HARVEST: High-Performance Artificial Vision
Framework for Expert Labeling using
Semi-Supervised Training

Nawras Alnaasan*, Matthew Lieber*, Aamir Shafi*, Hari Subramoni*,
Scott Shearert, and Dhabaleswar K Panda*
*Department of Computer Science and Engineering,
iDepartment of Food, Agricultural, and Biological Engineering,
The Ohio State University, Columbus, Ohio, USA,
{alnaasan .1, lieber.31, shafi.l6 subramoni.l, shearer. 95}@osu .edu, panda@cse.ohio-state.edu

Abstract—

Supervised Deep Learning (DL) thrives on Big Data; however,
it inherits a major limitation—training and testing datasets must
be fully annotated to train Deep Neural Networks (DNNs). To
mitigate this bottleneck, we propose HARVEST—a distributed
computer-vision framework that employs state-of-the-art semi-
supervised learning (SSL) algorithms to train accurate DNNs
using Distributed Data Parallelism (DDP) on High-Performance
Computing (HPC) systems with only a small subset of labeled
data samples. HARVEST offers an intuitive and interactive web-
based interface that enables domain experts with no prior DL or
HPC knowledge to easily unlock the power of DL and leverage
the computational resources offered by HPC systems, furthering
the mission of democratizing AI. We conduct a comprehensive
evaluation of several Digital Agriculture use cases as an example
domain that can benefit from HARVEST as data is collected
frequently, in large volumes, and for a variety of applications.
Our evaluations yield accuracies within 3% compared to fully
supervised training using less than 80 labeled samples per
class. Furthermore, we show that HARVEST delivers near-linear
scaling, reducing the training time from 7.8 hours on a single
NVIDIA A100 GPU up to 31 minutes by using DDP on 16
GPUs. To the best of our knowledge, HARVEST is the first
framework that allows end-users to perform interactive labeling
and distributed training using state-of-the-art SSL algorithms.

Index Terms—Semi-supervised Learning, Distributed Data-
Parallelism, High-Performance Computing, Interactive Labeling

I. INTRODUCTION

Recent advances in Artificial Intelligence (AI) have pro-
foundly impacted a diverse range of environmental science
domains, guiding a new era of data-driven innovation [1].
Supervised Deep Learning (DL) [2] is one of the most widely
adopted paradigms to solve image classification problems in
these domains due to its ability to capture complex input
features and deliver state-of-the-art performance on Big Data.
However, supervised DL comes with a caveat; it relies heavily
on labeled data for training and evaluation. Acquiring and an-
notating large volumes of labeled data can be time-consuming,
costly, and infeasible for certain applications, especially when
the data is collected frequently and for different use cases.

*This research is supported in part by NSF #2112606.

Unsupervised DL [3], on the other hand, can be applied in
specific scenarios to address some limitations of supervised
DL. While valuable for discovering patterns and structures in
unlabeled data, unsupervised DL has its own drawbacks: 1) it
lacks a clear objective function or ground truth for evaluation,
leading to poor accuracies compared to supervised training,
and 2) it has limited applicability when it comes to traditional
image classification tasks in which data points need to be
assigned to predefined classes [4]. To overcome the limitations
of supervised and unsupervised DL, semi-supervised learning
(SSL) [5] uses a more balanced approach where a DL model
can be trained on a small subset of labeled data and a large
unlabeled dataset while maintaining high testing accuracies.

Examples of use cases that motivate our research can
be found in the Digital Agriculture domain, where large
datasets are automatically collected on a daily basis using un-
manned aerial vehicles (UAVs) [6], unmanned ground vehicles
(UGVs), or camera traps [7], rendering manual image labeling
essentially impractical. Furthermore, domain experts may lack
the technical knowledge to apply this data for creating accurate
and scalable DL solutions for their use cases.

Therefore, we propose HARVEST—a distributed computer-
vision framework that employs state-of-the-art (SSL) tech-
niques and distributed data parallelism (DDP) to quickly train
accurate DL models for image classification use cases using
only a small subset of labeled data samples. HARVEST is
an interactive and user-friendly framework—equipped with
an easy-to-use interface—that enables domain experts with
no prior experience in DL or High-Performance Computing
(HPC) to easily create customized and efficient DL solutions
for their use cases. HARVEST is built on top of PyTorch [§]
and torch.distributed [9] to perform DNN training
with data parallelism, Unified semi-supervised learning Bench-
mark (USB) [10] to utilize various SSL algorithms, SCAN [11]
to perform unsupervised clustering for assisted user labeling,
and Open OnDemand [12] to integrate a web-based interface
that interacts with HPC systems. Additionally, we conduct a
comprehensive evaluation on Digital Agriculture use cases as
an example domain that can benefit from HARVEST.

A. Overview of the ICICLE Institute

This work is part of the Intelligent Cyberinfrastructure with
Computational Learning in the Environment (ICICLE) [13]
project, which is an NSF-funded AI institute with a core
mission of making Artificial Intelligence (AI) more accessible
in environmental domains and driving its further democratiza-
tion in the larger society. ICICLE aims to transform today’s
Al landscape from a narrow set of privileged disciplines
to one where democratized AI empowers domains broadly
through integrated plug-and-play AI. Research at ICICLE
builds cyberinfrastructure (CI) for Al and Al for CI to address
challenges in use-inspired science projects, including Digital
Agriculture, Animal Ecology, and Smart Foodsheds. In the
context of this paper, we emphasize ICICLE’s core mission of
democratizing Al by enabling domain experts with no prior
DL or HPC expertise to easily create customized solutions for
their use cases using HARVEST.

B. Challenges and Motivation

The ML/DL Challenge: Supervised ML and DL algorithms
require fully labeled datasets to train image classification
models. Figure 1a shows the traditional pipeline for supervised
algorithms where the unlabeled raw input data is fully labeled
by an expert, leading to a major bottleneck in this pipeline. The
more samples and classes in a dataset, the more human labor
is needed to produce high-quality annotations. For instance,
creating the original ImageNet [14] dataset, which consisted
of 1.2 million images, was a collaborative effort that involved
many people and took several years to complete. To put this
into perspective, if a person can label one image every minute
on average, then it would require around 2.3 years to label
1.2 million images, given that the labeler does nothing but
label images during that time frame. We address the following
questions under the ML/DL challenge: 1) How can we train
accurate DNNs for different use cases when unlabeled data is
collected frequently in large volumes? 2) What is the impact of
using different training algorithms, base DNN models, number
of labeled images, and other training hyperparameters on the

accuracy of DNNs?

