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Abstract

Federated bilevel optimization (FBO) has shown great potential recently in machine
learning and edge computing due to the emerging nested optimization structure in
meta-learning, fine-tuning, hyperparameter tuning, etc. However, existing FBO
algorithms often involve complicated computations and require multiple sub-loops
per iteration, each of which contains a number of communication rounds. In
this paper, we propose a simple and flexible FBO framework named SimFBO,
which is easy to implement without sub-loops, and includes a generalized server-
side aggregation and update for improving communication efficiency. We further
propose System-level heterogeneity robust FBO (ShroFBO) as a variant of SimFBO
with stronger resilience to heterogeneous local computation. We show that SimFBO
and ShroFBO provably achieve a linear convergence speedup with partial client
participation and client sampling without replacement, as well as improved sample
and communication complexities. Experiments demonstrate the effectiveness of
the proposed methods over existing FBO algorithms.

1 Introduction

Recent years have witnessed significant progress in a variety of emerging areas including meta-
learning and fine-tuning [11, 52], automated hyperparameter optimization [13, 10], reinforcement
learning [31, 21], fair batch selection in machine learning [54], adversarial learning [76, 40], Al-
aware communication networks [27], fairness-aware federated learning [75], etc. These problems
share a common nested optimization structure, and have inspired intensive study on the theory
and algorithmic development of bilevel optimization. Prior efforts have been taken mainly on
the single-machine scenario. However, in modern machine learning applications, data privacy
has emerged as a critical concern in centralized training, and the data often exhibit an inherently
distributed nature [70]. This highlights the importance of recent research and attention on federated
bilevel optimization, and has inspired many emerging applications including but not limited to
federated meta-learning [9], hyperparameter tuning for federated learning [25], resource allocation
over communication networks [27] and graph-aided federated learning [71], adversarial robustness on
edge computing [46], etc. In general, the federated bilevel optimization problem takes the following
mathematical formulation.
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Figure 1: Comparison of AID-based federated hypergradient estimation (FHE) in FedNest [65] (left),
ITD-based FHE in AggITD [69] (middle) and our proposed SimFBO (right) at each iteration.

where n is the total number of clients, the outer- and inner-functions f;(z,y) and g;(z, y) for each
client ¢ take the expectation forms w.r.t. the random variables &; and ¢;, and are jointly continuously
differentiable. However, efficiently solving the federated problem in eq. (1) suffers from several
main challenges posed by the federated hypergradient (i.e., V®(z)) computation that contains
the second-order global Hessian-inverse matrix, the lower- and upper-level data and system-level
heterogeneity, and the nested optimization structure. To address these issues, [25, 65, 24, 22] proposed
approximate implicit differentiation (AID)-based federated bilevel algorithms, which applied the idea
of non-federated AID-based estimate in [15] to the federated setting, and involve two sub-loops for
estimating the global lower-level solution y* () and the Hessian-inverse-vector product, respectively.
[69] then proposed AggITD by leveraging the idea of iterative differentiation, which improved the
communication efficiency of AID-based approaches by synthesizing the lower-level optimization and
the hypergradient computation into the same communication sub-loop. However, some limitations
still remain in these approaches.

e First, the sub-loops, each with a large number of communication rounds, often compute products
of a series of matrix-vector products, and hence can complicate the implementation and increase
the communication cost.

e Second, the practical client sampling without replacement has not been studied in these methods
due to challenges posed by the nested structure of AID- and ITD-based federated hypergradient
estimators.

e Third, as observed in the single-level federated learning [67], in the presence of heterogeneous
system capabilities such as diverse computing power and storage, clients can take a variable
number of local updates or use different local optimizers, which may make these FBO algorithms
converge to the stationary point of a different objective.

1.1 Our Contributions

In this paper, we propose a communication-efficient federated bilevel method named SimFBO, which
is simple to implement without sub-loops, flexible with a generalized server-side update, and resilient
to system-level heterogeneity. Our specific contributions are summarized below.

