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Abstract

We introduce MIND2WEB, the first dataset for developing and evaluating generalist
agents for the web that can follow language instructions to complete complex tasks
on any website. Existing datasets for web agents either use simulated websites or
only cover a limited set of websites and tasks, thus not suitable for generalist web
agents. With over 2,000 open-ended tasks collected from 137 websites spanning
31 domains and crowdsourced action sequences for the tasks, MIND2WEB pro-
vides three necessary ingredients for building generalist web agents: 1) diverse
domains, websites, and tasks, 2) use of real-world websites instead of simulated
and simplified ones, and 3) a broad spectrum of user interaction patterns. Based
on MIND2WEB, we conduct an initial exploration of using large language models
(LLMs) for building generalist web agents. While the raw HTML of real-world web-
sites are often too large to be fed to LLMs, we show that first filtering it with a small
LM significantly improves the effectiveness and efficiency of LLMs. Our solution
demonstrates a decent level of performance, even on websites or entire domains the
model has never seen before, but there is still a substantial room to improve towards
truly generalizable agents. We open-source our dataset, model implementation,
and trained models (https://osu-nlp-group.github.io/Mind2Web) to facilitate
further research on building a generalist agent for the web.

1 Introduction

The web now hosts billions of websites [7] that cover virtually every aspect of the digital world. In
this work, we seek to answer the question: How can we build a generalist agent for the web that,
given any website, can follow language instructions and carry out the corresponding tasks? Some
exemplar tasks for such an agent are shown in Figure 1. A generalist agent could make the web more
accessible, which is becoming increasingly difficult as modern websites provide increasingly more
functionalities that also increase their complexity and learning curve. On the other hand, such an agent
may also turn the entire web into an unprecedentedly powerful and versatile tool [23, 27] that can
enhance large language models (LLMs). For example, it may be used as a plugin for ChatGPT [24] to
directly acquire information and carry out actions on HTML websites, instead of only retrieving web
content through a retriever tool [8, 18] or relying on pre-defined APIs for each web service [34, 37].

A generalist agent for the web shall meet the following desiderata: First, it shall work on any website
on the Internet. Since it is infeasible to collect sufficient training data that covers all websites, this
requires the agent to be inherently generalizable to websites or even domains it has never seen before.
Second, it shall work on real-world websites, which can be dynamic, complex, and noisy. Most
modern websites are dynamic, generating and rendering different content in response to user actions.
This necessitates the agent to model each website as a partially-observable environment instead of
assuming full knowledge a priori. The agent should also not make strong simplifying assumptions

*Corresponding authors: {deng.595, sun.397, su.809} @osu.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.


https://osu-nlp-group.github.io/Mind2Web
https://osu-nlp-group.github.io/Mind2Web

§ unrteo

(b) Book a roundtrip on July 1 from Mumbai to || (c) Find a flight from Chicago to London on
London and vice versa on July 5 for two adults. 20 April and return on 23 April.

Do,

VirginisDopartment of otor venicies

Home

Please select an appointment type below.

Knowledge Test: Car or Motorcycie Only
~Obin 8 eer oo censa o ce o oty (et st

(d) Find Elon Musk's profile and follow, start (e) Browse comedy films streaming on Netflix || (f) Open page to schedule an appointment for
notifications and like the latest tweet. that was released from 1992 to 2007. car knowledge test.

Travel (27.4%) Shopping (17.5%)

At { Digital ‘
3.4% 2.3% )
Other Airlines Speciality —
5 20/ 5 89/, ., o) |
6.2% 5.8% A Depar T
General tment
| 1.6%
3.3% o0 et
Restaurant General Entertainment (16.1%)
3.1% ) 4 4

Movie

Car . Event || Music || Sports

. Hotel " 2 A

Ground Rental Y, 3.8% 3.5% 3.5%
3.7% 2.4%

Figure 1: Sample tasks and all domains featured in MIND2WEB. The array of diversity allows for
testing an agent’s generalizability across tasks on the same website (a vs. b), similar tasks on different
websites (a vs. ¢), and even to entirely disparate tasks, websites, and domains (d—f).

about the environments but must embrace the full complexity and sometimes noise, e.g., due to
sub-optimal website designs. Finally, it shall support diverse and sophisticated interactions with
websites. Tasks from users can be highly diverse and take a large number of steps to complete (e.g.,
the task in Figure 1(b) would take 14 actions). An agent that only supports simple tasks may provide
limited value to users.

Building an agent for the web is not entirely new. There have been numerous prior efforts in
varied forms. However, none of them meets all the requirements for a generalist agent listed above.
Existing work falls short in one to all of the following aspects: 1) Only operating in a limited and
pre-specified set of websites [5, 21, 22, 35, 40], 2) making strong simplifying assumptions about the
websites [22, 40], and 3) only supporting specific types of tasks [21, 22, 40] and/or requiring tedious
step-by-step instructions from users [5, 21, 22, 39]. Meanwhile, LLMs have been shown to excel at
grounded language understanding in complex environments with good generalizability and sample
efficiency [2, 13, 17, 33]. It is therefore promising to explore LLLMs as a candidate solution towards
generalist agents for the web. However, there lacks a good dataset that can support the development
and evaluation of generalist web agents, which is the focus of this work.

In light of this, we present MIND2WEB, a new dataset with natural language tasks and manually
annotated action sequences for developing and evaluating generalist agents for the web. It offers the
following unique features:

1. Diverse coverage of domains, websites, and tasks. MIND2WEB boasts a collection of over 2,000
tasks curated from 137 websites that span 31 different domains. This extensive range of tasks and
domains not only provides a vast landscape for exploration and learning but also opens up a new level
of versatility and complexity, fostering a more comprehensive evaluation of generalist web agents.



2. Use of real-world websites. MIND2WEB replaces the oversimplified simulation environments
commonly found in other datasets with an authentic, vibrant, and unpredictable realm of real-world
websites. We provide full traces of user interactions, webpage snapshots, and network traffic, making
it a rich source of raw, unfiltered, and dynamic data. By doing so, MIND2WEB equips models with
the capacity to interact and cope with the complexities and uncertainties of real-world environments,
thereby encouraging the development of more robust and adaptive models.

