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Abstract. This work introduces, analyzes, and demonstrates an efficient and theoretically sound
filtering strategy to ensure the condition of the least-squares problem solved at each iteration of
Anderson acceleration. The filtering strategy consists of two steps: the first controls the length
disparity between columns of the least-squares matrix, and the second enforces a lower bound on the
angles between subspaces spanned by the columns of that matrix. The combined strategy is shown
to control the condition number of the least-squares matrix at each iteration. The method is shown
to be effective on a range of problems based on discretizations of partial differential equations. It is
shown to be particularly effective for problems where the initial iterate may lie far from the solution
and which progress through distinct preasymptotic and asymptotic phases.
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1. Introduction. Nonlinear problems are ubiquitous throughout physical mod-
eling, mathematics, and data sciences. Many basic iterative methods for solving such
problems can be written in the form of a fixed-point iteration: xk+1 = g(xk), where
a sequence of iterates xk form approximations to the fixed-point solution x. Ander-
son acceleration (AA) has become an increasingly popular method for decreasing the
number of fixed-point iterations to convergence, and in many cases enabling conver-
gence where the original fixed-point iteration fails. It involves a correction to each
fixed-point update formed from a linear combination of a history of iterates and up-
date steps, where the linear combination is chosen so that the corrected update step
has least length. Its popularity is due in large part to how effective it is for problems
over a wide range of fields, including, to name a few, quantum chemistry, physics,
multiphysics, and flow phenomena [1, 11, 13, 18, 23, 27], and recently data science
and optimization [20, 26, 30].

AA was introduced in 1965 by Anderson [2] in the context of integral equations,
analyzed as a generalized multi-secant or quasi-Newton algorithm in [12, 13], and dis-
cussed within a Krylov space framework and popularized by its effective and efficient
application across a variety of problems in [29]. Local convergence of the iteration was
first shown in [28], and the acceleration property of the method was first theoretically
developed in [11, 22, 23]. The method is well known to be sensitive to implementa-
tion and parameter choices, including those for the relaxation factor at each iteration
and the (maximal) algorithmic depth, as well as whether and how often the method
should be restarted. Here we introduce a stabilization through selectively eliminating
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A1572 SARA POLLOCK AND LEO G. REBHOLZ

steps from the history in order to improve convergence and control the condition of
the inner optimization.

Herein we seek a fixed-point x of g(x) by a fixed-point iteration xk+1 = g(xk).
Define the difference between iterates ek and the residual wk by

ek := xk  - xk - 1, wk := g(xk - 1) - xk - 1.

Then AA can be written as follows, where parameter m is the maximum allowable
algorithmic depth, mk is the algorithmic depth at iteration k, and \beta k is the relaxation
(also called damping or mixing) parameter used on iteration k.

Algorithm 1.1 (Anderson acceleration). The algorithm starts with a fixed point
update step (k= 0); then the acceleration starts at k= 1.
Choose initial iterate x0 and algorithmic depth parameter m
Compute w1, set \beta 0, and update x1 = x0 + \beta 0w1  \triangleleft k= 0
1: for k= 1, . . . do  \triangleleft k > 0
2: Compute wk+1

3: Set mk =min\{ k,m\} 
4: Set Fk =

\bigl( 
(wk+1  - wk) . . . (wk+1 - (mk - 1)  - wk - (mk - 1))

\bigr) 
5: and Ek =

\bigl( 
(ek) . . . (ek - (mk - 1))

\bigr) 
6: Find \gamma k = argmin\| Fk\gamma  - wk+1\| 
7: Set relaxation parameter \beta k

8: Update xk+1 = xk + \beta kwk+1  - (Ek + \beta kFk)\gamma k+1

9: end for

Define the optimization gain \theta k+1 by

\theta k+1 :=
\| Fk\gamma k  - wk+1\| 
\| wk+1\| 

.(1.1)

As shown in [11, 22, 23], at each iteration k, the first order term in the residual is
improved (in comparison to a fixed-point iteration with the same damping factor \beta k)
by a factor of \theta k, but at the cost of additional higher-order terms.

It is typical but not required to interpret the minimization problem in line 6 of
Algorithm 1.1 as least-squares in either the l2 or a weighted l2 norm [11, 13, 22, 29, 31].
However, other norms such as l1 or l\infty can be used [28]. Here we will restrict our at-
tention to interpreting the minimization as a (weighted) least-squares problem, which
can be efficiently solved using, for instance, a QR factorization as in [29]. This finite
dimensional Hilbert space setting is used to further understand the theoretical con-
vergence properties of AA and to improve performance through dynamic parameter
selection in [22].

The main issue addressed herein is controlling the condition of the matrix Fk used
in the least-squares problem in line 6, in order to improve the numerical stability of the
algorithm. To this end we introduce a column filtering strategy to efficiently control
the condition of Fk. In [13], both truncated singular value decomposition (TSVD) and
Householder QR with column pivoting (rank revealing QR) are discussed as methods
to address poorly conditioned least-squares problems that may arise in AA. Both of
these standard methods for rank deficient and ill-conditioned least-squares problems
may ultimately interfere with the convergence of AA, as the columns of the iteration-k
least-squares matrix Fk have a natural ordering based on the algorithmic age of the
information they represent. The rank revealing QR approach can change the order
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FILTERING FOR ANDERSON ACCELERATION A1573

of the columns, keeping older information which may pollute the solution even while
improving conditioning; and the TSVD approach may reweight the columns without
discarding older information to a similar effect. Another approach to this problem
is to add a Tikhonov-type regularization term to the least-squares problem. This
approach is used, for instance, in [25] in the context of unconstrained optimization
and in [26] in the context of deep reinforcement learning. While this regularization
can be used to control the size of the optimization coefficients, it can potentially lead
to the selection of less effective coefficients.

We will use use the more stable TSVD approach as a standard for comparison
in our numerical tests. We will demonstrate in section 4 that our presently proposed
filtering algorithm which features a low overall additional computational complexity
compares well in terms of the number of iterations to convergence while controlling
the condition numbers; often converging in substantially fewer iterations or converging
where the TSVD approach fails. The filtering approach further appears more robust
with respect to parameter selection.

The remainder of the manuscript is organized as follows. In subsection 1.1 we
review the background theory that supports each of the two parts of the filtering
method: angle filtering and length filtering. In section 2 we introduce the filtering
algorithms, which efficiently control the condition of Fk at each iteration k. In sec-
tion 3 we analyze the strategy and establish that the combination of the two filtering
routines, one controlling small angles between columns and the other controlling rel-
ative magnitudes of columns, is sufficient to control the condition. In section 4 the
filtering strategy is tested against the standard TSVD on a number of problems with
varying complexity.

