates, and proving the smoothness and bounded variance
in local v updates via induction, which may be of independent interest.

Superior performance in practice. In the experiments, the proposed SimFBO method significantly
improves over existing strong federated bilevel baselines such as AggITD, FedNest and LFedNest
in both the i.i.d. and non-i.i.d. settings. We also validate the better performance of ShroFBO in the
presence of heterogeneous local computation due to the resilient server-side updates.

2 SimFBO: A Simple and Flexible Framework

2.1 Preliminary: Federated Hypergradient Computation

The biggest challenge in FBO is to compute the federated hypergradient ∇Φ(x) due to the implicit
and complex dependence of y∗(x) on x. Under suitable assumptions and using the implicit function
theorem in [18], it has been shown that the ∇Φ(x) takes the form of

∇Φ(x) =

n∑

i=1

pi∇xfi(x, y
∗)−∇2

xyG(x, y
∗)
[
∇2

yyG(x, y
∗)
]−1

n∑

i=1

pi∇yfi(x, y
∗)

which poses several computational challenges in the federated setting. First, the second term at
the right-hand side contains three global components in a nonlinear manner, and hence the direct
aggregation of local hypergradients given by

n∑

i=1

pi
(
∇xfi(x, y

∗)−∇2
xygi(x, y

∗)
[
∇2

yygi(x, y
∗)
]−1
∇yfi(x, y

∗)
)

is a biased estimation of ∇Φ(x) due to the client drift. Second, it is infeasible to compute, store and
communicate the second-order Hessian-inverse and Jacobian matrices due to the limited computing
and communication resource. Although various AID- and ITD-based approaches have been proposed
to address these challenges, they still suffer from several limitations (as we point out in the introduc-
tion) such as complicated implementation, high communication cost, lack of client sampling without
replacement, and vulnerability to the system-level heterogeneity. To this end, we propose a simple,
flexible and communication-efficient FBO framework named SimFBO in this section.

2.2 Federated Hypergradient Surrogate

To estimate the federated hypergradient efficiently, we use the surrogate ∇̄F (x, y, v) = ∇xF (x, y)−
∇2

xyG(x, y)v, where v ∈ Rdy is an auxiliary vector. Then, it suffices to find y and v as efficient
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estimates of the solutions to the global lower-level problem and the global linear system (LS)
∇2

yyG(x, y)v = ∇yF (x, y) that is equivalent to solving following quadratic programming.

min
v

R(x, y, v) =
1

2
vT∇2

yyG(x, y)v − v
T∇yF (x, y)

=
n∑

i=1

pi
( 1
2
vT∇2

yygi(x, y)v − v
T∇yfi(x, y)

︸ ︷︷ ︸
Ri(x,y,v)

)
, (2)

where Ri(x, y, v) can be regarded as the loss function of client i for solving this global LS problem.
Based on this surrogate, we next describe the proposed SimFBO framework.

2.3 Simple Local and Server-side Aggregations and Updates

Simple local update. Differently from FedNest [65] and AggITD [69] that perform the lower-level
optimization, the federated hypergradient estimation and the upper-level update alternatively in
different communication sub-loops, our SimFBO conducts the simple updates on all these three
procedures simultaneously in each communication round. In specific, each communication round

t first selects a subset C(t) of participating clients without replacement. Then, each active client

i ∈ C(t) updates three variables y, v, x at kth local iteration simultaneously as




y
(t,k+1)
i

v
(t,k+1)
i

x
(t,k+1)
i


←




y
(t,k)
i

v
(t,k)
i

x
(t,k)
i


− a

(t,k)
i




ηy∇ygi
(
x
(t,k)
i , y

(t,k)
i ; ζ

(t,k)
i

)

ηv∇vRi

(
x
(t,k)
i , y

(t,k)
i , v

(t,k)
i ;ψ

(t,k)
i

)

ηx∇̄fi
(
x
(t,k)
i , y

(t,k)
i , v

(t,k)
i ; ξ

(t,k)
i

)


 (3)

where ηy , ηv , ηx correspond to the local stepsizes, a
(t,k)
i is a client-specific coefficient to increase the

flexibility of the framework, ζ
(t,k)
i , ψ

(t,k)
i , ξ

(t,k)
i are independent samples, and the local hypergradient

estimate takes the form of ∇̄fi
(

x, y, v; ξ
)

= ∇xfi
(

x, y; ξ
)

−∇2
xygi

(

x, y; ξ
)

vi. The variables y, v and
x in eq. (3), which optimize the lower-level problem, the LS problem and the upper-level problem,

are updated with totally τ
(t)
i local steps. Note that the updates in eq. (3) also allow for parallel

computation on x, v and y locally.

