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Abstract

In the past decade billions of user passwords have been exposed to the dangerous threat of offline
password cracking attacks. An offline attacker who has stolen the cryptographic hash of a user’s
password can check as many password guesses as s/he likes limited only by the resources that
s/he is willing to invest to crack the password. Pepper and key-stretching are two techniques that
have been proposed to deter an offline attacker by increasing guessing costs. Pepper ensures that
the cost of rejecting an incorrect password guess is higher than the (expected) cost of verifying a
correct password guess. This is useful because most of the offline attacker’s guesses will be in-
correct. Unfortunately, as we observe the traditional peppering defense seems to be incompatible
with modern memory hard key-stretching algorithms such as Argon2 or Scrypt. We introduce
an alternative to pepper which we call Cost-Asymmetric Memory Hard Password Authentication
which benefits from the same cost-asymmetry as the classical peppering defense i.e., the cost of
rejecting an incorrect password guess is larger than the expected cost to authenticate a correct
password guess. When configured properly we prove that our mechanism can only reduce the
percentage of user passwords that are cracked by a rational offline attacker whose goal is to max-
imize (expected) profit i.e., the total value of cracked passwords minus the total guessing costs.
We evaluate the effectiveness of our mechanism on empirical password datasets against a rational
offline attacker. Our empirical analysis shows that our mechanism can reduce the percentage of
user passwords that are cracked by a rational attacker by up to 10%.

Keywords: Memory Hard Functions, Password Authentication, Password Offline Attack,
Stackelberg Game.

1. Introduction

In the past decade data-breaches have exposed billions of user passwords to the dangerous
threat of offline password cracking. An offline attacker has stolen the cryptographic hash hu =

H(pwu, saltu) of a target user (u) and can validate as many password guesses as s/he likes without
getting locked out i.e., given hu and saltu1 the attacker can check if pwu = pw′ by computing

Email addresses: bai104@purdue.edu (Wenjie Bai), jblocki@purdue.edu (Jeremiah Blocki),
mameriek@purdue.edu (Mohammad Hassan Ameri)

1The salt value protects against pre-computation attacks such as rainbow tables and ensures that the attacker must
crack each individual password separately. For example, even if Alice and Bob select the same password pwA = pwB
their password hashes will almost certainly be different i.e., hA = H(pwA, saltA) , H(pwB, saltB) = hB due to the
different choice of salt values and collision resistance of the cryptographic hash function H.
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h′ = H(pw′, saltu) and comparing the hash value with hu. Despite all of the security problems
text passwords remain entrenched as the dominant form of authentication online and are unlikely
to be replaced in the near future [1]. Thus, it is imperative to develop tools to deter offline
attackers.

An offline attacker is limited only by the resources s/he is willing to invest in cracking the
password and a rational attacker will fix a guessing budget to optimally balance guessing costs
with the expected value of the cracked passwords. Key-Stretching functions intentionally in-
crease the cost of the hash function H to ensure that an offline attack is as expensive as pos-
sible. Hash iteration is a simple technique to increase guessing costs i.e., instead of storing
(u, saltu, hu = H(pwu, saltu)) the authentication server would store (u, saltu, hu = Ht(pwu, saltu))
where Hi+1(x) := H(Hi(x)) and H1(x) := H(x). Hash iteration is the traditional key-stretching
method which is used by password hashing algorithms such as PBKDF2 [2] and BCRYPT [3].
Intuitively, the cost of evaluating a function like PBKDF2 or BCRYPT scales linearly with the
hash-iteration parameter t which, in turn, is directly correlated with authentication delay. Cryp-
tocurrencies have hastened the development of Application Specific Integrated Circuits (ASICs)
to rapidly evaluate cryptographic hash functions such as SHA2 and SHA3 since mining often in-
volves repeated evaluation of a hash function H(·). In theory an offline attacker could use ASICs
to substantially reduce the cost of checking password guesses. In fact, Blocki et al. [4] argued
that functions like BCRYPT or PBKDF2 cannot provide adequate protection against an offline
attacker without introducing an unacceptable authentication delay e.g., 2 minutes.