In the remainder, let \| A\| F denote the Frobenius norm of A, the matrix with
columns a1, . . . , am. Vector norms without a subscript, e.g., \| ai\| , will denote the
vector 2-norm.

1.1. Background theory. The proposed filtering method can be thought of as
combining two approaches, each of which partially controls the condition of Fk, the
matrix that arises in the least-squares problem at each iteration of AA. The first is
the angle-filtering approach of [22], which controls the angle between each column of
Fk and the subspace spanned by the columns to its left (which contain more recent
information). Specifically, define \scrF j as the subspace spanned by the first j columns
of a given matrix Fk and define the direction sine \sigma i by

\sigma i = sin(\scrF i - 1, fi), i= 2, . . . ,mk, and \sigma k,min = min
i=2,...,mk

\sigma i,(1.2)

where fi is column i of matrix Fk. Given a QR factorization Fk = QR, we have
\sigma i = | rii| /\| fi\| . This quantity can then be monitored and used to filter out columns of
Fk at each iteration k. The second approach is that of [1, 29], which sequentially drops
the oldest columns of Fk, updating the QR decomposition and checking the condition
number until the condition is within a given bound. Neither of these strategies alone
is sufficient to efficiently control the condition of Fk, as the condition can become
high due to near linear dependence of the columns either through disparity in lengths
or alignment in angle. This work combines elements from both strategies to give
a guaranteed bound on the condition number after at most a single update of the
QR decomposition, while maintaining the angle condition which is necessary for the
convergence analysis of [22] for smooth problems. As we show numerically in section 4,
filtering is beneficial to convergence in both the preasymptotic and the asymptotic
regimes.
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A1574 SARA POLLOCK AND LEO G. REBHOLZ

As in [1, 29], one part of this filtering method drops older information from the
system, which reduces the buildup of higher-order (nonlinear) residual terms that
can be seen in the analysis of [22]. Assuming the fixed-point operator is sufficiently
smooth, with Lipschitz constant \kappa g and Lipschitz constant of its derivative \^\kappa g, The-
orem 5.1 of [22] proves that the step k residual wk+1 satisfies

\| wk+1\| \leq \| wk\| 

\Biggl\{ 
\theta k((1 - \beta k) + \kappa g\beta k) +Ck\^\kappa g

\sqrt{} 
1 - \theta 2k

k\sum 
n=k - mk - 1

\| wn\| 

\Biggr\} 
,(1.3)

where at each iteration k the quantity Ck depends on the previous mk values of \theta j
and \beta j (introduced in Algorithm 1.1 and (1.1)) and increases as each of the previous
mk values of \sigma j,min from (1.2) decreases. From this estimate, we observe that in a
converging iteration the largest of the higher-order terms will be from older infor-
mation, i.e., \| wk\| \| wk - mk - 1

\| , and can be (possibly significantly) larger than \| wk\| 2.
Hence strategies to keep Ck small should also weigh the effect that older information
may have on the residual.

The length filtering algorithm introduced in subsection 2.2 is based on columnwise
bounds for the condition number of a matrix F , assuming a lower bound on its minimal
direction sine between columns as defined by (1.2). Computing the Frobenius norm of
F columnwise is both straightforward and sharp. Our bounds for \| F - 1\| F = \| R - 1\| F
for F =QR are based on the two following results for general rectangular matrices.

The first is a componentwise bound on the entries of R - 1 from [22].

Lemma 1.1 (see [22, Lemma 5.1). Let F = QR be an economy QR decomposi-
tion of n \times m matrix F , with n \geq m \geq 2. Let \scrF p = span\{ f1, . . . , fp\} , the subspace
spanned by the first p columns of F . Suppose there is a constant 0 < cs \leq 1 such
that sin(fi,\scrF i - 1) \geq cs, by which there is another constant ct =

\sqrt{} 
1 - c2s for which

cos(fi, fk)\leq ct, for k= 1, . . . , i. Denote R - 1 = (sij). Then it holds that

s11 =
1

\| f1\| 
, | s1j | \leq 

ct(ct + cs)
j - 2

\| f1\| cj - 1
s

, 2\leq j \leq m, and(1.4)

sii \leq 
1

\| fi\| cs
, 2\leq i\leq m, | sij | \leq 

ct(ct + cs)
j - i - 1

\| fi\| cj - i+1
s

, i+ 1\leq j \leq m.(1.5)

Next, summing by column over the square of the bounds from Lemma 1.1 gives
the following bounds on the squared l2-norm of each column of R - 1.

Proposition 1.2. Suppose the hypotheses of Lemma 1.1. Let si denote column
i of R - 1. The the following bounds hold:

\| s1\| 2 =
1

\| f1\| 2
=: b1,

(1.6)

\| s2\| 2 \leq 
1

c2s

\Biggl\{ 
c2t

\| f1\| 2
+

1

\| f2\| 2

\Biggr\} 
=: b2,

(1.7)

\| sj\| 2 \leq 
1

c2s

\Biggl( 
c2t (ct + cs)

2(j - 2)

\| f1\| 2c2(j - 2)
s

+

j - 1\sum 
i=2

c2t (ct + cs)
2(j - i - 1)

\| fi\| 2c2(j - i)
s

+
1

\| fj\| 2

\Biggr\} 
=: bj , 3\leq j \leq m.

(1.8)
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FILTERING FOR ANDERSON ACCELERATION A1575

In the length filtering algorithm, the sums of the squared norms of the first l
columns of f , multiplied by the sum over bj , j = 1, . . . , l, as defined in (1.6)--(1.8), are
used to bound the square of the Frobenius condition number of F , truncated to its
first l columns.

In summary, the (angle) filtering algorithm introduced in [22] removes columns
of Fk which are close in angle to the subspace spanned by more recent columns.
This controls the constant Ck that multiplies higher-order residual terms of (1.3) as
shown in [22, Theorem 5.1]. However, alone this method is not sufficient to con-
trol the condition of the least-squares matrix Fk, since poor condition can also arise
from large magnitude differences between the lengths of the columns of Fk. The full
condition filtering algorithm presented here consists of the length- filtering algorithm
(Algorithm 2.5) followed by the angle-filtering algorithm (Algorithm 2.4).

