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ABSTRACT

Clustering is a fundamental tool for exploratory data analysis. One central problem in clustering is deciding if
the clusters discovered by clustering methods are reliable as opposed to being artifacts of natural sampling
variation. Statistical significance of clustering (SigClust) is a recently developed cluster evaluation tool
for high-dimension, low-sample size data. Despite its successful application to many scientific problems,
there are cases where the original SigClust may not work well. Furthermore, for specific applications,
researchers may not have access to the original data and only have the dissimilarity matrix. In this case,
clustering is still a valuable exploratory tool, but the original SigClust is not applicable. To address these
issues, we propose a new SigClust method using multidimensional scaling (MDS). The underlying idea
behind MDS-based SigClust is that one can achieve low-dimensional representations of the original data
via MDS using only the dissimilarity matrix and then apply SigClust on the low-dimensional MDS space.
The proposed MDS-based SigClust can circumvent the challenge of parameter estimation of the original
method in high-dimensional spaces while keeping the essential clustering structure in the MDS space.
Both simulations and real data applications demonstrate that the proposed method works remarkably
well for assessing the statistical significance of clustering. Supplementary materials for this article are
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1. Introduction

Clustering is a typical form of unsupervised learning that aims
to divide data into several groups so that data points within
the same group are more similar than those across groups.
Traditional clustering methods use datasets without responses.
Clustering is an essential tool for researchers to find potentially
helpful hidden structures in high-dimensional data and is com-
monly used for explanatory data analysis. It has been widely
applied in many fields, such as biomedical research, genetics, and
social network analysis.

Many clustering methods have been proposed and well-
studied in the literature. Comprehensive reviews of clustering
algorithms can be found in Xu and Tian (2015) and refer-
ences therein. Concrete examples of classical clustering algo-
rithms include partition-based algorithms such as K-means
(MacQueen et al. 1967), various hierarchical algorithms, and
model-based algorithms. Other popular clustering approaches
include kernel-based algorithms (Ben-Hur et al. 2001), spectral
clustering algorithms (Von Luxburg 2007), and ensemble-based
algorithms (Fred and Jain 2005).

Despite rapid developments of clustering algorithms and
their wide applications in practice, a natural question is how
to assess the statistical significance of clustering results. For
a specific clustering algorithm, given the desired number of
clusters k, one can typically separate the data into k groups.

However, this may result in spurious clusters even in simple
settings. For example, with k = 2 as explained in Liu et al.
(2008), a two-sample t-test gives a significant p-value when
we separate data generated from a one-dimensional standard
Gaussian distribution into two clusters, suggesting that the
two clusters are different from each other. However, in many
applications, one may prefer not to divide data from a single
Gaussian distribution into multiple clusters. Therefore, assessing
the significance of clustering is different from testing subgroup
differences.

Several cluster evaluation methods have been proposed in the
literature to test the statistical significance of clustering. Among
existing methods, the Gaussian cluster definition is commonly
used in the sense that data should not be divided further by
clustering if they follow a single Gaussian distribution. McShane
et al. (2002) proposed a method to evaluate whether the data
come from a single Gaussian distribution, that is, whether one
should perform clustering on the data. Their method is based on
examining the Euclidean distance between samples in a three-
dimensional principal component space. Maitra, Melnykov, and
Lahiri (2012) used a bootstrap approach and compared a simpler
model with a more complicated one for assessing significance
of clustering. Chakravarti, Balakrishnan, and Wasserman (2019)
tests whether a mixture of Gaussian distributions provides a
better fit relative to a single Gaussian distribution focusing
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on the low-dimensional setting. Despite progress in this area,
assessing the statistical significance of clustering remains an
open question, especially in the high-dimension, low-sample
size (HDLSS) setting.

Liu et al. (2008) proposed a Monte Carlo-based method
called the statistical significance of clustering (SigClust), which
addresses the problem of assessing the significance of cluster-
ing for HDLSS datasets. To make the HDLSS setting tractable,
they used the Gaussian cluster definition and focused on test-
ing whether data come from a single Gaussian distribution.
A similar model assumption was used in McLachlan and Peel
(2000) and Fraley and Raftery (2002). One critical step in Liu
et al. (2008) is to estimate the Gaussian distribution under
the null hypothesis. They assumed a factor model to simplify
the eigenvalue estimation of the null covariance matrix. Huang
et al. (2015) improved the original SigClust by proposing a soft
thresholding estimator of the null covariance matrix. Kimes
et al. (2017) extended SigClust in the context of hierarchical
clustering.

SigClust has been widely applied in practice, such as assessing
significant cancer subtypes (TCGA 2012; Agrawal et al. 2014).
Despite these successful applications, there are still cases where
the original SigClust is not applicable. In particular, in several
applications such as natural language processing (NLP) (Poland
and Zeugmann 2006), one may only have the pairwise dissimi-
larity matrix between samples. In that case, clustering can still be
performed, but the current SigClust cannot be implemented due
to the lack of original data. Furthermore, although Huang et al.
(2015) proposed an improved estimator for the null covariance
matrix, parameter estimation in the general high-dimensional
setting remains a challenging problem. Hence, there is room
for further improvement. As shown in Chakravarti, Balakr-
ishnan, and Wasserman (2019), there are certain regions of
the parameter space where the original SigClust has relatively
low power.

This article proposes a new multidimensional scaling (MDS)
based SigClust method. MDS is an important dimension reduc-
tion technique with broad applications (Borg and Groenen
2005). The basic idea of MDS is to find low-dimensional rep-
resentations of the original data while preserving pairwise dis-
similarities between samples. This idea aligns well with the
goal of clustering since many clustering methods are based
on pairwise dissimilarities between samples. Moreover, MDS
does not require access to the original data. As mentioned
earlier, in many applications, data analysts may not have the
original data available such as applications in NLP (Nakamura
2006) and can only work with the pairwise dissimilarity matrix.
However, one can still perform effective clustering using only
the dissimilarity matrix (Poland and Zeugmann 2006). A nat-
ural follow-up question is to understand the statistical signifi-
cance of the obtained clustering results. The existing SigClust
is not applicable due to the lack of original data. In such
cases, MDS can provide a natural solution to address these
challenges. By using the low-dimensional MDS space, the need
for estimating the covariance matrix in a high-dimensional
setting, as required for the original SigClust, can be avoided.
Based on these considerations, it is meaningful to combine
MDS and SigClust to produce an effective clustering evaluation
method.

