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Abstract

As telehealth utilization for ambulatory and home-based care skyrockets, there
has been a paradigm shift to a decentralized and hybrid care delivery modal-
ity integrating both in-person and telehealth services provided at different layers
of the care delivery network, i.e., central hospitals, satellite clinics, and patient
homes. The operations of such care delivery systems need to take into consid-
eration patients’ mobility and care needs, and rely on multiple types of nurses
who can support and facilitate telehealth (with hospital physicians) in clinics and
patient homes. We formulate an optimization problem, aiming at operational-
izing the proposed care delivery network. Decisions regarding the type of care
delivered, the location of care delivered, and the scheduling of all kinds of nurses
are determined jointly to minimize operating costs while simultaneously satisfy-
ing patients’ care needs. We propose a bi-level approximation that exploits the
structure of the hybrid telehealth system, and develop column generation-based
heuristic algorithms to identify the joint decision rules for clinic selection, patient
assignment, and visiting nurse routing problems. Numerical experiment results
demonstrate our algorithm’s capability to achieve high-quality solutions in rea-
sonable computation time, and is capable of solving instances with large patient
sizes and time windows. Our work supports the efficient and effective operation
of the proposed hybrid telehealth systems to improve patient access to care.

Keywords: Vehicle Routing Problem, Telehealth, Column Generation, Heuristic
Algorithm



1 Introduction

An analysis of several national survey data estimated that 3.6 million people in the
United States did not obtain sufficient medical care due to transportation barriers [1].
To address patient transportation issues, various strategies have been implemented
by healthcare organizations, including 1) compensating their travel through public
transportation, such as the provision of bus passes, taxi/transport vouchers, or trans-
portation cost reimbursement, as well as 2) free agency services such as arranging or
connecting patients to transportation, and 3) providing in-house transportation for
patients (e.g., free shuttle service) [2]. Despite these efforts, the Health Research &
Educational Trust identified several major problems that hospitals and patients still
face, such as limited availability and routes, high cost of fares, long travel distances
and lengthy wait times, and inconvenient time schedules. While these issues remained
to threaten healthcare access during the pandemic, they also prompted a new pivot
in the proliferation of telehealth.

Telehealth technology enables remote patient monitoring, communication, and
delivery of health-related services, reducing the need for frequent in-person visits and
associated travel burdens. According to the American Medical Association (AMA)
2021 Telehealth Survey Report, 85% of physician respondents now use some form of
telehealth and 60% of clinicians agree or strongly agree that telehealth enabled them
to provide high-quality care. The growth of telehealth has also facilitated the inte-
gration of telehealth into home healthcare (HHC), augmenting the traditional HHC
with access to care providers residing in central hospitals and specialized services that
visiting nurses cannot provide. The integration of telehealth into HHC implies a decen-
tralized and hybrid care delivery network that has the potential to improve patient
access to healthcare, especially for patients that suffer from transportation barriers
such as the aging population. Yet, the realization of the proposed decentralized and
hybrid care delivery requires careful planning and execution to ensure that it is imple-
mented effectively, and the benefits are achieved without compromising the quality of
care.

In this study, we examine a central hospital that manages a group of patients in
a broad catchment area of the healthcare organization. These patients require regular
healthcare services, including specialty care that is typically not provided at com-
munity clinics or patient homes as part of the HHC. In addition to the in-person
appointments at the central hospital, we consider telehealth with hospital physicians
provided at patient homes or nearby community clinics. Some patients could experi-
ence difficulties accessing healthcare facilities due to various factors, such as disability,
lower income, older age, and rural residency (long-distance travel). For these patients,
we consider employing travel nurses to visit their homes so they can receive basic
nursing care as they would have when visiting the hospital in person. Patients also
have the option to visit nearby clinics, and their nursing care (e.g., vital check, basic
examinations) will be supported by nurses from participating community clinics prior
to, during, or right after their telehealth with the hospital physician. The illustration
of our design is shown in Fig. 1.

To operationalize the proposed hybrid telehealth system, the type of care (e.g.,
telehealth vs. in-person) delivered to individual patients, the location (e.g., patient
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Fig. 1 The illustration of decentralized hybrid care delivery

home, community clinics) of care delivered, and the assignment of all kinds of nurses
based on their work location, need to be determined. Lowering the operating cost
while providing quality care is essential to ensure the sustainability of this service
modality, envisioning the steady growth of telehealth service demands. In addition
to minimizing operating costs, there is also a vested interest in maximizing social
welfare by accounting for the disutility of patients who need to travel and thus bear
the inconvenience or travel cost.

Our problem is related to the Vehicle Routing Problem with Time Window
(VRPTW) and multi-depot VRP (MDVRP) [3] as the hospital assigns visiting nurses
from various clinics to patients while observing capacity and time window constraints.
The foremost challenge in our problem pertains to computational complexity, which
is notably pronounced due to the inherent NP-hard nature of the VRPTW. This chal-
lenge is further compounded by the necessity to address the intricate aspects of clinic
selection that affect patient assignment and visiting nurse routing, thereby engender-
ing a complicated optimization problem. Consequently, novel approaches are required
to incorporate patient features, cost factors, and time windows, to achieve the best
assignments for all types of nurses, while maintaining computational efficiency. In this
regard, we establish a set partitioning model, accompanied by the introduction of a
highly effective column generation-based heuristic algorithm to tackle the problem at
hand. This column generation-based heuristic algorithm encompasses a construction
heuristic, a local search algorithm, and a heuristic labeling algorithm that identifies
negative reduced-cost routes effectively. We further perform numerical experiments to
demonstrate the superiority of the proposed approaches over commercial solvers using
synthetic data mimicking the real-world problem setting.

The contributions of this paper are summarized as follows. First, we present a
novel decentralized care delivery design for integrating telehealth services and HHC to
improve patient access to care. A comprehensive mathematical formulation is devel-
oped to characterize the unique operational problem associated with this service
network design. Second, to solve our problem with multiple decisions made jointly for
a large size of patients, which entails a large mixed integer programming problem, we
develop a bi-level column generation-based heuristic algorithm. The numerical analysis



demonstrates that our algorithm is highly efficient, consistently yielding high-quality
solutions within remarkably short computation times, even for instances involving
up to hundreds of patients — a scale that significantly exceeds the solver’s capabil-
ity in providing practical solutions. Beyond these contributions, our solution offers
decision-makers valuable insights into disparities arising from the inclusion or exclu-
sion of patient disutility, as well as the impact of various operating factors. We believe
this work holds significance in promoting patient access to care through better service
system design and operation in the digital health era.

The remainder of this paper is organized as follows. Section 2 introduces the rele-
vant literature. Section 3 provides an explicit description of the problem, along with
the development of the mathematical formulation. Section 4 presents a bi-level model
of the original problem and proposes a column generation-based heuristic algorithm for
solving the problem. In addition to cost minimization, patient disutility is also exam-
ined as part of the objective function. Section 5 provides details about the numerical
experiments and reports the computational results. Finally, discussions and concluding
remarks are presented in Section 6.

2 Literature review

To the best of our knowledge, the integration of facility location problems, patient
assignment problems, and vehicle routing problems with time windows (VRPTW)
and multi-depot into a nested model has not been extensively explored in the litera-
ture. Therefore, we will briefly review the existing research on the classical VRPTW
model, followed by a discussion of the relevant literature concerning column genera-
tion methods and heuristic strategies for solving VRPTW problems. This serves as
the methodological foundation of our proposed model. Then, we explore studies that
focus on HHC routing and scheduling issues as well as location selection problems.

The vehicle routing problem (VRP) was originally formulated by Dantzig and
Ramser [4] in 1959. Over the past six decades, significant research efforts have been
devoted to studying the optimization of routing problems and their extensions [5-7].
In recent years, new variants of the VRP with more complex objectives and constraints
have emerged. One such variant is the VRPTW, where the service at each customer
location starts within a given time window. It has been proven that the VRPTW is
an NP-hard problem [8].

Many researchers have attempted to derive exact algorithms to solve the VRPTW.
The column generation algorithm is a commonly used exact algorithm that has been
successfully applied to solving large-scale combinatorial optimization problems, such
as the production scheduling problem [9], the surgical scheduling problem [10], and the
cutting stock problem [11], to name a few. In the context of VRPs, Desrochers et al.
[12] proposed a column generation approach that accurately solved seven of Solomon’s
benchmark instances [3] exactly by decomposing the problem into sets of customers
visited by the same vehicle and selecting the optimal routes between all possible ones.

Due to the exponential time complexity of exact approaches, it is unlikely to pro-
duce optimal solutions for practical-sized VRPTW with reasonable computational
time. As a result, near-optimal solutions have been sought using heuristic approaches.