2. Filtered AA. The filtered Anderson acceleration (FAA) algorithm presented
here consists of two filtering steps, the first filtering for disparity in column lengths,
and the second filtering for small angles between each column and the subspace
spanned by the columns to its left. The filtered acceleration algorithm is presented in
Algorithm 2.1. The individual filtering routines are described in Algorithm 2.4 and
the new algorithm (Algorithm 2.5). The algorithm removes columns from Fk at each
iteration k > 1 to ensure condF (Fk) \leq \=\kappa , where \=\kappa is a user-chosen upper bound on
the allowable condition number.

The FAA algorithm (Algorithm 2.1) requires two additional parameters in com-
parison to the standard AA algorithm (Algorithm 1.1). The first is \=\kappa , a user-
determined upper bound on the condition of each matrix Fk used in the least-squares
problem. The second is cs, a lower bound on the allowable direction sines between
each column of each matrix Fk and the subspace spanned by columns with more re-
cent information, as defined in (1.2). A discussion on parameter selection is included
in subsection 2.1.

Algorithm 2.1 (Filtered Anderson acceleration). The algorithm starts with a
fixed-point update step (k = 0) and an AA(1) step (k = 1); then the filtering starts at
k= 2.
Choose initial iterate x0 and parameters cs, \=\kappa , and m
Compute w1, set \beta 0, and update x1 = x0 + \beta 0w1  \triangleleft k= 0
Compute w2  \triangleleft k= 1
Set F1 =

\bigl( 
w2  - w1

\bigr) 
and E1 =

\bigl( 
x1  - x0

\bigr) 
Compute \gamma 2 by F \ast 

1 F1\gamma 2 = F \ast 
1w2

Set m1 = 1, set \beta 1, and update x2 = x1 + \beta 1w2  - (E1 + \beta 1F1)\gamma 2
1: for k= 2, . . . do  \triangleleft k > 1
2: Compute wk+1

3: Update mk = min\{ mk - 1 + 1,m\} , and drop the last columns of Ek - 1,Fk - 1

if mk - 1 =m
4: Set Fk =

\bigl( 
(wk+1  - wk) (Fk - 1)

\bigr) 
and Ek =

\bigl( 
(xk  - xk - 1) (Ek - 1)

\bigr) 
5: [Ek, Fk,mk] = Length Filter (Ek, Fk,mk, cs, \=\kappa )
6: [Ek, Fk,Qk,Rk,mk] = Angle Filter (Ek, Fk,mk, cs)
7: Compute \gamma k+1 by Rk\gamma k+1 =Q\ast 

kwk+1

8: Set \beta k

9: Update xk+1 = xk + \beta kwk+1  - (Ek + \beta kFk)\gamma k+1

10: end for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A1576 SARA POLLOCK AND LEO G. REBHOLZ

Remark 2.2 (TSVD). We compare our numerical results with Algorithm 2.1
against the standard method of controlling the condition number by TSVD, as sug-
gested in [13]. Following [7] we implement the TSVD by computing the economy QR
factorization Fk =QR, followed by the SVD of R=UR\Sigma RV

\ast 
R, determine the largest s

such that the ratio of singular values \sigma 1/\sigma s < \=\kappa , and then restrict UR and VR to their
first s columns and \sigma R to its first s rows and columns, referred to, respectively, as
Us, Vs, and \Sigma s. The solution of the least-squares problem \gamma k+1 = argmin\| Fk\gamma  - wk+1\| 
is then given by \gamma k+1 = Vs\Sigma 

 - 1
s U\ast 

sQ
\ast wk+1. This procedure replaces lines 5--7 of Algo-

rithm 2.1.

Remark 2.3 (on the order of length and angle filtering). Algorithm 2.1 does length
filtering before angle filtering to potentially reduce the size of the QR factorization.
However, the order of the filtering steps could be reversed, provided an additional step
to truncate the factors of the QR decomposition is performed after the length filtering.
Each order has its own advantage, as discussed in Remark 3.1, which specifies how
Theorem 3.1 still holds in the case of angle filtering performed first.

2.1. Angle filtering. The angle-filtering algorithm was proposed by the authors
in [22] in order to determine a one-step residual bound for smooth problems, free from
an assumed l\infty bound on the optimization coefficients.

Algorithm 2.4 (E,F,Q,R,m = Angle filtering(E,F,m, cs)). Filter out columns
of F by direction sine.
1: Compute the economy QR decomposition F =QR
2: Compute \sigma i = | rii| /\| fi\| , i = 2, . . . ,m, where fi is column i of F , and rii is the

corresponding diagonal entry of R
3: Remove any columns i of E and F for which \sigma i < cs
4: Update m with the new number of columns of F
5: if any columns were removed then
6: Recompute F =QR
7: end if

Algorithm 2.1 has two additional parameters to choose, in comparison to stan-
dard AA. One is \=\kappa , the maximum allowable condition number. The second is cs, the
minimum allowable direction sine between columns of Fk. The condition estimate
in the length-filtering algorithm is less sharp for smaller values of cs. However, if
cs is chosen too large, the angle-filtering algorithm (Algorithm 2.4) can reduce the
algorithm to standard AA with m= 1 (see subsection 4.4 below). We generally found
a range for cs between 0.1 and 1/

\surd 
2 to work well. In problems where the solution

progresses through distinct preasymptotic and asymptotic regimes, as shown below in
subsection 4.5, it can also be advantageous to start with a higher value of cs and dy-
namically decrease it to a lower value. Heuristically this makes sense because a more
stringent angle-filtering condition can be advantageous in the preasymptotic regime,
as it prevents the buildup of higher-order residual terms. However, in the asymptotic
regime, a smaller value of cs may be preferred because the more recent information is
kept, and older columns in Fk with orders of magnitude difference in length from the
first are discarded. Our numerical examples show that the filtering algorithm (Algo-
rithm 2.1) also decreases the sensitivity of AA to the choice of maximum algorithmic
depth m, as m can be chosen quite large, and extra columns will simply be (length)
filtered out.

2.2. Length-filtering algorithm. Here we present a novel length-filtering strat-
egy. It is motivated by the bounds on columns of R - 1 from Proposition 1.2. In this
algorithm, the Frobenius norm of the first k columns of F multiplied by the sum over

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FILTERING FOR ANDERSON ACCELERATION A1577

the bounds of the squared norms of each column of R - 1, denoted as bj , j = 1, . . . , k,
as defined in (1.6)--(1.8), are used to bound the square of the Frobenius condition
number of F , denoted in the algorithm as CF . From mk down to 1, the constant
CF determined by the first k columns of F is updated, until it is less than a desired
(user-chosen) number. On terminating this loop with some number of \=k\geq 1 columns
remaining, the columns j > \=k are removed from the matrices E and F .