Besides the base version of MDS-based SigClust we men-
tioned earlier, to tackle the settings mentioned in Chakravarti,
Balakrishnan, and Wasserman (2019) where the original Sig-
Clust fails, we further improve our MDS-based SigClust using
column-wise testing of the MDS embeddings. When the data
consist of more than two clusters, besides the significance of
clustering, we are also interested in evaluating the number of
clusters in the data. To this end, a generalized MDS-based Sig-
Clust (see Section 2.5) is introduced using a set of general cluster
indices CL, . . ., CIx for a prespecified K.

The rest of this article is organized as follows. In Section 2,
we introduce notation and describe details of different versions
of MDS-based SigClust. In Section 3, we examine the theoret-
ical properties under the null and alternative hypotheses. In
Section 4, we perform simulation studies to demonstrate the
performance of our new methods. We then apply our techniques
to real datasets, including cancer gene expression datasets and
applications in natural language processing, in Section 5. Finally,
we conclude the article with some discussion in Section 6. Proofs
of our theoretical results and additional numerical results are
provided in the supplementary materials.

2. Methodology

We begin by introducing the notation used throughout the
article, as well as MDS and the original SigClust, to establish the
basis of our approach. We then proceed to describe our MDS-
based SigClust and its implementation.

2.1. Notation

We use regular letters for scalars and bold letters for both matri-
ces and vectors. We use x and X to denote random vectors and
matrices. We write [#] for the set {1,2,...,n}. For any vector
v, ||v|]| denotes the Euclidean norm and ||v]cc = max; |v(i)]|.
The set of n x r matrices with orthonormal columns is denoted
by Opxr. For a matrix A = (aj,...,a;) € Oyxxand m < k,
let Ay, = (ag,...,a,) € Ouxm. For a diagonal matrix A =
diag(ay, . ..,an),let A, = diag(ay,. .., a,) beamx m diagonal
matrix. Let f,¢g : N — Ry and let ¢, b be positive constants
and ng an integer. Then f(n) = O(g(n)) if f(n) < cg(n) for
alln > ng;f(n) = Qgn)) if f(n) > bg(n) for all n > no;
fn) = o(g(n)) if f(n)/g(n) — 0asn — oo; f(n) = w(g(n))
if f(n)/g(n) — oo asn — oo. Fix n,d > 1. Suppose we
have # iid random samples {x;}} , < R? with E(x;)) = 0
and E (x,-xiT) = X. The sample covariance matrix is defined as
f = % Z;l:l(xi - ﬁx)(xi - ﬁx)T> where i’zx = Z?:l Xi/n' Let
X = (x1,...,%,) T € R"™4 be the data matrix.

2.2. Multidimensional Scaling

Regardless of the availability of the original data X e R™*¢,
suppose we have access to the dissimilarity matrix D € R**" =
(dij)ijen]> which measures the pairwise distance between sam-
ples for some distance metric d. The main objective of MDS is
to find a low-dimensional representation of a set of objects Y €
R™ 7 such that the distance between any two points is close to
their corresponding dissimilarity as much as possible. We denote



the pairwise distance between points i and j in the MDS space as
8ij = lly;— ¥; ||l2 and define the error of representation for the pair

{i,j} as e%j = (dij — 8ij)2 . The total error is defined by summing

over all distinct pairs, o (Y) = 377, D0, (djj — Sij)z .

One can consider using different error or distance functions,
leading to distinct MDS representations (Borg and Groenen
2005). The goal of MDS is to find a matrix Y to minimize o, (Y).
When the distance metric d is the Euclidean distance (d;; =
llx; — xjll2), MDS is equivalent to standard PCA, in which case
the method is also called Classic MDS (CMDS). However, MDS
is much more general than standard PCA and can also perform
nonlinear dimension reduction. Denote B = —%ID(Z)], where

Dg) = Diz,j’] =1,—117/nis the centering matrix, and 1 € R”
is a column vector of ones. Consider the SVD decomposition
on B = PAP’. In CMDS, the solution Y can be represented

~ Nl 2 ~ ~ .
asY = P,Ar/ , where P, and A, are first r eigenvectors and
eigenvalues of B.

2.3. Problem Formulation

Before introducing our new method, we start with the original
SigClust. In the original SigClust, Liu et al. (2008) used the Gaus-
sian cluster definition and considered the hypothesis problem
where the null is that the data come from a single d-dimensional
Gaussian distribution and the alternative is the data come from
a mixture of d-dimensional Gaussian distributions. To solve this
problem, they used a test statistic, k-means cluster index CI,
which is defined as the ratio between the within-class sum of
the squared distance to within-class means and the overall sum
of the squared distance to the overall mean,

-5

_ Zf:l ZjecS
S s — =

Here, for s € [k], Cs denotes the index set of the sth cluster
produced by a specific clustering algorithm and X represents
the corresponding within-cluster mean. The intuition underly-
ing the cluster index is that if the k clusters produced by some
clustering algorithm such as k-means are well-separated, the
data points concentrate around the cluster centers within each
cluster and the within-cluster sum of the squared distance tends
to be small. On the contrary, if the data come from a single
Gaussian cluster, and we try to divide them into k parts, the
cluster index tends to be large.

Liu et al. (2008) focused on the test statistic CI, to test
whether there is one or more than one Gaussian cluster. To
carry out the test and find the p-value, they used a Monte Carlo
procedure which generates Gaussian random variables N(u, X)
under the null. However, it is difficult to achieve consistent esti-
mators of g and X in the HDLSS setting. Since the test statistic
CI, is location-invariant and the Euclidean distance is invariant
to orthogonal rotations, one can assume g = 0 and X to be
diagonal. This property simplifies the task of estimating d(d +
1) /2 parameters to estimating d eigenvalues of X.. Moreover, Liu
etal. (2008) assumed the covariance matrix to be spiked, namely

CIy

T =VAVI, A=Ag+02, (1)
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where Ay is of low rank, which captures a few strong signals
in the data, and the relatively small o represents the constant
variance of the background noise. Then it is enough to estimate
a few top eigenvalues of Ag and background noise variance
o2. The above assumptions help make the high-dimensional
estimation tractable and are reasonable in applications.