3. A broad spectrum of user interaction patterns. MIND2WEB enables users to engage in
sophisticated ways with websites, as opposed to basic operations such as searching, following links,
and reading content commonly found in existing work. Users can click, select, and type in any
elements on the website, which significantly expands the space of possible tasks. This captures all the
common actions users do on websites in real life and promotes the development of agents capable of
handling complex tasks.

With the diverse domains and websites, we create challenging out-of-distribution evaluation settings
where agents are tested on their generalizability to websites or even entire domains never seen during
training. This presents a representative evaluation of generalist agents working on unseen websites.

MIND2WEB enables us to conduct an initial exploration in using LLMs for building generalist web
agents. The HTML document of real-world webpages may contain thousands of elements, which
makes it infeasible or too costly to be fed into an LLM’s context. To address this issue, we propose
MINDACT, a two-stage model that involves first using a fine-tuned small LM to filter the web elements
and then using an LLM to select from the filtered elements in a multi-choice question answering
fashion and predict the corresponding action with the selected element. We show that MINDACT
significantly outperforms modeling strategies commonly adopted by prior work and achieves a decent
level of generalization. It can also work well with both open-source LLMs like Flan-T5 [10] through
fine-tuning and closed-source LLMs like GPT-3.5-turbo and GPT-4 through in-context learning.
However, there is still substantial room for further improvement towards generalist agents for the web.
Promising future directions include integrating multi-modal information, reinforcement learning with
feedback from real websites, and specialized LMs for web understanding and action taking.

2 MIND2WEB Dataset

Unlike existing datasets predominantly constructed within simulated environments [31, 40], our
objective is to bridge the gap between simulation and reality so that agents trained on our dataset can
work on real-world websites out of the box. To achieve this, our approach for data collection adheres
to the following principles. Firstly, instead of recreating websites in simulation, which often leads to
oversimplified environments, we engage directly with real-world websites and capture snapshots of
these environments. Secondly, we collate a diverse set of websites from varied domains and crowd-
source realistic tasks that cover a wide range of functionalities provided by these websites. Finally,
acknowledging the challenge of perfectly replicating the complexity of real-world environments, we
strive to capture a comprehensive snapshot of each website and the full interaction trace, to the extent
that all the tasks can be seamlessly replayed offline. This supports rich modeling and evaluation
approaches, ensuring a robust and practical dataset for research.

2.1 Task Definition

The primary objective of MIND2WEB is for the agent to complete a specific task on the target website
through a series of actions. Each instance in our dataset contains three components:

Task description, which outlines the high-level goal of the task. We intentionally avoid low-level,
step-by-step instructions, aiming to foster the development of agents that can comprehend and carry
out tasks in a more autonomous fashion, rather than merely following prescriptive directives.

Action sequence, which is the sequence of actions required to accomplish the task on the website.
Each action in the sequence comprises a (Target Element, Operation) pair. The Target
Element is an interactable element on the current webpage, and the Operation refers to the action
to be executed on that element. We support three common operations: Click (also including Hover
and Press Enter), Type, and Select Option. For Type and Select Option, they also require
an additional value as an argument. Actions in a sequence often span multiple webpages of a website.
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Figure 2: A sample data instance of our dataset with the three components. Actions marked in red
will result in a transition to a new webpage.

Webpage snapshots, which constitute the environment within which the task is performed. We
provide the snapshots in a variety of formats to accommodate different modeling approaches: self-
contained MHTML file that includes the raw HTML code of the webpage, DOM snapshot containing
the DOM tree along with the layout and style information of the screenshot of the rendered webpage,
HAR file that includes all the network traffic for replaying the interaction if needed, and trace file that
comprises the complete interaction trace during the task annotation process.

The agent receives the task description in the beginning. At each step, it also receives the current
webpage and the history of previous actions. The objective is to accurately predict the subsequent
action, which encompasses the target element for interaction and the operation.

2.2 Data Collection

Our data collection process consists of four stages: website selection, task proposal, task demonstra-
tion, and task verification. Website selection and task verification are done by the authors. For task
proposal and demonstration, we develop a sophisticated annotation tool using Playwright ? and hire
annotators through Amazon Mechanical Turk. Refer to Supplementary for annotation tool details.

Website Selection. We start with 5 top-level domains: Travel, Shopping, Service, Entertainment, and
Information, which are subsequently broken down into 31 (secondary) domains. We select websites
within each domain based on their popularity in the US, as ranked by similarweb.com. We manually
select 3-5 representative websites per domain, resulting in a collection of 137 websites in total.

Task Proposal. We present the annotators with a target website, a concise description of the website,
and a few sample tasks associated with it. The annotators are then asked to propose open-ended
and realistic tasks based on three criteria: the tasks should be of diverse types, require multiple
rounds of interaction, and describe the high-level goal instead of step-by-step instructions. To further
stimulate creativity and boost diversity, we use ChatGPT to generate seed tasks by prompting it
to test different functionalities of a website. We generate 50 seed tasks per website, of which 10
are randomly sampled and presented to the annotator each time. These seed tasks are mainly for
inspiration—annotators are explicitly instructed not to directly use them and we reject task proposals
that are highly similar to the seed tasks. All the proposed tasks are further screened by the authors to
ensure quality and diversity before entering the demonstration phase.

Task Demonstration. We develop a Playwright-based tool for demonstration (Figure 2). Workers
will use the tool to demonstrate how to perform the tasks they have proposed within a web browser.
To ensure accuracy, each interaction round is split into two parts: element selection and operation
selection. At each step, the worker first selects an element on the webpage by clicking within the
browser. They are then asked to confirm the selection and choose the operation to execute on the
selected element. Once the task is completed, the worker is given another opportunity to review and
modify the task description.

’https://playwright.dev/
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Table 1: Statistics of MIND2WEB compared with existing datasets.