Supervisor/Expert
Labeling

Raw Input Data

Data labeling bottleneck
(a) Workflow of supervised learning which requires fully labeled data.

Raw Input Data

(b) SSL combines both supervised learning to train on a small subset of
labeled data and unsupervised learning to train on the large unlabeled dataset.

Fig. 1: (a) shows the data labeling bottleneck in the traditional
supervised learning pipeline for image classification. (b) shows that
semi-supervised learning (SSL) alleviates this bottleneck by only
requiring a small subset of labeled images.

The Computing Challenge: The computational requirements
for training DL models increase with the size of the dataset and
complexity of the DL model. Furthermore, training complex
DL models on large datasets demands substantial training
times to converge to good solutions. Using a single machine
for DL workloads may result in unreasonably long training
time frames, rendering it pivotal to parallelize the training
using distributed environments like High-Performance Com-
puting (HPC) systems. Modern HPC systems, equipped with
high-end clusters of CPUs and GPUs, fast interconnect, and
large storage, provide the necessary computational muscle to
accelerate DL applications. We address the following questions
under the computing challenge: 1) How can we design a dis-
tributed framework that reduces the labeling bottlenecks and
leverages HPC resources to enable accurate and efficient DNN
training? 2) What is the expected distributed scaling efficiency
using distributed data parallelism (DDP) on algorithms that
mitigate the data labeling bottleneck?

The Application Domain Challenge: Digital Agriculture
is an example domain where data is collected frequently,
in large volumes, and for a variety of applications. There
is a myriad of challenges in Digital Agriculture that can
use DL solutions, ranging in use cases like crop classifi-
cation, disease/defoliation detection, crop development, soil
assessment, growth prediction, etc. Moreover, domain experts
like agricultural engineers or farmers may lack the technical
knowledge to train accurate DL models for their different use
cases in distributed computing environments. In this paper,
we look at several Digital Agriculture use cases including
four publicly available datasets: PlantVillage [15], Weed De-
tection in Soybean [16], Sugar Cane-Spittle Bug [17], and
Fruits-360 [18]; and 2 custom datasets for detecting stresses
in soybean and corn crops [19]. We address the following
questions under the application domain challenge: 1) How
can we integrate an intuitive and user-friendly interface with
HPC systems to enable domain experts with no prior DL or
HPC experience to label data and train DNNs? 2) What is the
expected performance in terms of accuracy metrics for Digital
Agriculture use cases with algorithms that mitigate the data
labeling bottleneck?

Overall, the broad motivation of this paper is to design an
intuitive and interactive framework for image classification
using SSL techniques, alleviating the data labeling bottleneck
and allowing domain experts with no prior DL or HPC
knowledge to train accurate models quickly on HPC systems.

C. Contributions

1) Design and implement HARVEST—an interactive and
distributed framework for image classification that em-
ploys state-of-the-art SSL algorithms and DDP tech-
niques to train accurate DNNs on HPC systems.

2) Create a training workflow by combining unsupervised
learning and SSL techniques using SCAN [11] and Uni-
fied Semi-supervised learning Benchmark (USB) [10] in
order to alleviate the data labeling bottleneck.

3) Integrate a web-based interface with HARVEST using
Open OnDemand [12] to enable domain experts with
no prior DL or HPC expertise to create customized and
scalable solutions for image classification use cases.

4) Provide comprehensive analysis for training DNNs us-
ing different state-of-the-art SSL algorithms includ-
ing MixMatch [20], FixMatch [21], AdaMatch [22],
FreeMatch [23], and FlexMatch [24]. We also fine-
tune hyperparameters for different DNNs including
ResNet50 [25] and ViT [26].

5) Conduct scaling and accuracy evaluations on several
Digital Agriculture datasets as an example domain. Our
evaluations show that HARVEST yields high testing
accuracies within 3% of fully supervised training and
near-linear scaling on 16 A100 GPUs, reducing the
training time from 7.8 hours on a single GPU to 31
minutes on 16 GPUs.

6) To the best of our knowledge, HARVEST is the first
framework that allows end-users to perform interactive
labeling and distributed training using state-of-the-art
SSL algorithms.

The rest of this paper is organized as follows: Section II
covers background on ML/DL paradigms, DDP, and Open
OnDemand. Section III presents the architecture, workflow,
and design of the proposed HARVEST framework. Section IV
includes a comprehensive evaluation of SSL algorithms, base
DNN models, and scaling efficiency on several public and
custom Digital Agriculture datasets. In section V, we review
related work. Finally, we conclude the paper in section VI.

II. BACKGROUND
A. Machine and Deep Learning Paradigms

1) Supervised Learning: In supervised learning [2], the
algorithm learns from labeled training data, where each data
sample is associated with a target label. The main objective
is to minimize the error on training data and generalize the
model on unseen (testing) data. For training DNNs, a loss
value is calculated by comparing the generated prediction and
ground truth label, then backpropagating the loss to the rest
of the model layers to adjust their weights. To train accurate
models, supervised learning requires a large amount of labeled
data with accurate annotations. Common tasks in supervised
learning include classification and regression.

2) Unsupervised Learning: The main objective of unsuper-
vised learning [3] is to recognize inherent patterns or relation-
ships within the data and deduce useful information. State-
of-the-art unsupervised learning techniques combine both DL
methods for feature extraction and ML methods to analyze
the extracted features. Common tasks of unsupervised learning
include clustering, similarity search, and anomaly detection.

3) Semi-Supervised Learning: Semi-supervised learning
(SSL) [5] falls between the supervised and unsupervised
learning paradigms. Figure 1b shows the workflow of SSL
algorithms for image classification. The raw input data is first
sampled to label a small subset of images by an expert. This

labeled data is then used by a supervised algorithm, which
learns by generating predictions and comparing them to the
target labels. At the same time, the large unlabeled dataset is
fed into an unsupervised algorithm, which learns by assessing
differences and similarities found in data features. The role of
the SSL algorithm is to combine the information gained from
both the supervised and unsupervised learning approaches.
State-of-the-art SSL algorithms have shown significant poten-
tial to train accurate DNNs using only a few labeled images per
class. One example is the FixMatch [21] algorithm, which uses
two loss functions for the labeled and unlabeled data. Figure 2
shows a high-level overview of how FixMatch learns from
unlabeled data. It performs weak and strong augmentation
on the same image. The augmented images are then fed to
the same DNN to generate predictions. The objective is to
produce the same prediction for both weakly and strongly
augmented images. If the generated predictions do not match,
the loss is computed using cross-entropy loss, combined with
the supervised loss, and then backpropagated to update the
model weights.

