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Abstract
We study the problem of robustly estimating the posterior distribution for the
setting where observed data can be contaminated with potentially adversarial out-
liers. We propose Rob-ULA, a robust variant of the Unadjusted Langevin Algorithm
(ULA), and provide a finite-sample analysis of its sampling distribution. In particu-

lar, we show that after T' = @(d/eacc) iterations, we can sample from pr such that

dist(pr, p*) < €acc + (7)(6), where € is the fraction of corruptions. We corroborate our
theoretical analysis with experiments on both synthetic and real-world data sets for
mean estimation, regression and binary classification.

1 Introduction

Robustness has been of ongoing interest in both the Bayesian [DFG1, BMP"94] and
frequentist setting [Tuk60, ITub64, IHTub73a] since being introduced by George Box in 1953
[Box53]. The goal is to capture the sensitivity of inferential procedures to the presence of
outliers in the data and misspecifications in the modelling assumptions, and to mitigate
overly large sensitivity. The Bayesian approach has been focused on capturing possible
anomalies in the observed data via the model and in choosing priors that have minimal
effect on inferences. The frequentist approach, on the other hand, has focused on the
development of estimators that identify and guard against outliers in the data. We refer
the reader to [Hubl1, Chap 15] for a comprehensive discussion.

The focus on model robustness in Bayesian statistics is implemented via sensitiv-
ity studies to understand effects of misspecification of the prior distribution [BMP ™94,
MSLID17] and its propagation towards the posterior [[Hub73b]. There is, however, little
in the way of a comprehensive formal finite-sample framework for Bayesian robustness.
Huber asked “Why there is no finite sample Bayesian robustness theory?” and Kong sug-
gested that such a theory is infeasible in full generality, arguing that it is computationally
infeasible to carry out the necessary calculations even in finite spaces.

We address this issue by providing a formal framework for studying Bayesian ro-
bustness and by proposing a robust inferential procedure with finite-sample guarantees.
We address issues of computational infeasibility by refraining from modelling outlier
data explicitly. Instead, we posit that the collected data contains a small fraction of
observations which are not explained by the modelling assumptions. This corruption
model, termed an e-contamination model, was first studied by Huber in 1964 [Hub64]
and has been the subject of recent computationally-focused work in the frequentist set-
ting [DKK*16, LRV16, PSBR18].
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Given data corrupted according to an e-contamination model, our goal is to sample
from the clean posterior distribution p*: the posterior distribution conditioning only
on the uncorrupted (“clean”) data. Our key idea is to leverage a robust approach for
estimating the mean in the context of gradient-based sampling techniques. Our overall
procedure is a robust variant of the Unadjusted Langevin Algorithm (ULA) that we
refer to as “Rob-ULA.” The underlying ULA algorithm and its variants have been used
for efficient large-scale Bayesian posterior sampling [R196, W'T'11] and their convergence
analysis has been a recent topic of interest [Dall7, DM17, CB18, DCWY18, MCJ18];
see Section 2.2 for a detailed overview. Informally, our main result shows that after
T = O(d/esc) iterations of Rob-ULA, the iterate 67 has a distribution pr such that
dist(pr, p*) < €acc + @(e), where € is the fraction of corrupted points in the data set.

The remainder of the paper is organized as follows: Section 2 contains a discussion
of the related literature, Section 3 discusses relevant background as well as the formal
problem setup, and Section 4 describes the proposed algorithm Rob-ULA and states our
main theorem regarding its convergence. In Section 5 we discuss the fundamental problems
of Bayesian mean estimation and linear regression in the robust setting. Section 6 consists
of experimental evaluation of Rob-ULA on synthetic as well as real world data sets and
we conclude with Section 7.

2 Related Work

In this section, we review related work on robust estimation procedures in both the
Bayesian and frequentist settings. We also discuss work on using Langevin dynamics to
sample from distributions over continuous spaces.

2.1 Robust statistical procedures

There are many threads in the literature on robust estimation and outlier detection [Hub73a,
Box53, DEG1]. In the frequentist parameter estimation setting, the most commonly
studied model is Huber’s classical e-contamination model. There has also been a re-
cent focus on an adversarial paradigm that is devoted to developing computationally
efficient problem-dependent estimators for mean estimation [LRV16, DIKI<T16], linear
regression [KKM18, BJK15, BJKK17, SBRJ19], and general risk minimization prob-
lems [PSBR18, DK 19]. Particular relevant to our setup are [PSBR18] and [DKIK T 19]
which utilize the robust mean estimators of [LRV 16, DI 16] to robustify gradient-based
procedures for empirical risk minimization.

The study of robustness in the Bayesian framework has focused primarily on devel-
oping models and priors that have minimal impact on inference. An important line of
work has focused on the sensitivity of the posterior distribution to and has led to the
development of noninformative priors [BMP 94, MSLD17, MD18]. These methods are
orthogonal to those considered in the current paper, as they do not aim to robustify in-
ferential procedures against corruptions in the observed data set. In principle a complete
Bayesian model would have the capacity for explaining the outliers present in the data,
but this would require performing an integral over all models with a proper prior. Such
an approach would generally be computationally intractable.

An important class of procedures for handling outliers in the data set focuses on
reweighing the data points via a transformation of the likelihood function. Huber [Hub11]
considers assigning binary weights to data points and identifies model-dependent proce-
dures to identify outliers. In contrast, Wang et al. [WIKB17] consider these weights as
latent variables and infers these weight variables along with the parameters of the model.
These methods are susceptible to the choice of priors over these weighting variables. An
alternate set of robust procedures are based on the idea of localization [DFG1, WBI18]:
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each data point is allowed to depend on its own version of the latent variable and these
individual latent variables are tied together with the use of a hyperparameter, often fitted
using empirical Bayes estimation. Although these methods build on intuitive notions of
outlier removal, there is little theoretical understanding of the kind of outliers that these
methods can tolerate.

2.2 Sampling methods

Turning to sampling methods for posterior inference, there have been various zeroth-
order [L.593, MT96] and first-order methods [[irm75, RR98, Neall] proposed for sampling
from distributions over continuous spaces. Our focus in this paper is on the overdamped
Langevin MCMC method which was first proposed by Ermak [Erm75] in the context
of molecular dynamics applications. Its nonasymptotic convergence (in total variation
distance) was first studied by Dalalyan [Dall7] for log-smooth and log-strongly concave
distributions. Cheng and Bartlett [CB18] extended the analysis to obtain a similar conver-
gence result in Kullback-Leibler divergence. Such nonasymptotic convergence guarantees
are essential to understanding the robustness of computational procedures as they simul-
taneously capture the dependence of the sampling error on the number of iterations T,
the dimensionality d, and the contamination level e.

3 Background

In the section we briefly review relevant background on Bayesian computation and we
formally describe our problem setup.

3.1 Bayesian modelling

Given parameters 6§ € R? and a data set D = {z1,72,...,2n}, we assume that the statis-
tician has specified a prior distribution, pg(6|a), and a likelihood, p(z|f). We can then
form the posterior distribution, p(0|D, a), as follows:

(6D, a) < po(6ler) - [T (=i16) -

i=1

We are generally concerned with the estimation of some test function A(f) under the
posterior distribution, which is accomplished in the Bayesian setting by computing a
posterior mean:

a(h|D, ) := / h(O)p(OID, a)0

In practice, one way of computing this posterior mean is to use a Monte Carlo algorithm
to generate a sequence of samples {0; }7—;, and form an estimate G(h|D, c):

1
T
t

M)~

q(h|D, ) = h(6:) .

