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Introduction: Adaptation and learning have been cbserved to contribute to the
acquisition of new motor skills and are used as strategies to cope with changing
environments. However, it is hard to determine the relative contribution of each
when executing goal directed motor tasks. This study explores the dynamics of
neural activity during a center-out reaching task with continuous visual feedback
under the influence of rotational perturbations.

Methods: Results for a brain-computer interface (BCl} task performed by
two non-human primate (NHP) subjects are compared to simulaticns from a
reinforcement learning agent performing an analogous task. We characterized
baseline activity and compared it to the activity after rotational perturbations
of different magnitudes were introduced. We emgloyed principal component
analysis {PCA) to analyze the spiking activity driving the cursor in the NHP BCI
task as well as the activation of the neural network of the reinforcement learning
agent.

Results and discussion: QOur analyses reveal that both for the NHPs and the
reinforcement learning agent, the task-relevant neural manifold is isomorphic
with the task. However, for the NHPs the manifold is largely preserved for
all rotational perturbations explored and adaptation of neural activity occurs
within this manifold as rotations are compensated by reassignment of regicns
of the neural space in an angular pattern that cancels said rotations. |n contrast,
retraining the reinforcement learning agent to reach the targets after rotation
results in substantial modifications of the underlying neural manifold. Our
findings democnstrate that NHPs adapt their existing neural dynamic repertoire
in a quantitatively precise manner to account for perturbaticns of different
magnitudes and they do so in a way that obviates the need for extensive learning.

KEYWORDS

brain-computer interface, neural manifold, reinforcement learning, neurofeedback,
adaptation, dimensionality reduction

1 Introduction

Understanding how new motor skills are acquired and losl is crucial for the
developmenl ol effective neuroprosthelic devices for mitigating the impacts of aging
and neurodegeneralive conditions, as well as for improving neurofeedback asks for
rehabilitation (Krakauer and Mazzoni, 20115 Stealey et al, 2024). Both adaptation and de
novo learning have been observed to contribute to the acquisition of new motor skills and
are used as strategies 1o cope with changing environments or conditions {Costa el al, 2017;
Gallego et al, 2017). Although these two modalities have characteristic timescales over
which they vary {(Krakauer and Mazzoni, 2011; Gallego et al, 2017), it is hard to determine
the relative contribution of each when executing motor tasks. For this purpaosc, brain-
computer interfaces (BCIs) have been successfully emploved to understand the evolution
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of neural dynamics when subjects are presented with a diverse
range of visuomotor tasks. These tasks often involve introducing
perturbations that enable researchers (o directly measure which
changes in neural dynamics are concomitant with the recovery of
Lask proficiency (Jarosiewicz et al, 2008; Ganguly and Carmena,
2009; Chase et al., 2012; Costa et al., 2017; Golub et al., 2818; Zippi
et al, 2022).

BCIs the

and

are particularly well suited to understanding

conlributions ol adaplation and learning in acquiring
modifying metor tasks. In particular, studying neural recordings
from the lens of dynamics and neural manifolds has indicated that
adaptation ofien occurs within stable manifolds, whereas learning
can result in new dynamics that diverge from the original low-
dimensional manifold (Ganguly and Carmena, 2009; Shenoy et al,
2013; Sadtler et al, 2014; Gallego et al, 2017; Vyas el al, 2018;
Oby et al, 2019; Yang et al, 2021; Deng et al, 2022; Mitchell-
Heggs ot al, 2023). For instance, it has been shown that in
BCI center-out reaching tasks low-dimensiaonal representations of
neural activity are isomorphic with the task itsell. Namely, activity
corresponding to reaches to radially distributed targets is clustered
in low-dimensiomal space in a circular configuration {Santhanam
et al, 2009; Vyas et al,, 2018).

Along with insights from BCL studies, reinforcement learning
(RL) agents have been proposed as analogs to biological agents
(Doll et al, 2012; Lubianiker et al, 2022) as they can be
trained to perform similar lasks. Reinforcement learning has been
uscd wilh considerable success in clucidating the role of reward
prediclion error in binary decision-making. Indeed this approach
has contributed to the development of the reward prediction error
theory of dopamine (Montlague et zl, 1996; Doll el al, 2012).
However, the use of RL agents 10 delermine correlates ol animal
behavior for centinuous tasks has remained much more limited.
RL agents have yet te be explored as analogs of NHPs performing
continuous feedback tasks with perturbations.

