Manuscript accepted for publication in Physics of Fluids, 2024

Field Inversion Machine Learning Augmented Turbulence Modeling for

Time-Accurate Unsteady Flow

Lean Fang! and Ping He! ®

' Department of Aerospace Engineering, lowa State University, Ames, lowa 50011,

USA

Field inversion machine learning (FIML) has the advantages of model consistency and
low data dependency and has been used to augment imperfect turbulence models. How-
ever, the solver-intrusive field inversion has a high entry bar, and existing FIML studies
focused on improving only steady-state or time-averaged periodic flow predictions. To
break this limit, this paper develops an open-source FIML framework for time-accurate
unsteady flow, where both spatial and temporal variations of flow are of interest. We aug-
ment a Reynolds-Averaged Navier-Stokes (RANS) turbulence model’s production term
with a scalar field. We then integrate a neural network (NN) model into the flow solver
to compute the above augmentation scalar field based on local flow features at each time
step. Finally, we optimize the weights and biases of the built-in NN model to minimize the
regulated spatial-temporal prediction error between the augmented flow solver and refer-
ence data. We consider the spatial-temporal evolution of unsteady flow over a 45-degree
ramp and use only the surface pressure as the training data. The unsteady-FIML-trained
model accurately predicts the spatial-temporal variations of unsteady flow fields. In ad-
dition, the trained model exhibits reasonably good prediction accuracy for various ramp
angles, Reynolds numbers, and flow variables (e.g., velocity fields) that are not used in
training, highlighting its generalizability. The FIML capability has been integrated into
our open-source framework DAFoam. It has the potential to train more accurate RANS
turbulence models for other unsteady flow phenomena, such as wind gust response, bubbly

flow, and particle dispersion in the atmosphere.

) Corresponding author. phe @iastate.edu

Manuscript accepted for publication in Physics of Fluids, 2024

NOMENCLATURE

C, = Pressure coefficient (p — po)/(0.5p0U})
f = Objective function at each time step

F = Time-averaged objective function

h = Channel height at the outlet, m

H = Velocity influence vector

K = Total number of time step

p = Pressure, Pa

R = Flow residual vector

Re = Reynolds number

S = Mesh face area vector, m?

t = Time,s

t* = Non-dimensional time, tUy/h

At = Time step, s

U = Velocity vector, m/s

Uo = Velocity at the inlet, m/s

Uy, Uy = Velocity in the x and y directions, m/s
Uy, Uy = Normalized velocity Uy/h, Uy/h

w = Flow state variable vector

w, b = Neural network’s weights and biases

x = Design variable vector

X,y = Streamwise and vertical coordinates, m
x*, y* = Normalized coordinates, x/h, y/h

B = Augmented flow field variable

n = Local flow features

vV, V = Kinematic and turbulent viscosity, m?/s
Veff = Effective viscosity (Vv + V;), m?/s

0] = Face flux, m/s

P = Adjoint vector

Manuscript accepted for publication in Physics of Fluids, 2024

I. INTRODUCTION

Computational fluid dynamics (CFD) is a powerful tool for analyzing three-dimensional flow
fields, which allows us to better understand flow physics and design high-performance systems.
One can run CFD with various levels of fidelity, ranging from the Reynolds-averaged Navier-
Stokes (RANS) approach to direct numerical simulation (DNS). Because of its relatively low
computational cost, the RANS approach is commonly used in the design and analysis of engi-

7-9

neering systems, such as aircraft!=3, spacecraft4‘6, cars’, and wind turbines'®!'2, However, it

is known that the RANS approach has imperfect physical models (e.g., turbulence models) that

13,14

degrade its simulation accuracy for challenging flow conditions , such as flow separation and

turbulence transition.

To correct the imperfect physical models for RANS CFD solvers, researchers have proposed

various machine learning (ML) methods, such as physics-informed ML!>-16 evolutionary algo-

17,18 19-22

rithms , various neural network models , and surrogate-based optimization®>?*. More
comprehensive reviews can be found in?>~?’. Compared with traditional human-intuition-based
physical model development, ML methods can leverage data to accelerate the development of
accurate and generalizable physical models. Field inversion machine learning (FIML) is a solver-
embedded method proposed by Duraisamy and co-workers?®-3%. The main advantage of FIML
is that it incorporates the entire CFD solver in the training phase (field inversion), so the train-
ing and prediction are consistent at the discretized level, which improves its prediction accuracy
and generalizability?’. Moreover, FIML allows one to flexibly use a wide range of available data
for training, such as integrated values, surface variables, and sparse or partial field data. In the

following, we conduct a brief literature review of existing FIML studies.

Singh, Medida, and Duraisamy > used experimental lift coefficients as training data and aug-
mented the Spalart—Allmaras (SA) for predicting separated flow over airfoils. The augmented
model significantly improved the lift prediction accuracy for various angles of attack. The trained
model was also found to be generalizable for flow conditions, geometries, and flow solvers not
used in training. To further improve the model consistency, Holland, Baeder, and Duraisamy !
proposed a coupled field inversion and machine learning framework where the inference and learn-
ing were conducted simultaneously. He, Liu, and Gan3? developed a continuous adjoint method
to conduct field inversion and showed reasonably good performance for a wide range of 2D and

3

3D flow configurations. Ferrero, Iollo, and Larocca 3 used the wall isentropic Mach number data

3

Manuscript accepted for publication in Physics of Fluids, 2024

to augment the SA model for accurate flow predictions in gas turbine cascades. The trained model
was shown to have good predictive accuracy with various unseen Mach numbers and blade ge-
ometries. Michelen Strofer, Zhang, and Xiao>* developed an open-source framework that used
an ensemble Kalman filtering (EnKF) method, instead of an adjoint-based method, to conduct
field inversion. Yang and Xiao 3> used the EnKF method to consider the laminar-to-turbulent flow
transition over airfoils. They augmented a four equation k — @ — 7y — A, turbulence model, which
showed reasonably good performance in predicting the transition location for various angles of
attack. The EnKF method was also used to augment the turbulence model’s prediction accuracy
for the interaction between the shock wave and boundary layer3, laminar-to-turbulent flow tran-
sition in hypersonic boundary layer’’, and flow over a hump?®. Hafez et al.*® augmented the
k — @ SST turbulence model for predicting traditional flow over flat-plate T3 series cases. The
augmented model was found to significantly improve the prediction accuracy in the surface fric-
tion and boundary layer thickness. Fidkowski*? considered laminar-to-turbulent flow transition by
augmenting an algebraic model, which multiplies an intermittency factor to the production term.
He evaluated the effectiveness of FIML with various training options, such as using integrated
or surface-distributed data and a combination of optimizing correction fields and tunable param-
eters for the transitional model. Ho and West*' augmented the k — @ SST turbulence model for
three-dimensional flows over bumps. The trained model was found to improve mean velocity and
turbulent kinetic energy predictions for unseen flows and geometries. Yan, Zhang, and Chen*?
augmented the SA turbulence model for predicting 3D flow over hills and proposed a method to

1.3 evaluated the

validate the parameters used in the FIML to maximize its efficiency. Bidar ef a
impact of using various combinations of multiple sources of data on the accuracy of the field inver-
sion results for a hump and a periodic hill case. Wu and Zhang** proposed a symbolic regression
method to improve the interpretability of FIML results. Their augmented kK — @ SST turbulence
model exhibits reasonably good generalizability for predicting separated flow for various 2D and
3D configurations. Later, Wu and Zhang*> proposed a conditioned FIML method for generalizing
the augmented turbulence model’s prediction for a wide range of flows. Instead of allowing the
augmentation variable to change everywhere in the flow field, they switched it off in the bound-
ary layer to maintain the trained model’s accuracy for attached flows. Recently, Bidar, Anderson,
and Qin“® proposed a greedy algorithm that can optimize the sensor placement in flow regions

with high uncertainty to maximize the FIML’s efficiency. The uncertainty map was based on the

eigenspace perturbation of the baseline turbulence model.

Manuscript accepted for publication in Physics of Fluids, 2024

Despite the above progress, all the FIML papers cited above considered only steady-state flow
problems. This is primarily because FIML has a relatively high entry bar and requires an adjoint
solver to compute gradients with respect to a large number of design variables>’. Implementing
an efficient adjoint solver requires the source codes and detailed knowledge of the CFD solver

and is known to be time-consuming. Although the EnKF method*

was proposed to circumvent
the need for an adjoint solver in FIML, we are not aware of an EnKF-based FIML study for un-
steady flow, probably due to its high computational cost for generating a large number of unsteady
flow samples. Recently, Fidkowski*’ demonstrated that a steady-state trained FIML model could
improve prediction accuracy for periodic unsteady flow. He used time-averaged data from peri-
odic unsteady flow (ignoring the unsteady flow time history) and conducted steady-state FIML to
correct the turbulence modeling error. He then used the corrected model to predict unsteady pe-
riodic flow and incorporated it into aerodynamic shape optimization. However, as will be shown
in Sec. III D, there is no guarantee that a steady-state trained FIML model can accurately predict
the time history of general, non-periodic unsteady flow. Accurately predicting the time history of
general unsteady flow is important for many engineering and scientific problems, such as wind
gust response, aircraft maneuver, multiple-phase flow evolution (e.g., bubbly flow), and particle
transport in the atmosphere. In a recent study*®, we demonstrated that time-accurate unsteady
field inversion could correct the turbulence model’s prediction error and accurately capture the
entire time history of unsteady flow evolution. This paper is a step forward in this direction and
incorporates machine learning in our previous unsteady field inversion framework for predicting

unseen unsteady flow conditions and geometries.

The objective of this paper is to develop an open-source FIML framework that can augment
RANS turbulence models for accurate prediction of time-accurate unsteady flow, where both spa-
tial and temporal variations of flow are of interest. We multiply the production term of the SA
turbulence model by a scalar field B. Then, we integrate a deep neural network model into the
CFD solver to compute the augmentation field 8 based on local flow features 1 at each time step.
The unsteady FIML is formulated as an inverse problem where we optimize the weights and biases
of the neural network model to minimize the CFD’s regulated prediction error. The error is quan-
tified by the difference between the CFD prediction and reference data at the selected mesh cells
or boundaries for all time steps. To make the large-scale unsteady FIML optimization efficient, we
propose a new PIMPLE-Krylov adjoint algorithm. First, we use the coupled pressure-implicit with

splitting of operators (PISO) and semi-implicit method for pressure-linked equations (SIMPLE)

5

Manuscript accepted for publication in Physics of Fluids, 2024

algorithm (aka PIMPLE) to simulate the unsteady flow. Then, we use a Krylov method to solve
the unsteady adjoint equations in reverse. The PIMPLE-Krylov adjoint algorithm’s main benefit
is that it can relax the CFL number to be greater than one, which significantly reduces the number
of adjoint equations to be solved and accelerates the adjoint speed. This paper will elaborate on
the proposed unsteady FIML framework and demonstrate its capability by augmenting turbulence
modeling of unsteady flow over a ramp. We use the spatial-temporal distribution of pressure on
the bottom wall as the reference data. We will evaluate the augmented model’s accuracy by com-
paring the inverse flow fields (pressure and velocity) with the reference data. We will also evaluate
the trained model’s generalizability for predicting flow conditions and geometries not used in the
training.

The proposed unsteady FIML framework has been implemented into our open-source, CFD-
based optimization framework called DAFoam*°. Details about downloading, installing, and using
DAFoam can be found on its documentation website https://dafoam.github.io. The config-
uration files for reproducing the FIML results presented in this paper are archived on Mendeley
data>.

The rest of the paper is organized as follows. In Section II, we elaborate on the proposed
unsteady FIML framework and all its components. The unsteady FIML results are presented and

discussed in Section III and we summarize our findings in Section IV.

II. METHOD

In this section, we elaborate on the proposed unsteady FIML framework, followed by the details
of its components, e.g., unsteady flow simulations, unsteady adjoint computation, built-in neural
network, and flow feature calculation. We also discuss the effective numerical configurations to

facilitate the unsteady FIML optimization with a built-in neural network model.

A. Proposed FIML framework for time-accurate unsteady flow

Figure 1 shows the proposed FIML framework for time-accurate unsteady flow. We conduct
unsteady simulations by marching the solution with a time step At, starting from an initial flow
field. At each time step, we conduct multiple iterations (PIMPLE loop) to converge the flow

residuals as tightly as possible (see the next section for the details of the PIMPLE algorithm).