1

3.2 Unadjusted Langevin Algorithm

We consider a specific Monte Carlo algorithm, the Unadjusted Langevin Algorithm (ULA),
for sampling from probability distributions over continuous spaces. Generically, we con-
sider distributions over R¢ of the form

p"(6) o exp(—f(6)),
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for a class of functions f which are square integrable. The ULA algorithm starts from
some initial point 8y € R? and defines a sequence of parameters, {0k.n}i—1, according to
the following update equation:

Ok+1,n = Oy — M1V f (Ok,n) + /206 418k+1, (1)

where n = {n; > 0} denotes a sequence of step sizes and {&}ien ~ N(0,Iqxa) are
ii.d. Gaussian vectors. The Markov chain in Equation (1) is the Euler discretization of a
continuous-time diffusion process {6; }+>¢ known as the Langevin diffusion. The stochastic
differential equation governing the Langevin diffusion is given by

df: = —Vf(0;)dt +V2dB;, t>0, (2)

where {B;}¢>0 represents a d-dimensional Brownian motion. Denoting the distribution
of Ok, by pr,,, Cheng and Bartlett [CB18] showed that KL(pk,, || p*) < € after t = (’j(g)
steps for functions f which are smooth and strongly-convex. Specializing to the Bayesian
modelling setup we rewrite the posterior distribution as:

p(0]D, @) o exp <10g pe(0]a)) Zgl ) :

where g;(#) := —log(p(z:|6)) is the negative log-likelihood corresponding to the i*" data
point. The ULA algorithm can then be used to form an approximation to the posterior
as follows:

Ok+1,n = Ok,n = M (-Vlog(pe(9k,n|a) + Zng:(ek,n)) + V201641,

=1

where 1 and 41 are the step-size sequence and independent Gaussian noise respectively.

3.3 Problem Setup

We turn to a formal treatment of the robustness problem in the Bayesian setting. We
consider the e-contamination model introduced by Huber [[Tub64] and let the collection
of n data points be obtained from the following mixture distribution:

Z@N(lie)P+EQ7 (3)

where P denotes the true underlying generative distribution while @ is any arbitrary
distribution. A data set D drawn from such a mixture distribution has each data point
zi corrupted adversarially with probability e. We denote by D. the subset of data points
in D sampled from the true distribution P and similarly let D, denote the subset of data
sampled from Q. Given data points D = D. U D,, the likelihood function p(z|6) and the
prior pe(f|a), we aim to form a clean posterior distribution given by:

p(0]D., a) < po(6la) - T] (zilh) -

1€D¢

Accordingly, as in Section 3.1, we would like to robustly estimate the mean of the test
function h(#) under the uncorrupted posterior p(6|D., ):

a(hiD.0) = [ HOWOIDe.c)do,

which we approximate via an estimate:

G(h|De, @)

'ﬂ |

- ne
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Algorithm 1: Rob-ULA: Robust Unadjusted Langevin Algorithm
Input: Data set D, step-size sequence 7, initial covariance scaling 3, timesteps T,
prior distribution pe(6|a), hyperparameters «, likelihood function p(z|6),
corruption level e
Sample 6y ~ N(0, B14)
for k=1,...,T do
Let gi(Ok—1,y) := —log(p(zi|Ok—1,y)) fori=1...n
VUs = RobustGradientEstimate({Vgi(0x_1.,)}1, €, d)
Orsn = Or—1,0 =1 (- VUp =V 10g(po (O —1,n|@)) + V2 &k, where & ~ N (0, I4)
Output: Iterates {0}

In the following section we present an algorithm, Rob-ULA, for generating the sequence
of samples {67 };1“:1 and provide theoretical guarantees on its convergence properties. The
main idea is to exploit gradient-based iterative sampling methods, and to leverage a robust
mean estimation procedure to compute a robust estimate of the gradient at each iteration.

4 Rob-ULA: Robust Unadjusted Langevin Algorithm

We turn to our proposed algorithm, Rob-ULA (Algorithm 1), which aims to solve the
robust posterior inference problem defined in Section 3.3. Rob-ULA is a simple modifi-
cation of the ULA algorithm, described in Section 3.2, where in each iteration instead of
using the complete set of data points for computing the gradient, we construct a robust
estimator of the gradient and update the parameter using this estimate. This robust
estimator ensures that the outlier data points do not exert too much influence on the
gradient and allow Rob-ULA to obtain samples from a distribution close to the clean
posterior distribution:

p(0|De, ) x po(0|cx) - H (2i]0) . (4)

1€De

Before proceeding to establish the convergence guarantees for Rob-ULA, we present the
robust gradient estimation procedure.

4.1 Robust Gradient Estimation

Algorithm 2 describes our robust gradient estimation procedure. Based on the robust
mean estimator of Lai et al. [LRV16], it takes as input the gradients of the negative log-
likelihoods Vg;(6) and outputs an estimate of the robust mean of the gradient vectors (%Ug
in Algorithm 1), assuming a fraction e of them are arbitrarily corrupted. Algorithm 1
then scales this gradient estimate by the number of samples n, to obtain a robust estimate
of gradients of the likelihood -7 | Vgi(9).

Note that the model described in Section 3.3 assumes that each data point z is sampled
i.i.d. from the mixture distribution (1 —€)P + €@, where P represents the true generative
distribution and @ can be any arbitrary distribution. An application of the Hoeffding
bound for Bernoulli random variables shows that with probability at least 1 — §, the
fraction of corrupted points €, in the sampled data set D satisfy

2 1 2 1
N el ) <en<etq/Z =).
¢ nlOg <5> =m=e nlOg <5> (5)
—————

€n



Bhatia, Ma, Dragan, Bartlett, €& Jordan

Algorithm 2: RobustGradientEstimate
Input: Sample Gradients S = {Vgi(0)}i_,, Corruption Level ¢, Dimension d
S = Outlier Truncation(S, €, d)
if d =1 then
| i + mean(S)

else
Y& « sample covariance of S
Let V = span of top d/2 principal components of X5 and W = V¢

S1 + Py (S) where Py is projection onto V'
fiv < Robust Gradient Estimator (S;, €, d/2)

fiw < mean(Py (S5))
[ fiv + fw
Output: Estimate of Robust Gradient:

Algorithm 3: Outlier Truncation
Input: Sample Gradients S = {Vg;(6)}iL,, Corruption Level ¢, Dimension d
if d = 1 then
[a,b] < smallest interval containing (1 — €)? fraction of points.
B S« SN]a,b)
else
Let [S]; be samples with only i*" coordinate
fori=1,...,ddo
L ali] = Robust Gradient Estimator([S];,¢€,1)
Let B(r,a) be ball of smallest radius centred at a containing (1 — €)? fraction of
points.
B S« SN B(r,a)

Output: Points after outlier removal : S

For the remainder of the paper, we condition on this high probability event and state our
results assuming this event holds. Following the proof strategy of [LRV16] and [PSBR18],
we derive a bound on the estimation error of the true average log-likelihood gradient,

I

= 1
HVUG — W Z Vgi(e)

i€De

uniformly for any value of the iterate 6 in the following lemma. We let VUy := \D_lcl > iep, Vai(0)
denote the true value of this average log-likelihood gradient. ‘

Lemma 1 (Robust Gradient Estimation) Let P denote the uniform distribution over
D. and let Py denote the corresponding distribution over Vg;(0) with mean given by
VUy, covariance g and fourth moment given by C4. There ezists a positive constant
C1 > 0 for which the robust mean estimator when instanti/c\zted with the contamination
level v := e+ en, returns, with probability 1 — &, an estimate VUy such that for all § € R?,

we have that,
~ 1
[VUs — VUg|2 < C1Cf /7y log(d)[[Ze]|2 -

Remark. Note that Proposition 1 of Prasad et al. [PSBR18] presents a high-probability
bound similar to ours which is applicable for a fized parameter 6. Such a bound, however,
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does not suffice to ensure convergence of Rob-ULA because the additive Gaussian noise at
every iterate requires us to obtain a uniform high-probability recovery error bound (see
Section 4.2 for details). Lemma 1 establishes a uniform bound for the specific distribution
P which is uniform over the clean data D.. This restriction of the distribution P also
allows us to avoid sample-splitting at every iteration of Algorithm 1 which was essential
for both [LRV16] and [PSBR18].

