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Abstract

This paper considers the effect of Anderson acceleration (AA) on the convergence order of
nonlinear solvers in fixed point form x;4+1 = g(xx), that are looking for a fixed point x* of g.
While recent work has answered the fundamental question of how A A affects the convergence
rate of linearly converging fixed point iterations (at a single step), no analytical results exist
(until now) for how AA affects the convergence order of solvers that do not converge linearly.
We first consider AA applied to general methods with convergence order r, and show that
m = 1 AA changes the convergence order to (at least) %; a more complicated expression
for the order is found for the case of larger m. This result is valid for superlinearly converging
methods and also locally for sublinearly converging methods where r < 1 locally butr — 1
as the iteration converges, revealing that AA slows convergence for superlinearly converging
methods but (locally) accelerates it for sublinearly converging methods. We then consider
AA-Newton, and find that it is a special case that fits in the framework of the recent theory
for linearly converging methods which allows us to deduce that depth level m reduces the
asymptotic convergence order from 2 to the largest positive real root of «”*t! — o —1 =0
(i.e. with m = 1 the order is 1.618, and decreases as m increases). Several numerical tests
illustrate our theoretical results.

Keywords Anderson acceleration - Newton’s method - Superlinear convergence - Sublinear
convergence - Bingham equations
1 Introduction

Anderson acceleration (AA) has recently gained considerable interest as an extrapolation
technique that can improve convergence properties of a fixed point algorithm, typically with
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little additional cost. It was developed in 1965 by D.G. Anderson [4], and although it has been
used since then to solve various application problems, its use has exploded since the paper of
Walker and Ni in 2011 [38] where they showed how effective it could be on a wide range of
problems. AA has now been used to solve a large variety of problems across the spectrum of
science and engineering, including flow problems [22, 30, 32], geometry optimization [25],
accelerating Douglas-Rachford splitting convergence [16], radiation diffusion and nuclear
physics [3, 36], seismic inversion [42], and many others e.g. [16, 19-22, 38, 40]. An excellent
review of the literature up to 2018 is given in a review paper by C.T. Kelley in [20].

The fundamental question of how AA speeds up convergence in linearly converging fixed
point iterations was finally resolved in a series of three papers from 2019-2022 [14, 27, 29],
details of which are given below. Essentially, they showed that the linear convergence rate
of the underlying fixed point method is scaled by the gain of the AA optimization problem
(which is at most 1, but often less than 1 and sometimes much less than 1). While these
papers provided critical results that resolved a 55 year old open problem about how AA
affects the rate of linearly converging methods, there remains classes of solvers these results
do not address, such as ones converging superlinearly or sublinearly. However, AA has been
applied to such methods in recent literature, including applying AA to Newton in [14, 26,
31, 41] and applying AA to a (seemingly) sublinearly converging iteration for viscoplastic
flow in [28]. The purpose of this paper is thus to analytically and numerically study the
convergence of Anderson accelerated methods that converge with order r # 1. Our results
still apply to the r = 1 case and find that AA does not change the order, which is already
well known.

Our main results are the following. First, for general methods of order r we prove that the
convergence order for the associated m = 1 AA method has order (at least) %; for larger m
the expression is more complicated and is given in Sect. 3. These new theoretical results show
that AA slows asymptotic convergence for superlinearly converging methods. However, for
sublinearly converging methods where locally » < 1 even though asymptotically r — 1, AA
will improve convergence. Second, we find that AA-Newton is a special case of superlinearly
converging methods that fits in the analysis framework of [27]. For the depth m = 1 case,
we reduce the problem of convergence order determination to that of the classical theory of
secant method convergence (e.g. from [7]), and find that convergence order is approximately
1.618, which is an improvement over the general theory which only predicts (at least) order
1.5. While the numerical tests of the general theory were sharp for AA-Secant and AA-
Chebyshev and AA applied to sublinearly converging methods, AA-Newton was better than
the % predicted convergence order as its order was 1.618 for m = 1, as our AA-Newton
theory predicts. Convergence rates for higher m with AA-Newton can be determined in a
similar way, noting that an increase in m leads to a decrease in the convergence order (although
it always remains superlinear). Numerical results illustrate these results for simple 1D tests,
nonlinear Helmholtz, regularized Bingham equations, and the Boussinesq equations.

While there are many numerical results for AA, there are relatively few analytical results in
the literature. The first proof of convergence appeared in 2015 in [37], is sharpened in [20], and
proves that for contractive iterations AA at least does no harm. The work in [29] showed how
AA improves the convergence rate for steady Navier—Stokes Picard iterations by proving the
linear convergence rate of Picard is scaled by the ratio gain of the AA optimization problem.
This result was extended to general contractive iterations in [14], and was subsequently
sharpened and generalized in [27]. We note these works provided one step analyses, and the
gain of the optimization problem can vary from step to step. Analytical results that partially
address the question of AA asymptotic linear convergence for the general case are found in
[33-35] and for application to ADMM in [39]. Very recently there are also some analytical
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results for the case of nonsmooth fixed point problems [11, 12]. Some convergence results
for stabilized AA are given in [13], and these authors also give some new interpretations
of AA. To our knowledge, no analytical results exist (until this paper) for how AA affects
convergence order for general solvers that do not converge linearly, although one paper
of author Mengying Xiao considers the specific case of AA-Newton for NSE [41] and the
papers [26, 31] contribute to the understanding of AA-Newton and AA’s effect on convergence
radius. We note that this paper considers only asymptotic convergence order of AA applied
to various iterations and solvers. While we find that AA reduces the asymptotic convergence
order of superlinearly converging methods, we do not address the question of how AA might
affect the behavior when the iterate is not very close to the root (work in [26, 31] suggests AA
helps here), nor do we address how AA affects the convergence radius of a method. These
remain important open questions in the understanding of AA applied to solvers that do not
converge linearly.