6

Manuscript accepted for publication in Physics of Fluids, 2024

/ Weights & biases, / / Reference flow, w'ef /

Unsteady time marching . ;
. . Time step, i
t =1iAt, i =1:N

Pimple loop with
Converged flow
a built-in neural

for ith step, w;

network model

Error calculation / Prediction error, f /

FIG. 1: Proposed field inversion machine learning framework for time-accurate unsteady flow. We
use the extended design structure matrix (XDSM) representation proposed by Lambe and Mar-
tins>!. The diagonal blocks are the components and the off-diagonal blocks are data transferred
between components. The unsteady FIML optimizes the weights and biases (x) of the built-in
neural network model to minimize the CFD solver’s regulated prediction error. The regulated pre-
diction error is computed as the selected flow field difference between the CFD and reference at

all time steps, along with a regulation term.

For each PIMPLE iteration (Fig. 2), we use a feature extraction component to compute local flow
features (1)) based on the latest flow field (w). A built-in neural network model will then use the
flow feature 1) and weights and biases as the inputs to compute an augmentation scalar field 8. The
augmentation f field will be added to the governing equation of turbulence models to correct its
prediction. The above PIMPLE loop will be repeated to obtain converged flow fields for this time
step i. The prediction error f is computed as the flow field difference between the CFD prediction
and reference data for all time steps. To prevent overfitting, we also add a regulation term to the
objective function to force the augmentation f3 field to be as close to one as possible. Finally, an
inverse problem is solved by minimizing the regulated prediction error f (objective function) by

optimizing the neural network model’s weights and biases x (design variables).

The above unsteady FIML formulation couples the field inversion and neural network model
(machine learning) and is similar to the method proposed in Holland, Baeder, and Duraisamy 3!
for steady-state flow. However, most of the existing FIML studies (steady-state flow) decouple the
field inversion and machine learning, as reviewed in the introduction. To be more specific, mul-

tiple field inversion problems are first solved to find the optimal augmentation field 8 for various

7

Manuscript accepted for publication in Physics of Fluids, 2024

/ Weights & biases, z /

PIMPLE loop)) T Converged flow
Pimple iteration j .
ji=1LK for ith step, w;
Governing equations Flow field, w;

Feature extraction / Flow feature, n; /

/ Augmented field, 3; / Neural network

FIG. 2: Detailed structure of the PIMPLE loop component in Fig. 1. We conduct multiple PIMPLE
iterations until all the flow residuals are small. In each PIMPLE iteration j, we solve the governing
equation, compute the local flow features (1), compute the augmentation field 3; using the neural
network model, and assign the updated augment field to the turbulence model’s governing equation

for the next iteration.

configurations (geometries and boundary conditions). Then, an off-line neural network model is
trained by using local flow features (1)) as the inputs and the above optimized augmentation field
B as the outputs. Compared with the decoupled approach, the coupled FIML has the advantage
of maximizing the model consistency between the field inversion (inference) and machine learn-
ing (augmentation) steps3!. In addition, the number of design variables (weights and biases) is
independent of the problem size (e.g., mesh size and unsteady time steps). However, the coupled
FIML’s disadvantage is that it incorporates a highly nonlinear neural network model in the opti-
mization; therefore, the FIML problem is generally more challenging to converge. In addition,
exploring different flow features and neural network architectures requires re-resolving the entire
FIML problem, which is computationally expensive. In contrast, the decoupled approach can eas-
ily explore various flow features and neural network architectures because the inputs (flow features

n) and outputs (optimal f3 fields) have been already pre-computed in the inference step.

Although the coupled and decoupled FIML approaches have their own advantages and disad-
vantages for steady-state problems, the former appears to be the only computationally feasible
option for time-accurate unsteady flow problems. This is because the local flow features are time-
dependent for unsteady problems, making the augmentation field 8 time-dependent. So, a decou-

pled FIML would need to use the 3 fields of all time steps as the design variables, and the total

8

Manuscript accepted for publication in Physics of Fluids, 2024

number of the design variable can quickly become prohibitively large (e.g., millions), especially
when the mesh size and the number of unsteady time steps are large. Given the above reason, we
use the coupled FIML approach in this paper.

Our proposed FIML framework will conduct large-scale gradient-based optimization to find the
best neural network weights and biases to minimize the regulated prediction error. In the following
subsection, we will elaborate on the three main components of the FIML framework: (1) Unsteady
flow simulations, (2) Built-in neural network to compute the augmentation fields, and (3) Effective
adjoint gradient computation for unsteady flow. At the end of this section, we will also discuss the

effective numerical configurations to facilitate the highly nonlinear coupled FIML optimization.

B. Unsteady flow simulation using the PIMPLE method

We consider incompressible, unsteady turbulent flow governed by the Navier—Stokes (N-S)

equations:

V.U =0, (1)

d
a—7+<U.v>U+vP—V-veff<VU+[VU1T> =0, 2)

where ¢ is the time, p is the pressure, U is the velocity vector U = [u,v,w], Vet = V + V; with v
and v; being the kinematic and turbulent eddy viscosity, respectively.
As mentioned above, we solve the above N-S equations using the PIMPLE method, which is a
combination of the PISO and SIMPLE algorithms. The steps are briefly summarized as follows.
First, the momentum equation is discretized, and an intermediate velocity field is solved using
the pressure field obtained from the previous iteration (p') or an initial guess. Without loss of
generality, we assume the first-order Euler scheme is used for temporal discretization.

t—At

U, - -
apUp ==Y ayUy + 54— =V M=HU)-Vp'¥, 3)
N

where a is the coefficient resulting from the finite-volume discretization, subscripts P and N denote
the control volume cell and all of its neighboring cells, respectively, U’ is the velocity from the

previous time step, and
t—At
Up
At

H(U)=-Y avUy+ (4)
N

9

Manuscript accepted for publication in Physics of Fluids, 2024

represents the influence of velocity from all the neighboring cells and from the previous iteration.

A new variable ¢ (face flux) is introduced to linearize the convective term:

/SUU-dS:ZUfo-Sf:Z¢Uf, 5)
7 7

where the subscript f denotes the cell face. ¢ can be obtained from the previous iteration or an
initial guess. Solving the momentum equation (3), we obtain an intermediate velocity field that
does not yet satisfy the continuity equation.

Next, the continuity equation is coupled with the momentum equation to construct a pressure
Poisson equation, and a new pressure field is computed. The discretized form of the continuity

equation is

/SU-dS=ZUf-Sf=o. (6)
7

Instead of using a simple linear interpolation, Uy in this equation is computed by interpolating the

cell-centered velocity Up—obtained from the discretized momentum equation (3)—onto the cell

Uy = (Hf))f— (i)f(vmf- @

This idea of momentum interpolation was initially proposed by Rhie and Chow>? and is effec-

face as follows:

tive in mitigating the oscillating pressure (checkerboard) issue resulting from the collocated mesh

configuration. Substituting Eq. (7) into Eq. (6), we obtain the pressure Poisson equation:

v. (éVp) _v. (Hg])) @®)

Solving Eq. (8), we obtain an updated pressure field p’. Then, the new pressure field p’ is used

to correct the face flux

HU 1
¢'=Us Sy = (()) —(—) (VP)r| - Sy, ©)
and velocity field
U' = i[H(U) —Vp']. (10)
ap

The H(U) term depends on U but has not been updated so far. To account for this, we need
to repeatedly solve the Egs. (4) to (10) (PISO corrector loop). We use two PISO corrector loops in
this paper.

10

Manuscript accepted for publication in Physics of Fluids, 2024

To connect the turbulent viscosity to the mean flow variables and close the system, a turbulence

model must be used. The Spalart—Allmaras (SA) model solves:

v

ot

=N 2
+V-(U\7)—${V-[(v—f—f/)V\?]+Cb2\V\~/|2}—ﬁCb1§\7+CW1fW <§) =0. (11)

where V is the modified viscosity, which can be related to the turbulent eddy viscosity via

X—3 x =
X +C3

<t

vi— . (12)

< | <

Refer to Spalart and Allmaras >3 for a more detailed description of the terms and parameters in the
SA model. As mentioned above, we multiply the production term by an augmentation field 3.

In addition to the PISO corrector loop mentioned above, the PIMPLE algorithm repeatedly
solves Egs. (3) to (11) multiple times until all the flow residuals are small (PIMPLE corrector loop).
To ensure the PIMPLE stability, we need to under-relax the momentum equation (3) and turbulence
equation (11) solutions and the pressure update after solving the pressure Poisson equation (8),
except for the last PIMPLE corrector loop. We use Egs. 3, 8, 9, and 11 for the residuals of velocity,
pressure, face flux, and turbulence variables, respectively. The PIMPLE method allows us to use
a relatively large time step size (CFL>1). This feature may not directly benefit the unsteady flow
simulation speed, because we need multiple PIMPLE iterations to converge the flow residual at
each time step. However, using a relatively large time step is highly desirable for the unsteady
adjoint solver because (1) we need to solve a much smaller number of adjoint equations, and (2)
we need to read and write a much smaller amount of intermediate flow data to the disk. In this
study, we run the PIMPLE corrector loop until all the flow residuals drop 8 orders of magnitude or a
maximal of 100 PIMPLE corrector iterations. Note that converging the flow residuals as tightly as
possible is critical for the accuracy of the adjoint method because our proposed unsteady adjoint
uses a residual-based formulation (see the details in the next subsection). The PISO algorithm,
which is commonly used for solving incompressible unsteady flow, does not repeatedly solve the
momentum and pressure equations. Therefore, its flow residuals are not as tightly converged as

the PIMPLE’s.

C. Built-in neural network model to compute the augmentation field

As mentioned above, we incorporate a multilayer perceptron (MLP) neural network model into

the CFD solver (Fig. 3). The inputs are the local flow features 717, and the output is the augmentation

11

Manuscript accepted for publication in Physics of Fluids, 2024

CFD solver with a built-in neural network model

Input layer Hidden layers Output layer)
(flow features) (augmented field)

N2
Flow fields

9

XXX
‘XXXX.
‘XXX X.

Governing
equations

- J

FIG. 3: Schematic of the solver-built-in, multilayer perceptron neural network model used in this

paper.

field B for each iteration. The MLP has multiple layers of fully connected neurons (hidden layers)
between the input and output layers. Each neuron can be computed as a weighted summation of

the neuron from the previous layer, nested in a nonlinear activation function

W= fulbi+ Y wik), (13)
i—1

J
where w and b are the weights and biases, respectively. The superscripts k and kK — 1 denote the

current and previous layers, respectively. N is the total number of neuron of the k — 1 layer.
Various options can be used for the activation function f,, such as tanh, sigmoid, and ReLU. We

choose the hyperbolic tangent activation function (tanh) in the form of

l—e®

fa(y) = T5e

(14)

As will be shown later, we find the optimal weight and biases using a sequential quadratic pro-
gramming (SQP) algorithm, which uses second-order derivatives to compute search directions.
Compared with ReLU, the tanh activation function is twice differentiable and should be more
compatible with SQP. In addition, we will use initial weights and biases that are close to zeros

to start the optimization. The tanh activation function’s gradients are larger than the sigmoid’s at

12

Manuscript accepted for publication in Physics of Fluids, 2024

the starting point, so it can converge to the optimal point faster. A comprehensive evaluation of
various activation functions and optimization algorithms is beyond the scope of this paper and will
be conducted in our future work.

Our FIML framework has implemented many flow features, including the vorticity-to-strain ra-
tio, turbulence production-to-destruction ratio, turbulence convection-to-production ratio normal-
ized turbulence viscosity, pressure gradient along the streamline, pressure stress to normal stress
ratio, streamline curvature, velocity orthogonality, normalized turbulence intensity, wall distance
based Reynolds number, and total-to-normal Reynolds stress ratio>*. In practice, users may need
to explore various combinations of flow features to obtain the best neural network performance.
All features are normalized to maximize the FIML’s generalizability for unseen flow conditions.
To facilitate the optimization, users can also prescribe scaling factors for the flow features such
that their standard deviations (across all mesh cells and time instances) are close to one. In addi-
tion to the input layer and output layer, users can add any number of hidden layers and the number
of neurons for each hidden layer. All the layers have the hyperbolic tangent activation function

except for the output layer.