In addition, Lemma 1 indicates that irrespective of the sample size n, one can estimate
the mean of the gradient robustly up to error O(+/€[[Sg|[2). This implies that at each
iteration of Rob-ULA, we incur an error of O(n+/e[%g[[2) since we scale the average
gradient estimate by n during the update. In Theorem 2 we show how with an appropriate
choice of step size n = O(1/n), one can control the propagation of this bias in the
convergence analysis for Rob-ULA.

The detailed proof of Lemma 1 can be found in Appendix A.

4.2 Convergence Analysis

In this section, we study the convergence of the proposed algorithm Rob-ULA. For ease
of notation, we let f(6;D) = 3, .5 gi(0) — log(pe(f|)) and similarly denote the clean
and corrupted versions of the function f(0;D.) and f(0; D). The objective of the robust
Bayesian posterior inference problem is then to obtain samples from the clean posterior
distribution given by p*(8|D, a) x exp (—f(8; D.)). For clarity of exposition, we drop the
dependence of the posterior distribution on the data set D as well as the hyperparameters
a and let f(0) :== f(0;D.).

We quantify the convergence of distribution p(#) following a stochastic process to the
stationary distribution p*(#) through the Kullback-Leibler divergence, KL(p(0) || p*(0)):

KL(p(6) || p*(6)) = / p(6)In (%))) v

We define the Wasserstein distance W3(p, ¢) between a pair of distributions (p, ¢) as:

Wi = _int [ oyl o).
¢Er(p,q)
where T'(p, q) denotes the set of joint distributions such that the first set of coordinates
has marginal p and the second set has marginal q.
We begin by making the following assumptions on the function f(6):

Assumption 1 (Lipschitz smoothness). The function f(6) is L-Lipschitz smooth and its
Hessian exists for all @ € R?. That is,

IVF(O) =V < L|6—v|, Vo,v e R* and V’f(6) exists for all § € R? .

Assumption 2 (Strong convexity). The function f(6) is m-strongly convex for all § € R?.
That is,

ml < V2f(0), VOeR"

We further denote the condition number of the function f as k = L/m.

The assumptions of Lipschitz smoothness and strong convexity are standard in both the
sampling and optimization literatures. In addition to the assumptions, we define the
average Lipschitz constant L = L/n and the average strong convexity of f as m = m/n.
We now state our main theorem concerning the convergence guarantees for Rob-ULA.
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Theorem 2 (Main Result) Letp*(0) x exp(—f(0)), where f satisfies Assumptions 1 and 2.
Further, assume that the gradient estimates V f(0) satisfy

[V £0rn) - ﬁf(ok,n)H2 < n2eCr |Ssllylogd and || Ssll, < Csa [0 — éH2 4O,

where X s the covariance of uniform distribution on Vg;(0) induced by the clean data

set D, 0 satisfies VF(0) = 0 and € is the fraction of corrupted points, satisfying e <
)

#ﬂogd' Then the iterates of Rob-ULA, when initialized with 6y ~ N(O, %Id)

(with corresponding density po) and step size n < —= (and define h :=nn < + 1), satisfy:

2¢—mkh Lt It d L2 d
W3 (Pky,p*) < ———KL(po || p*) +8 (CRCE 2 —gelogd + 7*) ? +4—5—h
nim m2n
4C R C: 8CRrC dlogd
+5(1§72m10gd+1§72m&)
m m n
1 Ld —mkh L4 L4 d 2 L2 d
< —log——e +8(CrCxss—clogd+ —— |h* +4——h
m mn “md m3 n m2n
4CRrC 8CRrC dlogd
4 ( 1322,2 logd + 1322,1 g ) 7
m m n

where py, represents the distribution of the iterate Oy, ;.

Remarks. Before proceeding to the proof of this theorem, a few comments are in order.
First observe that the error term consists of three different components:

—nmkn T4 4 2
2 KL(po || p” )—i—C’(—elogd—i— L3 d) h? + 4L_éh+£€10gd
m3n
(1) D (III)

where a) term (I) comprises an exponentially decaying dependence (with the number of
time-steps ¢) on the initial error KL(po || p*(#)), b) term (II) is a discretization error
term and c) term (III) captures the dependence on the fraction of corrupted points € and
vanishes as € goes to zero.

For any given accuracy eac, if the step size and the number of iterations satisfy:

Eacc L KL(po | p)
= _face > = ek VN | Y
n=0 (nnLd) and T >0 (m log < P—— ,

then the error in convergence can be bounded as

* = €
Wg(pTWlap ) S Eacc + 0O <ﬁ) .

As we show in Section 5, for problems such as Bayesian linear regression and Bayesian
mean estimation, the average strong convexity parameter m scales independently of the
sample size n. This implies that the resulting error can be bounded by €acc + @(6) ‘While
the accuracy can be set to arbitrarily small values which would result in a corresponding
increase in the number of time steps, there is a bias term depending on the contamination
level O(€) which cannot be reduced by either increasing the sample size or by increasing
the number of iterations. This is consistent with results in the frequentist literature
[BJK15, DKKT16, LRV16, PSBR18], which show that such inconsistency is a result of
the adversarial corruptions and in general cannot be avoided.
Lemma 13 in Appendix B presents the following bound on the initial error:

KLGn 157 = [ o0 1og (“EX;)dxsglog%
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Proof of Theorem 2

We proceed to a proof of our main convergence result, Theorem 2. We begin by considering
the process described by Rob-ULA as a discretization of the Langevin dynamics given by
Equation 2, with the following gradient estimate:

Ot 1)y = Ok — NV F(Okn) + V2(Brt1yy — Bin), (6)

where Oy, represents the random variable describing the process at the k" iterate using
step size 1. This is equivalent to defining the following stochastic differential equation

dO; = —Vf(Orn)dt +V2dB:, for kn<t< (k+1)n. (7)

We next state a lemma which provides a bound on the variance of the distribution of the
k" iterate.

— 2

1 m
L F ing Eq. ) ~ —1 < = <
emma 3 For ©; following Eq. (7), if ©0 ~ N <0, " >, S e logd’ and h :==nn <

%, then for all k € N*,
=112 4 4d
E “‘@kn - QM < —Clelogd + —,

where C' is a universal constant and 6 is the fized point satisfying Vf(g) =0.

The proof of this lemma is deferred to Appendix B. Treating Lemma 3 as given, we
proceed to the proof of Theorem 2.
We consider the dynamics in Equation 7 within the time range kn < t < (k + 1)n.

From the Girsanov theorem [Oks03] we have that ©; admits a density function p; with
respect to the Lebesgue measure. This density function can also be represented as

pe0) = [ Dra(Op(0.1G. kn),
where p(0,t|C, kn) is the weak solution to the following Kolmogorov forward equation:

9p(0,t|¢, kn)
ot

where p(0,t|¢, kn) and its derivatives are defined via Pi(f) = [ f(0)p(0,t|¢, kn)df as a
functional over the space of smooth bounded functions on R? (we refer the readers to
[SP14] for more details). As shown by Cheng and Bartlett [CB18], the time derivative of
the KL divergence along p; is given by:

= V7 (Vp(8,tI¢, kn) + VF(Qp(8. tI¢, kn)),

pt(©1)

%KL(pt ") = —E Kvm (p*(et)> ,Vinp:(©:) + @f(e,w)>] ,

where the expectation is taken with respect to the joint distribution of ©; and ©O,,. Hence

deripe 57 2 -k [<Vln (54(23) Vi (ﬁ&%) + (5O - Vf(@t))ﬂ

o[ (B8]l (2230 510

2

p*(©1)

(8)
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where (i) follows from the definition of p*(0) o exp(—f(#)). We first focus on the second
term in the above expression which can be bounded as:

I (%) Vi©) - Fie1)]

=5 (Vi (282 (9100 = V1(00) + (V101 - F1(01)) )

o= (5]
I)% [va( ((eiD +L21E[||et—®k,,||2]+0Rn2e<02711@ {H@kn_é“Q]JrcEyg)logd,
)

where (i) follows by an application of Young’s inequality 2a' b < |la|3 + ||b]|3 and (ii)
= 2
follows from the point-wise assumption that va(ekm) —Vf(Orn)| <n’eCr|Zel,logd

)
Qlg
=72

+E[IV£(00) - VH©u)I*) + & |[7£(0n,) - T5(O0,)

]

@

IN

12
and that ||Xg|], < Cs 1 HH — GH + Cx,2. Let us define new constant Ci3 := Cr - Cx,1 and
014 = CR . Cz,g.

