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Abstract—MemComputing is a new model of computation that
exploits the non-equilibrium property—we call ‘“memory”—of
any physical system to respond to external perturbations by
keeping track of how it has reacted at previous times. Its digital,
scalable version maps a finite string of symbols into a finite string
of symbols. In this paper, I will discuss some analogies of the
operation of MemComputing machines—in general, and digital
in particular—with a few physical properties of the biological
brain. These analogies could be a source of inspiration to improve
on the design of these machines. In turn, they could suggest new
directions of study in (computational) neuroscience.

Index Terms—MemComputing, brain, neurons, instantons

I. INTRODUCTION

Although the complete understanding of how the biological
brain works is still far from complete, some of its features have
been experimentally determined. These include, for instance,
the main components and operation of a single neuron, the
establishment of short- and long-term memories [1], the long-
range correlations in the dynamics of clusters of neurons [2],
etc. Neuro-inspired computation, when implemented in solid-
state hardware [3] or emulated in artificial neural networks [4],
aims at reproducing and/or exploiting some of these features
for some tasks such as learning, association, pattern recogni-
tion, prediction, and so on.

Recently, a new model of computation has been introduced,
named MemComputing [5]-[7], which takes advantage of a
physical property shared by all physical systems: memory
(another name for “time non-locality”). This non-equilibrium
property means that when the state of a physical system is
perturbed, the perturbation affects the system’s state at a later
time [7], [8]. Of course, in some cases the memory decays so
fast that it is not experimentally detectable, or it is too small
to be technologically useful. However, there are situations
in which time non-locality is strong enough that it can be
exploited for computing and that is the main idea behind
MemComputing [7].

In this paper I will discuss some analogies MemComputing
machines (in general, and digital in particular) share with the
operation of the biological brain. Some of these analogies
are emergent phenomena of the dynamics of these machines.
Therefore, they could shed further light on the operation of
the biological brain itself.
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II. UNIVERSAL MEMCOMPUTING MACHINE

Let us start from the general definition of the universal
MemComputing machine (UMM) [6].! A UMM is defined
as the eight-tuple [6]

UMM:(M1A7P75727p07807F)' (1)

Here, M indicates the set of possible states of a single
memprocessor (the fundamental unit of a MemComputing
machine). The set P contains the arrays of pointers, p,, that
select the memprocessors called by the transition function
do. The set of indexes is indicated with S. X is the set of
initial states written by the input device on the computational
memory. pg € P is the initial array of pointers, sg is the initial
index «, and F' C M is the set of final states.
The set of transition functions, A, has elements

bo: M™\F x P — M™ x P2 x S, 2)

with a number m,, < oo of input memprocessors (read by the
transition function d,), and m,, < co output memprocessors
written by the same transition function.

I note first that it was shown in [6] that the mathematical
definition of the UMM encompasses also the description of
artificial neural networks (ANNSs). In other words, ANNs can
be viewed as a special case of MemComputing machines.
However, Egs. (1) and (2) allow us to go beyond this real-
ization and show additional similarities with the operation of
the biological brain. These are as follows.

A. Massively parallel architecture with combined information
processing and storage

Any transition function J, of a UMM simultaneously acts
on a set of memprocessors at once. This was named “intrinsic
parallelism” in [6] and it is fundamentally different from
the “standard parallelism” of our modern computers (or even
parallel Turing machines). Instead, this feature seems to belong
to the biological brain, or at the very least, its representation
as an artificial neural network [9].

In addition, by construction, memprocessors and their net-
work (computational memory) can process and store informa-
tion simultaneously. Although it is still not fully clear how the
brain performs these two tasks, compelling evidence points to
the collection of neurons and synapses in the brain as the main
agents able to concomitantly carry out these functions [1].

IThe term “universal” means that this machine is Turing-complete [6].
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B. Asynchronous computation

Asynchronous computation means that all or a large chunk
of processing units of a machine compute and exchange
information simultaneously, without the need to wait for a
predetermined period of time, such as the global clock period
in our modern computers. Asynchronous computation is a
main feature of the biological brain, and models of artificial
neural networks. It also follows from the general definition
of MemComputing machines; cf. Eqs. (1) and (2). These
machines do not require a global clock, and the different mem-
processors compute and exchange information simultaneously.

C. Information overhead

From the definition of a UMM as a collection of mem-
processors it is clear that the fopology of such a network
needs to be specified and represents a fundamental aspect
of these machines. This property has been called information
overhead [6] and it is a type of “data compression” which
is embedded in the machine at the outset of the computa-
tion, and does not vary during dynamics. Different types of
information overheads (topologies) can be assumed ranging
from polynomial to exponential [6]. It is indeed this property
that allows a UMM with exponential information overhead to
solve NP-complete problems with polynomial resources [6],
[7]. (Note that this statement does not imply that NP=P, since
MemComputing machines are not Turing machines.)