The combination of length and angle filtering is further justified in the next sec-
tion by the main theorem (Theorem 3.1), which shows that the combination of the
length-filtering algorithm (Algorithm 2.5) and the angle-filtering algorithm (Algo-
rithm 2.4) controls the Frobenius condition number of the least-squares matrix Fk at
each iteration k of the FAA algorithm (Algorithm 2.1).

Algorithm 2.5 (E,F,m = Length filtering(E,F,m, cs)). Filter out columns of
F by length.
1: Define ct =

\sqrt{} 
1 - c2s

2: Compute the vector norms \| fj\| 2 and the bounds bj for \| sj\| 2, given by (1.6)--
(1.8), for j = 1, . . . ,m

3: for k=m down to 1 do
4: Compute CF = (

\sum k
j=1 \| fj\| 

2
)(
\sum k

j=1 bj)

5: Exit loop if CF \leq \=\kappa 2

6: end for
7: m\leftarrow k, E\leftarrow E(:,1 :m), F \leftarrow F (:,1 :m)

3. Theory. Together, as shown below in Theorem 3.1, the two low-cost filtering
strategies, Algorithms 2.4 and 2.5, bound the Frobenius condition number of each
least-squares matrix that arises in AA. Let F =QR be an economy QR decomposition
of n \times m matrix F . Then \| R\| F = \| F\| F , and \| R\| 2 = \| F\| 2. By the equivalence
\| F\| 2 \leq \| F\| F \leq 

\surd 
m\| F\| 2 [16, Chapter 2], controlling the Frobenius condition number

of F controls the 2-norm condition number of F as well.
The main theoretical result is that given a minimum direction sine 0 < cs \leq 1

and a maximum condition number \=\kappa , the combination of Algorithms 2.4 and 2.5
ensures the matrix Fk from Algorithm 2.1 has a Frobenius condition number no
greater than \=\kappa at each iteration k. We are concerned with the case n\gg m, meaning the
number of degrees of freedom is some orders of magnitude larger than the algorithmic
depth m=mk. In this setting, an additional computational cost of Algorithm 2.5 is
negligible.

Theorem 3.1. Suppose the FAA algorithm (Algorithm 2.1) is run with a given
0 < cs < 1 and \=\kappa > 1. Then, at each iteration k, the matrix Fk of the least-squares
problem solved in step 7 of the FAA algorithm (Algorithm 2.1) by the QR decompo-
sition has a Frobenius and hence a 2-norm condition number less than \=\kappa . Moreover,
both filtering steps are guaranteed to keep the first column of Fk, preserving the use
of the most recent information.

Proof. By the standard inequality \| F\| 2 \leq \| F\| F [16, Chapter 2], it is sufficient
to establish the result for the Frobenius condition number. First we have

cond(F )2F = \| F\| 2F
\bigm\| \bigm\| F - 1

\bigm\| \bigm\| 2
F
= \| F\| 2F

\bigm\| \bigm\| R - 1
\bigm\| \bigm\| 2
F
=

\Biggl( 
m\sum 
i=1

\| fi\| 2
\Biggr) \bigm\| \bigm\| R - 1

\bigm\| \bigm\| 2
F
,(3.1)

where m is the number of columns of F .
Suppose the length-filtering algorithm (Algorithm 2.5) is done first. Then, since

the bounds on column j of R - 1 in Proposition 1.2 given by (1.4)--(1.5) depend only
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A1578 SARA POLLOCK AND LEO G. REBHOLZ

on information with indices p\leq j, removing columns p of F for which p > j does not
change the column sum of index j. Hence the matrix \^F with \^m columns returned
from the length- filtering algorithm (Algorithm 2.5) and sent to the angle-filtering
algorithm (Algorithm 2.4) would have condition number less than \=\kappa if it satisfied the
angle conditions sin(fi,\scrF i - 1), i= 2, . . . , \^m. The first index i= 1 is not included in the
previous statement, as the angle condition is satisfied on the first column by default.
Moreover, Algorithm 2.5 will never remove the first column of F so long as \=\kappa \geq 1 as
k = 1 yields CF = 1. The angle-filtering algorithm (Algorithm 2.4) may remove any
of columns 2, . . . \^m of \^F , which would only decrease the bounds in proposition 1.2 by
removing terms. Hence the condition estimate holds.

Remark 3.1. If the angle-filtering algorithm is done first, then Theorem 3.1 still
holds. In this case, the hypotheses of Lemma 1.1 are satisfied, and by (3.1) and
Proposition 1.2, the length-filtering algorithm (Algorithm 2.5) produces an output
matrix with cond(F )F < \=\kappa . To update the QR after length filtering, the QR factors
can simply be truncated to agree with the updated F . In particular,

R=

\biggl( 
R11 R12

R22

\biggr) 
and Q=

\bigl( 
Q1 Q2

\bigr) 
,

where R11 and Q1 correspond to the first k columns of F which are kept by the length-
filtering algorithm (Algorithm 2.5). Then it suffices to replace R by R11 and Q by Q1

(or Q\ast wk+1 by the corresponding entries of Q\ast 
1wk+1 if Q itself is not stored).

Although the two filtering steps could be run in either order, we run the length
filtering first because it has lower computational complexity and potentially reduces
the number of columns used in the QR factorization(s) of the angle-filtering algorithm
(Algorithm 2.4). If a sharper condition estimate is preferred, the angle filtering could
be run first, after which parameter cs could be replaced by c\prime s, the smallest realized
value of sin(fi,\scrF i - 1) = | rii| /\| fi\| , where i indexes over the columns remaining after
angle filtering. Since c\prime s \geq cs, the result is a sharper estimate of the condition from
length filtering. In our tests (not shown), this reordering did not make substantial
impact on the total iterations to convergence.

4. Numerics. In the following numerical tests, the FAA algorithm
(Algorithm 2.1) is tested against Anderson with the TSVD applied to the least-squares
problem as in Remark 2.2. The first three examples show the advantages of filtering
in more complex applications. The last two examples give insight into how filtering
works in the preasymptotic vs. asymptotic regimes. In particular, as seen in subsec-
tion 4.4, the length-filtering algorithm (Algorithm 2.5) dominates in the asymptotic
regime, where the condition of the least-squares matrix can be compromised by the
disparity in the column lengths as the algorithm converges. The angle-filtering al-
gorithm (Algorithm 2.4), on the other hand, stabilizes the algorithm throughout the
preasymptotic regime and may be an important tool in convergence from poor initial
iterates.

