Computers and Electronics in Agriculture 210 (2023) 107933

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

ELSEVIER

Check for

A drought stress-sensing technique based on wavelet entropy of chlorophyll &
fluorescence excited with pseudo-random binary sequence

Qian Xia®, Hao Tang?, Lijiang Fu®, Jinglu Tan”, Ya Guo™"

@ Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
Y Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA

ARTICLE INFO ABSTRACT

Keywords:

Drought stress
Chlorophyll a fluorescence
Wavelet analysis
Photosynthesis

Drought stress is one of the most important environmental factors limiting photosynthesis and agriculture yield,
but photosynthesis-based drought stress measures are still not well developed. Chlorophyll a fluorescence (ChlF)
from photosynthesis II (PSII) tightly couples with photosynthesis and may potentially serve as a measure of
drought stress. Traditional ChlF measurement is usually based on a step or pulse excitation, and may not perturb
the complex photochemical reactions to show strong ChlF difference under drought stress conditions and limit
the sensitivity and robustness of using ChIF to sense drought stress. In this work, a drought stress-sensing
technique based on ChIF excited by pseudo-random binary sequence (PRBS) and analyzed by wavelet entropy
was established. Four different rice (Oryza sativa L.) varieties with 120 samples for each variety and thirty
spinach (Spinacia oleracea L.) samples were measured under different drought stress durations to validate the
proposed method. Results show that the proposed wavelet-entropy-based ChlF measure could differentiate all the
different drought stress durations for all rice varieties and spinach but the commonly used OJIP-based ChIF
induction analysis could not. This work provides a new plant-physiology-based drought stress measurement

method and ChIF analysis technique.

1. Introduction

The world population may reach 9.6 billion by 2050 and 10.9 billion
by 2100 (Gerland et al., 2014). Demand for food will continue to in-
crease. It is reported that reduction of precipitation and intensification
of greenhouse effect will inevitably cause more extreme and severe
weather events (Webber et al., 2018), which will reduce agricultural
productivity. Drought is one of the major stresses that limit crop yield
and has become a word-wide research focus (Barnabas et al., 2008; Liu
et al., 2018; Dietz et al., 2021).

In photosynthesis, antenna chlorophyll molecules in photosystem II
(PSII) jump from the ground state to a high-energy state after absorbing
light energy. Chlorophyll molecules in the high-energy state are unsta-
ble and will return the ground state by releasing the absorbed light
energy through heat, chlorophyll fluorescence (ChlF), or photochemical
reactions (Lubitz et al., 2008; Kalaji et al., 2014; Ruban, 2016). The
three energy dissipation pathways compete with one another, which
makes ChlF useful in reflecting changes in photosynthesis (Murchie and
Lawson, 2013; Esmaeilizadeh et al., 2021). At present, there are
different methods for measurement of plant stresses including
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reflectance indices (Sukhova and Sukhov, 2019; Sukhova et al., 2021;
Sukhova et al., 2022a; Sukhova et al., 2022b), and hyperspectral im-
aging techniques (Mahlein et al., 2018); however, they are not like ChlF
measurement, which is fully coupled with photosynthetic electron
transport process (Gameiroa et al., 2016). ChlF thus has been exten-
sively used in photosynthesis research (Murchie et al., 2013; Krause and
Weis, 1991; Mohammed et al., 2019; Wangpraseurt et al., 2019; Dab-
rowski et al., 2021; Gorbunov and Falkowski, 2022; He et al., 2022),
including drought stress measurement (Mathobo et al., 2017; Banks,
2018; Yao et al., 2018; Dabrowski et al., 2019; Xia et al., 2022). More-
over, research on plant phenotypes has become increasingly important
in plant research and applications (Fiorani and Schurr, 2013). Structural
and photosynthetic parameters are keys to phenotype characterizations
(Simon et al., 2013; Cruz et al.,, 2016). As an optical method, ChIF
technology is important in measuring photosynthetic parameters for
plant phenotyping.

Photosynthetic activities involve many chemical reaction processes
with a large span of reaction rates, which make the system a high-order
system with broadband dynamics. In traditional ChlF measurement,
leaves are often illuminated by light with a step or pulse signal (Guo and
Tan, 2015). According to system and control theories (Wang et al., 2019;
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Abbreviations

OJIP Parameters Definition

Vi = (Fi - Fo)/(Fm - Fo) Relative variable fluorescence intensity
at the I step

Vj = (Fj - Fo)/(Fm - Fo) Relative variable fluorescence intensity
at the J step

Fv/Fo = (Fm - Fo)/Fo Quantum efficiency of photosystem II

Fm/Fo Electron transport through photosystem II

Fv/Fm = (Fm - Fo)/Fm Maximum photochemical quantum yield
of photosystem II in the dark

Ss The smallest Sm turn-over (single turn-over)

Mo = 4x(F300 -Fo)/(Fm -Fo) Approximated initial slope (in ms-
1) of the fluorescence transient

@Eo = (1 - (Fo/Fm)x(Fv/Fm) Quantum yield of electron
transport

@Po =1 - (Fo/Fm)(or Fv/Fm) Maximum quantum yield of PSII

@Do =1 - ¢Po - (Fo/Fm) Quantum yield of energy dissipation

yo =1 -Vj Probability that a trapped exciton moves an electron
further than QA-

ABS/RC = (Mo/Vj)(1/¢Po) Absorption per reaction center

PIaps=4[(F300-Fo) x (Fm-Fj) xFm]/[(Fm - Fo)(Fj - Fo)xFo]
Performance index for energy conservation from
exciton to the reduction of Intersystem electron
acceptors

ETo/RC=(Mo/Vj)(1-Vj) Electron transport per reaction center

TRo/RC = Mox(1/Vj) Trapped energy flux per reaction center

DIo/RC=ABS/RC-TRo/RC Dissipation per reaction center (at t =
0)

Sun et al., 2020; Chen et al., 2022), the frequency band of a step or a
pulse excitation is narrow and may not perturb the system to produce
rich reaction differences associated with stresses as a broadband exci-
tation does. Broadband excitations can stimulate more dynamic char-
acteristics of systems (Pan and Dai, 2018; Zhang et al., 2019). This may
explain the controversial results from using ChlF to sense drought stress
through the traditional ChlF induction measurement in the literature
(Guo and Tan, 2015a).

When plants are stressed, various photochemical reaction co-
efficients and substance concentrations in the PSII may change (Wols
and Hofman-Caris, 2012), which will affect the time-frequency dynamic
characteristics of the system, and change the complexity of ChlF signals
in both the time and frequency domains. This implies that the richness of
the ChIF variations can be used for drought stress level differentiation.
At present, ChlF parameters from traditional excitation signals can show
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differences between control and stressed groups, but it is difficult to
sense differences among different stress levels (Zhuang et al., 2020).
Please refer to Tsimilli-Michael (2020) for the concepts, assumptions,
definitions, and terms for more ChlF parameters. Information entropy is
a measure of signal uncertainty and is often used to characterize signal
complexity. The more uncertain, the more complex the signal, the
greater its entropy (Qu et al., 2003; Wang et al., 2021). However, in the
literature, there is a void of using ChlF information entropy for sensing.