These approaches can be broadly categorized as construction heuristics, improvement
heuristics, and composite heuristics. Construction heuristics are employed to con-
struct feasible solutions by sequentially inserting unrouted customers into partially
constructed routes until all customers are included. One such construction heuristic,
the sequential insertion algorithm, was introduced by Solomon [3] and its parallel
version was later implemented by Potvin and Rousseau [13]. Although construction
heuristics often produce solutions rapidly, the quality of such solutions may not always
be optimal. As a result, construction heuristics are typically used to generate initial
solutions followed by improvement heuristics or other two-phase heuristics. Improve-
ment heuristics, on the other hand, aim to improve upon an existing solution by
performing local searches for better neighboring solutions, within the neighborhoods
generated by node/edge-swapping operators. Edge-exchange heuristics are examples
of improvement heuristics, and have been studied by various researchers including
Potvin and Rousseau [14], Savelsbergh [8, 15], and Taillard et al. [16]. A composite
heuristic, which combines route construction and improvement procedures, was pro-
posed by Russell [17]. More recently, Yuan et al. [18] proposed a set partitioning model
for the generalized vehicle routing problem and developed a heuristic algorithm based
on column generation. This approach combines constructing heuristics, path optimiza-
tion, local search operators, and a heuristic process to provide negative cost-reducing
paths. Given the time window structure of the problem at hand, which is well-suited
for a branch-and-price resolution scheme, and inspired by Yuan et al. [18], we develop
a series of heuristics to design the route for visiting nurses in our study.

Our work is closely related to the Home Healthcare Routing and Scheduling Prob-
lems (HHCRSP), which incorporates variants of VRPTW. HHCRSPs have to account
for time windows (when patients are available) [19-22], and are subject to precedence
constraints, such as multiple depots [20, 21, 23, 24] and the service skill preference
[21, 25-31]. The incorporation of multiple depots enables nurses to commence their
routes from various locations. Erdem and Kog [21] explored an HHCRSP that focuses
on minimizing the total travel time across multiple depots with preference constraints.
Bahadori-Chinibelagh et al. [32] proposed a multi-depot routing model to optimize
healthcare logistics (nurse—patient—pharmacy-laboratory), aiming to minimize trans-
portation costs and travel distances within constraints like vehicle capacity and patient
time windows. Meanwhile, service preference includes both care worker and patient
considerations. The first kind of such preference aims to ensure that the qualifications
and expertise of nursing staff fulfill the stipulated requirements. Addressing the issue
of variable nursing skill levels, Demirbilek et al. [33] developed a heuristic algorithm for
a dynamic HHCRSP to accommodate different patient needs. The second one related
to patient preference for caregiver (e.g., gender, language). In this context, Yadav and
Tanksale [34] proposed a generalized model aimed at maximizing revenue, taking into
account factors like patient preferences for caregiver gender and language.

Additionally, the locations of HHC facilities also have an impact on HHC opera-
tions. Within the context of HHC, this is commonly referred to as Location Routing
Problems (LRP). In LRP, the location of facilities and the distribution routes are
integral considerations. A commonly employed structure in LRP is a bi-level model.
Fathollahi-Fard et al. [35] presented a location-allocation-routing model that integrates



the location of pharmacies and laboratories, the assignment of patients, as well as the
routing and scheduling of caregivers. Later, Fathollahi-Fard et al. [36] extended their
research on the location-allocation-routing problem in the context of HHC. They for-
mulated a bi-level programming model framed as a static Stackelberg game. Note that
our problem is different from Fathollahi-Fard et al. [36], despite both studies concen-
trating on location-allocation-routing problems within the healthcare system. Unlike
the single-nurse type model Fathollahi-Fard et al. [36], our framework incorporates
multiple types of nurses, each restricted to providing services in specific places (hos-
pital, community clinic, and patient’s home). Additionally, the central hospital serves
as the decision-maker in our model, in contrast to the bi-level decision-making involv-
ing both nurses and patients in Fathollahi-Fard et al. [36]. Dai et al. [37] proposed an
extended model of traditional LRP, aiming to determine both the HHC center loca-
tion and the caregiver route plan in a manner that minimizes construction costs, travel
costs, and carbon emission costs. To summarize, Our model also integrates consider-
ations for patient preferences and explores the implications for social welfare. These
unique aspects render our problem worthy of further investigation, and set our work
apart from existing studies in the field of HCC.

3 Problem Description

To improve patient access to care, we propose a decentralized care delivery design that
enables patients with significant transportation barriers to receive telehealth services
at home or nearby community clinics. To accommodate patient needs, we introduce
two distinct patient classes: Type I patients, who are only eligible for receiving care
within the familiarity of their homes, and Type II patients, who display no specific
inclination towards either home-based care or alternate settings. We also assume that
there are sufficient physicians at the central hospital to provide office visits or tele-
health visits, as the physician’s schedule will not be impacted if appointments are
changed from in-person to virtual. The main operation process of the hybrid telehealth
system can be outlined as follows:

In the planning phase, the healthcare organization will offer some time slots to
patients based on hospital physicians’ availability and then collect information from
patients, including the patient’s home address, anticipated service time, the level
of mobility impairment, and other necessary information. This information can be
employed to classify patients into two types. Type I patients demand exclusive home-
based care, such as patients with mobility assessments falling under levels 1 and 2 [38].
Meanwhile, Type II comprises patients with the capability to access nearby health-
care facilities, making them eligible for a range of care options, including home-based
care, clinic-based care, and hospital-based care.

In the next stage, the healthcare organization will determine which patients should
receive telehealth services at home or at nearby clinics, or office visits at the central
hospital, and determine the number and type of nurses needed. This is achieved by
collaborating with community clinics and utilizing nurses at each participating clinic.
If the central hospital decides to collaborate with a community clinic, a set-up cost is
incurred. This cost can be interpreted as a contract fee for using the equipment and



space of the clinic, separated from nurse salaries. In addition, nurse salaries vary based
on their work locations. The healthcare organization aims to minimize its operating
costs while ensuring high-quality care services tailored to each patient’s type and
scheduled within their preferred time windows. Cost reduction is a critical priority for
ensuring long-term financial sustainability, even in not-for-profit hospitals.

On the day of operation, clinic and hospital nurses provide services to patients
visiting clinics and the central hospital, while travel nurses visit patients’ homes. Each
visiting nurse is assigned a predetermined route, responsible for carrying out all service-
related activities on that route. They start at a designated clinic, gather the required
equipment, drive the vehicle to visit patients one by one according to the planned
route, and return to the same clinic.

Fig. 2 illustrates the network structure of the hybrid telehealth system in our prob-
lem. The solid arrow lines depict patients who are assigned to the visiting nurse, while
the dashed arrow lines represent patients assigned to the clinic nurse. The remaining
patients are allocated to the central hospital. Note that this figure does not display
the specific order in which the clinic nurse and hospital nurse attend to patients. It
only illustrates the sequential order in which the visiting nurse cares for patients.

@ Patient (Type I)
Patient (Type II)
B Clinics (Open)
Clinic (Closed)
ﬁ Healthcare Facility
— Visiting Route
<« Clinic Assignment

*  Hospital Assignment

Fig. 2 The network structure of the assignment and routing problem

3.1 Model Setup and Notations
3.1.1 Model Parameters

We first introduce the parameters involved in the decision-making problem. Notably,
each instance of assignment and routing is associated with a distinct set of parameters
to represent daily operations, which are enumerated as follows:



I: the set of all healthcare facilities located in the catchment area of the healthcare

organization, comprising a central hospital indexed as 0, as well as several candidate

community clinics to collaborate with, indexed as ¢ > 0;

® J: the set of patients, who are further classified into two mutually exclusive groups,
denoted as J; and Js, for Type I and Type II patients, respectively;

® K: the set of all nurses at the disposition of the healthcare organization, which
includes three distinct subsets: visiting nurses (K, ), clinic nurses (K,), and hospital
nurses (Kp);

e f;: the collaboration fee charged by clinic 4 (¢ € I\ {0}) in the event that the central
hospital seeks to partner and share nurses with;

® [a;,b;]: time window of patient j € J, and the time window is [0,12], i.e., a 12-hour

window for all healthcare facilities;

v;: the service time of patient j € J;

l: the salary of nurse for nurse k € K

e;;: the traveling cost from clinic/patient ¢ to clinic/patient j for visiting nurses;

ti;: the traveling time from clinic/patient ¢ to clinic/patient j;

gi;: the disutility measure of the patient j € J when being assigned to travel to

nearby clinics or the hospital ¢ € I, which is proportional to the distance traveled as

a crude proxy of the monetary cost or the inconvenience incurred; the same disutility

rate is applied to all patients.