The Gaussian cluster definition is a central tenant of the origi-
nal SigClust (Liu et al. 2008). As will be evident later, we perform
a detailed investigation into the relevance of this assumption.
In particular, we shall find that the significance of clustering is
relatively robust, and under a range of alternative definitions,
the Gaussian cluster assumption is the most conservative one.
The difficulty of more general notions of a single cluster is that
if no specific parametric assumption is made, the exact null
distribution of the test statistic CIj is hard to compute. Our idea
is to calculate the p-value using a simple Monte Carlo procedure
without explicitly figuring out the cluster index’s null distribu-
tion. When generating data under the null, the SigClust-based
methods (Liu et al. 2008) generate Gaussian random variables
as the reference distribution. As we will show later, through the-
oretical results and simulations, the cluster index CIy converges
under a general class of distributions. The Gaussian distribution
as a reference is the conservative choice. The population CIj
under the Gaussian assumption is smaller than that of many
other distributions. When the null is not Gaussian, and we are
generating Gaussian samples, the p-value tends to be larger than
that of the true null hypothesis. As a result, our SigClust tends
to make a conservative conclusion. In real applications such as
modern gene expression analyses, a fundamental issue is that
clusters are sometimes detected and claimed to be real when
they may not be significant. Hence, the generation of Gaussians
is meaningful because it helps avoid over-clustering when the
data just correspond to one cluster.

These observations motivate us to extend the definition of a
single Gaussian cluster to a single unimodal cluster, that is, data
coming from a single unimodal distribution, such as ¢ or x2, and
consider a general hypothesis problem:

Hj : The data come from a single d-dimensional
unimodal distribution;
H; : The data come from a mixture of d-dimensional

unimodal distributions.

For this hypothesis problem, the k-means cluster indices CIj
is still helpful as we explained above. There could be a class of
testing statistics CIi given different values of k. In general, we
can choose k = 2 and use 2-means cluster index as the test
statistic CI, when we are interested in testing whether there is
one or more than one cluster. In some cases, if the test result is
significant and we are further interested in knowing the num-
ber of clusters in the data, we can use multiple cluster indices
simultaneously. In the next section, we will focus on the 2-means
cluster index CI, for our new proposed method and discuss a
generalized method based on CI in Section 2.5.

2.4. MDS-based SigClust

In this paper, we propose a new MDS-based SigClust, which
combines the original SigClust and the dimension reduction



222 (&) H.SHEN,S.BHAMIDI, AND Y. LIU

technique MDS. The proposed method starts with the dissimi-
larity matrix D € R"*" between samples. We can achieve a low-
dimensional representation matrix Y € R"*" through MDS. If
the data come from a single cluster or a mixture of clusters, the
embedding matrix Y tends to preserve certain properties of the
single or mixture of clusters. Furthermore, for two datasets of
the same size, suppose one is obtained from a single cluster and
another from a mixture of two distinct clusters with the same
covariance matrix as the first dataset. The CI, of the second
dataset should be smaller than that of the first dataset, that is,
the separation information of the mixtures (difference between
two mean vectors) can be captured through a smaller CI,.

There are cases where the original SigClust might fail, see
Chakravarti, Balakrishnan, and Wasserman (2019). For simplic-
ity, consider the Gaussian cluster definition. If the data come
from a mixture of two Gaussian distributions, the separation
can happen in multiple ways, that is, the difference between the
means of the two distinct Gaussian components can be nonzero
in any coordinates. The mean difference may be nonzero in
one coordinate ¢, but the variance is the largest in another
coordinate c,. Therefore, the coordinate ¢, will determine how
the data are clustered into two and dominate the cluster index
of the data. Even if the cluster index can capture the separation
signal in coordinate ¢}, the signal in coordinate ¢; only accounts
for a small portion of the test statistic CI, and is too small to
be detected as significant. To address this issue, we improve our
method, aiming to capture the separation signal from all possible
directions.

In this modified procedure, an initial goal is to calculate a
combined CI, defined as the minimum of the CI,’s calculated
from Y and each column of Y. However, one challenging issue
is that CI’s calculated from data with different dimensions are
not comparable because the limiting distribution of the cluster
index of one dataset depends on its dimensionality. To solve this
problem, we use the 2-means clustering result as classification
labels and project the data Y onto the one-dimensional space by
linear discriminant analysis (LDA). Then the combined CI; is
taken to be the minimum of the CI,’s calculated from the one-
dimensional LDA projection of Y and each column of Y. Follow-
ing the Monte Carlo idea of the original SigClust, we estimate
the sample covariance matrix Xy of Y, generate data Z from
N(0, Yy), and calculate a combined CI, of the simulated data Z
using the same procedure. After that, we compare the observed
CI, with those of the simulated data to draw a conclusion about
the significance of clustering.

Our base version of MDS-based SigClust is summarized as
below.

Base version of MDS-based Sigclust:

Step 1. Choose the dimension r of the MDS space. Obtain the
MDS matrix Y = (y1,...,y) of the dimension n x r
from the dissimilarity matrix D.

Step 2. Implement the 2-means clustering on Y and calculate
the cluster index CI, of Y using the estimated labels,

denoted as CL, y.

Step 3. Estimate the sample covariance matrix Sy of Y. Gener-
ate an n X r matrix Z with each row z; drawn indepen-
dently from N(0, Xy) for i € [n].

Step 4. Perform Step 2 on Z and calculate the cluster index CI,

denoted as CI, 7.

Step 5. Repeat Steps 3 and 4 N, times. For i € [Ngjm], Z;
denotes the ith simulation and CI, 7, denotes the cor-

responding CI,. Then we have a set of Ny, Clp 7.

Step 6. Using the empirical distribution of {Cl,z, : i € [Nsim]},
calculate a p-value for the CI, of Y. Draw a conclusion
based on a prespecified level of significance .

For the scenario motivated by Chakravarti, Balakrishnan,
and Wasserman (2019), Step 2 in the above algorithm can be
modified into the following one.

Modification MDS-based SigClust:

Step 2’: For each i € [r], implement 2-means clustering on y; and
use the labels to calculate the CI, of y;, denoted as Cl,y,. Imple-
ment the 2-means clustering on Y and take the clustering labels
as the classification labels to apply LDA. Use the LDA result to
get the one-dimensional projection of Y, denoted as Yy pa. Cal-
culate the CI; of Yrpa, denoted as CI 1pa. The combined CI,
of Y, denoted as Cl, y is taken to be min{{Cly,}1<i<r Cl2,LDA}.

There are different methods to calculate the p-value in Step
6 of the above procedure. One method is to use the propor-
tion of simulated CI,’s that are smaller than CIy. This method
depends heavily on the number of simulations Nsim. Another
method is to fit a one-dimensional Gaussian distribution using
the simulated CI’s and calculate the quantile of CI, y in this fitted
distribution. The second approach provides a continuous range
of p-values, especially when the empirical p-value is zero. We
refer to these two types of p-values as the percentile p-value and
the fitted p-value, respectively.