This paper is arranged as follows. In Sect. 2, convergence order of fixed-point iterations
and AA background are given, including the algorithm and known convergence results.
Section 3 considers how AA affects general methods’ convergence order and gives results of
a test for superlinearly converging methods and a sublinearly converging method. Section4
discusses AA-Newton, and gives results for convergence order for any m along with results
of numerical tests. Finally, conclusions are drawn in the final section.

2 Mathematical Preliminaries

We give now some definitions, notation and preliminaries to make for a smoother discussion
to follow.

2.1 Fixed Point and Convergence Order Preliminaries

Our interest in this paper is solving the equation

gx) = x,

for g : X — X with X a Hilbert space and | - || the associated norm. A solution x* to this
equation is called a fixed point of the function g, i.e. g(x*) = x*. We refer to g as the fixed
point function.

The fixed point iteration is defined by

Xk+1 = &(xk),

together with an initial guess x.
We refer to the order r of convergence as follows. Suppose for k sufficiently large, the
iterates satisfy for p > 0,

k1 — XN < pllxe —x*||". 2.1

If r > 1, the order of convergence is called superlinear, and if » = 1 and p < 1 the
convergence is called linear [6, 17].

There are two ways to describe a sublinearly convergent iteration, one from convergence
rate p in Eq. (2.1), whereas the other one from convergence order r. If the iteration satisfies

llxk+1 — x*I < prllxx — x|,
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and py converges to 1, then the convergence is called sublinear [17]. Clearly, it can be viewed
as a linearly convergent iteration if only a single iteration is considered, and it is studied
in [14, 27] for how AA affects the convergence rate p of a fixed point iteration for such a
case, see (2.5), (2.7) in Sect. 2.2. In this work, we focus on how AA affects the sublinear
convergent iteration from the convergence order aspect, where the sublinearly convergent
iteration is defined by a converging sequence satisfying

llxk+1 — x*|| < Lillxg — x|,

with ry < 1, Ly < 1 and rp — 1. Herein, we consider a single step (i.e. local) analysis of
convergence order, and in a local setting this is a more precise description of a sublinearly
converging method. Hence for a single step, based on the above, we can discuss the local
convergence order r to satisfy (2.1) even if r < 1. If » > 1, then the local order and usual
order are the same.

2.2 Anderson Acceleration

We state now the Anderson acceleration algorithm, which is used to improve convergence
properties of the fixed point iteration.

For a fixed point function g : X — X with X a Hilbert space and || - || the associated norm,
the depth m > 0 Anderson acceleration algorithm with damping parameters 0 < x4 < 1
is given by:

Step 0: Choose xg € X.
Step 1: Find w; € X such that w; = g(xp) — xo. Set x; = xo + wj.
Stepk + 1: Fork =1,2,3, ... Set my = min{k, m}.

[a.] Find wg+1 = g(xx) — xx.
[b.] Solve the minimization problem for {ozj?+l }i_mk

k
min > af.“ Wit (2.2)

k k+1_
Zj:k—mkaj =1 Jj=k—my

[c.] For damping factor 0 < Br+1 < 1, set

k k
k+1 k1
Xkl = E Olj+ Xj + Bkt E Otj+ Wjil, (2.3)

J=k—mj J=k—my

where wi11 = g(xx) — xi is the stage k residual. We note this is an unconstrained mini-
mization problem and can be solved via a simple my x (my — 1) linear least squares problem.

Remark 2.1 We assume the 0/;4'1 are uniformly bounded. As discussed in [27], this is equiv-
alent to assuming full column rank of the matrix with columns (w1 — W) j=k k—1,..k—m
and so can be controlled by reducing m if needed.

Remark 2.2 For simplicity, we will assume throughout this paper that k > m, so thatmy = m.

A key idea of [29] in understanding how AA improves convergence was to define the gain
of the optimization problem by

k e+l
|5 |
Or =

(2.4)
llwgl
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This is considered the gain because the numerator represents the minimum value of the sum
using the optimal parameters, and the denominator represents the value of the sum if the

usual fixed point method (i.e. no AA) was used (i.e. when a,’f“ = 1and oz]k‘ﬂ = ot,/:J_rzl =

= o/,fflllk = (). With this tool in hand, the fundamental question of how AA speeds up
convergence in linearly converging fixed point iterations was finally resolved in a series of
three papers from 2019-2022 [14, 27, 29] that prove AA improves the linear convergence
rate by scaling it by the gain factor 6y of the underlying AA optimization problem. For AA

depth m = 1, the result from Theorem 4.1 in [27] reads

lwe1ll < Nlwll {Qk((l — Bi) + kgBi) + kgo /1 — 67

x <||wk|| (71 =62 + Betk) + lwnal (01— 67, + ﬂk_lek_l))},
(2.5)

where i, is the linear convergence rate of the usual fixed point iteration (the Lipschitz constant
of g in some subset of X which contains the iterates), K¢ is the Lipschitz constant of g’, and
o > 0 satisfies

lwetr — well = ollxk — xk—1ll, (2.6)

noting that if g is contractive then o = 1 — k, ([27] discusses the case when g is not con-
tractive). The above result assumes o > 0 Vk and g is Lipschitz continuously differentiable.
The result for general m is analogous, and from Theorem 5.3 of [27] we have that

k
lwigtll < llwgll {Gk((l = Br) + kg Br) + Ceg Z llwn l } 2.7

n=k—my_1

where C depends on ¢!, relaxation and gain parameters, as well as the degree to which
the past m differences w;;| — w; are linearly independent (note this can be controlled by
reducing m if needed [27]). We note that Theorem 5.3 of [27] gives a more precise result,
but (2.7) is sufficient for our analysis herein.

