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Abstract—MemComputing is a new model of computation that
exploits the non-equilibrium property—we call “memory”—of
any physical system to respond to external perturbations by
keeping track of how it has reacted at previous times. Its digital,
scalable version maps a finite string of symbols into a finite string
of symbols. In this paper, I will discuss some analogies of the
operation of MemComputing machines—in general, and digital
in particular—with a few physical properties of the biological
brain. These analogies could be a source of inspiration to improve
on the design of these machines. In turn, they could suggest new
directions of study in (computational) neuroscience.

Index Terms—MemComputing, brain, neurons, instantons

I. INTRODUCTION

Although the complete understanding of how the biological

brain works is still far from complete, some of its features have

been experimentally determined. These include, for instance,

the main components and operation of a single neuron, the

establishment of short- and long-term memories [1], the long-

range correlations in the dynamics of clusters of neurons [2],

etc. Neuro-inspired computation, when implemented in solid-

state hardware [3] or emulated in artificial neural networks [4],

aims at reproducing and/or exploiting some of these features

for some tasks such as learning, association, pattern recogni-

tion, prediction, and so on.

Recently, a new model of computation has been introduced,

named MemComputing [5]–[7], which takes advantage of a

physical property shared by all physical systems: memory

(another name for “time non-locality”). This non-equilibrium

property means that when the state of a physical system is

perturbed, the perturbation affects the system’s state at a later

time [7], [8]. Of course, in some cases the memory decays so

fast that it is not experimentally detectable, or it is too small

to be technologically useful. However, there are situations

in which time non-locality is strong enough that it can be

exploited for computing and that is the main idea behind

MemComputing [7].

In this paper I will discuss some analogies MemComputing

machines (in general, and digital in particular) share with the

operation of the biological brain. Some of these analogies

are emergent phenomena of the dynamics of these machines.

Therefore, they could shed further light on the operation of

the biological brain itself.

This work was supported by the National Science Foundation under Grant
ECCS-2229880.

II. UNIVERSAL MEMCOMPUTING MACHINE

Let us start from the general definition of the universal

MemComputing machine (UMM) [6].1 A UMM is defined

as the eight-tuple [6]

UMM = (M,∆,P , S,Σ, p0, s0, F ) . (1)

Here, M indicates the set of possible states of a single

memprocessor (the fundamental unit of a MemComputing

machine). The set P contains the arrays of pointers, pα, that

select the memprocessors called by the transition function

δα. The set of indexes is indicated with S. Σ is the set of

initial states written by the input device on the computational

memory. p0 ∈ P is the initial array of pointers, s0 is the initial

index α, and F ⊆ M is the set of final states.

The set of transition functions, ∆, has elements

δα : Mmα\F × P → Mm′

α × P2 × S , (2)

with a number mα < ∞ of input memprocessors (read by the

transition function δα), and m′

α < ∞ output memprocessors

written by the same transition function.

I note first that it was shown in [6] that the mathematical

definition of the UMM encompasses also the description of

artificial neural networks (ANNs). In other words, ANNs can

be viewed as a special case of MemComputing machines.

However, Eqs. (1) and (2) allow us to go beyond this real-

ization and show additional similarities with the operation of

the biological brain. These are as follows.

A. Massively parallel architecture with combined information

processing and storage

Any transition function δα of a UMM simultaneously acts

on a set of memprocessors at once. This was named “intrinsic

parallelism” in [6] and it is fundamentally different from

the “standard parallelism” of our modern computers (or even

parallel Turing machines). Instead, this feature seems to belong

to the biological brain, or at the very least, its representation

as an artificial neural network [9].

In addition, by construction, memprocessors and their net-

work (computational memory) can process and store informa-

tion simultaneously. Although it is still not fully clear how the

brain performs these two tasks, compelling evidence points to

the collection of neurons and synapses in the brain as the main

agents able to concomitantly carry out these functions [1].

1The term “universal” means that this machine is Turing-complete [6].© 2023 IEEE
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B. Asynchronous computation

Asynchronous computation means that all or a large chunk

of processing units of a machine compute and exchange

information simultaneously, without the need to wait for a

predetermined period of time, such as the global clock period

in our modern computers. Asynchronous computation is a

main feature of the biological brain, and models of artificial

neural networks. It also follows from the general definition

of MemComputing machines; cf. Eqs. (1) and (2). These

machines do not require a global clock, and the different mem-

processors compute and exchange information simultaneously.

C. Information overhead

From the definition of a UMM as a collection of mem-

processors it is clear that the topology of such a network

needs to be specified and represents a fundamental aspect

of these machines. This property has been called information

overhead [6] and it is a type of “data compression” which

is embedded in the machine at the outset of the computa-

tion, and does not vary during dynamics. Different types of

information overheads (topologies) can be assumed ranging

from polynomial to exponential [6]. It is indeed this property

that allows a UMM with exponential information overhead to

solve NP-complete problems with polynomial resources [6],

[7]. (Note that this statement does not imply that NP=P, since

MemComputing machines are not Turing machines.)