In sum, there is a need to perturb the photosynthetic systems more
persistently with a broadband excitation and analyze the entropy of
complex ChlF responses for drought stress measurement. In this work, a
broadband-based ChlF measure for drought stress and a new framework
for analyzing ChIF signal in terms of entropy were proposed. Broadband
excitation signals include white noise, PRBS, swept sine. PRBS is a bi-
nary sequence that can be designed, repeatedly generated and repli-
cated. In addition, a PRBS signal is easy to implement with a circuit, and
has a wide range of applications as an excitation source. Therefore, a
PRBS signal as the broadband signal was used to stimulate ChlF in this
work. Wavelet analysis, a powerful time-frequency analysis method,
was used to decompose the ChlF signal into different frequency bands.
The information entropy of the decomposed signal in different bands
were computed to characterize drought-induced ChlF changes and a
drought stress sensing technique based on PRBS-excited ChIF and
wavelet entropy was established accordingly. It is expected that the
proposed method for ChlF analysis will improve drought stress sensing
upon the traditional ChlF analysis methods. Experiments were used to
validate the developed method.

2. Method
2.1. Wavelet transform

Wavelet transform (WT) is a time-frequency localized signal analysis
method (Akujuobi, 2022; Guido, 2022), which is suitable for analyzing
time-varying signals with a broad band. WT adopts large time window
for low frequency components and small time window for high fre-
quency components, which make it have good time-frequency analysis
capability with multi-scale detailed analysis of signals through the
operation functions of scaling and translation. WT can be classified into
continuous wavelet transform (CWT) and discrete wavelet transform
(DWT). DWT is the discretization of the former (Sundararajan, 2016). In
practical applications, CWT is associated with a large amount of calcu-
lation and high coefficient redundancy, so DWT is used in this work. The
wavelet basis functions are generated by using parameters a, b, and a
mother wavelet y(t), where y/(t) € L2(R) (L2(R) is space of functions).
The wavelet basis function y5(t) can be expressed as:

W.o(1) = |a| " x W((t —b)/a) a,beR,a>0 €h)

g0) (22>

g() | Dy

h(") 4

—(2) )
—(2) )

Fig. 1. Discrete wavelet decomposition.
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where a is the scale parameter (scaling factor), which represents the
resolution of the signal being processed and corresponds to the fre-
quency domain analysis; b is the displacement parameter (translation
factor), which corresponds to the time domain analysis; t is the inde-
pendent variable of wavelet basis function and is the time variable in
this work.

DWT realizes WT by using the discretization of wavelet scale and
some translation rules. In order not to lose information, binary sampling
is used to discretize a and b. Let a = 2j, b= 2jk, jand k € Z. The discrete
wavelet function family obtained by y,(t) discretization is:

Wi, (r) =277 x ¥(27t — k) @

where j is the scale parameter and k is the translation parameter. Dau-
bechies wavelets have been successfully used in many applications
(Ozbay etal., 2011, Guo et al., 2015b), and Daubechies 4 (db4) was used
as the wavelet basis function in this work.

DWT of the ChlF signal uses a high pass filter, a low pass filter, and
two down-samplers. The high pass filter g(-) is the discrete mother
wavelet and the low pass filter h(-) is its mirror version. The discrete
ChlF signal x(n) is rapidly transformed at the instant k and scale j, and
the output results of the high pass filter g(-) and low pass filter h(-) are
the detail coefficients (high frequency component coefficients) and the
approximation coefficients (low frequency component coefficients),
respectively, which are expressed by D;j(n) and Aj(n), respectively. In the
process of ChIF signal decomposition, the approximate coefficient A;.
1(n) of the j-1th layer is convoluted with g(-) and h(-), respectively, and
sampled downward to obtain the detail coefficient D; and the approxi-
mate coefficient A; of layer j. The ChIF signal x(n) is decomposed ac-
cording to the number of decomposition levels, as shown in Fig. 1, and
the decomposition layers was experimentally determined as 6 in this
work. By doing so, a common wavelet entropy index was identified to
classify all the samples for different varieties and to illustrate the
concept of the proposed work.

The detail coefficients D; and the approximation coefficients A; of the
j™ level of DWT are denoted as:

Aj(k) = x(n)h(2k — n) 3)

Di(k) = x(n)g(2k —n) )

where g(-) is high pass filter; h(-) is low pass filter; A;(k) is the k™ coef-
ficient in the j™ approximation of the ChIF signal after wavelet decom-
position, which describes the low frequency information of the ChIF
signal; Dj(k) is the k™ coefficient in the jth detail of the ChIF signal after
wavelet decomposition, which describes the high frequency information
of the ChlF signal.

2.2. Wavelet entropy

The ChIF signal energy at each scale is expressed as:

ED; =Y |D;(k)|° ©)

EA; = >[40 ®)
k

wherej=1,2,3,...,J,Jis the maximum decomposition level, which is 6
in this work.
The relative energy for the k™ detail at the j™ scale is:

D;(k)

PD;, =
W ED;

7

The relative energy for the the Kkt approximation at the jth scale is:
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Fig. 2. Flow chart of ChIF wavelet information entropy calculation.
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According to the Shannon information entropy (Ellerman, 2021), the
detail information entropy and the approximation information entropy
can be calculated. The detail and approximation information entropy of
the jth level can be computed as Eqns. (9) and (10), respectively, which
will be further used to classify drought stress levels.

DE; = — ZPDjyklog(PDj_k) PD;; € [0, 1] 9
k

AE; = — ) " PAjlog(PA;x) PAj € [0, 1] (10)
k

The flow chart of ChlF information entropy calculation is illustrated
in Fig. 2.

3. Samples and Experiments
3.1. Plant samples

Rice is one of the most important food crops and spinach is one of the
most popular vegetables in the world, thus they are used as samples to
test the developed method. Intact and fresh spinach was acquired from a
local farmers’ market in Wuxi in an early morning in February of 2022.
The four rice varieties were Hyou-518 (drought resistant), Zhuliangyou-
819 (drought resistant), Xinliangyou-212 (drought susceptible), and
Hanyou-2 (drought susceptible). The rice samples were grown in a
greenhouse (Wuxi Honeycomb Ecological Agriculture Co., Ltd) in Wuxi
city, Jiangsu Province, China.