Avg. # Avg. #
#Dom. #Env. Env. Type Elements # Tasks Task Info. Actions
. Simplified
MiniWoB++ [22] — 100 . . 28 100 Low-level 3.6
mobile websites
Simplified . .
WebShop [40] 1 shopping websites 38 12,000 products High-level 11.3
RUSS [39] - 22 Real-world 801 80 High & low 5.4
websites
PixelHelp [21] 4 4 Mobile apps - 187 High & low -
META-GUI [35] 6 11 Mobile apps 79 1,125 dialogues High-level 4.3
MOoTIF [5] 15 125 Mobile apps 188 756 High & Low 4.4
MIND2WEB 5/31 137 Real-world 1,135 2,350 High-level 7.3
websites

Task Verification. Lastly, all task demonstrations are verified by the authors to ensure the following:
First, all actions are accurately reflected in the task description. The authors will modify the task
description if needed to align it with the annotated actions; Second, the recorded actions are correct
and clean, with extraneous steps discarded. Finally, the starting and ending points of tasks are
consistent, such as excluding actions for closing popup windoes, or ending the annotation at the
search result page if the task was to find a certain item without clicking on specific items. After
verification, we discarded 61 out of the total 2,411 tasks. Among the 2,350 retained tasks, the task
description was refined in 390 instances to better correspond with the demonstrated actions, while
some extraneous steps were discarded in 187 instances. Overall, the data collection pipeline has been
proven effective and produces high-quality data.

2.3 Comparison with Existing Work and Research Challenges

MIND2WEB presents a unique ensemble of research challenges for the development of generalist
agents for the web in real-world settings. As shown in Table 1, MIND2WEB distinguishes itself
from existing literature in several ways. Firstly, MIND2WEB spans across 137 websites from
31 domains, allowing comprehensive testing of an agent’s ability in generalizing across varied
environments. Secondly, we utilize real-world websites without manual simplification. Consequently,
the included environments exhibit complexity far surpassing that encountered in previous studies,
yet better reflecting the intricacy of the modern web. With an average of over 1,000 elements per
page embedded within complex DOM structures, how to effectively process such long and highly
structured documents presents a significant challenge for modeling. Lastly, we direct the annotators
to propose open-ended tasks that explore different functionalities of the website to mimic genuine
web usage. Meanwhile, contrary to prior studies [5, 21, 22, 39] that provide step-by-step directives
and primarily focus on testing the agent’s ability to translate low-level instructions into actions, e.g.,
“Type New York in the location field, click the search button and choose the tomorrow tab,” we opted
for the setting where only high-level goals are available, e.g., “What is the weather for New York
tomorrow?” This poses a much greater yet realistic planning and grounding challenge for the agent.

3 Method: MINDACT

Employing the data from MIND2WEB, we introduce an exploratory framework, MINDACT, for our
task, leveraging the power of LLMs. Raw HTML documents, which could consist of thousands
of elements, are either infeasible or cost-prohibitive to be directly fed into LLMs. We propose a
two-stage process that synergizes the strength of small and large LMs, as shown in Figure 3. In the
first stage, a fine-tuned small LM is used to rank the elements present on a webpage, yielding a small
pool of promising candidates. In the second stage, these candidate elements are consolidated to form
a representative snippet of the webpage, which is then processed by an LLM to predict the final
action, including predicting both the element for interaction and the corresponding operation.

3.1 Candidate Generation with Small LMs

Given the task description, the snapshot of the webpage at step ¢, and the actions performed in the
preceding t — 1 steps, we treat candidate generation as a ranking task. The task is to select the top-k
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Figure 5: Illustration of action prediction with LLMs.

candidate DOM elements from the webpage that best align with both the task description and the
current step. We formulate the task query by concatenating the task description with previous actions.
The textual representation of each candidate DOM element is derived from a combination of the
element’s tag, its textual content, and salient attribute values, as well as the textual representation
of its parent and child elements. As shown in Figure 4, we pair each DOM element with the task
query and feed it to an encoder-only LM through the cross-encoder architecture [28], yielding a
matching score. At training time, we randomly sample negative elements from the webpage, and use
the target element as the positive example. The matching score is passed through a sigmoid activation
function and optimized with a binary cross entropy loss. At inference time, we score all elements in
the webpage and pick the top-k elements with the largest logits as input to the second stage.

3.2 Action Prediction with LLMs

After obtaining the top-k candidates, we utilize the candidate set to prune the webpage snapshot and
construct snippets that only include the selected candidates and their neighbours as inputs to an LLM.
Recent studies [10, 13] have suggested that training LMs for discrimination rather than generation is
more generalizable and sample-efficient for other grounding tasks. Inspired by that, we convert the
task of element selection into a multi-choice question answering (QA) problem. Instead of generating
the complete target element, the LM is trained to instead select from a list of options. For comparison,
we also include a baseline that directly generates the target element based on the provided webpage
snippet. In both cases, we directly let the LLM generate the operation, along with the additional value
needed for some operations. An example is shown in Figure 5. We incorporate up to 5 candidate
elements within each input, together with a None option, and partition the candidate set into several
groups. During training, we construct the target sequence using ground-truth actions and fine-tune
the model using a left-to-right language modeling objective. During inference, we divide the top-k
candidates into multiple clusters of five options. If more than one option is selected after a round, we
form new groups with the selected ones. This process repeats until a single element is selected, or all
options are rejected by the model, i.e., the model chooses the None option for all groups.



Table 2: Main results. The classification baseline uses DeBERTag and the generation baseline uses
Flan-T5g. For step-wise metrics, we report macro average across tasks. * For GPT-4 we use 50 tasks
for each setting with top-10 candidates due to limited budget. See Appendix D.3 for results on the 50
tasks subsets for all methods.

