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Field inversion machine learning (FIML) has the advantages of model consistency and

low data dependency and has been used to augment imperfect turbulence models. How-

ever, the solver-intrusive field inversion has a high entry bar, and existing FIML studies

focused on improving only steady-state or time-averaged periodic flow predictions. To

break this limit, this paper develops an open-source FIML framework for time-accurate

unsteady flow, where both spatial and temporal variations of flow are of interest. We aug-

ment a Reynolds-Averaged Navier-Stokes (RANS) turbulence model’s production term

with a scalar field. We then integrate a neural network (NN) model into the flow solver

to compute the above augmentation scalar field based on local flow features at each time

step. Finally, we optimize the weights and biases of the built-in NN model to minimize the

regulated spatial-temporal prediction error between the augmented flow solver and refer-

ence data. We consider the spatial-temporal evolution of unsteady flow over a 45-degree

ramp and use only the surface pressure as the training data. The unsteady-FIML-trained

model accurately predicts the spatial-temporal variations of unsteady flow fields. In ad-

dition, the trained model exhibits reasonably good prediction accuracy for various ramp

angles, Reynolds numbers, and flow variables (e.g., velocity fields) that are not used in

training, highlighting its generalizability. The FIML capability has been integrated into

our open-source framework DAFoam. It has the potential to train more accurate RANS

turbulence models for other unsteady flow phenomena, such as wind gust response, bubbly

flow, and particle dispersion in the atmosphere.
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NOMENCLATURE

Cp = Pressure coefficient (p− p0)/(0.5ρ0U2
0 )

f = Objective function at each time step

F = Time-averaged objective function

h = Channel height at the outlet, m

H = Velocity influence vector

K = Total number of time step

p = Pressure, Pa

R = Flow residual vector

Re = Reynolds number

S = Mesh face area vector, m2

t = Time, s

t∗ = Non-dimensional time, tU0/h

∆t = Time step, s

U = Velocity vector, m/s

U0 = Velocity at the inlet, m/s

Ux, Uy = Velocity in the x and y directions, m/s

U∗
x , U∗

y = Normalized velocity Ux/h, Uy/h

w = Flow state variable vector

w, b = Neural network’s weights and biases

x = Design variable vector

x, y = Streamwise and vertical coordinates, m

x∗, y∗ = Normalized coordinates, x/h, y/h

β = Augmented flow field variable

η = Local flow features

ν , νt = Kinematic and turbulent viscosity, m2/s

νeff = Effective viscosity (ν +νt), m2/s

φ = Face flux, m3/s

ψ = Adjoint vector
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I. INTRODUCTION

Computational fluid dynamics (CFD) is a powerful tool for analyzing three-dimensional flow

fields, which allows us to better understand flow physics and design high-performance systems.

One can run CFD with various levels of fidelity, ranging from the Reynolds-averaged Navier-

Stokes (RANS) approach to direct numerical simulation (DNS). Because of its relatively low

computational cost, the RANS approach is commonly used in the design and analysis of engi-

neering systems, such as aircraft1–3, spacecraft4–6, cars7–9, and wind turbines10–12. However, it

is known that the RANS approach has imperfect physical models (e.g., turbulence models) that

degrade its simulation accuracy for challenging flow conditions13,14, such as flow separation and

turbulence transition.

To correct the imperfect physical models for RANS CFD solvers, researchers have proposed

various machine learning (ML) methods, such as physics-informed ML15,16, evolutionary algo-

rithms17,18, various neural network models19–22, and surrogate-based optimization23,24. More

comprehensive reviews can be found in25–27. Compared with traditional human-intuition-based

physical model development, ML methods can leverage data to accelerate the development of

accurate and generalizable physical models. Field inversion machine learning (FIML) is a solver-

embedded method proposed by Duraisamy and co-workers28–30. The main advantage of FIML

is that it incorporates the entire CFD solver in the training phase (field inversion), so the train-

ing and prediction are consistent at the discretized level, which improves its prediction accuracy

and generalizability27. Moreover, FIML allows one to flexibly use a wide range of available data

for training, such as integrated values, surface variables, and sparse or partial field data. In the

following, we conduct a brief literature review of existing FIML studies.

Singh, Medida, and Duraisamy 29 used experimental lift coefficients as training data and aug-

mented the Spalart–Allmaras (SA) for predicting separated flow over airfoils. The augmented

model significantly improved the lift prediction accuracy for various angles of attack. The trained

model was also found to be generalizable for flow conditions, geometries, and flow solvers not

used in training. To further improve the model consistency, Holland, Baeder, and Duraisamy 31

proposed a coupled field inversion and machine learning framework where the inference and learn-

ing were conducted simultaneously. He, Liu, and Gan 32 developed a continuous adjoint method

to conduct field inversion and showed reasonably good performance for a wide range of 2D and

3D flow configurations. Ferrero, Iollo, and Larocca 33 used the wall isentropic Mach number data
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to augment the SA model for accurate flow predictions in gas turbine cascades. The trained model

was shown to have good predictive accuracy with various unseen Mach numbers and blade ge-

ometries. Michelen Strofer, Zhang, and Xiao 34 developed an open-source framework that used

an ensemble Kalman filtering (EnKF) method, instead of an adjoint-based method, to conduct

field inversion. Yang and Xiao 35 used the EnKF method to consider the laminar-to-turbulent flow

transition over airfoils. They augmented a four equation k−ω − γ −Ar turbulence model, which

showed reasonably good performance in predicting the transition location for various angles of

attack. The EnKF method was also used to augment the turbulence model’s prediction accuracy

for the interaction between the shock wave and boundary layer36, laminar-to-turbulent flow tran-

sition in hypersonic boundary layer37, and flow over a hump38. Hafez et al. 39 augmented the

k−ω SST turbulence model for predicting traditional flow over flat-plate T3 series cases. The

augmented model was found to significantly improve the prediction accuracy in the surface fric-

tion and boundary layer thickness. Fidkowski 40 considered laminar-to-turbulent flow transition by

augmenting an algebraic model, which multiplies an intermittency factor to the production term.

He evaluated the effectiveness of FIML with various training options, such as using integrated

or surface-distributed data and a combination of optimizing correction fields and tunable param-

eters for the transitional model. Ho and West 41 augmented the k−ω SST turbulence model for

three-dimensional flows over bumps. The trained model was found to improve mean velocity and

turbulent kinetic energy predictions for unseen flows and geometries. Yan, Zhang, and Chen 42

augmented the SA turbulence model for predicting 3D flow over hills and proposed a method to

validate the parameters used in the FIML to maximize its efficiency. Bidar et al. 43 evaluated the

impact of using various combinations of multiple sources of data on the accuracy of the field inver-

sion results for a hump and a periodic hill case. Wu and Zhang 44 proposed a symbolic regression

method to improve the interpretability of FIML results. Their augmented k−ω SST turbulence

model exhibits reasonably good generalizability for predicting separated flow for various 2D and

3D configurations. Later, Wu and Zhang 45 proposed a conditioned FIML method for generalizing

the augmented turbulence model’s prediction for a wide range of flows. Instead of allowing the

augmentation variable to change everywhere in the flow field, they switched it off in the bound-

ary layer to maintain the trained model’s accuracy for attached flows. Recently, Bidar, Anderson,

and Qin 46 proposed a greedy algorithm that can optimize the sensor placement in flow regions

with high uncertainty to maximize the FIML’s efficiency. The uncertainty map was based on the

eigenspace perturbation of the baseline turbulence model.
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Despite the above progress, all the FIML papers cited above considered only steady-state flow

problems. This is primarily because FIML has a relatively high entry bar and requires an adjoint

solver to compute gradients with respect to a large number of design variables27. Implementing

an efficient adjoint solver requires the source codes and detailed knowledge of the CFD solver

and is known to be time-consuming. Although the EnKF method34 was proposed to circumvent

the need for an adjoint solver in FIML, we are not aware of an EnKF-based FIML study for un-

steady flow, probably due to its high computational cost for generating a large number of unsteady

flow samples. Recently, Fidkowski 47 demonstrated that a steady-state trained FIML model could

improve prediction accuracy for periodic unsteady flow. He used time-averaged data from peri-

odic unsteady flow (ignoring the unsteady flow time history) and conducted steady-state FIML to

correct the turbulence modeling error. He then used the corrected model to predict unsteady pe-

riodic flow and incorporated it into aerodynamic shape optimization. However, as will be shown

in Sec. III D, there is no guarantee that a steady-state trained FIML model can accurately predict

the time history of general, non-periodic unsteady flow. Accurately predicting the time history of

general unsteady flow is important for many engineering and scientific problems, such as wind

gust response, aircraft maneuver, multiple-phase flow evolution (e.g., bubbly flow), and particle

transport in the atmosphere. In a recent study48, we demonstrated that time-accurate unsteady

field inversion could correct the turbulence model’s prediction error and accurately capture the

entire time history of unsteady flow evolution. This paper is a step forward in this direction and

incorporates machine learning in our previous unsteady field inversion framework for predicting

unseen unsteady flow conditions and geometries.

The objective of this paper is to develop an open-source FIML framework that can augment

RANS turbulence models for accurate prediction of time-accurate unsteady flow, where both spa-

tial and temporal variations of flow are of interest. We multiply the production term of the SA

turbulence model by a scalar field β . Then, we integrate a deep neural network model into the

CFD solver to compute the augmentation field β based on local flow features η at each time step.

The unsteady FIML is formulated as an inverse problem where we optimize the weights and biases

of the neural network model to minimize the CFD’s regulated prediction error. The error is quan-

tified by the difference between the CFD prediction and reference data at the selected mesh cells

or boundaries for all time steps. To make the large-scale unsteady FIML optimization efficient, we

propose a new PIMPLE-Krylov adjoint algorithm. First, we use the coupled pressure-implicit with

splitting of operators (PISO) and semi-implicit method for pressure-linked equations (SIMPLE)
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algorithm (aka PIMPLE) to simulate the unsteady flow. Then, we use a Krylov method to solve

the unsteady adjoint equations in reverse. The PIMPLE-Krylov adjoint algorithm’s main benefit

is that it can relax the CFL number to be greater than one, which significantly reduces the number

of adjoint equations to be solved and accelerates the adjoint speed. This paper will elaborate on

the proposed unsteady FIML framework and demonstrate its capability by augmenting turbulence

modeling of unsteady flow over a ramp. We use the spatial-temporal distribution of pressure on

the bottom wall as the reference data. We will evaluate the augmented model’s accuracy by com-

paring the inverse flow fields (pressure and velocity) with the reference data. We will also evaluate

the trained model’s generalizability for predicting flow conditions and geometries not used in the

training.