3.2. Drought stress treatment

Spinach drought stress treatment: The spinach samples were quickly
transported to the laboratory for drought stress experiment after pur-
chasing. To reduce the effect of different spinach water status on
measured ChlF, the roots of the fresh spinach were put in water for 2 h.
Then the spinach samples were kept in an environment with a temper-
ature of 17 °C and air humidity of 40% for 0 h, 3 h, 5h, and 7 h to induce
natural drought stress at different levels. Thirty groups of spinach were
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Fig. 3. Illumination light of (a) step light signal, and (b) PRBS light signal.

measured. The spinach samples for the drought experiment were
completely exposed in ambient air without water application. This
treatment over several hours led to progressive water loss. The spinach
weight was measured with an electronic analytical balance (MTB300,
Meilen, Guangdong, China) with an accuracy of 0.01 g. The relative
water content of the spinach samples was reduced by 3% (fresh weight -
dry weight)/fresh weight) when the drought treatment lasted for 7 h.
Rice drought stress treatment: Rice seedlings were cultivated in a
seedling bed in the greenhouse and kept at 28 °C. When the rice seed-
lings were about 10-cm height, they were transplanted into polyethylene
plastic pots (30-cm height and 28-cm in diameter) filled with 10 kg of

paddy soil (soil and chicken manure organic fertilizer in a proportion of
5:1). Six rice seedlings were planted in each pot, and 20 pots of seedings
were planted for each variety. The pots were regularly watered before
drought stress experiment. At the early stage of rice budding (starting
August 24, 2022), the pots were not watered for 0 day, 3 days, and 7
days for inducing natural drought stress. The experiment resulted in 120
sets of ChlF data in total for a rice variety.

3.3. Data acquisition

Leaves were dark-adapted for at least 20 min by using dark-adaption
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Fig. 4. Mean ChlF induction excited by the step signal under different drought durations. (a) Spinach, (b) Hyou-518, (c) Zhuliangyou-819, (d) Xinliangyou-212, and

(e) Hanyou-2.

clips before ChlF measurements. ChlF produced from illumination light
with a step signal and a PRBS signal was measured from different leaves
(randomly selected for the two types of ChlF measurement) of each
plant. The OJIP measurement with a step excitation was performed with
a FluorPen PSI (Photon Systems Instruments, Czech Republic) and the
PRBS measurement was performed with a FluorX-FX001 ChlF meter
(Lushixin Sci. & Tech. Co. Ltd Wuxi, China). Fig. 3 illustrates the step
signal and the PRBS signal waveform for exciting ChlF. The step light

intensity was set as 2400 pmol photons m?2 s (Fig. 3a), and the
acquisition time was 2 s. The PRBS is generated with seven shift registers
(PRBS7?) in this work (Refer to, for example, Eriksson et al. (2017) for
futher details). The excitation light signal of PRBS is shown in Fig. 3b.
The low light intensity and the high light intensity of the PRBS signal
was set as 1260 pmol m s and 3150 pmol m™ s (Fig. 3b), respec-
tively, and the sampling frequency was 100 Hz and the acquisition time
was 127 s.
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Fig. 5. Mean ChlF induction curves excited by the PRBS signal under different drought durations. (a) Spinach, (b) Hyou-518, (c) Zhuliangyou-819, (d) Xinliangyou-

212 and (e) Hanyou-2.

3.4. Data analysis

Discrete wavelet analysis of the PRBS-induced ChIF responses was
executed by using Daubechies wavelets in MATLAB (MathWorks,
Natick, MA). The number of levels of decomposition was experimentally
determined for differentiation of the drought levels. The relative levels
of energy in the approximation and each level of details were used to
compute the information entropy values.

Statistical analysis was performed in SPSS (Armonk, NY, IBM SPSS
Amos 21). The effect of drought stress on the computed ChIF charac-
teristics was assessed by using analysis of variance (ANOVA), least sig-
nificance difference (LSD), Tamhane-T2, and Kruskal-Wallis
nonparametric tests, depending on the normal distribution or homoge-
neity of variance of the data, at the 5% probability level as done in Yang
et al. (2020) and Ma et al. (2022).
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Table 1

Statistical analysis of commonly used ChlF features from OJIP induction under
different drought stress durations on spinach. Values indicated with different
letters in a row are significantly (p < 0.05) different from one another. The re-
sults were presented as means + standard errors for n = 30. DT1, DT2, DT3, and
DT4 refer to non-drought, drought stress for 3 h, drought stress for 5 h, and
drought stress for 7 h, respectively.

Parameters DT1 DT2 DT3 DT4

Vj 0.45 + 0.04a 0.43 + 0.03a 0.44 + 0.03a 0.45 + 0.03a
Vi 0.64 + 0.05b 0.66 + 0.06ab 0.68 + 0.06b 0.69 + 0.06b
Fm/Fo 3.99 + 0.52a 4.01 + 0.49a 4.03 + 0.50a 4.05 + 0.48a
Fv/Fo 2.99 + 0.52a 3.01 + 0.49a 3.03 £ 0.50a 3.05 + 0.48a
Fv/Fm 0.74 + 0.04a 0.75 + 0.04a 0.75 + 0.04a 0.75 + 0.04a
Mo 0.95 £+ 0.16a 0.92 £ 0.07a 0.93 £+ 0.06a 0.96 + 0.06a
Ss 0.48 + 0.05a 0.47 + 0.04a 0.47 + 0.04a 0.47 + 0.04a
¢Po 0.74 + 0.04a 0.75 + 0.04a 0.75 + 0.04a 0.75 + 0.04a
yo 0.55 £ 0.04a 0.57 £ 0.03a 0.56 + 0.03a 0.55 £ 0.03a
¢Eo 0.41 + 0.04a 0.42 + 0.02a 0.42 + 0.02a 0.41 + 0.02a
¢Do 0.26 + 0.04a 0.25 + 0.04a 0.25 + 0.04a 0.25 + 0.04a
Plags 1.36 &+ 0.38a 1.40 £ 0.27a 1.37 £ 0.27a 1.33 £ 0.25a
ABS/RC 2.87 + 0.46a 2.87 + 0.45a 2.87 + 0.47a 2.89 + 0.46a
TRo/RC 212+ 0.23a 2.13 £ 0.21a 213 +0.21a 2.15 + 0.22a
ETo/RC 1.17 £ 0.14a 1.21 £ 0.17a 1.20 £ 0.17a 1.19 £ 0.18a
DIo/RC 0.75 £+ 0.27a 0.74 £+ 0.26a 0.74 + 0.28a 0.74 + 0.27a

4. Results

4.1. ChIF under different drought stress levels

Fig. 4 shows the mean ChIF induction curves excited by the step
signal from spinach, Hyou-518, Zhuliangyou-819, Xinliangyou-212, and
Hanyou-2 under different drought stress durations. Fig. 5 shows the
mean ChlF induction curves excited by the PRBS signal from spinach,
Hyou-518, Zhuliangyou-819, Xinliangyou-212, and Hanyou-2 under

Table 2
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different drought stress durations (Fig. 5 shows only the ChlF data of the
first 60 s). It can be seen that there is not a consistent observable dif-
ference in the ChlF induction curves between non-drought and drought-
stressed samples from Figs. 4 and 5.

4.2. Effects of drought stress on traditional ChIF features

In order to show the difference in the ChlF parameters of the OJIP
induction of spinach and rice under different drought stress durations,
the ChIF values were normalized by the maximum value in each group.
The normalized ChlF parameters of ChlF are shown in spider plots. The
ChlF parameter values of spinach under different drought stress levels
are almost the same in Fig. 6a (p > 0.05). The ChlF parameters of
Zhuliangyou-819 and Xinliangyou-212 with drought stress for 3 days
are different from those with non-drought and drought stress for 7 days
(p < 0.05, Fig. 6¢ and 6d). The ChIF parameter values of rice in non-
drought and drought stress for 7 days are very close (p > 0.05, Fig. 6
(b-e)).