For simplicity of exposition, we assume that t;; = t;;,Vi,7 € I UJ and e;; =
€ji,Vi,j € I'UJ. We also assume that once a nurse begins to serve patient j, s/he
cannot quit before the end of the service. In addition, all the visiting and service times
considered in this analysis are deterministic.

3.1.2 Decision Variables

Next, we define the set of decision variables:

e 2, €{0,1}: 1 if healthcare facility i € I is open, and 0 otherwise;

e pi € {0,1}: 1 if nurse k € K needs to work in healthcare facility ¢ € I, and 0
otherwise;

[ w;-k € {0,1}: 1 if nurse k in healthcare facility 7 € I is assigned to patient j, and 0
otherwise;

] xé’fh € {0,1}: 1 if nurse k € K in healthcare facility ¢ € I serves patient j; € J and

then patient jo € J\ {j1}, and 0 otherwise;
. sf € R: a variable that defines the instant in time at which nurse k£ € K will serve

patient j € J;

As a remark, f; the collaboration fee here is independent of the number of nurses
used. If the fee is proportional to the number of nurses used, we can set f; = 0 and
absorb the extra cost into the salary of nurses (I;). The exact cost associated with
community clinic partnership could vary significantly from being substantially greater
than a nurse’s daily salary to only slightly exceeding it. Specifically, if the community
clinics are operated by the hospital, the partnership cost can be minimal. To account
for this variability, we perform a sensitivity analysis of its impact on the solution
structure in Section 5.2.3.



3.1.3 Model Constraints

For the constraints, it should be noted that for each type of nurse, there exists a
candidate set from which we make assignments. Specifically, nurses k& € K, U K,, are
associated with clinics ¢ € I\ {0}, whereas nurses k € K, are associated with the
hospital (¢ = 0). Additionally, visiting nurses k € K, are assigned to patients j € J,
while clinic and hospital nurses k£ € K,, U K} can only be assigned to patients 5 € Js.
We first handle the redundant variables in the following manner:

20 =1, (1)
ph=0,Vi e I\ {0}, k € K), (2)
wik =0,V € T\ {0}k € Ky, j € J (3)
alh, = 0,Vie IN{0},j1 € J,j2a € J\ {1}, k € Kp (4)

Constraint (1) mandates that the hospital must continue its operation. Constraints
(2), (3), and (4) are formulated to allocate hospital nurses exclusively to services
rendered at the central hospital.

The following mathematical formulation determines the schedule of the nurses
while considering patients’ features.

SN wiF=19je ()

i€l keK,

ZZw;k:LVjEJQ (6)
i€l keK

Y p<1LVkeK (7)
el

Py < zi,¥ie I\ {0}, k€ K, UK, (8)
wékgpz,ViELjeJ,keK 9)

Constraints (5) ensure that patients classified as Type I are assigned to visiting
nurses, and constraints (6) ensure that patients classified as Type II are assigned to
one, and only one, type of nurse. We refer to these as mobility constraints, as they
establish the connection between the patient features and the type of nurse assigned.
To guarantee the optimal allocation of resources, constraints (7) impose the limitation
that each nurse can only be assigned to a single job. Moreover, constraints (8) stipulate
that only those visiting nurses and clinic nurses who are assigned to open clinics
can be selected for a job. Additionally, the interrelation between nurse and patient
assignments is governed by the constraints (9).

The routing must adhere to specific requirements, as indicated by the constraints
below.

Sooalh =wkvieljelkeK (10)
je€J\{j1}



S alk =witvieljielkeK (11)

J2J1 Ji’

J2€J\{j1}

doooati= > at vieljelkekK (12)
jreJu{i\{s} J2€JU{iN\{j}
dalb=piViellke K (13)
jeJ
Y alk=pViellke K (14)
jEJ
S oFti g, v, —MA—a* Y <sk vieljiedjed\{iiL,keK, (15
shobu, —MQA -2l )y <sk Vieljieh e\ {it ke K,UK, (16)

Constraints (10) and (11) specify that nurses must visit each patient on their
assigned route only once. Constraints (12) ensure flow conservation at each node for
every nurse, while constraints (13) and (14) guarantee that each nurse departs from
and returns to the same clinic after serving their designated patients. Due to the
specific time window structure of our problem, the conventional subtour elimination
constraints are unnecessary. Time constraints for nurse-patient interactions are defined
in constraints (15), where the positive constant M is set to be sufficiently large (e.g.
M > |J|(maxj, j,estj j, + max;eyv;)). Similarly, constraints (16) define the time at
which clinic and hospital nurses will attend to patients, without the need to take travel
time into consideration.

3.1.4 Objective Functions

Since we assume the physician cost will be the same regardless of the service modality,
we consider the total cost incurred by the nurses, ®..,s;, which encompasses their
salaries as well as the travel expenses for the visiting nurses, and the clinic collaboration
cost.

(bcost - Z Z lkplltc + Z Z Z Z ej1j2x;]fj2 + Z fizi (17)

i€l keK i€l keK, j1€IUJ joeTUJ\{j1} el

Additionally, we consider the inclusion of patients’ travel disutility to minimize the
total cost from both the healthcare organization and the patient’s side. This allows
us to explore how the assignment and routing solutions would differ if the healthcare
organization assumed the role of a social planner instead of a profit-driven entity. To
facilitate clear reference, we denote the objective function in this context as ®gociqi-

q)social = (I)cost + Z Z Z w;kgu (18)

j€J2 i€l ke K,UK},

Notably, the two objective functions become the same when the patient disu-
tility factor g;; = 0. Furthermore, we exclude constraints (1) to (4) as they are

10



predetermined and exempted from the optimization process. Therefore, the general
mixed-integer programming (MIP) formulation for our cost-minimization problem is
as follows:

min  Pgocial
EY socla

st (5) — (16)
2z €{0,1},Viel
pi€{0,1},VieLkc K
wik e{0,1},Viel,je J ke K
a; > sy > b Vje ke K
¥ e{0,1},Viel,jie JUIL joe JUI\{j}, ke K

J1J2
where X defines a joint vector of decision variables, i.e., X = (z,p,w,s,z). In real
practice, the number of variables in the problem at hand is substantial, while the
number of constraints is comparatively low. Given the significant number of variables
involved, particularly those arising from multiple indices, the process of exhaustive
enumeration can prove time-consuming even for readily available MIP solvers. In light
of this, we opt to address the MIP problem through a column-generation approach.

3.2 Set Partitioning Formulation

Consider a directed graph G = (V, A), where V and A are its node and arc sets,
respectively. Each node in V corresponds to either the location of a healthcare facility
i € I or apatient j € J. We define the neighborhoods for each patient j, denoted as N
based on patient types. Specifically, for Type I patients, N; = {j1 € J|a; +v; +tj;, <
b, },Vj € Ji, whereas for Type II patients, N; = {j1 € Jala; +v; < bj,} U{j €

Jilaj+vj+ti5, <bj}, Vi € Jo. This definition of neighbourhoods allows us to narrow
down to the pool of patients who can be visited afterward in the given time window.
In addition, the arc set A defines possible routes between healthcare facilities and
patients, as well as between individual patients, i.e., A = {(i,5)]i,7 € TU J,i # j},
and we primarily consider the directed lines connecting patient j to any other patient
i in their neighbourhood set N;.

To concurrently generate routes for visiting nurses and schedules for clinic and
hospital nurses, we expand the notion of a “route” r to include not only the path
traveled by visiting nurses but also the order in which they attend to patients in clinics
and hospitals. Let Q,, Q,, and €2, denote the sets of feasible routes, respecting the
time and patient mobility constraints, for visiting nurses, clinic nurses, and hospital
nurses, respectively. The union of these sets, i.e., 2, U, U, represents the complete
set of feasible routes, denoted by 2. Note that for the hospital and clinic nurses, the
route is nominal and is rather the sequence of patient appointments.

Let o, where r € Q and j € J, denote the binary coefficients, being equal to 1
if patient j is visited on route r, and 0, otherwise. Let 3¥, where r € Q and k € K,
denote the binary coefficients, being equal to 1 if nurse & is required to travel on route
r. Each route r € ) is associated with a cost, denoted as ¢,.. It is worth noting that
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the calculation of ¢, for r € Q, and for r € Q, U Qy, differ slightly. Specifically, for
r € Qy, ¢, is the sum of the visiting nurse’s salary and their traveling costs. On the
other hand, for r € Q, U Qy, the function ¢, represents the aggregate compensation
received by the nurses employed at a healthcare facility. In the context of social welfare,
¢, accounts for both the aforementioned nurse compensation as well as the expenses
borne by the patient for transportation. Lastly, we introduce the binary variable 6,,
with r € €, which is equal to 1 if and only if the route r is selected.