Next, we proceed to bound the term E [||©; — Oy HQ] using Lemma 3. Let us define
the variable 7 := ¢t — kn € (0,7] and bound the term as:
2
E[I: ~ 04 [*) <E [wa«akm + V2B~ Ben) }
<Eopy, [IVFO)] * + 2d7

0) 2] -
< Egopy, Me-e” ]L2y2+zgy, (10)

where (i) follows from Assumption 1 and we define v = nr (h = nn). Plugging in the
bounds obtained in Equations (9) and (10) into Equation (8), we get for kn <t < (k+ 1)n:

[ R

~12
+ Crne <CE,1E [H@k" - oH } n Cm> log d
S e
G

+n*eCialogd + 2ndL’v

x 2 (74,2 4 4d

< —m-KL(p: || p*) +n° (L*h° + Cizelog d) $C’14elogd+ —
+n%eCiylogd + 2nL2dh

0) _
< —nmKL(p: || p*) + E(h,n,d, L,m),

d 1
_ < 2
KL | ") < —5E

+n’ LR [H@;m — 9~H2] + 2ndL*v

+n* (L*V* + Cizelog d) E |:H®’“7_9H }

<

where (i) follows from an application of the log-Sobolev inequality with m being the log-

Sobolev constant and (ii) follows from the fact that e < — ™ and the substitution
4C' 13 log d

T4 T4
E(h,n,d,L,m) = (4014712 %e logd + 4nd%> h2+2ndL*h+2C14n’€elog d+4C13ned log d.

10
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Finally, using Gronwall’s inequality we have the following one-step progress equation:
KL(p(k1)n | P7) = — E(h,n,d, L,m) < e i (KL(pk,, | p*) — %E(h,n,d,L,mO :
Repeated application of this progress inequality leads us to

i 1 _ 1 _

KL(pwy || p*) <e nimkn <KL(po | p*) — —E(h,n,d, L, m)) + —F(h,n,d,L,m)
nm nm
_m 1 -
<e "RIKL(po || p) + — E(h,n,d, L,m).

The final result of the theorem can then be obtained by using Talagrand’s inequality
[OV00] which states that for the probability distributions pk, and p*, we have that

* 2 * 2 — 7]{5 * 2 T =
Wg(pknap ) S %KL(kaI H p ) S %6 o nKL(pO H p )+ WE(hanadzLam)z

which concludes the proof of the theorem. |

5 Consequences for Mean Estimation and Regression

In this section, we study the fundamental problems of Bayesian mean estimation (Sec-
tion 5.1) and Bayesian linear regression (Section 5.2) under the Huber e-contamination
model.

5.1 Robust Bayesian mean estimation

We begin with the robust Bayesian mean estimation (RBME) problem and instantiate
the convergence guarantees for Rob-ULA (Algorithm 1) for this problem. For simplicity,
we study the setup in which the likelihood is Gaussian:

p(z|0;%) =

;exp <—l||z—6‘||2 1>
V(2 det(Y) 2 =)

for a mean vector § € R? and a fixed positive definite covariance matrix ¥ € R¥*¢, We
consider the corresponding conjugate prior over 6 given by

1 1 2
6;00, %0) = ————exp (— 2|0 — )21 ),
P 20) = e e) p< 2! 0”201>

where 6 is the mean and o > 0 is the covariance matrix. The set of parameters (0o, Xo)
are the hyperparameters a. Given data points D = {z;};—; sampled from the Huber

contamination model, where Z; il (1—€)P+e€Q, with @ being an arbitrary adversarially
chosen distribution, the objective of the RBME problem is to sample from the posterior
induced by the uncorrupted data points,

" 1 1
v = 0P, ) o (310 0o ) T] o (gl 01r). )

where D, represents the subset of points in D sampled from the distribution P. We note
that for data X; sampled from the Huber contamination model, we have from Equation
(5) that with probability at least 1 — 4,

n(l—e—en) <|D¢f<n(l—e+e,) where e,:= Hilog <%> (12)
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Let us denote by € := e+e, and by € := € — e, the corresponding upper and lower bounds
on the number of corrupted data points. Following the notation in Section 4, the function
f(0) for this problem is given by:

OEE (ne 0ol Y I 9||§1) . (13)

i€De

Also, we define the corresponding function g¢;(6) from Section 3 as well as the sample
mean and covariance for the clean data points.

Ll e s
9:(0) = Fllzi — O3, e = WZ% 2. = WZ —u)T

i€D, i€D,

The following corollary instantiates the guarantees of Theorem 2 for the specific function
f(6) defined for the RBME problem.

Corollary 4 Consider the RBME problem with posterior given by Equation (11) and
data sampled from the Huber model. Then the iterates of Rob-ULA with step size n < ﬁ
and h := nn satisfy:

2 71’1/(71]67] L4 4 d d
W%(pk,,,p*) < eTKL(po | p*)+C (Cg 2 —elogd + ——) h2+4——h+C

lod

where C' is a constant depending on the fourth moment of the clean dala D. and
1—€ 1 — 1-— 1 3
SSECE Y M N R e 2
Amaz(z) n/\ma:c(ZO) )\mm(Z) nAmm(Zo) Amin(z)
with probability at least 1 — § for e < 1/2.

Remark. Observe that the step-size parameter h is independent of n while both L and
m are asymptotically independent of the sample size n. The above bound shows that
for an appropriately chosen step size one can obtain samples from a distribution which is
@(e) away from the true distribution p*. The number of iterations required to obtain such
a sample scales linearly with the number of samples n, the dimension d and the condition

number Kk = =.
m

|t

5.2 Robust Bayesian linear regression

We turn to the robust Bayesian Linear Regression (RBLR) problem. For this problem, we
let the data set D = {z; = (24, %:)}7=1 be such that z; € R? and y; € R be the covariate
vectors and response variables sampled from the Huber contamination model. Note that
the Huber contamination model is on the variable z; and hence allows for corruption in
both the features x; as well as the response variables y;. In addition, we assume that
there exists a vector 6* such that

yi = (24,0%) + 2,

where z; ~ N(0,0?) are sampled independently of ;. This assumption is for simplifying
the presentation and in general one can work with 6* which is the best linear approx-
imation to the data. For the RBLR problem, we consider likelihood functions of the

form:
1 1 2
en)lti0) =~ oxp (- oy - (@0))°)

for a fixed variance parameter o2. Also, we consider a Gaussian prior over the parameter
0
)

1 1 )
0;600,%0) = ————— ——|10 — Oo|l5-1 |,
P65, Z0) = ot —exp (10— tnl3 )

12
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for some fixed mean vector 6y and positive-definite covariance matrix o which form the
set of hyperparameters a. Given a data set D sampled from the Huber e-contamination
model, the objective of the RBLR problem is to sample from the posterior induced by
the uncorrupted set of data points,

1 2 1 2
(01D 0,00,50) exo (310 - 00l ) T exw (-t (ee0)?) . (10

i€ D,
Following a similar calculation to that in Section 5.1, we have that with probability at
least 1 — 4,
n(l —¢€) <|D.| <n(l—e¢). (15)
The corresponding function f(0) for the RBLR problem is then defined to be

0 =3 <||e S <m,0>>2> . (16)

1€De

We denote by 6yeg the estimator which minimizes the function U(#), and is given by:
1 ! _
Oreg := (2 '+ ;XCTXC> (ijyc +3 100> ,

where X. € R™*? represents the set of covariate vectors of the clean data points and
Yy € R™ represents the corresponding response values. In addition, we define the following
functions required for the analysis of the robust gradient estimator,

= L (e 0))? :
91(9) T 20_2 (yl <$1,9>) ) Mo = |D ‘ Z T, ® T |D | Z xlxl .