D. PIMPLE-Krylov unsteady adjoint formulation for gradient computation

As mentioned above, the PIMPLE flow simulation converges all flow residuals tightly at each
time step.
R!'(z,w',w")
R(z,w) = Rz(w’wz.’wl’wo) o, (15)

RK(:v,wK,wK’l,wK’z)

where the superscript denotes the time step index with K being the total number of time steps,
x € R™ is the design variable vector with 7, being the total number of design variables, w € R
is the state variable vector with n,, being the total number of state variable for each time step, and
R c RX™ is the flow residual vector. Here we use an implicit second-order time discretization
scheme for all time steps except for the first one, where the first-order time scheme is used. In
the primal unsteady flow solution, Eq. (15) is solved in a forward fashion to determine the state
variable for all time steps, i.e., w', w?,..., wX € R™,

The objective function F also depends on both the design variables & and the state variable w

13

Manuscript accepted for publication in Physics of Fluids, 2024

solved in Eq. (15), and in many applications, including this study, the objective function F can be
expressed as the average of a time series, that is:

1

K. fi(z,w), (16)

M=

F(x,w)=

Il
_

where for each 1 <i < K, f' only depends on the design variables x and the corresponding state

at the current time step w'’. This implies that the partial derivative dF /dw can be simplified as:

8_F _ 1 [a_fl _afz _afK] (17)
dw K '‘dw!’ dw? dwk”
I?I?n/v 1xn 1xn,, 1xn

For other common types of objective functions, e.g., the variance of a time series, the partial
derivatives of F can also be simplified in a similar manner.

To obtain the total derivative dF /dx for gradient-based optimization, we apply the chain rule
as follows:

dF 9F OF dw as)

dz, Jdz, Jw Jdx
—~— =~ =~ =~
1 xny 1xny 1xKn,, Kn,, xny
where the partial derivatives dF /dx and dF /dw are relatively cheap to evaluate because they
only involve explicit computations. The total derivative dw/da matrix, on the other hand, is
expensive, because w and x are implicitly linked by the residual equations R(w,x) = 0.
To solve for dw/ dax, we can apply the chain rule for R. We then use the fact that the governing

equations should always hold, independent of the values of design variables x. Therefore, the total

derivative dR/ da must be zero:

dR_JR JRdw _

D e E i = 1
de Jdx Jwdx (19
Rearranging the above equation, we get the linear system
R dw IR
= .= —_ == 20
Jw dx ox 20)
e —~—
Kn,,xKn,, Kn,, xny Kny, xn,
We can then substitute the solution for dw/da from Eq. (20) into Eq. (18) to get
wT
——
dF 9F OJF JR' IR
— = — . (21)

dx ox Jdw Jw Jox
R = —— R~

1xny 1xny 1xKn,, Kn,, xKn,, Kn,, Xn,

14

Manuscript accepted for publication in Physics of Fluids, 2024

Now we can transpose the Jacobian and solve with [0F /dw]” as the right-hand side, which

yields the adjoint equation,
OR" _oFT
Jw - dw
g N~
Kn,,xKn,, Kn,x1 Kn,,x1

(22)

where 1 is the adjoint vector. Then, we can compute the total derivative by substituting the adjoint
vector into Eq. (21):
dF JF IR

oz ¥ 9z (23)

Since the design variables are not explicitly present in Eq. (22), we need to solve the adjoint
equation only once for each objective function. Therefore, the computational cost is independent
of the number of design variables but proportional to the number of objective functions. This
approach of computing derivatives introduced so far is also known as the adjoint method. 1t is ad-
vantageous for field inversion because typically, there is only one objective function, but thousands
of design variables may be used.

The adjoint equation in Eq. (22) can be simplified for the time-marching primal problem. As

indicated in Eq. (15), for each 1 <i < K, R' has dependency only on x, w', w'~!, and w2,
Together with the simplification in Eq. (17), Eq. (22) can be rewritten as:
or'T om2T om3T 11 .0 BEA
Jwl Jw gw! Y !
or2T orT miT 0’ ki
Jdw? Jdw? Jdw? 1 Jdw?
oRK 1T oRK T k-1 a1 T
dwk-1 dwk-1 Jwk 1
oRKT K ark T
L Jowk | L ’(,b - L Jwk

where the adjoint vector 1 € RX™ is broken down into K parts that correspond to the time steps,

ie., ! %, ... 4K € R™. Then, Eq. (24) can be solved sequentially in a backward fashion as:

ORCT k1 ort!
Jwk - KodwK '’
K-1T k-17T kT
Jwk-1 K dwk-1 dwk-1 ’
aRiT ; 1 afiT aRi+1T i aRiJrZT i .
dw Y T Kow ow ¥ T ow ¥ K22

which effectively breaks down the original adjoint equation in Eq. (22) into K much smaller sub-
equations. The right-hand side terms in Eq. (25) can be efficiently evaluated with reverse-mode au-

tomatic differentiation (AD). In particular, the matrix-transpose-vector product [0 R**? /dw']T 4p'+>

15

Manuscript accepted for publication in Physics of Fluids, 2024

is evaluated in a Jacobian-free manner right after we solve for ¥'*2, and [0 R""!/dw']T 4t is
evaluated in a similar fashion, then they are passed to the right-hand side of the sub-equation for
1)'. Note that we solve the above adjoint equation (25) in reverse and computing the matrix-vector
products requires access to state variables for all time steps. Saving all state variables in memory
is prohibitively expensive. Therefore, we write the state variables to the disk for all time steps
during the primal simulation. Then, during the adjoint computation, we read the state variables
for each time step. The use of file 10 in our unsteady adjoint method is acceptable because (1)
OpenFOAM has a parallel file 1O interface that scales well with large meshes, and (2) the file IO
runtime is much smaller than the actual adjoint computation runtime.
The assumption that the objective function F' is of the average type in Eq. (16) also simplifies
the expression of the total derivative dF / dx in Eq. (23) as:
dF K
dz

1 8f, l'TaRi

i=1
Therefore, we can calculate the total derivative accumulatively as we sequentially solve the sub-
equations in Eq. (25). Computing the total derivatives on the fly is desirable because we do not
need to save the adjoint vectors for all time steps.

Finally, we elaborate on how to effectively solve the adjoint linear equations in Eq. (25). We use
the generalized minimal residual (GMRES) solver from the Portable, Extensible Toolkit for Sci-
entific Computation (PETSc)™ library to solve the adjoint linear equations. The GMRES solver
converges quadratically and is significantly faster than the fixed-point adjoint solver (linear con-
vergence) used in our previous studies*®>%->7. In addition, the GMRES solver’s convergence does
not require the linear iteration matrix’s eigenvalues to be within the unit circle. It is more robust
in practice, especially when we need to repeatedly solve the adjoint equations.

We use the GMRES as the top-level solver with a nested preconditioning strategy. For the
global preconditioner, we use a one-level-overlap additive Schwartz method (ASM). The ASM
approach decomposes the linear equation into sub-blocks and allows us to solve it in parallel.
For the local preconditioner in each sub-block, we use the incomplete lower and upper (ILU)
factorization approach with one level of fill-in.

We develop a Jacobian-free GMRES approach to solve the adjoint linear equations, similar to
that proposed in our previous work for steady-state problems>®. The Jacobian-free GMRES can
directly compute the matrix-vector products to construct the Krylov subspace without forming or

saving [0 R/dw]”. The benefit of Jacobian-free GMRES is that it saves the computational time

16

Manuscript accepted for publication in Physics of Fluids, 2024

and memory involved in computing and storing [0 R/dw] .
To make the GMRES solver efficient, we need a strong preconditioner to improve the eigenval-

ues clustering. The right-preconditioned adjoint equations reads

ir i]! ir iT
OR [8R] <3R W):a_f_ -

Jw! | Jdwipc dw' pc Jw'! ’

where [0 R'/dw']}. is the preconditioner matrix for the ith time step, and the superscript —1
denotes an approximated inverse. The preconditioner matrix should be an approximation of
[0R'/dw']" but easily invertible. To this end, we use the first-order upwind scheme to compute
the convective term of the momentum equation (2), which effectively reduces the preconditioning
matrix’s stiffness. To reduce the matrix bandwidth, we shrink the pressure and face flux residual
stencils by reducing the maximal level of connected states by one. We scale the preconditioner
matrix for better diagonal dominance. This is achieved by normalizing the residuals (Jacobian’s
rows) by the cell volume or face area and states (Jacobian’s columns) by their corresponding refer-
ence values at the far field. [0 R/dw]} is a large sparse matrix. To efficiently compute it, we use
the finite-difference method with a heuristic graph coloring algorithm, as proposed in our previous
work”.

For steady-state problems, the converged flow fields typically stay similar throughout the opti-
mization iterations. Therefore, we can compute the above preconditioner matrix only once using
the flow fields of the baseline design and reuse it for all following optimization iterations. This
aforementioned strategy needs to be modified for unsteady problems, because the transient flow
may undergo significant changes in space and time, and the flow fields at the end of an unsteady
simulation can be significantly different from those at the beginning. We need to have an appro-
priate preconditioner for each time step to ensure fast GMRES convergence. Naively recomputing
the preconditioner for each time step is prohibitively expensive (computing [0 R/dw]}- may be
much more expensive than solving the adjoint equation for one time step). Therefore, we develop
a two-level preconditioner method for the PIMPLE-Krylov adjoint solver, as shown in Fig. 4.

On the top level, we pre-compute the full preconditioner matrices at selected time steps and
save them in memory. For example, for an unsteady simulation with non-dimensional time ¢*
from 0 to 10, we may pre-compute four [0 R/dw]}~ matrices using the flow state variables at t* =
10, 7.5, 5, and 2.5, respectively. During the reverse unsteady adjoint solution process, we will use

the first [0 R/dw]}- matrix for 7.5 < * < 10. We will switch to the second [0 R/dw]% - matrix

17

Manuscript accepted for publication in Physics of Fluids, 2024

Solve adjoint equations for each time step in reverse
GMRES

Top-level PC: compute
the full PC matrix with a
certain time interval

Bot-level PC: update
the PC’s diagonal

blocks at each time step T‘lT‘lT‘lTIlT‘lT‘lT‘lT‘lT]
tSirtT;a\;eS\t/:;iables at each D D B B

FIG. 4: Schematic of the proposed two-level GMRES preconditioner computation method for

accelerating unsteady adjoint equation solution.

for 5 < t* < 7.5, and similarly for the other intervals. This strategy ensures each adjoint solution
time interval has an effective preconditioner matrix, which is computed using flow states similar
to that interval.

Using the above top-level preconditioning strategy alone does not always guarantee fast adjoint
equation solutions. This is because the flow may still undergo significant changes during a smaller
time interval. To address this issue, we develop a bottom-level approach that updates part of the
[0R/Jw]} matrix (diagonal blocks) at each time step. The bottom-level update needs to be
fast and the heuristic graph coloring approach mentioned above is not computationally feasible.
Therefore, we reuse the inner iteration coefficient matrices from the primal flow solution process

to construct the bottom-level [0 R/dw]}~ updates:

M i T
Ay
OR"
— -
—I, Jdw' pc

(28)

L v

where A’UT, A;T, and A";,T are the transpose of the left-hand-side matrices for the velocity
(Eq. (3)), pressure (Eq. (8)), and turbulence variable (Eq. (11)) equations, respectively, and I
is the unit vector for the face flux residual equation (9). Because unsteady primal solvers typically
have built-in interfaces (e.g., the fvMatrix in OpenFOAM) that can readily assemble A%/, A;,,
and A";,, we need to only transpose these matrices and update [0 R/ 8w]IT,C with their values. This
update is orders of magnitude faster than the top-level full [0 R/dw]}~ matrix computation.

In summary, the top-level preconditioner computation recomputes the whole [0 R/dw]} ma-

18

Manuscript accepted for publication in Physics of Fluids, 2024

trix with a given time interval, while the bottom-level computation updates the [0 R/dw]}5- ma-
trix’s diagonal blocks at each time step. We compute the top-level preconditioner matrices only
once from the baseline flow fields and reuse them throughout the entire optimization. On the other
hand, we update the bottom-level preconditioner matrix at each time step and each optimization
iteration. We find that the above preconditioner computation strategy is effective in converging
the unsteady adjoint equations for all time steps. In practice, we may need to tweak the top-level
[0 R/dw]} computation interval to achieve the optimal adjoint computation speed.

Our proposed PIMPLE-Krylov adjoint method exhibits reasonable speed, memory usage, scal-
ability, and accuracy, as shown in Appendix A. The adjoint solver’s runtime is about three times
as large as the flow’s runtime, and the average error in the adjoint derivatives is about 1%. This
level of performance is acceptable for practical unsteady gradient-based optimization for coupled
FIML problems.

Note that our usage of the adjoint method in data-driven unsteady flow modeling is conceptually
similar to the study by Wang, Wang, and Zaki>?. They developed a discrete adjoint formulation
for a fractional time step unsteady flow solver. Instead of using it for correcting the turbulence
model’s defects, they conducted a data-assimilation study to recover the flow initial condition for

circular Couette flows.