Memory-Hard Functions (MHFs) [5] have been introduced to address the short-comings of
hash-iteration based key-stretching algorithms like BCRYPT and PBKDF2. Candidate MHFs
include SCRYPT [5], Argon2 (which was declared as the winner of Password Hashing Competi-
tion [6] in 2015) and DRSample [7]. Intuitively, a password hash function is memory hard if any
algorithm evaluating this function must lock up large quantities of memory for the duration of
computation. One advantage of this approach is that RAM is an expensive resource even on an
ASIC leading to egalitarian costs i.e., the attacker cannot substantially reduce the cost of evalu-
ating the hash function using customized hardware. The second advantage is that the Area-Time
cost associated with a memory hard function can scale quadratically in the running time param-
eter t. Intuitively, the honest party can evaluate the hash function MHF(·; t) in time t, while any
attacker evaluating the function must lock up t blocks of memory for t steps i.e., the Area-Time
cost is t2. The running time parameter t is constrained by user patience as we wish to avoid intro-
ducing an unacceptably long delay while the honest authentication server evaluates the password
hash function during user authentication. Thus, quadratic cost scaling is desirable as it allows an
authentication server to increase password guessing costs rapidly without necessarily introducing
an unacceptable authentication delay.

Peppering [8] is an alternative defense against an offline password attacker. Intuitively, the
idea is for a server to store (u, saltu, hu = H(pwu, saltu, xu)). Unlike the random salt value saltu,
the random pepper value xu ∈ [1, xmax] is not stored on the authentication server. Thus, to verify
a password guess pw′ the authentication server must compute h1 = H(pw′, saltu, 1), . . . , hxmax =

H(pw′, saltu, xmax). If pw′ = pwu then we will have hxu = hu and authentication will succeed.
On the other hand, if pw′ , pwu then we will have hi , hu for all i ≤ xmax and authentication
will fail. In the first case (correct login) the authentication server will not need to compute
hi = H(pw′, saltu, i) for any i > xu, while in the second case (incorrect guess) the authentication
server will need to evaluate hi for every i ≤ xmax. Thus, the expected cost to verify a correct
password guess is lower than the cost of rejecting an incorrect password guess. This can be
a desirable property as a password attacker will spend most of his time eliminating incorrect
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password guesses, while most of the login attempts sent to the authentication server will be
correct.

A natural question is whether or not we can combine peppering with Memory Hard Functions
to obtain both benefits: quadratic cost scaling and cost-asymmetry.

Can we design a password authentication mechanism that incorporates cost-asymmetry
into ASIC resistant Memory Hard Functions while having the benefits of fully quadratic
cost scaling under the constraints of authentication delay and expected workload?

Naive Approach: At first glance it seems trivial to integrate pepper with a memory hard function
MHF(·) e.g., when a new user u registers with password pwu we can simply pick our random pep-
per xu ∈ [1, xmax], salt saltu, compute hu = MHF(pwu, saltu, xu; t) and store the tuple (u, saltu, hu).
Unfortunately, the solution above is overly simplistic. How should the parameters be set? We
first observe that the authentication delay for our above solution can be as large as t ·xmax since we
may need to compute MHF(pw, saltu, x; t) for every value of x ∈ [1, xmax] and this computation
must be carried out sequentially to reap the cost-asymmetry benefits of pepper (if all pepper val-
ues were tried out in parallel, the hash cost paid by the both authentication server and the attacker
would be the equally expensive, which defeats the purpose of using pepper and incurs excessive
computational workload for the server). Similarly, the Area-Time cost for the attacker to evaluate
MHF(pw, saltu, x; t) for every value of x ∈ [1, xmax] would scale with t2 · xmax. This may seem
reasonable at first glance, but what if the authentication server had not used pepper and instead
stored hu = MHF(pwu, saltu; t · xmax) using the running time parameter t′ = t · xmax? In this case
the authentication delay is identical, but the attacker’s Area-Time cost would be t′2 = t2 · x2

max
— an increase of xmax in comparison to the naive solution. Thus, the naive approach to integrate
pepper and memory hard functions loses much of the benefit of quadratic scaling.
Halting Puzzles: Boyen [9] introduced the notion of a halting puzzle where the “pepper” value
is replaced with a random running time parameter. Boyen proposed to have the user select
a running time parameter tu in addition to their password pwu. The system would then pick
a random salt value saltu and generate the hash value hu = MHF(pwu, saltu; tu). The system
would store the tuple (u, saltu, hu), but running time time parameter tu would be discarded2. All
memory hard functions MHF(w; t) we are aware of generate a stream of data-labels L1, . . . , Lt

where Li = MHF(w; i) and Li+1 can be computed quickly once the prior labels L1, . . . , Li are all
stored in memory e.g., we might have Li+1 = H(Li, L j) where j < i and H is the underlying
cryptographic hash function. Thus, whenever the user attempts to login with a password pw′u the
system can simply start computing MHF(pw′u, saltu;∞) to generate a stream of labels L′1, L

′
2, . . .