4.1. Nonlinear Helmholtz equation. We consider first the approximation of
solutions to the nonlinear Helmholtz (NLH) equation from optics, where the interest
is the propagation of continuous-wave laser beams through transparent dielectrics.
The NLH system in one dimension is written as follows: Find u : [0,10]\rightarrow C satisfying

uxx + k20
\bigl( 
1 + \epsilon (x)| u| 2

\bigr) 
u= 0, 0<x< 10,
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FILTERING FOR ANDERSON ACCELERATION A1579

where u = u(x) represents the unknown (complex) scalar electric field, k0 denotes
the linear wavenumber, and \epsilon (x) is a material dependent quantity involving the lin-
ear index of refraction and the Kerr coefficient. The physically consistent two-way
boundary condition is derived in [14, 5] and is given by

ux + ik0u= 2ik0 at x= 0,

ux  - ik0u= 0 at x= 10.

Despite being one dimensional, this system can be quite challenging for nonlinear
solvers due to its cubic nonlinearity [4, 5].

A Picard-type iteration for this NLH system takes the form

uj+1xx + k20uj+1 + k20\epsilon (x)| uj | 2uj+1 = 0, 0<x< 10,

uj+1x + ik0uj+1 = 2ik0, x= 0,

uj+1x  - ik0uj+1 = 0, x= 10.

This iteration is advantageous due to its simplicity and can work directly with complex
numbers. The Newton iteration, on the other hand, seems to require decomposition
into the real and imaginary parts, leading to fully coupled block linear systems at each
iteration. Here, the system is discretized in space with a second-order finite difference
approximation using N =2001 equally spaced points, and for an initial guess we use
the nodal interpolant of (cos(k0x) + i sin(k0x)), which is the linear (\epsilon = 0) Helmholtz
equation solution for the same k0.

For our tests, we consider parameters k0 = 8 and constant \epsilon = 0.2, and a plot
of the solution is shown in Figure 1. Our computations use no relaxation (\beta = 1)
and depth m= 20, and we compare both the condition number and the convergence
of usual AA to FAA (\=\kappa = 108 and varying cs =0.1, 0.2) to AA with TSVD (varying
tolerances 103 and 108). From Figure 2 (left) we observe the convergence of each
method, and it is clear that TSVD and FAA both have much better convergence
than usual AA. We also observe that filtering with cs = 0.1 provides the fastest
convergence, and TSVD with both 103 and 108 tolerances and FAA with cs = 0.2 all
have similar convergence behavior. Somewhat larger and smaller cs (0.05, 0.3, 0.4)
were also tested, with results similar to that of cs = 0.2. We observe from Figure 2
(right) that while the optimization problem of usual AA has a high condition number
near the end of the iteration, the other methods behave as designed: TSVD holds
the condition number below its tolerance, and FAA holds the condition number lower
than TSVD with tolerance 103.

4.2. 2D Navier--Stokes equations. Our next test is for the 2D driven cavity
problem for the steady Navier--Stokes equations (NSE), which are given on a domain
\Omega = (0,1)2 by

0 1 2 3 4 5 6 7 8 9 10
x

-1

-0.5

0

0.5

1

u

real(u)
imag(u)

Fig. 1. The plot above shows the solution of the nonlinear Helmholtz problem with k0 = 8 and
\epsilon = 0.2.
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FAA c
s
=0.2

Fig. 2. Shown above are convergence plots (left) and condition number plots (right) for AA
with m = 20 applied to the nonlinear Helmholtz problem with varying parameters for TSVD and
FAA.

u \cdot \nabla u+\nabla p - Re - 1\Delta u = f,

\nabla \cdot u = 0,

u| \partial \Omega = ubc,

where u and p are the unknown velocity and pressure, f is an external forcing, ubc is
a given (Dirichlet) boundary condition that is 0 on the sides and bottom and \langle 1,0\rangle T
on the lid, and Re is the Reynolds number.

The Picard iteration for the steady NSE is given by (suppressing the spatial
discretization)

uj \cdot \nabla uj+1 +\nabla pj+1  - Re - 1\Delta uj+1 = f,

\nabla \cdot uj+1 = 0,

uj+1| \partial \Omega = ubc,

and we use an initial guess of zero u0 = 0 (which implies that u1 is the Stokes solution
with this problem data). The iteration is enhanced with m= 50 AA and no relaxation
(\beta = 1). As found in [22, 24], large m (even m = k  - 1) for steady NSE problems
tends to work well and often better than smaller m when Re is large. We note that
for this test, m = 0 gave no convergence, m = 1 gave slow convergence, and m \geq 10
gave convergence similar to m= 50 (tests omitted). A key advantage of the filtering
strategy proposed herein is that one can choose large m and if m is ``too large"" on
a particular iteration (large condition number of F ), then m is effectively reduced in
an optimal manner (with respect to the optimization problem).

The spatial discretization is grad-div stabilized (with parameter 1) (P2, P1) Taylor--
Hood elements on a triangulation created from a uniform 100\times 100 triangulation that
is further refined once around the edges (within 0.1 from the boundary), which pro-
vides a total of 190,643 degrees of freedom; a plot of the mesh is shown in Figure 3
(right).

Results for convergence and condition number versus iteration are given in
Figure 4 for usual AA, filtering with \=\kappa = 108 and cs = 0.2 and 1/

\surd 
2, and TSVD

with tolerances 103 and 108. We observe that usual AA has a very large condition
number near the end of the iteration and that both TSVD and FAA can control this.
We observe good convergence with all methods, except that TSVD with tolerance
103 displays some erratic behavior and converges somewhat slower than the other
methods. Only filtering with cs = 1/

\surd 
2 beat usual AA, although only slightly.
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FILTERING FOR ANDERSON ACCELERATION A1581

Fig. 3. The plot above shows the solution of the steady Navier-Stokes 2D driven cavity problem
at Re= 10,000 (left) and the mesh used in our numerical tests (right).

0 20 40 60 80
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105

1010
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TSVD 1e+8
FAA c

s
=0.2

FAA c
s
=0.707

Fig. 4. Shown above are convergence plots (left) and condition number plots (right) for the 2D
Navier-Stokes driven cavity test problem with varying parameters for TSVD and filtering.

4.3. Gross--Pitaevskii equations. For our next test, we consider the Gross--
Pitaevskii equations (GPE). In addition to demonstrating how well FAA works on
another important application problem, this test will show how filtering naturally
works in conjunction with the dynamic depth techniques of [22]. The GPE are given
by

\mu \phi (x) = - 1

2
\Delta \phi (x) + V (x)\phi (x) + \eta | \phi (x)| 2\phi (x), x\in \Omega ,

\phi (x) = 0, x \in \partial \Omega ,\int 
\Omega 

| \phi (x)| 2 dx= 1,

where V is a given trapping potential of the form V (x) = 1
2 (\gamma 

2
1x

2
1 + \cdot \cdot \cdot + \gamma 2

dx
2
d) with

\gamma i > 0 for all i and real parameter \eta , and \phi is the unknown and the eigenvalue \mu can
be calculated as

\mu =

\int 
\Omega 

\biggl( 
1

2
| \nabla \phi | 2 + V | \phi | 2 + \eta | \phi | 4

\biggr) 
dx.