3 Anderson Acceleration for General Order Convergent Fixed Point
Methods

We now study how Anderson acceleration would affect the convergence order for fixed-point
iterations of the form xx+; = g(xx), with g satisfying certain properties described below.
We denote by x* a fixed point of g.

Assumption 3.1 Letg : D C X — X, with X a Hilbert space and || - || the associated norm,
be a fixed-point iteration on a bounded convex set D containing x* and satisfying

1. One of the following must hold:
(a) there are constants » > 1 and Lo > 0 with
llg(x + ) —g)ll < Lollhll

(b) gis Lipschitz continuous: ||g(x +h) — g(x)|| < Copllh||, and there exists a continuous
function r : [0, co) — (0, 1] satisfying r(0) = 1 and constant Lo < 1 satisfying

lg(x +h) — g0l < Lollh|"*="
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2. g is Fréchet differentiable, and its derivative ¢’ : D x D — X satisfies ||g’'(x; s)| <
Culix (sl
3. g’ is Lipschitz continuous ||g’(x + h; s) — g'(x; s)|| < Li||k|l|ls]-

where the constants Cy, Co, L1, Lo > 0 are independent of x, &, s € X.

Remark 3.2 The assumptions for the linearly convergent case in [14, 27] are Lipschitz con-
tinuity together with Assumptions 2 and 3, and we note that Assumption 1 above implies
Lipschitz continuity in either case. While the inequality || g(x +h) — g(x)|| < Lollk | “—*")
is assumed on D, as our analysis to follow is for a single step of a fixed point method, we
will consider a fixed r < 1 to be the local (sublinear) convergence order.

It is known that ”g(x +h)—gx)—g'(x;h) H is a higher order term of ||/ as ||k|| — O,
since g is Fréchet differentiable. Now we specify that it is second order in ||/] as ||z] — O
under Assumption 3.1. This result will be used frequently in the analysis to follow.

Lemma 3.3 Under Assumption 3.1, for any x, x +h € D the following inequality is satisfied
lg(x +h) — g(x) — g'(x; W) < %IthZ. 3.1
Proof By the integral mean value theorem, for any x, x + 2 € D we have
gx+h) —gx)= /01 g (x +th;h)dt.

Taking norms on both sides gives

1
llg(x +h) —gx) — g (x: h)|| = H/O (8'(x +1th;h) — g'(x: h)) di

1
5/ I8/ Cx + th: h) — §'(x; ) d
0

1 L 5
< [ Lallehlik de = ZEIRIP,
0

due to the Lipschitz continuity of g’. O

With Lemma 3.3, we will now prove results for how Anderson acceleration affects the
convergence order of g.

3.1 Anderson Acceleration with Depthm = 1

Our analysis begins with the m = 1 AA case, and then extends to larger depths m in the
next subsection. In this subsection, we will show that the convergence order of g is % for
a nonlinear solver satisfying Assumption 3.1.

When m = 1, the minimization step in Anderson algorithm (2.2) is reduced to

of = argming || (1 — e)wy1 + owy||.
For notational simplicity, we define
ej=xj—xj_1, ej=g(x;)—gxj_1),

wipr =g()) —xj. why =0 —a/Mwj +a/Mw;. (3.2)

@ Springer



Journal of Scientific Computing (2023) 96:34 Page70f23 34

Also, from (2.4) and (2.2) we have equation (see e.g. [27]):
o/ wjr —wjll = /1 =67 lwj . (3.3)

This leads to two important inequalities that will allow us to bound the difference between
successive iterations by the residual w;

Lemma 3.4 The following inequalities hold for any positive integer j

1 2
lejol = o1 =62, (3.4)
1
lejll < (9,_1 + ;\/@) ;I (35)

Equation (3.4) can be derived directly from (2.6) and (3.3), while Eq. (3.5) is obtained
from

lejll = llw$ —alej_1ll < Oj—1llw;ll + le’ [llej—1ll,

thanks to w‘}‘ L1 =¢€j+1+ altle j» and the triangle inequality.
Now we give the result for m = 1 Anderson acceleration convergence order for general
nonlinear solvers.

Theorem 3.5 (Convergence order form = 1) Consider AA applied to the fixed point iteration
defined by xx11 = g(xx) satisfying Assumption 3.1, with the previous two iterates sufficiently
close to the fixed point. We have the one-step bound for the residual wy1:

r+1

== 2

lwesill < Clwell = + llwell), (3.6)
where C is a positive constant depending on ok, Ci, Lo, L1, 0,_1,0,x*.

Remark 3.6 We thus observe that m = 1 AA reduces the convergence order of superlinearly
converging methods, but increases the (local) order for sublinearly converging methods. This
result is also consistent with what is already known for linearly convergent methods, i.e. AA
does not affect the order of linearly converging methods but improves the rate.