Cross-Task Cross-Website Cross-Domain

Ele. Acc Op.F1 StepSR SR Ele.Acc Op.F1 StepSR SR Ele. Acc Op.F1 StepSR SR

Classification 26.8 — - - 21.6 - — — 24.5 - — —

Generation 20.2 52.0 17.5 0.0 13.9 44.7 11.0 0.0 14.2 44.7 11.9 0.4
MINDACT

w/ Flan-T5g 43.6 76.8 41.0 4.0 32.1 67.6 29.5 1.7 33.9 67.3 31.6 1.6

w/ Flan-T5;, 53.4 75.7 50.3 7.1 39.2 67.1 35.3 1.1 39.7 67.2 37.3 2.7

w/ Flan-T5x, 55.1 75.7 52.0 5.2 42.0 65.2 38.9 5.1 42.1 66.5 39.6 2.9

w/ GPT-3.5 20.3 56.6 17.4 0.8 19.3 48.8 16.2 0.6 21.6 52.8 18.6 1.0

w/ GPT-4* 41.6 60.6 36.2 2.0 35.8 51.1 30.1 2.0 37.1 46.5 26.4 2.0

4 Experiments

4.1 Experimental Setup

The diversity of MIND2WEB provides a unique opportunity to evaluate an agent’s generalizability at
different levels. We seek to understand how well an agent can generalize across domains, websites,
and tasks: Testcross-Domain, fOr which we hold out two top-level domains, Information and Service,
with 912 tasks from 73 websites. Here, the model is expected to generalize to an entirely new
domain without having seen any websites or tasks associated with that domain during training.
Testcross-Website, With 10 websites from each remaining top-level domain, containing 177 tasks. In
this setting, the model is never exposed to the test websites during training. However, it has been
trained on websites from the same domain and possibly with similar tasks. This setup allows us
to assess an agent’s ability to adapt to entirely new websites, yet within familiar domains and task
contexts. Testcyoss-Task, Where we randomly split 20% of the remaining data, regardless of domains
and websites, resulting in 252 tasks from 69 websites. In this setting, the model has been exposed to
webpages from the same website during training and has likely encountered similar tasks. The rest of
data is used for training, which contains 1,009 tasks from 73 websites.

4.2 Data Preprocessing and Evaluation

We apply simple heuristics to clean the raw HTML documents, keeping only elements that are
visible and carry substantial semantic meaning, as determined by their attributes, textual content, and
neighboring elements. This effectively reduces the average number of elements from 1,135 to 580,
while still maintaining an overall recall of 94.7% for the target element in the training data.

For evaluation, we first calculate Element Accuracy that compares the selected element with
all acceptable elements, and Operation F1 that calculates token-level F1 score for the predicted
operation. This is the same as accuracy for C1ick, but considers the correctness of the input value for
Type and Select Option. Each step of the task is evaluated independently with the ground truth
action history provided. We then define Step Success Rate and Success Rate (for the whole task). A
step is regarded as successful only if both the selected element and the predicted operation are correct.
A task is regarded successful only if all steps have succeeded. It is therefore a stringent metric. For
step-wise metrics, we report macro average across tasks.

4.3 Results

Candidate Generation. We fine-tune DeBERTa [16] as the small LM for candidate generation.
As candidate generation requires high efficiency, we use the base version DeBERTag with 86M
parameters. Overall, it achieves 88.9% / 85.3% / 85.7% Recall @50 on Testcross-Task, 1€StCross-Website
and Testcross-Domains reSpectively. We use its top-50 ranking results as the candidate pool for all
subsequent experiments.

Action Prediction. We mainly compare against two baselines in Table 2. The first directly uses
the candidate generation model (DeBERTa) for element selection, which is similar to existing
work [14, 35] that combines an encoder with classification heads. However, such a design cannot
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benefit from many recent LMs that use an encoder-decoder or decoder-only architecture. It cannot
predict actions and the element selection performance is also not competitive, as shown in Table 2.
We use Flan-T5 [10] as the backbone for the generation model. The autoregressive generation
formulation (Figure 5 top) does not perform well, and even underperforms the classification baseline
on element selection despite the larger model size (220M for Flan-T5g). We observe a substantial
gain with MINDACT using the multi-choice QA formulation. The best model achieves 52.0% step
success rate under Cross-Task setting, and 38.9% / 39.6% when generalizing to unseen websites
and domains. However, the overall task success rate remains low for all models, as the agent often
commits at least one error step in most cases.

Three Levels of Generalization. All models perform best on the Cross-Task setting, with over
10% absolute gap (step SR) on average compared with Cross-Website and Cross-Domain settings,
indicating that generalizing to unseen environments is still a major challenge. On the contrary, we
note that the performance of Cross-Website and Cross-Domain settings are notably similar, which is
also reinforced in Figure 6, where there is no clear distinction in performance across these settings.
This suggests that the challenges primarily stem from the diversity in website designs and interaction
logic rather than domain specifics. Tasks across domains tend to share common operations, and
pretrained LMs may already have the capability to decompose complex tasks at a high level based
on commonsense knowledge. Yet, grounding such knowledge into actionable steps in specific and
varying environments remains a considerable challenge.

In-context Learning with LLMs. We also experiment with two popular LLMs, GPT-3.5-turbo and
GPT-4 [25], through in-context learning. We use the same multiple-choice formulation as MINDACT,
and include three demonstration examples for in-context learning. We can see that both models
are comparable to the two baselines with only three in-context examples. Note that this is not a
fair comparison with the Flan-T5 models, which are fine-tuned on the full training data. We also
include the zero-shot results with Flan-T5x;, in Appendix D.2, but the model fails to perform the task
without fine-tuning. Meanwhile, GPT-3.5 only has around 20% element selection accuracy, despite
the superior performance people have observed on other datasets. Further analysis reveals that one
possible problem is the model’s propensity to select the None option, asserting that the task cannot
be finished on the current webpage. This is somewhat accurate since tasks typically necessitate
navigation through multiple webpages and performing a series of actions before reaching the final
result. This aspect indeed represents the primary difficulty of our task. On the other hand, we observe
highly promising outcomes with GPT-4. The performance is on par with the tuned Flan-T5 models
under Cross-Website and Cross-Domain settings for element selection, indicating a great potential
for developing generalist agents using LLMs. Nevertheless, GPT-4’s high operational cost remains a
concern. Developing smaller models specialized for the web is an interesting future avenue.

5 Related Work

Autonomous Agents for Web and Mobile Applications. Considerable initiatives have been in-
vested in automating web navigation, driven by a vision of facilitating effortless human-web interac-
tion. Yet, previous research has been limited by the types of tasks and websites it can handle, either
confined to simplified simulation environments [22, 31, 40], or limited to a narrow set of domains and
websites [39, 40]. Recent studies [5, 21, 35] have utilized similar techniques for mobile applications,
however, these are often simpler and offer fewer functions compared with full-fledged websites. In
contrast, MIND2WEB aims to adapt to a realistic web environment, characterized by its high diversity.



Also related is the research on web automation systems [1, 19]. These technologies often demand
programming skills, which can make them less accessible to general users. We aim to equip the web
automation system with a natural language interface, thereby reducing the entry barrier significantly.