Note that the clinic selection problem must be resolved beforehand. This is because
including the clinic collaboration fee at this stage would result in an inability to
calculate the reduced cost of new routes using the dual variables corresponding to the
relevant constraints. There are 2//I=1 scenarios for clinic selection (does not include
the hospital), each denoted as s and collectively represented by the set S. Given a
scenario § € §, our column generation model, which is based on the Set Partitioning
model, can be described as follows:

[MP(G)s] min Y ¢,6, (25)
ref)
st Yl =1Yj€ (26)
re,
> alb, =1, € (27)
ref
> Bro. <1Vke K (28)
reQ)
0, € {0,1},Vr e Q (29)

The optimization problem described by formulations (25)-(29) aims to minimize
the total cost subject to various constraints. Specifically, constraints (26) ensure that
each Type I patient is visited exactly once, while constraints (27) guarantee the same
for Type II patients. Constraints (28) ensure that each type of nurse is assigned to at
most one route. It should be noted that by first addressing the clinic selection problem,
the introduction of a constraint to define the interrelation between routes and open
clinics becomes redundant, and the feasible route pool €2 only contains routes where
the depots and destinations are limited to the open facilities.

Although the linear programming (LP) relaxation of the set partitioning formu-
lation typically yields tight bounds, the number of potential routes in the set {2 can
increase exponentially as the number of patients to be visited grows, rendering gener-
ating all feasible routes impractical. To address this challenge, we introduce a much
smaller route pool, denoted as 2, and solve a restricted version of the set partitioning
model, considering only the routes in Q.

The route pool is dynamically populated following a branch-and-price procedure
[39]. It consists of two main components: a pricing problem algorithm, used to gen-
erate new routes, denoted as columns, at each iteration, and branching rules, which
determine how to partition the feasible region into subsets for recursive application
of the algorithm until exhaustion. The restricted master problem (RMP), denoted by
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RMP(Y), is defined as the LP relaxation of a subproblem consisting of a restricted
set of columns generated so far. At each node of the search tree, the column genera-
tion method iteratively solves the RMP and a pricing problem. The goal of the pricing
problem is either to generate columns with the most negative reduced costs based on
the dual solution of the current RMP(€’) or to prove that none exists. Newly gener-
ated columns are introduced to RMP(§') at each iteration, and the process terminates
and a lower bound for the corresponding node is obtained whenever no additional
column prices out favorably.
Now we only consider the following dual variables of RMP(£Y'):

U w]l: dual variable corresponding to constraints (26) for Type I patient j € Jy;
. 77?: dual variable corresponding to constraints (27) for Type II patient j € Jo;

e 73: dual variables corresponding to constraints (28) for nurses k € K.

In each iteration of the branch-and-price process, the objective of the column
generation subproblem is to identify a feasible nurse route originating from each open
clinic, which has the minimum reduced cost with respect to the current dual solution
of the RMP(Q'). The reduced cost of the visiting, clinic, and hospital nurse routes,
namely ¢?, ¢, and &", can be expressed as:

el = ¢ — Za Zoﬂﬂ - Z Brrd, Vr e Q) (30)

VIO JjEJ2 keK,

o= ¢, — Z Oéjﬂ' = Z Brrd vre Q) (31)
JjEJ2 keK,

et = Z oﬂw - Z BErd vr e ), (32)
JjEJ2 keKy,

4 A Column Generation Based Heuristic Approach

In this section, we introduce our bi-level approach, which consists of an upper-level
stage and a lower-level stage. The upper-level stage revolves around the determination
of clinic openings, while the lower-level stage is aimed at deriving the best solution
based on the determined clinic set. Within the lower-level stage, three key algorithms
come into play: the construction heuristic algorithm, responsible for generating the ini-
tial route pool; the labeling algorithm, identifying routes with negative reduced costs;
and the local search algorithm, aimed at improving the best solution and expanding
the route pool. We will begin by introducing the algorithms in the lower-level stage,
followed by the approach of the upper-level stage and the overall procedure.

4.1 The Construction Heuristic Algorithm

The heuristic algorithm presented in this section utilizes an iterative approach to
generate a set of feasible initial routes to serve all patients. This approach builds
upon the concept of pivot patients [18]. For our study, the pivot patients are identified
as those who cannot be visited simultaneously by the same nurse, or those who are
located far from both the healthcare facility and other patients. An assumption is
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posited wherein a sufficient number of nurses are available for allocation to each pivot
patient, thereby ensuring the feasibility of the initial routes within the algorithmic
framework. Specifically, we select at most Ncardinality pivot patients using two criteria
described below:

Criterion 1: Due to the time windows, some patients cannot be visited on the same
route. Patients ¢ and j are considered incompatible and denoted by the pair (i, j),
if they cannot be served on the same route:

<Z,]> = {Z,] € Jn|n S {1,2},(% +tij > bj,aj +tij > bl} (33)

To identify the maximal set of patients that cannot be visited on the same routes,
a graph G is constructed utilizing all incompatible pairs, and a maximum clique is
sought. A recursive backtracking algorithm [40] is used to search for the maximal
clique in graph G.

Criterion 2: For each patient j, we determine a set of healthcare facilities as H;,
which includes all the healthcare facilities connected with j, such that i € H; is the
healthcare facility from which j can be reached within the time windows in the route
design. At the same time, we also determine a set of patients B;, which includes
patients from whom j can be reached, and patients who can be reached from j. Note
that B; is different from A/, which only includes the patients that can be reached
from patient j. Formally, if j is a Type I patient, then H; = {i|t;; < b;,Vi € I} and
Bj = {j2 € Jl|aj, +vj, +tj,; < bj}U{js € J|a; +v;+1;j, <bj,}. Otherwise, if j is a
Type II patient, then H; = {Z|’L S I} and B; = {j2 S J1|aj2 +vj4, +t5,; < bj}U{jg S
Jilaj + vj + 155, < bj,} U{j2 € Jalag, +vj, < b} U{j2 € Jofa; +v; < bj,}. We
then calculate the average traveling time from patient j to the healthcare facilities
in H;, wévg = |T1,\ Zieﬂj t;j, and the minimal traveling time from patient j to the

patients in B;, w! . = ming,ep; tjj,- Then, we define a score w; for each patient
j € J as follows: _

wj = wgvg + wfm'n- (34)
We rank patients from the highest value of w; to the lowest; in other words, we
prioritize patients who are either far away from the healthcare facility and/or far
away from other patients. As a remark, H; will be initially obtained with all clinics
open and updated during the bi-level procedure.

Selection Procedure: Our goal is to curtail the size of the patient set to prioritize
the assignment of the Ngardinality most difficult patients for service. We introduce three
sets, namely P; and P, obtained using Criterion 1 and Criterion 2, respectively, and
the pivot patient set Pew, selected based on the following steps: If | P1| < Neardinality »
the pivot patient set is defined as the union of P; and the top Neardinality — | P1| patients
from the set Py \ (Py N Py). If |Pi| = Ncardinality, then P; is designated as the pivot
patient set Ppew. Otherwise, P; is sorted based on the order in which the patients
appear in P, and the top Ncardinality Patients in P; are selected as the pivot patient
set Poow-

For the construction heuristic, for each patient p in Ppey, a route with the lowest
cost that only includes patient p is generated and added to the initial route pool €)'
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Patients from the non-pivot patient set are then inserted into these routes following
the pseudocode outlined in Appendix A.1.

4.2 Labelling Algorithm

In order to compute the low-cost path conforming to time windows, a labeling algo-
rithm is developed. A patient j in route r is associated with a label L} comprising
four components: the cost, the reduced cost, the starting time of a feasible partial
path starting at j, and the label of the previous patient ¢, who is in the same route r
visited before the patient j, represented by L7 = (¢j,E;,a5,LY). The set of all labels
associated with patient j is denoted as L(j) = Ureq, L}, where §; is the set of all
candidate routes including patient j. To improve the algorithm’s efficiency, only non-
dominated labels are retained. A label L} € £(j) dominates a label L? € £L(j) if and
only if ¢} < ¢ and aj < @;. Due to the computational complexity and time constraints
involved in generating an exhaustive set of routes in our problem, we limit the number
of routes to ensure that the algorithm can complete its execution in a reasonable time.
Specifically, we impose a restriction on the labeling algorithm, allowing it to generate
a maximum of Njaheling NEW routes in each iteration.

4.3 Local Search

We outline the process to enhance the solution to our problem by tailoring three local
search operators — insertion, deletion, and relocation. Each operator generates a type
of move that applies to one of the current routes r to yield an alternative feasible route
with a lower reduced cost, denoted as the “neighbour” of route r. These neighbours
are then used to generate a set of up to Njoca routes with the potential to improve
the existing best solution.