Weak

Augmentation DL Model
Unlabeled N
Sample y/ Prediction
s Y
NG r]
3 38
f g
Y s
7 L
—& Prediction
N
Strong

Augmentation DL Model

Fig. 2: High-level overview of the unsupervised procedure of the
FixMatch [21] SSL algorithm training on unlabeled data.

B. Distributed Data-Parallel Deep Learning

Distributed Data-Parallelism (DDP) in DL is a powerful
training technique that enables the processing of multiple data
samples across several compute nodes to accelerate the train-
ing of Deep Neural Networks (DNNs). Data parallelism works
by replicating the same DNN model across different processes
and distributing the dataset as mini-batches. The forward and
backward passes are performed on each process to calculate
the activations, generate predictions, calculate the loss, and
compute the gradients. Since each process is fed different data,
we end up having different local gradients on each process.
Therefore, synchronization is needed to aggregate and average
the gradient values across all processes. This synchronization
is performed with the Allreduce collective operation using
Message Passing Interface (MPI) [27] libraries or NVIDIA
Collective Communications Library (NCCL) [28] on NVIDIA
GPUs as a communication backend. Allreduce collects the
gradient values from all processes, aggregates them, and then
broadcasts them back. At this point, all processes will have
the same global gradients, which can be used to update the
model parameters and progress to the next training iteration.

C. Open OnDemand

Open OnDemand [12] is an open-source and customiz-
able web-based framework for interacting with HPC systems.

It allows integration with various HPC resources and job
schedulers, such as Slurm [29], PBS, and LSF, to make
HPC resources more accessible to users who may not be
familiar with command-line interfaces. It has features such
as job submission, file management, and remote visualiza-
tion, providing a streamlined and user-friendly experience
for researchers, engineers, and scientists. It’s widely used by
research institutions and commercial companies.

III. PROPOSED HARVEST FRAMEWORK

HARVEST is an interactive and distributed framework
that employs state-of-the-art unsupervised and semi-supervised
training techniques to mitigate the bottleneck of data labeling
and accelerate DNN training using distributed data parallelism
(DDP). It allows users with no prior DL or HPC experience
to create customized DL models for their image classification
use cases through an intuitive web-based interface. In this
section, we first show the layered architecture of the proposed
framework HARVEST. We then take a look at the different
components of HARVEST and how they interact with each
other, with the user, and with the underlying HPC systems.
Next, we explain the design for DDP with SSL algorithms.
Finally, we show the workflow from the user’s perspective
using the web-based interface.

A. Architecture of the HARVEST Framework

Figure 3 depicts the layered architecture overview of the
proposed HARVEST framework. The uppermost layer shows
the image classification job. This job is defined by the user
in terms of the provided dataset and list of target classes. The
next layer shows the HARVEST framework, which consists
of several components, including 1) the unsupervised trainer,
which is responsible for clustering the data before displaying
it to the user for labeling; 2) the image labeler, which is
an interactive web-based tool that asks the user to label a
number of samples for each class; 3) the semi-supervised
trainer, which uses SSL algorithms to train a vision DL model
using the labeled and unlabeled data; 4) the distributed training
scheduler, which is responsible for preparing and submitting
distributed DDP jobs; and 5) the inference engine, which
generates the labels for the original unlabeled dataset and
performs inference on new data samples.

HARVEST is based on various software packages including
PyTorch [8] for DNN training, Unified Semi-supervised learn-
ing Benchmark (USB) [10] for implementations of various
SSL algorithms, and SCAN [11] that is an unsupervised
learning design used for data clustering. HARVEST also
utilizes Open OnDemand [12] to build the web-based interface
and link it to the underlying HPC system. The next layer shows
torch.distributed [9], which is used by HARVEST to
distribute the training jobs on HPC systems. Below are the
communication and hardware libraries dependencies including
MPI [27], NCCL [28], CUDA, and cuDNN. The final layer
shows the modern HPC systems consisting of the interconnect,
distributed file system, and several compute nodes, each with
multi-core CPUs and GPUs.

| Deep Learning Classification Job |

HARVEST

| Unsupervised Trainer I
|

Semi-supervised Trainer l

|
| Image Labeler l Inference Engine |

Distributed Training Scheduler |

c DL Framework Third Party DL Packages
S|l

F=

Els | pyrorch ||| [use || scan |
S| o

L—CJ 2 Distributed Deep Learning Middleware

a 2 [torch.distributed |
Tlo

] 8‘ Hardware Toolkits/Libraries

= [mp] [ncct] [cupbA | cuDNN
“:lg CPU GPUs

Fig. 3: Layered Architecture of the proposed HARVEST framework.

B. Workflow and Components of the HARVEST Framework

In this subsection, we take a closer look at the workflow of
HARVEST and how its components interact with one another,
the user, and the HPC system. Figure 4 depicts the overall flow
of execution and operation of HARVEST. Below is a detailed
description of each step:

Launch new
training/labeling job

Upload dataset
Pre-process dataset

Label subset via online
image labeling

SSLon unlabeled +
labeled data

Download
labeled data

l Download

Online I

trained model inference

Fig. 4: High-level flow of execution and the steps involved in the
operation of the HARVEST framework.

1) Launching New Training Jobs: At this step, the user is
asked to define their use case through the web-based interface
by specifying the number of classes and listing classes’ names.
Defined classes can be categorical, binary, or percentage-
based. Furthermore, advanced users have the option of tweak-
ing several hyperparameters to fine-tune their application, such
as the number of labeled images per class, number of epochs,
SSL algorithm, base DNN model, and learning rate. However,
these hyperparameters are set by default to the configurations
based on our comprehensive evaluation on Digital Agriculture
use cases in section IV-B. Therefore, beginner users can expect
satisfactory performance without any fine-tuning.

2) Data Pre-Processing: The user uploads the dataset to
the file system, provides a pointer to their dataset, and submits
their use case. Next, a Slurm [29] job is scheduled on the HPC
system to initiate the pre-processing of the dataset. Data pre-
processing includes rearranging the directory structure so it
can be processed by the unsupervised and SSL algorithms.

3) Unsupervised Training for Image Clustering: When the
data pre-processing step is finished, an unsupervised training
job is scheduled by HARVEST on the HPC system using
Slurm to cluster the dataset. The number of clusters is set to the
number of classes defined by the user. To cluster the data, we
use SCAN [11], a state-of-the-art unsupervised auto-labeling
and clustering method that utilizes DL and ML methods such
as SimCLR and K-nearest neighbors.