and immediately accept if the server finds some label i ≤ t which matches the password hash
i.e., Li = hu. Observe that whenever the user enters the correct password pwu the system will
be able to halt after tu iterations. By contrast, if the user enters the wrong password pw′u ,
pwu the system will effectively enter an “infinite loop" until the user manually terminates the
process. Thus, in the remote-authentication setting it is necessary to impose an upper-bound
tmax on the running time parameter tu to avoid denial-of-service attacks when users mistakenly
(or maliciously) enter the wrong password. Now the only way to definitely reject an incorrect
password pw′u is to finish computing MHF(pw′u, saltu; tmax). The authentication delay is at most
tmax and it seems like the attacker’s area-time cost for each inccorect password guess will scale

2Boyen [9] was originally motivated by applications such as hard-drive encryption. In this application, the final value
hu would be used to derive a symmetric encryption key ku and would not be stored directly on the authentication server.
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quadratically i.e., t2
max. Thus, the solution ostensibly seems to benefit from quadratic cost scaling

and cost-asymmetry.
However, we observe that an attacker might not choose to compute the entire memory hard

function MHF(pw′, saltu; tmax) for each password guess. For example, suppose that the running
time parameter tu is selected uniformly at random in the range [1, tmax], but for each password
guess pw′ in the attacker’s dictionary the attacker only computes the first tmax

3 labels, i.e., com-
pute MHF(pw′, saltu; tmax/3) comparing the stolen hash hu with each of the first tmax/3 labels.
The area-time cost to evaluate MHF(pw′, saltu; tmax/3) would decrease by a factor of 9 in com-
parison to the area-time cost to evaluate MHF(pw′, saltu, tmax) i.e., t3

max/3
2 vs t2

max. By contrast,
the attacker’s success rate only diminishes by a factor of 1/3 i.e., Pr[tu ∈ [1, tmax/3]] = 1/3.
Motivated by this observation there are several natural questions to ask. First, can we model
how a rational offline attacker would adapt his approach to deal with halting puzzles? Second,
if tu is picked uniformly at random is it possible that the solution could have an adverse impact
i.e., could we unintentionally increase the number of passwords cracked by a rational (profit-
maximizing) attacker? Finally, can we find the optimal distribution over tu which minimizes the
success rate of a rational offline attacker subject to constraints on (amortized) server workload
and maximum authentication delay?

1.1. Our contributions
We introduce Cost-Asymmetric Memory Hard Password Hashing, an extension of Boyen’s

halting puzzles which can only decrease the number of passwords cracked by a rational password
cracking attacker. Our key modification is to introduce cost-even breakpoints as random running
time parameters i.e., we fix m values t1 ≤ . . . ≤ tm = t such that t2

m = t2
i (m/i) for all 1 ≤ i < m.

In other words, we define βi := ti
t1

and set βi =
√

i for cost even points. Now instead of selecting
xu randomly in the range [1, t] (time-even breakpoints) we pick xu ∈ {t1, . . . , tm}. We can either
select xu ∈ {t1, . . . , tm} uniformly at random or optimize the distribution in an attempt to minimize
the expected number of passwords that the adversary breaks. Then the authentication server
computes hu = MHF(pwu, saltu; xu) and stores the tuple (u, saltu, hu) as the record for user u.

We adapt the Stackelberg game theoretic framework of Blocki and Datta [10] to model the
behavior of a rational password cracking attacker when the authentication server uses Cost-
Asymmetric Memory Hard Password Hashing. In this model the attacker obtains a reward v
for every cracked password and will choose a strategy which maximizes its expected utility —
expected reward minus expected guessing costs. One of the main challenges in our setting is
that the attacker’s action space is exponential in the size of the support of the password distri-
bution. For each password pw the attacker can chose to ignore the password, partially check
the password or completely check the password. We design efficient algorithms to find a locally
optimal strategy for the attacker and identify conditions under which the strategy is also a global
optimum (these conditions are satisfied in almost all of our empirical experiments). We can then
use black-box optimization to search for a distribution over xu which minimizes the number of
passwords cracked by our utility maximizing attacker.

When xu ∈ {t1, . . . , tm} is selected uniformly at random we prove that cost-even breakpoints
will only reduce the number of passwords cracked by a rational attacker. By contrast, we provide
examples where time-even breakpoints increases the number of passwords that are cracked —
some of these examples are based on empirical password distributions.