E. Effective numerical configurations for highly nonlinear coupled FIML

As mentioned above, one disadvantage of incorporating a highly nonlinear neural network
model in FIML is that it makes the gradient-based optimization more challenging to converge. This
subsection discusses our numerical configurations to facilitate the coupled FIML optimization.

Flow features and scaling. The selection of flow features has a large impact on the success of
coupled FIML optimization. While previous studies have discussed how to choose flow features
based on physical insights (to name a few!%°0), there has not been a universal set of flow features
that are guaranteed to work for every case. Therefore, we may still need trial and error in practice
to get the optimal FIML performance. In addition to selecting flow features, setting proper scaling
factors is critical for gradient-based optimization in coupled FIML. To maximize the prediction
generalizability, the flow features are typically normalized, non-dimensional variables. However,
additional scaling is still needed, especially for unsteady flow problems where local flow features’

magnitude may vary significantly in time. For example, the turbulence production may be rela-

19

Manuscript accepted for publication in Physics of Fluids, 2024

tively small when the boundary layer is attached. When the flow further evolves in time and the
boundary layer separates, the production term may increase rapidly. For decoupled FIML, the
scaling is typically set in a neural network package (e.g., TensorFlow) offline; however, one needs
to set the scaling in DAFoam on the fly for coupled FIML. Therefore, we typically run a test pri-
mal simulation and monitor the temporal evolution of all flow features. Then, one can set proper
scaling factors for the flow features and make their standard deviations as close to each other as

possible during the entire primal simulation.

Initial design variable values. Choosing initial design variable values is not an issue for the
field inversion part of decoupled FIML because the most reasonable choice is to set them (aug-
mentation field variables) to be ones, meaning no augmentation to the original turbulence model.
However, this choice is not feasible for coupled FIML problems because the design variables are
the weights and biases of a neural network model, which do not have clear physical meanings.
To alleviate this issue, we offset the neural network’s output by one such that setting all zeros as
the inputs (weights and biases) will lead to ones as the output (augmentation field). However, this
aforementioned setting (all zeros as the inputs) will create an issue for gradient-based optimiza-
tion because the derivatives of the output with respect to the inputs are all zeros except for the
output layer’s bias (refer to Eqs. 13 and 14). To fix this problem, we randomize the input variables
within a prescribed small bound, i.e., [—0.05 to 0.05]. This setting will make the initial augmen-
tation field variables close to ones while having non-zero derivatives to start the gradient-based
optimization. In practice, we find that the coupled-FIML optimization’s convergence strongly de-
pends on the randomized initial design variable values. Therefore, trial and error is needed by

prescribing different bounds and random variable seeds.

Neural network architecture. Similar to decoupled-FIML problems, one needs to explore vari-
ous neural network architectures (e.g., the number of hidden layers and neurons for each layer) to
maximize the performance for coupled-FIML problems. However, the extra challenge is that one
needs to re-solve the entire FIML problem for each architecture configuration. The high computa-
tional cost prevents us from exploring many architectures. In addition, one has much less freedom
in choosing the desired architecture. This is because the neural network model will be called for
each PIMPLE iteration (Fig. 2), so increasing the number of hidden layers and neurons will signifi-
cantly increase the computational cost for the coupled FIML. It will also increase the memory cost
because DAFoam uses an operator-overloading AD tool to compute the matrix-vector products

during the adjoint solution process. Therefore, a large neural network model requires saving many

20

Manuscript accepted for publication in Physics of Fluids, 2024

more intermediate variable values in the memory for each matrix-vector product calculation. We
suggest conducting trial and error to optimize the number of hidden layers and neurons in practice,
starting from a small neural network.

Objective function weights. As will be elaborated on in the next section, our objective function
consists of two terms: a prediction error term and a regulation term. Similar to the decoupled
FIML, the relative weight between these two terms is important for the FIML optimization con-
vergence and its prediction accuracy for unseen conditions. Setting a too-small weight for the
regulation term can help reduce the objective function value in gradient-based optimization and
make it converge tighter. However, the neural network model may be overfitting by using highly
non-uniform augmentation fields to correct the prediction for the training data while having poor
prediction accuracy for unseen conditions. On the other hand, setting a too-large regulation weight
will significantly limit the design freedom to correct the imperfect turbulence model. In practice,
we need to explore various weights to balance the FIML optimization progress and the prediction
performance for unseen conditions.

Invalid output from the neural network. For decoupled FIML problems, the optimizer can
strictly control the bound of the augmentation field variables because they are the design variables.
However, for coupled-FIML problems, the weights and biases are the design variables and the
augmentation field variables become intermediate variables (output of the neural network model)
that cannot be directly controlled by the optimizer. Although one can set a nonlinear constraint
to limit the augmentation variables in coupled FIML, the optimizer may still explore unphysical
augmentation variables during the line search process. For example, the optimizer may choose an
unreasonable combination of weights and biases such that the computed augmentation variable is
much larger or smaller than its normal values (e.g., > 100). In addition, some flow features may
not be well defined (e.g., divided by zero) at some local cells during PIMPLE iterations, so the
computed augmentation variable will be invalid. Without proper treatments, the above scenarios
may cause segmentation faults for the primal solver and abort the optimization. To avoid this,
we add a safeguard function in the primal solution process. This function will evaluate if the
augmentation field variables are valid for each unsteady time step. If any invalid augmentation
field variable is found at a time step, we will inform the optimizer that the primal solution fails
and ask it to backtrack the line search for a better design. This treatment significantly improves

the robustness of the coupled-FIML optimization.

Optimizers and their configurations. One of the benefits of coupled FIML is that the number

21

Manuscript accepted for publication in Physics of Fluids, 2024

of design variables does not typically exceed a few thousand. However, for the decoupled ap-
proach, hundreds of thousands of design variables may be needed, depending on the mesh size.
Therefore, the coupled approach is more flexible in choosing gradient-based optimizers, many of
which may not be specially designed to scale well with a massive number of design variables. In
theory, the coupled-FIML framework works with many optimizers, such as SLSQP%!, IPOPT®?,
and SNOPT®3. However, we only tested the framework using SNOPT. We found that using a loose
tolerance for the line search (e.g., 0.999) and disabling the Hessian update helped the optimiza-
tion convergence. More detailed discussion on various optimizer configurations can be found in

Rojas-Labanda and Stolpe %*.

III. RESULTS AND DISCUSSION

In this section, we first describe the unsteady CFD simulations over a 45-degree ramp and
compare the simulated flow fields between the original SA model and reference k — @ SST model.
Then, we conduct an unsteady FIML to augment the SA model using only the surface pressure
at the bottom wall as training data. We will evaluate the trained model’s prediction accuracy for
surface pressure and other variables not used in training, i.e., velocity fields. In addition, we will
evaluate the trained model’s performance for unseen geometries (different ramp angles) and flow
conditions (different Reynolds numbers). Finally, we will justify the need for unsteady FIML
by demonstrating that a steady-flow-trained model cannot accurately predict the time-accurate

unsteady flow.

A. Time-accurate CFD simulations for unsteady flow over a 45-degree ramp

As mentioned before, we use unsteady turbulent flow over a ramp as the benchmark, as shown
in Fig. 5. The inlet and outlet heights are 0.5 and 1.0 m, respectively, and the ramp length is 3.0
m. The ramp angle is 45°, and the top surface is a symmetry plane. We generate a structured
mesh with 20,000 cells, and the maximal y* for the bottom wall is less than 1. The inlet velocity
is Up = 10 m/s and the corresponding Reynolds number (based on the outlet height) is 10°.
Choosing an appropriate initial flow field is important for unsteady FIML because we need to
compute flow features at each time step. Naively using a uniform flow field to start unsteady

flow simulations and FIML may result in ill-defined flow features (e.g., the denominator being

22

Manuscript accepted for publication in Physics of Fluids, 2024

Symmetry plane
f 3.0m

v Inlet

g
\ - Outlet o
R=02m 77’5%:5() 7
1.0m R=02m
Wall

FIG. 5: Geometry, boundary conditions, and mesh for the unsteady-flow-over-ramp benchmark.
The coordinate origin ([x,y] = [0,0]) is located at the bottom of the inlet boundary, where x and y

are the streamwise and vertical directions, respectively.

zero). To avoid this, we use a uniform flow field of 10 m/s as the initial condition and run the
flow solver for 0.1 s, or a non-dimensional time ¢* = tUy/h of 1, to build up the boundary layer in
the channel. Then, we use the above spun-up flow field as the initial condition and run unsteady
simulations for 10 more non-dimensional time units. We use the flow data from * = 0 to 10 for the
unsteady FIML training. The non-dimensional time step size is Ar* = (.05, and the corresponding
CFL number is about 10. As mentioned previously, the PIMPLE algorithm allows stable unsteady
simulations with CFL > 1. Using a relatively large CFL number should not significantly degrade
the accuracy of unsteady RANS simulation results. This is because the temporal evolution of
flow is not as significant as eddy-resolving simulations such as large-eddy or direct numerical
simulation (LES/DNS), so the discretization error for the time derivative in RANS models is not

sensitive to the time step size.

In this study, we use the unsteady flow fields computed by the k — @ SST turbulence model as
the reference. We then augment the SA model and make its predictions match the SST’s. Note that
in practical FIML, it is more common to use either experimental or eddy-resolving high-fidelity
(LES/DNS) data as the reference values. To simplify the analysis (e.g., mesh interpolation), this

paper uses the SST model’s simulation data as a reference to demonstrate the proposed unsteady

23

Manuscript accepted for publication in Physics of Fluids, 2024

FIG. 6: Velocity magnitude contours at various times. Left: reference data generated by the k — @
SST model. Right: data generated by the original SA model. The original and reference models
have similar flow fields at t* = 5. However, they exhibit significantly different vortex structures at

t* = 8 and 10.

FIML framework. The proposed FIML can be easily extended to use experimental or LES/DNS
data.

Figure 6 shows the comparison of velocity magnitude contours between the original SA model
prediction and SST reference data at various times. The flow separates behind the ramp and forms
a vortex downstream, which can be seen clearly at t* = 5. The SA model and SST model predict
similar ramp main vortex structures at t* = 5 and [x*,y*] = [1.5,—0.25], where x* = x/h and y* =
y/h. However, their predictions diverge quickly as the unsteady simulation goes further. The main
vortex predicted by the original SA model dissipates quickly, and the velocity distribution in the
wake area becomes relatively uniform at t* =8 and 10. In contrast, the SST model predicts much
more intriguing vortex structures and interactions. The ramp main vortex propagates downstream,
and its strength does not dissipate as quickly as the SA’s prediction at t* = 8. Then, the main vortex
interacts with the bottom wall and rolls up a secondary vortex at t* = 10 and [x*,y*] = [1.2,—0.3]
(Fig. 6 bot-right). The above observations are consistent with previous work®—68, where the SA
model was found to predict significantly different flow fields and vortex structures than the SST

model for separated flow.

24

Manuscript accepted for publication in Physics of Fluids, 2024

B. Unsteady FIML for improving time-accurate unsteady flow predictions

The goal of this paper is to demonstrate the unsteady FIML framework by augmenting the
original SA model and making it predict similar vortex structures (both spatially and temporally)

as the SST model. To this end, we create a composite objective function F as follows:

1 C1 £ (60}
F=2 Y [y X USSP+ X (Bii—1)7) (29)
t=1:K "L i=1:N; J j=L:N;

where the subscript ¢ denotes the time index with K being the number of time steps, f is the

augmentation scalar field to the SA model’s production term, Eq. (11), f°FP

could be any quantity
computed by CFD, and ™' is the corresponding reference value (also known as training data).
This paper uses the pressure at the bottom wall as f. So, the subscript i denotes the ith mesh
face, and A; is the total number of mesh faces on the bottom wall. The error between SA and
SST is quantified as the summation of bottom wall pressure at all surface mesh faces and all time
steps (the first term on the right-hand side). To avoid over-fitting, we also add a regulation term
to minimize the spatial variations of the augmentation scalar field B with respect to its original
value (1.0). So, the subscript j is the mesh cell index with N; being the total number of mesh cells.
c1 = 0.02 and ¢ = 0.01 are the weights for the two terms in the objective. ¢ is mainly used to
scale F to be close to 1, and ¢; is mainly used to control the regulation.