This system models stationary solutions of the nonlinear Schr\"odinger (NLS) equa-
tion, which is also commonly referred to as the the nonrotational GPE in the context
of Bose--Einstein condensates (BEC) [17, 21, 3]. In the GPE setting, \phi represents
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A1582 SARA POLLOCK AND LEO G. REBHOLZ

the macroscopic wave function of the condensate and the parameter \eta being posi-
tive/negative represents attraction/repulsion of the condensate atoms in GPE.

We apply AA with and without TSVD, and FAA to a FEM discretization of the
Picard-projection iteration from [15], which we call PPh and is defined by

PPh Step 1: Given \phi k \in Xh with \| \phi k\| = 1, find \^\phi k+1 \in Xh satisfying

1

2
(\nabla \^\phi k+1,\nabla \chi ) + (V \^\phi k+1, \chi ) + \eta (| \phi k| 2 \^\phi k+1, \chi ) = (\phi k, \chi ).

PPh Step 2: Calculate

\phi k+1 =
\^\phi k+1

\| \^\phi k+1\| 
.

We consider PPh as a fixed-point iteration solver for a 2D test from [3] that rep-
resents a harmonic oscillator potential together with a potential from a stirrer that
corresponds to a far-blue detuned Gaussian laser beam, i.e.,

V (x, y) =
1

2

\bigl( 
x2 + y2

\bigr) 
+ 4e - ((x - 1)2+y2).

Solutions are computed on \Omega = ( - 8,8)2 using \eta =10,000 and initial guess

\phi 0(x, y) =
1

\pi 1/2
e - (x2+y2)/2,

using a uniform 128 x 128 triangulation and globally continuous P2 elements. A plot
of the solution is shown in Figure 5 as a surface plot, which agrees well with the
literature [15, 3].

PPh is run with AA m= 1 until the residual is below 10 - 2, after which m= 20;
no relaxation is used. This multilevel depth strategy of small m early and large m
late in the iteration proposed in [22] (and motivated by their analytical convergence
analysis) was found effective in [15] for this test problem, and in fact we find that
if m \geq 10 is used for the entire iteration, then we do not get convergence (a plot of
failed convergence for constant m =20 AA is shown in Figure 6, and we note that AA
with constant m= 20 neither TSVD nor filtering with the same parameters as below
provided for convergence).

Tests are run with multilevel m= 1 and then m= 20 AA with no filtering, FAA
with \=\kappa = 108 and cs =0.2:0.1:0.7, and TSVD with tolerances 103 and 108. Plots of
convergence and condition numbers for these tests are shown in Figure 6, and we
observe that usual AA, TSVD with tolerances 108 and 103, and FAA with cs =0.2

Fig. 5. Shown above is a surface plot of the converged ground state solution using \eta = 10,000.
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Fig. 6. Shown above are convergence plots (left) and condition number plots (right) for the
Gross--Pitaevskii test problem.

and 0.6 all had similar good convergence (cs =0.3, 0.4, and 0.5 converged similarly
as well; plots omitted). FAA with cs =0.7 converged significantly slower, and upon
inspection we found that this filtering effectively reduced the AA to m = 1 at each
step. AA with constant m= 20 failed to converge, with or without filtering and TSVD
(at least with the same parameters as above).

4.4. A monotone quasi-linear equation. This example of an iteration for
a finite element discretization of monotone quasi-linear problems, adapted from [8,
Example 1], illustrates the convergence behavior of filtering in the asymptotic regime.
We consider the PDE

 - div(\mu (| \nabla u| )\nabla u) = f in \Omega = (0,1)\times (0,1), u= 0 on \partial \Omega ,(4.1)

with \mu (| \nabla u| ) = 1+ arctan(| \nabla u| ), f = \pi .(4.2)

In our experiments the solution space Vh consists of C0 piecewise quadratic (P2) finite
elements on a uniform triangularization of the unit square with right triangles and 256
subdivisions along each of the x- and y-axes, for a total of 263,169 degrees of freedom.
Each update step wk+1 is found by the solution to the following linear problem: Find
wk+1 \in Vh such that

(\nabla wk+1,\nabla v) = (f, v) - (\mu (| \nabla uk| )\nabla uk,\nabla v) for all v \in Vh.(4.3)

By the analysis of [8], the fixed-point iteration g(uk) = uk + \beta wk+1 is contractive for
0 < \beta \leq \beta \ast := (1 +

\surd 
3/2 + \pi /3) - 2. Accelerating the fixed-point iteration written in

terms of a constant damping factor \beta is the same as accelerating the original fixed-
point iteration g(uk) = uk + wk+1 using \beta k = \beta for each iteration k in either the
original AA or the FAA algorithm (Algorithm 2.1). We consider iterations both with
and without the damping factor \beta sufficiently small. In Table 1 we show the number
of iterations to residual convergence \| wk\| < 10 - 10 from the starting guess of u0 = 0.
We compare the filtering algorithm with maximum condition number \=\kappa = 108 with
the TSVD algorithm with maximum condition number up to 108.

For the contractive iteration with \beta = \beta \ast , we see that the TSVD approach for
limiting the condition number overall slows convergence as the maximum allowed
condition number \=\kappa is decreased. The filtering approach also limits the condition
number but improves convergence, so long as the minimum allowable angle cs between
columns of the least-squares matrix Fk in the angle-filtering algorithm (Algorithm 2.5)
is not too large. In this case cs = 2 - 1/2 is too large and restricts the algorithmic
depth after filtering to m = 1. Results for the FAA algorithm (Algorithm 2.1) are
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A1584 SARA POLLOCK AND LEO G. REBHOLZ

Table 1
The number of iterations to residual convergence \| wk\| < 10 - 10 for the monotone quasi-linear

problem (4.1) with iteration (4.3), using FAA with cs = 0.1,0.4,2 - 1/2, and the TSVD with different
maximum condition numbers \=\kappa and m= 5,10,20,40. Without acceleration, the iteration with \beta = \beta \ast 

converges in 175 iterations, and the iteration with \beta = 1 does not converge.