4) Image Sampling: After clustering the data using SCAN,
we sample images from each cluster to be presented to the
user in groups. This step aids the user by grouping images
with similar visual features together to speed up the labeling
process. We should point out that the unsupervised clustering
is an optional step. The alternative approach is to randomly
sample images from the entire dataset and present them to the
user for labeling without prior clustering. If we sample enough
images, the random sampling will approximate the actual data
distribution. The only downside is that similar images will not
be grouped but randomly presented to the user.

5) User Assisted Image Labeling: After images are sampled
by either using unsupervised training or random sampling, the
user is notified via the web-based interface and presented with
a group of images for labeling. For each class defined by
the user in the initial step, the user is asked to label a small
subset of images from the sampled data. We later show in the
evaluation section IV-B that labeling less than 80 images per
class is sufficient to reach high accuracies within 3% of the
fully supervised training accuracy. Indices and targets for the
user-labeled images are saved on the HPC system to be used
by the SSL algorithm in the next step.

6) Distributed SSL Training on Unlabeled and Labeled
Data: SSL training requires both the small labeled data subset
collected in the previous step and the original unlabeled
dataset. We split the labeled data subset into training and eval-
uation data. Next, we use the Unified Semi-supervised learning
Benchmark (USB) [10] as a backend, which provides imple-
mentations on top of PyTorch for different SSL algorithms
such as FixMatch [21], FlexMatch [24], AdaMatch [22], and
MixMatch [20]. We extend USB to support our own format
of customized datasets as generated by the HARVEST frame-
work. Furthermore, we implement our own distributed data-
parallel (DDP) scheme using torch.distributed and
the torchrun launcher to ensure efficient and fault-tolerant
scaling in multi-GPU and multi-node settings. DDP requires
adjusting the batch size and learning rate depending on weak
scaling or strong scaling settings. We analyze and expand on
these concepts later on in the evaluation section IV-D. Finally,
after the SSL training task is done, we save the DNN model
with the highest accuracy on the evaluation subset.

7) Post-Training Tasks: Once the best DNN model is
trained and saved on the HPC system, the user can perform
the following tasks using the HARVEST framework:

o Download the trained model in PyTorch format. Trained
models can be directly deployed on edge devices to
perform inference on the field.

o Generate and export labels for the unlabeled dataset. For
this option, we use the trained model to perform inference
on the original dataset. We generate a list of indices for
each class and map the indices to the full file paths.

o Perform inference on new data. For this option, the user
can either upload a single image or a batch of images to
be classified using the trained model.

C. Implementing Distributed Data Parallelism (DDP) for SSL

File System

Raw Dataset

L]

Unlabeled
mini-batch 1

CPU Unlabeled

mini-batch 0

and Loading

GPUO

GPU 1

Model
Parameters

Model
Parameters

1. Data Preprocessing,
augmentation

Forward

°] 3 s
556 : Q) | 2 : -
T 5= g O H Of | &
2S5 | § g g
© | a @
o
& g
E fae) E Local Gradients Local Gradients
~ ||
T g < Allreduce >
1%) © — m—
2 o /\
5§52
5 g =} Global Gradients Global Gradients
w
o2 e e
© g
LI %) -
< Update Model Weights

Fig. 5: HARVEST’S approach for performing distributed data paral-
lelism (DDP) with SSL algorithms.

Figure 5 shows our approach to implementing DDP for SSL
algorithms. The example in the figure uses two GPUs, but our
method generalizes to any number of GPUs. We explain this
method in three main steps from top to bottom:

1) Data Preprocessing, Augmentation, and Loading: First,
the raw dataset is rearranged into unlabeled and labeled
datasets. The unlabeled data contains all data samples without
target labels, and the labeled dataset is selected from the raw
dataset based on the labels provided by the user. Next, the
CPU randomly samples images from the two datasets and
performs weak augmentation on the unlabeled data and weak
and strong augmentations on the labeled data. Mini-batches
are then created for each GPU using the augmented data.

2) Forward and Backward Propagation: There are two
forward propagations for the SSL algorithms we use, one
for the unsupervised and supervised training each. The loss
value for the unsupervised training is calculated by comparing
the generated labels for the strongly and weakly augmented
images. The supervised training loss is calculated by compar-
ing the generated and target labels. The two loss values are
combined and backpropagated to compute the gradients. We
end up having different local gradients on each GPU.

3) Gradients Aggregation and Weights Update: To syn-
chronize the models on the two GPUs, we use the Allreduce

Required 5 = .
Parameters

Optional
Advanced
Parameters 50

SSL algorithm:
Match

Base Model

Current Label weed 12725

Qe a

Download trained model here

Generate labeled dataset here

Access inference tool here

a=. a

Fig. 6: Example use case with the Weed Detection in Soybean Crops dataset using HARVEST’s interactive web interface. In step 1, the user
defines their classification use case which consists of 4 classes. In steps 3-5, the user selects images to be labeled for each of the classes.
Images highlighted in red with a check mark indicated that images are already labeled by the user. Step 6 shows the post-training tasks.

collective operation, which gathers the local gradients, aggre-
gates them, and distributes them back to each GPU. At this
point, we have the same global gradients on both GPUs. We
use these global gradients to update the model weights and
progress to the next training iteration.

D. HARVEST’s Interactive Web Interface

In this subsection, we showcase the workflow of HARVEST
from the the user’s perspective by following the steps involved
in the interactive web-based interface. HARVEST’s interface
is a tool that is designed to be intuitive and user-friendly,
requiring only a few steps from beginner users while offering
flexibility for more advanced users to fine-tune their training
job. This tool is built on top of Open OnDemand to implement
a Flask Python web server that gathers user input, create and
submit the job scripts, and serve the subset of images to the
user. The front-end uses JavaScript to construct the visual
interface and make calls to the back-end Flask server.