Large Language Models. In recent years, there has been a surge in the development and application
of large language models (LLMs). These models, often encompassing billions of parameters, are
pre-trained on massive corpora of text data [3, 44, 45], enabling them to capture intricate linguistic
patterns, nuances, and relationships, resulting in unprecedented performance on a wide array of
NLP tasks. One of the most noteworthy attributes of LLMs is their few-shot learning capability.
Unlike traditional machine learning models that necessitate extensive labeled data for task-specific
fine-tuning, LLMs can often perform tasks with minimal task-specific examples. Furthermore, LLMs
such as GPT-3 [4] and PaLLM [9] have also demonstrated the ability to do in-context learning, where
they can adapt to novel tasks by simply providing context within the input prompt, eliminating the
need for explicit retraining. In this work, we explore the use of LLMs to build generalist agent on top
of MIND2WEB by either tuning medium-sized LMs with only around 1,000 examples, or prompting
an LLM such as GPT-4, and have observed promising results.

Grounded Language Understanding. Our work also aligns with the field of grounded language
understanding, which aims to map natural language utterances onto executable plans in a target
environment [13]. Many studies have centered around environments underpinned by a well-structured
schema or ontology, including relational databases [36, 43] and knowledge bases [12, 42], which may
not adequately reflect the more heterogeneous conditions in real-world situations. Our work instead
grounds natural language in the noisy and schemaless web environment. Our setting is also connected
to embodied Al, where an agent, guided by language instructions, carries out tasks in a physical
environment [2, 32, 33]. Nonetheless, existing research primarily focuses on a specific setting (e.g.,
household environments), limiting their diversity. MIND2WEB provides a unique testbed for studying
a broad range of grounding challenges in real-world environments.

Tool Learning. Recent developments have underscored LLMs’ potential in using a myriad of tools
(i.e., taking actions) to augment their capacity [23, 27], including search engine, translator, calculator,
etc. Example works include Toolformer [29], ReAct [41], and ToolkenGPT [15]. The creation of
recent benchmarks on tool learning [20, 26] further highlights the growing interest in evaluating
LLMs’ proficiency in tool usage. However, existing research primarily concentrates on short-term
tool invocation, neglecting long-term planning. MIND2WEB can bridge this lacuna by necessitating
LLMs to take actions within realistic web-browsing environments that demand prolonged decision-
making sequences. Furthermore, MIND2WEB may stimulate the development of more advanced
tools based on LLMs that interface the web with natural language. These advanced tools could be
subsequently employed by another LLM for more challenging problem-solving tasks [11, 30].

6 Limitations and Potential Societal Impact

MIND2WEB is designed to facilitate the development and evaluation of generalist agents for the web.
Such agents hold great potential for making the web more accessible and easy to use, especially for
individuals who are less familiar with information technology or have disabilities and may struggle
to navigate through complex web apps and get overwhelmed by the options available. However, there
are still potential concerns and limitations regarding the current data collection, system design and
safety for deployment in real world.

Diversity and Representation in Data Collection. Although we strive to choose representative
websites covering diverse domains, the present selection predominantly comprises English-language
websites primarily used in the U.S. Meanwhile, all our annotators are sourced through the Amazon
MTurk platform, which might be biased towards a group that is more proficient in web use. Therefore,
the tasks and websites embodied in our dataset may represent only a subset of all potential tasks
that can be performed on the web. Bearing this limitation in mind, the design of MIND2WEB and
our data collection protocol allow for easy expansion to encompass more tasks and websites. The
inclusion of additional websites, potentially from different countries and languages, and tasks from
more diverse demographics, such as individuals from different age groups, those traditionally facing
web accessibility challenges, and professionals from specific domains like software development,
research, law, and more, present exciting directions for future development.



Use of Multimodal Information. Our current approach, MINDACT, models the web environment
using only textual context from webpage snapshots. Nevertheless, crucial information can also be
gleaned from the visual representation of a rendered webpage. While not currently utilized, we have
included complete webpage snapshots in MIND2WEB, enabling rendering of the webpage for visual
interpretation. The use of this multimodal information will be a viable prospect for improving model
performance.

Modeling of Interaction Dynamics. In MINDACT, we encode each webpage independently at every
step, with only the previous actions provided as historical context. However, the changes of the
web environment could also provide significant cues for task completion, such as the appearance
of a dropdown menu following a button click. Exploring effective ways to model such dynamic
environment transformations during interaction could be an essential aspect for developing robust
web agents.

Human-Agent Interaction. In the current design of MIND2WEB, the user provides a single
description of the task goal up front, and the agent carries out the task from start to finish. In
real-world settings, the user may wish to adjust or add task requirements in the middle, or the agent
might seek user confirmation for more accurate task understanding. Extending Mind2Web to an
interactive or conversational setting, thereby allowing diverse forms of human-agent interactions,
could be an interesting future direction.

Evaluation with Offline/Online Environments. Following recent works [5, 35], we evaluate the
system with cached offline environments, which allows us to test using snapshots of complex real-
world websites. However, a downside to this is that the task will fail immediately if an action was not
cached during data collection, potentially leading to false negatives due to the existence of multiple
paths for completing the same task. As described in Appendix C.1, we normalize the actions to
address equivalent elements within the same page. In addition, we include complete network traffic in
the dataset, presenting possibilities for future research to enable some degree of replay and exploration
within the cached environment. Given that MIND2WEB faithfully replicates real-world webpages,
systems trained on the dataset should be readily transferable to live websites. Conducting end-to-end
live evaluation on real websites with human assistance is a very promising direction that is worth
exploration.

Safety in Deployment. While the development of general-purpose web agents holds great potential
to enhance efficiency, optimize user experiences, and promote web accessibility universally, the
accompanying safety considerations for real-world deployment cannot be ignored. These include
how to effectively manage sensitive actions like financial transactions, enhancing transparency and
interpretability, and keeping users in control during task execution. Additionally, there is the risk
of these agents possessing the capability to breach existing security measures such as CAPTCHA
and being exploited for malicious activities, such as disseminating false information. Therefore, it is
also important for cybersecurity research to consider these potential uses and develop preemptive
protective measures.

7 Conclusion

In this work, we introduced MIND2WEB, the first dataset for developing and evaluating generalist
agents for the web. We also proposed MINDACT, an agent that leverages the power of (large) language
models for effectively tackling this task. Our work opens up a wide range of promising future
directions, including integrating multi-modal information, reinforcement learning with feedback
from real websites, and specialized LMs for web understanding and action taking. We hope that
MIND2WEB will serve as a valuable platform for the research community to advance towards
generalist agents for the web.
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A Overview

Our supplementary includes the following sections:

* Section B: Data Collection Details. Details for crowsourcing and implementation details
for the three data collection phases: task proposal, task demonstration, and task verification.