Note that r is a prespecified parameter representing the
dimension of the MDS space. As will be seen below, in many
settings, when using the 2-means cluster index Cl;,r = 1 or 2 is
enough to detect the separation signal if the original data come
from a mixture of two or more clusters. This is due to the fact
that the first few dimensions can capture the signals as shown in
several settings such as Gaussian mixture models and stochastic
block models (Abbe et al. 2020; Loftler, Zhang, and Zhou 2021).
However, when we want to evaluate the number of clusters using
CIi with k > 2 as described in Section 2.5, a higher dimension
r would be preferred.

2.5. Generalized MDS-based SigClust

In some cases, when the p-value in the above test procedure is
significant, we may be interested in evaluating the number of
clusters in the data, which can be summarized as a two-stage
testing problem: (a) whether there is one or more than one
cluster; (b) if there is more than one cluster, how many clusters
exist in the data?

To solve this, we simultaneously consider a sequence of K — 1
test statistics Cly, . . ., CIx, which correspond to the hypothesis
test problems:

Hyj : The data come from a single d-dimensional
unimodal distribution;

Hj : The data come from a mixture of k d-dimensional
unimodal distributions.



for k = 2,...,K. For each CIi, we can calculate the p-value
Dk using a similar procedure for CI, described in Section 2.4.
Then we obtain a set of K — 1 p-values (pz, . . ., px). To deal with
the issue of multiple comparisons, we use the Holm-Bonferroni
method (Holm 1979), while other adjustment methods can be
used as well. If any of the adjusted p-values is significant, we
would reject the null that there is only one cluster. To decide
how many clusters are preferred, we can estimate the number
that has the minimum p—;./.é)lue. The same idea can apply to the
original SigClust, which will be used in simulations and real data
examples for comparison (name it generalized SigClust-Soft).

3. Theoretical Properties

To gain further insight into the proposed MDS-based SigClust,
we study some of its theoretical properties. For simplicity, we
consider 2-means clustering. Assume we have n iid samples
€ R? from some distribution P. Recall that the

X15...>Xy
sample k-means cluster centers by = (bp1,...,b) € RI*K
is defined as b, = argmin, paxk Wy(a), where W,(a) =

LS ming<j<k [ xi — g ||2 . One can define the population k-
means cluster centers g = (y,..., k) € RAxk ag n o=
argmin, i<k Wp(a), where Wp(a) = E[W,(a)].

Theorem 3.1 (Convergence of Cluster Index). Assume one-
dimensional random variables xi,...,x, are independently
generated from some distribution F(-) with continuous density
function f(-). Suppose the density function is symmetric over 0
and dominated by p(-) with fR rp(r)dr < oo and assume that
Jr x*f(x) < oo. Moreover, suppose the population 2-means
centers £ = (i1, M2) are unique and symmetric. Then for
X ~ F, we have

cr % E(X?) — (E|X])?

E(X2)

Remark 1. The above theorem can be extended to finite-
dimensional settings under similar assumptions.

Remark 2. Most of the assumptions on the distribution F in the
above result are to guarantee that the sample 2-means centers
converge to the population 2-means centers as sample size n —
00. Then the main theorem in Pollard et al. (1982) can be applied
to show the consistency of the cluster index.

Theorem 3.1 shows that the test statistic, cluster index, is not
designed exclusively for Gaussian clusters. Even when data are
generated from non-Gaussian distributions, such as t and x?2
distributions, the cluster index can still converge to a limit. This
result provides insight into why our method can still effectively
work for non-Gaussian data. We have provided detailed proofs
for all of our stated results in the Appendix.

Next, we focus on the specific setting of Gaussian clusters and
show further theoretical results about our MDS-based SigClust.
Suppose x; follows %Nd (n, )+ %Nd(—u, ¥) independently for
i € [n]. We are interested in the hypothesis testing problem: Hy :
i = O versus H; : p # 0. For simplicity, we use that classical
MDS with the Euclidean distance. The first result is on the p-
value of MDS-based SigClust under the null hypothesis Hy.
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Theorem 3.2. Suppose the data come from N(0, X). Forr = 1,
the distribution of p-value from MDS-based SigClust converges
to U[0,1] as n — oo.

The idea of the proof is to show that the MDS matrix Y
preserves Gaussian properties if the original data X come from
a single Gaussian distribution. The uniform distribution of the
p-value on [0,1] shows that MDS-based SigClust can control the

Type I error.
Next, we consider the alternative hypothesis H;. Without
loss of generality, we assume that £ = (151, —IZZ)T is the n-

dimensional label vector with 1 representing the first group
and —1 representing the second group. We use n; to denote
the number of observations in the ith group for i = 1,2. Let
Amax = MaXi<j<dAj = Al where A;’s are the eigenvalues of

¥. Define the signal-to-noise ratio as SNR = %, where || p|?
represents the signal and A,y the noise. The following results
show that our method can recover the true class labels with high
probability and maintain high power when SNR is sufficiently
large. Lemma 3.3 and Corollary 3.4 are modified from Little, Xie,

and Sun (2022).

Lemma 3.3. In the general high-dimensional setting where d =
€2(n), suppose the data come from a mixture of two Gaussian
distributions under H; with ||| # 0. With a probability at least
1 — 4/n, we have

IB1 €|, < @*+3w/2)/v/n, @)

where w = uszu{S()‘maX logm)'/? + 4(61log n/d)" > Amax/Il || +
Ahmax/ (1| pt]))}. Here, £ = ﬁe = ﬁ(l,{l,—%)T is the

normalized true label vector and P is the first column of Y.

Corollary 3.4. In the high-dimensional setting where d =
O(nlog n), suppose the data come from a mixture of two Gaus-

sian distributions under H; with ||p| #% 0and % = w(logn).
~ 7 1
Then we have ”p1 — E”OO = O(W)'

Note that each element in £ takes values in the set {ﬁ ,— ﬁ 1

From this corollary, p; is close to 1 elementwise, which implies
that using the MDS matrix Y with = 1 can recover the true
cluster labels accurately.

Theorem 3.5. In the high-dimensional setting where d =
O(nlog n), suppose the data come from a mixture of two Gaus-

sian distributions under H; with |||l # 0 and % = w(log n).
For r = 1, the p-value from MDS-based SigClust converges to 0
in probability as n — oo.

This theorem tells us that if the data truly come from a
mixture of two Gaussian distributions under a moderate dimen-
sional regime and SNR grows faster than logn, MDS-based
SigClust can detect the separation and produce a significantly
small p-value. A similar conclusion can be drawn in higher
dimensional settings as follows.