We empirically evaluate the effectiveness of our mechanism with 8 large password datasets.
Our analysis shows that we can reduce the fraction of cracked passwords by up to 10% by adopt-
ing cost-asymmetric memory hard password hashing with cost-even breakpoints sampled from
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uniform distribution. In addition, our analysis demonstrates that the benefit of optimizing the
distribution over xu is marginal. Optimizing the distribution over the breakpoints t1, . . . , tm re-
quires us to accurately estimate many key parameters such as the attacker’s value v for cracked
passwords and the probability of each password in the user password distribution. If our esti-
mates are inaccurate then we could unintentionally increase the number of cracked passwords.
Thus, we recommend instantiating Cost-Asymmetric Memory Hard Password Hashing with the
uniform distribution over our cost-even breakpoints t1, . . . , tm as a prior independent password
authentication mechanism.

1.2. Related work

Offline password attacks have been a major security concern for decades [11]. The risks are
amplified by the well documented human tendency to pick low-entropy passwords [12] which
are easier for an attacker to crack. Efforts to persuade (or force) user’s to pick stronger passwords
have shown mixed results [13]. For example, prior work has found that password strength meters
often fail to persuade users to pick stronger passwords [14, 15]. Other websites impose stringent
guidelines on the passwords that users can select (e.g., the password must contain number(s),
uppercase letters, lowercase letters and/or special symbols). However, empirical studies have
shown that these policies often incur undesirable usability costs [16, 17, 18, 19], and in some
cases actually lead to users selecting weaker passwords [20, 21]. Thus, there is still an urgent
need to protect low-entropy passwords against offline brute-force attackers.

Memory-Hard Functions (MHF) are a key cryptographic primitive for protecting lower en-
tropy secrets against offline attacks. Evaluation of MHF requires large amount of memory in ad-
dition to longer computation time, making parallel computation and customized hardware futile
to speed up computation process. Candidate MHFs include SCRYPT [5], Balloon hashing [22],
and Argon2 [23] (the winner of the Password Hashing Competition [6]). MHFs can be classified
into two distinct categories or modes of operation— data-independent MHFs (iMHFs) and data-
dependent MHFs(dMHFs) (along with the hybrid idMHF, which runs in both modes). dMHFs
like SCRYPT are maximally memory hard [24], but they have the issue of possible side-channel
attacks. iMHFs, on the other hand, can resist side-channel attacks but the aAT (amortized Area
Time) complexity is at mostO(N2 log log N/ log N) [25] — a combinatorial graph property called
depth-robustness is both necessary [25] and sufficient [26] for constructing iMHFs with large
aAT complexity. Ameri et al. [27] introduced the notion of a computationally data-independent
MHF (ciMHF) which protects against side-channel leakage as long as the adversary is computa-
tionally bounded and constructed a ciMHF with optimal aAT complexity Ω(N2).

In this work we use MHFs as a black-box component in construction of our authentication
mechanism to defend against offline attackers who have access to sophisticated password crack-
ing models. We integrate the idea of password peppering with MHF so that our mechanism
achieves a further skewed cost asymmetry, which makes massive offline attacks economically
infeasible.

Our work is most closely related to Boyen’s work on halting puzzles [9]. We modify Boyen’s
solution by introducing cost-even breakpoints and by introducing a hard cap tmax on the running
time parameter. Our analysis framework also differs from [9] in several significant ways lead-
ing us to reach a very different conclusion about what the distribution over the running time
parameter tu ≤ tmax should look like. In particular, we consider a rational attacker who may quit
cracking early as opposed to a persistent attacker [9] who will always continue attacking until
the password is cracked — see Section 6.1 for additional discussion.
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2. Background and Notation

Password Distributions and Datasets. We use P to denote the set of all possible passwords, the
corresponding distribution is P. The process of a user u choosing a password for his/her account

can be viewed as a random sampling from the underlying distribution pwu
$
← P. It will be con-

venient to assume that the passwords in P are sorted such that Pr[pw1] ≥ Pr[pw2] ≥ . . .. Given
a password dataset D of na accounts, we can obtain empirical distribution De by approximating
Prpwi∼De [pwi] =

fi
na

, where fi is the frequency of pwi and na is the number of accounts present in
D. Often the empirical distribution can be represented in compact form by grouping passwords
with the same frequency into an equivalence set i.e., Des = {( f1, s1), . . . , ( fi, si), . . . , ( fne , sne )},
where si is the number of passwords which appear with frequency fi in D and ne is the total
number of equivalence sets and, for convenience, we assume f1 > f2 > . . . > fne . We use
esi = ( fi, si) to describe the ith equivalence set. In empirical experiments it is often more conve-
nient to work with the compact representation Des of password distribution. In addition, we use
np to denote the number of distinct passwords in our dataset D. Observe that for any dataset we
have na ≥ np ≥ ne. In fact, we will typically have na ≫ np ≫ ne.