Both f and 3 are implicit functions of the flow state variables w and design variable x (weights
and biases). To minimize the composite objective function F', we run gradient-based optimization
using the sparse nonlinear optimizer (SNOPT®3). We compute the gradients using the proposed
PIMPLE-Krylov adjoint method. As mentioned previously, the PIMPLE-Krylov method solves
adjoint equations in reverse, starting from the last time instance t* = 10. The adjoint solver uses
the same step size Ar* = 0.05 as the primal solver. To speed up the Krylov-based adjoint equation
solution, we pre-compute the preconditioners (top-level PC in Fig. 4) with a non-dimensional time
interval of 2.5. We ask the adjoint equation residuals to drop five orders of magnitude for each
time step.

After trials and errors, we choose four local flow features as the neural network’s inputs, as
shown in Table II. Although these local features are already normalized, non-dimensional quanti-
ties, we further scale them to make their standard deviation (among all mesh cells and time steps)
close to one. As mentioned above, the scaling facilitates the gradient-based optimization in FIML.

To better capture the optimal relationship between the local flow features and the augmentation

25

Manuscript accepted for publication in Physics of Fluids, 2024

TABLE II: Four local flow features used in this study.

Feature Formulation Description Scaling
m P/D Ratio of the turbulence production and destruction term 0.001
Uy 1Q/|S] Ratio of the vorticity and strain magnitudes 1.0
3 v/v Ratio of the turbulence and kinematic viscosity 0.01
N4 g—z g—fj / %—Zf Ratio of pressure normal stress to shear stress 1.0

TABLE III: Optimization formulation for the unsteady FIML problem. We use the flow data from
t* =0 to 10 for the FIML training.

Function/Variable Description Quantity
Min F CFD prediction error along with regulation 1
W.I.t. wand b Weights biases in the neural network 540

scalar field B, we use two hidden layers in the built-in neural network model, and each hidden
layer has 20 neurons. As mentioned previously, we use the weights and biases in the neural net-
work model as the design variables. In total, we have 540 design variables. Note that the total
number of design variables depends on the neural network architecture and is independent of the
number of mesh cells and time steps. Table III summarizes the optimization formulation of the

unsteady FIML problem.

The unsteady FIML optimization runs for 141 iterations. The baseline and optimized objective
functions are 1.14E0 and 2.09E-2, respectively; the objective function reduces by 98.2%. The op-
timality drops more than two orders of magnitude; reducing from 3.2EQ to 2.6E-2. This indicates
that the optimization converges tightly. The optimization runs in parallel with 16 CPU cores, and
it takes about 96 hours with 2.3G Hz Intel Skylake Xeon processors on our local high-performance

computing (HPC) system Nova.

Figure 7 shows the time evolution of root-mean-square error (RMSE) for C, on the bottom
wall. Here the RMSE is computed as the difference between the CFD prediction and reference
data in a prescribed simulation domain (e.g., the bottom wall or the entire flow field). For example,

the RMSE of C), on the bottom wall is computed as.

26

Manuscript accepted for publication in Physics of Fluids, 2024

0.351
—— Original model
0.301 — Trained model

0.251
Q
© 0.201
w
(%))
S 0.151
o

0.10

0.051

0.00

FIG. 7: Time evolution of root-mean-square error for C,, on the bottom wall. The unsteady-FIML-

trained model significantly reduces the RMSE compared with the original model at all times.

(Cog™ — Cpi")?
Ny

RMSEc, = | Y, (30)

i=1:Ny
where the superscript i denotes the face index, and Ny is the total number of mesh faces on the
bottom wall. The original SA model has a relatively low RMSE in t* < 5. Then, the RMSE
rapidly increases. This trend is consistent with what we observe in Fig. 6, i.e., the original model’s
velocity prediction degrades rapidly for #* > 5. The unsteady FIML-trained model significantly
reduces the C,, RMSE at all time instances, compared with the original model. This is expected
because we use the time-averaged C, RMSE as the objective function. Note that the initial error
at t* = 0 is not zero for the original and trained models. This is because they both use the spun-up
flow fields predicted by the SA model as the initial conditions. Their initial flow fields are slightly
different from the ones used by the SST model (reference). This setup causes a small initial error
for the C,, prediction in Fig. 7, as well as for all other time evolution plots in this paper.

To better illustrate the temporal evolution of pressure prediction error, we plot the pressure
distribution on the bottom wall at a few time instances in Fig. 8. A low-pressure region is observed
at x* ~ 1.5 and t* = 5, which corresponds to the ramp vortex (x* &~ 1.5) observed in Fig. 6 top left.
Both the original and trained models predict this low-pressure region well. However, the two
models predict significantly different pressure profiles at t* = 8 and 10. The unsteady-FIML-
trained model accurately captures the propagation of the low-pressure region further downstream,
while the original model predicts a relatively flat pressure distribution on the bottom wall. The
above flat pressure distribution is mainly caused by the original model’s overestimation of the

ramp vortex dissipation, as mentioned previously and shown in Fig. 6 mid-right and bot-right.

27

Manuscript accepted for publication in Physics of Fluids, 2024

0.57
o Reference
Original model
0.01 —— Trained model g7 tecees

-1.01

0.5,

O
1'%.0 0.5 1.0 1.5 2.0 2.5 3.0
x/h
0.5
S

0.0 0.5 1.0 15 2.0 2.5 3.0
x/h

FIG. 8: Pressure distribution on the bottom wall. The unsteady-FIML-trained model has a much

better agreement with the reference data than the original model at various time instances.

Having shown that the unsteady FIML successfully minimizes the spatial-temporal prediction
error for the surface pressure (training data), we evaluate whether the trained model can accurately
predict variables that are not used in training. Fig. 9 shows the time evolution of RMSE for the
velocity field. Here we use a formulation similar to Eq. (30) to compute the velocity field RMSE,
except that the domain is the whole velocity field instead of the bottom wall surface. Similar to
the pressure RMSE, the original model’s velocity field RMSE rapidly increases in t* > 5. Again,

this rapid increase in velocity RMSE is attributed to the overestimation of vortex dissipation by

28

Manuscript accepted for publication in Physics of Fluids, 2024

0.25+ 0.254
—— Original model

—— Trained model

o
[N]
o
o
N
o

o
i
(6]
o
il
w

o
=
o

RMSE, U,/Uo
o
o
o

RMSE, U,/Uq

o
=)
(6]
=)
o
(6]

0.00 " - - T y 0.00
0

FIG. 9: Time evolution of root-mean-square error for the velocity field (Left: U;. Right: Uy). The
unsteady-FIML-trained model significantly reduces the RMSE compared with the original model.

FIG. 10: Velocity magnitude contours of the unsteady-FIML-trained model at various times. The
trained model predicts similar spatial-temporal variations of velocity fields as the reference model

(comparing this figure with Fig. 6 left).

the original SA model, as shown in Fig. 6. The unsteady-FIML-trained model’s RMSE always

remains at a relatively low level.

To further evaluate the velocity field prediction accuracy, we plot the velocity magnitude con-
tours of the unsteady-FIML-trained model in Fig. 10. The trained model predicts visually non-

distinguishable spatial-temporal variations of velocity fields as the reference model (comparing

29

Manuscript accepted for publication in Physics of Fluids, 2024

this figure with Fig. 6 left). This indicates that the trained model correctly captures the ramp vor-
tex shapes and their interactions. To further quantify this good agreement, we plot the velocity
profiles at various streamwise locations in Fig. 11. Here, we overlap the ramp geometry with the
streamwise (U;; left column) and vertical (U; right column) velocity profiles. Here U* = U /Uy
is the normalized velocity. To better illustrate the velocity profiles, we multiply Uy and Uy by a
factor of 0.02, respectively, and then plot them with the ramp geometry. We use the same scaling
for the rest of the velocity profile plots in this paper. The original SA model has large velocity
prediction errors in t* = 8 and 10, while the unsteady-FIML-trained model agrees reasonably well
with the reference data at all time instances. Note that the trained model also accurately captures

the shape of the boundary layer.

The above results indicate that using the surface pressure as the training data can improve the
velocity prediction for the entire flow fields. This salient feature is made possible by the solver-
embedded nature of the FIML method. Because the entire CFD solution process is embedded in
the training process, the corrected pressure at the bottom wall can lead to the corrected velocity
for the entire flow field. Note that the capability of using only surface data to improve flow field
prediction accuracy has been shown in previous steady-FIML studies (to name a few>>3%43). This
low data dependency is highly desirable in practice because many experiments can measure only
surface data. Therefore, the ability to use only limited surface measurements to correct imperfect
CFD models will significantly broaden FIML’s applications. However, this conclusion has not
been well generalized for any flow configurations. For example, in a previous study*’, we found
that using only surface friction as training data could improve the velocity field prediction for the
steady-state flow over a periodic hill. However, the velocity field prediction accuracy could be
further improved if field data were used (e.g., velocity profile data). We recommended using both
surface friction and velocity profile data. Whether using only surface data can improve flow field

prediction accuracy for more general unsteady flow needs to be further studied in our future work.

From a numerical optimization standpoint, converging unsteady FIML is more challenging
than steady FIML. This is because the unsteady FIML requires the CFD prediction to match the
reference data at every time step, instead of only the final steady-state solution. Therefore, un-
steady FIML typically needs more optimization iterations to converge. However, from a machine
learning standpoint, unsteady FIML is desirable because it has hundreds of more flow field snap-
shots as training data than steady FIML. Thus, the turbulence model trained by unsteady FIML is
less likely to overfit than the one trained by steady FIML. In addition, the unsteady FIML’s train-

30

Manuscript accepted for publication in Physics of Fluids, 2024

£ 3 (
= PN
2.0 2.5 1.5 2.0 2.5
x/h
£ £ 4
= PN
2.0 2.5 1.5 2.0 2.5
x/h
< 3
PN PN
2.0 2.5 1.5 2.0 2.5
x/h

FIG. 11: Velocity profiles at various streamwise locations (left: U,; right: U)). o Reference data.
— Original model. — Trained model. The unsteady-FIML-trained model agrees much better with

the reference data than the original model at various time instances.

ing data are time-dependent; therefore, they cover a wider range of flow conditions than steady
FIML’s data. For example, one unsteady FIML problem may include transient training data for the
attached boundary layer, boundary layer separation, vortex shedding, and vortex iterations. There-
fore, it is plausible to expect the unsteady-FIML-trained model to have better generalizability than

the steady-FIML-trained model. Such a topic will be discussed in the next subsection.

C. Generalizability of the unsteady-FIML-trained model for unseen conditions

In the above subsection, we evaluated the performance of the trained model in predicting flow

fields with the same geometry and Reynolds number. To further evaluate its generalizability,

31

Manuscript accepted for publication in Physics of Fluids, 2024

TABLE IV: Summary of training and prediction configurations.

Training Prediction 1 Prediction 2
Geometry 45-deg ramp 60-deg ramp 30-deg ramp
Reynolds number 10° 10° 5 x 10*
Variables Fuurface Fuurface & Ufield Paurface & Usield

this subsection will use the unsteady-FIML-trained model to predict geometries and Reynolds
numbers not used in training. Table IV summarizes the configurations for training and prediction.
In the first prediction case, we change only the geometry (ramp angle changes from 45 to 60
degrees) and maintain the Reynolds number. In the second prediction case, we change both the
geometry (ramp angle from 45 to 30 degrees) and Reynolds number (from 10° to 5 x 10%). Note
that for steady-state flow problems, we typically need training data from various geometries and
flow conditions. However, this situation can be alleviated in unsteady cases because one unsteady
FIML typically includes flow data for a few hundred flow field snapshots covering a wide range of
flow conditions, as mentioned above. Therefore, we train our model using only one case (45-deg
ramp with Re = 10°).

Figure 12 shows the velocity magnitude contour predictions for an unseen 60-degree ramp ge-
ometry with Re = 10° (prediction case 1). Compared with the 45-deg ramp case, the 60-deg ramp
exhibits larger flow separation and a stronger ramp main vortex at t* = 8 and x* =~ 2 (Fig. 12 top
left). In addition, the ramp vortex rolls up a bigger secondary vortex near the bottom of the ramp
(x* =~ 1.2). Att* = 10, the main vortex propagates further downstream (x* ~ 2.2), and the cen-
ter of the secondary vortex rises slightly (i.e., y* from —0.4 to —0.1), resulting in an intriguing
double-vortex structure (Fig. 12 top right). The unsteady-FIML-trained model qualitatively cap-
tures the above vortex structures and interactions (Fig. 12 bot), although it inaccurately predicts
some detailed vortex structures, such as the location and shape of the secondary vortex at t* = 10.
On the other hand, the original model fails to predict any of the vortex structures at t* = 8 and 10
(Fig. 12 mid); it predicts a relatively smooth wake instead. Overall, the trained model significantly

outperforms the original model in predicting the velocity contours.