Statistical comparisons of ChlF parameters of spinach and the four
rice varieties among different drought stress durations are presented in
Tables 1 and 2. ChIF parameters Vi shows statistical differences (p <
0.05) between non-drought and drought stress exceeding 5 h, and most
of the traditional ChlF features from OJIP induction of spinach have no
statistical difference between different drought stress durations
(Table 1).

Effects of different drought durations on rice on the ChlF parameters
are shown in Table 2. It can be observed that the ChlF parameters (Fm/
Fo, Fv/Fo, Fv/Fm, Ss, ¢Po, ¢Do, Plags, ABS/RC, and TRo/RC) of
Zhuliangyou-819, Xinliangyou-212, and Hanyou-2 are statistically
different between drought stress levels, but Hyou-518 under different
drought stress durations cannot be distinguished (p > 0.05). Although
ChlF parameter @Eo of Zhuliangyou-819 and Hanyou-2 are statistically

Statistical analysis of commonly used ChlIF features from OJIP induction under different drought stress durations on rice. Values indicated with different letters in a row
are significantly (p < 0.05) different. The results were presented as means + standard errors for n = 120. I, II, III, and IV represent Hyou-518, Zhuliangyou-819,
Xinliangyou-212, and Hanyou-2. Dd1, Dd2, and Dd3 refer to non-drought, drought stress for 3 days, and drought stress for 7 days, respectively.

Varieties & parameters Dd1 Dd2 Dd3 Varieties & parameters Dd1 Dd2 Dd3

I-Vj 0.47 + 0.04a 0.44 + 0.03b 0.47 + 0.03a I-yo 0.53 + 0.04b 0.56 + 0.03a 0.53 + 0.03b
1I-Vj 0.45 + 0.02c 0.54 + 0.08a 0.47 + 0.02b II-yo 0.55 + 0.02a 0.46 + 0.08¢c 0.53 + 0.02b
III-Vj 0.47 + 0.02b 0.62 £+ 0.12a 0.46 + 0.04b III-yo 0.53 £+ 0.02a 0.38 + 0.12b 0.54 £+ 0.04a
IV-Vj 0.43 + 0.02b 0.46 + 0.04a 0.45 £ 0.04 s IV-yo 0.57 + 0.02a 0.54 + 0.04b 0.55 + 0.04b
1-vi 0.81 + 0.02a 0.79 + 0.03b 0.81 + 0.02a I-9Eo 0.43 + 0.04b 0.45 + 0.03a 0.44 + 0.02b
1I-Vi 0.78 + 0.02a 0.79 £ 0.03c 0.81 + 0.02b II-pEo 0.45 + 0.02a 0.36 £+ 0.07c 0.44 4+ 0.02b
II-Vi 0.84 + 0.02a 0.76 + 0.08¢c 0.80 + 0.02b 1I-¢Eo 0.44 + 0.03a 0.28 + 0.10b 0.44 + 0.04a
1V-Vi 0.81 + 0.02a 0.78 + 0.02b 0.81 + 0.02a IV-¢Eo 0.47 + 0.02a 0.43 £ 0.04c 0.45 + 0.03b
I-Fm/Fo 5.22 + 0.48a 5.17 £ 0.27a 5.57 £ 0.33a I-pDo 0.19 £ 0.02a 0.19 £+ 0.01a 0.18 + 0.01b
1I-Fm/Fo 5.61 + 0.35b 4.79 + 0.53c 5.87 + 0.28a 1I-9Do 0.18 + 0.01b 0.21 + 0.02a 0.17 + 0.01c
III-Fm/Fo 5.75 + 0.45a 3.98 £ 0.72¢ 5.43 + 0.29b 11I-¢Do 0.18 + 0.01b 0.26 + 0.05a 0.18 + 0.01c
IV-Fm/Fo 5.91 + 0.30a 4.90 £+ 0.28¢c 5.59 + 0.26b IV-¢Do 0.17 £ 0.01c 0.20 £+ 0.01a 0.18 + 0.01b
I-Fv/Fo 4.22 + 0.48b 4.17 + 0.27b 4.57 + 0.33a I-Plpgs 2.20 + 0.69b 2.41 + 0.47a 2.38 + 0.39a
II-Fv/Fo 4.61 + 0.35b 3.79 £ 0.53c 4.87 +0.28a 11-Plags 2.49 + 0.45b 1.39 + 0.64c 2.65 + 0.44a
III-Fv/Fo 4.75 £+ 0.45a 2.98 £ 0.72c 4.43 + 0.29b III-Plags 2.39 £+ 0.58a 0.78 + 0.56b 2.41 £ 0.55a
IV-Fv/Fo 491 + 0.30a 3.90 + 0.28b 4.59 £ 0.26¢ IV-Plpgs 2.97 + 0.48a 1.94 + 0.46¢ 2.70 4+ 0.55b
I-Fv/Fm 0.81 + 0.02ab 0.81 + 0.01b 0.82 + 0.01a I-ABS/RC 2.29 +0.19a 2.26 + 0.11a 2.21 +0.13b
II-Fv/Fm 0.82 + 0.01b 0.79 + 0.02c 0.83 + 0.01a 1I-ABS/RC 2.32 + 0.16b 2.53 +0.19a 2.14 + 0.14c
III-Fv/Fm 0.83 £ 0.01a 0.74 £ 0.05¢ 0.82 4+ 0.01b II1-ABS/RC 2.34 + 0.20b 2.97 £ 0.57a 2.22 £ 0.14c
IV-Fv/Fm 0.83 + 0.01a 0.80 + 0.01c 0.82 + 0.01b IV-ABS/RC 2.22 + 0.14b 2.47 + 0.14a 2.16 + 0.13c
I-Mo 0.87 + 0.12a 0.80 + 0.08b 0.85 + 0.07a I-TRo/RC 1.84 + 0.11a 1.82 + 0.07ab 1.81 + 0.09b
II-Mo 0.85 + 0.08b 1.09 + 0.18a 0.83 4+ 0.08b II-TRo/RC 1.90 + 0.11b 1.99 + 0.11a 1.78 + 0.10c
111-Mo 0.90 + 0.10b 1.34 + 0.29a 0.83 + 0.11c 1II-TRo/RC 1.93 +0.14b 2.17 + 0.25a 1.81 + 0.10c
IV-Mo 0.80 + 0.07b 0.90 + 0.11a 0.79 + 0.10b IV-TRo/RC 1.84 £ 0.10b 1.96 + 0.10a 1.77 + 0.10c
I-Ss 0.54 + 0.03a 0.55 + 0.02a 0.55 + 0.03a I-ETo/RC 0.97 + 0.04b 1.02 + 0.04a 0.96 + 0.06b
1I-Ss 0.53 + 0.03b 0.50 £ 0.03c 0.57 £ 0.03a II-ETo/RC 1.04 + 0.05a 0.90 £+ 0.16¢ 0.95 + 0.05b
III-Ss 0.52 + 0.04b 0.47 + 0.04c 0.56 + 0.03a III-ETo/RC 1.02 + 0.05a 0.82 + 0.30c 0.97 + 0.07b
IV-Ss 0.54 + 0.03b 0.51 + 0.03c 0.57 + 0.03a IV-ETo/RC 1.05 + 0.05a 1.06 + 0.07a 0.98 + 0.05b
I-pPo 0.81 + 0.02b 0.81 4+ 0.01b 0.82 £+ 0.01a I-DIo/RC 0.45 + 0.08a 0.44 £+ 0.04a 0.40 4 0.05b
1I-¢Po 0.82 + 0.01b 0.79 + 0.02¢ 0.83 + 0.01a 1I-Dlo/RC 0.42 + 0.06b 0.54 + 0.10a 0.37 + 0.04c
11I-¢Po 0.83 + 0.01a 0.74 + 0.05¢ 0.82 + 0.01b 111-DIo/RC 0.41 + 0.07b 0.80 + 0.34a 0.41 + 0.04b
IV-¢Po 0.83 + 0.01a 0.8 + 0.010c 0.82 + 0.01b IV-DIo/RC 0.38 + 0.04b 0.51 + 0.06a 0.39 + 0.04b
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Fig. 7. Spider plots of wavelet entropy of ChlF excited by a step signal under different drought durations. (a) Spinach, (b) Hyou-518, (c¢) Zhuliangyou-819, (d)
Xinliangyou-212, and (e) Hanyou-2. (AEi and DEi represent the wavelet entropy of the i™ (i = 1, 2, ... 6) approximation and detail components, respectively.).