The proposed unsteady FIML framework has been implemented into our open-source, CFD-

based optimization framework called DAFoam49. Details about downloading, installing, and using

DAFoam can be found on its documentation website https://dafoam.github.io. The config-

uration files for reproducing the FIML results presented in this paper are archived on Mendeley

data50.

The rest of the paper is organized as follows. In Section II, we elaborate on the proposed

unsteady FIML framework and all its components. The unsteady FIML results are presented and

discussed in Section III and we summarize our findings in Section IV.

II. METHOD

In this section, we elaborate on the proposed unsteady FIML framework, followed by the details

of its components, e.g., unsteady flow simulations, unsteady adjoint computation, built-in neural

network, and flow feature calculation. We also discuss the effective numerical configurations to

facilitate the unsteady FIML optimization with a built-in neural network model.

A. Proposed FIML framework for time-accurate unsteady flow

Figure 1 shows the proposed FIML framework for time-accurate unsteady flow. We conduct

unsteady simulations by marching the solution with a time step ∆t, starting from an initial flow

field. At each time step, we conduct multiple iterations (PIMPLE loop) to converge the flow

residuals as tightly as possible (see the next section for the details of the PIMPLE algorithm).
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Weights & biases, x Reference flow, wref

Unsteady time marching

t = i∆t, i = 1:N
Time step, i

Pimple loop with

a built-in neural

network model

Converged flow

for ith step, w∗
i

Error calculation Prediction error, f

FIG. 1: Proposed field inversion machine learning framework for time-accurate unsteady flow. We

use the extended design structure matrix (XDSM) representation proposed by Lambe and Mar-

tins 51 . The diagonal blocks are the components and the off-diagonal blocks are data transferred

between components. The unsteady FIML optimizes the weights and biases (x) of the built-in

neural network model to minimize the CFD solver’s regulated prediction error. The regulated pre-

diction error is computed as the selected flow field difference between the CFD and reference at

all time steps, along with a regulation term.

For each PIMPLE iteration (Fig. 2), we use a feature extraction component to compute local flow

features (η) based on the latest flow field (w). A built-in neural network model will then use the

flow feature η and weights and biases as the inputs to compute an augmentation scalar field β . The

augmentation β field will be added to the governing equation of turbulence models to correct its

prediction. The above PIMPLE loop will be repeated to obtain converged flow fields for this time

step i. The prediction error f is computed as the flow field difference between the CFD prediction

and reference data for all time steps. To prevent overfitting, we also add a regulation term to the

objective function to force the augmentation β field to be as close to one as possible. Finally, an

inverse problem is solved by minimizing the regulated prediction error f (objective function) by

optimizing the neural network model’s weights and biases x (design variables).

The above unsteady FIML formulation couples the field inversion and neural network model

(machine learning) and is similar to the method proposed in Holland, Baeder, and Duraisamy 31

for steady-state flow. However, most of the existing FIML studies (steady-state flow) decouple the

field inversion and machine learning, as reviewed in the introduction. To be more specific, mul-

tiple field inversion problems are first solved to find the optimal augmentation field β for various
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Time step i Weights & biases, x

PIMPLE loop

j = 1:K
Pimple iteration j

Converged flow

for ith step, w∗
i

Governing equations Flow field, wj

Feature extraction Flow feature, ηj

Augmented field, βj Neural network

FIG. 2: Detailed structure of the PIMPLE loop component in Fig. 1. We conduct multiple PIMPLE

iterations until all the flow residuals are small. In each PIMPLE iteration j, we solve the governing

equation, compute the local flow features (η j), compute the augmentation field β j using the neural

network model, and assign the updated augment field to the turbulence model’s governing equation

for the next iteration.

configurations (geometries and boundary conditions). Then, an off-line neural network model is

trained by using local flow features (η) as the inputs and the above optimized augmentation field

β as the outputs. Compared with the decoupled approach, the coupled FIML has the advantage

of maximizing the model consistency between the field inversion (inference) and machine learn-

ing (augmentation) steps31. In addition, the number of design variables (weights and biases) is

independent of the problem size (e.g., mesh size and unsteady time steps). However, the coupled

FIML’s disadvantage is that it incorporates a highly nonlinear neural network model in the opti-

mization; therefore, the FIML problem is generally more challenging to converge. In addition,

exploring different flow features and neural network architectures requires re-resolving the entire

FIML problem, which is computationally expensive. In contrast, the decoupled approach can eas-

ily explore various flow features and neural network architectures because the inputs (flow features

η) and outputs (optimal β fields) have been already pre-computed in the inference step.

Although the coupled and decoupled FIML approaches have their own advantages and disad-

vantages for steady-state problems, the former appears to be the only computationally feasible

option for time-accurate unsteady flow problems. This is because the local flow features are time-

dependent for unsteady problems, making the augmentation field β time-dependent. So, a decou-

pled FIML would need to use the β fields of all time steps as the design variables, and the total
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number of the design variable can quickly become prohibitively large (e.g., millions), especially

when the mesh size and the number of unsteady time steps are large. Given the above reason, we

use the coupled FIML approach in this paper.

Our proposed FIML framework will conduct large-scale gradient-based optimization to find the

best neural network weights and biases to minimize the regulated prediction error. In the following

subsection, we will elaborate on the three main components of the FIML framework: (1) Unsteady

flow simulations, (2) Built-in neural network to compute the augmentation fields, and (3) Effective

adjoint gradient computation for unsteady flow. At the end of this section, we will also discuss the

effective numerical configurations to facilitate the highly nonlinear coupled FIML optimization.

B. Unsteady flow simulation using the PIMPLE method

We consider incompressible, unsteady turbulent flow governed by the Navier–Stokes (N-S)

equations:

∇ ·U = 0, (1)

∂U

∂ t
+(U ·∇)U +∇p−∇ ·νeff(∇U +[∇U ]T ) = 0, (2)

where t is the time, p is the pressure, U is the velocity vector U = [u,v,w], νeff = ν +νt with ν

and νt being the kinematic and turbulent eddy viscosity, respectively.

As mentioned above, we solve the above N-S equations using the PIMPLE method, which is a

combination of the PISO and SIMPLE algorithms. The steps are briefly summarized as follows.

First, the momentum equation is discretized, and an intermediate velocity field is solved using

the pressure field obtained from the previous iteration (pt−∆t) or an initial guess. Without loss of

generality, we assume the first-order Euler scheme is used for temporal discretization.

aPU
t
P =−∑

N
aNU

t
N +

U t−∆t
P
∆t

−∇pt−∆t =H(U)−∇pt−∆t , (3)

where a is the coefficient resulting from the finite-volume discretization, subscripts P and N denote

the control volume cell and all of its neighboring cells, respectively,U t−∆t is the velocity from the

previous time step, and

H(U) =−∑
N

aNU
t
N +

U t−∆t
P
∆t

(4)
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represents the influence of velocity from all the neighboring cells and from the previous iteration.

A new variable φ (face flux) is introduced to linearize the convective term:

∫
S
UU ·dS = ∑

f
U fU f ·S f = ∑

f
φU f , (5)

where the subscript f denotes the cell face. φ can be obtained from the previous iteration or an

initial guess. Solving the momentum equation (3), we obtain an intermediate velocity field that

does not yet satisfy the continuity equation.

Next, the continuity equation is coupled with the momentum equation to construct a pressure

Poisson equation, and a new pressure field is computed. The discretized form of the continuity

equation is

∫
S
U ·dS = ∑

f
U f ·S f = 0. (6)

Instead of using a simple linear interpolation,U f in this equation is computed by interpolating the

cell-centered velocity UP—obtained from the discretized momentum equation (3)—onto the cell

face as follows:

U f =

(
H(U)

aP

)
f
−
(

1
aP

)
f
(∇p) f . (7)

This idea of momentum interpolation was initially proposed by Rhie and Chow52 and is effec-

tive in mitigating the oscillating pressure (checkerboard) issue resulting from the collocated mesh

configuration. Substituting Eq. (7) into Eq. (6), we obtain the pressure Poisson equation:

∇ ·
(

1
aP

∇p
)
= ∇ ·

(
H(U)

aP

)
. (8)

Solving Eq. (8), we obtain an updated pressure field pt . Then, the new pressure field pt is used

to correct the face flux

φ
t =U f ·S f =

[(
H(U)

aP

)
f
−
(

1
aP

)
f
(∇pt) f

]
·S f , (9)

and velocity field

U t =
1
aP

[H(U)−∇pt ]. (10)

The H(U) term depends on U but has not been updated so far. To account for this, we need

to repeatedly solve the Eqs. (4) to (10) (PISO corrector loop). We use two PISO corrector loops in

this paper.
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To connect the turbulent viscosity to the mean flow variables and close the system, a turbulence

model must be used. The Spalart–Allmaras (SA) model solves:

∂ ν̃

∂ t
+∇ · (U ν̃)− 1

σ
{∇ · [(ν + ν̃)∇ν̃ ]+Cb2|∇ν̃ |2}−βCb1S̃ν̃ +Cw1 fw

(
ν̃

d

)2

= 0. (11)

where ν̃ is the modified viscosity, which can be related to the turbulent eddy viscosity via

νt = ν̃
χ3

χ3 +C3
v1
, χ =

ν̃

ν
. (12)

Refer to Spalart and Allmaras 53 for a more detailed description of the terms and parameters in the

SA model. As mentioned above, we multiply the production term by an augmentation field β .

In addition to the PISO corrector loop mentioned above, the PIMPLE algorithm repeatedly

solves Eqs. (3) to (11) multiple times until all the flow residuals are small (PIMPLE corrector loop).