Theorem 3.6. Consider the general high and ultra high dimen-
sional settings where d = € (nlogn). Suppose the data come
from a mixture of two Gaussian distributions under H; with
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lmll # 0 and % = w(g). For r = 1, the p-value from MDS-
based SigClust converges to 0 in probability as n — oo.

4, Simulations

In this section, we compare cluster evaluation methods on var-
ious simulated examples in low and high-dimensional settings.
Methods include RIFT and MRIFT (Chakravarti, Balakrishnan,
and Wasserman 2019), the method proposed in McShane et al.
(2002), SigClust using soft thresholding (SigClust-Soft, Huang
etal. 2015), our proposed MDS-based SigClust (SigClust-MDS)
and SigClust-MDS with the true covariance matrix (SigClust-
True-MDS). The SigClust-Soft and SigClust-True-MDS gener-
ate Gaussian data under the null in the original space. Our MDS-
based SigClust involves the estimation of the sample covariance
matrix in a low-dimensional MDS space.

To account for the rotation invariance of CI under a single
Gaussian and a mixture of Gaussians with identical covariance
matrices, we restrict our attention to the case where the covari-
ance matrix X for each Gaussian component is diagonal with
entries A, . .., Ag. In all experiments, we set n = 100, d = 1000,
and Ngy, = 1000, unless otherwise specified. We obtain the
cluster assignments for the CIj using k-means clustering with k
specified in each section. We use the fitted p-values throughout.
Different methods are evaluated based on their ability to maxi-
mize power while controlling the Type I error.

In Section 4.1, we generate data from a single Gaussian and
a mixture of two Gaussians and compare SigClust methods with
the method proposed in McShane et al. (2002). In Sections 4.2,
we compare our MDS-based SigClust with RIFT and MRIFT
(Chakravarti, Balakrishnan, and Wasserman 2019) in a low-
dimensional setting. To demonstrate the performance of our
method under cluster definitions other than Gaussian, we gen-
erate data from ¢ and Poisson distributions and visualize the
results in Section 4.3. The generalized MDS-based SigClust is
evaluated in Section 4.4. We summarize the simulation results in
Section 4.5. Extended simulations are provided in the Appendix.

4.1. Gaussian Mixtures

To analyze the performance of three SigClust-based methods,
we generate data under the null and alternative hypotheses,
namely a single Gaussian N;(0, X) and a mixture of two distinct

Gaussian distributions %Nd(u, ¥) + %Nd(—[l,, Y). We let u
(@,0,...,00T and T = diag(ry,...,Ag) with A; > A

- > Ag > 0. The covariance matrix of the data is X*
diag(A; + a2, hd). SigClust-True-MDS uses X* to gener-
ate the simulated data Z in the Monte Carlo procedure, on which
we apply SigClust-MDS. We use the modified version of MDS-
based SigClust with CI, and r = 2. Consider three settings for
¥ as follows:

v

(a) ¥ = diag(100,100,...,100,1,...,1), where the first 10
entries are 100;

(b) ¥ = diag(10,10,...,10,1,...,1), where the first 100
entries are 10;

() ¥ = diag(100,95,...,10,5,1,...,1), where the first 20
entries form an arithmetic sequence.

The first setting corresponds to the spiked covariance model,
with a few large eigenvalues and others small. In the second set-
ting, we assume a group of medium-large eigenvalues together
with small ones. The third setting interpolates between the first
two, where the eigenvalues decrease gradually.

We plot the empirical distributions of p-values under three
settings in Figure 1 (and Figures S1-S2 in the Appendix). Two
vertical lines represent two thresholds o« = 0.05 and 0.1. In each
figure, four subfigures show how the empirical distributions
change as a gets larger for all methods. For effective tests, we
expect to see that the empirical distributions of p-values are close
to the diagonal line when a = 0 and move toward the upper-left
corner quickly as a increases.

When a = 0 (a single Gaussian distribution), Figure 1(a)
shows that all four methods can control the Type I error. More-
over, SigClust-MDS, SigClust-True-MDS, and McShane et al.
(2002) produce uniformly distributed p-values on [0,1] while
SigClust-Soft produces large p-values with conservative results.
When a # 0 (Gaussian mixtures), the empirical distributions
of all four methods move toward the upper-left corner as a
increases except the method in McShane et al. (2002). In all
three settings, the power of SigClust-MDS is close to 1 when
a is moderately large, while the other methods have power
less than 0.5 under @ = 0.05. Compared with SigClust-MDS,
the method by McShane et al. (2002) gains power very slowly.
Overall, SigClust-MDS is more powerful than the other methods
when the signal is in one coordinate direction.

100 ~ e ‘ ________,::'r 100 ;-,-‘:_:;.-.._ -----
£ /"', ‘% [ P '-g 144
3075 # 1 Method 2075 | e 2075 | )
5 3 = £ = p
@ /,/J +=+ McShane o | v @ |
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Figure 1. Empirical distributions of SigClust p-values based on True-MDS, soft, and MDS methods and method from McShane et al. (2002) for Setting 2. The mean difference

comes from one direction with a = 0, 6, 10, respectively.
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Figure 2. Empirical distributions of p-values based on RIFT, MRIFT, SigClust-Sample, and SigClust-MDS in the low-dimensional setting described in Section 4.2. The mean

difference comes from the first direction with a = 0, 2, 3, respectively.

4.2. Signal in Directions with Low Variation

Chakravarti, Balakrishnan, and Wasserman (2019) pointed out
that the original SigClust may have relatively low power against
certain alternatives and proposed a test for a relative fit of
mixtures focusing on the low-dimensional setting. Given the
hypothesis problem and the data, they fit two models, a mul-
tivariate Gaussian and a mixture of two multivariate Gaussians,
to compare which model fits the data better and get a p-value to
make a conclusion. They described a simulation setting where
the original SigClust has low power. Here, we use their setting to
compare our MDS-based SigClust, the original SigClust, RIFT,
and MRIFT (Chakravarti, Balakrishnan, and Wasserman 2019).
The modified version of MDS-based SigClust is used with CI,
andr = 2.

In this simulation setting, a mixture of two Gaussian dis-
tributions %N(O,Z) + %N([L,Z) is considered, where u =
(a,0,...,0). For simplicity, we let ¥ be a diagonal matrix with
Yjj = 400 for j = 2 and ¥j; = 1 for j # 2. This problem is
challenging because the signal, that is, the mean difference of two
Gaussian components, lies in the first dimension, but its variance
is significantly smaller than that of the second dimension.