different under different drought stress durations, these parameters spinach or rice under different drought duartions and genetic varieties.
cannot distinguish Hyou-518 and Zhuliangyou-819 under different
drought stress durations, and this is also for ChlF parameter ETo/RC. All
the commonly-used ChlF parameters cannot fully distinguish Hyou-518
under different drought durations.

In sum, from the results of Tables 1 and 2, there is no one parameter
from the OJIP ChIF induction that can completely distinguish either

4.3. Effects of drought stress on wavelet entropy of ChlF excited by a step
signal

Fig. 7 shows spider plots of wavelet entropy of ChlF from the spinach
and the four rice varieties excited by a step signal under different
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Table 3

Statistical analysis of wavelet entropy of spinach ChlF under different drought durations excited by a step signal. Values indicated with different letters in a column are
significantly (p < 0.05) different. The results of ChlF were presented as means + standard errors for n = 30. DT1, DT2, DT3, and DT4 refer to non-drought, drought
stress for 3 h, drought stress for 5 h, and drought stress for 7 h, respectively. AEi and DEi represent the wavelet entropy of the i (i=1, 2, ... 6) approximation and detail
component, respectively.

Scale and Stress level Entropy Scale and Stress Entropy Scale and Stress level Entropy

AE1 DT1 2.77 £ 0.07a AE2 DT1 2.81 + 0.05a AE3 DT1 2.83 £ 0.05a
DT2 2.69 + 0.04b DT2 2.73 + 0.04b DT2 2.76 + 0.04b
DT3 2.68 + 0.04b DT3 2.72 + 0.04b DT3 2.75 + 0.03b
DT4 2.67 + 0.05b DT4 2.71 + 0.05b DT4 2.75 + 0.04b

AE4 DT1 2.79 + 0.04a AE5 DT1 2.52 + 0.08a AE6 DT1 2.37 £0.07a
DT2 2.70 + 0.06b DT2 2.48 + 0.07b DT2 2.36 £ 0.10a
DT3 2.68 + 0.05b DT3 2.48 + 0.08b DT3 2.37 £ 0.08a
DT4 2.66 + 0.05b DT4 2.49 + 0.06ab DT4 2.34 £ 0.09a

DE1 DT1 0.21 £ 0.15a DE2 DT1 1.15 + 0.29a DE3 DT1 1.03 £ 0.14b
DT2 0.24 £+ 0.22a DT2 1.11 + 0.27a DT2 1.25 £+ 0.18a
DT3 0.24 + 0.24a DT3 1.06 + 0.31a DT3 1.26 + 0.21a
DT4 0.23 £ 0.20a DT4 1.08 + 0.28a DT4 1.22 + 0.18a

DE4 DT1 1.62 + 0.14b DES DT1 2.12 £ 0.18a DE6 DT1 2.30 £ 0.24a
DT2 1.80 + 0.15a DT2 2.11 £ 0.14a DT2 2.25+0.17a
DT3 1.75 + 0.15a DT3 2.11 £ 0.17a DT3 2.29 +£0.13a
DT4 1.76 + 0.15a DT4 2.12 £ 0.14a DT4 2.33£0.14a

Table 4

Statistical analysis of wavelet entropy of rice ChlF under different drought durations excited by a step signal. Values indicated with different letters in a row are
significantly (p < 0.05) different from one another. The results about ChlF were presented as means =+ standard errors values for n = 120. I, II, III, and IV represent
Hyou-518, Zhuliangyou-819, Xinliangyou-212, and Hanyou-2. Dd1, Dd2, and Dd3 refer to non-drought, drought stress for 3 days, and stress drought for 7 days,

respectively. AEi and DFEi represent the wavelet entropy of the it (i = 1, 2, ... 6) approximation and detail components, respectively.