To ensure the PIMPLE stability, we need to under-relax the momentum equation (3) and turbulence

equation (11) solutions and the pressure update after solving the pressure Poisson equation (8),

except for the last PIMPLE corrector loop. We use Eqs. 3, 8, 9, and 11 for the residuals of velocity,

pressure, face flux, and turbulence variables, respectively. The PIMPLE method allows us to use

a relatively large time step size (CFL>1). This feature may not directly benefit the unsteady flow

simulation speed, because we need multiple PIMPLE iterations to converge the flow residual at

each time step. However, using a relatively large time step is highly desirable for the unsteady

adjoint solver because (1) we need to solve a much smaller number of adjoint equations, and (2)

we need to read and write a much smaller amount of intermediate flow data to the disk. In this

study, we run the PIMPLE corrector loop until all the flow residuals drop 8 orders of magnitude or a

maximal of 100 PIMPLE corrector iterations. Note that converging the flow residuals as tightly as

possible is critical for the accuracy of the adjoint method because our proposed unsteady adjoint

uses a residual-based formulation (see the details in the next subsection). The PISO algorithm,

which is commonly used for solving incompressible unsteady flow, does not repeatedly solve the

momentum and pressure equations. Therefore, its flow residuals are not as tightly converged as

the PIMPLE’s.

C. Built-in neural network model to compute the augmentation field

As mentioned above, we incorporate a multilayer perceptron (MLP) neural network model into

the CFD solver (Fig. 3). The inputs are the local flow features η , and the output is the augmentation
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Input layer
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Hidden layers Output layer
(augmented field)

Governing 
equations

Flow fields

CFD solver with a built-in neural network model

FIG. 3: Schematic of the solver-built-in, multilayer perceptron neural network model used in this

paper.

field β for each iteration. The MLP has multiple layers of fully connected neurons (hidden layers)

between the input and output layers. Each neuron can be computed as a weighted summation of

the neuron from the previous layer, nested in a nonlinear activation function

xk
i = fa(bi +

Nk−1

∑
j=1

w jxk−1
j ), (13)

where w and b are the weights and biases, respectively. The superscripts k and k− 1 denote the

current and previous layers, respectively. Nk−1 is the total number of neuron of the k− 1 layer.

Various options can be used for the activation function fa, such as tanh, sigmoid, and ReLU. We

choose the hyperbolic tangent activation function (tanh) in the form of

fa(y) =
1− e−2y

1+ e−2y . (14)

As will be shown later, we find the optimal weight and biases using a sequential quadratic pro-

gramming (SQP) algorithm, which uses second-order derivatives to compute search directions.

Compared with ReLU, the tanh activation function is twice differentiable and should be more

compatible with SQP. In addition, we will use initial weights and biases that are close to zeros

to start the optimization. The tanh activation function’s gradients are larger than the sigmoid’s at
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the starting point, so it can converge to the optimal point faster. A comprehensive evaluation of

various activation functions and optimization algorithms is beyond the scope of this paper and will

be conducted in our future work.

Our FIML framework has implemented many flow features, including the vorticity-to-strain ra-

tio, turbulence production-to-destruction ratio, turbulence convection-to-production ratio normal-

ized turbulence viscosity, pressure gradient along the streamline, pressure stress to normal stress

ratio, streamline curvature, velocity orthogonality, normalized turbulence intensity, wall distance

based Reynolds number, and total-to-normal Reynolds stress ratio54. In practice, users may need

to explore various combinations of flow features to obtain the best neural network performance.

All features are normalized to maximize the FIML’s generalizability for unseen flow conditions.

To facilitate the optimization, users can also prescribe scaling factors for the flow features such

that their standard deviations (across all mesh cells and time instances) are close to one. In addi-

tion to the input layer and output layer, users can add any number of hidden layers and the number

of neurons for each hidden layer. All the layers have the hyperbolic tangent activation function

except for the output layer.

D. PIMPLE-Krylov unsteady adjoint formulation for gradient computation

As mentioned above, the PIMPLE flow simulation converges all flow residuals tightly at each

time step.

R(x,w) =


R1(x,w1,w0)

R2(x,w2,w1,w0)
...

RK(x,wK,wK−1,wK−2)

= 0, (15)

where the superscript denotes the time step index with K being the total number of time steps,

x ∈Rnx is the design variable vector with nx being the total number of design variables,w ∈RKnw

is the state variable vector with nw being the total number of state variable for each time step, and

R ∈ RKnw is the flow residual vector. Here we use an implicit second-order time discretization

scheme for all time steps except for the first one, where the first-order time scheme is used. In

the primal unsteady flow solution, Eq. (15) is solved in a forward fashion to determine the state

variable for all time steps, i.e., w1,w2, . . . ,wK ∈ Rnw .

The objective function F also depends on both the design variables x and the state variable w
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solved in Eq. (15), and in many applications, including this study, the objective function F can be

expressed as the average of a time series, that is:

F(x,w) =
1
K

K

∑
i=1

f i(x,wi), (16)

where for each 1 ≤ i ≤ K, f i only depends on the design variables x and the corresponding state

at the current time step wi. This implies that the partial derivative ∂F/∂w can be simplified as:

∂F
∂w︸︷︷︸

1×Knw

=
1
K

[
∂ f 1

∂w1︸ ︷︷ ︸
1×nw

,
∂ f 2

∂w2︸ ︷︷ ︸
1×nw

, · · · , ∂ f K

∂wK︸ ︷︷ ︸
1×nw

]. (17)

For other common types of objective functions, e.g., the variance of a time series, the partial

derivatives of F can also be simplified in a similar manner.

To obtain the total derivative dF/dx for gradient-based optimization, we apply the chain rule

as follows:
dF
dx︸︷︷︸

1×nx

=
∂F
∂x︸︷︷︸
1×nx

+
∂F
∂w︸︷︷︸

1×Knw

dw
dx︸︷︷︸

Knw×nx

, (18)

where the partial derivatives ∂F/∂x and ∂F/∂w are relatively cheap to evaluate because they

only involve explicit computations. The total derivative dw/dx matrix, on the other hand, is

expensive, because w and x are implicitly linked by the residual equationsR(w,x) = 0.

To solve for dw/dx, we can apply the chain rule forR. We then use the fact that the governing

equations should always hold, independent of the values of design variables x. Therefore, the total

derivative dR/dx must be zero:

dR
dx

=
∂R

∂x
+

∂R

∂w

dw
dx

= 0. (19)

Rearranging the above equation, we get the linear system

∂R

∂w︸︷︷︸
Knw×Knw

· dw
dx︸︷︷︸

Knw×nx

=− ∂R

∂x︸︷︷︸
Knw×nx

. (20)

We can then substitute the solution for dw/dx from Eq. (20) into Eq. (18) to get

dF
dx︸︷︷︸

1×nx

=
∂F
∂x︸︷︷︸
1×nx

−

ψT︷ ︸︸ ︷
∂F
∂w︸︷︷︸

1×Knw

∂R

∂w

−1

︸ ︷︷ ︸
Knw×Knw

∂R

∂x︸︷︷︸
Knw×nx

. (21)
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Now we can transpose the Jacobian and solve with [∂F/∂w]T as the right-hand side, which

yields the adjoint equation,
∂R

∂w

T

︸ ︷︷ ︸
Knw×Knw

· ψ︸︷︷︸
Knw×1

=
∂F
∂w

T

︸ ︷︷ ︸
Knw×1

, (22)

whereψ is the adjoint vector. Then, we can compute the total derivative by substituting the adjoint

vector into Eq. (21):
dF
dx

=
∂F
∂x

−ψT ∂R

∂x
. (23)

Since the design variables are not explicitly present in Eq. (22), we need to solve the adjoint

equation only once for each objective function. Therefore, the computational cost is independent

of the number of design variables but proportional to the number of objective functions. This

approach of computing derivatives introduced so far is also known as the adjoint method. It is ad-

vantageous for field inversion because typically, there is only one objective function, but thousands

of design variables may be used.

The adjoint equation in Eq. (22) can be simplified for the time-marching primal problem. As

indicated in Eq. (15), for each 1 ≤ i ≤ K, Ri has dependency only on x, wi, wi−1, and wi−2.

Together with the simplification in Eq. (17), Eq. (22) can be rewritten as:

∂R1

∂w1

T
∂R2

∂w1

T
∂R3

∂w1

T

∂R2

∂w2

T
∂R3

∂w2

T
∂R4

∂w2

T

. . . . . .
∂RK−1

∂wK−1

T
∂RK

∂wK−1

T

∂RK

∂wK

T





ψ1

ψ2

...

ψK−1

ψK


=

1
K



∂ f 1

∂w1

T

∂ f 2

∂w2

T

...
∂ f K−1

∂wK−1

T

∂ f K

∂wK

T


, (24)

where the adjoint vector ψ ∈ RKnw is broken down into K parts that correspond to the time steps,

i.e., ψ1,ψ2, . . . ,ψK ∈ Rnw . Then, Eq. (24) can be solved sequentially in a backward fashion as:

∂RK

∂wK

T

·ψK =
1
K

∂ f K

∂wK

T

,

∂RK−1

∂wK−1

T

·ψK−1 =
1
K

∂ f K−1

∂wK−1

T

− ∂RK

∂wK−1

T

·ψK,

∂Ri

∂wi

T

·ψi =
1
K

∂ f i

∂wi

T

− ∂Ri+1

∂wi

T

·ψi+1 − ∂Ri+2

∂wi

T

·ψi+2, K −2 ≥ i ≥ 1,

(25)

which effectively breaks down the original adjoint equation in Eq. (22) into K much smaller sub-

equations. The right-hand side terms in Eq. (25) can be efficiently evaluated with reverse-mode au-

tomatic differentiation (AD). In particular, the matrix-transpose-vector product [∂Ri+2/∂wi]Tψi+2
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is evaluated in a Jacobian-free manner right after we solve for ψi+2, and [∂Ri+1/∂wi]Tψi+1 is

evaluated in a similar fashion, then they are passed to the right-hand side of the sub-equation for

ψi. Note that we solve the above adjoint equation (25) in reverse and computing the matrix-vector

products requires access to state variables for all time steps. Saving all state variables in memory

is prohibitively expensive. Therefore, we write the state variables to the disk for all time steps

during the primal simulation. Then, during the adjoint computation, we read the state variables

for each time step. The use of file IO in our unsteady adjoint method is acceptable because (1)

OpenFOAM has a parallel file IO interface that scales well with large meshes, and (2) the file IO

runtime is much smaller than the actual adjoint computation runtime.