A simple and flexible implementation. As illustrated in Figure 1, differently from AID- and
ITD-based approaches that contain multiple sub-loops of communication rounds at each iteration,
our proposed SimFBO is simpler with a single communication round per iteration, in which three
variables y, x and v are updated simultaneously for optimizing the lower- and upper-level problems,
and approximating the Hessian-inverse-vector product. SimFBO also includes a generalized server-
side update on z, y, v, which accommodates the client sampling without replacement, and allows for
a flexible aggregation to improve the communication efficiency.

Resilient server-side updates to system-level heterogeneity. In the presence of heterogeneous
local computation, we show that the naive server-side aggregation can lead to the convergence
to a stationary point of a different objective. To this end, we propose System-level heterogeneity
robust FBO (ShroFBO) building on a normalized version of the generalized server-side update with
correction, which provably converges to a stationary point of the original objective.



Algorithm hSystem—lev_el P.aftia14 Without Linear Sample_s Communicgtion
eterogeneity | participation | replacement | speedup complexity complexity
FedNest [65] X X X X O(e7?) O(e™2)
FBO-AggITD [69] X X X X O(e72) O(e™2)
FedBiO [36] X X X v O(e=25p71) O(e19)
FedMBO [24] X v X v O(eszfl) 0(6*2)
SimFBO (this paper) X v v v/ O(e 2P O(e™h)
ShroFBO (this paper) v v v v O(e 2P 1) O(e 1)

Table 1: Comparison of different federated bilevel algorithms in the setting with heterogeneous data.
We do not include the methods with momentum-based acceleration for a fair comparison. P < n is
the number of sampled clients in each communication round.

Convergence analysis and improved complexity. As shown in Table 1, our SimFBO and ShroFBO
both achieve a sample complexity (i.e., the number of samples needed to reach an e-accurate stationary
point) of O(¢=2P~1), which matches the best result obtained by FedMBO [24] but under a more
practical client sampling without replacement. Moreover, SImFBO and ShroFBO both achieve the
best communication complexity (i.e., the number of communication rounds to reach an e-accurate
stationary point) of O(e~'), which improves those of other methods by an order of ¢ ~'/2. Technically,
we develop novel analysis in characterizing the client drifts by the three variables, bounding the
per-iteration progress in the global y and v updates, and proving the smoothness and bounded variance
in local v updates via induction, which may be of independent interest.

Superior performance in practice. In the experiments, the proposed SimFBO method significantly
improves over existing strong federated bilevel baselines such as AggITD, FedNest and LFedNest
in both the i.i.d. and non-i.i.d. settings. We also validate the better performance of ShroFBO in the
presence of heterogeneous local computation due to the resilient server-side updates.

2 SimFBO: A Simple and Flexible Framework

2.1 Preliminary: Federated Hypergradient Computation

The biggest challenge in FBO is to compute the federated hypergradient V®(z) due to the implicit
and complex dependence of y*(z) on . Under suitable assumptions and using the implicit function
theorem in [18], it has been shown that the V®(x) takes the form of

VO(z) = Y piVafile,y*) — V2,Ga,y ) [V2,Gla,y")] > piVy file,y")
=1 =1

which poses several computational challenges in the federated setting. First, the second term at
the right-hand side contains three global components in a nonlinear manner, and hence the direct
aggregation of local hypergradients given by

S pi(Vafile,y*) — V2012 y) [V2y0i(x,5)] TV file,y™))
=1

is a biased estimation of V® () due to the client drift. Second, it is infeasible to compute, store and
communicate the second-order Hessian-inverse and Jacobian matrices due to the limited computing
and communication resource. Although various AID- and ITD-based approaches have been proposed
to address these challenges, they still suffer from several limitations (as we point out in the introduc-
tion) such as complicated implementation, high communication cost, lack of client sampling without
replacement, and vulnerability to the system-level heterogeneity. To this end, we propose a simple,
flexible and communication-efficient FBO framework named SimFBO in this section.

2.2 Federated Hypergradient Surrogate

To estimate the federated hypergradient efficiently, we use the surrogate VF(x,y,v) = V, F(z,y) —

Vin (x,y)v, where v € R% is an auxiliary vector. Then, it suffices to find y and v as efficient



estimates of the solutions to the global lower-level problem and the global linear system (LS)
V3,G(z,y)v = V,F(z,y) that is equivalent to solving following quadratic programming.