Local and server-side aggregation. After completing all local updates, the next step is to aggregate
such local information on both the client and server sides. As shown in eq. (4), each participating

client i ∈ C(t) aggregates all the local gradients, and then communicate the aggregations q
(t)
y,i, q

(t)
v,i

and q
(t)
x,i to the server. Then, on the server side, such local information is further aggregated to be

q
(t)
y , q

(t)
v and q

(t)
x , which will be used for a subsequent generalized server-side update.

q(t)y =
∑

i∈C(t)

p̃iq
(t)
y,i =

∑

i∈C(t)

p̃i

τi−1∑

k=0

a
(t,k)
i ∇ygi

(
x
(t,k)
i , y

(t,k)
i ; ζ

(t,k)
i

)
,

q(t)v =
∑

i∈C(t)

p̃iq
(t)
v,i =

∑

i∈C(t)

p̃i

τi−1∑

k=0

a
(t,k)
i ∇vRi

(
x
(t,k)
i , y

(t,k)
i v

(t,k)
i ;ψ

(t,k)
i

)
,

q(t)x =
∑

i∈C(t)

p̃iq
(t)
x,i

︸ ︷︷ ︸
Server aggregation

=
∑

i∈C(t)

p̃i

τi−1∑

k=0

a
(t,k)
i ∇̄fi

(
x
(t,k)
i , y

(t,k)
i , v

(t,k)
i ; ξ

(t,k)
i

)

︸ ︷︷ ︸
Local aggregation

, (4)

where p̃i :=
n

|C(t)|pi is the effective weight of client i ∈ C(t) among all participating clients such

that E(
∑

i∈C(t) p̃i) = 1. Note that in eq. (4), the local aggregation q
(t)
y,i (similarly for v and x) can

be regarded as a linear combination of all local stochastic gradients, and hence covers a variety of
local optimizers such as stochastic gradient descent, momentum-based gradient, variance reduction

by choosing different coefficients a
(t,k)
i for i ∈ C(t). This substantially enhances the flexibility of the

proposed framework.
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Algorithm 1 SimFBO and ShroFBO

1: Input: initialization y
(0),v(0),x(0), number of communication rounds T , learning rates: client {ηy, ηv, ηx},

server: {γy, γv, γx}, local update rounds: {τ
(t)
i }

2: for t = 0, 1, 2, ..., T do

3: for i ∈ C(t) in parallel do

4: y
(t,0)
i = y(t), v

(t,0)
i = v(t), x

(t,0)
i = x(t)

5: for k = 0, 1, 2, ..., τ
(t)
i − 1 do

6: Locally update y
(t,k)
i , v

(t,k)
i and x

(t,k)
i simultaneously via eq. (3)

7: end for

8: Client i locally aggregates gradients to compute q
(t)
y,i, q

(t)
v,i, q

(t)
x,i via eq. (4)

9: Client i locally aggregates gradients to compute h
(t)
y,i, h

(t)
v,i, h

(t)
x,i defined in eq. (6)

10: end for

11: Client i ∈ C(t) communicate {q
(t)
y,i, q

(t)
v,i, q

(t)
x,i} or {h

(t)
y,i, h

(t)
v,i, h

(t)
x,i} to the server

12: Server aggregates local estimators to compute {q
(t)
y , q

(t)
v , q

(t)
x } using eq. (4)

13: Server aggregates local estimators to compute {h
(t)
y , h

(t)
v , h

(t)
x } using eq. (7)

14: Server updates using eq. (5)

15: Server updates using eq. (8)