In order to improve the efficiency of the local search for our problem, we introduce
the concept of effective time windows. Specifically, we define a transportation route as
an assignment of patients to a nurse, along with the order in which they are visited.
The notation for a route with ¢ patients being attended is r = (i, hq, ho, ..., by, 1),
where i represents the starting clinic with the stipulation that r[0] = r[g+ 1] = ¢, and
hj, also denoted as r[j], is the j-th patient on the route. For every feasible route r,
the effective latest arrival times for each patient h, included in r are computed. The
computation of these effective latest arrival times on a given route r is carried out
through the application of the following recursive principles.

For route r with ¢ patients being attended in €2, and for any patient h, to be
visited in that route, the upper bound for the effective latest arrival time for patient
h, is represented by the notation ¢, PP*':

u

U . U

ghfper = mln{§h5fler — Vhyyr — thughu+17bhu}7 0 <u< q— ]., (35)
U

G P = b, (36)

Similarly, for route r in Q/, U 2}, the upper bound for the effective latest arrival
time for patient h, assigned to a clinic or hospital nurse is represented by the notation
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Upper
Tpp:

u

T,Hupper = min{T,[LJffler — Vhyirsbhy}, 0<u<qg—1, (37)
TR PP = by, (38)

Given a route r € ' and a new patient Ay, the feasibility of inserting hyey into
r or swapping it with an existing patient can be quickly determined based on the
effective latest arrival time. The calculation of the effective latest arrival times can be
done by traversing the patients in the route r only one time, regardless of the choice
of hpew-

4.3.1 Insertion

A new route can be obtained by inserting a new patient hpew between two consec-
utive patients h, and hy4q, where u + 1 < g. The procedure of insertion in the
construction heuristic algorithm is different from that in the pricing algorithm. In the
next two paragraphs, we will expound upon the insertion procedures of both phases
independently.

Insertion in initialization:

We introduce an adapted insertion method for the construction heuristic algorithm
to generate more feasible routes during the initialization phase. Specifically, this
approach allows for the identification of patients feasible for insertion after a given
patient h,, in route r € ' through a prescribed procedure (Appendix A.2). It is
noteworthy that this procedure takes any patient h, € r as an input and provides
either 1) an updated feasible route pool, indicating the construction of a new route
by inserting the first feasible patient after h, and the addition of it to the original
feasible route pool, or 2) the original feasible route pool, indicating that there is no
feasible insertion after h, € r.

Insertion in negative reduced cost generation:

This method is designed to facilitate the generation of more feasible routes with
a lower negative reduced cost during the pricing phase. The method involves a
prescribed procedure (Appendix A.3) to identify patients feasible for insertion after a
given patient h, in route r € €. Here the feasible route pools €2 = €] U, UL, .
only include routes with a reduced cost that is less than a predetermined threshold
¢. Notably, only patients j € N, that can result in a negative reduced cost for the
new route are considered, rather than all patients in A}, . The procedure terminates
once the reduced cost of the new route after inserting j € Ny, becomes positive. This
is accomplished by sorting NV}, in ascending order with respect to their dual values.
If the reduced cost of the new route after inserting patient j € A}, is positive, it
indicates that the patient ranked after j in A}, could only make the reduced cost of
the new route to be positive. The input and output of this procedure are the same
as those of the previous insertion method.
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4.3.2 Deletion

In the pricing phase, the patient associated with the maximal reduced cost is removed
from route r. Subsequently, the reduced cost of the resulting new route is evaluated.
If it remains negative and less than the original route r, the new route is added to the
set .

4.3.3 Relocation

An alternative route can be generated by replacing a patient who has the maxi-
mum reduced cost in the given route with a new patient. Appendix A.4 presents the
relocation procedure in detail.

4.4 Bi-level Structure

As previously mentioned, the collection of all possible combinations of open clinics
is denoted by S, where |S| = 2//I=1. Due to the considerable computational cost of
exploring every scenario § € S, we set all clinics to open initially, and close one clinic
at a time iteratively until the stopping criterion is met.

A scoring scheme is introduced to identify clinics that are both expensive and have
low utilization to be candidates for closure. The set of patients assigned to clinic 7 is
denoted by J;, and the utilization ratio of clinic ¢ is defined as the ratio of the number of
patients assigned to it to the total number of patients, i.e., u; = IIL-?I‘ . Additionally, the

level of expense associated with collaborating with clinic i is presented by f; = = fi -

Finally, a score score; is defined as the ratio of the utilization ratio of clinic ¢ to the
expense level of collaborating with it, i.e., score; = %-. We sort the clinics in ascending
order according to their score; values and iterativelly close the clinic with the lowest
score until the termination criterion is met.

In the bi-level algorithm (Algorithm 1), we define the set of opened clinics as Iper,.
Then, we track two values, namely Cpre_pest a0d Ceur_best, Which respectively represent
the best solutions for the previous stage and current stage. The algorithm terminates
when further closures of clinics fail to produce an improved solution, and subsequently
outputs the best solution attained in the final iteration. We proceed with the bi-level
algorithm as follows:

1. We assume that all clinics are open, denoted by I,pen, = I. We introduce the iterators
it and A to govern the stop criteria for solving the lower-level problem. Additionally,
we initialize the best solutions for the current stage with ceyr_pest set to a sufficiently
large value, and the previous stage cpre_pest set to 0, respectively.

2. Given I,pen, we initiate the solution process for the assignment and routing problem
using the set of open clinics. Initially, we apply the construction heuristic algorithm
to generate an initial route pool denoted as £’ and generate a feasible initial solution.
Subsequently, we apply a local search method to enhance the quality of the current
starting solution and add up to Ncardinality New routes into 2’

3. We solve the restricted master problem RM P (). Following that, we employ local
search algorithms to enhance the current best solution and incorporate up to Njocal
routes into the existing pool €'. We then utilize the heuristic labeling algorithm
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to generate up to MNabeling routes with negative reduced costs and subsequently
update the route pool €'. Lastly, we increment the value of ¢t by 1. Additionally,
we increment the value of A by 1 if the current solution is the same as the previous
solution.

4. If the stopping criterion for the lower-level stage is not met, proceed to step 2;
otherwise, proceed to the next step. The lower-level stage stops after N iterations
(e.g., A > N), or if the current best solution remains unchanged for the last e
iterations (e.g., it > €), or if no route with negative reduced cost has been found.

5. We update coyr pest and Cpre_pest With the total cost obtained from the aforemen-
tioned process, and update Iypen by using the criterion for closing clinics discussed
earlier in this section.

6. The algorithm terminates when further clinic closures do not yield an improved
solution. In this case, we assign cpre_test as the best solution; otherwise, we return
to step 2.

Algorithm 1 Bi-level Algorithm

1: procedure BI-LEVEL ALGORITHM(N, ¢)

2: Topen < 1

3: it, A+0

4: Initialize Ccur_pest, Cpre_vest

5: while Ceur_best < Cpre_best do

6: Q' + Construction Heuristic Algorithm

7: Expand Q' by applying Local Search

8: while it < N or A <e do

9: Solve RMP (')

10: Expand € by applying Local Search

11: Generate routes with negative reduced cost
12: Check the current solution and update it and A
13: end while

14: Update Ceur_best and Cpre_best

15: Update Iopen by using criterion for closing clinics
16: end while

17: return c¢pre_pest

18: end procedure

5 Computational Analysis

This section presents a detailed account of the test instances used in the study, followed
by an analysis of the results of our computational experiments. The algorithm has
been implemented in C++, and for solving linear programming problems, Gurobi
10.0 is employed. All experiments were conducted on a computer equipped with an
AMD EPYC 7702 64-Core Processor, featuring a maximum clock speed of 3.35 GHz
and a total RAM capacity of 1003GB. We assess the quality of our solutions while
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highlighting the efficacy and broad utility of our algorithm to investigate the operation
of decentralized care delivery networks.

5.1 Data Generation and Experiment Design

The experimental data is motivated by real instances in a large healthcare organization
serving north central Florida. The patient locations are generated at random with
uniformly distributed coordinates within a circular area centered at the central hospital
with a radius of 200 miles. The distances between nodes are calculated using the
Euclidean distance matrix, and adjusted Euclidean distances are utilized to estimate
the travel time between two points. Specifically, travel times are adjusted to fall within
a range of 15 to 30 minutes for patients and 20 to 40 minutes for visiting nurses who
require additional precautions while driving and carrying medical equipment [41]. Each
patient’s required service time is randomly selected from a range of 30 to 60 minutes,
and the time windows are uniformly distributed throughout the day, from 08:00 AM
to 08:00 PM, with a random duration ranging from 1.5 hours to 4 hours [42, 43].
The maximum daily workload for a nurse is restricted to 12 hours [44-46]. However,
as time windows may impact the results, a sensitivity analysis of this parameter will
be conducted later to evaluate its impact on the final results. In accordance with
the labor statistics provided by the United States Department of Labor, the mean
hourly remuneration for various categories of registered nurses stands at $39.87 for
visiting nurses, $38.31 for clinic nurses, and $43.56 for hospital nurses on average [47].
Giambruno et al. [48] and Branch and Nemeth [49] have found that transportation
barriers affect healthcare access in sample populations ranging from 3% to 67%. In
our analysis, we set the ratio of Type I patients to all patients in the range of [0.4,0.7],
while the rest of the patients are Type II patients.