Varieties & Scales Dd1 Dd2 Dd3 Varieties & Scales Dd1 Dd2 Dd3

I-AE1 2.51 + 0.06b 2.60 £+ 0.05a 2.61 £+ 0.06a I-AE2 2.55 4+ 0.06b 2.64 £+ 0.05a 2.65 £ 0.05a
I-AE3 2.57 + 0.06b 2.66 + 0.05a 2.67 + 0.05a I-AE4 2.54 + 0.08b 2.63 + 0.06a 2.65 + 0.06a
I-AE5 2.31 +0.11b 2.40 + 0.05a 2.40 + 0.05a I-AE6 1.99 + 0.14a 1.92 + 0.11b 1.98 + 0.14b
I-DE1 0.18 + 0.01b 0.18 + 0.01a 0.18 + 0.00ab I-DE2 1.00 + 0.27a 0.98 + 0.25a 0.92 + 0.23a
I-DE3 1.06 + 0.23a 1.07 £ 0.14a 1.21 £ 0.17a I-DE4 1.58 + 0.13b 1.63 £ 0.13a 1.64 + 0.09a
I-DE5 1.98 + 0.18b 1.99 + 0.24b 2.16 + 0.14a I-DE6 2.05 + 0.24ab 2.25 + 0.20a 1.98 + 0.29b
II-AE1 2.59 + 0.06b 2.42 £ 0.13c 2.63 + 0.06a 1I-AE2 2.63 + 0.05b 2.47 + 0.12c 2.67 + 0.05a
1I-AE3 2.65 + 0.05b 2.51 £ 0.12¢ 2.68 £+ 0.05a II-AE4 2.63 4+ 0.06b 2.47 £ 0.12¢ 2.67 £ 0.06a
II-AE5 2.40 + 0.06b 2.35 + 0.10b 2.40 + 0.04a 1I-AE6 1.99 + 0.14a 2.11 + 0.10a 1.98 + 0.14b
1I-DE1 0.18 + 0.01a 0.17 + 0.02b 0.18 + 0.00b 1I-DE2 0.96 + 0.24a 0.85 + 0.23c 0.89 + 0.20b
1I-DE3 1.09 + 0.16b 0.97 £ 0.18c 1.23 £ 0.16a II-DE4 1.65 + 0.10a 1.55 £ 0.11b 1.63 £ 0.06a
II-DE5S 2.02 + 0.24b 1.69 + 0.23c 2.15 +0.13a II-DE6 2.11 £+ 0.23a 2.08 + 0.25a 2.14 £ 0.33a
III-AE1 2.48 + 0.06b 2.35 + 0.20c 2.62 + 0.07a 1II-AE2 2.52 + 0.06b 2.41 + 0.20c 2.66 + 0.06a
III-AE3 2.55 + 0.05b 2.45 £ 0.20c 2.68 £+ 0.06a III-AE4 2.52 + 0.07b 2.43 £ 0.20c 2.65 £ 0.07a
III-AE5 2.27 £+ 0.08¢ 2.33 + 0.21b 2.39 £+ 0.05a III-AE6 2.06 + 0.13b 2.16 + 0.14a 1.99 + 0.14c
III-DE1 0.18 + 0.01b 0.16 + 0.03c 0.18 + 0.01a 11I-DE2 0.90 + 0.20a 0.94 + 0.29a 0.94 + 0.23a
III-DE3 1.10 + 0.16b 0.87 £ 0.17¢c 1.19 £ 0.17a I1I-DE4 1.61 £ 0.12a 1.55 £ 0.17b 1.64 + 0.08a
III-DES 1.93 + 0.24b 1.80 + 0.26¢ 2.10 £ 0.17a I1I-DE6 2.21 £ 0.24a 2.13 + 0.28b 2.14 + 0.26b
IV-AE1 2.56 + 0.05¢ 2.59 + 0.07b 2.62 + 0.06a IV-AE2 2.60 + 0.06b 2.64 + 0.07a 2.65 + 0.06a
IV-AE3 2.61 + 0.06b 2.67 +0.07a 2.68 + 0.05a IV-AE4 2.60 + 0.06¢ 2.63 + 0.08b 2.65 + 0.06a
IV-AE5 2.36 + 0.09b 2.42 £ 0.07a 2.40 £+ 0.05a IV-AE6 1.93 £ 0.12b 2.06 £+ 0.15a 1.94 £ 0.12b
IV-DE1 0.18 + 0.01b 0.18 + 0.01ab 0.19 + 0.01a IV-DE2 0.85 + 0.16b 1.05 + 0.29a 0.93 + 0.24b
IV-DE3 1.21 + 0.21a 1.07 £ 0.21b 1.24 £ 0.19a IV-DE4 1.66 + 0.10a 1.63 + 0.15b 1.67 £ 0.09a
IV-DES 2.18 £0.18a 1.90 + 0.29b 2.17 £ 0.15a IV-DE6 2.06 + 0.23b 2.24 £+ 0.22a 2.16 £ 0.29a

drought stress durations. The difference of normalized wavelet entropy
values of Zhuliangyou-819 (wavelet entropy DE2, DE3, and DES5),
Xinliangyou-212 (wavelet entropy AE1, AE2, AE3, AE4, DE3, and DE5),
and Hanyou-2 (wavelet entropy DE2) among different drought dura-
tions can be seen from Fig. 7c-7e, but there is not a single feature that
can differentiate all the samples under different drought stress
durations.

The ChIF of spinach and four rice varieties under different drought
durations excited by a step signal was subjected to wavelet decompo-
sition, and the entropy values of the detail component and the approx-
imate component of each level of decomposition and their statistical
comparisons among different drought durations are shown in Tables 4
and 5, respectively. Although the wavelet entropy of the approximate
components (AE1, AE2, AE3, and AE4) and detail components (DE3 and
DE4) of spinach are statistically different between non-drought and
drought-stressed samples, there is no statistical differences among
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drought-stressed samples. (Table 3).

Different drought durations have significant effects on the wavelet
entropy of approximate components (AE1 and AE4) of Zhuliangyou-
819, Xinliangyou-212, and Hanyou-2 as shown in Table 4. In addition,
although the wavelet entropy of approximate components (AE2 and
AE3) and detail components (DE3 and DE5) of Zhuliangyou-819 and
Xinliangyou-212 show significant statistical differences among different
drought durations, the wavelet entropy cannot completely distinguish
Hyou-518 or Hanyou-2 under different drought durations. The wavelet
entropy of approximate components (AE1, AE2, AE3, AE4, AE5, AE6,
and DE4) for Hyou-518 are statistically different between non-drought
and drought stress treated samples, but there is no statistical differ-
ence in these parameters between samples with drought stressed for 3
days and 7 days. In sum, none of the wavelet entropy values in Tabels 3
and 4 can completely distinguish spinach and rice under different
drought durations.
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Statistical analysis of wavelet entropy of spinach ChlF under different drought durations excited the PRBS signal. Values indicated with different letters in a column are
significantly (p < 0.05) different from one another. The results are presented as means =+ standard errors for n = 30. DT1, DT2, DT3, and DT4 refer to non-drought,
drought stress for 3 h, drought stress for 5 h and drought stress for 7 h, respectively. AEi and DEi represent the wavelet entropy of the i (i=1, 2, ... 6) approximation

and detail components, respectively.

Scale and Stress level Entropy Scale and Stress Entropy Scale and Stress level Entropy

AE1 DT1 3.23 £ 0.24a AE2 DT1 3.12 + 0.25a AE3 DT1 3.27 £ 0.23a
DT2 2.58 + 0.25d DT2 2.45 +0.23d DT2 2.72 +0.23c
DT3 2.86 + 0.26¢ DT3 2.73 £0.22¢ DT3 2.92 + 0.23b
DT4 3.03 + 0.24b DT4 2.94 + 0.22b DT4 3.07 +0.22b

AE4 DT1 3.36 £ 0.21a AE5 DT1 3.44 £ 0.19a AE6 DT1 3.51 +£0.19b
DT2 2.87 £ 0.20c DT2 3.05 £ 0.17c DT2 3.26 £ 0.17c¢
DT3 3.06 + 0.21b DT3 3.18 + 0.18b DT3 3.32 + 0.16bc
DT4 3.19 £ 0.22b DT4 3.28 + 0.20b DT4 3.37 £0.17a

DE1 DT1 0.29 + 0.11ab DE2 DT1 0.79 £+ 0.24b DE3 DT1 0.91 + 0.21a
DT2 0.33 £ 0.10a DT2 1.02 + 0.16a DT2 0.96 + 0.23a
DT3 0.27 + 0.05b DT3 0.77 + 0.18b DT3 0.84 + 0.11a
DT4 0.27 + 0.06b DT4 0.77 £ 0.17b DT4 0.88 + 0.21a

DE4 DT1 1.59 + 0.17ab DES DT1 2.60 + 0.13b DE6 DT1 3.26 + 0.12ab
DT2 1.66 + 0.17a DT2 2.70 £0.11a DT2 3.27 £ 0.10a
DT3 1.56 + 0.10b DT3 2.61 + 0.06b DT3 3.24 + 0.10ab
DT4 1.62 £+ 0.17ab DT4 2.56 + 0.06b DT4 3.21 £ 0.10b

4.4. Effects of drought stress on the wavelet entropy of ChlF excited by the
PRBS signal

The normalized wavelet entropy values of ChIF excited by the PRBS
signal under different drought stress durations are shown in Fig. 8. Most
of wavelet entropy values show differences among different drought
stress durations as detailed next. In particular, wavelet approximate
components AE1, AE2, AE3, AE4, and AES5 of spinach in Fig. 8a show
differences while they do not in Fig. 6a and Fig. 7a.