Proof From the polarization identity, we have
2(wis1. 8 (r—1: &) + ' ¢ (xk 23 ex—1))
2 / k 7 2
= w1 lI” + Hg (xk—15 ex) + " g (xg—2; ek—l)”
/ k 2
- Hwk+1 — 8 (Xk—15 €k) — " g (xk—2; €k71)H ;
which immediately leads to
2 / k 1 2
lwestll” = Hwk+1 — & (xk—15 ek) — " g (xk—2; ekfl)H

+2(wi1, 8 (15 ex) + ¥ g/ (xp—as ex—1)),

by dropping the nonnegative term ||g’(xx—1; ex) + o g’ (xk—2; ex—1)]|>. Now we bound the
right hand side term by term. To keep the analysis clean, we denote

Vi =gx;) —glxj_1) — g (xj_1:e)).
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From the triangle inequality, Lemma 3.3 and inequalities (3.4)—(3.5) we obtain

lwirt — & (ot ex) — g’ (o ex— DI = v + X112
<201yl + 21X Pl 112

L? L2

1 4 k2t 4
—|€, o — ||€Ck—
2||k||+| I 2||k1||

IA

4
Cllwgll™,

IA

where C is a constant depending on ok, Ly, 01, 0. Utilizing Assumption 3.1 that g’ is
bounded, we have

. k . . k .
lg' (xk—1: ex) + g (xx—2: ek—DIl < 118" (xa—1: eIl + |18 (xx—2; ex—1)l
k
< Cillxe—1llllexll + le” ICrllxk—2llllex—11l = Cllwgll,
since the previous two iterates are assumed close to the fixed point.

On the other hand, from Cauchy-Schwarz inequality and the identity wy,; = &, +a*éx_1,
we get

(Wit1, &' (Xk—1: ex) + g (Xk—2: ex—1))
= (& +oFe1, g (s en) + ag (23 ex—1))
< 18k + ekt 1llg Crr—15 ex) + g (x—2: ex—1)l
< (Lollexll” + lo* Lollex—111") Clluwell = Cllwil'*,
thanks to Assumption 3.1 for the convergence order of g, and (3.4)—(3.5). Combining the
inequalities above, we get
lwestII? < 2(wipr, &' (k-1 ex) + kg’ (k25 ex-1))
+ llwigt — &' (k15 ex) — org’ (xr—2s ex—1) I

< C (Ilwrl™™ + llwell*) -

Taking square-roots on both sides finishes the proof. O

3.2 Anderson Acceleration withm > 1

We consider now the case of depth m > 1 and prove a result for how AA affects the
convergence order in this case. With m = 2, the minimization step in (2.2) reduces to

k+1 k+1
(Oll , Oy

) = argming, . [[(1 — o — @2)w1 + @jwg + oowi—1|.
We reuse the notation defined in (3.2) except for wg 1 For the case of m = 2,

k+1 k+1
1 T %

k+1 k+1
wiy =0 -« YWl + oy wr +ay T w1

Without loss of generality, we assume azlzchl # 0, otherwise, the minimization step is back to

the AA with m = 1 case. Now we list two inequalities related to residuals which are proven
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n[14, 27, 41]:

lwj —wj—ill < lwjll + llwj—1ll, (3.7
|a£+l|||wj_1 —wj < ( /i _92+‘ L J+1D ;] +‘ j+1 +a1+1 lwj_il.
(3.8)

Next, we bounds the difference between successive iterations by residuals using the two
inequalities above.

. j+1
Lemma 3.7 For any step with aéJr # 0, we have
lej—2ll. llej-1ll, llejll < € (lwjll 4 lwj—1ll) , (3.9
where C is a positive constant depending on ot{, Ol%, 0j-1,0.

Proof From (2.6) and (3.7)—(3.8), we immediately have the estimates

ll I < ! l Il < ! (Ilwj Il + 1 ]
ei_q|l < wi—wi_]| < w; wi_1]l),
J o J J o J J
I I < ! i - I < <L
e < wi—] —wi_a| <
J J J
o |o¢J+]|

+l j+1 +1 j+1
(@1l o™ Dl 4+l o)
Utilizing the identity w$ = e; + (a{ +a3)ej_1 + a%ej_z, we get
lejll < 6j—tllw;ll + laf + a3 lllej—1ll + lo3 llle;—2ll.
Combining these inequalities finishes the proof. O
We can now present and prove the convergence order result for AA m = 2.

Theorem 3.8 (Convergence order for m = 2) Assuming ock+l

one-step bound of the residual wi:

# 0, we have the following

lwistll = € (el + -1 D F + Q) + o1 1D?) (3.10)
where C is a positive constant depending on ot’f, 0512“, Lo, Ly,6r_1,0.
Proof From the polarization identity, we have the equality
2wt 1, & (k-1 ex) + (@f +ab)g (ve—2; ex—1) + b g  (xk—3: ex—2))
2
= wesrlI* + Hg/(xk—ﬁ ex) + (af +ab)g (oo ex—1) + A g  (xx—3; ex—2) H
/ k kN ./ k 1 2
- H Wil — & (Xk—15 ex) — (o) + a3)g (xk—2; ex—1) — o3 8 (xk—3; ekfz))H ,

which after rearranging and dropping a positive term from the right hand side of the equation
leads to the inequality

w1 1? < 2(wis1, 8 Gkt ex) + (e + 00)g’ (r—2s ex—1) + af g (x—3: ex—2))
+ w1 — &' Crr—1: ) — (o + ap)g’ (xk—2s ex—1)

—aZ¢ Cuzs )|’ G.11)
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To estimate the last term on the right hand side of (3.11) we use the identity wi4+1 =
ex + (a]f + ozlzc)ékfl + a’zcékfz, the triangle inequality and Lemma 3.3 to obtain

w1 — g (ot ex) — (@f +ab)g (s ex—1) — ab g’ (s ex—2)) 12
= |l + (of + b vn—r + byl