The artificial neural networks encoeding the policies of RL
agents may yield insights into how modifications in activity and
connectivity can account for task acquisition and adaptation. Even
though RL agents can produce qualilatively similar behavior to
animal subjects, it can do so via substantially different architectures
and with simplified neural units. Studying which features of the
natural and artificial neural dynamics are preserved in response
to perturbations in both animal subjects and RL agents can help
(o establish the validity of the analogy between the (wo. Moercover,
this helps (o highlight the different mechanisms operating in both
in response (o a changing environment.

Here we explore how deformations within a low-dimensional
manilold of neural activity can direcly accounl for strategics
that compensale for imposed perturbalions in a BCI center-oul
reaching lask with rotalional perturbalions. We compare resulls
from two NHP subjects and a RI. agent trained in a virtual
cenler-out reaching task. Our results indicate that there is a
distinctive signature for adaptation in the NHI subjects, as the low-
dimensional manifold is preserved and the deformations within
this manifold directly compensate for the imposed rotational
perturbations.

In this paper we demonsirate that rapid NHIP adaptation is
achieved via exact compensation by geometric rotation of the
underlying neural activity. We show that ANN-based RL agents

can leverage the same low-dimensional isomorphic structure as
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NHPs when performing the same task. In comparing how, we
establish that, in spile of the shared isomorphism in NHDPs and
RI. agents, maximizing reward with very similar (rajeclories afler
perturbativns can proceed by very different mechanisms. This
in wurn is suggestive of the wvery limited role thal plasticily
nceds to play for shorl-term adaptation. Namely, the RT. agent
changes connection strengths substanlially to maximize rewards,
which leads to modifying the underlying manifold. In contrast,
of the NHDPs

connection strengths largely remain unchanged after adapling to

the preserved manifold suggesls that neural
the perturbation. We describe experimental and compulational
methods in the following section. Scction 3 describes and compares
the results from experiments and simulations, and Section 4
discusses the resulls with emphasis on the interplay between
adaptation and learning. Finally, we ofler concluding remarks as

well as polential future research directions.

2 Methods

2.1 Non-human primate neurofeedback
task

Two male Rhesus macaque (Macaca mulalla) monkeys were
trained in a BCI center-out reaching task. The cursor was controlled
by wvolilional modulation of action polential (“spiking”) activity
from a population of recorded neurons. We recorded spiking
activity using a chronic microelectrode array (MEA) comiprising
of tungsten wires (diameter 35p0m) (Innovative Neurophysiology,
Inc, Durham NC) into the primary motor (ML) and pre-molor
(PMd) corlical areas of the left hemisphere. Subject A was
implanted with 64 electrodes and Subject B with 128 eleclrodes.
The number of independent recorded units varied in the ranges 22—
50 and 51-136 for Subjects A and B, respectively. A more detailed
description of surgical and training procedures can be found in
previous work by Stealey et al. (2024}

The center-out reaching task consisted of driving the cursor
from a central location (o one of eight different targels radially
distributed with a uniform angular separalion of 45 degrees and
fixed distance Trom the cenler largel. Successiul “hald” periods afier
movement of the curser Lo the cued peripheral largel, referred to as
a “reach, was reintorced with a fluid reward. The recorded neural
activity was mapped to a conlrol signal that updaled cursor velocily
in each time bin (100 ms) using a Kalman filter paradigm that can
be expressed mathematically as (Equation 1):

X1 = Axe + Kyt (1)
Where the vector X comprises the cursor position, velocity and
a constant term, the vector y contains the temporally averaged
spiking activity over 100 ms windows, the matrix A represenls
a dynamics matrix that remains conslanl across experimental
sessions, and the matrix K, called the Kalman gain, directly
maps neural activity to cursor dynmamics and is estimated at the
beginning of every experimental session. The Kalman filter is fit
using neural activity recorded during passive observation of the
cursor moving along straight trajectories 10 each of the peripheral
targets. This neural activit is obtained at the beginning of each BCI

session. This pracedure has been extensively described in previous
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work (Gowda et al, 2014; Stealey et al, 2024 and references
therein), Mathematically, the Kalman filter approach formulates
spiking activity as linearly dependent on the state of the cursor
(Fquations 2, 3):

X1 = A +w o ow ~ A0, W) (2)

ye = Cxe +qe 5 q ~ A0, Q) (3

The matrix A gives prescribed cursor kinematics and the
matrix C is [l from data collected al the beginning of each
session (when the cursor is moving along prescribed trajectories).
The matrices W and Q define the covariances of (jaussian noise
processes. Afler oblaining said matrices, the cursor position can
be estimated from neural observations and compared to its actual
(prescribed) position. The Kalman gain, K, then determines the
weight given 1o a model relative 1o the weight given to observations
in updating predictions of the state x. The gain is compuied
from prediction error covariance, the measurcment matrix, C,
and the measurement noise covariance {Simon, 2006). The new
dynamics matrix can then be readily computed as A = (I — KCQ)A.
A schematic view of the cursor control is depicted in Figure 1A.