1
min R(x,y,v) = ivTVf/yG(x,y)v -0V, F(z,y)

—~ 1
2 i 5TV gi(@ y)v = 0TV fi(zy)), @

Ri(z,y,v)

where R;(z,y,v) can be regarded as the loss function of client ¢ for solving this global LS problem.
Based on this surrogate, we next describe the proposed SimFBO framework.

2.3 Simple Local and Server-side Aggregations and Updates

Simple local update. Differently from FedNest [65] and AggITD [69] that perform the lower-level
optimization, the federated hypergradient estimation and the upper-level update alternatively in
different communication sub-loops, our SimFBO conducts the simple updates on all these three
procedures simultaneously in each communication round. In specific, each communication round
t first selects a subset C'*) of participating clients without replacement. Then, each active client
i € CV) updates three variables y, v, x at k*" local iteration simultaneously as

y§t,k+1) yz(t k) Vs '(zv(t,k)’ y7(t k),g. (t, k))
Ugt,k+1) s Uz(t,k) —agt’k) Av R( (t,k) y(mk) U(t,k).qﬁ(t,k)) (3)
ngt,k+1) xz(_t,k) nzvfz( (t, k) Et,k)7 (t, k)’ g(t k))

(t.k)

where 17),, 15, 1), correspond to the local stepsizes, a; " is a client-specific coefficient to increase the

flexibility of the framework, Ci(t’k), w,gt’k), fi(t’k) are independent samples, and the local hypergradient
estimate takes the form of V fi (z,y,v;€) = Vafi(z,y;€) — Va,9: (2, y; €)vi. The variables y, v and
x in eq. (3), which optimize the lower-level problem, the LS problem and the upper-level problem,
are updated with totally Ti(t) local steps. Note that the updates in eq. (3) also allow for parallel
computation on z, v and y locally.

Local and server-side aggregation. After completing all local updates, the next step is to aggregate
such local information on both the client and server sides. As shown in eq. (4), each participating
® @)

client i € C*) aggregates all the local gradients, and then communicate the aggregations Qyiry i

and qi Z to the server. Then, on the server side, such local information is further aggregated to be

qg(f), qf,t) and q; ), which will be used for a subsequent generalized server-side update.
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Server aggregation Local aggregation
where p; := Wpi is the effective weight of client i € C'*) among all participating clients such

that E(D ;.o pi) = 1. Note that in eq. (4), the local aggregation q (51m11ar1y for v and z) can
be regarded as a linear combination of all local stochastic gradients, “and hence covers a variety of
local optimizers such as stochastic gradient descent, momentum-based gradient, variance reduction

by choosing different coefficients agt’k) for i € C'®). This substantially enhances the flexibility of the

proposed framework.



Algorithm 1 SimFBO and ShroFBO
0)

1: Input: initialization y(o) @ 20 number of communication rounds T, learning rates: client {7y, v, Nz },

server: {7y, Vv, v« }» local update rounds: {r."}

2: fort=0,1,2,...,T do

3: fori e C in parallel do

4 Y80 — ) (80— ®) (60 _ )

5: for k=0,1,2,.., 7" ~1do

6 Locally update y(t ) Et ") and mgt’m simultaneously via eq. (3)

7 end for

8 Client ¢ locally aggregates gradients to compute qﬁ, qffz, qg(fz via eq. (4)

9: Client ¢ locally aggregates gradients to compute h;t)l, hvt)l, h<t) defined in eq. (6)
10:  end for

11:  Clienti € C® communicate {qétz,ql(fz, qffi} or {h?(j27 hfj)z, h t)} to the server
12: Server aggregates local estimators to compute {ql(,t), qy), qx )} using eq. (4)

13: Server aggregates local estimators to compute {hét), th’, h(zt>} using eq. (7)

14: Server updates using eq. (5)