2 ko k2 2 k2 2
<2||1/f1<|| + 2oy 4+ [FI—1 17 + 2] |71 ¥r—2 |l

L2 L2
||€k|| +lof + a5 ||€k I+ la5 ||€k 2%,

where ¥; = g(x;) — g(xj—1) — g’(xj_l; e;j). From Lemma 3.7 this reduces to

lwit1 — &' (xk—15 ex) — (af + ab)g’ (xe—2; ex—1) — ahg' (xk—3; ex—2))I?
< C (lwell + lwe—1lD)*

where C depends on a]f, 0/2‘, 0,01, L1. Similarly, we have

g’ (xx—1; ex) + (af + ak)g' —2; ex—1) + b g’ (i—3s ex—2) | < C (Jwill + lwe—11)
(3.12)

thanks to Assumption 3.1. Next, we bound the first term on the right hand side of (3.11).
Applying Cauchy-Schwarz inequality, (3.12), the triangle inequality and Lemma 3.7 yields

(Wit1, &' (k=15 ex) + (f + a5 (xk—a; ex—1) + b g’ (xk—3; ex—2))
< w1 g’ Ge—1s ex) + (f + a8) g’ (xk—2i ex—1) + o5 g’ (xi—3: ex—2) |
< (18l + lerf + e 1 + 0118211 € el + w1 1)
< (Lollexll” + o} +abILollex—11" + a5 Lolex—211") € (el + w1 1)
< C (lwell + llwe—1 D"
Combining the inequalities above produces
lwertl® < € (Alwell + Twet D™ + Qwill + Twe—11D*)

and taking square root finishes the proof. O

The m = 1 and m = 2 results can be extended to any positive integer m by a similar proof
process. Therefore we have the following convergence order result for general depth m.

Theorem 3.9 (Convergence order for general m > 1) Assuming oz,lifm" # 0, we have one-
step bound of residual wyy1 for general depthm > 1 AA:

r+l
lwestll =€ ((Ilwkll + w1l + -+ + lwe—m 1) 2

+ (lwll + w1l + - + lwe—m D7) , (3.13)

where C is a constant depending on problem data.
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3.3 Numerical Experiments

We perform two tests to illustrate the theoretical results above. The first test is for a 1D
problem, to show methods converging superlinearly with order r are reduced with m = 1
AA to order %, although we find that AA-Newton is slightly better (and show in the
next section that it should be). Second, we consider another 1D test, now to test sublinear
convergence, again observing local order r convergence is improved to local order % Our
third test is for the regularized Bingham model of viscoplastic flow. The Picard iteration for
this system is known from numerical tests in [5, 28] to converge sublinearly, and here we

show that the convergence order is increased by AA, just as the theory above suggests.

3.3.1 1D Test for Superlinearly Converging Method

For our first experiment in this section we consider finding the root x* = 2 for f(x) =
x? — x — 2. We compute with fixed point iterations corresponding to the Newton iteration,
Chebyshev iteration, Secant iteration, AA-Newton, AA-Chebyshev and AA-secant. Only
m = 1 was used for AA, since the optimization problem is already solved exactly when
m = 1 so higher m would not change anything. We used an initial guess of xo = 10, and
computed until the residual for the fixed point problem was less than 10710, We recall from

that the Chebyshey iteration to find a zero of a C 2 function f is defined by [1, 2, 18]

L fOan) f" o)\ f Gon)

Xpp1 = g(xp) = xp — (1 + E (f/(xn))Z > f/(xn)’

and is known to be cubically convergent.

Results are shown in Table 1 and Fig. 1. Table 1 shows the convergence orders calculated
from the standard formula at each iteration, and we observe that Chebysheyv is consistent with
third order, Newton is consistent with second order, and Secant is consistent with 1.618, i.e.
they are all consistent with their well known convergence orders. For AA-Chebyshev, the
orders from successive iterates is inconclusive, however from Fig. 1 we see the convergence
curve follows that of Newton which is second order; this is consistent with our theory that
r = 3 convergence order is reduced by m = 1 AA to min{%, 2} = 2. Finally, for AA-
secant the theory predicts % = 1.309, and both Table 1 and Fig. 1 are consistent with
this order. AA-Newton, on the other hand, has order approximately 1.62 which is greater
than Zizl = 1.5. While this is still consistent with the theory (since the converge order results
are a lower bound), the fact that our analytical results appear sharp for AA-Secant and AA-
Chebyshev but not for AA-Newton led us to consider AA-Newton in more detail in the next
section; indeed, we do find AA-Newton is a special case and show in the next section that
for m = 1 one should expect order 1.618.

3.3.2 1D Test for Sublinearly Converging Method

Next, we study how AA affects the convergence order of a sublinearly converging fixed-point
iteration corresponding to the fixed point function g(x) = x"?, with initial guess xo = 10,
and tolerance 10~10, We consider g defined on x > 0, and note that for any positive x,
the fixed point iteration will remain positive. From Fig. 2, we observe sublinear convergence
for this 1D test, and almost linear convergence when AA is applied; AA clearly improves
the convergence speed for the sublinear convergent iteration, which matches our expectation

from Theorem 3.5.
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Table 1 Shown above are calculated approximate convergence orders for the 1D test, using the calculation
conv order A log(wgy1/wg)/ log(wy /wk—1) where wy = |g(uy) — ug| is the residual at step k and g is the
fixed point operator

Conv order ~ log(wy 1 /wg)/ log(wy /wi—1)
Iteration Chebyshev AA-Chebyshev Newton AA-Newton Secant AA-Secant