After the Kalman gain is estimated the subjects complete
a baseline block during shich they proficiently reach all the
largets. Subsequently, a visuomotor rotation (VMR) perturbation
is introduced by mulliplying the Kalman gain by a black diagonal
matrix  (Equation 4). Said matrix has two blocks describing
an imposed rotation of angle 0 (Cqualion 5) corresponding to

rotations of pasition and velocily components of the vector x.

X1 = Ax + R(H)KYt (4)

_ cos(é) — sin(é)
R(®) = sin{t))  cos(8) >

We imposed both clockwise and counter-clockwise decoder
rotations with magnitudes ranging between 50" and 1107, After the
rotation was imposed in the decoder both subjects compensated
and were able 1o complete the task (Stealey et al, 2024}, Time to
complete successful reaches were comparable across the different
conditions (Figure 1B}

2.2 Reinforcement learning agent virtual
center-out reaching task

To better understand the underpinnings of the adaptation
achieved by the NHI* subjects we created a RL analog to
task. We
COptimization (PPO) algorithm as implemented by the stable
{htips://stable-baselines3.readthedocs.io/en/

the center-oul  reaching used a Proximal Policy

baselines 3 library
master/modules/ppo.html)  (Schulman et al, 2017). The policy
nelwork conlained two fully connecled layers with 128 units
each and was trained to optimize for output velocilies to drive
the cursor toward the targets (Figure 1C). The reward function
penalized increases in the distance to the target and rewarded
decreasing the distance to the targel. Additionally the square of the
magnilude of the policy velocities was penalized so as to enforce

Frontiersin Human Neuroscience

10.3389/fnhum.2024.1368115

smaooth motion. Finally a large reward was granted upon reaching
a largel. Mathematically, the update (Equations 6, 7) and reward
(Equation 8) can be expressed as follows:

CHYSOT CHYSOV -
v =00 vy -+ action (6)
X[cpfrixur — Xfwsur + At - v;urgur (7)

20 — 0.5 - Ad,; — |action|®  ilreached target
reward = (&)
—0.5 . Ad, — |action|? olherwise

Where, x0T and v gre the cursor’s posilion and velocity,
respectively; and Ad,; is the change in the distance between the
cursor and the target given the action generated by the RI. agenl,
with cuclidean norm |action|, Tn our implementation Af = 1.
This function rewards getting closer to the target for each action
and provides a substanlial reward once the largel is reached, while
also penalizing large changes in velocity. This serves o promole
smoeather irajectories and avoid the agent just shootling 1o the target
in one step.

We subsequently emulated the effect of the visuomotor
rotation for the NHI* subjects by creating an alternative rotated
environment whereby the velocities computed by the agent where
multiplied by a rotation matrix like the one in Equation 5. The
agent’s arlificial neural network was retrained to complete the task
in the new rotated environment for a sufficient number of epochs

as 1o achieve reliable success for all targets (Figure 1D).

2.3 Low-dimensional manifold extraction
via principal component analysis (PCA)

We extracted the low-dimensional activity for both the NHDs
and the RL agent via principal component analysis (PCA). PCA is
done by performing the singular value decomposition on the data
matrix where each column is an observation either of firing rate
(activation} at a time point afler substracting the mean observation
for the NHI* (RL) neural activity. PCA can provide a linear
manifold spanned by a subsel of the principal component vectors.
In this study we focus on the twa-dimensional linear subspace
since the task under consideration is two-dimensional and in this

subspace activity is isomorphic with task.