Computation Cost of an MHF. The evaluation of memory hard function MHF(x; t) produces
a sequence of labels L1, L2, . . . , Lt where the last label generated Lt is the final output. Once
L1, . . . , Li−1 are all stored in memory it is possible to compute label i by making a single call to
an underlying cryptographic hash function H e.g., we might have Li = H(L j, Lk) where j, k < i
denote prior labels. We can also define MHF(x; i) = Li for i < t. Thus, we can obtain all of
the values MHF(x; 1), . . . ,MHF(x; t) in time t. We model the (amortized) Area-Time cost of
evaluating MHF(·; t) as cHt + cMt2, where cH and cM are constants. Intuitively, cH denotes the
area of a core implementing the hash function H and cM represents the area of an individual cell
with the capacity to hold one data-label (hash output). Since the memory cost tends to dominant,
we ignore the hash cost as simply model the cost as cMt2.

3. Defender’s Model

In this section, we present the model of the defender. In particular, we describe how pass-
words are stored and verified on the authentication server.

Account Registration.. When a user u registers for a new account with a password pwu the
authentication server randomly generates a saltu value, samples a running time parameter tu ∈ T
from our set of possible running time breakpoints T = {t1, t2, . . . , tm} (we let qi = Pr[ti] to denote
the probability that tu = ti) and stores the tuple (u, saltu, hu) where hu = MHF(pwu, saltu; tu).
Note that the salt value saltu is recorded while the running time parameter tu is discarded.

Password Verification.. When a user u attempts to login to his/her account by submitting (u, pw′u),
the authentication server would first retrieve record (u, saltu, hu), calculate h1 = MHF(pw′u, saltu; t1)
and compare h1 with hu. It they are equal, login request is granted. Otherwise, the server would
continue to calculate h2 = MHF(pw′u, saltu; t2), compare h2 with hu, so on and so forth. If any
of hi matches hu, then user u successfully logs in his/her account. However, if for all possible
running time parameters t ∈ T we have hu , MHF(pw′u, saltu; t) then the login request is rejected.
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Defender Action and Workload Constraint.. The defender’s (leader’s) action is to select the
probability distribution q1, . . . , qm over the running time breakpoints. The goal is to pick the
distribution q1, . . . , qm to minimize the percentage of passwords cracked by a rational adversary
subject to constraints on the expected server workload. Whenever user u logs in with the correct
password pwu the authentication server will incur cost cMt2

u. Since tu = ti with probability qi the
expected cost of verifying a correct password is

∑m
i=1 qicMt2

i . Thus, given a maximum workload
parameter Cmax we require that the distribution q1, . . . , qm are selected subject to the constraints
that qi ≥ 0, q1 + . . . qm = 1 and

m∑
i=1

qicMt2
i ≤ Cmax. (1)

4. Attacker’s model

In this section, we first state the assumptions we use in our economic analysis. Then we show
how a rational attacker who steals the password hashes from the server would run a dictionary
offline attack. Finally, we present the Stackelberg game in modeling the interaction between the
defender and the attacker within the framework of [10].

4.1. Assumptions of Economics Analysis
We assume that the attacker is rational, knowledgeable and untarteged. By rationality, we

mean that the attacker will attempt to maximize its expected utility i.e., the value of the cracked
password(s) minus the attacker’s guessing costs. By knowledgeable we mean that by Kerck-
hoffs’s principle the attacker knows the exact distribution P from which the user’s password was
sampled. In practice, an attacker would not have perfect knowledge of the distribution P, but
could still rely on sophisticated password cracking models e.g., using Neural Networks [28],
Markov Models [29, 30] or Probabilistic Context-Free Grammars (PCFGs) [31, 32, 33]. Finally,
we assume that the attacker is untargetted meaning that each account has the same value v for
the attacker and the attacker does not have background information about the passwords that
individual user’s may have selected. One can derive a range of estimates for v based on black
market studies e.g., Symantec reported that passwords generally sell for $4—$30 [34] and [35]
reported that Yahoo! e-mail passwords sell for ≈ $1.

4.2. Cracking Process
The password distribution and the breakpoint distribution induce a joint distribution over

pairs (pw, t) ∈ P × {t1, . . . , tm} where we have Pr[(pwi, t j)] = Pr[pwi]q j. Thus, to recover the
user’s password the attacker will need to recover the pair (pwu, tu) where pwu (resp. tu) is the
user’s password (resp. breakpoint). We can specify the attacker’s strategy as an ordered list of
pairs [pw1, j1], [pw2, j2], . . . with ji ≤ m. Here, the instruction [pwi, ji] means that the attacker
will begin computing MHF(pwi, saltu; t ji ) to generate a stream of ji labels. Of course when
we evaluate MHF(pwi, saltu; t ji ) we will also evaluate MHF(pwi, saltu; tr) for each r < ji. If
pwu = pwi and tu ≤ t ji then the attacker will notice that the label MHF(pwi, saltu; tu) matches the
stored hash value. At this point the attacker can immediately quit and output the user’s password
pwu = pwi. The visual representation of this cracking process is illustrated in Figure 1.