A similar concept has been discussed in the context of the
brain [9]. In fact, the brain appears to have a high level of
specificity, in both the types of neurons and their network
architecture (the connectome), even at a mesoscopic level. This
indicates that the brain physical topology is not completely
random. Rather, it shows some degree of specialization (in-
formation overhead) with important functional properties [1].

D. Functional polymorphism

The set A of transition functions (2) of a UMM may contain
more than a single element. This means that a UMM can,
in principle, compute different functions without modifying
the topology of the machine network, by simply applying the
appropriate input signals. This feature was named functional
polymorphism [6], and it is not available to our modern
computers (or Turing machines). A practical realization of
this concept was reported in [10]. The biological brain does
have this property to a certain degree. In fact, the brain can
perform a wide variety of tasks without changing substantially
the physical topology of its network, by simply responding to
external stimuli [9].

E. Analog vs. digital computation

MemComputing machines can be defined as both analog
and digital (or mixed) according to the structure of the set
M of possible states of a single memprocessor. If that set is
finite then the machine is digital. If it is a continuum or infinite
discrete set of states then the machine operates in the analog
regime. Finally, if it is some direct sum of the previous two

types of sets, then the machine operates in a mixed digital-
analog regime. Of course, only the digital MemComputing
machines (DMMs) are easily scalable. The brain, instead,
seems to operate mainly in the analog regime [1]. However,
it is interesting to note that also DMMSs showcase features
similar to the elementary building blocks of the brain (the
neurons) and their collective behavior. In the next Section, I
will expand on this analogy.

III. DIGITAL MEMCOMPUTING MACHINES (DMMS)

As already mentioned, if the set M of possible states of
a single memprocessor is finite, then the machine is digital.
The next question is then whether such a machine can be
realized in hardware. In order to answer this question, a new
set of gates, called self-organizing gates (SOGs) have been
introduced [11]. These are terminal agnostic gates able to
always satisfy their logical proposition irrespective of whether
the incoming signals are from the traditional input or the
traditional output. The key for their realization is the coupling
of the variables of the problem—DMMs are designed to
solve—with memory degrees of freedom.

A. Short- and long-term memories

To make this discussion more concrete, I report here the
dynamical equations representing a DMM designed to solve
for the ground state of a spin glass model Hamiltonian:

H= _Zjijsisj7 S; € {—1, 1}, 3)
i>j
where the interaction strength J;; (between the spin variables
s; placed on a the sites of a lattice) is random, and may involve
only nearest neighbor spins or any type of interaction between
spins, e.g., long range.

To design a DMM that solves such a problem, the spins
are first linearized (namely they acquire a continuous value
between —1 and +1), and then they are coupled to two types
of memory degrees of freedom (short- and long-term memory)
so that the phase space of the spin plus memory dynamics has
only saddle points and equilibria representing the solution of
the problem [12]. The full set of equations is then:

- S
S =« E Jiij — 26 E ,TZ-J-SZ',
J J

&5, =vCij — :Clija z;; € [0,1] — short-term memory, )
UCZ =0z — :vﬁj € [1, L] — long-term memory,
where Cj; = 3(Jijsis; +1) € [0,1], is a clause function,

and «, 3,7, 0,  are time-scale parameters, fixed for all system
sizes, and L is an arbitrary but finite upper limit for the long-
term memory (see [12] for the choice of these parameters
and for a thorough explanation of how these equation have
been derived). Note that Eqs. (4) can be compactly written as
x(t) = F(x(t)), with x the collection of all variables, and F’
the flow vector field (the right hand side of Egs. (4)).

The important point to make is that the short-term memory
contains information on the recent history of the system



dynamics, while the long-term memory contains information
on the entire history. The existence and coupling of these two
types of memories is an important ingredient to realize in
practice DMMs for the solution of combinatorial optimization
problems [7].

It is interesting to note that the human brain showcases also
two types of memories: long-term and short-term memory [1].
The short-term memory (which is believed to be mainly
located in the prefrontal cortex) is assumed to be a “working
memory”, namely it allows us to accomplish certain tasks that
may be forgotten within a relatively short time, without much
detriment. Instead, the long-term memory (which is located in
the hippocampus, and from there, it is supposedly distributed
to the cerebral cortex) is responsible for the storing of events
far in the past. It is presumably created by the reinforcement
of short memories. This is similar to how the DMMs (e.g.,
practically realized in Egs. (4)) operate: the long-term memory
is “reinforced” (via physical coupling) by the short-term one.

B. Instantons, action potentials, critical points and nodes of
Ranvier

DMMs find the solution of a given problem by traversing
specific trajectories in phase space, known as instantons [14],
[15]. Instantons in DMMs are families of trajectories (a
manifold) connecting a critical point (a point, x, where the
flow vector field, F, is zero) in phase space with another more
stable critical point [7]. Instantons are sudden and relatively
short bursts (avalanches) of the variables around the ground
potential of the system.