\beta = \beta \ast \beta = 1

FAA, \=\kappa = 108 m= 5 m= 10 m= 20 m= 40 m= 5 m= 10 m= 20 m= 40

cs = 0.1 32 27 27 27 21 20 20 20

cs = 0.4 31 31 31 31 21 21 21 21

cs = 2 - 1/2 96 96 96 96 22 23 23 23

TSVD m= 5 m= 10 m= 20 m= 40 m= 5 m= 10 m= 20 m= 40
\=\kappa = 102 42 57 77 100 45 64 119 238

\=\kappa = 103 35 45 68 96 32 38 80 164
\=\kappa = 104 30 40 64 91 30 33 63 121

\=\kappa = 106 33 36 58 96 30 26 45 85

\=\kappa = 108 33 38 64 92 30 22 35 51
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Fig. 7. The columns used after filtering for the monotone quasi-linear problem (4.1) with it-
eration (4.3) with m = 10 and \beta = \beta \ast . Column 1 is always used, and column 2 may be filtered
out in angle filtering. From left to right: cs = 0.1, \=\kappa = 108; cs = 0.4, \=\kappa = 108 (as in Table 1);
cs = 0.1, \=\kappa = 1016; cs = 0.4, \=\kappa = 1016.

only shown here for the maximum condition number \=\kappa shown for the TSVD since
the length-filtering algorithm (Algorithm 2.5) overestimates the condition and hence
as shown in the previous examples actually restricts the condition number to several
orders of magnitude less than \=\kappa . The agreement in the iteration counts for filtering
as algorithmic depth m is increased reflects the length-filtering algorithm cutting off
older columns from Fk so that increasing m does not actually change the iteration
after a certain point, whereas the TSVD continues to use all columns available which
can slow convergence.

Filtering in the contractive setting is further illustrated with Figure 7, which
shows the columns of Fk used at each iteration k with the filtering approach with
algorithmic depth m = 10. The left two plots illustrate the columns of Fk used for
the data shown in Table 1 with \=\kappa = 108 and cs = 0.1 (leftmost) and cs = 0.4 (to its
right). The case with cs = 2 - 1/2 is not shown because it simply restricts the iteration
to m = 1 throughout the entire iteration. The right two plots in Figure 7 show the
columns of Fk used for cs = 0.1 and cs = 0.4 (rightmost) with \=\kappa = 1016. In this case we
see for cs = 0.1 that the difference between the lower and higher condition bounds is
that the length filtering in the second half of the iteration is suppressed for \=\kappa = 1016,
although this does not have much of an effect on the total number of iterations. For
cs = 0.4, the angle filtering, which filters out earlier columns, dominates throughout
both iterations.

For damping factor \beta = 1, the iteration defined by update step (4.3) is not con-
tractive, and the iteration does not converge without acceleration. It is interesting
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Fig. 8. The columns used after filtering for the monotone quasi-linear problem (4.1) with iter-
ation (4.3) with m= 10, \beta = 1, and \=\kappa = 108, as in Table 1. Column 1 is always used, and column 2
may be filtered out in angle filtering. Left: cs = 0.1, center: cs = 0.4, right: cs = 2 - 1/2.

to compare the iteration counts for cs = 2 - 1/2 for \beta = \beta \ast and \beta = 1. For \beta = 1,
the stricter requirement on the angles between columns of Fk does not make a large
impact on convergence. As seen in the rightmost plot of Figure 8, only the second
column is regularly filtered out. This illustrates that smaller damping factors can
actually cause alignment of columns of Fk, which can interfere with both convergence
and the condition of the least-squares problem. Comparing with the TSVD in Ta-
ble 1, the filtered algorithm converges after fewer total iterations, and is robust across
parameter ranges tested, whereas the TSVD shows similar performance only when the
right number of columns m= 10 is used and when the allowable condition number is
high enough. The second interesting observation that we see in both Figures 7 and 8
is that the angle-filtering algorithm (Algorithm 2.4) tends to filter out the earlier (left-
most) rather than the later columns, and most often the second. We see this again in
the next example for a problem where the approximation progresses through a more
substantial preasymptotic regime and where a more stringent condition on the angle
between columns of Fk can be very useful.

4.5. \bfitp -Laplace. In this example we consider finite element discretizations of the
elliptic p-Laplace equation

 - div
\Bigl( 
(| \nabla u| 2/2)(p - 2)/2\nabla u

\Bigr) 
= f in \Omega .

The p-Laplace (or p-Poisson) equation arises frequently as a model problem in non-
Newtonian and turbulent flows and flows in porous media [9, 10], as well as in the
discretization of abstract linear operators in Banach space [19]. If 1 < p < 2, the
equation is singular, as the coefficient on the nonlinear diffusion coefficient is negative
and blows up as | \nabla u| goes to zero. Hence we consider a regularized equation

 - div

\Biggl( \biggl( 
\epsilon 2 +

1

2
| \nabla u| 2

\biggr) (p - 2)/2

\nabla u

\Biggr) 
= f in \Omega with \epsilon = 10 - 14.(4.4)

The equation for 1 < p < 2 is more challenging to solve for p closer to one,
and here we use p = 1.04, which is quite small; cf. [10, 22]. Similarly to [6, 22],
we consider (4.4) over the domain \Omega = (0, 2) \times (0,2) with homogeneous Dirichlet
boundary conditions, constant forcing f = \pi , and a relatively bad initial guess u0 =
xy(x - 1)(y  - 1)(x - 2)(y  - 2) for the Picard iteration given by the following update
step: Find wk+1 \in Vh satisfying for all v \in Vh\int 

\Omega 

a\epsilon ,p(uk)\nabla wk+1 \cdot \nabla v dx=

\int 
\Omega 

fv dx - 
\int 
\Omega 

a\epsilon ,p(uk)\nabla uk \cdot \nabla v dx,(4.5)
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Table 2
The number of iterations to residual convergence \| wk\| < 10 - 10 for problem (4.4) using update

(4.5) discretized with Lagrange Pk elements with k = 1,2,3,4. Results are shown using the TSVD
with different maximum condition numbers \=\kappa , and FAA with cs = 0.1,2 - 1/2 and a dynamically
chosen cs given by (4.6). For runs that did not converge within 500 iterations, >500 demarks
cases where the last 10 residuals are less than 1, suggesting the iteration might eventually converge;
otherwise, iterations failing to converge are marked F. All runs used algorithmic depth m= 10.