We will make the assumption that each password appears at most once in our ordered list
[pw1, j1], [pw2, j2], . . .. This assumption is intuitively justified by the observation that a rational
attacker would be unlikely to benefit by computing MHF(pwi, saltu; t ji ) clearing memory and
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then later computing MHF(pwi, saltu; t) for some t > t ji — such a strategy requires the attacker
to incur additional cost to recompute MHF(pwi, saltu; t ji ) and recover the discarded labels before
s/he can finish computing MHF(pwi, saltu; t). Assuming that each password appears at most once
in our ordered list we can prove that a rational attacker will order password guesses in descending
order of likelihood i.e., Pr[pwi] ≥ Pr[pwi+1].

It will be convenient to re-write the attacker’s checking sequence in atomic form i.e., the
instruction [pwi, ji] would be replaced by the atomic sequence (pw1, 1), . . . (pwi, ji). We will use
π to denote an ordered checking sequence written in atomic form. Written in atomic form the
ordered checking sequence satisfies the following natural ordering over atomic instructions,(pwi1 , t j1 ) < (pwi2 , t j2 ), if Pr[pwi1 ] > Pr[pwi2 ],

(pwi, t j1 ) < (pwi, t j2 ), if j1 < j2.
(2)

We use Π(n,m) to denote the atomic sequence corresponding to [pw1, tm], . . . , [pwn, tm] i.e., the
checking sequence where we completely check all of the top n passwords. Formally,

Π(n,m) := (pw1, t1), . . . , (pw1, tm), . . . , (pwn, t1), . . . , (pwn, tm) . (3)

We also let
ϖi( j1, j2) := (pwi, t j1 ), . . . , (pwi, t j2 ) (4)

denote a sequence of consecutive atomic instructions for a single password pwi i.e., an instruction
bundle. We can then write the attacker’s strategy in the form

π = ⃝Len(π)
i=1 ϖi(1, t ji ) := ϖ1(1, t j1 ) ◦ϖ2(1, t j2 ) ◦ · · · ◦ϖLen(1, t jLen ), (5)

where ◦ denotes the concatenation of two disjoint instruction sequence and Len(π) is the largest
index of password for which the attacker would check at least one label, which depends on the
associated checking sequence, when the context is clear it is just written as Len. Notice that π is
fully specified by the largest label index t ji for each password pwi and that π is a sub-sequence
of Π(np,m) where np is the total number of passwords in the distribution.

4.3. Attacker’s Utility
After specifying the attacker’s strategy in the form of a checking sequence, we can formu-

late the attacker’s utility. Suppose the kth instruction in checking sequence π is πk = (pwi, t j),
then the probability that the attacker succeeds on step k is Pr[πk] = Pr[pwi] · q j. Let λ(π, B) .=∑B

k=1 Pr[πk] denote the attacker’s probability of success after the first B ≤ |π| instructions and
let λ(π) .= λ(π, |π|) denote the attacker’s overall probability of success. Recall that the overall
cost to compute MHF(·; t j) is cMt2

j . After computing MHF(pwi; t j−1) the additional cost of exe-
cuting instruction πk to compute MHF(pwi; t j) is denoted c(πk) .= cM(t2

j − t2
j−1). For notational

convenience, we define t0
.
= 0.

The attacker’s utility is described by the equation below:

Uadv(v, q⃗, π) = v · λ(π) −
|π|∑

k=1

c(πk) (1 − λ(π, k − 1)) . (6)

The first term in equation (6) gives us the attacker’s expected reward. In particular, the attacker
will receive value v if s/he crack’s the password and, given a checking sequence π, the attacker
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t1 t2 t3 t4 t5 . . . tm−1 tm

DAG(pw1) . . .

DAG(pw2) . . .

. . . . . .

DAG(pwi∗−1) . . .

DAG(pwi∗ ) . . .

. . . . . .

DAG (pwu)

. . . . . .

DAG (pwnp )

Figure 1: Password Cracking Process

Black nodes denote current checking sequence π and the attacker would check black nodes in the first row
from left to right then move to the second row, etc. White nodes denote unchecked instructions

Π(np,m) − π. Star denotes unknown target (pwu, tu).

succeeds with probability λ(π) i.e., in expectation the reward is v · λ(π). The second term in
equation (6) gives us the attacker’s expected guessing costs, which is the summation of product
of 2 terms where the probability that the attacker incurs cost c(πk) to evalute the instruction
πk is given by the probability that the attacker does not succeed after the first k − 1 steps i.e.,
1 − λ(π, k − 1).