The assumption that the objective function F is of the average type in Eq. (16) also simplifies

the expression of the total derivative dF/dx in Eq. (23) as:

dF
dx

=
K

∑
i=1

(
1
K

∂ fi

∂x
−ψiT ∂Ri

∂x
). (26)

Therefore, we can calculate the total derivative accumulatively as we sequentially solve the sub-

equations in Eq. (25). Computing the total derivatives on the fly is desirable because we do not

need to save the adjoint vectors for all time steps.

Finally, we elaborate on how to effectively solve the adjoint linear equations in Eq. (25). We use

the generalized minimal residual (GMRES) solver from the Portable, Extensible Toolkit for Sci-

entific Computation (PETSc)55 library to solve the adjoint linear equations. The GMRES solver

converges quadratically and is significantly faster than the fixed-point adjoint solver (linear con-

vergence) used in our previous studies48,56,57. In addition, the GMRES solver’s convergence does

not require the linear iteration matrix’s eigenvalues to be within the unit circle. It is more robust

in practice, especially when we need to repeatedly solve the adjoint equations.

We use the GMRES as the top-level solver with a nested preconditioning strategy. For the

global preconditioner, we use a one-level-overlap additive Schwartz method (ASM). The ASM

approach decomposes the linear equation into sub-blocks and allows us to solve it in parallel.

For the local preconditioner in each sub-block, we use the incomplete lower and upper (ILU)

factorization approach with one level of fill-in.

We develop a Jacobian-free GMRES approach to solve the adjoint linear equations, similar to

that proposed in our previous work for steady-state problems58. The Jacobian-free GMRES can

directly compute the matrix-vector products to construct the Krylov subspace without forming or

saving [∂R/∂w]T . The benefit of Jacobian-free GMRES is that it saves the computational time
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and memory involved in computing and storing [∂R/∂w]T .

To make the GMRES solver efficient, we need a strong preconditioner to improve the eigenval-

ues clustering. The right-preconditioned adjoint equations reads∂Ri

∂wi

T
[

∂Ri

∂wi

T

PC

]−1
(∂Ri

∂wi

T

PC
ψi

)
=

∂ f i

∂wi

T

, (27)

where [∂Ri/∂wi]TPC is the preconditioner matrix for the ith time step, and the superscript −1

denotes an approximated inverse. The preconditioner matrix should be an approximation of

[∂Ri/∂wi]T but easily invertible. To this end, we use the first-order upwind scheme to compute

the convective term of the momentum equation (2), which effectively reduces the preconditioning

matrix’s stiffness. To reduce the matrix bandwidth, we shrink the pressure and face flux residual

stencils by reducing the maximal level of connected states by one. We scale the preconditioner

matrix for better diagonal dominance. This is achieved by normalizing the residuals (Jacobian’s

rows) by the cell volume or face area and states (Jacobian’s columns) by their corresponding refer-

ence values at the far field. [∂R/∂w]TPC is a large sparse matrix. To efficiently compute it, we use

the finite-difference method with a heuristic graph coloring algorithm, as proposed in our previous

work9.

For steady-state problems, the converged flow fields typically stay similar throughout the opti-

mization iterations. Therefore, we can compute the above preconditioner matrix only once using

the flow fields of the baseline design and reuse it for all following optimization iterations. This

aforementioned strategy needs to be modified for unsteady problems, because the transient flow

may undergo significant changes in space and time, and the flow fields at the end of an unsteady

simulation can be significantly different from those at the beginning. We need to have an appro-

priate preconditioner for each time step to ensure fast GMRES convergence. Naively recomputing

the preconditioner for each time step is prohibitively expensive (computing [∂R/∂w]TPC may be

much more expensive than solving the adjoint equation for one time step). Therefore, we develop

a two-level preconditioner method for the PIMPLE-Krylov adjoint solver, as shown in Fig. 4.

On the top level, we pre-compute the full preconditioner matrices at selected time steps and

save them in memory. For example, for an unsteady simulation with non-dimensional time t∗

from 0 to 10, we may pre-compute four [∂R/∂w]TPC matrices using the flow state variables at t∗ =

10, 7.5, 5, and 2.5, respectively. During the reverse unsteady adjoint solution process, we will use

the first [∂R/∂w]TPC matrix for 7.5 < t∗ ≤ 10. We will switch to the second [∂R/∂w]TPC matrix
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wK wK-1 … wL … w1wM ……

Top-level PC: compute 
the full PC matrix with a 
certain time interval

Bot-level PC: update 
the PC’s diagonal 
blocks at each time step

Solve adjoint equations for each time step in reverse

State variables at each 
time step

GMRES

FIG. 4: Schematic of the proposed two-level GMRES preconditioner computation method for

accelerating unsteady adjoint equation solution.

for 5 < t∗ ≤ 7.5, and similarly for the other intervals. This strategy ensures each adjoint solution

time interval has an effective preconditioner matrix, which is computed using flow states similar

to that interval.

Using the above top-level preconditioning strategy alone does not always guarantee fast adjoint

equation solutions. This is because the flow may still undergo significant changes during a smaller

time interval. To address this issue, we develop a bottom-level approach that updates part of the

[∂R/∂w]TPC matrix (diagonal blocks) at each time step. The bottom-level update needs to be

fast and the heuristic graph coloring approach mentioned above is not computationally feasible.

Therefore, we reuse the inner iteration coefficient matrices from the primal flow solution process

to construct the bottom-level [∂R/∂w]TPC updates:


Ai
U

T

Ai
p

T

−Iφ

Ai
ν̃

T

→ ∂Ri

∂wi

T

PC
(28)

where Ai
U

T , Ai
p

T , and Ai
ν̃

T are the transpose of the left-hand-side matrices for the velocity

(Eq. (3)), pressure (Eq. (8)), and turbulence variable (Eq. (11)) equations, respectively, and Iφ

is the unit vector for the face flux residual equation (9). Because unsteady primal solvers typically

have built-in interfaces (e.g., the fvMatrix in OpenFOAM) that can readily assemble Ai
U , Ai

p,

andAi
ν̃
, we need to only transpose these matrices and update [∂R/∂w]TPC with their values. This

update is orders of magnitude faster than the top-level full [∂R/∂w]TPC matrix computation.

In summary, the top-level preconditioner computation recomputes the whole [∂R/∂w]TPC ma-
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trix with a given time interval, while the bottom-level computation updates the [∂R/∂w]TPC ma-

trix’s diagonal blocks at each time step. We compute the top-level preconditioner matrices only

once from the baseline flow fields and reuse them throughout the entire optimization. On the other

hand, we update the bottom-level preconditioner matrix at each time step and each optimization

iteration. We find that the above preconditioner computation strategy is effective in converging

the unsteady adjoint equations for all time steps. In practice, we may need to tweak the top-level

[∂R/∂w]TPC computation interval to achieve the optimal adjoint computation speed.

Our proposed PIMPLE-Krylov adjoint method exhibits reasonable speed, memory usage, scal-

ability, and accuracy, as shown in Appendix A. The adjoint solver’s runtime is about three times

as large as the flow’s runtime, and the average error in the adjoint derivatives is about 1%. This

level of performance is acceptable for practical unsteady gradient-based optimization for coupled

FIML problems.

Note that our usage of the adjoint method in data-driven unsteady flow modeling is conceptually

similar to the study by Wang, Wang, and Zaki 59 . They developed a discrete adjoint formulation

for a fractional time step unsteady flow solver. Instead of using it for correcting the turbulence

model’s defects, they conducted a data-assimilation study to recover the flow initial condition for

circular Couette flows.

E. Effective numerical configurations for highly nonlinear coupled FIML

As mentioned above, one disadvantage of incorporating a highly nonlinear neural network

model in FIML is that it makes the gradient-based optimization more challenging to converge. This

subsection discusses our numerical configurations to facilitate the coupled FIML optimization.

Flow features and scaling. The selection of flow features has a large impact on the success of

coupled FIML optimization. While previous studies have discussed how to choose flow features

based on physical insights (to name a few16,60), there has not been a universal set of flow features

that are guaranteed to work for every case. Therefore, we may still need trial and error in practice

to get the optimal FIML performance. In addition to selecting flow features, setting proper scaling

factors is critical for gradient-based optimization in coupled FIML. To maximize the prediction

generalizability, the flow features are typically normalized, non-dimensional variables. However,

additional scaling is still needed, especially for unsteady flow problems where local flow features’

magnitude may vary significantly in time. For example, the turbulence production may be rela-
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tively small when the boundary layer is attached. When the flow further evolves in time and the

boundary layer separates, the production term may increase rapidly. For decoupled FIML, the

scaling is typically set in a neural network package (e.g., TensorFlow) offline; however, one needs

to set the scaling in DAFoam on the fly for coupled FIML. Therefore, we typically run a test pri-

mal simulation and monitor the temporal evolution of all flow features. Then, one can set proper

scaling factors for the flow features and make their standard deviations as close to each other as

possible during the entire primal simulation.

Initial design variable values. Choosing initial design variable values is not an issue for the

field inversion part of decoupled FIML because the most reasonable choice is to set them (aug-

mentation field variables) to be ones, meaning no augmentation to the original turbulence model.

However, this choice is not feasible for coupled FIML problems because the design variables are

the weights and biases of a neural network model, which do not have clear physical meanings.

To alleviate this issue, we offset the neural network’s output by one such that setting all zeros as

the inputs (weights and biases) will lead to ones as the output (augmentation field). However, this

aforementioned setting (all zeros as the inputs) will create an issue for gradient-based optimiza-

tion because the derivatives of the output with respect to the inputs are all zeros except for the

output layer’s bias (refer to Eqs. 13 and 14). To fix this problem, we randomize the input variables

within a prescribed small bound, i.e., [−0.05 to 0.05]. This setting will make the initial augmen-

tation field variables close to ones while having non-zero derivatives to start the gradient-based

optimization. In practice, we find that the coupled-FIML optimization’s convergence strongly de-

pends on the randomized initial design variable values. Therefore, trial and error is needed by

prescribing different bounds and random variable seeds.