Furthermore, we need to determine the collaboration fee of individual clinics. A
sensitivity analysis of the collaboration fee is performed to explore its impact on the
solution structures. Specifically, we make the assumption that there are two possible
scenarios with regard to the collaboration fee. In the first scenario, the collaboration fee
slightly exceeds a nurse’s daily salary, with a range of values between $300 and $450.
In the second scenario, the collaboration fee significantly exceeds a nurse’s daily salary,
with a range of values between $900 and $1350. Intuitively, the model’s complexity
is expected to be greater under the first scenario, whereas under the second scenario,
wherein the collaboration fee significantly surpasses a nurse’s daily salary, the model
is likely to prioritize opening the clinic that offers the lowest collaboration fee due to
its dominant impact on the objective function. As a remark, when the collaboration
fee is zero, there is no clinic selection (although it is still a multi-depot problem) and
the complexity of the problem is also significantly reduced.

Our experiments encompass a triad of distinct data instances. These instances con-
sist of the baseline dataset, a dataset marked by escalated clinic collaboration fees, and
a dataset featuring extended time windows. All parameters remain constant across
these instances, with the exception of the clinic collaboration fee or the time window
allotted for patients. In the dataset with higher clinic collaboration fees, the adjusted
clinic collaboration fees are set at three times the value of the initial collaboration fees.
In the dataset with larger time windows, the new time windows extend from the end of
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the original baselines by an hour. If this one-hour extension exceeds the maximal limit
of the planning horizon, which in our study is set as 12 hours, the new time windows
are initialized to begin one hour before the beginning of the initial time windows in
the baseline dataset. Each of these specified data instances further materializes into a
tripartite arrangement: 1) cost minimization without explicit consideration of patient
disutility, herein termed as “Non-Social Welfare”; 2) cost minimization considering
patient travel cost with low perceived disutility of travel, labeled as “Social Welfare
with Low Disutility Magnitude”; and 3), cost minimization considering patient travel
cost with high perceived disutility of travel, denoted as “Social Welfare with High
Disutility Magnitude”. By scrutinizing the experiment outcomes across these three sce-
narios, an investigation into the interplay between model solutions and the magnitude
of disutility becomes feasible.

5.2 Computational Results

In our computational analysis, we begin by examining the outcomes for the base-
line dataset. We proceed by comparing the results of the baseline dataset with those
obtained under elevated clinic collaboration fees. Subsequently, we contrast the base-
line dataset with datasets featuring extended time windows. Finally, we delve into
an exploration of the impact of patient disutility, focusing primarily on the baseline
dataset.

5.2.1 Parameters

This section describes the values of the main parameters used in our algorithms to
obtain the results reported in Section 5.2. From the algorithm 1, we have five param-
eters to set, including the number of pivot patients Ncardinality, the maximum number
of routes generated by the labeling algorithm Niapeling, the maximal number of new
routes that can be generated by local search Njgca1, the maximum iteration number in
the lower-level stage N, and the maximal number of iterations that the current best
solution remains unchanged e.

During the initialization, we set Ncardinality to be half of the total number of
patients. This configuration aims to ensure that we generate enough initial routes to
cover the patients that are difficult to serve, while also limiting the number of initial
routes to a relatively small scale to avoid investing too much computational resource
to the insertion of non-pivot patients into these routes. Regarding the efficiency of the
labeling algorithm, we set the value of the maximal number of routes generated by the
labeling algorithm Niapeling to be a hundred times the total number of patients. Our
objective is to achieve a balance between preventing an excessively large pool while
also ensuring that the algorithm generates an adequate collection of routes. Likewise,
in relation to the efficiency of the local search, we set the maximal number of routes
generated by local search Njgca to be ten times the total number of patients. For
the stop criterion of the lower-level stage, we fix the maximum iteration number at
N = 10 as the algorithm already yields a sufficient number of solutions. Meanwhile,
we set € = 3 as the threshold for the number of iterations in which the current best
solution remains unchanged, preventing unnecessary attempts to enhance a solution
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that is unlikely to be further improved. This parameter setting is consistently applied
to all types of datasets tested in the subsequent analysis.

5.2.2 Benchmark Comparison

The major outcomes of the comparison between our proposed approach and the stan-
dard solver solution from Gurobi are presented in Table 1. The column labeled Instance
Size signifies the patient count. Problem instances encompassing patient counts from
10 to 50 are classified as small instances, from 60 to 100 patients, medium instances,
and 150 and 200 patients, large instances. The two intermediate columns denoted as
Gurobi present the results obtained from solving the original MIP formulation using
the commercial solver Gurobi. The column labeled benchmark denotes the best achiev-
able total cost value. This result may not always be optimal due to the computational
time constraint imposed, which is one hour, or 3600 seconds, in this study. When
instances become large, Gurobi is unable to generate results due to resource limita-
tions, referred to as “OUT OF MEMORY”. The subsequent column, labeled time/s,
signifies the computation time in seconds required to obtain the best solution while not
significantly exceeding the allowed computational time. These results do not involve
the optimization of the problem structure for the specific purpose of accelerating
Gurobi’s computational speed. The outcomes generated utilizing the heuristic algo-
rithm to solve for the bi-level approximation are under the Heuristic CG section. The
obj column represents the objective value achieved, while the time/s column signifies
the computation time in seconds for the respective solution. The final column indi-
cates the relative gap between the outcomes derived from Gurobi and our algorithm.
This relative gap is calculated as GAP/% = 100% x (benchmark — obj)/benchmark.

Table 1 Computational Outcomes for the Baseline Dataset under the Non-Social Welfare Scenario

Gurobi Heuristic CG

Instance Size benchmark time/s obj time/s GAP/%
10 2523.13 3.13 2524.14 2.21 -0.04
20 3887.05 225.31 3887.05 10.91 0.00
30 4164.85 640.36 4165.27 12.49 -0.01
40 4893.43 3600.15 4895.88 36.31 -0.05
50 6332.17 3602.93 6341.04 38.94 -0.14
60 5849.77 3604.36 5854.45 43.43 -0.08
70 9018.52 3600.35 9037.46 45.76 -0.21
80 6918.17 3602.64 6937.11 51.76 -0.27
90 9111.49 3607.06 9134.36 63.01 -0.25
100 OUT OF MEMORY OUT OF MEMORY 10340.51 74.2 -
150 OUT OF MEMORY OUT OF MEMORY 13429.15 82.4 -
200 OUT OF MEMORY OUT OF MEMORY 15763.81 130.64 -
Average - - - - -0.12

Table 1 illustrates that the heuristic approach based on column generation achieves
optimality in some small instances, and gets solutions close to the best achievable solu-
tions in medium and large instances. The average gap is —0.12%, yet our algorithm
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exhibits significantly short computational times. For small and medium instance sizes,
our algorithm consistently yields near-optimal cost values for each instance within
a minute. Even as the instance sizes increase, computation time lengthens, yet our
algorithm consistently converges to the near-optimal values within approximately 2
minutes. Our heuristic algorithm based on column generation in this work, show-
cases remarkable efficiency to yield exceptionally high-quality solutions within short
computation times.

5.2.3 Results on Clinic Collaboration Fees and Time Windows

In this section, we delve into the impact of clinic collaboration fees and time windows
on our experimental results. In Table 2, the last three columns present the optimal
solution values derived from the Heuristic CG algorithm for the baseline dataset, the
dataset with high clinic collaboration fees, and the dataset with extended time win-
dows, respectively. When patient disutility is not explicitly considered, the influence of
high clinic collaboration fees on the overall cost is evident, as it increases the total cost
universally. Analyzing the best solution patterns between the baseline and high clinic
collaboration fee scenarios, we observe that in most cases, the set of opened clinics
remains consistent. However, there exist instances where an increase in clinic collab-
oration fees leads to a reduction in the number of opening clinics. This phenomenon
can be attributed to a strategic shift where, with significant increases in clinic collabo-
ration fees, a preference emerges for opening fewer clinics while accommodating more
patients in each of these clinics.