4.4. Stackelberg game

We use Stackelberg game to model the interaction between the attacker and defender. The
defender (leader) fixes a distribution q⃗ over the breakpoints {t1, . . . , tm}. The attacker (follower)
responds by selecting checking sequence π∗ = arg max Uadv(v, q⃗, π) to maximize its utility.

Define server’s utility to be User(v, q⃗) = −λ(π∗), where π∗ is the attacker’s best response
to defender’s strategy q⃗ given password value v. At equilibrium no player has the incentive to
deviate form her/his strategy, thus equilibrium profile (q⃗∗, π∗) satisfies,Uadv(v, q⃗, π∗) ≥ Uadv(v, q⃗, π), ∀π,

User(v, q⃗∗) ≥ User(v, q⃗), ∀q⃗.
(7)

The defender’s goal is try to find a distribution q⃗ which minimizes λ(π∗) subject to the con-
straint that the rational attacker responds with its utility optimizing strategy π∗ given the break-
point distribution q⃗ and value parameter v. Thus, before the defender can attempt to optimize q⃗
we need to be able to compute the attacker’s response π∗.

5. Computing the Attacker’s Optimal Strategy

As we noted in the previous section a rational attacker will use its utility optimizing strategy
π∗ = arg max Uadv(v, q⃗, π). In this section we consider the algorithmic challenge of finding π∗.
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We present a local search algorithm which is guaranteed to find the attacker’s optimal strategy
π∗ under certain restrictions e.g., the defender utilizes cost-even breakpoints with a uniform dis-
tribution. In other settings (e.g., time-even breakpoints) the local search algorithm is not always
guaranteed to find the optimal solution, but we are still able to design an efficient optimality test
which can be used to verify if the optimal solution was found. We remark that the breakpoints
setting, which is the defender’s strategy in the first stage of the Stackelberg game, as well as
password value and password distribution is known to the attacker at the time of developing the
(locally) optimal strategy in the second stage of the game.

Before we introduce our algorithm used to find the optimal checking sequence, let us see why
the native brute force algorithm is computationally infeasible. If the attacker chose to check top
Len passwords; for each password pwi the attacker has m possible choices for each password i.e.,
select τi ∈ {1, . . . ,m} and evaluate MHF(pwdi; tτi ). Thus the native brute force algorithm runs
in time O

(∑np

Len=1 mLen
)
⊆ O(mnp ) with a very large exponent (np ≈ 2.14 × 107 for our largest

dataset Linkedin, and np ≈ 3.74 × 105 for our smallest dataset Bfield). This is why we need to
design polynomial time algorithms.

∅

uniform
breakpoint
distribution

πLO = Extend(v, q⃗)

cost-even
breakpoints
(βi =

√
i)

πLOC =

ExtendbyConcat(v, q⃗,)

πLOC = π
∗

OptimalityTest(v, q⃗, πLO) βi =
√

i
and m ≤ 3

πLO = π
∗ πLO ⊆ π

∗

π∗ =
FindOptSeq(v, q⃗, πLO)

No

Yes Yes

Pass Fail No

Yes

No

Figure 2: Algorithm Flowchart

In the following subsections, we first specify a superset3 of π∗, setting a boundary within
which we will gradually extend the checking sequence from an empty one. Then we introduce
our local search algorithm which finds the optimal checking sequence most of the time. Our
key intuition in designing algorithms is that an unchecked instruction bundle should be included
into the optimal checking sequence if it provides non-negative marginal utility. Generally there
are two local search directions, either concatenate instructions at the end of current checking
sequence or insert instructions in the middle of current checking sequence. After the local search
algorithm terminates we reach a local optimum πLO. Finally we design algorithms to verify if the
local optimum is also global optimum or promote the local optimum to global optimum under
specific parameter settings. As a overview we briefly summarize our results (also demonstrated
in the flowchart, see Figure 2) in this section as follows:

• When we use cost-even breakpoints sampled from uniform distribution, namely, βi =
ti
t1
=

√
i and qi =

1
m , we have a local search algorithm ExtendbyConcat(v, q⃗, ∅) which iteratively

3We use the concept and notation of subset and superset for ordered sequences the way they were defined for regular
set. If all elements of sequence A are also elements of sequence B regardless of the order, we say A ⊆ B
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considers instruction bundle that can be concatenated, ExtendbyConcat(v, q⃗, ∅) runs in
time O(npm) and provably gives the optimal checking sequence;

• When breakpoints are cost-even (βi =
√

i) but the distribution is non-uniform, we design
an algorithm Extend(v, q⃗) which returns a locally optimal checking sequence πLO in time
O(npm). By locally optimal we mean that advancing any number of labels, i.e., evaluate
the MHF with subsequent running time parameters, for any single password on the basis
of πLO will decrease attacker’s utility.