* Section C: Experiment Details. Details for evaluation and model implementation.

* Section D: Additional Results. Results for additional auxiliary experiments.

Following NeurIPS Dataset and Benchmark track guidelines, we have shared the following artifacts:

Artifcat Link License
Homepage https://osu-nlp-group.github.io/Mind2Web/ -

Code Repository https://github.com/0SU-NLP-Group/Mind2Web MIT License
Training Data https://huggingface.co/datasets/osunlp/Mind2Web CC BY 4.0
Test Data https://shorturl.at/iGI45 (password “mind2web”) CCBY 4.0

The authors and the OSU NLP group are committed to ensuring its regular upkeep and updates.
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Table 3: Prompt for ChatGPT to generate seed tasks to inspire the annotators during task proposal.

Prompt We are testing the website

https://aa.com | American Airlines - Airline tickets and low fares at
aa.com

Book low fares to destinations around the world and find the latest deals on
airline tickets, hotels, car rentals and vacations at aa.com. As an AAdantage
member you earn miles on every trip and everyday spend.

We want to test practical daily tasks that a user would do on the web-
site.

Come up with a list of 5 example tasks and try to cover different cases.
Requirements:

- Each example should be a single sentence and not just click one of the
elements.

- Don’t give step-by-step instructions or directly mention the element to interact.
- Describe the goal of the task and provide concrete information or constraints.
Use mock-up information (identifier, number, personal information, name, date,
attributes, constraints, etc.) to make the task more specific and realistic.

Sample Responses  Retrieve the confirmation number for a reservation made under the name jane
smith departing from dallas (dfw) to miami (mia) on january 20th.

Find and book a round-trip flight from new york to london departing on december
15th and returning on december 22nd for under $800.

Find the lowest fare for a one-way flight from new york city (jfk) to los angeles
(lax) leaving on august 15th and returning on august 20th, with no layovers
exceeding 2 hours.

Rent a car in honolulu for one week starting on august 1st that can fit at least
four passengers and has gps navigation included.

Cancel a car rental reservation for a compact car in orlando, florida that was
scheduled to be picked up on may 25th at 5 pm without incurring any cancellation
fees.

B Data Collection Details

B.1 Crowdsourcing Details

In this study, we employ annotators from the Amazon Mechanical Turk (mturk) platform. The
annotators are required to have a minimum of 1,000 approved HITs with an approval rate exceeding
98% on the platform. We design the compensation with an estimated hourly rate of $10.10 to
respect the minimum wage guidelines in Ohio, United States. Every worker passing our qualification
receives a bonus, and we pay $0.80 for each approved final task. We do not collect any identifiable
private information during the study, and explicitly instruct the annotators to refrain from entering
personal or sensitive data into the system. Annotators engage with our annotation tool only within a
secure, remote sandbox environment, posing no foreseeable harm. The study complies with the IRB
exemption criteria, per the Office of Responsible Research Practices at The Ohio State University.
All annotators are presented with a consent form, to which they must agree before participating in
the study. To prepare the workers for the task, we provide a comprehensive training document and a
video tutorial, followed by a qualification assessment comprising a questionnaire and a series of test
demonstrations using our tool. It is noteworthy that the task is divided into two phases: task proposal
and task demonstration. The proposal phase comes with a nominal reward, with the majority of the
compensation dispensed upon successful completion of the demonstration.

Quality and diversity are ensured through a two-stage review process. The first author reviews all
tasks after task proposal and manually select the tasks for demonstration. After task demonstration, a
thorough final verification of all collected data is conducted by all authors to authenticate the tasks
and recorded actions. Each demonstration is first verified by one of the authors, and uncertain ones
are further verified by the first author to reach consensus.
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Figure 7: Tllustration of our annotation tool, which consists of two side-by-side windows. On the left
we provide a dialogue window for the user to control the tool and select operations to take. On the
right we provide the browser window for the user to interact with and select web elements.

Complete Demonstration

Select Website g:slzrrziﬂg Task Select the Confirm the
and Task P K Demonstration Operation Task
Website

Select an element

Figure 8: The overall procedure for task demonstration.

B.2 Task Proposal

We use ChatGPT to generate sample tasks to provide inspiration to the annotators, and the prompt
used is shown in Table 3. For each HIT, we ask the annotator to select a website of their interest
first. Following this, we present them with ten sample tasks produced by ChatGPT, and request
them to propose a maximum of five additional tasks. The annotator is instructed not to directly copy
the sample tasks. We manually evaluate all submitted tasks and reject those that demonstrate low
quality or are too similar to previously accepted tasks. We set a nominal reward of $0.05 for each
task proposal HIT, and the annotator will receive it no matter whether the tasks are accepted or not.
For accepted ones, the annotator will receive the full reward of $0.80 on successful demonstration of
the task. Once we have collected a total of around 20 tasks for a specific website, we desist from
showing it to the user, aiming for a balanced distribution among websites and increased task diversity.

B.3 Task Demonstration

We develop a dedicated annotation tool for task demonstration using Playwright,® which allows us to
interact with the browser and record user actions. As shown in Figure 7. the tool is composed of two
windows. The dialogue window on the left serves as the annotator’s control panel for guiding the
interaction flow and choosing operations. The browser window on the right is where the annotator
navigates the website and selects elements for interaction. Figure 8 shows the overall procedure
for task demonstration. The annotator starts by selecting the website and task to be demonstrated.
Once selected, the tool will bring up the website in the browser. The annotator is then instructed
to explore the website and practice the task. To collect clean actions during actual demonstration,
the workers are asked to close pop-up windows during exploration. We also provide anonymous
accounts for the workers to use so that no private information is entered. The exploration stage is

*https://playwright.dev/
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Figure 9: Dialogue window for the Type operation.  Figure 10: Dialogue window for the
Select Option operation.