FAA, \=\kappa = 108 P1 P2 P3 P4

cs = 0.1 F 364 273 218

cs = 2 - 1/2 198 171 203 243

cs dynamic 142 134 152 215

TSVD P1 P2 P3 P4

\=\kappa = 102 >500 207 154 >500

\=\kappa = 103 F F >500 F
\=\kappa = 104 F F >500 F

\=\kappa = 106 F F >500 F

\=\kappa = 108 F F >500 F

with a\epsilon ,p(uk) =
\bigl( 
\epsilon 2 + 1

2 | \nabla uk| 2
\bigr) (p - 2)/2

. We consider discretizations with C0 Pk La-
grange elements for k = 1,2,3,4, over a uniform triangularization of \Omega with right
triangles with 256 subdivisions in each of the x- and y-axes, for a total of 66,049
(P1); 263,169 (P2); 591,361 (P3); and 1,050,625 (P4) respective degrees of freedom.
We compare the FAA algorithm (Algorithm 2.1) with both fixed and dynamically
chosen parameters to the TSVD approach. The angle- filtering parameters used in
this example are cs = 0.1, cs = 2 - 1/2 and the dynamic choice is

cs =max
\Bigl\{ 
min

\Bigl\{ 
\| wk+1\| 1/2,2 - 1/2

\Bigr\} 
,0.1

\Bigr\} 
,(4.6)

which transitions between the smaller and larger choices of cs based on the norm of
the fixed-point update step.

Table 2 shows the number of iterations to residual convergence \| wk\| < 10 - 10

for the filtered algorithm (Algorithm 2.1). We see that the filtering algorithm is an
enabling technology that allows us to solve this problem at all, whereas the TSVD
approach is only successful when the condition number is strictly controlled with
\=\kappa = 102, and even then we only see a successful solve within 500 iterations for the P2

and P3 elements. The filtering method is successful in all but one case: cs = 0.1 with
P1 elements.

The next observation we can make is that the angle-filtering algorithm (Algo-
rithm 2.4) is important although not always sufficient for successful passage through
the preasymptotic regime. Figure 9 shows residual convergence using the full (length
plus angle) filtering approach, just angle filtering and just length filtering. The plot on
the left with cs = 0.1 for P2 elements shows that the length filtering (with no condition
enforced on the angles between columns of Fk) still can work well in the asympototic
regime and in this case is an adequate if not efficient way through the preasymptotic
regime. The center plot shows P2 elements with cs = 0.5, where with a stronger an-
gle condition the angle filtering alone is sufficient to achieve asymptotic convergence,
whereas the sharper estimate on the condition number from a larger value of cs does
not force the length filtering alone to remove enough columns to converge. The plot
on the right for P4 elements with cs = 0.1 reinforces these observations, demonstrating
that the combination of length and angle filtering rather than one strategy alone is
more successful, in agreement with the theory.
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Fig. 9. Residual convergence for (4.4) using update (4.5), comparing full filtering, angle filtering
only, and length filtering only. Left: Lagrange P2 elements with parameter cs = 0.1; center: Lagrange
P2 elements with parameter cs = 0.5; right: Lagrange P4 elements with parameter cs = 0.1.
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Fig. 10. The columns used after filtering for problem (4.4) using update (4.5), as in Table 2
with Lagrange P2 elements. Column 1 is always used, and column 2 may be filtered out in angle
filtering. Top: cs = 0.1, bottom left: cs = 2 - 1/2, bottom right: cs dynamically set by (4.6). Each
simulation uses algorithmic depth m= 10.

We further see the importance of angle filtering in the preasymptotic regime by
comparing the first plots in Figures 10 and 11, which show the columns of Fk used at
each iteration k. For cs = 0.1 for P2 and respectively P4 elements, we see less angle
filtering in the P1 elements throughout the early stages of the iteration, whereas the
P4 elements see more alignment in the columns of Fk and progress more quickly to
the asymptotic regime with a small angle- filtering parameter. This is at least in part
due to the residual bound (1.3), as the angle filtering not only controls the condition
number, but also controls the scaling and buildup of higher-order terms in the residual,
which matter more when the residual is larger and less when it is smaller. On the
other hand, with a larger angle-filtering parameter cs = 2 - 1/2, the angle filtering
remains heavy throughout the iteration, which ultimately slows convergence in the
asymptotic regime.

For this example, where successful solves transition from a poor initial guess
through a preasymptotic regime into an asymptotic regime, the dynamic choice of
angle parameter cs performs the best, as seen in Table 2. This strategy controls the
accumulation and scaling of higher-order terms in the residual early in the iteration,
and allows greater algorithmic depth when the residual terms are small enough not to
matter, by which the improvement in the first-order term in the residual bound (1.3)
from addition columns of Fk yields a faster solve.
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Fig. 11. The columns used after filtering for problem (4.4) using update (4.5), as in Table 2
with Lagrange P4 elements. Column 1 is always used, and column 2 may be filtered out in angle
filtering. Top: cs = 1, middle: cs = 2 - 1/2, bottom: cs dynamically set by (4.6). Each simulation
uses algorithmic depth m= 10.

5. Conclusion. In this paper we developed a column-filtering strategy to con-
trol the condition of the least-squares problem in Anderson acceleration. We demon-
strated theoretically that the method controls the condition number of the matrix
used in the least-squares problem at each iteration of the algorithm. The filtering
algorithm consists of two phases, one which filters for disparity in column length, and
the second which imposes a lower bound on the angles between subspaces spanned
by the columns of the least-squares matrix. The angle-filtering approach has already
been demonstrated by the authors to aid convergence in [22], as it enforces a sufficient
condition for controlling the scaling of higher-order terms in the residual expansion for
nonlinear problems. The angle filtering is seen to be active more in the preasymptotic
regime, whereas the presently introduced length-filtering approach is more active in
the asymptotic regime where older columns in the least-squares matrix can be many
orders of magnitude greater in length than more recent columns due to the conver-
gence of the algorithm. The method is demonstrated on a range of problems based
on discretized partial differential equations.

Overall, we see an improvement in convergence properties using the introduced
FAA algorithm. A discussion of effective parameter ranges and a dynamic strategy
for choosing algorithm parameters is included. Comparing to AA using TSVD, in our
numerical tests FAA performed always at least as well, but sometimes substantially
better. In our tests where both FAA and AA with TSVD converged in a similar
number of iterations, FAA maintained a lower condition number for the least-squares
problem. Future work includes integrating the filtering strategies introduced herein
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with dynamic selection of the relaxation parameter to further enhance stability in the
preasymptotic and efficiency in the asymptotic phases of the solution process.

Acknowledgment. The authors would like to thank the anonymous referees for
providing suggestions that improved the clarity and presentation of this article.
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