Neural network architecture. Similar to decoupled-FIML problems, one needs to explore vari-

ous neural network architectures (e.g., the number of hidden layers and neurons for each layer) to

maximize the performance for coupled-FIML problems. However, the extra challenge is that one

needs to re-solve the entire FIML problem for each architecture configuration. The high computa-

tional cost prevents us from exploring many architectures. In addition, one has much less freedom

in choosing the desired architecture. This is because the neural network model will be called for

each PIMPLE iteration (Fig. 2), so increasing the number of hidden layers and neurons will signifi-

cantly increase the computational cost for the coupled FIML. It will also increase the memory cost

because DAFoam uses an operator-overloading AD tool to compute the matrix-vector products

during the adjoint solution process. Therefore, a large neural network model requires saving many
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more intermediate variable values in the memory for each matrix-vector product calculation. We

suggest conducting trial and error to optimize the number of hidden layers and neurons in practice,

starting from a small neural network.

Objective function weights. As will be elaborated on in the next section, our objective function

consists of two terms: a prediction error term and a regulation term. Similar to the decoupled

FIML, the relative weight between these two terms is important for the FIML optimization con-

vergence and its prediction accuracy for unseen conditions. Setting a too-small weight for the

regulation term can help reduce the objective function value in gradient-based optimization and

make it converge tighter. However, the neural network model may be overfitting by using highly

non-uniform augmentation fields to correct the prediction for the training data while having poor

prediction accuracy for unseen conditions. On the other hand, setting a too-large regulation weight

will significantly limit the design freedom to correct the imperfect turbulence model. In practice,

we need to explore various weights to balance the FIML optimization progress and the prediction

performance for unseen conditions.

Invalid output from the neural network. For decoupled FIML problems, the optimizer can

strictly control the bound of the augmentation field variables because they are the design variables.

However, for coupled-FIML problems, the weights and biases are the design variables and the

augmentation field variables become intermediate variables (output of the neural network model)

that cannot be directly controlled by the optimizer. Although one can set a nonlinear constraint

to limit the augmentation variables in coupled FIML, the optimizer may still explore unphysical

augmentation variables during the line search process. For example, the optimizer may choose an

unreasonable combination of weights and biases such that the computed augmentation variable is

much larger or smaller than its normal values (e.g., > 100). In addition, some flow features may

not be well defined (e.g., divided by zero) at some local cells during PIMPLE iterations, so the

computed augmentation variable will be invalid. Without proper treatments, the above scenarios

may cause segmentation faults for the primal solver and abort the optimization. To avoid this,

we add a safeguard function in the primal solution process. This function will evaluate if the

augmentation field variables are valid for each unsteady time step. If any invalid augmentation

field variable is found at a time step, we will inform the optimizer that the primal solution fails

and ask it to backtrack the line search for a better design. This treatment significantly improves

the robustness of the coupled-FIML optimization.

Optimizers and their configurations. One of the benefits of coupled FIML is that the number
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of design variables does not typically exceed a few thousand. However, for the decoupled ap-

proach, hundreds of thousands of design variables may be needed, depending on the mesh size.

Therefore, the coupled approach is more flexible in choosing gradient-based optimizers, many of

which may not be specially designed to scale well with a massive number of design variables. In

theory, the coupled-FIML framework works with many optimizers, such as SLSQP61, IPOPT62,

and SNOPT63. However, we only tested the framework using SNOPT. We found that using a loose

tolerance for the line search (e.g., 0.999) and disabling the Hessian update helped the optimiza-

tion convergence. More detailed discussion on various optimizer configurations can be found in

Rojas-Labanda and Stolpe 64 .

III. RESULTS AND DISCUSSION

In this section, we first describe the unsteady CFD simulations over a 45-degree ramp and

compare the simulated flow fields between the original SA model and reference k−ω SST model.

Then, we conduct an unsteady FIML to augment the SA model using only the surface pressure

at the bottom wall as training data. We will evaluate the trained model’s prediction accuracy for

surface pressure and other variables not used in training, i.e., velocity fields. In addition, we will

evaluate the trained model’s performance for unseen geometries (different ramp angles) and flow

conditions (different Reynolds numbers). Finally, we will justify the need for unsteady FIML

by demonstrating that a steady-flow-trained model cannot accurately predict the time-accurate

unsteady flow.

A. Time-accurate CFD simulations for unsteady flow over a 45-degree ramp

As mentioned before, we use unsteady turbulent flow over a ramp as the benchmark, as shown

in Fig. 5. The inlet and outlet heights are 0.5 and 1.0 m, respectively, and the ramp length is 3.0

m. The ramp angle is 45◦, and the top surface is a symmetry plane. We generate a structured

mesh with 20,000 cells, and the maximal y+ for the bottom wall is less than 1. The inlet velocity

is U0 = 10 m/s and the corresponding Reynolds number (based on the outlet height h) is 105.

Choosing an appropriate initial flow field is important for unsteady FIML because we need to

compute flow features at each time step. Naively using a uniform flow field to start unsteady

flow simulations and FIML may result in ill-defined flow features (e.g., the denominator being
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FIG. 5: Geometry, boundary conditions, and mesh for the unsteady-flow-over-ramp benchmark.

The coordinate origin ([x,y] = [0,0]) is located at the bottom of the inlet boundary, where x and y

are the streamwise and vertical directions, respectively.

zero). To avoid this, we use a uniform flow field of 10 m/s as the initial condition and run the

flow solver for 0.1 s, or a non-dimensional time t∗ = tU0/h of 1, to build up the boundary layer in

the channel. Then, we use the above spun-up flow field as the initial condition and run unsteady

simulations for 10 more non-dimensional time units. We use the flow data from t∗ = 0 to 10 for the

unsteady FIML training. The non-dimensional time step size is ∆t∗ = 0.05, and the corresponding

CFL number is about 10. As mentioned previously, the PIMPLE algorithm allows stable unsteady

simulations with CFL > 1. Using a relatively large CFL number should not significantly degrade

the accuracy of unsteady RANS simulation results. This is because the temporal evolution of

flow is not as significant as eddy-resolving simulations such as large-eddy or direct numerical

simulation (LES/DNS), so the discretization error for the time derivative in RANS models is not

sensitive to the time step size.

In this study, we use the unsteady flow fields computed by the k−ω SST turbulence model as

the reference. We then augment the SA model and make its predictions match the SST’s. Note that

in practical FIML, it is more common to use either experimental or eddy-resolving high-fidelity

(LES/DNS) data as the reference values. To simplify the analysis (e.g., mesh interpolation), this

paper uses the SST model’s simulation data as a reference to demonstrate the proposed unsteady
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FIG. 6: Velocity magnitude contours at various times. Left: reference data generated by the k−ω

SST model. Right: data generated by the original SA model. The original and reference models

have similar flow fields at t∗ = 5. However, they exhibit significantly different vortex structures at

t∗ = 8 and 10.

FIML framework. The proposed FIML can be easily extended to use experimental or LES/DNS

data.

Figure 6 shows the comparison of velocity magnitude contours between the original SA model

prediction and SST reference data at various times. The flow separates behind the ramp and forms

a vortex downstream, which can be seen clearly at t∗ = 5. The SA model and SST model predict

similar ramp main vortex structures at t∗ = 5 and [x∗,y∗] = [1.5,−0.25], where x∗ = x/h and y∗ =

y/h. However, their predictions diverge quickly as the unsteady simulation goes further. The main

vortex predicted by the original SA model dissipates quickly, and the velocity distribution in the

wake area becomes relatively uniform at t∗ =8 and 10. In contrast, the SST model predicts much

more intriguing vortex structures and interactions. The ramp main vortex propagates downstream,

and its strength does not dissipate as quickly as the SA’s prediction at t∗ = 8. Then, the main vortex

interacts with the bottom wall and rolls up a secondary vortex at t∗ = 10 and [x∗,y∗] = [1.2,−0.3]

(Fig. 6 bot-right). The above observations are consistent with previous work65–68, where the SA

model was found to predict significantly different flow fields and vortex structures than the SST

model for separated flow.
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B. Unsteady FIML for improving time-accurate unsteady flow predictions

The goal of this paper is to demonstrate the unsteady FIML framework by augmenting the

original SA model and making it predict similar vortex structures (both spatially and temporally)

as the SST model. To this end, we create a composite objective function F as follows:

F =
1
K ∑

t=1:K
[
c1

Ni
∑

i=1:Ni

( f CFD
i, t − f ref

i, t )
2 +

c2

N j
∑

j=1:N j

(β j, t −1)2] (29)

where the subscript t denotes the time index with K being the number of time steps, β is the

augmentation scalar field to the SA model’s production term, Eq. (11), f CFD could be any quantity

computed by CFD, and f ref is the corresponding reference value (also known as training data).

This paper uses the pressure at the bottom wall as f . So, the subscript i denotes the ith mesh

face, and Ni is the total number of mesh faces on the bottom wall. The error between SA and

SST is quantified as the summation of bottom wall pressure at all surface mesh faces and all time

steps (the first term on the right-hand side). To avoid over-fitting, we also add a regulation term

to minimize the spatial variations of the augmentation scalar field β with respect to its original

value (1.0). So, the subscript j is the mesh cell index with N j being the total number of mesh cells.

c1 = 0.02 and c2 = 0.01 are the weights for the two terms in the objective. c1 is mainly used to

scale F to be close to 1, and c2 is mainly used to control the regulation.

Both f and β are implicit functions of the flow state variablesw and design variable x (weights

and biases). To minimize the composite objective function F , we run gradient-based optimization

using the sparse nonlinear optimizer (SNOPT63). We compute the gradients using the proposed

PIMPLE-Krylov adjoint method. As mentioned previously, the PIMPLE-Krylov method solves

adjoint equations in reverse, starting from the last time instance t∗ = 10. The adjoint solver uses

the same step size ∆t∗ = 0.05 as the primal solver. To speed up the Krylov-based adjoint equation

solution, we pre-compute the preconditioners (top-level PC in Fig. 4) with a non-dimensional time

interval of 2.5. We ask the adjoint equation residuals to drop five orders of magnitude for each

time step.

After trials and errors, we choose four local flow features as the neural network’s inputs, as

shown in Table II. Although these local features are already normalized, non-dimensional quanti-

ties, we further scale them to make their standard deviation (among all mesh cells and time steps)

close to one. As mentioned above, the scaling facilitates the gradient-based optimization in FIML.

To better capture the optimal relationship between the local flow features and the augmentation
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TABLE II: Four local flow features used in this study.