A more quantitative comparison of flow field predictions is shown in Fig. 13, where we plot the
velocity profiles at various locations. The unsteady-FIML-trained model significantly improves

the velocity field prediction at all three time instances, except for Uy in the 1.0 <x* < 1.5 region

32

Manuscript accepted for publication in Physics of Fluids, 2024

FIG. 12: Velocity magnitude contour predictions for an unseen 60-degree ramp geometry with
Re = 10°. The unsteady-FIML-trained model qualitatively captures the complex vortex structures

and interactions, while the original model’s prediction is poor.

at t* = 10 (Fig. 13 bot-right). This relatively large error is related to the inaccurate prediction of
the shape and location of the secondary vortex observed in the velocity contour (comparing Fig. 12
top right with bot right). Note that this level of error in the velocity field prediction is similar to

previous steady-state FIML studies>3%43

that used a similar setup (i.e., using surface data for
training and predicting field variables).

Next, we consider the velocity field prediction for an unseen geometry (30-deg ramp) and an
unseen Reynolds number (Re = 5 x 10%); prediction case 2, as shown in Fig. 14. The reference
SST model predicts a ramp main vortex at ¢* = 8 and 10, similar to the previous cases. However,
as the flow evolves, the main vortex does not roll up a strong secondary vortex, which is different
from the 45-deg and 60-deg ramp cases shown before. This is mainly attributed to this case’s
weaker flow separation and smaller ramp angle. Compared with the previous case, the original SA
model’s prediction matches the reference data better. For example, the original model captures the
structure of the ramp main vortex well at t* = 8. Overall, the unsteady-FIML-trained model only
slightly outperforms the original SA model, e.g., at * = 10. We can see this clearly in Fig. 15,

where we plot the velocity profiles at various streamwise locations. For example, the trained

model effectively reduces the prediction error at t* = 5 and 8; however, its prediction becomes

33

Manuscript accepted for publication in Physics of Fluids, 2024

£ 3
= PN
2.0 2.5 1.5 2.0 2.5
x/h
£ £
= PN 3
2.0 2.5 1.5 2.0 2.5
x/h
< 3
PN PN
2.0 2.5 1.5 2.0 2.5
x/h

FIG. 13: Velocity profile prediction for an unseen 60-degree ramp geometry with Re = 10°. Left:
Uy; right: Uy'. o Reference data. — Original model. — Trained model. The unsteady-FIML-trained

model agrees much better with the reference data than the original model at various time instances.

less accurate at t* = 10 and has similar errors as the original SA model. Overall, the difference
between the original and trained SA models is much less than the 60-deg ramp case. This is
expected because a lower ramp angle and a lower Reynolds number make the ramp separation
prediction less challenging. The above results also indicate that our trained model does not overfit,

and it performs well in cases where the original and reference models have similar predictions.

Figure 16 shows the time evolution of velocity field RMSE for the two prediction cases. Over-
all, the unsteady-FIML-trained model outperforms the original model, especially when intriguing
transient vortex structures are formed (¢* > 5). For the 60-deg case, the original model has much

larger errors than the 30-deg case, which is consistent with what we observed from the velocity

34

Manuscript accepted for publication in Physics of Fluids, 2024

FIG. 14: Velocity magnitude contour predictions for an unseen 30-degree ramp geometry and
an unseen Reynolds number Re = 5 x 10*. The trained model slightly outperforms the original

model.

contour and profile plots. The trained model significantly lowers the error for all time instances.
For the 30-deg case, the trained model is slightly worse than the original model in t* < 3; however,
both the original and trained models’ error remains at a relatively low level, so this behavior is in-
consequential. Another important trend we observe is that the trained model’s error grows with
time for predictive cases. This is expected because the prediction error generally accumulates with
time for unsteady flow. For example, if the model predicts a wrong vortex location at t* = 5, the
prediction accuracy will be degraded for the rest of the simulation, even if the model then perfectly
predicts how the vortex will evolve spatially and temporally. In this sense, the RMSE time series
is a strict metric because even the reference and trained model predict the exact same vortex struc-
ture in space but with a time shift, this error will be reflected in the RMSE. In the future, we will
evaluate more metrics to quantify the overall unsteady FIML performance, such as the correlation.

Having compared the velocity field predictions, we evaluate the pressure prediction capability
for unseen geometries and Reynolds numbers, as shown in Fig. 17. Again, the trained model
outperforms the original model in both cases. However, the trained model’s surface pressure
prediction has a relatively large error for the 60-deg ramp case at t* = 10 (Fig. 17 bottom left).

Although the trained model predicts the low-pressure region associated with the ramp main vortex

35

Manuscript accepted for publication in Physics of Fluids, 2024

£ / 3
= S v
1.0 1.5 2.0 2.5 2.5
x/h
< ;
N / .
. 2.0 2.5
x/h
<
=
2.5

x/h

FIG. 15: Velocity profile prediction for an unseen 30-degree ramp geometry and an unseen
Reynolds number Re = 5 x 10*. Left: U;; right: Uy. o Reference data. — Original model. —

Trained model. The trained model slightly outperforms the original model.

at x* = 2.5, the overall pressure level is much lower than the reference data in x* < 2. Again,
this relatively large pressure error is associated with the less accurate prediction of the complex

velocity field (vortex interaction) at t* = 10, as observed in Fig. 12.

Figure 18 shows the time evolution of C;, RMSE for the two prediction cases. The overall trend
of the pressure RMSE is similar to the velocity RMSE. However, the pressure prediction error
increases more rapidly, especially for the 60-deg ramp case. This indicates that the model not only
predicts the incorrect spatial distribution of pressure but also mispredicts how the pressure profile
evolves in time at t* ~ 10. This behavior is consistent with what we observed in the pressure

profile distribution in Fig. 17; the pressure is much more challenging to predict for the large flow

36

Manuscript accepted for publication in Physics of Fluids, 2024

0.25+ 0.254
—— Original model
0.201 Trained model 0.201
o 60-deg ramp ° 60-deg ramp
E><0.15 Re = 1e5 %0 151 Re = 1e5
> >
. 5
s 0.10 s 0.10
o 4
0.05+ 0.05
0.00 0.00
0 2 4 6 8 10 0 2 4 6 8 10
t* t*
0.25+ 0.254
0.20+ 0.20
° 30-deg ramp ° 30-deg ramp
20.15] Re=5e4 2 0.15/ Re =5e4
) S
u u
s 0109 2 0.101
o o
0.00 . - - . .)
0 2 4 6 8 10 0 000 2 4 6 8 10

t* t*

FIG. 16: Time evolution of velocity field root-mean-square error for unseen geometries (60-deg
and 30-deg ramps) and an unseen Reynolds number (Re = 5 x 10%). Overall, the trained model

outperforms the original model.

separation and complex vortex iteration at t* = 10.

In summary, this section showcases the generalizability of the trained model for predicting
unseen geometries and flow conditions. Overall, the trained model outperforms the original model.
To further improve the trained model’s performance, we can do the following. (1) Train the model
using more geometries and flow conditions. Although one unsteady FIML contains many more
flow field snapshots for training than the steady FIML, it will still be beneficial to include training
data from more conditions, which essentially covers a wider range of possible flow features. (2)
Train the model for more physical time. To save computational time, this paper trains the model
using data from ¢* from O to 10 and predicts unseen conditions for the same physical time. One
potential strategy is to use a longer time in training than in predictions. For example, we can train
our model using data from #* from O to 12, and then use the trained model to predict t* =0 to 10
for unseen conditions. This strategy will include more information about how the flow will evolve

and can potentially improve the model’s prediction capability. (3) Use more flow field variables

37

Manuscript accepted for publication in Physics of Fluids, 2024

0.5 0.5
o Reference

—— Original model
0.0{1 —— Trained model

60-deg ramp 30-deg ramp
-1.01 Re=1e5 -1.01 Re=5e4
t"=5 t =5
-1.5 -1.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x/h x/h
0.5 0.5

0.0 0.0

UQ—O_S '> J—O.S covssssag 1T 5550000

60-deg ramp 30-deg ramp o
101 Re=1e5 e -1.07 Re=5e4
t"=8 t"=8
-1.5 -1.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x/h x/h
0.5 0.5

0.0

o
000000, 600,0°0000,

odqhdﬁ”
0000000000000,
o
°

.ﬂ‘

G -0.5
60-deg ramp 30-deg ramp %00000°
-1.07 Re=1e5 -1.01 Re=5e4
t*=10 t*=10
1.5 , , , , , , 1.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x/h x/h

FIG. 17: Pressure profile prediction at the bottom wall for unseen geometries (60-deg and 30-deg
ramps) and an unseen Reynolds number (Re = 5 x 10%). The trained model significantly reduces

the error for t* = 5 and 8 and has a relatively large error at t* = 10.

as training data. This paper uses only the surface pressure as training data to predict velocity
fields with unseen conditions. A more comprehensive analysis can be conducted to evaluate its
effectiveness for predicting other variables, such as the Reynolds stress fields. Also, it is not
clear to what extent using more variables (such as the velocity field) as training data will improve
the trained model’s prediction accuracy. We would like to highlight that the main objective of

this paper is to introduce our open-source unsteady FIML framework and demonstrate its basic

38

Manuscript accepted for publication in Physics of Fluids, 2024

0.354 0.354
—— Original model
0.307 —— Trained model 0.301

0.251 30-deg ramp

0.251 60-deg ramp a
@) 0.204 Re = 5e4
w

O 9.20] Re=1e5
L

(%)) ()]
S 0.151 S 0.151
o o
0.10+ 0.10
0.051 0.05
0'000 2 4 6 8 10 0‘000 2 4 6 8 10

FIG. 18: Time evolution of C, root-mean-square error for the two prediction cases. Overall, the

trained model outperforms the original model.

prediction capability. A comprehensive study on how to optimize the unsteady FIML performance
is outside the scope of this paper and will be conducted in our future work. In addition, this study
assumes the trained model will be used to predict flow configurations that are similar to the training
dataset. Generalizing the trained model for many other flow configurations, such as the flat plate

flow, is outside the scope of this paper. Relevant studies on this topic can be found in*>-6%-70,

D. Feasibility of using a steady-state trained model to predict time-accurate unsteady flow

As mentioned before, Fidkowski*’ demonstrated that a steady-state trained model (time-
averaged flow data) could improve prediction accuracy for time-averaged periodic unsteady flow.

In this subsection, we evaluate whether the Fidkowski*”’

s approach works for more general, time-
accurate unsteady flow problems. To this end, we use the 45-deg ramp as the benchmark and run
steady-state flow simulations and FIML using OpenFOAM’s built-in simpleFoam solver. The
simpleFoam solver has a similar code structure as pimpleFoam. It also solves Egs. (3) to (11)
iteratively, except that it does not have the time-derivative terms in the momentum and turbulence
equations. Therefore, using simpleFoam-based FIML to optimize the weights and biases and then

substitute them into pimpleFoam for prediction mimics the Fidkowski*’’

s approach.

Figure 19 shows the steady-state velocity magnitude contours for the reference SST model and
the original SA model. Both models predict similar ramp wake at the steady state, although they
predict significantly different temporal evolution of ramp vortex structures, as shown in Fig. 6.
Therefore, we expect that using the steady-state flow training data will not be able to train an

accurate model for predicting the spatial-temporal variations of unsteady flow for this case.

39

Manuscript accepted for publication in Physics of Fluids, 2024

0.5 1 1.5 2

FIG. 19: Velocity magnitude contours from steady-state flow simulations. Left: reference data
generated by the k — @ SST model. Right: data generated by the original SA model. The reference

and original models predict a similar flow field at steady-state.

To confirm the above point, we conduct a steady-state FIML to train the SA model and make
its prediction match the flow field predicted by the SST model. The objective function is similar
to the one used for unsteady FIML, except that we consider only the final converged flow field,

instead of flow fields for all time steps.

Cl 2
Fsteady =]Vl . ;N (szFD - l_ref)2 +]vj . ;N (ﬁ] — 1)2 (31)
1=1V; J=LIN

Other optimization configurations, including the design variables, neural network architecture,
and flow features are the same as the unsteady FIML, except that: (1) we use a different scaling
(0.0001) for the first flow feature (production over destruction). (2) we use different weights to
balance the two terms in the objective function, i.e., c; = 1 and ¢; = 0.001. (3) we use the steady-
state flow solver simpleFoam to simulate the flow. The optimization runs for 54 iterations, and
the objective function and optimality drop by 96% and two orders of magnitude, respectively. We
use 16 cores on the Nova HPC system, and the optimization takes about 2 hours.