We let n = 100 and d = 5. For this low-dimensional
problem, we use the original SigClust with the sample covariance
matrix (SigClust-Sample) since d = 5 < n. We plot the
empirical distributions of p-values based on four methods with
different values of a in Figure 2. Two vertical lines correspond
toa = 0.05 and 0.1 as before. For a = 0, the ideal distribution
of p-value is uniform [0,1]. For a > 0, we hope to have small
p-values because there are two clusters. From Figure 2, we can
see that for a = 0, all methods work similarly except RIFT
is slightly more conservative. For a = 2 and 3, SigClust-MDS
works better than the other methods. In particular, for a = 3,
our method has power close to 1 while the other methods have
low power. This example further demonstrates the usefulness
of the modified CI, which can capture the separation signal in
all possible directions. At the same time, SigClust-Sample may
ignore some information when the signal (mean difference) is
not in the largest variance direction.

4.3. Sensitivity Analysis

Although our theoretical analyses focus on Gaussian clusters,
our method is applicable to cluster definitions other than Gaus-
sian. It is conservative in a number of settings in the sense that
if the test is significant, this might indicate strong evidence of

underlying clusters. To demonstrate this, we generate data from
t and Poisson cluster definitions under both null and alternative
hypotheses in the high-dimensional setting.

Under the alternative hypothesis, a mixture of two unimodal
distributions is generated from the same distribution class with
different location parameters p; = (a,a,...,a) and p, =
(—a,—a,...,—a). Taking the t distribution as an example,
under the null hypothesis, each column of data is independently
generated from a single ¢ distribution with degrees of freedom
being 10, that is, £(10). Under the alternative hypothesis, a mix-
ture of two shifted ¢ distributions %(t(lO) +a)+ %(t(lO) —a) are
generated. For the Poisson case, data are generated similarly with
mean 3. We use the modified version of MDS-based SigClust
with CI; and r = 2. As shown in Figure 3, both methods
give conservative p-values and control the Type-I error well
under the null. As the cluster mean difference a gets larger, our
SigClust-MDS gains power quickly while Sigclust-soft's power
stays low.

4.4. Generalized SigClust

In Section 2.5, we proposed a generalized MDS-based SigClust
to identify the number of clusters when there is more than one.
To evaluate its performance, we generate data from a single
Gaussian and a mixture of multiple Gaussians. When the data
are from Gaussian, we want to see whether the proposed gener-
alized method can control Type I error. When multiple clusters
exist, we evaluate its performance by two criteria: (a) power: the
probability of correctly rejecting the null; (b) selection ratio: the
probability of choosing the correct number of clusters K.
Throughout this section, we generate data from Gaussian or a
mixture of Gaussians with the identity covariance matrix ¥ = I
for each Gaussian component. We use the base version of MDS-
based SigClust with = 5 and consider the set of test statistics
Cl,...,CIs. For a mixture of K Gaussians, we try K = 2,3,
and 4. We compare the generalized version of the original Sig-
Clust (SigClust with CI, . .., CI5) and our generalized method
proposed in Section 2.5. The cluster centers for different K are:

(@ K=2:py=(a,...,a)and g, = —puy;

b) K=3:pu, =(,...,0), uy = (a,...,a) and p3 =
a,...,a,—a,...,—a) with first half coordinates being a;
@K =4: pu = (@...,0), b, = —py, n3 =
@,...,a,—a,...,—a) with first half coordinates being a

and py = —p3.
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Figure 3. Empirical distributions of p-values based on SigClust-Soft and SigClust-MDS in the high-dimensional setting under t and Poisson cluster definitions considered

in Section 4.3.

Table 1. Performance of the generalized SigClust-Soft and SigClust-MDS.

SigClust-Soft SigClust-MDS
Type-I error Type-I error
K=1 0 0
Power Selection ratio Power Selection ratio
K=2(a=3) 0.68 1 0.94 1
K =3(a = 0.16) 0 NA 1.00 0.97
K =4(a = 0.12) 0 NA 0.98 0.94

NOTE: Type | errors under a single Gaussian and power under a mixture of K
Gaussians are given.

Table 1 demonstrates the performance of both methods
under different K. For a single Gaussian (K = 1), both gen-
eralized methods have Type I error being 0. Under the alter-
natives, Table 1 shows that when the value of a is reasonably
large, our generalized SigClust-MDS has high power and selects
the correct number of clusters with high frequency, while the
generalized SigClust-Soft has very low power.

4.5. Summary of Simulation-based Findings

In Section 3 of the Appendix, we provide additional simulations
to demonstrate the performance of our proposed methods. All
simulation results in Section 4 and Section 3 of the Appendix
show that our MDS-based SigClust methods can control the
Type I error under the null, have great power under the alter-
natives, and are robust to different cluster definitions. Based
on these simulation examples, we can see that SigClust-MDS
performs the best under both null and alternative hypotheses. In
particular, the p-values are approximately uniformly distributed
on [0,1] under the null, similar to SigClust-MDS-True. It also
has the largest power in all settings under the alternative among
all comparison methods. Moreover, when the spiked covariance

assumption fails in the high-dimensional setting, SigClust-MDS
is much more powerful than SigClust-Soft.

5. Real Data Analysis

We demonstrate the effectiveness of our base and generalized
versions of SigClust-MDS (see Sections 2.4-2.5) on several can-
cer gene expression datasets and various applications in natural
language processing. Each dataset consists of several subgroups
and contains a group label for each sample. We consider two
approaches to evaluate the cluster significance. One is to test
every pairwise combination of two clusters using the base ver-
sion of SigClust-MDS with CI, and r = 2. When calculating
the test statistic CI,, we need to first separate the data into two
clusters. We use both the group labels (“True”) and 2-means
clustering results (“Est”) as cluster assignments to calculate the
CI’s. The true labels correspond to underlying (biological)
groups of interest, while the estimated labels from clustering
algorithms correspond to clusters with good separation between
clusters. Clustering errors are typically reported as the misclas-
sification rate of the k-means clustering algorithm compared to
the true labels. In most cases, the algorithm performs similarly
for both choices of labels. The other method is to test all clusters
simultaneously using the generalized SigClust-MDS and choose
the number of clusters based on the minimum p-value. We
implement SigClust using soft thresholding (SigClust-Soft) for
comparison. The fitted p-values are used throughout.