Feature Formulation Description Scaling

η1 P/D Ratio of the turbulence production and destruction term 0.001

η2 |Ω|/|S| Ratio of the vorticity and strain magnitudes 1.0

η3 ν̃/ν Ratio of the turbulence and kinematic viscosity 0.01

η4

√
∂ p
∂xi

∂ p
∂xi

/
∂U2

k
∂xk

Ratio of pressure normal stress to shear stress 1.0

TABLE III: Optimization formulation for the unsteady FIML problem. We use the flow data from

t∗ = 0 to 10 for the FIML training.

Function/Variable Description Quantity

Min F CFD prediction error along with regulation 1

w.r.t. w and b Weights biases in the neural network 540

scalar field β , we use two hidden layers in the built-in neural network model, and each hidden

layer has 20 neurons. As mentioned previously, we use the weights and biases in the neural net-

work model as the design variables. In total, we have 540 design variables. Note that the total

number of design variables depends on the neural network architecture and is independent of the

number of mesh cells and time steps. Table III summarizes the optimization formulation of the

unsteady FIML problem.

The unsteady FIML optimization runs for 141 iterations. The baseline and optimized objective

functions are 1.14E0 and 2.09E-2, respectively; the objective function reduces by 98.2%. The op-

timality drops more than two orders of magnitude; reducing from 3.2E0 to 2.6E-2. This indicates

that the optimization converges tightly. The optimization runs in parallel with 16 CPU cores, and

it takes about 96 hours with 2.3G Hz Intel Skylake Xeon processors on our local high-performance

computing (HPC) system Nova.

Figure 7 shows the time evolution of root-mean-square error (RMSE) for Cp on the bottom

wall. Here the RMSE is computed as the difference between the CFD prediction and reference

data in a prescribed simulation domain (e.g., the bottom wall or the entire flow field). For example,

the RMSE of Cp on the bottom wall is computed as.
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FIG. 7: Time evolution of root-mean-square error for Cp on the bottom wall. The unsteady-FIML-

trained model significantly reduces the RMSE compared with the original model at all times.

RMSECp =

√√√√ ∑
i=1:N f

(Cp
CFD
i −Cp

ref
i )2

N f
(30)

where the superscript i denotes the face index, and N f is the total number of mesh faces on the

bottom wall. The original SA model has a relatively low RMSE in t∗ < 5. Then, the RMSE

rapidly increases. This trend is consistent with what we observe in Fig. 6, i.e., the original model’s

velocity prediction degrades rapidly for t∗ > 5. The unsteady FIML-trained model significantly

reduces the Cp RMSE at all time instances, compared with the original model. This is expected

because we use the time-averaged Cp RMSE as the objective function. Note that the initial error

at t∗ = 0 is not zero for the original and trained models. This is because they both use the spun-up

flow fields predicted by the SA model as the initial conditions. Their initial flow fields are slightly

different from the ones used by the SST model (reference). This setup causes a small initial error

for the Cp prediction in Fig. 7, as well as for all other time evolution plots in this paper.

To better illustrate the temporal evolution of pressure prediction error, we plot the pressure

distribution on the bottom wall at a few time instances in Fig. 8. A low-pressure region is observed

at x∗ ≈ 1.5 and t∗ = 5, which corresponds to the ramp vortex (x∗ ≈ 1.5) observed in Fig. 6 top left.

Both the original and trained models predict this low-pressure region well. However, the two

models predict significantly different pressure profiles at t∗ = 8 and 10. The unsteady-FIML-

trained model accurately captures the propagation of the low-pressure region further downstream,

while the original model predicts a relatively flat pressure distribution on the bottom wall. The

above flat pressure distribution is mainly caused by the original model’s overestimation of the

ramp vortex dissipation, as mentioned previously and shown in Fig. 6 mid-right and bot-right.
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FIG. 8: Pressure distribution on the bottom wall. The unsteady-FIML-trained model has a much

better agreement with the reference data than the original model at various time instances.

Having shown that the unsteady FIML successfully minimizes the spatial-temporal prediction

error for the surface pressure (training data), we evaluate whether the trained model can accurately

predict variables that are not used in training. Fig. 9 shows the time evolution of RMSE for the

velocity field. Here we use a formulation similar to Eq. (30) to compute the velocity field RMSE,

except that the domain is the whole velocity field instead of the bottom wall surface. Similar to

the pressure RMSE, the original model’s velocity field RMSE rapidly increases in t∗ > 5. Again,

this rapid increase in velocity RMSE is attributed to the overestimation of vortex dissipation by
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FIG. 9: Time evolution of root-mean-square error for the velocity field (Left: U∗
x . Right: U∗

y ). The

unsteady-FIML-trained model significantly reduces the RMSE compared with the original model.

FIG. 10: Velocity magnitude contours of the unsteady-FIML-trained model at various times. The

trained model predicts similar spatial-temporal variations of velocity fields as the reference model

(comparing this figure with Fig. 6 left).

the original SA model, as shown in Fig. 6. The unsteady-FIML-trained model’s RMSE always

remains at a relatively low level.

To further evaluate the velocity field prediction accuracy, we plot the velocity magnitude con-

tours of the unsteady-FIML-trained model in Fig. 10. The trained model predicts visually non-

distinguishable spatial-temporal variations of velocity fields as the reference model (comparing
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this figure with Fig. 6 left). This indicates that the trained model correctly captures the ramp vor-

tex shapes and their interactions. To further quantify this good agreement, we plot the velocity

profiles at various streamwise locations in Fig. 11. Here, we overlap the ramp geometry with the

streamwise (U∗
x ; left column) and vertical (U∗

y ; right column) velocity profiles. Here U∗ =U/U0

is the normalized velocity. To better illustrate the velocity profiles, we multiply U∗
x and U∗

y by a

factor of 0.02, respectively, and then plot them with the ramp geometry. We use the same scaling

for the rest of the velocity profile plots in this paper. The original SA model has large velocity

prediction errors in t∗ = 8 and 10, while the unsteady-FIML-trained model agrees reasonably well

with the reference data at all time instances. Note that the trained model also accurately captures

the shape of the boundary layer.

The above results indicate that using the surface pressure as the training data can improve the

velocity prediction for the entire flow fields. This salient feature is made possible by the solver-

embedded nature of the FIML method. Because the entire CFD solution process is embedded in

the training process, the corrected pressure at the bottom wall can lead to the corrected velocity

for the entire flow field. Note that the capability of using only surface data to improve flow field

prediction accuracy has been shown in previous steady-FIML studies (to name a few33,39,43). This

low data dependency is highly desirable in practice because many experiments can measure only

surface data. Therefore, the ability to use only limited surface measurements to correct imperfect

CFD models will significantly broaden FIML’s applications. However, this conclusion has not

been well generalized for any flow configurations. For example, in a previous study43, we found

that using only surface friction as training data could improve the velocity field prediction for the

steady-state flow over a periodic hill. However, the velocity field prediction accuracy could be

further improved if field data were used (e.g., velocity profile data). We recommended using both

surface friction and velocity profile data. Whether using only surface data can improve flow field

prediction accuracy for more general unsteady flow needs to be further studied in our future work.

From a numerical optimization standpoint, converging unsteady FIML is more challenging

than steady FIML. This is because the unsteady FIML requires the CFD prediction to match the

reference data at every time step, instead of only the final steady-state solution. Therefore, un-

steady FIML typically needs more optimization iterations to converge. However, from a machine

learning standpoint, unsteady FIML is desirable because it has hundreds of more flow field snap-

shots as training data than steady FIML. Thus, the turbulence model trained by unsteady FIML is

less likely to overfit than the one trained by steady FIML. In addition, the unsteady FIML’s train-
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FIG. 11: Velocity profiles at various streamwise locations (left: Ux; right: Uy). ◦ Reference data.

– Original model. – Trained model. The unsteady-FIML-trained model agrees much better with

the reference data than the original model at various time instances.

ing data are time-dependent; therefore, they cover a wider range of flow conditions than steady

FIML’s data. For example, one unsteady FIML problem may include transient training data for the

attached boundary layer, boundary layer separation, vortex shedding, and vortex iterations. There-

fore, it is plausible to expect the unsteady-FIML-trained model to have better generalizability than

the steady-FIML-trained model. Such a topic will be discussed in the next subsection.

C. Generalizability of the unsteady-FIML-trained model for unseen conditions

In the above subsection, we evaluated the performance of the trained model in predicting flow

fields with the same geometry and Reynolds number. To further evaluate its generalizability,
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TABLE IV: Summary of training and prediction configurations.

Training Prediction 1 Prediction 2

Geometry 45-deg ramp 60-deg ramp 30-deg ramp

Reynolds number 105 105 5×104

Variables Psurface Psurface & Ufield Psurface & Ufield

this subsection will use the unsteady-FIML-trained model to predict geometries and Reynolds

numbers not used in training. Table IV summarizes the configurations for training and prediction.

In the first prediction case, we change only the geometry (ramp angle changes from 45 to 60

degrees) and maintain the Reynolds number. In the second prediction case, we change both the

geometry (ramp angle from 45 to 30 degrees) and Reynolds number (from 105 to 5× 104). Note

that for steady-state flow problems, we typically need training data from various geometries and

flow conditions. However, this situation can be alleviated in unsteady cases because one unsteady

FIML typically includes flow data for a few hundred flow field snapshots covering a wide range of

flow conditions, as mentioned above. Therefore, we train our model using only one case (45-deg

ramp with Re = 105).

Figure 12 shows the velocity magnitude contour predictions for an unseen 60-degree ramp ge-

ometry with Re = 105 (prediction case 1). Compared with the 45-deg ramp case, the 60-deg ramp

exhibits larger flow separation and a stronger ramp main vortex at t∗ = 8 and x∗ ≈ 2 (Fig. 12 top

left). In addition, the ramp vortex rolls up a bigger secondary vortex near the bottom of the ramp

(x∗ ≈ 1.2). At t∗ = 10, the main vortex propagates further downstream (x∗ ≈ 2.2), and the cen-

ter of the secondary vortex rises slightly (i.e., y∗ from −0.4 to −0.1), resulting in an intriguing

double-vortex structure (Fig. 12 top right). The unsteady-FIML-trained model qualitatively cap-

tures the above vortex structures and interactions (Fig. 12 bot), although it inaccurately predicts

some detailed vortex structures, such as the location and shape of the secondary vortex at t∗ = 10.