1€De i€Dc
We make the following moment assumptions on the covariates in the clean data set D..
Assumption 3 (Positive-definite data covariance). The unnormalized data covariance
matrix is positive definite: >, > 0.

Assumption 4 (Bounded fourth moment). The data satisfies a bounded fourth moment
condition, i.e., for every unit vector v, we have that

2
By, [(072)"] < Coi (Bomum, [072)°])
for come constant Cy 4.

Note that these assumptions are satisfied with high probability if say, each x; € D,
is sampled i.i.d. from the standard normal distribution. The following corollary then
instantiates the guarantees of Theorem 2 for the specific function f(0) defined for the
RBLR problem in Equation (16).

Corollary 5 Consider the RBLR problem described above with posterior given by FEqua-
tion (14) and data sampled from the Huber model. Then the iterates of Rob-ULA with
step size n < ﬁ and h = nn satisfy:

2Tk L4 It a 24
Wg(?kmp*) < TKL(PO [ p")+C (CE 2 —g€elogd + 77) h? + 4f*h
C Cyx.1 dlogd
+Ce( Fﬁ logd + Fél o8 ) ,
m m n
with probability at least 1 — § for e < zlc‘c‘gﬁ' The constant C depends on Cy 4 from
Assumption / and the remaining parameters are defined as:
= 1 . ~ 1 ~
m=(1—&)Amin(By) + ————, L=(1—-¢e)A 3 —{—77 C =24/8Cz 4|2
m ( E) ( w) n)\max(zo) ( §) max( z) min(EO) 2,1 z,4 H zH2

8C
Cso = \/CodllSallz + 24/8Cs 4 - [l 2 - He*—ereguﬁ%lg( )+\Fo

4
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Figure 1: Robust Bayesian Mean Estimation (Parameter Estimation): Rob-ULA recovers the
underlying parameter with smaller error as compared with the vanilla ULA. The recovery error
increases with increasing dimension and fraction of outliers.
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Figure 2: Robust Bayesian Mean Estimation (Average log-likelihood): Rob-ULA has average
log-likelihood close to the true underlying parameter. The log-likelihood values for ULA become
large and negative for higher dimensions and fraction of outliers and do not show up in plots (b)
and (c).

Remark. As in the RBME problem, the quantities h, L and m are asymptotically
independent of the sample size n. However, the guarantees above hold only for a value of
e < @(ﬁ), that is, they depend on the condition number of the covariate distribution.
Such a dependence seems inherent to the problem of linear regression since the adversary
is allowed to corrupt the covariate vector arbitrarily.

6 Experiments

In this section, we compare the performance of the proposed Rob-ULA with the non-robust
variant ULA. We first compare them on synthetic data sets for the problem of Bayesian
mean estimation and Bayesian linear regression in order to understand the variation
in performance as a function of the problem parameters. In Section 6.2, we perform
experiments comparing the algorithms on some real-world binary classification data sets
using logistic regression.

6.1 Synthetic data sets

6.1.1 Robust Bayesian Mean Estimation

In this section, we focus on experiments related to the robust Bayesian mean estimation
problem described in Section 5.1. We begin by describing the experimental setup before
proceeding to a discussion of the experimental findings.

Experiment setup. The mean vector § € R? was sampled as a uniform distribution
independently in each coordinate over the interval [0, 1]. The clean samples z; were then
obtained independently from A (6,7). The corrupted distribution @ was chosen as the
Gaussian distribution N (6., I) with mean given by 6. = 6 + 0. where each entry of Oco
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Figure 3: Robust Bayesian Linear Regression (Parameter Estimation): Rob-ULA recovers the
underlying parameter with smaller error as compared with the vanilla ULA. The recovery error
increases with increasing dimension and fraction of outliers. For e¢ = 0.5, the performance of
Rob-ULA and ULA become quite similar in terms of recovery guarantees.

is sampled i.i.d. from the uniform distribution over [0, 10]. The default parameters were
set as follows: number of clean samples n. = 1000, dimension d = 200 and fraction of
corruption € = 0.2. In every experiment, one of the parameters was varied keeping the
others fixed. For both Rob-ULA and ULA, the burn-in period was set to 300 samples
and a total of neamp = 1000 samples were collected following the burn-in period. Each
experiment was repeated for 10 runs and we report the mean performance of the methods
across these runs.

Recovery guarantees. Figures 1 and 2 compare the performance of the algorithms for
the mean estimation problem. Figure 1 shows the variation in parameter recovery error,
0 — 6]|> where § = ng:mp >, 0 is the average of the collected samples. Figure 1(a) shows
that with increasing number of data points, the error in Rob-ULA’s estimate decreases
until it starts to saturate. In addition, with an increasing dimension and fraction of
outliers, the error in estimation for both Rob-ULA and ULA increases. This is consistent
with Theorem 2. Figure 2 studies the variation in average log-likelihood of the average
estimate 6 on a held-out test set. We also plot the likelihood values obtained by plugging
in the true parameter (dotted line). The samples output by Rob-ULA have likelihood
values identical to the true underlying parameter while those of ULA are much lower
for all experiments. Note that ULA fails to have finite likelihood values (up to Matlab
precision) for dimensions d > 200 and fraction of corruption € > 0.2 and hence have been
omitted from the curves.

6.1.2 Robust Bayesian Linear Regression

In this section, we discuss the robust Bayesian linear regression problem described in
Section 5.2.

Experiment setup. The true parameter 0* was selected similarly to the mean vector
in the RBME experiments. The z were sampled i.i.d. from N(0, I) and the corresponding
response variable were set as y = 2 ' 0* + A(0,1). For the corrupted distribution, each
coordinate of the feature vector z was sampled i.i.d. from a y2 distribution and the cor-
responding response variables were set as y = z ' 0% + Unif[0, 10]. The default parameters
were set as follows: number of clean samples n. = 1000, dimension d = 200 and fraction
of corruption € = 0.2. In every experiment, one of the parameters was varied keeping the
others fixed. For both Rob-ULA and ULA, the burn-in period was set to 100 samples
and a total of nsmp = 300 samples were collected. Each experiment was repeated for 10
runs and we report the mean performance of the methods across these runs.
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Performance guarantees. Figure 3 shows the performance of Rob-ULA and ULA
on the linear regression problem in terms of parameter recovery. Note that similar to
the mean estimation setup, the error curves for Rob-ULA are lower than those for ULA
as we vary number of data points, the dimensionality of the problem and the fraction
of corruptions. The error shows a decreasing trend with increasing number of samples
but increases with increasing dimension and fraction of outliers, showing that the robust
problems indeed become harder in higher-dimensional spaces and with a larger fraction
of outliers.