Intuitively, when clinic collaboration fees are very high, the preference is to oper-
ate fewer clinics while concentrating more patients within each. Conversely, when
clinic collaboration fees experience only modest increments, possibly beneath a spe-
cific threshold, maintaining the initial set of opening clinics is preferred. This threshold
concept may be crucial for the decision-makers at the central hospital, aiding them in
understanding the tipping point where such strategic shifts occur. While traditional
solvers might prove time-intensive for this task, our algorithm, when combined with
grid search, could offer an efficient means to identify these thresholds in reasonable
times. This capacity underscores the broader utility of our algorithm.

Likewise, an extension of the time window results in a reduction of the total cost
due to the expansion of the feasible region. Notably, there is an intuitive correlation
between the larger time windows and the higher average computational time. This can
be rationalized by the increased number of feasible routes to explore within the broader
feasible region, thereby leading to lengthier computational processes. It is worth not-
ing, however, that while the computational time does increase as the instance size
grows, this escalation is not exponential in nature. This observation underscores the
efficiency of our algorithm even in more intricate scenarios. In summary, these findings
highlight the robustness of our algorithm to effectively handle complex situations.

5.2.4 Results on the Magnitude of Disutility

Within this section, we explore the influence of incorporating patient disutility into
the analysis. By introducing the dimension of social welfare, we aim to unveil the
alterations in the best solution and assess how it evolves in response to this pivotal
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Table 2 Comparative Computational Results of Heuristic CG Algorithm for the Non-Social
Welfare Scenario Across Various Datasets.

Baseline High Clinic Collaboration Fee Large Time Window
Instance Size obj time/s obj time/s obj time/s
10 2524.14 2.21 3261.52 2.71 2479.43 6.89
20 3887.05 10.91 4643.45 14.01 3733.45 37.36
30 4165.27 12.49 4850.40 13.29 4141.04 35.23
40 4895.88 36.31 5592.04 37.43 4681.89 109.95
50 6341.04 38.94 7083.56 38.51 6087.52 115.29
60 5854.45 43.43 6464.74 45.12 5842.89 113.84
70 9037.46 45.76 9913.01 54.31 8831.95 161.34
80 6937.11 51.76 8249.66 50.63 6763.37 142.10
90 9134.36 63.01 9963.85 73.12 7814.08 210.05
100 10340.51 74.23 12315.25 72.92 9921.41 200.25
150 13429.15 82.45 16120.51 87.41 11761.21 253.65
200 15763.81 130.64 17149.04 142.12 14845.12 409.23

consideration. Since the best solutions obtained by all three datasets (with variations in
clinic collaboration fees and time windows) follow the same pattern, we only show the
comparison among those three scenarios: the absence of social welfare consideration,
the inclusion of social welfare with a low patient disutility rate, and the integration of
social welfare with a high patient disutility rate, by using the baseline dataset.

Table 3 Comparative Computational Results of Heuristic CG Algorithm for Baseline Dataset with
Varied Patient Disutility Rates.

Non-Social Welfare  Low Patient Disutility Rate  High Patient Disutility Rate

Instance Size Beost Drost Doocial 2 DPeost Dyocial
10 2524.14 2684.94 2914.02 3156.29 3256.29
20 3887.05 4180.25 4302.62 4931.89 4931.89
30 4165.27 4623.65 4812.35 5779.12 5779.12
40 4895.88 5087.48 5371.54 6573.31 6582.50
50 6341.04 6547.97 6928.36 8793.55 8793.55
60 5854.45 6632.07 7031.53 7943.53 7943.53
70 9037.46 10301.23 10894.74 12415.31 12421.37
80 9937.11 10091.26 10424.31 10624.83 10624.83
90 9134.36 10046.68 10656.41 10743.90 10743.90
100 10340.51 11877.87 11980.23 11986.56 11986.56
150 13429.15 14121.67 14800.73 16216.57 16704.20
200 15763.81 16811.15 17135.70 17531.72 17712.42

1®.os¢ includes nurse salary, visiting nurse travel expenses, and clinic collaboration fees.

2®,,ciq; comprises the same that present in ®..s¢, and the aggregate patient disutility. This disutility
is quantified through the incorporation of travel costs accrued by patients attending appointments
at community clinics or hospitals.

In Table 3, the initial column presents the total cost ®.,s; under cost minimization.
The subsequent two columns provide costs when the patient’s disutility rate is at a
lower level: one column signifies the total cost excluding patient disutility ® .., while
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the adjacent column reflects the total cost incorporating patient disutility ®gsociai-
This comparison allows us to analyze how patient disutility impacts patient assign-
ment. This analysis proves valuable not only for central hospital planners but also
for decision-makers who aim to strike a harmonious balance between hospital expen-
diture and societal well-being. Similarly, the subsequent pair of columns portray an
analogous comparison, differing only in the context of a higher patient disutility rate.

The observed trend indicates that the cost from the healthcare organization’s side,
D05, regardless of the magnitude of the patient disutility rate, is higher when patient
travel cost is taken into account. This outcome is logically expected, as there is a
tendency to allocate a greater number of patients to visiting nurses in these scenarios.
As the patient disutility rate escalates to a certain threshold, compared with the low
patient disutility rate scenario, the inclination shifts towards assigning more patients
to visiting nurses, which significantly raises the cost from the healthcare organization’s
side. In certain instances, no patient is assigned to travel by themselves (see the
column ®.,5; and Pgpeiqr under the high patient disutility rate dataset in Table 3).
While these findings may appear intuitive, they hold substantial significance in guiding
the hospital’s decision-making process. This allows for further scrutiny of strategies
to coordinate between the decisions made by the social planner and the healthcare
organization.

6 Discussions and Conclusions

6.1 Strategies for Addressing Temporary Changes in Patients’
Schedules

In the dynamic landscape of healthcare, the ability to effectively manage reschedules
and same-day appointments has become a critical need. This entails providing swift
access to medical care for individuals with urgent needs, without overhauling the origi-
nal schedule, impacting all other patients. Therefore, we focus on the local adjustment
of the schedule, assuming there is at least one open clinic in the region accessible to
the patient with urgent needs.

Our analysis is based on several assumptions to simplify the problem while still
being able to generate operational insights. First, we assume only one patient requiring
a same-day appointment is accommodated at any given time. With multiple requests,
the potential strategy involves adopting a sequential rescheduling approach, accommo-
dating one patient at a time. We also consider the more general case that the patient
belongs to Type II. As a result, three scenarios can unfold: incorporation of the patient
into the nearest feasible route, to the clinic that is the nearest and accessible, and to
the hospital. Secondly, there exist nurses capable of providing care to the additional
patient without the need to significantly deviate from their existing schedule. This
assumption alleviates the requirement to factor in nurse salaries and costs incurred by
changes in other patients’ schedules when obtaining the best solution for accommo-
dating the additional patient’s request. Thirdly, we assume the unit travel costs for
visiting nurses and patients are equivalent, and employ the Euclidean metric as the
only criterion for distance-based cost measurement. Consequently, the application of
the triangle inequality principle becomes feasible under these assumptions.
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Ignoring patient disutility, the optimal solution would consistently entail assigning
the patient to the nearest healthcare facility (either an open clinic or the hospital).
Therefore, we mainly focus on the solution with patient disutility in our delibera-
tions, and we obtain a proposition that offers straightforward solutions with minimal
computational effort.

Preceding this analysis, we introduce a set of notations that are applied in the sub-
sequent discourse. The Type II patient who seeks a same-day appointment is denoted
as ¢, and the nearest feasible route segment into which patient ¢ can be inserted is
represented as (7, j). Here, ¢ and j correspond to the patients/clinics positioned at the
beginning and the end of this segment respectively. We represent the distance from
patient ¢ to the clinic as d¢jnic and to the hospital as dyes, respectively. Further, let
the minimal distance from patient ¢ to either the clinic or hospital be represented as
d = min{dcjinic, dnos }- Finally, we denote the distances from patient ¢ to patients ¢
and j as dg; and dgj, and the distance between patient ¢ and j as d;;.

The depiction of these notations is presented in Fig. 3. We show two examples of the
problem. In the first example, shown in Fig. 3(a), the patient ¢ is near the clinic, and
the distance from patient ¢ to the clinic is greater than the distance from both patients
1 and j to patient g, i.e., d > dg; and d > dg;. Based on this example, we will discuss
when d is greater than at least one of dy; and dg;, what is the best solution for patient
q, and we will provide a straightforward solution under this situation in Proposition
1. In the other example, shown in Fig. 3(b), the patient ¢ is near the hospital, and the
distance from patient ¢ to the hospital is less than the distance from both patients
i and j to patient ¢, i.e., d < dg and d < dg;. In this situation, a straightforward
solution is lacking, necessitating computational evaluation and comparison.