3 1.5599 1.3048 1.1892 0.6549 0.1810 0.4835
4 2.3641 1.4737 1.5269 1.5509 3.4982 0.3985
5 2.9024 0.4669 1.8928 1.3138 1.1463 8.9389
6 - 7.7745 1.9952 1.6119 1.7139 0.1049
7 - 1.2122 2.0000 1.5942 1.6315 7.4716
8 - - - 1.6152 1.6509 1.8849
9 - - - 1.6187 1.6187 1.3223
10 - - - - 1.6193 1.3461
11 - - - - - 1.5703
10°
1 e TR
100 L \#L\t% il
©
3 95| ]
% 10
o
Secant 3
10710 || ——AA-Secant 4 i
Newton \
—+— AA-Newton &k
—<--Chebyshev
i5 | AA-Chebyshev
10° : . . .
0 2 4 6 8 10

iterations

Fig. 1 Shown above are convergence plots for the 1D tests on the Secant method, Newton’s method and
Chebyshev method, with and without Anderson acceleration

In order to discuss how AA affects the convergence order locally (our theory predicts
local order r < 1 is improved to at least local order %) for this iteration, we divide the
convergence plot using the magnitude of residuals wy, so that each piece is approximately
linearly convergent. We color plot black, blue, red, green and magenta when wy belongs to
the intervals [0.1, 4-00), [0.01, 0.1), [1073,0.01), [10™*, 1073), (—o00, 10~%) respectively,
compute the average convergence order using formula log(wy+1/wk)/ log(wy/wi—1) for
each piece, and then summarize results in Table 2. By comparing the convergence orders in
Table 2, we find that the local convergence order of iteration with AA is always greater than
(1 4+ r)/2, and close to this value for w; < 1073, which is consistent with Theorem 3.5.
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Fig.2 Shown above are convergence plot for the 1D sublinear convergence test, with and without Anderson
acceleration, the corresponding convergence order are summarized in Table 2

Table 2 Shown above are the

der ~ 1 1 _
average convergence order for the conv order > log(wt1/we)/10g(wk/wi—1)

R Residual interval w/o AA w/ AA
1D sublinear convergence, on
differential.intewals of residuals, 102 < Wy < 10-1 0.8060 1.0492
with and without Anderson
acceleration 1073 < wy < 1072 0.9457 0.9877
1074 <wp <1073 0.9831 0.9939
wy < 1074 - 0.9995

3.3.3 Regularized Bingham

We consider for our second test simulation of the regularized Bingham equations, which are
used to model viscoplastic flow. The system we consider is given by [10]

Ty
V'(2“+ (IDu|2+62)1/2>Du+Vp = (3.14)
V-u=0,
where t; > 0 is the yield stress, ;> 0 is the plastic viscsoity, u is velocity, f is an external
forcing, Du is the deformation tensor of u, € is the regularization parameter, and the unknowns
are the pressure p and velocity u.
We consider the Picard iteration for this system considered in [5, 28] which takes the form

-V (2,u + ) Dugt1 + Vi1 = f,

Ts
(|1Dug|? + €2)1/2 (3.15)

V. upy = 0.
This linearization is known to be well-posed for any ¢ > 0 under homogeneous Dirichlet
boundary conditions [5]. For a fixed point iteration, we define our fixed point function g to be

the solution operator to (3.15) equipped with a standard inf-sup stable mixed finite element
discretization such as what is used in [5, 28].
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Fig.3 Shown above are growth
of the rigid region (white) for
lid-driven flow by tg = 5 when
h=1/64

Speed

-0.6

-0.8

Fig.4 Shown above are

-2 : 7]
convergence plots for the 10 * m=0
regularized Bingham tests with o m=1
varying m

v m=5
m=10

_‘
Ol
N
PR
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lterations

The test problem we consider is the 2D driven cavity on the unit square € = (0, 1)? also
studied in [5, 10, 23, 24, 28]. Our spatial discretization uses (P>, P1) Taylor-Hood elements
ona % uniform mesh, enforcing strongly the Dirichlet boundary conditions u|y—1 = (1, 0’
and u = 0 on the other walls. We choose parameters 7, =5, f = 0and e = 10~7, choose 0
as the initial guess, and compute until the L? velocity residual falls below 10~8. We compute
with varying m, but no relaxation since as discussed in [28] relaxation will slow the iteration
down for these parameter choices. Figure3 shows the growth of rigid region (white) for
lid-driven flow with these parameter choices, they are well agree with the literature [5, 28].

Convergence plots for m = 0, m = 1, 5, 10 are shown in Fig. 4. The Picard iteration
appears to converge sublinearly, and from the plot data we find the convergence order for
Picard begins near 0.8 and then slowly increases to nearly 1 once the residual is less than
107%. The AA-Picard plots are also seen to be sublinear, and begin with convergence order
calculated to be approximately 0.9 and then increase to near 1, and there is little difference in

convergence for any m > 0. These results are consistent with our theory for changing local
order r convergence to local order ~ erl
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4 AA-Newton Convergence

As shown in the previous section, AA-Newton’s convergence order appears numerically to
be better than the order 1.5 that our theory predicts (noting that our theory gives a lower
bound on convergence order, but appears sharp for multiple methods in the previous section).
Thus, we consider now the case of AA-Newton convergence order, now denoting g(x) =
x — f/(x)"! f(x) for some given function f : X — X for which a root x* is desired,
and f’(x)~! is defined appropriately. We will assume f'(x*) # 0, i.e. x* is not a multiple
root, and that g is Lipschitz continuously differentiable. The multiple root case for AA-
Newton is discussed in [26], and it is found that in this case Newton converges linearly and
so the convergence results in Sect. 2 (from [27]) apply directly with 6; improving the linear
convergence rate. We also assume that the initial guess of the algorithm is sufficiently good,
which for asymptotic analysis is equivalent to assuming the last m iterates are close to the
root.