15: Server updates using eq. (8)
16: end for

Server-side updates. Based on the aggregated gradients qz(,t) , qét) and qg(f), we then perform server-

level gradient-based updates on variables x, v and y simultaneously as

yit =y — qug(,t), o) =P, (U(t) - %qq(,t)), 2D = g — 5 g )
where 7, v, and 7, are server-side updating stepsizes for y, v,  and P, (v) := min {1, H’TH }v isa
simple projection on a bounded ball with a radius of r. There are a few remarks about the updates
in eq. (5). First, in contrast to existing FBO algorithms such as [65, 69], our introduced server-side
updates leverage not only the client-side stepsizes 7, 7,, 7, but also the server-side stepsizes vy, vy
and +,. This generalized two-learning-rate paradigm can provide more algorithmic and theoretical
flexibility, and provides improved communication efficiency in practice and in theory. Second, the
projection P,.(+) serves as an important step to ensure the boundedness of variable v®, and hence
guarantee the smoothness of the global LS problem and the boundedness of the estimation variance in

v and x updates, both of which are crucial and necessary in the final convergence analysis. Note that

we do not impose such projection on the local U( ) Variables because we can prove via induction

that they are bounded given the boundedness of v(“) (see Proposition 1).

2.4 Resilient Server-side Updates against System-level Heterogeneity

Limitations under system-level heterogeneity. When clients have heterogeneous computing and
storing capabilities (e.g., computer server v.s. phone in edge computing), an unequal number of
local updates are often performed such that the global solution can be biased toward those of the
clients with much more local steps or stronger optimizers. As observed in [67], this heterogeneity can
deviate the iterates to minimize a different objective function. To explain this mismatch phenomenon,
inspired by [57], we rewrite the server-side update on z (similarly for v and y) in eq. (4) as

()
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collects all local coefficients of client 7, and h , normalizes

the aggregated gradient q(t) by 1/]|a{”||1 such that ||h(t)‘ || does not grow with the increasing of Ti( ),

where a;
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Although such normalization can help to mitigate the system-level heterogeneity, the effective weight
w; can deviate from the true weight p; of the original objective in eq. (1), and the iterates converge to
the stationary point of a different objective that replaces all p; by w; in eq. (1) (see Theorem 1).

System-level heterogeneity robust FBO (ShroFBO). To address this convergence issue, we then
propose a new method named ShroFBO with stronger resilience to such heterogeneity. Motivated by
the normalized reformulation in eq. (6), ShroFBO adopts a different server-side aggregation as

D DN R I S T N IS S I ™)
ieC®) ieC®) ieC®)
where p; = %pi and h;’i%, hff’z, h§f1 are the normalized local aggregations defined in eq. (6).

Accordingly, the server-side updates become
YD) = O _ p(t)’yyhg(f), D — P (U(t) _ p“)%h§t>), 2D — () p(t)’ymhg). 8)

Differently from eq. (6), we select the client weights to be p; to enforce the correct convergence to
the stationary point of the original objective in eq. (1), as shown in Theorem 2 later.

3 Main Result

3.1 Assumptions and Definitions

We make the following standard definitions and assumptions for the outer- and inner-level objective
functions, as also adopted in stochastic bilevel optimization [26, 21, 30] and in federated bilevel
optimization [65, 69, 24].

Definition 1. A mapping F is L-Lipschitz continuous if forV z, 2/, || F(z) — F(2')|| < L||z — #/||.

Since the overall objective ®(x) is nonconvex, the goal is expected to find an e-accurate stationary
point defined as follows.

Definition 2. We say z is an e-accurate stationary point of the objective function ®(x) if
E||V®(2)||? < € where z is the output of an algorithm.

Assumption 1. For any x € R%, y € R% and i € {1,2,....,n}, fi(x,y) and g;(z,y) are twice
continuously differentiable, and g;(x,y) is j14-strongly convex w.r.t. y.

The following assumption imposes the Lipschitz continuity conditions on the upper- and lower-level
objective functions and their derivatives.

Assumption 2. Function f;(x,y) is L-Lipschitz continuous; the gradients V f;(x,y) and Vg;(x,y)
are Ly-Lipschitz continuous; the second-order derivatives V2 f;(x,y) and V?g;(x,y) are Lo-
Lipschitz continuous; and the third-order derivatives V3g;(x,y) is Ls-Lipschitz continuous for
some constants L, Ly, Lo, L3 > 0.