16: end for

Server-side updates. Based on the aggregated gradients q
(t)
y , q

(t)
v and q

(t)
x , we then perform server-

level gradient-based updates on variables x, v and y simultaneously as

y(t+1) = y(t) − γyq
(t)
y , v(t+1) = Pr

(
v(t) − γvq

(t)
v

)
, x(t+1) = x(t) − γxq

(t)
x , (5)

where γy, γv and γx are server-side updating stepsizes for y, v, x and Pr(v) := min
{
1, r

∥v∥
}
v is a

simple projection on a bounded ball with a radius of r. There are a few remarks about the updates
in eq. (5). First, in contrast to existing FBO algorithms such as [65, 69], our introduced server-side
updates leverage not only the client-side stepsizes ηy, ηv, ηx, but also the server-side stepsizes γy, γv
and γx. This generalized two-learning-rate paradigm can provide more algorithmic and theoretical
flexibility, and provides improved communication efficiency in practice and in theory. Second, the

projection Pr(·) serves as an important step to ensure the boundedness of variable v(t), and hence
guarantee the smoothness of the global LS problem and the boundedness of the estimation variance in
v and x updates, both of which are crucial and necessary in the final convergence analysis. Note that

we do not impose such projection on the local v
(t,k)
i variables because we can prove via induction

that they are bounded given the boundedness of v(t) (see Proposition 1).

2.4 Resilient Server-side Updates against System-level Heterogeneity

Limitations under system-level heterogeneity. When clients have heterogeneous computing and
storing capabilities (e.g., computer server v.s. phone in edge computing), an unequal number of
local updates are often performed such that the global solution can be biased toward those of the
clients with much more local steps or stronger optimizers. As observed in [67], this heterogeneity can
deviate the iterates to minimize a different objective function. To explain this mismatch phenomenon,
inspired by [57], we rewrite the server-side update on x (similarly for v and y) in eq. (4) as

q(t)x =

n∑

i=1

piq
(t,k)
i =

( n∑

j=1

pj∥a
(t)
j ∥1

)

︸ ︷︷ ︸
ρ(t)

n∑

i=1

pi∥a
(t)
i ∥1∑n

j=1 pj∥a
(t)
j ∥1︸ ︷︷ ︸

wi

q
(t)
x,i

∥a
(t)
i ∥1︸ ︷︷ ︸
h
(t)
x,i

. (6)

where a
(t)
i =

[

a
(t,0)
i , ..., a

(t,τ
(t)
i

−1)

i

]T
collects all local coefficients of client i, and h

(t)
x,i normalizes

the aggregated gradient q
(t)
x,i by 1/∥a

(t)
i ∥1 such that ∥h

(t)
x,i∥ does not grow with the increasing of τ

(t)
i .
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Although such normalization can help to mitigate the system-level heterogeneity, the effective weight
wi can deviate from the true weight pi of the original objective in eq. (1), and the iterates converge to
the stationary point of a different objective that replaces all pi by wi in eq. (1) (see Theorem 1).

System-level heterogeneity robust FBO (ShroFBO). To address this convergence issue, we then
propose a new method named ShroFBO with stronger resilience to such heterogeneity. Motivated by
the normalized reformulation in eq. (6), ShroFBO adopts a different server-side aggregation as

h(t)y =
∑

i∈C(t)

p̃ih
(t)
y,i, h(t)v =

∑

i∈C(t)

p̃ih
(t)
v,i, h(t)x =

∑

i∈C(t)

p̃ih
(t)
x,i, (7)

where p̃i := n
|C(t)|pi and h

(t)
y,i, h

(t)
v,i, h

(t)
x,i are the normalized local aggregations defined in eq. (6).

Accordingly, the server-side updates become

y(t+1) = y(t) − ρ(t)γyh
(t)
y , v(t+1) = Pr

(
v(t) − ρ(t)γvh

(t)
v

)
, x(t+1) = x(t) − ρ(t)γxh

(t)
x . (8)

Differently from eq. (6), we select the client weights to be p̃i to enforce the correct convergence to
the stationary point of the original objective in eq. (1), as shown in Theorem 2 later.