not recorded and primarily serves to familiarize the annotator with the website and task, as well as
to prepare the website to prevent future pop-ups, thereby ensuring a clean, streamlined set of final
recorded actions. After exploration, the annotator is directed to return to the homepage and reset any
altered values, allowing us to begin the demonstration in a fresh state. During the demonstration,
the annotator will illustrate how to accomplish the task step-by-step using both the browser and the
dialogue window. To ensure a clean set of annotated actions, annotators are restricted from directly
engaging with the browser during the demonstration phase. Instead, we divide each action step into
two stages: Element selection and operation selection. At each step, the annotator first selects the
target element by clicking it in the browser. We will highlight the selected element in the browser
window but block the actual click event. The annotator is then prompted to select the operation to
perform within the dialogue window, which is then carried out by the annotation tool in the browser.
We provide 6 operations: Click, Type, Hover, Press Enter, Click (Fake) and Ignore. For the
Type operation, the annotator is additionally required to supply the value as shown in Figure 9. If
the chosen element is a select HTML element, and the annotator opts for Click, it translates to a
Select Option operation and we will prompt the annotator to select one of the options as shown
in Figure 10. To avoid ambiguity, the Click, Hover and Press Enter operations are all mapped
to Click in the final dataset. Click (Fake) is a special operation. It will be recorded the same as
a normal Click but will not get executed in the browser. This is designed for safeguarding against
state-changing actions (i.e., actions that produce side effects to the world), such as posting a comment
or scheduling an appointment, since it will interfere with other real users of the website. In practice,
once a model predicts Click (Fake), it may prompt the user for confirmation before executing such
state-changing actions. Finally, the annotator can also choose Ignore in case they select a wrong
element. Once all the actions have been annotated, the annotator can choose to complete the task.
They will then be asked to confirm the task description again and make any necessary modifications.

Pop-ups and CAPTCHAs. In this study, we emphasize on clean and direct task execution actions,
intentionally omitting extraneous steps like pop-ups and CAPTCHAs that might introduce ambiguity
in evaluation. We carefully select only those websites that pose no access issues when used with our
tool. Before recording the task demonstration, annotators are requested to familiarize themselves with
the website, and preemptively close pop-up windows and clear CAPTCHAs to avoid their recurrence
during the actual demonstration. Annotators are further guided not to engage in extra steps such as
closing ads unless necessary during the task demonstration. In the final task verification, we revisit
the actions and filter out those unrelated to direct task execution. At the same time, we acknowledge
that these instances constitute a significant aspect of the dynamic web environment in the real world.
Enhancing systems to robustly tackle such scenarios on-the-go could form an interesting avenue for
future research.

Mitigating Disruptions on the Websites. The annotator are advised against actions that could
potentially interfere the normal operation of the website. To handle tasks such as scheduling
appointments, we introduce a Click (Fake) operation that annotators can utilize to indicate the
action without actually executing it on the website.

B.4 Task Verification

All collected data undergoes an additional verification process conducted by the authors, as demon-
strated in Figure 11. The verification interface is shown in Figure 11. This verification consists of
three tasks. Firstly, we evaluate whether a task should be discarded due to its low quality. Secondly,
we examine each step to determine if any action should be discarded. This includes reviewing the

19



@ healthgrades
1/2510

Website: healthgrades
Browse primary care doctors who are within 1 mile of distance Feel better ObOUt
finding healthcare
&) ErrTes
\
[searchbox] Search tarersMosttgvou et Roting
doctors, conditions,
e 1/6 HEZEE
TYPE: o
S [searchbox] Search doctors, conditions, or
[em] Primary -> procedures -> TYPE: primary care

CLICK

[button] All Filters * Keep

> ek Remove
[button] Close ->
CLICK Unsure

[svg] -> CLICK Popular Searches on Healthgrades

...........

[button] Apply i

Filters -> CLICK
o K @ @ @ .

(T} Half of all Americans who see doctors each year

Figure 11: Illustration of our verification tool.

initial and final actions of the task, and excluding any additional actions (e.g., closing ads) that are
not outlined in the task description to ensure consistency across task annotations. Finally, we verify
the task description to confirm that all actions are accurately represented and make modifications if
necessary. If there is uncertainty regarding any action, the verifier can opt for the “unsure’ option,
prompting a re-evaluation by the first author.

C Experiment Details

C.1 Evaluation

One complication that arises during evaluation on real-world websites is that multiple elements on a
webpage may induce the same effect. For instance, a button might house a text span within it, both
of which, when clicked, yield identical results. To enhance the robustness of our evaluation, we
employ heuristics to detect elements equivalent to the ground truth. We first examine the ancestors
of the labeled element to identify potential higher-level elements acceptable for the current action.
We employ a straightforward heuristic that locates the nearest clickable element to the ground
truth, including itself. After identifying the top-level acceptable element, we include all its visible
descendants that are located within its post-rendering bounding box as acceptable as well. Manual
checking on 100 instances where the heuristic identifies a top-level element other than the ground
truth confirms the validity of the approach. For both training and evaluation stages, all acceptable
elements are considered positive.

C.2 Model Implementation Details

Candidate Generation. We use the Cross-Encoder implementation from Sentence-Transformers
and use DeBERT2 as the backbone model. More specifically, we use DeBERTa-v3-base > for our
experiments.

Action Prediction. We use the Seq2Seq model implementation from Transformers [38]. We
experiment with the base ¢, 1large 7 and x1 8 versions of Flan-T5 [10].

*https://www.sbert.net/examples/applications/cross-encoder/README.html
https://huggingface.co/microsoft/deberta-v3-base
Shttps://huggingface.co/google/flan-t5-base
"https://huggingface.co/google/flan-t5-large
%https://huggingface.co/google/flan-t5-x1
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Table 4: Hyperparameters used in experiments.

Method Model Hyperparamerters

Candidate Generation deberta-v3-base batch_size:32, epoch:5,
learning_rate:3e—5

Action Prediction
Generation flan-t5-base batch_size:32, epoch:5,
learning_rate:5e—5

MINDACT flan-t5-base, batch_size:32, epoch:5,
flan-tb-large, learning_rate:be—5
flan-t5-x1
gpt-3.5-turbo, temperature:0, # demonstrations:3
gpt-4

Table 5: Step Success Rate for Flan-T5 models with different groups of options. Here we shown
mean and standard deviation of 5 runs with different random seeds.