Tables 5 and 6 compare the wavelet entropy values of ChlF of
spinach and the four different rice genetic varieties excited by the PRBS
signal. There are statistically significance differences in the wavelet
entropy of the approximation components (AE1 and AE2) among
spinach drought levels (Table 5). The wavelet entropy of the approxi-
mation components (AE1, AE2, AE3, AE4, and AE5) of the four rice
varieties all show statistically significant differences among drought
levels (Table 6).

It can be seen from the results in Tables 5 and 6 that the wavelet
entropy of the approximation components AE1 and AE2 of ChlF excited
by the PRBS signal show significant differences among all drought stress
levels, and can distinguish spinach and four varieties of rice under
different drought levels. Therefore, the wavelet entropy of the approx-
imation components AE1 and AE2 parameter of the PRBS-based ChlF
signal may serve as a measure to differentiate drought stress levels in
spinach and the rice varieties.

5. Discussion

Drought stress reduces water content, increases stomatal resistance,
reduces transpiration, affects the synthesis of plant chlorophyll, accel-
erates the decomposition of chlorophyll, reduces chlorophyll content,
and finally reduces the photosynthetic rate of crops (Wu et al., 2008; Li
et al.,, 2021). ChIF from PSII does not only reflect the efficiency of
photochemistry, but also reflect the structure of PSII photosynthesis
(Lazar, 2006). The relative ChlF values under drought stress were higher
than non-drought group for the J-step and I-step (Wang et al., 2018). In
our study, the ChlF values of spinach at J, I, and P steps under drought
were higher than those without drought, and the fluorescence value
increased with the longer drought durations (Fig. 1, Table 1). The ChlF
values of Zhuliangyou-819 and Hanyou-2 at the J-step under drought
were higher than those without drought, but this was not observed in
Hyou-518 and Xinliangyou-212 (Fig. 1, Table 1).

ChlF parameters from the common OJIP induction curve have been
widely used to determine photosynthetic traits in the literature

11

(Tribulato et al., 2019; Mathobo et a., 2017; Stirbet et al., 2018),
including the effect of drought stress on crops (Faseela et al., 2019). It is
reported that Fv/Fm decreases significantly under drought stress con-
ditions (Xiao et al., 2019; Xu et al., 2020). In our results, the ChlF pa-
rameters (Fm/Fo, Fv/Fo, Fv/Fm, and ¢Po) of spinach under drought
stress were larger than those under non-drought condition, Ss and ¢Do
under non-drought condition were larger than those under drought
condition (Table 1). However, the ChlF parameters (Fm/Fo, Fv/Fo, Fv/
Fm, and ¢Po) of Xinliangyou-212 and Hanyou-2 under non-drought
condition were larger than those under drought stress. In addition, Ss
of Hyou-518 and ¢Do of Hanyou-2 under drought conditions were larger
than that under non-drought stress condition (Table 2). This result is
inconsistent with the result in Table 1. @Eo of Zhuliangyou-819 and
Hanyou-2 decreased under drought stress, which is consistent with the
research of Wang et al. (2018), but is inconsistent for Hyou-518
(Table 2). DIo/RC of Hanyou-2 with drought stress was larger than
that without drought stress, but this parameter of Hyou-518 with
drought was less than that with non-drought stress (Table 2). Therefore,
there are differences in the changes of the same OJIP-based ChlF pa-
rameters among different plants or varieties under drought stress. Sta-
tistical analysis of OJIP-based ChIF parameters shows that there is not
one OJIP-based ChlF parameter capable of distinguishing different
drought conditions for spinach and the four rice varieties (Tables 2 and
3).

Since drought stress affects electron transport in plants, it will affect
ChlF signal dynamics in the time domain or the frequency domain, but
the effects may not be observable from a narrow-band-excited ChlF
signal. A broad-band excitation signal may stimulate the system to
produce ChlF with rich dynamics in the time domain or more frequency
components in the frequency domain to reflect the ChlF dynamics
affected by drought stress. This work thus focused on whether the
wavelet information entropy of ChlF excited by the broad-band PRBS
signal could reflect the impact of drought stress on plants, and the results
were compared with the results from the traditional OJIP induction.
Compared with step excitation, PRBS excitation resulted in more
wavelet information entropy values that could differentiate more
drought stress levels for spinach and rice varieties as shown in Tables 5
and 6. The results validate the idea that a broadband signal would
perturb more dynamic characteristics of the photosynthetic system to
carry more information on drought stress, which can be perceived by the
wavelet information entropy. The wavelet information entropy of the
1st-level and the 2nd-level approximation component ChlF excited by
the PRBS signal was able to differentiate all drought stress levels for all
rice varieties and spinach. The low-frequency components of the ChlF
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Fig. 8. Spider plots of wavelet entropy of ChlF excited by the PRBS signal under different drought stress durations. (a) Spinach, (b) Hyou-518, (¢) Zhuliangyou-819,
(d) Xinliangyou-212, and (e) Hanyou-2. (AEi and DEi represent the wavelet entropy of the it (i=1, 2, ... 6) approximation and detail components, respectively.).

signal is greatly affected by drought stress. This provides evidence for
further research and development of ChlF sensing technique with PRBS
excitation. The measurement time of the PRBS-based ChlF is longer than
the OJIP induction measurement, which seems to be a disadvantage of
the developed method at this stage of the research. Robust identification
of drought stress, however, is more important than fast measurement
and dark-adaptation takes much longer time than the ChIF signal

measurement itself does in both scenarios. Thus, the relative longer
measurement time of PRBS-based ChlF should not be a major reason
impeding its field applications. With the development of machine
learning techniques, identification of abiotic stress and plant physio-
logical changes from ChlF measurement without dark-adaption is
desirable. The recent work on prediction of ChlF parameter Fv/Fm from
ChlF measurement without dark-adaption shows promises of the
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Table 6

Statistical analysis of wavelet entropy of rice ChlF under different drought levels
excited by the PRBS signal. Values indicated with different letters in a row are
significantly (p < 0.05) different from one another. The results are presented as
means =+ standard errors values for n = 120. I, II, III, and IV represent Hyou-518,
Zhuliangyou-819, Xinliangyou-212, and Hanyou-2. Dd1, Dd2, and Dd3 refer to
non-drought, drought stress for 3 days, and drought stress for 7 days, respec-
tively. AEi and DEi represent the wavelet entropy of the i (i = 1, 2, ... 6)
approximation and detail components, respectively.