3 Main Result

3.1 Assumptions and Definitions

We make the following standard definitions and assumptions for the outer- and inner-level objective
functions, as also adopted in stochastic bilevel optimization [26, 21, 30] and in federated bilevel
optimization [65, 69, 24].

Definition 1. A mapping F is L-Lipschitz continuous if for ∀ z, z′, ∥F (z)− F (z′)∥ ≤ L∥z − z′∥.

Since the overall objective Φ(x) is nonconvex, the goal is expected to find an ϵ-accurate stationary
point defined as follows.

Definition 2. We say z is an ϵ-accurate stationary point of the objective function Φ(x) if
E∥∇Φ(z)∥2 ≤ ϵ, where z is the output of an algorithm.

Assumption 1. For any x ∈ R
dx , y ∈ R

dy and i ∈ {1, 2, ..., n}, fi(x, y) and gi(x, y) are twice
continuously differentiable, and gi(x, y) is µg-strongly convex w.r.t. y.

The following assumption imposes the Lipschitz continuity conditions on the upper- and lower-level
objective functions and their derivatives.

Assumption 2. Function fi(x, y) is Lf -Lipschitz continuous; the gradients∇fi(x, y) and∇gi(x, y)
are L1-Lipschitz continuous; the second-order derivatives ∇2fi(x, y) and ∇2gi(x, y) are L2-
Lipschitz continuous; and the third-order derivatives ∇3gi(x, y) is L3-Lipschitz continuous for
some constants Lf , L1, L2, L3 > 0.

The Lipschitz continuity of the third-order derivative is necessary here to ensure the smoothness of
v∗(x), which guarantees the descent in the iterations of LS function (see Lemma 10), under our more
challenging simultaneous and single-loop updating structure. Next, we assume the bounded variance
conditions on the gradients and second-order derivatives.

Assumption 3. There exist constants σ2
f , σ2

g , σ
2
gg such that E

[
∥∇fi(x, y)−∇fi(x, y; ξ)∥

2
]
≤ σ2

f ,

E
[
∥∇gi(x, y)−∇gi(x, y; ζ)∥

2
]
≤ σ2

g and E
[
∥∇2gi(x, y)−∇

2gi(x, y; ζ)∥
2
]
≤ σ2

gg .

Assumption 4. For any x ∈ R
dx , y ∈ R

dy , there exist constants βgh ≥ 1 and σgh ≥ 0 such that

n∑

i=1

wi∥∇ygi(x, y)∥
2 ≤ β2

gh∥

n∑

i=1

wi∇ygi(x, y)∥
2 + σ2

gh.

We have βgh = 1, and σgh = 0 when all gi’s are identical.

This assumption of global heterogeneity uses βgh and σgh to measure the dissimilarity of ∇ygi(x, y)
for all i.
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3.2 Convergence and Complexity Analysis

It can be seen from eq. (2) that the boundedness of v is necessary to guarantee the smoothness
(w.r.t. x, y) and bounded variance in solving the local and global LS problems. Projecting the global

v(t) vector and the local v
(t,k)
i , k ≥ 1 vectors onto a bounded set can be a feasible solution, but in

this case, the local aggregation q
(t)
v,i is no longer a linear combination of local gradients. This can

complicate the implementation and analysis, and degrade the flexibility of the framework. Fortunately,

we show via induction that the projection of the server-side vector v(t) on a bounded set suffices to

guarantee the boundedness of local vectors vt,ki .

Proposition 1 (Boundedness of Local v). Under Assumptions 1 and 2, for each iteration t, client

i, and local iteration k = 1, 2, ..., τ
(t)
i , we have ri := ∥v

(t,k)
i ∥ ≤

(
1 + αmax

αmin

)
r, where the radius

r =
Lf

µg
and αmin, αmax are chosen such that αmin ≤ a

(t,k)
i ≤ αmax.

Next, we show an important proposition in characterizing the per-iteration progress of the global

v(t) updates in approximating the solution of a reweighted global LS problem. Let ∆
(t)
v = E∥v(t) −

ṽ∗(x(t))∥2 denote the approximation error, where ṽ∗ be the minimizer of
∑n

i=1 wiRi(x, ỹ
∗, ·).