Cross-Task  Cross-Website Cross-Domain

Flan-T5g 41.5+0.7 30.0+0.8 31.3£0.5
Flan-T5, 49.9+0.2 35.7£0.5 36.7£0.3
Flan-T5x;.  51.9+0.8 39.5+0.2 39.6£0.2

LLM In-context Learning. We use the OpenAl API for in-context learning with LLMs. We
experiment with two versions of GPT models: gpt-3.5-turbo and gpt-4. We include three
demonstration examples for in-context learning. The complete prompt is shown in Table 8.

Training Details. The f1an-t5-x1 and flan-t5-1arge models are trained on servers with 4*A100
80GB cards provided by Ohio Supercomputer Center [6]. All other models are trained with single
A6000 48GB cards.

Please see Table 4 for all hyperparameters used in our experiments.

D Additional Results

D.1 Effect of Random Grouping Elements for Action Prediction

For both training and inference, we shuffle the elements in the webpage and randomly group them
into multi-choice questions. The model might give different predictions when presented with different
sets of choices, and leads to slightly different final evaluation scores. Here we show the average and
standard deviation of 5 runs with different random seeds to show the effect of random grouping. As
we can see from Table 5, the selection of choices only lead to small changes in overall performance
with standard deviation less than 1 for all runs.

D.2 Zero-shot Results for Flan-T5x;,

Since Flan-T5 is tuned with multi-choice format, it can also do element selection in zero-shot.
However, as we can see from Table 6, while the model still gets some elements correct, it is much
lower compared to the fine-tuned model, and 3-shot GPT 3.5/4. This is expected, since Flan-T5 is
not tuned for HTML and coding related tasks.

Table 6: Zero-shot element selection results for Flan-T5x;, compared with the fine-tuned counterpart.

Cross-Task Cross-Website Cross-Domain

Flan-T5x; Zero-Shot 10.8 7.8 11.7
Flan-T5;. Fine-Tuned 52.0 38.9 39.6
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Table 7: Step Success Rate for all methods on the 50 tasks subsets we used to evaluate GPT-4.
Numbers in parentheses are the results on the full test set (same as Table 2)

Cross-Task Cross-Website Cross-Domain

Flan-T5g 43.3 (41.0) 25.3 (29.5) 28.1 (31.6)
Flan-T5., 48.1 (50.3) 30.8 (35.3) 27.6 (37.3)
Flan-T5x;  47.9 (52.0) 33.3 (38.9) 34.6 (39.6)
GPT-3.5 15.2 (17.4) 15.1 (16.2) 16.7 (18.6)
GPT-4 36.2 30.1 26.4

D.3 Results on the 50 task subsets

Due to budget constraint, we only run GPT-4 on 50 tasks for each setting. Here we show the step
success rate results for other methods on the same 50 examples that GPT-4 is tested on, As we can
see from Table 7, the results on the 50 tasks subsets are consistent with the results on the respective
full test set, and the relative performance across methods and splits remains the same.
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Table 8: Prompt for action prediction in MINDACT with GPT models.
Only part of the HTML snippet is shown here to save space.

Role Content
system You are a helpful assistant that is great at website design, navigation, and executing
tasks for the user
user
<html> <div> <div> <a tock home page /> <button id=0 book a reservation. toggle
open> <span> Book a reservation </span> </button> <button book a reservation.
toggle open> </button> </div> <div> <select id=1 type> <option reservations true>
Dine in </option> ... </htmI>
Based on the HTML webpage above, try to complete the following task:
Task: Check for pickup restaurant available in Boston, NY on March 18, Spm with
just one guest
Previous actions:
None
What should be the next action? Please select from the following choices (If the
correct action is not in the page above, please select A. ‘None of the above’):
A. None of the above
B. <button id=0 book a reservation. toggle open> <span> Book a
C. <select id=1 type> <option reservations true> Dine in </option> <option
D. <div id=2> <p> Celebrating and supporting leading women shaking up
assistant  Answer: C.
Action: SELECT
Value: Pickup
user T
<html> <div> <main main> <section tabpanel> <div> <ul tablist> <li tab heading
level 3 search and> </li> <li id=0 tab heading level 3 search and> <span> Hotel
</span> </li> <li tab heading level 3 search and> </li> <li tab heading level 3
search and> </li> </ul> <div tabpanel> <div id=1> <div> <span> Dates* </span>
<button button clear dates /> </div> ... </html>
Based on the HTML webpage above, try to complete the following task:
Task: Compare the fare types to book a 1-adult ticket from Springfiels, IL to Austin,
TX for April 29th 2023
Previous actions:
[combobox] Enter your departing city, airport name, or airpor... -> TYPE:
SPRINGFIELD
[button] Springfield, IL, US (SPI) -> CLICK
[combobox] Enter your destination city, airport name, or airp... -> TYPE: AUSTIN
[button] Austin, TX, US (AUS) -> CLICK
What should be the next action? Please select from the following choices (If the
correct action is not in the page above, please select A. ‘None of the above’):
A. None of the above
B. <li id=0 tab heading level 3 search and> <span> Hotel
C. <div id=1> <div> <span> Dates* </span> <button button clear dates
D. <ul id=2> <a mobile tools> </a> <a open united’s tiktok
assistant  Answer: A.

Continued on next page
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Table 8 — continued from previous page

Role Content
user
<html> <div> <nav main menu> <ul> <li> <div button> Car Sales </div> <div
id=0> <div> <div> <div> Buy A Car </div> <div> Plan Your Purchase </div>
</div> <div> <h4> Its Tax Refund Time. Treat Yourself to an Upgrade. </h4> <p>
With a variety of options, invest your refund in what you really want - a quality,
used vehicle from Enterprise. </p> ... </html>
Based on the HTML webpage above, try to complete the following task:
Task: Find a mini van at Brooklyn City from April 5th to April 8th for a 22 year
old renter.
Previous actions:
[searchbox] Pick-up & Return Location (ZIP, City or Airport) (... -> TYPE:
Brooklyn
[option] Brooklyn, NY, US Select -> CLICK
What should be the next action? Please select from the following choices (If the
correct action is not in the page above, please select A. ‘None of the above’):
A. None of the above
B. <div id=0> <div> <div> <div> Buy A Car </div> <div>
C. <div id=1> Enterprise Fleet Management </div>
D. <button id=2 selected pick-up date 03/19/2023> <span> <span> 19 </span>
assistant  Answer: D.

Action: CLICK
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