Once the first instanton is initiated, it propagates the excita-
tion to the next instanton, and so forth until the system reaches
an equilibrium (if it exists). The critical points in between
two successive instantons act as some sort of “regenerative”
centers (repeaters) of the signal that propagates in the phase
space, since at a critical point the system spends enough time
to “decide” on the next instanton (trajectory) to take.

The mechanism I just described is very much reminiscent
of how action potentials (electrical polarization signals) prop-
agate in myelinated axons. Action potentials, like instantons,
quickly “rise and fall” around the resting potential state of the
axon membrane. However, in myelinated axons they propagate
in a saltatory fashion from a node of Ranvier to the next [1].

The nodes of Ranvier are myelin-sheath gaps along the axon
where exchange of ions between the axon membrane and the
environment can occur, so that the next action potential can
be generated and travel along the myelinated part of the axon.
This way the action potential can “jump” from one node of
Ranvier to the next, allowing for a faster conduction of the
signal. The critical points in the phase space of DMMs are then
the equivalent of the nodes of Ranvier in myelinated axons.

C. Long-range order

An interesting physical property of the animal brain is the
observed scale-free behavior in the firing of neurons, even
in the absence of external stimuli [2]. This is an emergent

property of the collection of neurons, and it has been demon-
strated in several experiments, although there is still much
debate regarding its origin [2].

For instance, experiments have shown that cortical neurons,
when deposited on a grid of electrodes, fire collectively, and
the size, S, of the neuronal avalanches (how many neurons
fire together) follows a power-law distribution, S~7, with 7
close to 3/2.

This is similar to the critical Borel distribution of the size of
the variable avalanches (instantons) found in DMMs solving
combinatorial optimization problems [13]. In fact, by means
of a mean-field theory it was shown that the distribution of the
size of the avalanches in DMMS is also a power-law S~3/2,
which is confirmed by numerical experiments. Together with
the analogy between instantons and action potentials, this
emergent property of both DMMs and the brain makes the
former an interesting test bed to explore phenomena that could
have implications on the latter.

D. Robustness against noise vs. fault tolerance

Since DMMs employ objects of topological nature to com-
pute (instantons) they are robust against small perturbations
and noise whose strength is not enough to affect the topologi-
cal structure of the phase space. However, if the architecture of
the network of memprocessors is changed (by, e.g., changing
even a single SOG in the circuit), the DMM would not
solve the original combinatorial optimization problem it was
designed for. Rather, it would attempt to solve this “new”
problem. In other words, while DMMs are robust against noise
and small perturbations, they are not fault tolerant.

The brain instead seems to have both properties. In fact, it is
known that neurons in the brain both die off and are generated
continuously [1]. It is then obvious that the architecture
(physical topology) of the network of neurons is not fixed in
time. Despite these changes (provided they are not substantial),
the brain continues to function as expected, namely it is both
robust against noise/perturbations (the firing of single neurons
in the brain still occurs) as well as topological changes: it is
fault tolerant to a high degree.

This fault tolerance could be due to the presence of time
non-locality (memory) in synapses and the fact that the brain,
unlike a DMM, is not attempting to solve a specific combi-
natorial optimization problem whose Boolean (or algebraic)
expression is well defined. Time non-locality is a feature that
allows “re-routing” of information “on the fly”, despite failure
of single units, as it was demonstrated in networks of resistive
memories [16]. That particular network was designed for the
solution of the shortest-path problem. Memory (time non-
locality) would still promote self organization of the network
into the shortest possible path or paths, in the presence of
defects in the network (created by eliminating some resistive
memories).

All these results seem to suggest that the more specialized
the physical architecture of a network is (as for DMMs
designed for specific combinatorial optimization problems),
the less robust it is to topological changes. Indeed, our brains



can tackle a wide variety of tasks, but are not particularly good
at solving, e.g., combinatorial optimization problems.

This fact may also be related to recent research on autism
spectrum disorder (ASD). For instance, some experimental
studies, employing neuro-imaging techniques, have shown
structural differences in several brain regions in people with
ASD compared with individuals without ASD [17]. These dif-
ferences may be the reason children with ASD may sometimes
show some mathematical skills outperforming non-autistic
peers, while struggling in some other tasks. It may very well
be that the brain structure of people with ASD is topologically
more constrained than that of the general population.

IV. CONCLUSIONS

In summary, I have briefly outlined the brain-like features
of MemComputing machines. Of course, these similarities do
not imply that MemComputing machines are brain-like. They
simply indicate that some of their dynamical properties are
also observed in the operation of the biological brain.

Of particular note is that some of these properties are
emerging phenonema, namely they emerge from the collective
dynamics of the units making up these machines. For instance,
long-range order in DMMs—arguably the most important
property for the solution of hard combinatorial optimization
problems—is a feature that originates from the time non-
local response of their memprocessors [7]. In fact, DMMs
enter this long-range ordered state “naturally” without tuning
any parameter during dynamics. This realization may help
understand the supposed critical dynamics of the brain, which
is still not fully understood. Work along this direction could
then be beneficial in the field of (computational) neuroscience.
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