The Lipschitz continuity of the third-order derivative is necessary here to ensure the smoothness of
v*(z), which guarantees the descent in the iterations of LS function (see Lemma 10), under our more
challenging simultaneous and single-loop updating structure. Next, we assume the bounded variance
conditions on the gradients and second-order derivatives.

Assumption 3. There exist constants O'ch, 03, O'gg such that & [HVfl(x, y) =V filz,y; &) HQ} < O'ch,

E[[Vgi(z,y) = Vgi(z,y;: O] < op and E[||[V?gi(x,y) — V2gi(z,y; O)|?] < oy
Assumption 4. For any x € Ré=, Yy e R4, there exist constants Bgn > 1 and o4y > 0 such that
Z w1||vygl(x7 y)H2 < ﬂgh” Z wzvaZ(m, y) ||2 + Ugh'
i=1 i=1

We have Bqn, = 1, and 045, = 0 when all g;’s are identical.

This assumption of global heterogeneity uses 345, and o4y, to measure the dissimilarity of Vg, (x, y)
for all 4.



3.2 Convergence and Complexity Analysis

It can be seen from eq. (2) that the boundedness of v is necessary to guarantee the smoothness
(w.r.t. z, y) and bounded variance in solving the local and global LS problems. Projecting the global

v® vector and the local vgt’k) k > 1 vectors onto a bounded set can be a feasible solution, but in

this case, the local aggregation q( ) is no longer a linear combination of local gradients. This can
complicate the implementation and ana1y51s and degrade the flexibility of the framework. Fortunately,
we show via induction that the projection of the server-side vector v*) on a bounded set suffices to

guarantee the boundedness of local vectors vt ok,
Proposition 1 (Boundedness of Local v). Under Assumptions 1 and 2, for each iteration t, client
i, and local iteration k = 1,2, . ( ) we have r; = ||v (t, k)|| < (1 + “max)T where the radius

Ly t,k
r= H— and Qupin, Qmax are chosen such that oy, < az(- ) < Qax-
g

Next, we show an important proposition in characterizing the per-iteration progress of the global
v® updates in approximating the solution of a reweighted global LS problem. Let Asjt) = ]E||v(t) -
v*(z®)]|? denote the approximation error, where 7* be the minimizer of > 1, w; R;(z, 7, ).

Proposition 2. Under the Assumption 1, 2 and 3, the iterates v") in solving the global LS problem
generated by Algorithm 1 satisfy

E[o®) = 5 @) 2 — Efo® - 7" (@)

2
< = Pty = 80O E0® = T @) 2 + (14 ) (0O B D2 wihl)
i€C(®
4L2 ~ L’UJZ ~ 2
HH&)”(%fElly(“—y*(ﬂf“))l!2+(p“’%)2<L3+ 1 )E > @i
g ieCc®

Ti—1

0 SRS waul [ = O [l =)
i=1

o0 = o] 00228 S )
L =1

forallt €{0,1,...,T — 1}, k € {0,1,. (f) —1}andi € {1,2,...,n}, where w; := ?‘)Iwi'

Similarly, we can provide a per-iteration process of y*) in approximating the solution §* of the
reweighted lower-level global function " ; w;g;(, -). Note that such characterizations do not exist
in previous studies in single-level or minimax federated optimization with a single objective (e.g.,
[57]) because our analysis needs to handle three different lower-level, LS and upper-level objectives.
As shown in Proposition 2, the bound involves the client drift term Ev() — Ui(t’k) I|?
Y, x), so the next step is to characterize this important quantity.

(similarly for

Proposition 3. Under Assumption 1 and 2, the local iterates client drift of vi(t’k)

n Ti—1

1 tk tk _
> wi—g— > o VEu"Y — o @2 <nirod,
o1 el =

forallt € {0,1,...,T -1}, k€ {0,1,....,7; — 1} and i € {1,2,...,n}. We define 7 := Y | T;/n
and U%Jl = a%nax(o-]% + r?naxagg) + amaX(L? + TIQnaxL%)'

is bounded as

It can be seen from Proposition 3 that the bound on the client drift of the local updates on v is
proportional to 7,, and ||a§t)|\1. Since opin < az(-t’k) < O'maxs Ha? |l is proportional to the number
Ti(t) of local steps. Thus, this client drift is controllable by choosing Ti(t) and the local stepsizes 7,
properly. Then, combining the results in the above Proposition 1, 2, 3, and under a proper Lyapunov

function, we obtain the following theorem. Let P = |C*)| be the number of sampled clients.