Proposition 2. Under the Assumption 1, 2 and 3, the iterates v(t) in solving the global LS problem
generated by Algorithm 1 satisfy

E∥v(t+1) − ṽ∗(x(t+1))∥2 − E∥v(t) − ṽ∗(x(t))∥2

≤(δ′t − ρ
(t)γvµg − δ

′
tρ

(t)γvµg)E∥v
(t) − ṽ∗(x(t))∥2 + (1 + δ′t)(ρ

(t)γv)
2
E

∥∥∥
∑

i∈C(t)

w̃ih
(t)
v,i

∥∥∥
2

+ (1 + δ′t)ρ
(t)γv

4L2
R

µg
E
∥∥y(t) − ỹ∗(x(t))

∥∥2 +
(
ρ(t)γx

)2
(
L2
v +

Lvx

4

)
E

∥∥∥∥
∑

i∈C(t)

w̃ih
(t)
x,i

∥∥∥∥
2

+ (1 + δ′t)ρ
(t)γv

4L2
R

µg

n∑

i=1

wi

τi−1∑

k=0

a
(t,k)
i

∥a
(t)
i ∥1

E

[∥∥x(t) − x(t,k)i

∥∥2 +
∥∥y(t) − y(t,k)i

∥∥2

+
∥∥v(t) − v(t,k)i

∥∥2
]
+ (ρ(t)γx)

2 2Lv

δ′t,1
E

∥∥∥
n∑

i=1

wih̃
(t)
x,i

∥∥∥
2

.

for all t ∈ {0, 1, ..., T − 1}, k ∈ {0, 1, ..., τ
(t)
i − 1} and i ∈ {1, 2, ..., n}, where w̃i :=

n
|C(t)|wi.

Similarly, we can provide a per-iteration process of y(t) in approximating the solution ỹ∗ of the
reweighted lower-level global function

∑n
i=1 wigi(x, ·). Note that such characterizations do not exist

in previous studies in single-level or minimax federated optimization with a single objective (e.g.,
[57]) because our analysis needs to handle three different lower-level, LS and upper-level objectives.

As shown in Proposition 2, the bound involves the client drift term E∥v(t) − v
(t,k)
i ∥2 (similarly for

y, x), so the next step is to characterize this important quantity.

Proposition 3. Under Assumption 1 and 2, the local iterates client drift of v
(t,k)
i is bounded as

n∑

i=1

wi
1

∥a
(t)
i ∥1

τi−1∑

k=1

a
(t,k)
i E∥v

(t,k)
i − v(t)∥2 ≤ η2v τ̄σ

2
M1,

for all t ∈ {0, 1, ..., T − 1}, k ∈ {0, 1, ..., τi − 1} and i ∈ {1, 2, ..., n}. We define τ̄ :=
∑n

i=1 τi/n
and σ2

M1 := α2
max(σ

2
f + r2maxσ

2
gg) + αmax(L

2
f + r2maxL

2
1).

It can be seen from Proposition 3 that the bound on the client drift of the local updates on v is

proportional to ηv and ∥a
(t)
i ∥1. Since αmin ≤ a

(t,k)
i ≤ αmax, ∥a

(t)
i ∥1 is proportional to the number

τ
(t)
i of local steps. Thus, this client drift is controllable by choosing τ

(t)
i and the local stepsizes ηv

properly. Then, combining the results in the above Proposition 1, 2, 3, and under a proper Lyapunov

function, we obtain the following theorem. Let P = |C(t)| be the number of sampled clients.
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Theorem 1. Define Φ̃(x) = F̃ (x, ỹ∗) as the objective function by replacing pi in eq. (1) with wi.
Suppose Assumptions 1, 2 and 3 are satisfied. The iterates by SimFBO in Algorithm 1 satisfy

min
t

E

∥∥∥∇Φ̃(x(t))
∥∥∥
2

= O
(M1(n− P )

n

√
τ̄

PT

)

︸ ︷︷ ︸
partial participation error

+ O
(
M2

√
1

P τ̄T

)

︸ ︷︷ ︸
full synchronization error

+ O
(M3

τ̄T

)

︸ ︷︷ ︸
local updates error

, (9)

where γx, γy , γv , ηx, ηy , ηv are set in eq. (38) and M1, M2, M3 are defined by eq. (40) in appendix.