5.1. Multi-Cancer Gene Expression Dataset

We first consider a multi-cancer dataset consisting of three
cancer types: 100 samples of head and neck squamous
cell carcinoma (HNSC), 100 samples of lung squamous cell
carcinoma (LUSC), and 100 samples of lung adenocarcinoma
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Soft(True) Soft(Est) Error(Soft) MDS(True) MDS(Est) Error(MDS)
HNSC & LUSC 8.78e-5 2.07e-4 0.04 2.14e-8 5.38e-08 0.05
HNSC & LUAD 2.70e-18 2.54e-17 0.01 7.8%¢-47 1.90e-32 0.01
HNSC & LUAD 5.20e-06 1.31e-8 0.035 9.8e-20 9.40e-18 0.035

NOTE: Both the known class labels (“True”) and estimated labels (“Est”) are used to calculate the cluster indices. Clustering errors are provided (defined at the beginning of

this section).

Table 3. Application of the generalized SigClust-Soft and generalized MDS-based
SigClust proposed in Section 2.5 on multi-cancer and a subset of breast cancer data.

SigClust-Soft  SigClust-MDS
Multi cancer true K =3 Decision Reject Hy Reject Hy
Choice of K 2 3
Subset of breast cancer true K =4 Decision Reject Hy Reject Hy
Choice of K 5 3

Table 4. SigClust p-values for testing each single subgroup in the multi-cancer
dataset.

SigClust-Soft SigClust-MDS
HNSC 2.87e-3 0.419
LUSC 0.351 0.954
LUAD 0.330 0.666

(LUAD). More information can be found in the Cancer Genome
Atlas (TCGA) project (TCGA 2012). Each sample consists
of 20531 genes estimated from RNA-seq data v2, which
is available at https://wiki.nci.nih.gov/display/ TCGA/RNASeq+
Version+2. Following the same data preprocessing procedure as
in Kimes et al. (2017), we use the log transformation of the
original data and select a subset of 500 genes with the highest
median absolute deviation (MAD) about the median. After pre-
processing, the dataset consists of 300 samples and 500 genes.

Table 2 presents the testing results for pairwise subgroups
using both estimated and given true labels, as well as the clus-
tering errors. SigClust-soft and SigClust-MDS show high power
(p-values ~ 0) in all comparisons. The small p-values indicate
that these clustering operations are statistically significant. The
clustering errors are small for both methods and all three com-
binations of subgroups.

To implement the generalized MDS-based SigClust, we
choose the set of test statistics CI,, CI3, Cly, and CI5 and set
r = 4. Table 3 displays the performance of generalized SigClust
methods. Both generalized SigClust-MDS and SigClust-Soft
reject the null, while our SigClust-MDS successfully estimates
the correct number of clusters as 3.

In addition, we apply our methods on every single subgroup,
HNSC, LUSC, and LUAD. Within each group, we cluster the
data into two parts to create artificial clusters to see whether our
method can tell that the cluster operation within each class is
not preferred. Table 4 shows that our SigClust-based MDS gives
large p-values for all three cases, indicating each group should
not be divided further.

5.2. Breast Cancer Gene Expression Dataset

We consider a gene expression dataset from 337 breast can-
cer samples which is categorized into five molecular subtypes:

97 LumA, 54 LumB, 91 basal-like, 47 normal breast-like, and
48 HER2-enriched samples. The dataset is available at https://
genome.unc.edu/pubsup/clow/. We choose a subset of 1645
intrinsic genes identified in Prat et al. (2010).

Table 5 shows the p-values for 10 pairs of breast cancer
subtypes. Both methods yield significant p-values for the first 8
pairs of comparison and insignificant p-values for the last pair.
When testing the statistical significance of two breast cancer
subtypes “LumA” and “LumB’, our MDS-based SigClust gives
insignificant p-values, suggesting that the two cancer subtypes
are not significant clusters. This result is consistent with the fact
that both “LumA” and “LumB” belong to the luminal cancer
subtype. The luminal subtype has a big spectrum of samples but
not necessarily contains two significant subgroups. According
to Yersal and Barutca (2014), “LumA” and “LumB” have similar
biological features with ER-responsive genes. Therefore, our
MDS-based SigClust suggests it is not statistically significant to
divide the luminal subtype into luminal A and luminal B.

For the pair of Her2 & LumB, SigClust-MDS with esti-
mated labels gives a significant p-value while SigClust-Soft gives
insignificant p-values. Figure 4(b) indicates that the two sub-
groups are separated in the first MDS direction although there
is no significant gap between the two subgroups. Therefore, our
MDS-based SigClust produces a more convincing testing result
in this case.

To demonstrate the performance of the generalized MDS-
based SigClust, we consider a subset consisting of four cancer
subtypes “Basal,” “Normal,” “LumA,” and “LumB” because of the
overlaps between “Her2” and luminal groups, as shown in Fig-
ure 4(a). When applying the generalized MDS-based SigClust
on the subset, our method estimates the number of clusters as 3,
which is consistent with the pairwise testing result that “LumA”
and “LumB” are not statistically different from each other, as
shown in Table 3. The SigClust-soft estimates the number of
clusters as 5, which is incorrect. The results for the entire dataset
with all five subtypes are included in the Appendix. We can see
from Table 3 of the Appendix that the clustering error is large
(0.31) on the MDS space. Therefore, the evaluation result from
the generalized MDS-based SigClust on the entire dataset is not
reliable due to the poor clustering performance.

5.3. British Author Data

Our MDS-based SigClust is flexible because it can work with
various distance functions. Here is an application where the
Canberra distance handles count data. The Canberra distance
d between vectors p and q in an n-dimensional real vector
space is given as follows: d(p,q) = Y i, M, where p =

pil+|gi
(p1.p2:--.>pn) and @ = (g1, 492, . - . » qn) are vectors.
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Table 5. SigClust p-values for each pair of subtypes for the breast cancer data.

Soft(True) Soft(Est) Error(Soft) MDS(True) MDS(Est) Error(MDS)
Basal & Normal 0.028 0.025 0.08 1.42e-05 2.63e-4 0.08
Basal & Her2 2.82e-3 1.66e-13 0.04 5.07e-12 4.86e-5 0.04
Basal & LumA 1.8%e-8 2.70e-7 0.005 1.76e-39 6.83e-20 0.005
Basal & LumB 7.32e-6 1.483-4 0.01 1.68e-25 2.95e-11 0.01
Normal & Her2 0.034 0.018 0.07 9.28e-6 6.47e-5 0.07
Normal & LumA 9.18e-3 0.023 0.03 2.92e-7 4.3e-5 0.03
Normal & LumB 1.86e-3 3.19%-3 0.02 4.68e-14 5.03e-7 0.02
Her2 & LumA 4.0e-3 3.36e-12 0.02 1.49e-2 9.01e-6 0.03
Her2 & LumB 0.220 0.282 0.069 0.084 0.022 0.078
LumA & LumB 0.963 0.57 0.19 1 0.216 0.17
NOTE: Both known class labels (“True”) and estimated labels (“Est”) are used to calculate the Cls. Clustering errors are provided.
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Figure 4. The MDS projection scatterplots of the breast cancer data. Left: entire dataset with 5 cancer subtypes. Right: subset with 2 cancer types. True labels are used.