3 Results

3.1 Low-dimensicnal representations of
neural activity are isomorphic with the
center-out reaching task

We obtained low-dimensional representations of the neural
activity during the reaching task using principal component
analysis (PCA). As was observed in previous works (Santhanam
et al, 2009), the neural activity in a low-dimensional space is
isomorphic with the center-out reaching task (Figures 2A, B, 34,
B). This isomorphism is maintained even in the presence of the
rotation perturbation (Figures 2E, F, 3E, F). Even though the reach
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Experimental approach schematic. 1Al Schematic of the BCI center-out reacning task. Spiking activity recorded from M1 and PMd areas is used to
control the cursor. The recorded spilcs are decoded via a Kalman filter to control the cursor velocity. {BY Trial durations for the NHPs for the imposed
rotations. IC) Schematic of the policy network for the RL agent. The value network has the same architecture. The activity of the last hidden layer,
highlighted by the green ellipse. is used for the manifold analysis as an analog to the firing rates driving the cursor in the NHP task. ID) Trial steps for
the RL agent for the imposed rotations. Error bars represent standard deviation with Ny = (21,080; 10,559; ©,553; 8968; 12,052}, hg = (25,050; 5.420;
6,710; 10.100; 4,255; 10,716; 9.886), Ny = {100; 1.000; 1.000; 1.000; 720; 154; 88; 680; 931 1.000: 1,000), where the subscripts indicate the subject.
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trajectories are visibly allecled by the imposed rotation (Figures 24,
L, 3A, 1), the PCA representation remains isomorphic with the
task (Figures 2B, F, 31, F). The PCA was performed over all data
(with and without rotation) so that the PCA basis is the same
in all conditions. Interestingly, in the two-dimensional space the
cenlroids of the PCA clusters for each target are rotaled in the
opposite direction of the imposed rotation.

We then compared the underlying neural manifolds for the
NHP subjects and the artificial neural network (ANN} of our RT.
agenl. We performed a similar PCA analysis for the activations
of the last [ully connecled layer of the RI. policy nelwork. We
oblained trajectories that were qualilatively similar before and afler
imposing a rotation o those from the NHI* subjects (Figures 2C,
(i, 30, (3). As was the case for the NHI* data, the ANN activations
have a low-dimensional PCA representation that is isomorphic
to the task geomelry (Figures 21), 3D). Hewever, after imposing
the rotation, the geometry of the low-dimensional representation
of the activations is substantially diflerent from before imposing
the rotations, in stark contrast to the results from the NHP data
(Figures 2F, H, 3F, H).
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For bolh the NHP dala and the RI. simulalions, the angles
between adjacent PCA centroids approximate the angles between
the targets (Figure 4). Substantial ditferences in the standard
devialions were observed, with the tightest distribution being the
one for the RL agent and the broadest for Subject A (who had
fewer spiking units in the decoder). Thus, we see thatl projection of
neural activity into low-dimensional PC space not only prescrves
the geometry of the task but also approximately preserves the

angular distances for the diflerent reaching directions.

3.2 Rotations in a low-dimensional space
compensate for imposed decoder rotations

As can be noted qualitatively in Figures 2B, T2, the imposed
decoder rotalions shifi the PCA clusters corresponding (o each
largel. We quantified the angular displacement of each cluster
over all experimental scssions revealing thal it is of opposite sign

and equal magnitude to the imposed decoder rotation (Figure 4).

frontiersin.org



Osuna-Orozco et al. 10.3389/inhum.2024.1368115

1 L o8
nnz
oz
n.ot
nul
= 9 = 9
5o 5 E S oo
= & B &
.09 ot
—uei
—nm
-1 -10 —ued
—niz -3 3 LE acz 003 -0z 200 BBl 00z 002
FIEY 180 PC
nu3
na
n T
noe uek
= oL
nry
= 9 = 9
5 ¢ = E ¢ < wow
= & = &
.02
—nat
—0.61 vz
-1
-ie 003
—n.uz
-10 -3 [ 5 ] —uEr  -wen au ue woz -10 -z i 3 L —n07 -G02 -0l X00 BOL BiE 0
*(m: 1% + et 10 PC
FIGURE 2

The low-dimensional neural activizy for Subject B is isomorphic with the task geometry. (A) Representstive trajectories from one session for Subject B
before rotation, and (B) the corresponding PCA representation of the driving soikirg activity. [C) Representztive trajectories for RL agent before
rowation, and (D) the corresponding PCA representation of the last fully connected layer of the ANN. (E-H} Results after a —50 degree rotation is
imposed, plots follow the same sequence as in (A—=D}. The circles represent the target locations. the PCA values are colored by the corresponding
target and the centroids of each of the clusters are depicted by the rhombi.
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The low-dimensional neural activity for Subject B is iscmorphic with the task geometry after large rotations. (A) Representative trajectories from one
session for Subject B before rotation, and {B) the corresponding PCA representation of the driving spiling activity, {C) Representative trajectorics for
RL agent pefore rotation, and (D) the corresponding PCA representation of the last fully connected layer of the ANN. (E-=H) Results after a 110 degree
rotation is imposed, plots follow the same sequence as in (A=D}. The circles represent the target locations. the PCA values are colored by the
corresponding target and the centroids of each of the clusters are depicted by the rhombi.
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—1.0038}); and (E) the RL agent (8* = 0.752, slope = —0.5322}). For the NHPs, the rotations in low-dimensional space are of almost the same
magnitude as the imposed decoder rotation. Error bars represent standard deviation. For all regressions o < 0.001