Figure 6 shows an example image classification job using
the Weed Detection in Soybean [16] dataset. In step 1, the
user is asked to define their use case by entering a pointer
to their uploaded dataset on the HPC system and a list of
target classes to be used for classification. In this example,
the user defines 4 classes. Under the advanced tab, users have
the option to fine-tune their job by tweaking several training
hyperparameters. When the user submits their classification
use case, an unsupervised job is scheduled to cluster the data
and sample images from each cluster to be presented to the
user. In step 2, the user is asked to select 25 images to be
labeled for the first class that was defined previously in step
1. Selected images are highlighted in red with a check mark
next to them. Once 25 images are labeled for the first class,
we move to steps 3-5, in which the user labels 25 images for

the rest of the classes. It can be observed that images with
similar visual features are already grouped together due to the
unsupervised clustering step. After the user provides labels
for all of their defined classes, a distributed data-parallel SSL
job is scheduled on the HPC system. Finally, in step 6, the
user can download the trained model, generate labels for the
unlabeled training dataset, or perform inference on new data.

IV. PERFORMANCE EVALUATION AND ANALYSIS OF THE
PROPOSED HARVEST FRAMEWORK

This section presents the performance evaluation of HAR-
VEST using both publicly available and custom Digital Agri-
culture datasets. The metrics used for our evaluations are
expressed in terms of testing error rate and training time. The
baseline that we use for comparison with SSL algorithms is the
testing error of fully supervised DNN training. The baseline
for the scaling experiments is training using a single GPU.
In this section, we first layout the experimental setup, then
we explain our findings for the following experiments: 1)
Evaluation of SSL algorithms, 2) Evaluation of base DNN
models, 3) Scaling analysis on multi-node, 4) Analysis of
unsupervised training, 5) Evaluation of custom use cases.

A. Experimental Setup

1) Hardware Setup: We perform our evaluations on the
Ohio SuperComputing Center’s (OSC’s) [30] Ascend cluster.
Ascend is a GPU-based HPC system consisting of Power Edge
XE 8545 nodes equipped with 2 AMD EPYC 7643 (Milan)
processors @2.3 GHz each with 44 usable cores (88 in total),
4 NVIDIA A100 GPUs with 80GB memory, 921GB usable
RAM, and 12.8TB NVMe internal storage. The system is
interconnected using Mellanox 200 Gbps HDR InfiniBand. We
use up to 4 nodes (16 GPUs) for our scaling experiments.

2) Software Setup: The following versions of software
packages are used: CUDA v11.6.1, cuDNN v8.3.2, NCCL
v2.14.3 [28], Python v3.8.16, PyTorch v1.13.1 [8], Hugging-
Face v4.21.3 [31], scikit-learn v1.0.2, SCAN [11] and our
modified branch of the Unified Semi-supervised Learning
Benchmark (USB) [10] based on version 0.3.0.

3) Datasets Description: We use four publicly available
Digital Agriculture datasets for our initial evaluations: 1)
PlantVillage [15] 2) Weed Detection in Soybean Crops [16],
3) Sugar Cane-Spittle Bug [17], and 4) Fruits-360 [18]. We
use the following two custom datasets to mimic the actual
use cases of HARVEST: 1) Corn dataset, and 2) Soybean
dataset [19]. Although the used datasets are fully labeled, we
strip all labels from the data and treat all datasets as fully
unlabeled. Table I shows the characteristics of each dataset in
terms of the number of classes and total number of samples.

TABLE I: Description of the Digital Agriculture datasets used in the
evaluation section

Number Number

Dataset Use case
of classes | of samples
PlantVillage [15] 39 43430 Plant disease
classification
Weed Detection Weed detection
in Soybean [16] 4 10635 in soybeans
Sugar Cane- Pest bugs
Spittle Bug [17] 2 10100 detection
Fruits-360 [18] 81 40998 Fruits
classification
Corn dataset [19] 12 9558 Plant str'esses
(custom) detection
Soybean dataset [19] 6 5636 Plant str.esses
(custom) detection

B. Evaluation of SSL Algorithms

In this subsection, we evaluate the testing error rate of five
state-of-the-art SSL algorithms on four unlabeled versions of
the public Digital Agriculture datasets. The SSL algorithms
used for this evaluation are MixMatch [20], FixMatch [21],
AdaMatch [22], FlexMatch [24], and FreeMatch [23]. We use
ViT Tiny model as a base DNN for all datasets and algorithms.
We use the testing error rate of supervised training using the
fully labeled datasets as a baseline for comparison.

Figure 7a shows the testing error rate for the PlantVillage
dataset. Using 5 labeled images per class (195 labeled im-
ages in total) yields a testing error rate between 12.67% for
MixMatch and 7.04% for FlexMatch. Increasing the number
of labeled images per class to 10 decreases the error rate;
however, by increasing the number of labels beyond 10 labeled
images, we observe only a small improvement (around 1-2%)
in the testing error. The best testing error of 2.40% is achieved
by the FlexMatch algorithm at 80 labeled images. The baseline
fully supervised training achieves a testing error of 0.90%.

Figure 7b shows the testing error rate for Weed Detection
in the Soybean Crops dataset. We observe similar trends to the
previous dataset. However, the lowest testing error of 0.71% is
achieved by the MixMatch algorithm at 80 labels. The baseline
of fully supervised training yields a testing error of 0.43%.

Figure 7c shows the testing error rate for the Sugar Cane-
Spittle Bug dataset. For this dataset, we observe more consis-
tent improvement in the testing error rate, up to 40 labeled
images per class. The best testing error rate is achieved by the
FreeMatch algorithm at 10.21% compared to 7.36% for the
fully supervised training.

Finally, figure 7d shows the testing error rate for the Fruits-
360 dataset. We observe an interesting trend of increasing error
rates for several SSL algorithms as we increase the number of
labeled images beyond 10 per class. Furthermore, we can see
that some SSL algorithms have lower error rates compared to
the fully supervised baseline at 1.11%. The best error rate is
achieved by the FreeMatch algorithm at 0.81% and 10 labeled
images per class. The reason for this trend is due to overfitting
on the training data as we increase the number of labels.

Based on this evaluation, we set the default SSL method in
HARVEST to FreeMatch as it achieves the best performance
on average for the different Digital Agriculture datasets. Ad-
ditionally, we select the optimal hyperparameters that gave
the lowest testing error rate on average including number of
labeled images per class, learning rate, and number of epochs.

C. Evaluation of Base DNN Models

In this subsection, we evaluate the impact of different base
DNNs on the testing error rate. For this evaluation, we chose
the Sugar Cane—Spittle Bug dataset, which showed the highest
error rate in the previous section. We fix the number of labeled
images per class to 80 and use the FreeMatch SSL algorithm.
The base DNN models we train on are the Convolutional
Neural Network (CNN) ResNet50 [25] and three variants of
the vision transformer model ViT [26]. All base DNN models
used for this evaluation are pretrained on the ImageNet-1k [14]
dataset. Figure 8 shows that ResNet50 yields the highest
testing error rate at 16.18%. The ViT variants achieve error
rates of 10.21%, 8.47%, and 6.22% for ViT Tiny Patch2_32,
ViT Small Patch2_32, and ViT Base Patch16_96, respectively.
We observe similar trends for the rest of the SSL algorithms.
Therefore, we conclude that increasing the model size achieves
better overall accuracy with SSL algorithms.