On the other hand, the original model fails to predict any of the vortex structures at t∗ = 8 and 10

(Fig. 12 mid); it predicts a relatively smooth wake instead. Overall, the trained model significantly

outperforms the original model in predicting the velocity contours.

A more quantitative comparison of flow field predictions is shown in Fig. 13, where we plot the

velocity profiles at various locations. The unsteady-FIML-trained model significantly improves

the velocity field prediction at all three time instances, except for U∗
y in the 1.0 < x∗ < 1.5 region
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FIG. 12: Velocity magnitude contour predictions for an unseen 60-degree ramp geometry with

Re = 105. The unsteady-FIML-trained model qualitatively captures the complex vortex structures

and interactions, while the original model’s prediction is poor.

at t∗ = 10 (Fig. 13 bot-right). This relatively large error is related to the inaccurate prediction of

the shape and location of the secondary vortex observed in the velocity contour (comparing Fig. 12

top right with bot right). Note that this level of error in the velocity field prediction is similar to

previous steady-state FIML studies33,39,43 that used a similar setup (i.e., using surface data for

training and predicting field variables).

Next, we consider the velocity field prediction for an unseen geometry (30-deg ramp) and an

unseen Reynolds number (Re = 5× 104); prediction case 2, as shown in Fig. 14. The reference

SST model predicts a ramp main vortex at t∗ = 8 and 10, similar to the previous cases. However,

as the flow evolves, the main vortex does not roll up a strong secondary vortex, which is different

from the 45-deg and 60-deg ramp cases shown before. This is mainly attributed to this case’s

weaker flow separation and smaller ramp angle. Compared with the previous case, the original SA

model’s prediction matches the reference data better. For example, the original model captures the

structure of the ramp main vortex well at t∗ = 8. Overall, the unsteady-FIML-trained model only

slightly outperforms the original SA model, e.g., at t∗ = 10. We can see this clearly in Fig. 15,

where we plot the velocity profiles at various streamwise locations. For example, the trained

model effectively reduces the prediction error at t∗ = 5 and 8; however, its prediction becomes
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FIG. 13: Velocity profile prediction for an unseen 60-degree ramp geometry with Re = 105. Left:

U∗
x ; right: U∗

y . ◦ Reference data. – Original model. – Trained model. The unsteady-FIML-trained

model agrees much better with the reference data than the original model at various time instances.

less accurate at t∗ = 10 and has similar errors as the original SA model. Overall, the difference

between the original and trained SA models is much less than the 60-deg ramp case. This is

expected because a lower ramp angle and a lower Reynolds number make the ramp separation

prediction less challenging. The above results also indicate that our trained model does not overfit,

and it performs well in cases where the original and reference models have similar predictions.

Figure 16 shows the time evolution of velocity field RMSE for the two prediction cases. Over-

all, the unsteady-FIML-trained model outperforms the original model, especially when intriguing

transient vortex structures are formed (t∗ > 5). For the 60-deg case, the original model has much

larger errors than the 30-deg case, which is consistent with what we observed from the velocity
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FIG. 14: Velocity magnitude contour predictions for an unseen 30-degree ramp geometry and

an unseen Reynolds number Re = 5× 104. The trained model slightly outperforms the original

model.

contour and profile plots. The trained model significantly lowers the error for all time instances.

For the 30-deg case, the trained model is slightly worse than the original model in t∗ < 3; however,

both the original and trained models’ error remains at a relatively low level, so this behavior is in-

consequential. Another important trend we observe is that the trained model’s error grows with

time for predictive cases. This is expected because the prediction error generally accumulates with

time for unsteady flow. For example, if the model predicts a wrong vortex location at t∗ = 5, the

prediction accuracy will be degraded for the rest of the simulation, even if the model then perfectly

predicts how the vortex will evolve spatially and temporally. In this sense, the RMSE time series

is a strict metric because even the reference and trained model predict the exact same vortex struc-

ture in space but with a time shift, this error will be reflected in the RMSE. In the future, we will

evaluate more metrics to quantify the overall unsteady FIML performance, such as the correlation.

Having compared the velocity field predictions, we evaluate the pressure prediction capability

for unseen geometries and Reynolds numbers, as shown in Fig. 17. Again, the trained model

outperforms the original model in both cases. However, the trained model’s surface pressure

prediction has a relatively large error for the 60-deg ramp case at t∗ = 10 (Fig. 17 bottom left).

Although the trained model predicts the low-pressure region associated with the ramp main vortex
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FIG. 15: Velocity profile prediction for an unseen 30-degree ramp geometry and an unseen

Reynolds number Re = 5× 104. Left: U∗
x ; right: U∗

y . ◦ Reference data. – Original model. –

Trained model. The trained model slightly outperforms the original model.

at x∗ = 2.5, the overall pressure level is much lower than the reference data in x∗ < 2. Again,

this relatively large pressure error is associated with the less accurate prediction of the complex

velocity field (vortex interaction) at t∗ = 10, as observed in Fig. 12.

Figure 18 shows the time evolution of Cp RMSE for the two prediction cases. The overall trend

of the pressure RMSE is similar to the velocity RMSE. However, the pressure prediction error

increases more rapidly, especially for the 60-deg ramp case. This indicates that the model not only

predicts the incorrect spatial distribution of pressure but also mispredicts how the pressure profile

evolves in time at t∗ ≈ 10. This behavior is consistent with what we observed in the pressure

profile distribution in Fig. 17; the pressure is much more challenging to predict for the large flow
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FIG. 16: Time evolution of velocity field root-mean-square error for unseen geometries (60-deg

and 30-deg ramps) and an unseen Reynolds number (Re = 5× 104). Overall, the trained model

outperforms the original model.

separation and complex vortex iteration at t∗ = 10.

In summary, this section showcases the generalizability of the trained model for predicting

unseen geometries and flow conditions. Overall, the trained model outperforms the original model.

To further improve the trained model’s performance, we can do the following. (1) Train the model

using more geometries and flow conditions. Although one unsteady FIML contains many more

flow field snapshots for training than the steady FIML, it will still be beneficial to include training

data from more conditions, which essentially covers a wider range of possible flow features. (2)

Train the model for more physical time. To save computational time, this paper trains the model

using data from t∗ from 0 to 10 and predicts unseen conditions for the same physical time. One

potential strategy is to use a longer time in training than in predictions. For example, we can train

our model using data from t∗ from 0 to 12, and then use the trained model to predict t∗ =0 to 10

for unseen conditions. This strategy will include more information about how the flow will evolve

and can potentially improve the model’s prediction capability. (3) Use more flow field variables
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FIG. 17: Pressure profile prediction at the bottom wall for unseen geometries (60-deg and 30-deg

ramps) and an unseen Reynolds number (Re = 5×104). The trained model significantly reduces

the error for t∗ = 5 and 8 and has a relatively large error at t∗ = 10.

as training data. This paper uses only the surface pressure as training data to predict velocity

fields with unseen conditions. A more comprehensive analysis can be conducted to evaluate its

effectiveness for predicting other variables, such as the Reynolds stress fields. Also, it is not

clear to what extent using more variables (such as the velocity field) as training data will improve

the trained model’s prediction accuracy. We would like to highlight that the main objective of

this paper is to introduce our open-source unsteady FIML framework and demonstrate its basic
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FIG. 18: Time evolution of Cp root-mean-square error for the two prediction cases. Overall, the

trained model outperforms the original model.

prediction capability. A comprehensive study on how to optimize the unsteady FIML performance

is outside the scope of this paper and will be conducted in our future work. In addition, this study

assumes the trained model will be used to predict flow configurations that are similar to the training

dataset. Generalizing the trained model for many other flow configurations, such as the flat plate

flow, is outside the scope of this paper. Relevant studies on this topic can be found in45,69,70.

D. Feasibility of using a steady-state trained model to predict time-accurate unsteady flow

As mentioned before, Fidkowski 47 demonstrated that a steady-state trained model (time-

averaged flow data) could improve prediction accuracy for time-averaged periodic unsteady flow.

In this subsection, we evaluate whether the Fidkowski 47’s approach works for more general, time-

accurate unsteady flow problems. To this end, we use the 45-deg ramp as the benchmark and run

steady-state flow simulations and FIML using OpenFOAM’s built-in simpleFoam solver. The

simpleFoam solver has a similar code structure as pimpleFoam. It also solves Eqs. (3) to (11)

iteratively, except that it does not have the time-derivative terms in the momentum and turbulence

equations. Therefore, using simpleFoam-based FIML to optimize the weights and biases and then

substitute them into pimpleFoam for prediction mimics the Fidkowski 47’s approach.

Figure 19 shows the steady-state velocity magnitude contours for the reference SST model and

the original SA model. Both models predict similar ramp wake at the steady state, although they

predict significantly different temporal evolution of ramp vortex structures, as shown in Fig. 6.

Therefore, we expect that using the steady-state flow training data will not be able to train an

accurate model for predicting the spatial-temporal variations of unsteady flow for this case.
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FIG. 19: Velocity magnitude contours from steady-state flow simulations. Left: reference data

generated by the k−ω SST model. Right: data generated by the original SA model. The reference

and original models predict a similar flow field at steady-state.

To confirm the above point, we conduct a steady-state FIML to train the SA model and make

its prediction match the flow field predicted by the SST model. The objective function is similar

to the one used for unsteady FIML, except that we consider only the final converged flow field,

instead of flow fields for all time steps.

Fsteady =
c1

Ni
∑

i=1:Ni

( f CFD
i − f ref

i )2 +
c2

N j
∑

j=1:N j

(β j −1)2 (31)

Other optimization configurations, including the design variables, neural network architecture,

and flow features are the same as the unsteady FIML, except that: (1) we use a different scaling

(0.0001) for the first flow feature (production over destruction). (2) we use different weights to

balance the two terms in the objective function, i.e., c1 = 1 and c2 = 0.001. (3) we use the steady-

state flow solver simpleFoam to simulate the flow. The optimization runs for 54 iterations, and

the objective function and optimality drop by 96% and two orders of magnitude, respectively. We

use 16 cores on the Nova HPC system, and the optimization takes about 2 hours.