Theorem 1. Define &’(CU) = ﬁ(m, U*) as the objective function by replacing p; in eq. (1) with w;.
Suppose Assumptions 1, 2 and 3 are satisfied. The iterates by SimFBO in Algorithm I satisfy

wjue| e = o (M=) v o) + 0(F)
°()

partial participation error full synchronization error  local updates error

where Yo, Yy, Yo, N Ny> Mo are set in eq. (38) and My, Mo, M3 are defined by eq. (40) in appendix.
For the full client participation (i.e., P = n), the sample complexity is 7T = O(n~te"2), and
the number of communication rounds is T = O(e~1). For partial client participation, the sample
complexity is 7T = O(P~te™2), and the number of communication rounds is T = O(P~1e2).

First, when set 7 = O(1), Theorem 1 shows that SimFBO converges to a stationary point of an
objective function ®(x) with a rate of O(ﬁ + ), which, to the best of our knowledge, is the first
linear speedup result under partial client participation without replacement. Note that without system-

(t)
L — p;, and hence SimFBO

Pi H a;
o pillas” I
converges to the stationary point of the original objective in eq. (1). However, in the presence of
system-level heterogeneity, SimFBO may converge to the stationary point of a different objective.
Second, when nearly full clients participate, the partial participation error is approximately zero.
Then we can see that setting local update round 7 to its upper-bound results in the best performance.

level heterogeneity, i.e., Hagt)H = .= ||a5f)||, w; =

Theorem 2. Define ®(x) = F(x,y*) as eq. (1). Suppose Assumptions 1, 2 and 3 are satisfied. The
iterates generated by ShroFBO in Algorithm 1 satisfy

mtinEqu>(x<t>)H2 - O(W PiT) +O(M2\/%ﬁ) + o(%) (10)

by setting the same server-side and local stepsizes and My, My and M3 as in Theorem 1. For full
client participation, the sample complexity is 7T = O(n~'e=?), and the number of communication
rounds is T = O(e~1). For partial client participation, the sample complexity is 7T = O(P~1e~2),
and the number of communication rounds is T = O(P~1e2).

In Theorem 2, we show that even under the system-level heterogeneity, ShroFBO can converge to
the original objective function with the same convergence rate as SimFBO. This justifies the design
principle of robust server-side updates.

4 Related Work

Bilevel optimization. Bilevel optimization, first introduced by [3], has been studied for decades.
A class of constraint-based bilevel methods was then proposed [20, 16, 59, 61], whose idea is to
replace the lower-level problem by the optimality conditions. Gradient-based bilevel algorithms
have attracted considerable attention due to the effectiveness in machine learning. Among them,
AID-based approaches [8, 51, 38, 1] leveraged the implicit derivation of the hypergradient, which
was then approximated via solving a linear system. ITD-based approaches [45, 12, 11, 56, 17]
approximated the hypergradient based on automatic differentiation via the forward or backward mode.
A group of stochastic bilevel approaches has been developed and analyzed recently based on Neumann
series [5, 26, 1], recursive momentum [72, 23, 19] and variance reduction [72, 7], etc. For the lower-
level problem with multiple solutions, several approaches were proposed based on the upper- and
lower-level gradient aggregation [55, 43, 34], barrier types of regularization [41, 39], penalty-based
formulations [58], primal-dual technique [62], and dynamic system-based methods [42].

Federated (bilevel) learning. Federated Learning was proposed to enable collaborative model train-
ing across multiple clients without compromising the confidentiality of individual data [32, 60, 49].
As one of the earliest methods of federated learning [47], FedAvg has inspired an increasing number
of approaches to deal with different limitations such as slower convergence, high communication
cost and undesired client drift by leveraging the techniques including proximal regularization [37],
periodic variance reduction [48, 28], proximal splitting [50], adaptive gradients [53]. Theoretically,
the convergence of FedAvg and its variants has been analyzed in various settings with the homo-
geneous [63, 68, 64, 2] or heterogeneous datasets [37, 66, 48, 29]. [67] analyzed the impact of the



system-level heterogeneity such as heterogeneous local computing on the convergence. [57] further
extended the analysis and the methods to the minimax problem setting.

