
CKN: An Edge AI Distributed Framework
Sachith Withana and Beth Plale

Department of Intelligent Systems Engineering
Indiana University Bloomington, IN, USA

{swithana, plale}@indiana.edu

Abstract—Edge AI is the use of artificial intelligence at the
Edge which allows for real-time processing and low latency in
making AI decisions. In a resource-limited environment of edge
computing, it is crucial to efficiently manage the deployment and
use of inference models while at the same time optimizing user
experience. Our framework supports AI at the Edge through
a standalone monitoring framework that builds and maintains
a context for an edge application through monitoring data and
control streams between a device and edge server. Its objective
is to maximize user expressed Quality of Experience. In this
brief abstract we introduce the CKN framework and show the
monitoring framework’s effectiveness in response to changes in
edge needs.

Index Terms—Edge-cloud continuum, provenance, streaming,
Edge AI, Knowledge Graphs

I. INTRODUCTION

As Artificial Intelligence (AI) continues to advance, its ben-
efit at the Edge is becoming more evident. EdgeAI combines
the benefits of Edge Computing, such as faster processing
times and better privacy, with the ability to make decisions
closer to the data source. However, Edge resources are often
limited (reliability, power, etc.), which means that AI models
must be deployed efficiently based on specific requirements
such as accuracy, latency, and privacy. It is crucial for Edge
Systems to optimize their model deployment to provide a
better Quality of Experience (QoE) for connected devices.

To address this challenge, we introduce a framework that
enables efficient deployment of AI models at the Edge, even
with highly dynamic device requirements. Our framework,
described more fully in [10], builds and maintains a context
through time of what could be called the ecosystem of the
device and edge server. That is, through monitoring both
data and control streams at both device and edge server, and
processing that information into a provenance and time-based
picture of the ecosystem, the framework is able to anticipate
changes in needs and preemptively react. The data model of
the ecosystem is a graph, making it amenable to analysis
through deep learning.

In this abstract we give an overview of the design of the
framework and briefly describe the experiment that we carry
out to evaluate the framework’s potential. The experiment uses
an image classification task, and evalulates the framework’s
ability to swap out an inference model for a ”better” one
adaptively as need changes. It works as follows: a device
sends an image to the edge server. This series of images
from the device make up the device’s data stream. Along with
the image, the device requests a particular latency (time to

complete the classification) and model accuracy. This series of
requests forms the device’s control stream. We further monitor
the response from the Edge Server back to the device. The
response provides the achieved accuracy and latency.

The request for a certain model latency and accuracy are
expressed as Quality of Experience (QoE); QoE we give as
having two attributes: Quality of Latency (QoL) and Quality
of Accuracy (QoA). Both are an integer value [0..1] where a
QoA or QoL of 1 is a request for the highest possible qualities
of each and 0 is the lowest. QoE is then the weighted values
of QoA and QoL. In our experiment, both QoA and QoL are
weighted equally.

Using the QoE stream to represent a set of changing needs,
and monitoring the response from the Edge Server back to the
device of satisfied QoE, our framework can detect when an
inference model is no longer meeting the needs of the device.
When this occurs, we enact a change at the Edge Server to
place an inference model that better meets the needs of the
device.

We call the framework CKN for Cyberinfrastructure Knowl-
edge Network. Full details of CKN and the experiment can be
found in [10].

II. DESIGN

The overall environment for the framework is of devices
communicating with some number of devices communicating
with an edge server.

A CKN daemon exists in each Edge Server from where it
captures the request (image classification) and control stream
(Quality of Experience). Accompanying the QoE is identifying
information about the device such as the device ID. The
daemon takes the information along with identifying informa-
tion about the edge server (e.g., server ID) and streams this
information through a distributed message broker where these
events are aggregated and stored in the Knowledge Graph of
the system.

The device-edge context (historical provenance data) is
analyzed using a time-series Deep Learning Model to predict
a better model for placement based on incoming resource
constraints. The selected model can then be triggered if it is
already resident at the edge server, or in the future can be
downloaded from the ICICLE Model Commons on demand as
network latency permits, and the ICICLE Model Commons [7]
comes into being.

Numerous questions are raised by this framework having to
do with how frequently a model is replaced (one does not want



to put the Edge Server into a state of constant churn), where
is the optimal location of CKN knowledge graph given its size
and analysis demands. In the proof of concept evaluation that
we carried out, we are interested in initial feasibility alone.

Figure 1. CKN architecture for the Edge-cloud continuum

The five major components or aspects of CKN are described
here and component relationships captured in Figure 1.

III. EVALUATION

In order to evaluate the predictive capability of the KG,
we create a synthetic and deterministic workload (available
at [11]). The workload encodes abrupt changes in QoE needs
to measure how long it takes for our framework to react. The
workload consists of 1500 time windows, each window having
a duration of 60 seconds. The number of requests in each
window ranges from 100 to 1000, giving us a wide range of
scenarios to examine. The images from the ImageNet [1] is
used for the classification task.

Figure 2. Workload behavior for first 3000 data points showing (a) requested
accuracy and (b) latency

The behavior of the workload is demonstrated in Figure 2
for the first 3000 requests. Changes in requested accuracy
fall on time window boundaries. The first time window is
500 requests long and the requested accuracy is 82%. At the

boundary between the first and second time windows, the
requested accuracy drops to 70%. The time window for the
second window is 1000 requests long. Similarly latency is
.5 +/- (.03) at the first time window and drops to .3 for the
second time window. This change might occur when faster
processing is needed. Suppose at event 500, the device needs
faster processing and is willing to accept lower accuracy for
it.