D. DDP Scaling Analysis on Multi-node

This subsection shows the distributed data-parallel scaling
performance using the HARVEST framework on up to 16
NVIDIA A100 GPUs. We perform the training on the Sugar
Cane—Spittle Bug dataset using the FreeMatch SSL algorithm
with the ViT Small model as a base DNN. Our evaluation
consists of two scaling methods:

1) Weak scaling: With weak scaling, we fix the local
batch size as we increase the number of GPUs. For
example, if the local batch size on a single GPU is
32, and we distribute the training on the 2 GPUs, then
the global batch size would be 32*2=64. With weak
scaling, we increase the learning rate by a scaling factor
corresponding to the number of GPUs.

2) Strong scaling: With strong scaling, we fix the global
batch size as we increase the number of GPUs. For

20%
© 18% [ZAMixMatch E3FixMatch IDAdaMatch m‘a"g’: T T e
% | g) X
212.2 SSFlexMatch CTFreeMatch —Supervised 53_0% SFlexMatch [=IFreeMatch —Supervised
o 12 52.5%
520%
01.5%
S 1.0%
2 0.5%

N
24N
IINE
0

5 10 20 40 80
Number of Labeled Samples per Class

5 10 20 40
Number of Labeled Samples per Class

(a) PlantVillage [15] (b) Weed Detection in Soybean [16]

@
S

% |EZZAMixMatch [3FixMatch [MAdaMatch 4.0% [ZAMixMatch [JFixMatch @DAdaMatch

% 20% ESFlexMatch EZFreeMatch —Supervised 835% | =IFlexMatch EIFreeMatch —Supervised
-4 Bl o 3.0%
S 30% . 525%
& 5 2.0%
&520% ' 201.5%
B 10% N 1 e 7 1.0% r .
QL 4 - D 1 59 N 7!
= N & 0.5% 7 ‘ AN Y
0% i AN 0.0% NI AINT 71N AN G

80 5 0 0 40 80
Number oflLabeled %amples per Class

5 10 0 40
Number of Labeled Samples per Class

(c) Sugar Cane-Spittle Bug [17] (d) Fruits-360 [18]

Fig. 7: Testing error on unlabeled Digital Agriculture dataset using SSL algorithms with different number of labels per class and the ViT
Tiny model as the underlying DNN. We use supervised training on the fully labeled versions of the datasets as a baseline for comparison.

ResNet50 B ViT Tiny Patch2_32
M ViT Small Patch2_32 R ViT Base Patch16_96|

Fig. 8: Comparing the testing error rates for different base DNN
models trained on the Sugar Cane-Spittle Bug dataset using the
FreeMatch SSL algorithm.

18%

example, if the global batch size on a single GPU is
32, and we distribute the training on 2 GPUs, then the
local batch size on each GPU would be 32/2=16. With
strong scaling, we fix the value of the learning rate.

Figure 9 shows the training time per epoch and speedup
using weak scaling on local batch sizes of 32 and 64. We
observe near-linear scaling as we increase the number of
GPUs. Training with 16 GPUs yields a speedup of 14.84x
and 15.43x for batch sizes 32 and 64, respectively.

5 250 | ezTraining mmValidation |

;3,200

< [=8
g 150 12 3
9] 8 o
& 100 o
<% 4 v
o 50

£

E o WAm OUAUBa

1 2 4 8 16 1 2 4 8 16
Batch Size=32 Batch Size=64

Number of GPUs

Fig. 9: Weak scaling performance on up to 16 NVIDIA A100 GPUs
in terms of time per epoch using the FreeMatch SSL algorithm, ViT
Small model as a base DNN, and training on the Sugar Cane—Spittle
Bug dataset.

Figure 10 shows the same evaluation but for strong scaling.
We see a speedup of 8x for global batch size 32 and 10.51x
for global batch size 64. The reason for the performance
degradation compared to the weak scaling method is that each
GPU will have fewer images to process in parallel as we
increase the number of GPUs. In terms of accuracy, we don’t
see any performance change by comparing weak and strong
scaling for different numbers of GPUs. Therefore, we adopt
the weak scaling method for performing DDP with HARVEST.

E. Analysis of Unsupervised Training

In this subsection, we analyze the performance of the
unsupervised clustering step before presenting the images to be

250 | EZATraining [MMValidation |
2 16
2 200 =
s g
S 150 g 12 3
& 7 8 &
5 100 / g
1% g)
g 7o ‘

1 2 4 8 16 2 4 8 16

Batch Size=32 Batch Size=64

Number of GPUs

Fig. 10: Strong scaling performance on up to 16 NVIDIA A100 GPUs
in terms of time per epoch using the FreeMatch SSL algorithm, ViT
Small model as a base DNN, and training on the Sugar Cane—Spittle
Bug dataset.

labeled by the user. HARVEST uses the SCAN [11] method
to cluster the unlabeled data. For this analysis, we use the
Weed Detection in Soybean Crops dataset, which consists of
the broadleaf, grass, soil, and soybean classes. We run SCAN
for 25 epochs in total. Figure 11 shows the confusion matrix
generated by SCAN. Numerical values in white along the
diagonal axis indicate the accuracy for clustering the four
classes. The clusters for the soil and soybean classes show low
accuracy, whereas the broadleaf and grass classes show better
accuracy. The reason for the lower accuracy is due to similar
visual features in the soil and soybean classes. It should be
noted that other datasets in our evaluation showed below 60%
clustering accuracy due to more complex visual features and
similar classes. Therefore, while the unsupervised clustering
step may be helpful to assist the user in performing faster
labeling for some use cases by grouping simillar images, we
conclude that it is an optional step, with the alternative being
random sampling from the dataset.

broadleaf grass soil

soybean

Fig. 11: The confusion matrix for the optional unsupervised training
step using SCAN on the Weed Detection in Soybean Crops dataset.