Federated bilevel optimization has not been explored well except for a few attempts recently. For
example, [14, 35] proposed momentum-based bilevel algorithms, and analyzed their convergence in
the setting with homogeneous datasets. In the setting with non-i.i.d. datasets, [65] and [24] proposed
FedNest and FedMBO via AID-based federated hypergradient estimation, and [69] proposed an
ITD-based aggregated approach named Agg-ITD. Momentum-based techniques have been also used
by [22, 36] to improve the sample complexity. Moreover, there are some studies that focus on other
distributed scenarios, including decentralized bilevel optimization [6, 73, 44], asynchronous bilevel
optimization over directed network [74], and distributed bilevel network utility maximization [27].
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Figure 2: Comparison among our SimFBO, FBO-AggITD [69], FedNest [65] and LFedNest [65].
The left and middle ones plot the training accuracy v.s. # of communication rounds on i.i.d. MNIST
datasets with MLP networks, and the right one plots the training accuracy v.s. # of rounds on
i.i.d. CIFAR-10 datasets with a 7-layer CNN.

MNIST-MLP on i.i.d. data MNIST-MLP on non-i.i.d. data CIFAR-10-CNN on i.i.d. data

o5
N S ———— L
%0 f
40
EY
20

Test accuracy
Test accuracy
Test accuracy

—— LFedNest

—— LFedNest
FedNest 7 FedNest

—— FBO-AggITD —— FBO-AggITD 0 —— FBO-AggITD

—— SimFBO —— SimFBO —— SImFBO

3 200 400 600 800 1000 o 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400 1600
Communication rounds Communication rounds Communication rounds

Figure 3: Comparison of different methods: the test accuracy v.s. # of communication rounds.
S Experiments

In this section, we perform two hyper-representation experiments to compare the performance of
our proposed SimFBO algorithm with FBO-AggITD [69], FedNest [69], and LFedNest [65], and
validate the better performance of ShroFBO in the presence of heterogeneous local computation. We
test the performance on MNIST and CIFAR datasets with MLP and CNN backbones. We follow
the same experimental setup and problem formulation as in [65, 69]. The details of all experimental
specifications can be found in Appendix A.1.

Comparison to existing methods. The comparison results are presented in Figure 2 and Figure 3.
It can be seen that across different datasets and backbones, our proposed SimFBO consistently
converges much faster than other comparison methods, while achieving a much higher training and
test accuracy. We do not plot the curves of FedNest and LFedNest on CIFAR and CNN, because they
are hard to converge under various hyperparameter configurations using their source codes.

Performance under heterogeneous local computation. We now test the performance in the setting
where a total of 10 clients perform a variable number of local steps. This is to simulate the scenario
where clients have heterogeneous computing capabilities and hence can perform an uneven number
of local updates. In this experiment, we choose the number 7; of the client 7’s local steps from the set
{1,...,10} uniform at random. As shown in Figure 4, the proposed ShroFBO method performs the
best due to the better resilience to such client heterogeneity. We also compare the convergence rate
of our proposed SimFBO, FedNest and FBO-AggITD w.r.t. running time. The results are provided
in Figure 5. All the settings for different algorithms are the same as in Appendix A.2. It can be seen
that the proposed SimFBO still converges fastest with a higher test accuracy in terms of running time.
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6 Conclusion

In this paper, we propose a simple and communication-efficient federated bilevel algorithm named
SimFBO and its variant ShroFBO with better resilience to the system-level heterogeneity. We show
that both SimFBO and ShroFBO allow for more practical client sampling without replacement, and
achieve better sample and communication complexities. Experiments demonstrate the great promise
of the proposed methods. We anticipate that the proposed algorithms and the developed analysis can
be applied to other distributed settings such as decentralized or asynchronous bilevel optimization,
and the algorithms may be useful in applications such as hyperparameter tuning or fine-tuning in
federated learning or Al-aware edge computing.
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