6.2 Real-world data sets

In this section, we explore the performance of Rob-ULA on several real-world binary clas-
sification data sets obtained from the UCI repository [DG17]. We use a logistic regression
model. While technically this model does not fall within the scope of Theorem 2 (primar-
ily because of the strong-convexity assumption), we find that the experimental results are
nonetheless consistent with the theory. We begin by providing details on the data sets
used and then proceed to the experimental observations. For all the experiments in the
section, the standard normal distribution was chosen as the prior.

Data sets. The logistic regression experiments were carried out with the following pub-
licly available binary classification data sets: a) Astro [HCL™03], b) Phishing [MTM12],
¢) Breast-Cancer [MT96], d) Diabetes [D(:17] and €) German Credit [DG17]. We normal-
ized the features to scale between [—1, 1] and used 70% of the available data for training
purposes and the remaining 30% for testing purposes. For cases where we were required
to tune hyperparameters, we used 20% of the train data for validation purposes. Once
the hyperparameters were fixed, we retrained the model with the complete training set.
In order to understand the effects of corruptions in these data sets, we manually add
corruptions to the training subset in the form of label flips (for randomly chosen data
points) for the Breast-Cancer, Diabetes and German Credit data set. The experiments
with Astro and Phishing data sets are with the original uncorrupted data sets.

Evaluation Metric. For the above data sets, since the true underlying logistic param-
eter is unknown, we evaluate the algorithms using the log-likelihoods on the test set. For
all data sets, we show two plots: plot (a) displays log-likelihood per data point in the
test set, sorted in descending order for both algorithms and plot (b) shows a histogram
of log-likelihoods. Plot (a) helps understand trends in prediction likelihoods by showing
how the prediction quality degrades while Plot (b) provides an understanding of how the
likelihoods concentrate.

6.2.1 Binary Classification

Figure 4 compares the performance of Rob-ULA on a binary classification task with no
corruptions in the training set for the Astro and Phishing data sets. In both figures, Rob-
ULA is seen to perform better than vanilla ULA: the histogram of likelihoods is more
concentrated towards the origin. These data sets are not linearly separable and hence
the logistic model may provide a poor fit to the data; Rob-ULA exploits this fact and
focuses on a subset of points which it can fit well. This allows it to perform better for a
larger range of points as compared to vanilla ULA. These experiments show that if there
is model misspecification and the chosen model doesn’t fit the complete data, the robust
model might fit data selectively and give better confidence bounds for those data points.
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Figure 4: Astro and Phishing Data set (Uncorrupted): Rob-ULA finds solutions which have better
test log-likelihood performance across data points as compared to vanilla ULA. Surprisingly, even
while ignoring a certain fraction of the data set, the performance of the Rob-ULA does not degrade
in those regions of space.

6.2.2 Binary Classification with Label Flips

Figure 5 shows the performance of Rob-ULA for the Breast-Cancer (e = 0.10), German
Credit (e = 0.10) and Diabetes (¢ = 0.15) data sets respectively. For these data sets,
we manually added corruptions via label flips. For all three data sets, we see a similar
trend in likelihood plots: Rob-ULA performs better than vanilla ULA for a majority
of data points but its prediction quality decreases for the tail points. This can also
be seen in the three histogram plots (part (b) of the respective figures) wherein Rob-
ULA has likelihoods extending to larger negative values. This particular behavior can be
attributed to the fact that Rob-ULA is unable to learn effective representations in the
space where label flips were added since it chooses to ignore those data points. Hence, in
the region corresponding to the uncorrupted points, Rob-ULA achieves higher likelihood
values than vanilla ULA but for the corrupted regions, the performance of Rob-ULA
degrades slightly. This behavior was consistently seen for varying levels of ¢ with minor
shifts in the likelihood curves for different corruption levels.

7 Conclusions

We have discussed the problem of robustness to adversarial outliers in a Bayesian frame-
work and proposed Rob-ULA, a robust extension of the classical Unadjusted Langevin
algorithm. We obtain nonasymptotic convergence guarantees for Rob-ULA.

We identify multiple directions for future work. On the statistical side, it would be
interesting to extend the robustness guarantees of Rob-ULA for statistical models which
do not fall within the scope of our current assumptions, notably the case of nonconvex
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Figure 5: Binary classification with label flips: Breast-Cancer (¢ = 0.10), German Credit (¢ =
0.10) and Diabetes (e = 0.15). The plots show that while Rob-ULA is able to achieve high log-
likelihood values for a vast majority of the data points, there is a small fraction of the points on
which ULA performs better. This behavior can be attributed to Rob-ULA ignoring certain data
points during its run and not generalizing well within the subspace spanned by them.

likelihood functions. On the computational side, an important question to understand is
whether one can accelerate the convergence of Rob-ULA in the presence of outliers.
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A Proof of Lemma 1

We begin by obtaining a bound on the performance of Algorithm 2 in the one-dimensional
setting and use this as a building block towards the proof for the general d-dimensional
setting. For ease of exposition, we denote by ug and [ the mean gradient VUs and its
estimate VUy respectively.

A.1 Proof for 1 dimensional setting

We begin by analyzing Algorithm 2 for the case when d = 1.

Lemma 6 Let Py denote the empirical distribution on D. in R with mean ug, variance
o and with fourth moment constant Cy. Let n be the fraction of corruption in the samples
in D. Then Algorithm 2 returns an estimate of the mean p such that, for a universal
constant C,

LN
N

it —po| < CCLon3.

Proof Let I1_, be the interval around the true sample mean py containing 1 —7 fraction
of D.. Using the bounded fourth moment assumption on Py, we have that,

C
n

a

LN

length(/1_,)

(17)

W=

Let S be the set of smallest interval containing (1 — n)? fraction of all the points and
let this interval be denoted by I. Now, we have that length(/) < length(/;_,) since the
chosen interval has the smallest length. Further, S contains at least 1 — 37 fraction of D..

For any value of 1 < 1/6, we have that the intervals I and I must overlap. Therefore,
adversarially corrupted points in the set S are within distance 2 - length(I1_,) of the true
parameter pp. We now bound the deviation of the estimate /i from pg by controlling the
sources of error:

a. Error due to points in S from D,: Since there can be at most 7 fraction of
corrupted points in our selected sample and each of them within distance 2 -length(/;_),
their total contribution to the deviation is upper bounded by 27 - length(I1_,).

b. Error due to pqints in S from D.: Define A to be the event that a point of D,
is present in the set S. From our discussion above, we have that P(4) > 1 —3n > 1/2.
Using Lemma 3.11 [LRV16], we have that there exits a constant C' such that

e

1
B [X]A] - E[X]| < CCf ot

Combining the analysis of parts (a) and (b) above, we get that,

alw

1
|t — pol < 2n - length(li—pn) + CCfont.

Plugging in the bound for length(/1—,) completes the proof. |
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A.2 Proof for d-dimensional setting

We now proceed to prove the robustness properties of Algorithm 2 for the general d-
dimensional setting. Through the course of this section, we let S be the set of points
returned after the outlier truncation procedure with S. being the clean . points and Sa being
the adversarially corrupted points. Also, we denote by 15 := mean(S), Mg, = mean(S.)

and pg = mean(Sa) the corresponding mean vectors of the relevant subsets.

Lemma 7 Let Py be the empirical distribution over D. in R? with mean ug, covariance
matrix g and with fourth moment constant Cy. Let n be the fraction of corrupted data
points in D. Then, we can obtain a vector a € R? such that for a constant C,

1 3
lla — polls < CCH/tr(Ze)n*.

Proof Let e1,...,eq be the d canonical basis vectors. Projecting the problem onto these
vectors and solving in each direction independently using the method for one dimension,
we obtain the bound above by using Lemma 6 separately in each dimension. |

Lemma 8 Let n denote the fraction of outliers in D. After the outlier truncation proce-
dure, for every point in the returned set S, we have that for a constant C,

1 d||2 3
o — sl < CC; (—V”” 4 wr(ze)m) .
7’]4

1
Proof Let B* = B(ug,ri) for rf = °

d|| e |2

In order to bound the fraction of clean points in B*, observe that,

Plle — al} > (i) < Lol (19)

ball of radius i around ug.

where the probability is with respect to the empirical distribution over D. Now, E[(] ||z —
pell3 < d*max; E[(] (x — pe)i) < Cad?||Z6)|3. Plugging this value in Equation 18, we get
that at least 1 — ) fraction of the points of D, lie in B*.