Figure 20 compares the bottom-wall pressure profiles among the reference, original, and

steady-FIML trained models. Note that we use a different y axis scaling than the unsteady

cases because the pressure difference between the original and reference models is small. The

trained model does improve the pressure prediction accuracy at the steady state. Then, we use

the optimized weights and biases as the inputs and run unsteady simulations using pimpleFoam

with a built-in neural network model. The neural network architecture (e.g., the flow features,

input scaling, and number of hidden layers and neurons) used in the steady-FIML training is the

same as the one used for prediction. The comparison of velocity profiles among the three models

is shown in Fig. 21. The steady-trained model does not improve the unsteady flow simulation

accuracy. This is probably because the original and reference models predict similar steady-state
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FIG. 20: Comparison of steady-state pressure profiles at the bottom wall among reference data,

original SA model, and the steady-FIML-trained model. The trained model reduces the pressure

prediction error at the steady state.

flow solutions, so the steady-FIML does not contain useful training data for correcting unsteady

flow simulations.

In summary, we test the Fidkowski 47 method and find that using a steady-state trained model

cannot guarantee to improve general unsteady flow where both spatial and temporal variations of

flow are of interest. This conclusion further justifies the need for an unsteady FIML.

IV. CONCLUSION

In this paper, we develop an open-source field inversion machine learning (FIML) framework

to augment RANS turbulence modeling for predicting time-accurate unsteady flow, where both

spatial and temporal variations of flow are of interest. This framework allows us to augment a

RANS turbulence model with a scalar field. Then, it uses a built-in neural network model to

compute the augmentation scalar field using selected local flow features as inputs. Finally, it solves

an inverse problem by optimizing the weights and biases of the neural network model to minimize

the augmented turbulence model’s regulated prediction error. The prediction error is quantified

as the spatial-temporal flow field difference between the CFD simulations and the reference data.

To avoid overfitting, this framework can also add a regulation term to the objective function. The

FIML optimization leverages an efficient adjoint method called PIMPLE-Krylov to compute time-

accurate unsteady gradient information. The PIMPLE-Krylov adjoint method’s main advantage

is that it uses the PIMPLE method to solve the unsteady flow, allowing the usage of a relatively

large CFL number (e.g., 10) to minimize the number of time steps. Then, it uses a Krylov method
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FIG. 21: Velocity profile prediction for unsteady flow evolution from steady-state FIML. Left: U∗
x ;

right: U∗
y . ◦ Reference data. – Original model. – Steady-FIML trained model. The steady-FIML-

trained model does not improve unsteady flow prediction accuracy.

to solve the adjoint equation for each time step. Because the number of time steps is reduced by

using a relatively large CFL number, the PIMPLE-Krylov method needs to solve a relatively small

number of adjoint equations and read/write a relatively small amount of data to the disk, which

speeds up its computation.

To demonstrate the proposed unsteady FIML framework, we consider the spatial-temporal vari-

ations of unsteady flow over a 45-degree ramp with a Reynolds number of 105. Using the surface

pressure as the training data, we augment the SA turbulence model’s production term and make

its prediction match the reference computed from the k−ω SST model. We conduct two FIML

optimizations: steady and unsteady. For the steady FIML, the objective function is the regu-
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lated surface pressure prediction error for the converged, steady flow field, while for the unsteady

FIML, the objective function is the regulated average prediction error for all time steps. We find

that the model trained by the steady-state FIML cannot accurately predict the unsteady flow. On

the other hand, the unsteady-FIML-trained model significantly reduces the prediction error for

spatial-temporal variations of velocity fields and the dynamic vortex structures over the ramp. The

above result justifies the need for an unsteady FIML. In addition, we find that the proposed un-

steady FIML can use only the surface pressure data to train a model that accurately predicts the

velocity fields.

Finally, we evaluate the generalizability of the unsteady-FIML model, which is trained using

data only from the 45-deg ramp case with a Reynolds number of 105. We consider two predictive

cases. The first predictive case considers an unseen geometry (60-deg ramp), and the second case

considers an unseen geometry (30-deg ramp) along with an unseen Reynolds number (5× 104).

The unsteady-FIML-trained model significantly reduces the velocity field and surface pressure

prediction errors for both predictive cases, compared with the original SA model.

The unsteady FIML capability has been integrated into our open-source CFD-based optimiza-

tion framework DAFoam49. The proposed framework has the potential to train accurate and gen-

eralizable turbulence models for other unsteady flow phenomena, such as wind gust response,

bubbly flow, and particle dispersion in the atmosphere.

One of the main limitations of this work is that the inverse problem is challenging to solve be-

cause it includes a highly nonlinear neural network model and a computationally expensive CFD

solver. For a new problem, one may need to explore many numerical configurations mentioned

in Sec. II to converge the inverse problem well. In the future, we will evaluate more regression

models, such as radial basis functions, random forest, and symbolic regression, and compare their

performance with the neural network model used in this paper. Another limitation of this work

is the temporal discretization accuracy. We use the PIMPLE solver with a relatively large step

size to simulate unsteady flow. The temporal discretization error can become large if the temporal

evolution of the unsteady flow is drastic, e.g., at high Reynolds numbers. The large temporal dis-

cretization error can potentially downgrade the PIMPLE simulation’s accuracy. We suggest users

conduct a time step size sensitivity study for a new case. Lastly, the proposed unsteady FIML

method is solver-intrusive, and extending its application requires significant code development ef-

fort. The current unsteady FIML framework supports only single-phase, incompressible turbulent

flow. In the future, we will extend its capability for handling compressible flow and multiphase
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TABLE V: Comparison of speed and memory between the unsteady flow and PIMPLE-Krylov

adjoint. The adjoint’s runtime is almost three times as large as the flow’s runtime. In addition, the

adjoint solver uses about seven times as much memory as the flow solver. The case runs in parallel

with 8 CPU cores.

Flow Adjoint Adjoint/Flow

Runtime, s 767 2192 2.9

Memory, GB 1.0 6.9 6.9

flow.
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Appendix A: Performance evaluation for the proposed time-accurate PIMPLE-Krylov

adjoint method

The adjoint gradient computation method’s performance is crucial for large-scale gradient-

based optimization in FIML. This section evaluates the speed, scalability, memory usage, and

accuracy of the proposed PIMPLE-Krylov adjoint method. As mentioned before, we use unsteady

turbulent flow over a ramp as the benchmark, as shown in Fig. 5. The mesh, boundary conditions,

flow configurations, and adjoint configurations are the same as those used in Secs. III A and III B.

The computation was done using 8 CPU cores with Intel Skylake Xeon processors running at

2.3G Hz. Table V shows the comparison of speed and memory usage between the unsteady flow

and adjoint computation. The adjoint solver’s runtime is almost three times as large as the flow’s

runtime, and it uses about seven times as much memory as the flow solver. This performance is

acceptable for FIML optimization.

Next, we evaluate the parallel efficiency of the proposed PIMPLE-Krylov adjoint solver. We

run the flow and adjoint solvers with various number of CPU cores, ranging from 1 to 16, and

the scalability is shown in Fig. 22. The flow and adjoint solvers exhibit 77% and 85% parallel

efficiency with 4 CPU cores or 5000 mesh cells per core. With more than 4 cores or fewer than
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FIG. 22: Scalability of the unsteady flow and PIMPLE-Krylov adjoint solvers. The adjoint solver

scales better than the flow solver.

TABLE VI: Verification of the PIMPLE-Krylov unsteady adjoint accuracy. The average error

between the adjoint and reference derivatives is about 1%. The reference derivative is computed

by using the forward-AD approach.

dF/dxi Adjoint Reference Error

000 1.3408e-3 1.3312e-3 0.72%

001 5.6034e-3 5.5070e-3 1.75%

002 2.3600e-2 2.3557e-2 0.18%

200 1.8240e-3 1.8121e-3 0.66%

539 5.3490e-2 5.4093e-2 1.11%

540 1.7589e-0 1.7224e-0 2.12%

5000 mesh cells per core, the parallel efficiency decreases rapidly. Overall, the adjoint solver

scales better than the flow solver.

Finally, we evaluate the total derivative accuracy of the proposed PIMPLE-adjoint approach,

as shown in Table VI. The accuracy of the total derivatives is important for the robustness of field

inversion optimization. Inaccuracy derivatives will mislead the optimization and result in sub-

optimal results. We run the unsteady field inversion to compute the total derivatives with respect

to a few selected weights and biases, i.e., dF/dxi. The objective function f is defined as the error

between the CFD prediction and reference data, along with a regulation term (Eq. (29)). We use

45



Manuscript accepted for publication in Physics of Fluids, 2024

TABLE VII: Verification of the steady-state adjoint accuracy. The adjoint derivatives match the

forward-AD references with six significant digits.

dFsteady/dxi Adjoint Reference Error

000 1.0424164e-5 1.0424159e-5 <0.001%

001 6.1002098e-6 6.1002087e-6 <0.001%

002 1.5666559e-5 1.5666554e-5 <0.001%

200 2.4008245e-4 2.4008238e-4 <0.001%

539 6.4559847e-3 6.4559836e-3 <0.001%

540 8.3865375e-1 8.3865361e-1 <0.001%

the forward-mode AD method to compute reference derivatives. The average error in the unsteady

adjoint derivatives is less than 1%. As a reference, we also verify the derivative accuracy for the

simpleFoam steady-state adjoint solver in Table VII. The derivatives of the steady-state objective

function with respect to the neural network’s weights and biases (dFsteady/dxi) match the forward

mode AD reference with six significant digits. We speculate the relatively large error in the un-

steady adjoint solver is primarily caused by the PIMPLE primal solver’s under-relaxation strategy.

Specifically, for each time step, we run multiple under-relaxed PIMPLE corrector iterations ex-

cept for the last one. Suddenly turning off the under-relaxation at the last PIMPLE iteration may

make the flow residuals deviate from zeros at each time step, and the accumulated error eventually

downgrades the unsteady adjoint accuracy. However, this level of error is still acceptable for large-

scale gradient-based optimization in this paper. We will address the above issue and improve the

adjoint accuracy in future work. Overall, our PIMPLE-Krylov adjoint exhibits acceptable speed,

scalability, and accuracy and is ready to conduct FIML optimization for various cases.
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