A similar concept has been discussed in the context of the

brain [9]. In fact, the brain appears to have a high level of

specificity, in both the types of neurons and their network

architecture (the connectome), even at a mesoscopic level. This

indicates that the brain physical topology is not completely

random. Rather, it shows some degree of specialization (in-

formation overhead) with important functional properties [1].

D. Functional polymorphism

The set ∆ of transition functions (2) of a UMM may contain

more than a single element. This means that a UMM can,

in principle, compute different functions without modifying

the topology of the machine network, by simply applying the

appropriate input signals. This feature was named functional

polymorphism [6], and it is not available to our modern

computers (or Turing machines). A practical realization of

this concept was reported in [10]. The biological brain does

have this property to a certain degree. In fact, the brain can

perform a wide variety of tasks without changing substantially

the physical topology of its network, by simply responding to

external stimuli [9].

E. Analog vs. digital computation

MemComputing machines can be defined as both analog

and digital (or mixed) according to the structure of the set

M of possible states of a single memprocessor. If that set is

finite then the machine is digital. If it is a continuum or infinite

discrete set of states then the machine operates in the analog

regime. Finally, if it is some direct sum of the previous two

types of sets, then the machine operates in a mixed digital-

analog regime. Of course, only the digital MemComputing

machines (DMMs) are easily scalable. The brain, instead,

seems to operate mainly in the analog regime [1]. However,

it is interesting to note that also DMMs showcase features

similar to the elementary building blocks of the brain (the

neurons) and their collective behavior. In the next Section, I

will expand on this analogy.

III. DIGITAL MEMCOMPUTING MACHINES (DMMS)

As already mentioned, if the set M of possible states of

a single memprocessor is finite, then the machine is digital.

The next question is then whether such a machine can be

realized in hardware. In order to answer this question, a new

set of gates, called self-organizing gates (SOGs) have been

introduced [11]. These are terminal agnostic gates able to

always satisfy their logical proposition irrespective of whether

the incoming signals are from the traditional input or the

traditional output. The key for their realization is the coupling

of the variables of the problem—DMMs are designed to

solve—with memory degrees of freedom.

A. Short- and long-term memories

To make this discussion more concrete, I report here the

dynamical equations representing a DMM designed to solve

for the ground state of a spin glass model Hamiltonian:

H = −
∑

i>j

Jijsisj , si ∈ {−1, 1}, (3)

where the interaction strength Jij (between the spin variables

si placed on a the sites of a lattice) is random, and may involve

only nearest neighbor spins or any type of interaction between

spins, e.g., long range.

To design a DMM that solves such a problem, the spins

are first linearized (namely they acquire a continuous value

between −1 and +1), and then they are coupled to two types

of memory degrees of freedom (short- and long-term memory)

so that the phase space of the spin plus memory dynamics has

only saddle points and equilibria representing the solution of

the problem [12]. The full set of equations is then:

ṡi = α
∑

j

Jijsj − 2β
∑

j

xs
ijsi,

ẋs
ij = γCij − xl

ij , x
s
ij ∈ [0, 1] → short-term memory,

ẋl
ij = δxs

ij − ζ, xl
ij ∈ [1, L] → long-term memory,

(4)

where Cij = 1

2
(Jijsisj + 1) ∈ [0, 1], is a clause function,

and α, β, γ, δ, ζ are time-scale parameters, fixed for all system

sizes, and L is an arbitrary but finite upper limit for the long-

term memory (see [12] for the choice of these parameters

and for a thorough explanation of how these equation have

been derived). Note that Eqs. (4) can be compactly written as

ẋ(t) = F (x(t)), with x the collection of all variables, and F
the flow vector field (the right hand side of Eqs. (4)).

The important point to make is that the short-term memory

contains information on the recent history of the system



dynamics, while the long-term memory contains information

on the entire history. The existence and coupling of these two

types of memories is an important ingredient to realize in

practice DMMs for the solution of combinatorial optimization

problems [7].

It is interesting to note that the human brain showcases also

two types of memories: long-term and short-term memory [1].

The short-term memory (which is believed to be mainly

located in the prefrontal cortex) is assumed to be a “working

memory”, namely it allows us to accomplish certain tasks that

may be forgotten within a relatively short time, without much

detriment. Instead, the long-term memory (which is located in

the hippocampus, and from there, it is supposedly distributed

to the cerebral cortex) is responsible for the storing of events

far in the past. It is presumably created by the reinforcement

of short memories. This is similar to how the DMMs (e.g.,

practically realized in Eqs. (4)) operate: the long-term memory

is “reinforced” (via physical coupling) by the short-term one.

B. Instantons, action potentials, critical points and nodes of

Ranvier

DMMs find the solution of a given problem by traversing

specific trajectories in phase space, known as instantons [14],

[15]. Instantons in DMMs are families of trajectories (a

manifold) connecting a critical point (a point, x, where the

flow vector field, F , is zero) in phase space with another more

stable critical point [7]. Instantons are sudden and relatively

short bursts (avalanches) of the variables around the ground

potential of the system.