Using Lemma 7, we have that for r; = C’C’Es/tr(Eg)n%, there are at least (1 —n)
fraction of good points at a distance ri 4+ r3 away from a. For n < 1/6, we have that the
chosen ball of points around S and B* must overlap. Therefore, minimum radius ball has
radius at most 77 + r5 and when combined with the bound from Lemma 7 and triangle
inequality, we get that,

1 d||2 3
e = poll2 < CC; <7V“' n tr@e)ni) ,
’)74

which completes the proof. | |
Lemma 9 Let n be the fraction of corrupted points in D. Then we have that after the
outlier truncation step of Algorithm 2, for a constant C,

1 3 ¢1
g, —mollz < CCIN*/I[[Zollz and  [|Z5 [l2 < [[Zg, —Zall2+ ez < (Cn+1)[|Z6]|2.

Proof We first consider the bound on the mean shift and then proceed with the bound
on the covariance matrix.
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Mean Shift Bound: Let A be the event that a point « € D, is not removed by the

outlier truncation procedure. Then using Lemma 3.11 [[LRV 16]] for n < /6 for the random
T H5.—He

s =7l for x ~ D., we have that,
Sc

variable X = z

1 3
lng, — pellz < CCln*/ (|20l

Covariance Matrix Bound: Consider the following decomposition for bounding the
spectral norm of Xz :
¢1
X5, ll2 < 1E5, — Zoll2 + [[Zell2 < (Cn+ 1)[[Ze 2,

where (; follows by using Corollary 3.13 [LRV16] for the same event A as above in the
mean shift bound. ]

Lemma 10 Pw is the projection operator on the bottom d/2 eigenvectors of the matriz
Y&. Then, for a constant C, we have that,

11
InPw8ullz < n((Cn+1) + CCENZ)|[ o],
where 6, 1= pg, — g, -

c

Proof Consider the matrix 5. It can be decomposed as:

S =(1—-n)Zg, +nSz, +n(l—n)8.0, .

P21 2

By Weyl’s inequality, we have that,
Aa/2(X5) < A(E1) + Aay2(32).
We begin by first controlling the term Ag/2(32). We have that,

() § o 09+ (13)
d/2 d/2

where (1 follows by using the fact that all selected points are in a ball of radius r + r3

where r] and r3 are as defined in Lemma 8. Next we consider the term A, (2) as follows,

2 1
A2 (S2) < < CCF[|Z]|2n?, (19)

M (S 2 (1 0)(Cn+ 1)I[So e, (20)

where ¢y follows from using the bound in Lemma 9. Combining Equations (19) and (20),
we have that,

1 1
Aa2(Bg) £ (1 =n)(Cn+ D)Xz + CCF X6 |2n2.

Using the fact that Py is the projection operator on the bottom d/2 eigenvectors of the
matrix X g, we have that,

11
PySgPw < (1 =n)(Cn+ 1)+ CCEn2)|[Lo|21.
Following some algebraic manipulation as in [LRV16], we obtain that

11
InPwdul3 < n((Cn+ 1)+ CCEn2)|Solla.

which completes the proof. |
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Proof of Lemma 1

Let S be the subset of samples returned by the outlier truncation procedure and let S
be the set of clean points contained in S. Then, we have,

~ ¢ ~ N
2 — poll3 = 11Pw (i — po) I3 + 1Py (& — po) 13

2 2P (i - A )z + 201 Pw (s, — mo)l3 + [l — Py pao)ll3
< 2P (i - fis )z + 201 (eg, — uo)ll% + v = Pypio) I3, (21)
—_———

(I)

where (; follows from the orthogonality of the spaces V' and W, (2 follows from using
triangle inequality and (s follows from contraction of projection operators. Note that
(1) is a problem defined on the subspace V' which is of ambient dimension d/2 and is
solved recursively by Algorithm 2. Thus, one can recursively bound the overall error of
the algorithm as,

I — pollf < (21 Pw (i — fus, )3 + 21| s, — po)[3) (1 + log d). (22)

Using Lemma 9 and Lemma 10, we can bound the above error as,

1
/2= ol < CC v/ log(d)]| X2,

which completes the proof of the lemma. |

B Convergence of Rob-ULA: Proofs for Auxiliary Lemmas

Lemma 11 For ©; following Eq. (7), if the initial iterate ©g ~ N <0, i7I>, the fraction

_2

m

] < _gi - il +
of corruption € < 1CnCylogd’ and scaled step-size h = nn < L then for all k € N
_ 2
E {Hekn — ¢ ] < 20rCs2 yog gy A
2 nm

Proof Consider first the initial iterate for k = 0. The distribution po satisfy Egp, [||9||2] =
d

4 4
i < —C’14elogd + % We will prove the lemma statement by strong induction.
n
In the induction hypothesis step, assume that for some k& > 0, for all t = 0,7, ..., kn,
4
Eomp, [10]2] < m—CRCE 2€log d+—d We consider obtaining a bound on Eop, [1e12].

where p; follows Equation 7, for ¢ € (kn (k4 1)n] (denote 7 =t — kn € (0, h]):

O = Oy — VF(Ory)T + V2(B: — Biy). (23)

12
Given the above equation, we consider the bound on E |:H®t — 9H ] for some t € (kn, (k + 1)n)
2

i

as follows:

E{H@ﬁéuj :}E[H(ekré) V£ (Ory)T + V2(Br — Bry)

=5 |[[(64 - ) - Fs(@u7 ] + 20r
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~ N 2
We next define v = nT and obtain a bound on the term E [H (@k:n - 9) - Vf(@)kn)THJ :

j

B 2
=& [||(6m ~ 8) = -V f(Oun)v + -V f (O} — -V (@) ]

2

j _g| CEROE %%f(@,w)u

E [H (@kn - é) —VF(Oun)T

2
—E (ek,7 - é) - %Vf(@kn)u
2

]

+ TUL—EIE |:HVf(9kn) - 6f(@l'w)

+ 2_;/1@ [< (@,m, - é) - %Vf(@;m)u, %Vf(@kn) — %§f(®kn)>:|
)

where (i) follows by an application of Cauchy—Schwarz inequality. Next, using the as-
sumption on the robust estimation of the gradient from Theorem 2, we have that

O]

<(1+mv)E H (@kn - 5) - %vf(ekn)l’

+ (% + 1/2) %IE |:HVf(@kn) - ﬁf(gkn)

%]E [HW(@‘"’) V(O j < CrCsaelogd-E M@kn - ém 4 CrCsoelogd,

and further simplifying the above using Lemma 12, we obtain

2
E

|ca-mrefien =] e

o1
H(@}m — X ) - _VU(@]C”)V
n 2

,n—,LQ

740120271 Togd’ we have that

and the corruption factore <

~I| =

Therefore, since v <

E [H CIEE %W(@kn)y

2] <(1-m*®) (1 -mv)E [Hek" - éHQ]

2
+ (% + 1/2) (C13€10ng |:H®kn — éHQ] + Chaelog d)
< <1 _ v+ %Clgelogd> E [He’“’? - ém T %Cl4elogd
<(1- %) E [H@’“" - éHQ] + %”cmlog d,

where we have defined the constants Ci3 := CrCx,1 and C14 := CrCyx,2. Using the above
bounds, we have that

E [H@t - 9”2] < (1 - @) E [||@k,, - x*\|2] + %CMelongr %"d.

elogd+4—(g = 3 (gcmelogd%— %d>
nm m \m n

112
Notethat v < = < i and E [H@kn — 9H ] < 4;;4
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Combining these, we can obtain the final bound stated in the lemma as follows:

112
EM@t }5(1 ) ( Cuelogd + = d>+ngMd%d+gzd
2 m n

2

< — < Chaelogd + — d>
m

::<A§Cmebgd+~éi>,

m nm
for any t € (kn, (k + 1)n]. This concludes the proof. ]

We now prove the Lemma 12 which was used in the proof of Lemma 11.