Figure 20 compares the bottom-wall pressure profiles among the reference, original, and
steady-FIML trained models. Note that we use a different y axis scaling than the unsteady
cases because the pressure difference between the original and reference models is small. The
trained model does improve the pressure prediction accuracy at the steady state. Then, we use
the optimized weights and biases as the inputs and run unsteady simulations using pimpleFoam
with a built-in neural network model. The neural network architecture (e.g., the flow features,
input scaling, and number of hidden layers and neurons) used in the steady-FIML training is the
same as the one used for prediction. The comparison of velocity profiles among the three models
is shown in Fig. 21. The steady-trained model does not improve the unsteady flow simulation

accuracy. This is probably because the original and reference models predict similar steady-state

40

Manuscript accepted for publication in Physics of Fluids, 2024

Reference
—— Original model
—— Steady-FIML trained model

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x/h

FIG. 20: Comparison of steady-state pressure profiles at the bottom wall among reference data,
original SA model, and the steady-FIML-trained model. The trained model reduces the pressure

prediction error at the steady state.

flow solutions, so the steady-FIML does not contain useful training data for correcting unsteady
flow simulations.

In summary, we test the Fidkowski*’ method and find that using a steady-state trained model
cannot guarantee to improve general unsteady flow where both spatial and temporal variations of

flow are of interest. This conclusion further justifies the need for an unsteady FIML.

IV. CONCLUSION

In this paper, we develop an open-source field inversion machine learning (FIML) framework
to augment RANS turbulence modeling for predicting time-accurate unsteady flow, where both
spatial and temporal variations of flow are of interest. This framework allows us to augment a
RANS turbulence model with a scalar field. Then, it uses a built-in neural network model to
compute the augmentation scalar field using selected local flow features as inputs. Finally, it solves
an inverse problem by optimizing the weights and biases of the neural network model to minimize
the augmented turbulence model’s regulated prediction error. The prediction error is quantified
as the spatial-temporal flow field difference between the CFD simulations and the reference data.
To avoid overfitting, this framework can also add a regulation term to the objective function. The
FIML optimization leverages an efficient adjoint method called PIMPLE-Krylov to compute time-
accurate unsteady gradient information. The PIMPLE-Krylov adjoint method’s main advantage
is that it uses the PIMPLE method to solve the unsteady flow, allowing the usage of a relatively

large CFL number (e.g., 10) to minimize the number of time steps. Then, it uses a Krylov method

41

Manuscript accepted for publication in Physics of Fluids, 2024

£ = g
BN > g
1.5 2.0 2.5
x/h
S <
BN PN 3 °
1.5 2.0 2.5
x/h
£ £
BN PN
i
1.0 1.5 . . . 1.5 2.0 2.5
x/h x/h

FIG. 21: Velocity profile prediction for unsteady flow evolution from steady-state FIML. Left: U;;
right: Uy. o Reference data. — Original model. — Steady-FIML trained model. The steady-FIML-

trained model does not improve unsteady flow prediction accuracy.

to solve the adjoint equation for each time step. Because the number of time steps is reduced by
using a relatively large CFL number, the PIMPLE-Krylov method needs to solve a relatively small
number of adjoint equations and read/write a relatively small amount of data to the disk, which

speeds up its computation.

To demonstrate the proposed unsteady FIML framework, we consider the spatial-temporal vari-
ations of unsteady flow over a 45-degree ramp with a Reynolds number of 10°. Using the surface
pressure as the training data, we augment the SA turbulence model’s production term and make
its prediction match the reference computed from the k — @ SST model. We conduct two FIML

optimizations: steady and unsteady. For the steady FIML, the objective function is the regu-

42

Manuscript accepted for publication in Physics of Fluids, 2024

lated surface pressure prediction error for the converged, steady flow field, while for the unsteady
FIML, the objective function is the regulated average prediction error for all time steps. We find
that the model trained by the steady-state FIML cannot accurately predict the unsteady flow. On
the other hand, the unsteady-FIML-trained model significantly reduces the prediction error for
spatial-temporal variations of velocity fields and the dynamic vortex structures over the ramp. The
above result justifies the need for an unsteady FIML. In addition, we find that the proposed un-
steady FIML can use only the surface pressure data to train a model that accurately predicts the
velocity fields.

Finally, we evaluate the generalizability of the unsteady-FIML model, which is trained using
data only from the 45-deg ramp case with a Reynolds number of 10°. We consider two predictive
cases. The first predictive case considers an unseen geometry (60-deg ramp), and the second case
considers an unseen geometry (30-deg ramp) along with an unseen Reynolds number (5 x 10%).
The unsteady-FIML-trained model significantly reduces the velocity field and surface pressure
prediction errors for both predictive cases, compared with the original SA model.

The unsteady FIML capability has been integrated into our open-source CFD-based optimiza-
tion framework DAFoam*’. The proposed framework has the potential to train accurate and gen-
eralizable turbulence models for other unsteady flow phenomena, such as wind gust response,
bubbly flow, and particle dispersion in the atmosphere.

One of the main limitations of this work is that the inverse problem is challenging to solve be-
cause it includes a highly nonlinear neural network model and a computationally expensive CFD
solver. For a new problem, one may need to explore many numerical configurations mentioned
in Sec. II to converge the inverse problem well. In the future, we will evaluate more regression
models, such as radial basis functions, random forest, and symbolic regression, and compare their
performance with the neural network model used in this paper. Another limitation of this work
is the temporal discretization accuracy. We use the PIMPLE solver with a relatively large step
size to simulate unsteady flow. The temporal discretization error can become large if the temporal
evolution of the unsteady flow is drastic, e.g., at high Reynolds numbers. The large temporal dis-
cretization error can potentially downgrade the PIMPLE simulation’s accuracy. We suggest users
conduct a time step size sensitivity study for a new case. Lastly, the proposed unsteady FIML
method is solver-intrusive, and extending its application requires significant code development ef-
fort. The current unsteady FIML framework supports only single-phase, incompressible turbulent

flow. In the future, we will extend its capability for handling compressible flow and multiphase

43

Manuscript accepted for publication in Physics of Fluids, 2024

TABLE V: Comparison of speed and memory between the unsteady flow and PIMPLE-Krylov
adjoint. The adjoint’s runtime is almost three times as large as the flow’s runtime. In addition, the
adjoint solver uses about seven times as much memory as the flow solver. The case runs in parallel

with 8 CPU cores.

Flow Adjoint Adjoint/Flow

Runtime, s 767 2192 2.9
Memory, GB 1.0 6.9 6.9
flow.
ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant

Number 2223676.

Appendix A: Performance evaluation for the proposed time-accurate PIMPLE-Krylov

adjoint method

The adjoint gradient computation method’s performance is crucial for large-scale gradient-
based optimization in FIML. This section evaluates the speed, scalability, memory usage, and
accuracy of the proposed PIMPLE-Krylov adjoint method. As mentioned before, we use unsteady
turbulent flow over a ramp as the benchmark, as shown in Fig. 5. The mesh, boundary conditions,
flow configurations, and adjoint configurations are the same as those used in Secs. III A and III B.
The computation was done using 8 CPU cores with Intel Skylake Xeon processors running at
2.3G Hz. Table V shows the comparison of speed and memory usage between the unsteady flow
and adjoint computation. The adjoint solver’s runtime is almost three times as large as the flow’s
runtime, and it uses about seven times as much memory as the flow solver. This performance is
acceptable for FIML optimization.

Next, we evaluate the parallel efficiency of the proposed PIMPLE-Krylov adjoint solver. We
run the flow and adjoint solvers with various number of CPU cores, ranging from 1 to 16, and
the scalability is shown in Fig. 22. The flow and adjoint solvers exhibit 77% and 85% parallel

efficiency with 4 CPU cores or 5000 mesh cells per core. With more than 4 cores or fewer than

44

Manuscript accepted for publication in Physics of Fluids, 2024

—=— Flow
104 | —eo— Adjoint
------- Ideal scaling
(7]
[0
£
-
g 103]
o4
102 +— :
10° 10°
CPU cores

FIG. 22: Scalability of the unsteady flow and PIMPLE-Krylov adjoint solvers. The adjoint solver

scales better than the flow solver.

TABLE VI: Verification of the PIMPLE-Krylov unsteady adjoint accuracy. The average error
between the adjoint and reference derivatives is about 1%. The reference derivative is computed

by using the forward-AD approach.

dF /dx; Adjoint Reference Error
000 1.3408e-3 1.3312e-3 0.72%
001 5.6034e-3 5.5070e-3 1.75%
002 2.3600e-2 2.3557e-2 0.18%
200 1.8240e-3 1.8121e-3 0.66%
539 5.3490e-2 5.4093e-2 1.11%
540 1.7589¢-0 1.7224e-0 2.12%

5000 mesh cells per core, the parallel efficiency decreases rapidly. Overall, the adjoint solver
scales better than the flow solver.

Finally, we evaluate the total derivative accuracy of the proposed PIMPLE-adjoint approach,
as shown in Table VI. The accuracy of the total derivatives is important for the robustness of field
inversion optimization. Inaccuracy derivatives will mislead the optimization and result in sub-
optimal results. We run the unsteady field inversion to compute the total derivatives with respect
to a few selected weights and biases, i.e., dF / dx;. The objective function f is defined as the error

between the CFD prediction and reference data, along with a regulation term (Eq. (29)). We use

45

Manuscript accepted for publication in Physics of Fluids, 2024

TABLE VII: Verification of the steady-state adjoint accuracy. The adjoint derivatives match the

forward-AD references with six significant digits.

dFteady/ dx; Adjoint Reference Error
000 1.0424164e-5 1.0424159e-5 <0.001%
001 6.1002098e-6 6.1002087e-6 <0.001%
002 1.5666559¢-5 1.5666554e-5 <0.001%
200 2.4008245¢e-4 2.4008238e-4 <0.001%
539 6.4559847¢-3 6.4559836¢-3 <0.001%
540 8.3865375e-1 8.3865361e-1 <0.001%

the forward-mode AD method to compute reference derivatives. The average error in the unsteady
adjoint derivatives is less than 1%. As a reference, we also verify the derivative accuracy for the
simpleFoam steady-state adjoint solver in Table VII. The derivatives of the steady-state objective
function with respect to the neural network’s weights and biases (dFyicaqy/dx;) match the forward
mode AD reference with six significant digits. We speculate the relatively large error in the un-
steady adjoint solver is primarily caused by the PIMPLE primal solver’s under-relaxation strategy.
Specifically, for each time step, we run multiple under-relaxed PIMPLE corrector iterations ex-
cept for the last one. Suddenly turning off the under-relaxation at the last PIMPLE iteration may
make the flow residuals deviate from zeros at each time step, and the accumulated error eventually
downgrades the unsteady adjoint accuracy. However, this level of error is still acceptable for large-
scale gradient-based optimization in this paper. We will address the above issue and improve the
adjoint accuracy in future work. Overall, our PIMPLE-Krylov adjoint exhibits acceptable speed,

scalability, and accuracy and is ready to conduct FIML optimization for various cases.

REFERENCES

IN. Qin, A. Vavalle, A. Le Moigne, M. Laban, K. Hackett, and P. Weinerfelt, “Aerodynamic
considerations of blended wing body aircraft,” Progress in Aerospace Sciences 40, 321-343
(2004).

2T. R. Brooks, G. K. W. Kenway, and J. R. R. A. Martins, “Benchmark aerostructural models for
the study of transonic aircraft wings,” AIAA Journal 56, 2840-2855 (2018).

46

Manuscript accepted for publication in Physics of Fluids, 2024

3T. C. A. Stokkermans, N. van Arnhem, T. Sinnige, and L. L. M. Veldhuis, “Validation and
comparison of RANS propeller modeling methods for tip-mounted applications,” AIAA Journal
57, 566580 (2019).

“W. Shyy, N. Papila, R. Vaidyanathan, and K. Tucker, “Global design optimization for aerody-
namics and rocket propulsion components,” Progress in Aerospace Sciences 37, 59-118 (2001).

SR. Votta, A. Schettino, and A. Bonfiglioli, “Hypersonic high altitude aerothermodynamics of a
space re-entry vehicle,” Aerospace Science and Technology 25, 253-265 (2013).

ON. J. Falkiewicz, C. E. Cesnik, A. R. Crowell, and J. J. McNamara, “Reduced-order aerother-
moelastic framework for hypersonic vehicle control simulation,” AIAA journal 49, 1625-1646
(2011).