Linear regressions indicale that f{or the NHPs the rolalion in
the low-dimensional neural space almost exaclly cancels out the
imposed decoder rotation. Tn contrast, for the RT agent the rotation
in low-dimensional space exhibils some non-linear behavior as
a [unction of imposed decoder rotation and the resulling slope
deviales [arther rom negative unity. Nevertheless, in all cases the
linear trends robusly indicate thal neural activity not only has
a low-dimensional geometry that is similar to the task, but is
also transformed in a manner that directly compensates for the

geomelry of imposed perturbations.

3.3 Low-dimensional manifold is preserved
after rotation for NHPs

We then investigaled whether the low-dimensional PCA

manifeld was preserved after rotating the decoder. The resulls

for the previous subseclion considered the same PCA basis for
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all the data (with and without retations), butl such a strategy is
sub-optimal if the underlying manifolds before and after impesing
the perturhutians are distinct. Thus, we consider PCA performed
separalely for data before and after rotations. The recorded neural
activity for the NHDPs is remarkably stationary lhroughoul the
session (Figure 5). The mean fring rales are quite similar belore
and afler the perturbation (Figure 5A). Moreover, the [rst and
second principal component vectors are also quite similar before
and afier the rotation is imposed {Figures 5D, (). In conirast,
activations for the ANN of the RL agent have significantly different
means before and afier rotation {(Figure 5B), although the principal
component vectors do not deviale so markedly (Figures 5L, H). To
comparc accross sessions, we normalize differences in firing rates

as follows (Equation 9):

o =
do= " @

N L)
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FIGURE 5
Low-dimensional manifold is preserved after rotation for the NHPs but not for the RL agant. Representative examples of the mean firing rate (Al the
first PC {B) and the second PC {C) scaled by thei- respective singular values before and after rotation for Subject B. Representative exarnples of the
mean activation (D) the first PC (E) and the second PC (F) scaled by their respective singular values before and after rotation for the RL agent. Bar plot
summaries of the normalized differences in: IG) mean activity (H) scaled first principal component (1) scaled second principal component. Error bars
represent the standard error of the mean. For the imposed rotations for which all subjects have data 150, 8¢ 270, and 310 degrees), the means are
significantly different (p < 0.001, one-way ANOVA).

Where d; is the normalized ditference for unit  and ﬁ,[ is the
temporally averaged baseline firing rate and f,f is the temporally
averaged firing rate afler rotation, and the N is the number of units
for a given session (so that the differences are normalized by the
session mean baseline activity).

We quantified the difference both in the mean firing rates
{activations} and in the two first principal components by using the
absolule value of the cosine similarity for the corresponding vectors
before and afler rotation (Figure 6). As shown in the representative
example, for the NHPs the mean [liring rate and the two lirst
principal componenls are quite similar, They show distributions
that are highly skewed toward values close (o unily (Figure 6, lefi
and center colummns). In conlrast, the RT. agent displays significant
diffcrences in the mean activation value, with no values near unity
(Figure 6, right column). Distribulions lor the diflerence of the
principal components belore and afler rotation are skewed in a
similar fashion as those of the NHP, but with peaks closer to a cosine

similarity of 0.9 rather than unity. These results suggesi that the
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low-dimensional manifeld is much better preserved in the case of
the NHI’s than in the case of the reinforcement learner.

4 Discussion

The results are consistent with the intuitive notion that the
NHDPs compensale for decoder rotation by re-aiming their reaches
al an angle that counteracts the decoder perturbation angle. Such
a strategy could be achieved by simply generating similar neural
activity as before the perturbation is introduced, but in a different
context. Namely, il a 45 degree rotation is imposed, the NHDs
could generate the same activity that helped them reach a target
located at —45 degrees under the original decoder. Such a strategy
would preserve the underlying low-dimensional manifeld. We call
this approach gdapigtion, as it leverages existing neural pathways
displaying dvnamics in a stable manifold. NHDPs seem 1o adapt their

existing neural dynamic repertoire to the changing decoder.

frontiersin.org



Osuna-Orozco et al.