Once the first instanton is initiated, it propagates the excita-

tion to the next instanton, and so forth until the system reaches

an equilibrium (if it exists). The critical points in between

two successive instantons act as some sort of “regenerative”

centers (repeaters) of the signal that propagates in the phase

space, since at a critical point the system spends enough time

to “decide” on the next instanton (trajectory) to take.

The mechanism I just described is very much reminiscent

of how action potentials (electrical polarization signals) prop-

agate in myelinated axons. Action potentials, like instantons,

quickly “rise and fall” around the resting potential state of the

axon membrane. However, in myelinated axons they propagate

in a saltatory fashion from a node of Ranvier to the next [1].

The nodes of Ranvier are myelin-sheath gaps along the axon

where exchange of ions between the axon membrane and the

environment can occur, so that the next action potential can

be generated and travel along the myelinated part of the axon.

This way the action potential can “jump” from one node of

Ranvier to the next, allowing for a faster conduction of the

signal. The critical points in the phase space of DMMs are then

the equivalent of the nodes of Ranvier in myelinated axons.

C. Long-range order

An interesting physical property of the animal brain is the

observed scale-free behavior in the firing of neurons, even

in the absence of external stimuli [2]. This is an emergent

property of the collection of neurons, and it has been demon-

strated in several experiments, although there is still much

debate regarding its origin [2].

For instance, experiments have shown that cortical neurons,

when deposited on a grid of electrodes, fire collectively, and

the size, S, of the neuronal avalanches (how many neurons

fire together) follows a power-law distribution, S−τ , with τ
close to 3/2.

This is similar to the critical Borel distribution of the size of

the variable avalanches (instantons) found in DMMs solving

combinatorial optimization problems [13]. In fact, by means

of a mean-field theory it was shown that the distribution of the

size of the avalanches in DMMS is also a power-law S−3/2,

which is confirmed by numerical experiments. Together with

the analogy between instantons and action potentials, this

emergent property of both DMMs and the brain makes the

former an interesting test bed to explore phenomena that could

have implications on the latter.

D. Robustness against noise vs. fault tolerance

Since DMMs employ objects of topological nature to com-

pute (instantons) they are robust against small perturbations

and noise whose strength is not enough to affect the topologi-

cal structure of the phase space. However, if the architecture of

the network of memprocessors is changed (by, e.g., changing

even a single SOG in the circuit), the DMM would not

solve the original combinatorial optimization problem it was

designed for. Rather, it would attempt to solve this “new”

problem. In other words, while DMMs are robust against noise

and small perturbations, they are not fault tolerant.

The brain instead seems to have both properties. In fact, it is

known that neurons in the brain both die off and are generated

continuously [1]. It is then obvious that the architecture

(physical topology) of the network of neurons is not fixed in

time. Despite these changes (provided they are not substantial),

the brain continues to function as expected, namely it is both

robust against noise/perturbations (the firing of single neurons

in the brain still occurs) as well as topological changes: it is

fault tolerant to a high degree.

This fault tolerance could be due to the presence of time

non-locality (memory) in synapses and the fact that the brain,

unlike a DMM, is not attempting to solve a specific combi-

natorial optimization problem whose Boolean (or algebraic)

expression is well defined. Time non-locality is a feature that

allows “re-routing” of information “on the fly”, despite failure

of single units, as it was demonstrated in networks of resistive

memories [16]. That particular network was designed for the

solution of the shortest-path problem. Memory (time non-

locality) would still promote self organization of the network

into the shortest possible path or paths, in the presence of

defects in the network (created by eliminating some resistive

memories).

All these results seem to suggest that the more specialized

the physical architecture of a network is (as for DMMs

designed for specific combinatorial optimization problems),

the less robust it is to topological changes. Indeed, our brains



can tackle a wide variety of tasks, but are not particularly good

at solving, e.g., combinatorial optimization problems.

This fact may also be related to recent research on autism

spectrum disorder (ASD). For instance, some experimental

studies, employing neuro-imaging techniques, have shown

structural differences in several brain regions in people with

ASD compared with individuals without ASD [17]. These dif-

ferences may be the reason children with ASD may sometimes

show some mathematical skills outperforming non-autistic

peers, while struggling in some other tasks. It may very well

be that the brain structure of people with ASD is topologically

more constrained than that of the general population.

IV. CONCLUSIONS

In summary, I have briefly outlined the brain-like features

of MemComputing machines. Of course, these similarities do

not imply that MemComputing machines are brain-like. They

simply indicate that some of their dynamical properties are

also observed in the operation of the biological brain.

Of particular note is that some of these properties are

emerging phenonema, namely they emerge from the collective

dynamics of the units making up these machines. For instance,

long-range order in DMMs—arguably the most important

property for the solution of hard combinatorial optimization

problems—is a feature that originates from the time non-

local response of their memprocessors [7]. In fact, DMMs

enter this long-range ordered state “naturally” without tuning

any parameter during dynamics. This realization may help

understand the supposed critical dynamics of the brain, which

is still not fully understood. Work along this direction could

then be beneficial in the field of (computational) neuroscience.
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