7C. Othmer, “Adjoint methods for car aerodynamics,” Journal of Mathematics in Industry 4, 6
(2014).

8N. Ashton, A. West, S. Lardeau, and A. Revell, “Assessment of rans and des methods for
realistic automotive models,” Computers & fluids 128, 1-15 (2016).

9P. He, C. A. Mader, J. R. R. A. Martins, and K. J. Maki, “An aerodynamic design optimization
framework using a discrete adjoint approach with OpenFOAM,” Computers & Fluids 168, 285—
303 (2018).

10M. O. L. Hansen, J. N. Sgrensen, S. Voutsinas, N. Sgrensen, and H. A. Madsen, “State of the art
in wind turbine aerodynamics and aeroelasticity,” Progress in aerospace sciences 42, 285-330
(2006).

1B, J. Vanderwende, B. Kosovié, J. K. Lundquist, and J. D. Mirocha, “Simulating effects of
a wind-turbine array using les and rans,” Journal of Advances in Modeling Earth Systems 8,
1376-1390 (2016).

I2M. H. A. Madsen, F. Zahle, N. N. Sgrensen, and J. R. R. A. Martins, “Multipoint high-fidelity
CFD-based aerodynamic shape optimization of a 10 MW wind turbine,” Wind Energy Science
4, 163-192 (2019).

3P, R. Spalart and V. Venkatakrishnan, “On the role and challenges of cfd in the aerospace indus-
try,” The Aeronautical Journal 120, 209-232 (2016).

%K. Duraisamy, P. R. Spalart, and C. L. Rumsey, “Status, emerging ideas and future directions of
turbulence modeling research in aeronautics,” Tech. Rep. (2017).

157.-X. Wang, J.-L. Wu, and H. Xiao, “Physics-informed machine learning approach for recon-

structing reynolds stress modeling discrepancies based on dns data,” Physical Review Fluids 2,

47

Manuscript accepted for publication in Physics of Fluids, 2024

034603 (2017).

16]-L. Wu, H. Xiao, and E. Paterson, “Physics-informed machine learning approach for aug-
menting turbulence models: A comprehensive framework,” Physical Review Fluids 3, 074602
(2018).

17]. Weatheritt and R. Sandberg, “A novel evolutionary algorithm applied to algebraic modifi-
cations of the rans stress—strain relationship,” Journal of Computational Physics 325, 22-37
(2016).

18Y. Zhao, H. D. Akolekar, J. Weatheritt, V. Michelassi, and R. D. Sandberg, “Rans turbulence
model development using cfd-driven machine learning,” Journal of Computational Physics 411,
109413 (2020).

191.. Zhu, W. Zhang, J. Kou, and Y. Liu, “Machine learning methods for turbulence modeling in
subsonic flows around airfoils,” Physics of Fluids 31 (2019).

205, Bhushan, G. W. Burgreen, W. Brewer, and I. D. Dettwiller, “Assessment of neural network
augmented reynolds averaged navier stokes turbulence model in extrapolation modes,” Physics
of Fluids 35 (2023).

2lz7 14, Y. Ju, and C. Zhang, “Machine-learning data-driven modeling of laminar-turbulent tran-
sition in compressor cascade,” Physics of Fluids 35 (2023).

22p s, Volpiani, M. Meyer, L. Franceschini, J. Dandois, F. Renac, E. Martin, O. Marquet, and
D. Sipp, “Machine learning-augmented turbulence modeling for rans simulations of massively
separated flows,” Physical Review Fluids 6, 064607 (2021).

231. B. H. Saidi, M. Schmelzer, P. Cinnella, and F. Grasso, “Cfd-driven symbolic identification of
algebraic reynolds-stress models,” Journal of Computational Physics 457, 111037 (2022).

24A. Amarloo, M. J. Rincén, M. Reclari, and M. Abkar, “Progressive augmentation of turbu-
lence models for flow separation by multi-case computational fluid dynamics driven surrogate
optimization,” Physics of Fluids 35 (2023).

2K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence modeling in the age of data,” Annual
review of fluid mechanics 51, 357-377 (2019).

26S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid mechanics,”
Annual review of fluid mechanics 52, 477-508 (2020).

27K. Duraisamy, “Perspectives on machine learning-augmented reynolds-averaged and large eddy
simulation models of turbulence,” Physical Review Fluids 6, 050504 (2021).

2E. J. Parish and K. Duraisamy, “A paradigm for data-driven predictive modeling using field

48

Manuscript accepted for publication in Physics of Fluids, 2024

inversion and machine learning,” Journal of computational physics 305, 758-774 (2016), pub-
lisher: Elsevier.

29A. P. Singh, S. Medida, and K. Duraisamy, “Machine-learning-augmented predictive modeling
of turbulent separated flows over airfoils,” AIAA journal 55, 2215-2227 (2017).

30A. P. Singh and K. Duraisamy, “Using field inversion to quantify functional errors in turbulence
closures,” Physics of Fluids 28 (2016).

313, R. Holland, J. D. Baeder, and K. Duraisamy, “Field inversion and machine learning with
embedded neural networks: Physics-consistent neural network training,” in AIAA Aviation 2019
Forum (2019) p. 3200.

32C. He, Y. Liu, and L. Gan, “A data assimilation model for turbulent flows using continuous
adjoint formulation,” Physics of fluids 30 (2018).

33A. Ferrero, A. Iollo, and F. Larocca, “Field inversion for data-augmented rans modelling in
turbomachinery flows,” Computers & Fluids 201, 104474 (2020).

34C. Michelen Strofer, X.-L. Zhang, and H. Xiao, “Dafi: An open-source framework for
ensemble-based data assimilation and field inversion,” Communications in Computational
Physics 29, 1583-1622 (2021).

3M. Yang and Z. Xiao, “Improving the k—@—y—ar transition model by the field inversion and
machine learning framework,” Physics of Fluids 32 (2020).

36D, Tang, F. Zeng, T. Zhang, C. Y1, and C. Yan, “Improvement of turbulence model for predicting
shock-wave—boundary-layer interaction flows by reconstructing reynolds stress discrepancies
based on field inversion and machine learning,” Physics of Fluids 35 (2023).

3IT.-X. Zhang, J.-Q. Chen, F.-Z. Zeng, D.-G. Tang, and C. Yan, “Improvement of transition
prediction model in hypersonic boundary layer based on field inversion and machine learning
framework,” Physics of Fluids 35 (2023).

38C. Yi, D. Tang, F. Zeng, Y. Li, and C. Yan, “Improvement of the algebraic stress model for
separated flows based on field inversion and machine learning,” Physics of Fluids 35 (2023).

39A. M. Hafez, A. El-Rahman, I. Ahmed, and H. A. Khater, “Field inversion for transitional flows
using continuous adjoint methods,” Physics of Fluids 34 (2022).

40K . Fidkowski, “Correcting an algebraic transition model using field inversion and machine learn-
ing,” in AIAA SCITECH 2024 Forum (2024) p. 2739.

41J. Ho and A. West, “Field inversion and machine learning for turbulence modelling applied to

three-dimensional separated flows,” in AIAA aviation 2021 forum (2021) p. 2903.

49

Manuscript accepted for publication in Physics of Fluids, 2024

42C. Yan, Y. Zhang, and H. Chen, “Data augmented turbulence modeling for three-dimensional
separation flows,” Physics of Fluids 34 (2022).

430. Bidar, P. He, S. Anderson, and N. Qin, “Turbulent mean flow reconstruction based on sparse
multi-sensor data and adjoint-based field inversion,” in AIAA AVIATION 2022 Forum (2022) p.
3900.

44C. Wu and Y. Zhang, “Enhancing the shear-stress-transport turbulence model with symbolic
regression: A generalizable and interpretable data-driven approach,” Physical Review Fluids 8,
084604 (2023).

43C. Wu and Y. Zhang, “Development of a generalizable data-driven turbulence model: Condi-
tioned field inversion and symbolic regression,” arXiv preprint arXiv:2402.16355 (2024).

460, Bidar, S. Anderson, and N. Qin, “Sensor placement for data assimilation of turbulence mod-
els using eigenspace perturbations,” Physics of Fluids 36 (2024).

47K. J. Fidkowski, “Gradient-based shape optimization for unsteady turbulent simulations using
field inversion and machine learning,” Aerospace Science and Technology 129, 107843 (2022).

481. Fang and P. He, “A segregated time-accurate adjoint method for field inversion of unsteady
flow,” in AIAA SCITECH 2024 Forum (2024) p. 0158.

P, He, C. A. Mader, J. R. R. A. Martins, and K. J. Maki, “DAFoam: An open-source ad-
joint framework for multidisciplinary design optimization with OpenFOAM,” AIAA Journal 58,
1304-1319 (2020).

0L Fang and P. He, “Field inversion machine learning of unsteady flow over a ramp,” Mendeley
Data (2024), doi: 10.17632/2hnxww96vb.

SIA. B. Lambe and J. R. R. A. Martins, “Extensions to the design structure matrix for the descrip-
tion of multidisciplinary design, analysis, and optimization processes,” Structural and Multidis-
ciplinary Optimization 46, 273-284 (2012).

2C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing
edge separation,” AIAA Journal 21, 1525-1532 (1983).

3P, Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic flows,” in 30th
aerospace sciences meeting and exhibit (1992).

540. Bidar, P. He, S. Anderson, and N. Qin, “Aerodynamic shape optimisation using a machine
learning-augmented turbulence model,” in AIAA SCITECH 2024 Forum (2024) p. 1231.

558, Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. Mclnnes, B. F. Smith,
and H. Zhang, “PETSc Web page,” (2009).

50

Manuscript accepted for publication in Physics of Fluids, 2024

.. Fang and P. He, “A consistent fixed-point discrete adjoint method for segregated
Navier—Stokes solvers,” in AIAA AVIATION 2022 forum (2022) p. 4000.

7. Fang and P. He, “A duality-preserving adjoint method for segregated Navier—Stokes solvers,”
Journal of Computational Physics (2024).

3G, K. Kenway, C. A. Mader, P. He, and J. R. Martins, “Effective adjoint approaches for compu-
tational fluid dynamics,” Progress in Aerospace Sciences 110, 100542 (2019), publisher: Perga-
mon.

M. Wang, Q. Wang, and T. A. Zaki, “Discrete adjoint of fractional-step incompressible navier-
stokes solver in curvilinear coordinates and application to data assimilation,” Journal of Compu-
tational Physics 396, 427450 (2019).

60y, Yin, P. Yang, Y. Zhang, H. Chen, and S. Fu, “Feature selection and processing of turbulence
modeling based on an artificial neural network,” Physics of Fluids 32 (2020).

61D, Kraft, “A software package for sequential quadratic programming,” Forschungsbericht-
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (1988).

62 A. Wichter and L. T. Biegler, “On the implementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming,” Mathematical programming 106, 25-57 (2006).
6P, E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale con-

strained optimization,” SIAM Review 47, 99—131 (2005), publisher: SIAM.

64S. Rojas-Labanda and M. Stolpe, “Benchmarking optimization solvers for structural topology
optimization,” Structural and Multidisciplinary Optimization 52, 527-547 (2015).

5. Larsson, F. Stern, and M. Visonneau, Numerical ship hydrodynamics: an assessment of the
Gothenburg 2010 workshop (Springer, 2013).

%M. Elkhoury, “Assessment of turbulence models for the simulation of turbulent flows past bluff
bodies,” Journal of Wind Engineering and Industrial Aerodynamics 154, 10-20 (2016).

67E. Robertson, V. Choudhury, S. Bhushan, and D. K. Walters, “Validation of OpenFOAM numer-
ical methods and turbulence models for incompressible bluff body flows,” Computers & Fluids
123, 122—-145 (2015), publisher: Elsevier.

%8P He, J. R. R. A. Martins, C. A. Mader, and K. Maki, “Aerothermal optimization of a ribbed U-
Bend cooling channel using the adjoint method,” International Journal of Heat and Mass Transfer
140, 152-172 (2019).

69Y. Bin, X. Hu, J. Li, S. J. Grauer, and X. L. Yang, “Constrained re-calibration of two-equation

reynolds-averaged navier—stokes models,” Theoretical and Applied Mechanics Letters , 100503

51

Manuscript accepted for publication in Physics of Fluids, 2024

(2024).
0y, Bin, G. Huang, R. Kunz, and X. I. Yang, “Constrained recalibration of reynolds-averaged

navier—stokes models,” AIAA Journal , 1-13 (2023).

52