F. Evaluation for Custom Digital Agriculture Use Cases

1) Problem Description: In [19], Frank et al. address plant
stress identification for protecting crops through the growing

season. A stress factor is an external condition that negatively
affects plants’ growth, development, or productivity. The au-
thors curate several datasets for different types of crops and
categorize stress factors into classes. Two of the datasets they
generate are for corn and soybean crops. They use supervised
DL combined with hierarchical confidence thresholding to
train the ResNet-18 from scratch on their different use cases.
Their trained baseline model, without confidence thresholding,
achieves 68.8% accuracy on the Corn dataset and 80.0%
accuracy on the Soybean dataset. In the following subsection,
we evaluate the performance of HARVEST on these two use
cases using only a small subset of labeled images.

2) Performance on the Corn and Soybean datasets using
HARVEST: We use HARVEST to train on unlabeled versions
of the Soybean and Corn datasets. We first label 80 images
per class for each dataset. Next, we use the FreeMatch SSL
algorithm with the Vit Base model to train on both the large
unlabeled datasets and small labeled subsets for a total of 60
epochs. Table II shows the testing accuracy, precision, recall,
and F1 score for training on both datasets. HARVEST achieves
97.08% and 93.07% accuracy for the Corn and Soybean
datasets, respectively. The significant boost in performance we
observe compared to the methods used in section IV-F1 is due
to using a more capable and pre-trained ViT Base model on
ImageNet-1k compared to training ResNet-18 from scratch.

TABLE II: HARVEST’s performance on the Soybean and Corn
datasets using only 80 labels per class with FreeMatch as an SSL
algorithm and the ViT Base model as base DNN.

Dataset Accuracy | Precision | Recall | F1 Score
Corn Dataset 97.08% 91.77% 95.43% 92.61%
Soybean Dataset 93.07% 88.64% 92.40% 89.61%

Furthermore, we use HARVEST’s scaling features to dis-
tribute the training on up to 16 A100 GPUs. Figure 12 shows
the total training time and speedup for the Corn dataset. The
time needed to train using a single GPU is 7.8 hours. Using
16 GPUs, HARVEST reduces the total training time to 31
minutes, achieving a 15.19x speedup and maintaining the
same accuracy. Figure 13 shows the same evaluation for the
Soybean dataset. The time needed to train using a single GPU
is 4.6 hours. HARVEST reduces the total training time to 20
minutes on 16 GPUs, achieving a 14.25x speedup while also
maintaining the same accuracy.

[ZaCorn Dataset -e-Speedup |

=
N

Speedup

/

///J
//—/\/
%/%

2 4 8
Number of GPUs

Fig. 12: Scaling performance on up to 16 NVIDIA A100 GPUs for
training the Corn dataset [19] using the FreeMatch algorithm and ViT
Base Patch16_224 as a base DNN model for a total of 60 epochs.

Training time (hours)
OFRNWRARUTO N O

N
\
\
o »

1

=5 [=3Soybean Dataset -e-Speedup |
xg— . R 16
< a
<. / 128
£ / 88
w? \ A~ 3
=
S N N =

1 2 4 8 16

Number of GPUs

Fig. 13: Scaling performance on up to 16 NVIDIA A100 GPUs for
training the Soybean dataset [19] using the FreeMatch algorithm and
ViT Base Patch16_224 as a base DNN model for a total of 60 epochs.

V. RELATED WORK

Several designs exist in the literature [20]-[24] that show the
potential of using semi-supervised learning (SSL) for image
classification as an alternative solution for supervised learn-
ing while maintaining high training and testing accuracies.
HARVEST extends these solutions by combining unsupervised
learning and SSL methods, using distributed-data parallelism
(DDP), and enabling interactive labeling. Many commercial
and open-source image annotation tools exist online [32]-
[34]; however, these tools are disconnected from DL training,
requiring additional overhead to transfer, reformat, and pre-
process data to be used by DNNs. Other studies [35]-[37] use
unsupervised learning with pre-trained DNNs or generative
pretraining as an automated solution for image annotation.
While these solutions may be useful in scenarios where classes
exist in the training data or are highly distinct, they achieve low
accuracies for complicated and domain-specific datasets. The
authors of [38] use few-shot learning, which is applicable for
scenarios where images are labeled but the number of samples
is limited. This approach is practical when unseen classes are
frequently encountered in new data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed HARVEST—a distributed frame-
work for image classification that employs state-of-the-art
semi-supervised learning (SSL) algorithms for training accu-
rate Deep Neural Networks (DNNs) on High Performance
Computing (HPC) systems using only a small subset of
labeled images. Our work comes as a part of the Intelligent
Cyberinfrastructure with Computational Learning in the En-
vironment (ICICLE) [13] Al institute. HARVEST emphasizes
on ICICLE’s core mission of democratizing Al by integrating
an interactive and intuitive web-based interface that allows
domain experts with no prior DL or HPC expertise to create
customized scalable solutions for their image classification use
cases. We used Open OnDemand [12] to connect HARVEST’s
interface to the underlying HPC systems. HARVEST mitigates
the data labeling bottleneck by using an advanced workflow
that combines unsupervised and SSL solutions, including
SCAN [11] and Unified Semi-supervised learning Benchmark
(USB) [10]. We implemented distributed data parallelism
(DDP) using PyTorch [8] and torch.distributed [9]
for efficient and fault-tolerant DNN training. We conducted
a comprehensive evaluation and analysis using Digital Agri-
culture image classification use cases as an example domain

that can benefit from HARVEST. Our evaluations showed
that HARVEST can deliver high accuracies within 3% of
fully supervised training using less than 80 labeled samples
per class. Furthermore, we showed that HARVEST can scale
efficiently, delivering up to 15.43x speedup and reducing the
training time from 7.8 hours on a single NVIDIA A100 GPU
to 31 minutes by using DDP on 16 GPUs. To the best of our
knowledge, HARVEST is the first framework that allows end-
users to perform interactive labeling and distributed training
using state-of-the-art SSL algorithms. For future work, we plan
to extend HARVEST’s pipeline to support easy inferencing
deployment of trained DNNs on edge devices, which may have
memory and computational constraints. Additionally, since
HARVEST is a generalized and portable framework, we plan
to test it on Cloud systems and other scientific domains.

REFERENCES

[1] K. Virts, A. Shirey, G. Priftis, K. Ankur, M. Ramasubramanian,
H. Muhammad, A. Acharya, and R. Ramachandran, “A quantitative
analysis on the use of supervised machine learning in earth science,”
in IGARSS 2020 - 2020 IEEE International Geoscience and Remote
Sensing Symposium, pp. 22522255, 2020.