For the full client participation (i.e., P = n), the sample complexity is τ̄T = O(n−1ϵ−2), and
the number of communication rounds is T = O(ϵ−1). For partial client participation, the sample
complexity is τ̄T = O(P−1ϵ−2), and the number of communication rounds is T = O(P−1ϵ−2).

First, when set τ̄ = O(1), Theorem 1 shows that SimFBO converges to a stationary point of an

objective function Φ̃(x) with a rate of O( 1√
PT

+ 1
T ), which, to the best of our knowledge, is the first

linear speedup result under partial client participation without replacement. Note that without system-

level heterogeneity, i.e., ∥a
(t)
1 ∥ = ... = ∥a

(t)
n ∥, wi =

pi∥a(t)
i

∥1
∑

n
j=1 pj∥a(t)

j
∥1

= pi, and hence SimFBO

converges to the stationary point of the original objective in eq. (1). However, in the presence of
system-level heterogeneity, SimFBO may converge to the stationary point of a different objective.
Second, when nearly full clients participate, the partial participation error is approximately zero.
Then we can see that setting local update round τ̄ to its upper-bound results in the best performance.

Theorem 2. Define Φ(x) = F (x, y∗) as eq. (1). Suppose Assumptions 1, 2 and 3 are satisfied. The
iterates generated by ShroFBO in Algorithm 1 satisfy

min
t

E

∥∥∥∇Φ(x(t))
∥∥∥
2

= O
(M1(n− P )

n

√
τ̄

PT

)
+O

(
M2

√
1

P τ̄T

)
+O

(M3

τ̄T

)
, (10)

by setting the same server-side and local stepsizes and M1, M2 and M3 as in Theorem 1. For full
client participation, the sample complexity is τ̄T = O(n−1ϵ−2), and the number of communication
rounds is T = O(ϵ−1). For partial client participation, the sample complexity is τ̄T = O(P−1ϵ−2),
and the number of communication rounds is T = O(P−1ϵ−2).

In Theorem 2, we show that even under the system-level heterogeneity, ShroFBO can converge to
the original objective function with the same convergence rate as SimFBO. This justifies the design
principle of robust server-side updates.

4 Related Work

Bilevel optimization. Bilevel optimization, first introduced by [3], has been studied for decades.
A class of constraint-based bilevel methods was then proposed [20, 16, 59, 61], whose idea is to
replace the lower-level problem by the optimality conditions. Gradient-based bilevel algorithms
have attracted considerable attention due to the effectiveness in machine learning. Among them,
AID-based approaches [8, 51, 38, 1] leveraged the implicit derivation of the hypergradient, which
was then approximated via solving a linear system. ITD-based approaches [45, 12, 11, 56, 17]
approximated the hypergradient based on automatic differentiation via the forward or backward mode.
A group of stochastic bilevel approaches has been developed and analyzed recently based on Neumann
series [5, 26, 1], recursive momentum [72, 23, 19] and variance reduction [72, 7], etc. For the lower-
level problem with multiple solutions, several approaches were proposed based on the upper- and
lower-level gradient aggregation [55, 43, 34], barrier types of regularization [41, 39], penalty-based
formulations [58], primal-dual technique [62], and dynamic system-based methods [42].

Federated (bilevel) learning. Federated Learning was proposed to enable collaborative model train-
ing across multiple clients without compromising the confidentiality of individual data [32, 60, 49].
As one of the earliest methods of federated learning [47], FedAvg has inspired an increasing number
of approaches to deal with different limitations such as slower convergence, high communication
cost and undesired client drift by leveraging the techniques including proximal regularization [37],
periodic variance reduction [48, 28], proximal splitting [50], adaptive gradients [53]. Theoretically,
the convergence of FedAvg and its variants has been analyzed in various settings with the homo-
geneous [63, 68, 64, 2] or heterogeneous datasets [37, 66, 48, 29]. [67] analyzed the impact of the
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