10.3389/fnhum.2024.1368115

A B C
Subject
0.6 A 0.6 0.6
Foy
2 0.4 - 0.4 4 0.4
0
£
0.2 1 0.2 1 0.2 1
/"\
oo T T T T 0.0 == T T T 0.0 - T T T T
nan 09?2 nad NOR NGR 1.00 oo n2s N80 475 1.00 nno nN?s 081 075 1.00
D E F
Subject
0.0 - B 0.6 0.6
ey
2 0.4 0.4 - 0.4 -
g
N7 - Nz - n -
uu T T T T wu == T T T T wu == T T T T
nao 097 0.04 0.9 0098 1.00 oo 0.2% 050 075 1.00 noo 025 0501 075 1.00
G H |
Subject
G RL TNy .5
oy
T 0.4 - 0.4 0.4 -
0
2
) 7 /\—\ N -’_/'\ . -’—/_\
T T T 0.0 = T T T

[UN ey s T T T T u.u T

000 025 050 075 100

FIGURE 6

T
0.00 025 050 075 1.00
Absolute cosine similanty of mean activity  Absolute cosing similanty of 15t PC

Low-dimensional manifold for baseline and pe:turbaticn activity is highly similar for the NHPs but not for the RL agent. Probability distributions of
absolute cosine similarity for the mean activity (A, D, G), first principal compeonent {B, E, H), and second principal component {C, F, |) before and after
rotation. Results corresoond to Subject A [A—C). Subject B (D—F). and the RL agent (G=1).

T
0poo 025 050 075 1.00
Absolute cosine similarity of Znd PC

In contrast, reinlorcement learning algorithms rely on updaling
the weights between the ANNY layers. Fven though we recreated
qualitatively accurate trajectories in our virtual environment, the
trajectories generated in response to imposed rotations were
generaled by a substantially diflerent mechanism. This mechanism
changes the mean activity of the artificial neurons and maodifies
the underlying manifeld, rather than re-purposing the existing
dynamics. We speculate that this substantial modification of
the mneural manifold is the hallmark of extensive changes in
connectivity. These changes can be understood as learning in the
sense thal novel strategies and dynamics emerge.

In the absence of direct observations of the connectivity
in behaving animals, it is hard to demonstrate that adaptation
(rather than learning through synaptic changes) is the dominant
mechanism  allowing NHDPs to quickly, flexibly and reversibly

respond to perturbations. However, preservalion ol both the neural

Frontiersin Human Neuroscience

manilold and the mean [iring [or each unit is suggestive ol higher
level planning that directs commands through reliable and well-
established pathways. From a biological perspective, it stands to
reason that adaptation of motor tasks should not demand extensive
changes in connectivity arising from the demands of a dynamic

environment.

5 Conclusion, limitations, and future
scope

We presenled evidence thal the low-dimensional manifold of
the neural dynamics of NHI*s during a cenler-oul reaching lask
preserves the geometry of the task and exhibits deformations
that almost exactly counteract imposed decoder rotations. The

preservation of the low-dimensional manitold is consistent with
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the adaptation of a well-established motor repertoire to novel
challenges. In contrast, a reinforcement learner agent that ariginally
has dynamics that are alsa isomorphic (o the task substantially
modifies its manifold in response to imposed rolalions to maximize
its reward.

Tor the present study, we utilized a traditional Kalman flter
approach to decode a cursor conlrol signal from neural Oring rates
and drive a cursor for real time feedback. This approach has the
advanlage of being parsimonious, thus having low training data
requirements. However, recent developments in neural decoders
using deep and convolutional neural networks (Glaser et al, 20205
Filippini et al, 2022; Borra ct al, 2023) can result in improved
performance. Moreover, non-linear decoders may allow for better
reconstruction of the natural task-related manifold. Future work
could utilize these improved decoding approaches to elucidate
whether they not only improve baseline decoding but also allow for
better and more rapid adaptation.

A more complete exploration of the adaptation strategy in
NHDs would require recording from other brain regions, inclading
regions that are not directly used by the decoder. This would
allow us to ohserve where the isomorphism breaks down and swhat
aclivily can be direcily correlated to the adapting strategies. Tn
additien, future work should focus on relining the RT. approach
by exploring model-based RI. algorithms that may enable higher
order planning and/or imposing constraints such as prescrving the

activity manifold in some of the ANN layers.
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