[2] M. A. Wani, E. A. Bhat, S. Afzal, and A. 1. Khan, Basics of Supervised
Deep Learning, pp. 13-29. Singapore: Springer Singapore, 2020.

[3] J. Karhunen, T. Raiko, and K. Cho, “Chapter 7 - unsupervised deep

learning: A short review,” in Advances in Independent Component

Analysis and Learning Machines (E. Bingham, S. Kaski, J. Laaksonen,

and J. Lampinen, eds.), pp. 125-142, Academic Press, 2015.

M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf,

A Systematic Review on Supervised and Unsupervised Machine Learning

Algorithms for Data Science, pp. 3-21. Cham: Springer International

Publishing, 2020.

[5] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised

learning,” Machine Learning, vol. 109, pp. 373-440, Feb 2020.

A. Caruso, S. Chessa, S. Escolar, J. Barba, and J. C. Lépez, “Collection

of data with drones in precision agriculture: Analytical model and lora

case study,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16692—

16704, 2021.

[71 M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, M. S.
Palmer, C. Packer, and J. Clune, “Automatically identifying, counting,
and describing wild animals in camera-trap images with deep learning,”
Proceedings of the National Academy of Sciences, vol. 115, no. 25,
pp- E5S716-E5725, 2018.

[8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024-8035, Curran Associates, Inc., 2019.

[9]1 PyTorch, “torch.distributed.” https://pytorch.org/docs/stable/distributed.
html, 2021. [Online; accessed November 17, 2023].

[10] Y. Wang, H. Chen, Y. Fan, W. Sun, R. Tao, W. Hou, R. Wang,
L. Yang, Z. Zhou, L.-Z. Guo, H. Qi, Z. Wu, Y.-F. Li, S. Nakamura,
W. Ye, M. Savvides, B. Raj, T. Shinozaki, B. Schiele, J. Wang, X. Xie,
and Y. Zhang, “Usb: A unified semi-supervised learning benchmark
for classification,” in Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

[11] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Scan: Learning to classify images without labels,” in
Proceedings of the European Conference on Computer Vision, 2020.

[12] D. Hudak, D. Johnson, A. Chalker, J. Nicklas, E. Franz, T. Dockendorf,
and B. L. McMichael, “Open ondemand: A web-based client portal for
hpc centers,” Journal of Open Source Software, vol. 3, no. 25, p. 622,
2018.

[13] “Intelligent Cyberinfrastructure with Computational Learning in the
Environment (ICICLE).” https://icicle.osu.edu/.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248-255, Ieee, 2009.

[4

=

[6

=

10

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]
(31]

(32]

[33]

[34]

(35]

[36]

[37]

[38]

A. Bruno, D. Moroni, R. Dainelli, L. Rocchi, S. Morelli, E. Ferrari,
P. Toscano, and M. Martinelli, “Improving plant disease classification
by adaptive minimal ensembling,” Front Artif Intell, 2022. PMID:
36160929; PMCID: PM(C9499023.

A. dos Santos Ferreira, D. Matte Freitas, G. Gongalves da Silva,
H. Pistori, and M. Theophilo Folhes, “Weed detection in soybean crops
using convnets,” Computers and Electronics in Agriculture, vol. 143,
pp. 314-324, 2017.

C. Vasquez and C. Castiblanco, “Sugar cane - spittle bug.” https://data.
mendeley.com/datasets/pwprmck9h5/1.

H. Muresan and M. Oltean, “Fruit recognition from images using deep
learning,” 2021.

L. Frank, C. Wiegman, J. Davis, and S. Shearer, “Confidence-driven
hierarchical classification of cultivated plant stresses,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pp. 2503-2512, January 2021.

D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. Raffel, “Mixmatch: A holistic approach to semi-supervised learning,”
2019.

K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk,
A. Kurakin, H. Zhang, and C. Raffel, “Fixmatch: Simplifying semi-
supervised learning with consistency and confidence,” 2020.

D. Berthelot, R. Roelofs, K. Sohn, N. Carlini, and A. Kurakin,
“Adamatch: A unified approach to semi-supervised learning and domain
adaptation,” 2022.

Y. Wang, H. Chen, Q. Heng, W. Hou, Y. Fan, Z. Wu, J. Wang,
M. Savvides, T. Shinozaki, B. Raj, B. Schiele, and X. Xie, “Freematch:
Self-adaptive thresholding for semi-supervised learning,” 2023.

B. Zhang, Y. Wang, W. Hou, H. Wu, J. Wang, M. Okumura, and T. Shi-
nozaki, “Flexmatch: Boosting semi-supervised learning with curriculum
pseudo labeling,” 2022.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” CoRR, vol. abs/2010.11929,
2020.

Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, Mar 1994.

NVIDIA, “Nvidia collective communication library (nccl).” https://
developer.nvidia.com/nccl.

A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing (D. Feitelson, L. Rudolph, and U. Schwiegelshohn, eds.),
(Berlin, Heidelberg), pp. 44—60, Springer Berlin Heidelberg, 2003.

O. S. Center, “Ohio supercomputer center,” 1987.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Huggingface’s transformers:
State-of-the-art natural language processing,” 2020.

“V7 - the ai data engine to computer vision and generative ai.” https:
/Iwww.vTlabs.com/.

“Superannotate: The ultimate training data platform for ai.” https://www.
superannotate.com/.

Tzutalin, “Labelimg. git code (2015).” https://github.com/HumanSignal/
labellmg.

Y. Chen, L. Liu, J. Tao, X. Chen, R. Xia, Q. Zhang, J. Xiong, K. Yang,
and J. Xie, “The image annotation algorithm using convolutional fea-
tures from intermediate layer of deep learning,” Multimedia Tools and
Applications, vol. 80, pp. 4237-4261, Jan 2021.

X. Ke, J. Zou, and Y. Niu, “End-to-end automatic image annotation
based on deep cnn and multi-label data augmentation,” /EEE Transac-
tions on Multimedia, vol. 21, no. 8, pp. 2093-2106, 2019.

M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
“Generative pretraining from pixels,” in Proceedings of the 37th Interna-
tional Conference on Machine Learning (H. D. III and A. Singh, eds.),
vol. 119 of Proceedings of Machine Learning Research, pp. 1691-1703,
PMLR, 13-18 Jul 2020.

S. X. Hu, D. Li, J. Stiihmer, M. Kim, and T. M. Hospedales, “Pushing
the limits of simple pipelines for few-shot learning: External data and
fine-tuning make a difference,” 2022.