()d>dg; >dy (b) dgj = dgi 2 d

Fig. 3 The examples of patient ¢ under different situations

Proposition 1. If at least one of the distances from patient ¢ and j to the patient q
is not larger than d, represented as d > min{dgy;,d,;}, the best decision is to allocate
the Type II patient q to the visiting nurse.
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Proof. With the aforementioned assumptions, the problem reduces to comparing the
costs of inserting the Type II patient ¢ into the closest feasible segment route and
assigning patient ¢ to the clinic or the hospital. These costs are denoted as cyisit =
dgi + dg; — dij and cnovisic = 2d. Applying the triangle inequality theorem, we have
the following inequalities:

dij > |dqi - dqj|-

Without loss of generality, we assume that d,; > dg;, then we have d;; > dg — dg;.
Then, we compare the values of cyisit and cNovisit, aiming to identify the conditions
that induces the inequality cvisit < CNoVisit-

Cvisit < CNoVisit
dgi +dg; — dij < 2d,
Since dg; + dgj — dij < dgi + dgj — dgi + dg,
we need dg; + dgj — dgi + dg; < 2d,
dg; < d.

The same deduction applies for dg; > dg;. We can infer that when d > min{dg;,dg;},
Cvisit < CNovisit 1S always satisfied.

Therefore, when d > min{dy;, d4; }, we will always insert the Type II patient g into
the existing route. O

Based on the aforementioned property, we are able to efficiently reach a decision
for the Type II patient seeking a same-day appointment under certain conditions with
simple computations.

Initiating the procedure, we commence by identifying the nearest patient, denoted
as ¢nei in relation to patient g. We evaluate the feasibility of incorporating patient ¢
into the route r containing the nearby patient ¢, while ensuring that time window
constraints for other patients on route r are not violated. If infeasible, we continue
to evaluate the next closest patient and their route. Once a feasible route is found, a
comparison is made between d and min{dg;, dq;}, and if they conform to the condition
set in Proposition 1, patient ¢ is assigned to the visiting nurse. If not met, a further
calculation and comparison between dg; + dg; — d;; and 2d are carried out, and the
best solution is determined. If a feasible route cannot be found, patient ¢ is allocated
to the nearest healthcare facility.

6.2 Implications for Hybrid Telehealth Service Network
Implementation

The emerging trend of hybrid telehealth services is expected to gain prominence due to
their enhanced efficiency and convenience. In this design, specific patients are allowed
to remain at home while others whose home-based care is not necessary might be
directed to either the hospital or nearby clinics, and can also be assigned to a visiting
nurse, taking advantage of being close to a route where a nurse has to visit regardless.
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To realize the potential of this hybrid network service system, maintaining a low
operating cost is essential.

Our proposed approach can be used to support the operation of the proposed
hybrid service network, helping the operator to solve a combination of facility location,
assignment, and vehicle routing problems with the goal of minimizing total opera-
tional costs. Furthermore, the knowledge of patient disutility (the precise assessment
of patient travel costs) would empower us to perform a careful analysis of the imple-
mentability of the proposed decentralized care delivery network. This analysis could
encompass an assessment of the overall benefit of the service design from the cost-
saving perspective. For instance, we will be able to consider the cost of shuttle service
or travel compensations provided prior to the reform to decide if it is better off to send
nurses. Further, we could compare the social welfare encompassing patients’ travel
costs prior to and post the reform. In terms of the current sensitivity analysis, we
have demonstrated the impact of several operating factors like the clinic collaboration
fee. The future direction could be exploring other operating factors like nurse salary,
travel compensation, among others. Our model has the capacity to perform a range of
sensitivity analyses regarding the parameters and could incorporate other parameters.

6.3 Limitations and Future Research Directions

Because the proposed hybrid telehealth service system has not yet achieved wide
adoption, our numerical experiments are primarily based on synthetic data. However,
the existing systems, such as the home-based and clinic-based telehealth programs
established by Veterans Affairs (VA) healthcare, might offer valuable information
and data that can enable a more precise estimation of our model parameters, such
as travel-related expenses and time for visiting nurses, and patient care preferences.
Understanding the operations of these existing systems and incorporating their operat-
ing features will enhance the model’s capacity to closely mirror real-world conditions.
As leveraging telehealth technologies to ameliorate barriers to healthcare access is
gaining uptake, we posit that our proposed system holds the potential for future
implementation.

A direct extension of our current model involves the consideration of a more het-
erogeneous patient population. While our current work includes only two types of
patients, real-world scenarios could feature multiple types of patients. For instance,
certain patients may require specialized care that necessitates a physical visit to a spe-
cific healthcare facility, owing to the non-portability of specialized medical equipment.
The intricate variability in patient needs underscores the importance of expanding the
model to consider multiple types of patients, and each type of patient is characterized
by distinct healthcare requirements and constraints.

Another potential avenue for future exploration is delving into the dynamic vari-
ant of the routing problem within visit services. For example, the traveling costs
associated with visiting nurses could be non-deterministic, and the service time for
each patient could fluctuate within a predetermined interval. Those variations entail
decision-making under uncertainty, which may be formulated as either stochastic or
robust optimization problems, and demand computationally efficient solutions.
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Additionally, incorporating fairness into our model also presents an intriguing
direction for further work. The notion of fairness in our context could be con-
structed as the equitable and balanced distribution of visits and distances among
the available nurses and patients. This conceptualization of fairness serves to ele-
vate employee contentment and potentially improve the quality of service rendered to
patients. For example, the fairness objective or constraint might entail minimizing the
longest traveling distance among patients and nurses, or restricting each nurse services
approximately the same number of patients.
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Appendix A Algorithms
A.1 The Construction Heuristic Algorithm

Algorithm 2 The Construction Heuristic Algorithm
1: procedure INITIALIZATION

2: Y < A set of feasible routes
3: P; < Obtain a set of patients by criterion 1
4: P, < Obtain a set of patients according to criterion 2 ranked based on w; in

descending order

5: Ppew < Obtain the pivot patient set following the selection procedure

6: for all p € P,y do

7: The labeling set algorithm is called to determine the best route r that visits
only patient p

8: The route r is added to the set of €/

9: end for

10: for all p € J \ Pyew do

11: Insert p to current feasible routes in

12: Update Q' with new routes

13: end for

14: end procedure
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A.2 Insertion Algorithm in Initialization Phase

For each patient h, in r, we obtain its starting time @, in route r by applying the
labeling algorithm, and obtain its neighbourhood set N}, as defined in Section 3.2.

Algorithm 3 Insertion Procedure (Initialization)

1: procedure INSERTION(h, € 1)

2: Rank all the patients in N}, in ascending order with respect to their distance
from h,,

3 Compute gguppfr or T,Ei Ifler

4: for all j € NV}, do

5: if » € Q) then

6: if ay, +vn, +1tp,,; <b; then

7 if dn, +vn, +th,j 05+, <o P then

8: return j

9: end if

10: end if

11: else

12: if ay, +vn, < b; then

13: if ah, + Vp, +; < Tgulffr then

14: return j

15: end if

16: end if

17: end if

18: end for

19: return ()

20: end procedure
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A.3 Insertion Algorithm in Pricing Phase

In order to simplify the notation, the dual variables for both Type I and Type II
patients are denoted by 7;, and the reduced cost for any route r is denoted by c,.

Algorithm 4 Insertion Procedure (Pricing)
1: procedure INSERTION(h, € r)

2: Rank all the patients in N}, in ascending order with respect to their dual
values

3: Compute c}?upper or Tfupfler

4: for all j € N, do

5: if r € ) ; then

6: if ap, +vp, +tn, ; < bj then

7: if Qh, + Vh, +lh,,; 05+ tj,hu+1 < <}21pf1er then

8: if ¢, +m; +en, ; + €jh,.,, <O0then

9: return j

10: end if

11: end if

12: end if

13: else

14: if ap, +vp, < bj then

15: if ap, +op, +v; < T}Ifupfler then

16: if ¢ + 7+ gn,,j + 9jhuyn <0 then

17: return j

18: end if

19: end if

20: end if

21: end if

22: end for

23: return ()

24: end procedure
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A.4 Relocation Algorithm in Pricing Phase

Algorithm 5 Relocation Procedure (Pricing)

1: procedure RELOCATION(r)

2: h,, < the patient with the maximal reduced cost in route r

3: Rank all the patients in N, _, in ascending order with respect to their dual
values

4 Compute g,[i PP or 7‘,2 f’fler

5: for all j € N}, , do

6: if r € Q) then

7: if ap, , +vn,_, + thy_1,; < b; then

J if @h, , + Ony F by g+ U F b <5, 0 then

9: return j

10: end if

11: end if

12: else

13: if ap, , + v, , <b; then

14: if G, , +on, , +v; < 7P then

15: return j

16: end if

17: end if

18: end if

19: end for

20 return ()

21: end procedure
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