Varieties Dd1 Dd2 Dd3 Varieties Dd1 Dd2 Dd3
& Scales & Scales
I-AE1 2.56 2.66 2.82 I-AE2 2.55 2.63 2.79
+ + + + + +
0.14c 0.17b 0.13a 0.13c 0.17b 0.14a
I-AE3 2.56 2.66 2.80 I-AE4 2.61 2.71 2.85
+ + + + + +
0.13c 0.17b 0.13a 0.13c 0.16b 0.13a
I-AE5 2.61 2.71 2.84 I-AE6 2.62 2.70 2.82
+ + + + + +
0.13¢c 0.16b 0.12a 0.11c 0.14b 0.11a
I-DE1 0.18 0.20 0.21 I-DE2 0.41 0.43 0.45
+ + + + + +
0.01c 0.01b 0.0la 0.03c 0.03b 0.02a
I-DE3 0.57 0.57 0.60 I-DE4 0.95 0.97 1.01
+ + + + + +
0.08¢c 0.04b 0.05a 0.05¢ 0.04b 0.07a
I-DE5 1.88 1.92 1.94 I-DE6 2.31 2.39 2.44
+ + + + + +
0.09¢ 0.07b 0.08a 0.09¢ 0.09b 0.07a
II-AE1 2.69 2.56 2.80 1I-AE2 2.68 2.53 2.78
+ + + + + +
0.14b 0.24c 0.14a 0.14b 0.24c 0.15a
1I-AE3 2.69 2.56 2.79 1I-AE4 2.73 2.61 2.83
+ + + + + +
0.14b 0.23c 0.14a 0.14b 0.22¢ 0.14a
1I-AE5 2.73 2.61 2.83 1I-AE6 2.73 2.63 2.81
+ + + + + +
0.14b 0.21c 0.14a 0.12b 0.18c 0.12a
1I-DE1 0.19 0.19 0.20 1I-DE2 0.43 0.41 0.45
+ + + + + +
0.01b 0.01b 0.01la 0.03b 0.04c 0.03a
II-DE3 0.57 0.58 0.60 II-DE4 0.97 0.99 1.01
+ + + + + +
0.03c 0.05b 0.04a 0.05¢ 0.06b 0.06a
II-DES 1.88 1.95 1.95 II-DE6 2.36 2.37 2.45
+ + + + + +
0.07b 0.07a 0.06a 0.08b 0.10b 0.06a
III-AE1 2.61 2.38 2.84 III-AE2 2.59 2.33 2.81
+ + + + + +
0.16b 0.32¢ 0.14a 0.15b 0.34c 0.14a
III-AE3 2.61 2.39 2.83 III-AE4 2.65 2.44 2.87
+ + + + + +
0.16b 0.30c 0.13a 0.16b 0.28¢ 0.13a
III-AES 2.65 2.47 2.87 III-AE6 2.66 2.52 2.85
+ + + + + +
0.16b 0.24c 0.13a 0.14b 0.19¢ 0.12a
I1II-DE1 0.19 0.19 0.21 11I-DE2 0.42 0.41 0.46
+ + + + + +
0.01b 0.01b 0.01la 0.03b 0.03b 0.02a
I1I-DE3 0.58 0.60 0.58 11I-DE4 0.98 1.03 1.01
+ + + + + +
0.07b 0.06a 0.03a 0.07b 0.10a 0.05a
III-DE5 1.92 2.00 1.92 III-DE6 2.36 2.38 2.46
+ + + + + +
0.08b 0.07a 0.08b 0.09b 0.09b 0.07a
IV-AE1 2.53 2.43 2.62 IV-AE2 2.53 2.41 2.60
+ + + + + +
0.12b 0.24c 0.26a 0.11b 0.24c 0.25a
IV-AE3 2.53 2.44 2.62 IV-AE5 2.57 2.50 2.67
+ + + + + +
0.12b 0.22¢ 0.25a 0.13b 0.21c 0.24a
IV-AE5 2.57 2.51 2.67 IV-AE6 2.59 2.55 2.67
+ + + + + +
0.13b 0.19¢ 0.22a 0.12b 0.17b 0.19a
IV-DE1 0.18 0.18 0.19 IV-DE2 0.40 0.40 0.43
+ + + + + +
0.01c 0.01b 0.0la 0.03b 0.05b 0.03a
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Table 6 (continued)

Varieties Dd1 Dd2 Dd3 Varieties Dd1 Dd2 Dd3

& Scales & Scales

IV-DE3 0.56 0.59 0.59 IV-DE4 0.95 0.98 1.00
+ + + + + +
0.05b 0.06a 0.06a 0.06¢ 0.09b 0.07a

IV-DE5 1.86 1.93 1.96 IV-DE6 2.29 2.33 2.39
+ + + + + +
0.10c 0.09b 0.09a 0.09¢ 0.12b 0.10a

machine learning-based methods (Xia et al., 2023). A prerequisite for
machine learning techniques to be effective is that the training and
testing data contain rich information, which is an advantage of the
proposed broadband-based ChlF signals. For field measurement with a
ChIF meter, switching between samples also takes a time for either a
narrow-band or broadband excitation. Development of ChlF sensing
networks to measure multiple samples at the same time can reduce
measurement time.

Sunlight-induced ChIF (SIF), a new vegetation remote sensing tech-
nology, has been developed rapidly in the past decade (Porcar-Castell
et al., 2014). However, there is a gap between current SIF analysis and
photosynthetic reactions. In reality, the SIF is induced by sunlight,
which changes from the morning to the evening in intensity and is a
broadband signal. Analysis of broadband-based ChIF signals through
machine learning methods or mechanism-based models at the leaf or the
canopy level will allow associating SIF at a large scale with photosyn-
thetic reactions under natural light more directly. The rich photosyn-
thetic reaction information carried by broadband-based ChIF will also
allow extraction of photosynthetic rates and plant physiological status
through either data-driven methods or mechanism-driven methods for
various plant phenotype analysis and stress sensing. In the future, more
research is needed to uncover the relationship between energy distri-
bution difference in the frequency domain and photosynthetic electron
transport rates or photosynthetic reactions.

6. Conclusion

In this work, the wavelet entropy of ChlF from PRBS excitation was
used to differentiate samples under drought stress of different durations.
While the features obtained from the OJIP-based ChlF features could not
consistently differentiate the different groups under investigation, the
wavelet entropy of PRBS-based ChIF differed significantly among
different drought durations for multiple plant types and varieties. The
results show that the wavelet entropy is a useful tool to analyze ChlF and
PRBS is an alternative signal to perturb the system to produce ChlF with
additional information. This work offers a new method to excite and
analyze ChlIF for plant abiotic stress sensing and plant phenomics
characterization.
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