The key observance for determining AA-Newton convergence order is to notice that
Newton is a single step fixed point iteration with g’(x*) = 0, and so the convergence results
of [27] from Sect. 2 apply, but now with k, = 0. Hence from (2.7) we obtain that the
AA-Newton residuals satisfy

k
w1l < (X = Bio) llweell + Cicg llwill Z lwall - (4.1)

n=k—m

4.1 No Relaxation

If very close to the root, in general one would not use relaxation since the method is already
contractive/converging and relaxation will only slow down superlinear convergence. Assum-
ing Br = 1, we obtain the estimate

k

N ~ 2
lwipil < Chellwill >~ lwall = CRg (Ilwill® + lwillllwe—1l + - lwe lwi—mll) -
n=k—mj_

In a converging method the last term on the right hand side is dominant, and so in the
asymptotic range this reduces to

lwestll < szg w1 whe—m -

From here, one can follow theory similar to that for proving convergence of the secant method
(see e.g. [7]) to find that the order of such a method will be (at least) the largest positive real
root of

"t " —1=0.

These expected convergence orders for AA-Newton are given in Table 3 for varying m. It is
no coincidence that AA-Newton with m = 1 has the same order as the secant method, since
lwis1ll < cllwglllwr—1]l is a key estimate in the Secant method convergence proof from
which the convergence order is directly determined to be 1.618 [7]. This result explains the
AA-Newton convergence behavior in the previous section.
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Table 3 Shown above are

m Conv order for AA-Newton
expected convergence orders for
AA-Newton with varying m 0 2

1 1.618

2 1.466

3 1.380

4 1.325

14 1.147

4.2 With Relaxation

The case of Newton with relaxation is important as well. It is often the case the Newton is used
with relaxation, especially at early iterations, and once the direction is found the relaxation
parameter may be determined with a line search that minimizes a residual. Since the Newton
direction is a descent direction for small enough step size, the line search Newton method
can improve robustness especially when not very close to a root (when a full step size should
be used to obtain quadratic convergence).

For a single step, the convergence of relaxed (with parameter 8) Newton is given by

It — x*1 < (1= B)llxe — x*[| + BCyrllxx — x*|1%.
Meanwhile, the estimate for m = 1 AA-Newton convergence with parameter § is

k
lwisrll < O (1= B) lwkll + Cig lwell Y Nwall. (4.2)

n=k—m

Assuming the (k — m)’ h iterate is sufficiently close to the root, we have for both of these
estimates that the higher order terms are negligible, leaving

Newton error: [lxg1 — x™[| < (1 — B)llxi — x™|,

AA-Newton residual: ||wg1 || ; Oc(1 = B) lwell -

Hence we observe the advantage of AA-Newton, as the 6y < 1 will scale the linear conver-
gence rate, making AA-Newton convergence faster. AA-Newton does assume the prior m
iterates are sufficiently close to the root, so this result may break down for AA-Newton for
m too large. But for smaller m the advantage of AA for relaxed Newton is clear.

4.3 Numerical Tests for AA-Newton
To illustrate the theory above for AA-Newton, we give results for tests on two application
problems: the nonlinear Helmholtz (NLH) equation from optics, and the Boussinesq model

for non-isothermal flow. Our tests show convergence (approximately) follows the rates of the
table for unrelaxed Newton, and that AA improves convergence in relaxed Newton.

4.3.1 AA-Newton Test 1: Convergence Order for Nonlinear Helmholtz Equation

For our first test of AA-Newton we consider solving the nonlinear Helmholtz (NLH) equation
from optics. The interest here is in the propagation of continuous-wave laser beams through
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0.5

0.57

-
0 2 4 6 8 10

Fig.5 Shown above are solutions to NLH for kyp = 5, € = 0.05 (top) and kg = 8, € = 0.09 (bottom), which
are used in numerical tests in Sects. 4.3.1 and 4.3.3

transparent dielectrics. The 1D NLH system is written as: Find u : [0, 10] — C satisfying
e + k5 (1+€@)u)u=0, 0<x <10,

where u = u(x) denotes the (complex) scalar electric field, kg is the linear wavenumber, and
€(x) is anormalized quantity involving the linear index of refraction and the Kerr coefficient.
The physically consistent two-way boundary condition is given by [9, 15]:

Uy + ikou = 2ikgatx =0, wuy —ikou = 0atx = 10.

Despite being 1D, NLH can be quite challenging for nonlinear solvers due to its cubic
nonlinearity [8, 9].
The Newton iteration for this system takes the form
Ujtl,, +k(%uj+l + k(z)e(x) (uj_H sujuj+ u;fuj_,_]uj + u;'fujujH — 2u’]"-ujuj) =0,
0<x <10,
Ujrl, + ikoujy = 2ikg, x =0,
ujil, —ikoujp =0, x=10.
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Fig.6 Shown above is convergence data for NLH along with predicted convergence order curves

We discretize in space using a second order centered finite difference with N = 2001 equally
spaced nodes, and with this discretization we obtain a Newton fixed point iteration we denote
by u?‘ = g(u?). For an initial guess we use the linear interpolant of the linear Helmholtz
equation solution, ug = I"(cos(kox) + i sin(kox)). We consider parameters kg = 5 and
constant € = 0.05, and run the algorithm using m = 0 (usual Newton), along with m =
1,2, 3, all with no relaxation (8 = 1). A plot of the solution is shown in Fig. 5. The AA
optimization problem uses the L?(a, b) norm, and the iterations were run until the residual
satisfied ||ui"_'_l - ul}”Lz(a,b) < 10719, Results are shown in Fig. 6 as convergence plots
together with curves representing order 2, 1.618, 1.466 and 1.380 convergence (convergence
table do not give conclusive evidence for this problem, as the volatility of the convergence
can be seen in the plot for m > 2). We observe the convergence data is in general agreement
with the convergence curves with orders from Table 3.