For the classification models, we leveraged publicly avail-
able models trained on the ImageNet dataset as shown in Table
I.

Table I
INFERENCE MODELS

Model Name Acc@1 Mean Latency (s) Mean Accuracy
ShuffleNet [8] 72.996 3.5M 0.0133 50.18%
DenseNet [5] 76.896 20.0M 0.1388 40.02%
GoogleNet [9] 69.778 6.6M 0.0599 32.81%
MobileNet [4] 67.668 2.5M 0.0120 47.55%
ResNet [3] 82.284 60.2M 0.2068 49.54%
ResNeXt [12] 77.618 25.0M 0.0953 53.82%
SqueezeNet [6] 58.178 1.2M 0.0206 46.61%

The mean accuracy and latency values were measured
for the system for precise model placement. Jetstream2 [2]
community cloud was leveraged to carry out the experiments
evaluating the framework. We compared our algorithm (called
”predictive” in table) to three other versions:

• Predictive Algorithm leverages the CKN time-series deep
learning model to select the model for the placement,

• Optimal Algorithm assumes perfect foresight on the part
of the selection algorithm. That is, the system knows
the future constraint values and decides the models to
be placed,

• Random Placement places the models randomly,
• No-choice Algorithm uses the best choice from Table I

throughout the experiment.
All the evaluations start with a default model in place for

the first time-step.
An illustrative result of the experiment (taken from [10] and

shown in Figure 3, shows the results for Quality of Experience
values for the system for each of the four algorithms. One
can read the figure as follows: the optimal algorithm has
perfect foresight so it represents the right inference model
being where it needs to be when it needs to be there. As
expected, random choice of inference model for placement
performs the worst. The predictive algorithm closely follows
the optimal algorithm for QoE. The no-choice algorithm (hand
picked at outset because it is thought to perform the best under
all circumstances) lags in several circumstances.

IV. DISCUSSION AND FUTURE WORK

There are a host of questions to be answered as next
steps for this work. Our measured latencies, which were
different from the published latencies, meant disappointingly
little difference between model latencies. This will result in
the favoring of the “no choice” option which is simple and
cost effective. Further, we are applying the framework outside



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (m)

Q
ua

lit
y

of
E

xp
er

ie
nc

e

Optimal
Predictive
Random

No Choice

Figure 3. Quality of Experience for different placement algorithms (Jetstream
2)

a synthetic dataset and a cloud environment (the latter where
networking latencies are not a factor and device reliability and
variability is not accounted for).

We are further exploring extending the notion of QoE
beyond simple performance measurements to include attributes
having to do with trustworthiness of the inference model. That
is, choice of an inference model needs to go beyond simply
performance and model accuracy. The CKN framework is
envisioned as a standalone tool yet one that is part of the
ICICLE integrated infrastructure environment. The strength
of the framework is the adaptability that it provides at the
edge, thus realizing one of ICICLE’s major objectives of “plug
and play” infrastructure. CKN derives this strength through an
intelligent data model that captures ecosystem context at the
edge and thereby is adaptive to user need, including specificity
with accountability and trust in mind.

V. ACKNOWLEDGEMENTS

The inspiration for this framework came as a result of
discussions that began at the CENTRA5 workshop in Porto
Portugal between the authors and Prof. Hana Khamfroush of
the University of Kentucky and Nathaniel Hudson of the Uni-
versity of Chicago. This research is funded in part through the
National Science Foundation under award #2112606 ICICLE
AI Institute.

REFERENCES

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–
255, 2009.

[2] David Y. Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-
Childs, Marlon Pierce, Suresh Marru, J. Eric Coulter, Matthew Vaughn,
Brian Beck, Nirav Merchant, Edwin Skidmore, and Gwen Jacobs.
Jetstream2: Accelerating cloud computing via jetstream. In Practice
and Experience in Advanced Research Computing, PEARC ’21, New
York, NY, USA, 2021. Association for Computing Machinery.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. IEEE conf on computer
vision and pattern recognition, pages 770–778, 2016.

[4] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[5] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[6] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[7] AI Institute for Intelligent CyberInfrastructure with Computational
Learning in the Environment (ICICLE). https://icicle.osu.edu/.

[8] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proc.
European conference on computer vision (ECCV), pages 116–131, 2018.

[9] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–
9, 2015.

[10] Sachith Withana and Beth Plale. Ckn: An edge ai distributed framework.
In 2023 IEEE 19th Int’l Conf on e-Science (e-Science), pages 1–10,
2023.

[11] Sachith Withana and Beth Plale. CKN Edge AI Dataset for Image
inference at the Edge (CEAD). (1.1) [Data set].Zenodo.https://doi.org/
10.5281/zenodo.8023205, June 2023.

[12] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In Proc
IEEE conf on computer vision and pattern recognition, pages 1492–
1500, 2017.

https://icicle.osu.edu/
https://doi.org/10.5281/zenodo.8023205
https://doi.org/10.5281/zenodo.8023205

	Introduction
	Design
	Evaluation
	Discussion and Future Work
	Acknowledgements
	References