Table 6. SigClust p-values for each pair of subtypes for the British author data.

Soft(True) Soft(Est) Error(Soft) MDS(True) MDS(Est) Error(MDS)
Austen & London 5.72e-22 1.62e-5 0.09 3.23e-48 1.01e-6 0.09
Austen & Milton 7.98e-68 2.13e-59 0 4.02e-84 7.52e-26 0
Austen & Shakespeare 8.66e-56 8.95e-60 0.02 9.24e-71 5.59%-20 6e-3
London & Milton 0.645 0.020 0.3 6.9e-37 9.47e-4 3e-3
London & Shakespeare 9.85e-5 4.11e-7 0.06 6.73e-42 1.30e-14 0.06
Milton & Shakespeare 1.87e-35 3.58e-36 0.04 7.22e-34 8.87e-15 0

NOTE: Both known class labels (“True”) and estimated labels (“Est”) are used to calculate the cluster indices. Clustering errors are provided.

We implement the sample SigClust method, namely using
the sample covariance matrix as an estimator of the population
covariance matrix (denoted as SigClust-Sample) for compari-
son, because d 69 < n 841. This dataset consists
of word counts from chapters written by four British authors:
317 chapters from Jane Austen, 296 from Jack London, 55 from
John Milton, and 173 from William Shakespeare. The goal is to
establish the statistical significance of clustering the dataset into
subgroups according to the authors.

To demonstrate the usefulness of the Canberra distance, we
visualize the data using the first two coordinates of the MDS
matrix with the Euclidean and the Canberra distance. We use
different shapes for different authors. As shown in Figure 5, the
Canberra distance provides better separation among different
authors than the Euclidean distance.

Table 5 shows the p-values for all pairs of authors based on
MDS representations with the Canberra distance. Both meth-
ods yield significant p-values except the fourth pair, London
& Milton. For this pair, SigClust-MDS gives a significant p-
value while SigClust-Sample gives a large p-value (near 1) using
the given labels. Figure 5 shows that the subgroups of London

and Milton are mixed in the first two PC directions. Therefore,
SigClust-Sample fails to identify subgroups under true labels.
This application demonstrates that the Canberra distance helps
to measure the difference among these subgroups and thus
benefits the clustering evaluation task.

5.4. Applications in Natural Language Processing

As discussed before, our MDS-based SigClust works even when
the original data are unavailable, as long as the dissimilarity
matrix is provided. In this analysis, we apply the MDS-based
SigClust on canonical natural language datasets available from
Nakamura (2006). For natural language terms, the data points do
not have geometric coordinates. Thus, these datasets are in the
form of distance matrices where the Google distance captures
the pairwise distance. To test the significance of clusters, we
apply the base version of our MDS-based SigClust with r=2 on
each pair of subgroups. Six datasets people5, alt-ds, math-med-
fin, finance-cs-j, phil-avi-d and math-cuisine are analyzed.
Detailed descriptions of datasets are given in the Appendix.
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Figure 5. PCA and MDS projection scatterplot view of the British author data. True labels are used.

Table 7. MDS-based SigClust test results for the dataset people5.

SigClust-MDS True

SigClust-MDS Est clustering error

Classical composers vs artists 3.77e-12
Classical composers vs authors 4.54e-10
Classical composers vs math 8.64e-12
Classical composers vs pop music 1.87e-08
Artists vs authors 2.27e-10
Artists vs mathematicians 2.87e-09
Artists vs pop musicians 1.04e-12
Authors vs mathematicians 2.29e-05
Authors vs pop musicians 0.071

Mathematicians vs pop musicians 2.37e-06

6.43e-13 0
3.52e-10 0.04
291e-11 0
5.83e-08 0.02
4.62e-09 0
2.11e-09 0.02
5.84e-14 0
7.03e-08 0.06
0.02 0.04
2.43e-06 0.04

Table 7 displays the clustering and MDS-based SigClust test
results for the dataset people5 and the results for the other
datasets are in Table 5 of the Appendix. The “SigClust-MDS
True” and “SigClust-MDS Est” columns show the testing results
where cluster indices are calculated using true and estimated
labels, respectively. The “clustering error” and “misclassified
nodes” columns display the error rates and the numbers of
misclassified nodes under the 2-means algorithm.

As shown in Table 7 (and Table 5 of the Appendix), the
clustering error is very small in each case. Therefore, the MDS
matrix gives a good two-dimensional representation of the
original distance matrix and preserves the distance information.
The testing results for datasets alt-ds, math-med-fin, phil-avi
and math-cuisine are significant (< 0.05) using both true
labels and estimated labels. The only two insignificant tests are
the “author vs. pop musicians” comparison in people5 and the
one in finance-cs-j using true labels. Both cases have p-values
slightly larger than 0.05. In summary, our MDS-based SigClust
suggests that those clusters are mostly significantly different
from each other.

6. Discussion

In this article, we propose a new MDS-based SigClust method
for testing the statistical significance of clustering. Our method
combines the original SigClust method and multidimensional
scaling. The most challenging part of the original SigClust
is the estimation of the high-dimensional covariance matrix.
Furthermore, one may only have the pairwise dissimilarity

matrix between samples available without the original data
in various applications. Our new method can tackle these
challenges effectively. We can obtain low-dimensional repre-
sentations of the original data through MDS using only the
dissimilarity matrix. Through extensive simulation studies, we
show that the MDS matrix can preserve existing cluster infor-
mation under null and alternative hypotheses. Our method
can control Type I error under the null and is powerful under
the alternative hypothesis. As an extension of the original
cluster index, the combined cluster index successfully cap-
tures separation signals from all possible directions. The exten-
sion makes our MDS-based SigClust more broadly applica-
ble. Moreover, we propose a generalized MDS-based SigClust
that can identify the number of clusters when there is more
than one.

There are several open directions for future research. One
interesting direction is to further develop theoretical results
under more general null distributions in contrast to the
usual Gaussian cluster assumption. Another important area of
research is to establish consistency of the estimated number of
clusters using generalized MDS-based SigClust.

Supplementary Materials

Appendix: Proofs of all theoretical results for Section 3 and additional
numerical results for Sections 4 and 5. (Appendix.pdf, pdf file)

Code and data: Example code and code for each section in the manuscript
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