4.3.2 Differentially Heated Complex Domain

Next, we present results from a Boussinesq problem modeling non-isothermal flow, which
typically are flows driven by buoyancy in problems such as ventilation, solar collectors,
window insulation and many others. The steady Boussinesq system takes the following form
in a domain Q@ ¢ R? (d=2 or 3):

(u-Vyu—vAu+Vp=Ri0,0)7 + f,
V-u=0,
(u-V)0 —kAO =y, 4.3)
with u representing the velocity, p the pressure, 6 the temperature (or density), and f and y
are the external momentum forcing and thermal sources. The kinematic viscosity v > 0 is
defined as the inverse of the Reynolds number (Re = v~ 1), and the thermal conductivity k =

Re~! Pr—! where Pr is the Prandtl number and Ri is the Richardson number. Appropriate
boundary conditions are required to determine the system. The Rayleigh number is defined
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Fig.7 Plots above show the
temperature (top) and velocity
(bottom) of the Boussinesq
solution Ra = 2100

by Ra = Ri - Re? - Pr, and higher Ra leads to more complex physics as well as more
difficulties in numerically solving the system.
The Newton iteration for this system takes the form

(up—1 - Vug + (ug - Vug—1 — (ug—1 - Vyug—1 — vAug + Vpr = Ri(0,0)7 + f, (4.4)
V.up, =0, 4.5)
(up—1 - V)0 + (ug - VYOg—1 — (up—1 - V)1 — Kk AO =y, (4.6)

together with appropriate boundary conditions.

We consider a test problem from [30] which is on a complex domain, enforces temperature
boundary conditions 7 (x, 1) = 1, T (x,0) = 27" and VT -n = 0 on all other boundaries, and
no-slip velocity. We use a barycenter refined triangulation with (P2, Pld” ¢) Scott-Vogelius
elements, and P, for temperature, which provides 30,705 total degrees of freedom. Solution
plots for Ra = 2100 are shown in Fig. 7. We selected parameters v = 0.01, « = 0.01 and
Richardson number Ri = 0.21 to create Rayleigh number Ra = 2100. We computed with
AA-Newton using m = 0, 1, 2, 5 and no relaxation, and results are shown in Fig. 8. Here we
observe that the convergence data agrees well with the predicted convergence order curves,
once the residuals are sufficiently small.

4.3.3 Improving Relaxed Newton Convergence with AA

We consider again the NLH test from above, now with parameters kg = 8 and € = 0.09
(a plot of the solution is shown in Fig. 5), and for varying relaxation parameter 8 = 1, 0.5
and adaptive g (B = 0.5 until the residual is reduced to below 10=2 and then g = 1).
Results are shown in Fig. 9, and we observe immediately that Newton (m = 0, 8 = 1)
fails to converge, at least not in the first 200 iterations. Interestingly, each of m = 1,2, 3 do
achieve convergence without 8 = 1. As expected from our theory above, for the 8 = 1 case,
convergence deteriorated as m was increased from 1 to 2 to 3.
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Fig.8 Shown above are convergence plots of AA-Newton for varying m

For relaxed Newton (m = (), we observe that § = 0.5 allows for convergence, and as
expected the convergence is linear (see Fig. 9 at the center). As predicted by the theory, we
also observe that relaxed AA-Newton improves on Newton in its linear convergence rate. Of
course, for large enough m, the higher order terms created will eventually dominate the linear
term at earlier iterations and this will slow the convergence; this seems to be the effect on early
iterates for m = 3 although it was still able to recover and provide the fastest convergence
of those tested.

Since relaxation provided convergence but this convergence is only linear, we did a final
test where 8 = 0.5 until the residual is reduced to below 10~2 and then we set 8 = 1. Results
are shown in Fig. 9 at the right, and we observe good convergence for each of m = 0, 1, 2, 3,
although m = 1 performed best. This is explained by m = 1 reaching the 10~2 level first
and then superlinear convergence taking over and winning before the quadratic convergence
for m = 0 even gets started.

5 Conclusions

We have investigated the convergence order of AA applied to various fixed point iteration
solvers. For superlinearly converging methods of order r, we prove a new convergence
theory that shows such methods converge with order (at least) min{2, %} form = 1, and
derived expressions for convergence order for m > 1; these theories also hold for local order
r < 1 sublinear convergence. These theories suggest slower convergence for superlinearly
converging methods as m is increased. We showed numerically this was a sharp bound for
AA-Chebyshev and AA-Secant, as well as for a sublinearly converging 1D test problem
and sublinearly converging Picard iteration for a regularized Bingham problem. For AA-
Newton, we show analytically and numerically that in the asymptotic range, AA reduces the
convergence order from 2 to the largest positive root of «”*! — o™ — 1 (1.618 form = 1,
1.466 for m = 2 and so on).

The results herein are a new contribution to the theory of AA, which is quickly becoming
a widely used method but for which there are very few analytical results. The results for
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Fig. 9 Shown above are convergence plots for AA-Newton with kg = 8 and constant € = 0.09, for g = 1
(top left), B = 0.5 (top right) and adaptive B (bottom)

sublinearly converging iterations, on the other hand, were both positive and surprising (at
least to us), with AA significantly helping such iterations. On the other hand, our results turn
out to be negative for superlinearly converging methods, with the asymptotic convergence
worsening as m increases; still these results are an important contribution to AA theory.
However, it is important to note that the results are asymptotic, and so they do not suggest
anything about how AA may or may not expand the convergence radius when applied to a
particular superlinearly converging solver. This remains an important an open problem which
the authors hope to study in the near future.
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