1 1 _
Lemma 12 For 7 < I’ and EVf(@) being m strongly convex and L Lipschitz smooth,
we have
2
< (1 -mw)’
2

|@-8)- Lvson

2

Proof To bound , we consider the following function: F(0) = 3 6] —

k—%vﬂﬂy

2

1 1
— f(6)v. First note strong convexity and Lipschitz smoothness of —V f(#) implies that
n n

1 . 1
ml < EVQf(O) < LI. Thus with v < I we have that

(1—vD)I<V’F@) < (1-—vm)l V0eR%.

Note that the point 0 satisfies Vf(@) = 0. Using this we have that:

- .1 - 2
o-0)-2vs00] =|(o- tvson) - (4~ Lvsan)
2
R N 2
:l/v%(m+ufmﬂﬁw7@
0 2
()
<(1—mv)?
where (i) follows from the Lipschitz-smoothness of F'. ]

Lemma 13 (Bound on Initial Error) If we let the initial iterate ©¢ have distribution

given by
1\ %2 L
w®)=(52) e (~E10IF)

and p* following Assumptions 1-2, then the initial error KL(po || p*) is bounded as:

KL(po || p*) = /p0(9)1n <Z°Ez;> do < dl £_
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Proof We want to bound KL(po || p*) = /po(e) In <ZSEZ;> df, where p*(0) oc e~/
First define f(0) = f(0) — f(0*), where #* is the minimum of f. Then

. exp (—f(8))

)= ————F—.
PO = o (=)

7 L
By Assumptions 1 and 2, we have that % o> < £(6) < §||9||2, VO € R, Therefore,

~—

—Inp*(6) = f(6) +n / oxp (= £(6)

do
< Loy +1n/exp (-2 101%) a0
-2 2

L

2

lol? + &

1 2T
ZInZt
2 m’

where (i) follows from using the Lipschitz-smoothness of f. Hence

* d 2T d
_ cdy 2 d
/PO(‘))IHP (6)df < Sln— + 2
We can also calculate similarly that
d. 2 d
/po(@) Inpo(6)dd = -3 In % -5

Combining the above, we get that

Kummmz/m@mmww—/mwmﬂ@ws

This concludes the proof of the statement. | |

C Proofs for Mean Estimation and Regression

C.1 Proof of Corollary 4

Throughout this proof, we condition on the high probability event described by Equa-
tion (5). We proceed to obtain a bound on the strong-convexity parameter m and Lips-
chitz smoothness parameter L for the function f(6) defined above in Equation (13). The
gradient V f(0) is given by

VIO0) =3 (0—00)+ > S0 - z),

i€D,
and the corresponding hessian V2 f() is given by,
V2F(0) =35 +|De| - 27

Since both the matrices ¥y and ¥ are positive-definite, we have the following bounds for
the parameters m and L:

n(l—¢ 1 2 n(l—¢) 1
<A[na‘x(2) * )\max(EO)> r=v f(e) = (Amin(z) * )\min(zo)> L (25)

m L
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We now obtain a bound on the covariance 3y of the gradients Vg;(0) using the em-
pirical distribution of the points in D, as follows:

1
S = 5] > (Vgil0) = Ean,p.Vg:(0)) (Vgi(0) — Ean,p, V- (6))
“liep.
1
=S = > () (z o pe) |
Dl i€De
=x'y,, (26)

where z ~, D, denotes data sampled uniformly from the data set D.. Thus, from the
above equation, we get that Cs; = 0 and Cx 2 = AA““”‘*((EEZ)) Plugging in these values in

Theorem 2 gives us the desired bound. |

D Proof of Corollary 5

We condition on the high probability event described by Equation (15). We begin by
obtaining a bound on the strong-convexity parameter m and Lipschitz smoothness pa-
rameter L for the function f(6) defined above in Equation (16). The gradient Vf(0) is
given by

Vof(6) = 530 = 60) + 25 3 (@il ) —iw),

1€D¢
and the corresponding hessian V2 f() is given by,

[De]
2

V() =% + . Yo

Since both the matrices X9 and im are positive-definite, we have the following bounds for
the parameters m and L:

<n(1 () + m> I=V2f(0) < <n(l — ) Amax () + ﬁ) I.

m L

(27)
We now proceed to obtain the bound on the spectral norm of the covariance matrix g
of the gradients Vg;(0) = z;({(xs, ) — y;) using the empirical distribution of the points in
D.. We use the notation Ep, to denote E(, )~ p,, the sampling of pairs (x,y) uniformly
from the clean data set D..

1Z6ll2= sup " (Eo. [Vg:(6)Vg:i(®)" | - Eo. [Vg:(®) Eo. [Vai(®)] ") v

vesd—1
< swp o7 (B0 [T0.0)Va)])
= swp Eo [0 ((w,0) = y)]
< swp VER Ty Ee. (.0) — )] (28)

where (i) follows from the fact that Ep, [Vg:(0)] Ep. [Vg:(9)]" = 0 and (ii) follows from
the Cauchy-Schwarz inequality. We now obtain a bound on the two expectations in the
above equation.
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Bound on Ep, {(vTx)ﬂ: This term can be bounded using bounded fourth moment

assumption (Assumption 4) as follows:

(29)

Ep, [072)] < Con (Bew, [072]) < Cu)

Bound on Ep, [((z,0) — ) ] We simplify this term by using the modelling assump-
tion on the data (z,y) and then proceed to bound this using the c,-inequality.

ED( [( ] ED{ [((CL‘,AQ) — 2)4]

28 (Bp, [((z, A0))'] +En, [2])

< 8- (CoallZo 3180113 + En, [="]).

~

—~
N

where Ap := 0—0*, (i) follows from using the c-inequality E| X +Y|" < 2"~ (E|X|” + E|Y]|")
and (ii) follows from Assumption 2 on bounded fourth moment of the covariates. Using
Lemma 14 for bounding the fourth moment of the noise variables, we have with probability
at least 1 — 9,

- Cz 4 2
Ep, [((2,0) — 9)*] <8 ( CoalSalBll Aol + 30 + =2 10g? (<) ). (30)
NG 5

Substituting the bounds obtained in Equations (29) and (30) in Equation (28), along with
an application of triangle inequality, we have that with probability at least 1 — &,

1
- - . 8C..4)% -
1201l < /Tl Sello + 20800 - [Salls - 6 — Bues 3 + Mlog( )+ﬂa

1
ni
Cx 2
+21/8C0a - [[Zell2 (16 — Oreg]f3- (31)
N—_— —_——

Cx1

One can now use the above bounds in conjunction with the values of L and m from Equa-
tion (27) to obtain the final result. |

The following lemma obtains a concentration bound for the fourth moment of a Guassian
random variable and can be obtained by appropriate instantiation of the Hypercontrac-
tivity Concentration Inequality (Theorem 1.9) by Schudy and Sviridenko [SS12].

Lemma 14 (Concentration Bound for Gaussian Fourth Moment) Let z1, 22, ..., 2,
be i.i.d. random wvariable sampled from N'(0,1). Then, there exists a universal constant
C.,r such that for any e > 0, we have that,

n 1 1

1 —nie3
Pr||— >€ SeQexp ni: .

n1=1 Cz74-0'

Z z; —E[zY]
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