After obtaining πLO, we can run a polynomial algorithm OptimalityTest(v, q⃗, πLO) to check
if πLO is also a global optimum. If OptimalityTest(v, q⃗, πLO) returns PASS, we know for
sure that πLO = π

∗; otherwise, no conclusion can be drawn. If m ≤ 3 we will use an
efficient brute force algorithm FindOptSeq(v, q⃗, πLO), which runs in time O(n2

p), to reach
the global optimum.

• When βi ,
√

i, regardless of the breakpoint distribution we can still run Extend(v, q⃗) to ob-
tain locally optimal πLO, and feed πLO to OptimalityTest(v, q⃗, πLO). If OptimalityTest(v, q⃗, πLO)
returns PASS, again we have πLO = π

∗; if OptimalityTest(v, q⃗, πLO) returns FAIL, we can-
not deduce any information about the global optimality of πLO; in this case, confirming
that πLO = π

∗ or finding πLO to π∗ will take exponential time.

5.1. Marginal Utility

Since we are going to use marginal utility as metrics of state transition in local search, we
first specify how to compute marginal utility.

Definition 1. Fixing v and q⃗, define ∆(π1, π2) to be marginal utility from strategy π1 to π2,
namely,

∆(π1, π2) := Uadv(v, q⃗, π2) − Uadv(v, q⃗, π1). (8)

For most of the time π2 is the result of modifying π1 which is called base, in order to avoid
redundantly repeating base we often write ∆ (π1, π1 ◦ e) and ∆ (π1, π1 + e) in short as ∆◦ (e | π1)
and ∆+ (e | π1), respectively, where e is some ordered set of instructions, referred to as extension.
Recall that ◦ is concatenation operation, here we formally introduce the insertion operation +.

Definition 2. Given a checking sequence π = ⃝Len
i=1ϖi(1, τi) and an instruction bundleϖi′ ( j1, j2)

with j1 = τi′ + 1, define π +ϖi′ ( j1, j2) to be the checking sequence

π +ϖi′ ( j1, j2) := ⃝i′
i=1ϖi(1, τi) ◦ϖi′ ( j1, j2) ◦ ⃝Len

i=i′+1ϖi(1, τi).

For notational convenience we occasionally discard the superscript and write ∆ (e | π) to de-
note the marginal utility by including e into π, either through concatenation or insersion. Oper-
ations are valid only if the extension is compatible with the base. By compatible we mean the
resulting checking sequence must satisfy all of our restrictions.

When e is a singleton, from equation (6) we can derive the marginal utility by inserting
instruction e = (pwi, t j) < π to base π,

∆+ (e | π) = Pr[pwi]q j

v + ∑
e′>e,e′∈π

c(e′)

 −
1 − ∑

e′<e,e′∈π

Pr[e′]

 cM(t2
j − t2

j−1), (9)
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where Pr[pwi]q j
∑

e′>e,e′∈π c(e′) captures the influence of e on the expected cost of future in-
structions since it eliminates some uncertainty about the user’s password pwu thus reduces the
expected cost for future trials.

When e is a singleton, marginal utility upon concatenation has no future influence, hence

∆◦ (e | π) = Pr[pwi]q jv − (1 − λ(π)) cM(t2
j − t2

j−1). (10)

When e consists of multiple consecutive instructions, the marginal utility can be computed
by iteratively applying equation (9) and (10). Namely,

∆ (e | π) =
|e|∑

i=1

∆ (ei | π ∪ {e0, . . . , ei−1}) , (11)

where e0 = ∅, ei is the ith instruction of e and∪ denotes inclusion (whether through concatenation
or insertion) while maintaining natural ordering.

5.2. A Superset of the Optimal Checking Sequence
Before we present our algorithms we first show how to prune down the search space for π∗.

Particularly, fixing v and q⃗ we find an index Lenmax such that π∗ ⊆ Π(Lenmax,m) i.e., π∗ will not
even partially check passwords with rank larger than Lenmax. Thus, there is no need to consider
any instructions beyond Π(Lenmax,m) in construction of the optimal checking sequence.

Definition 3. Fixing v and q⃗ we define

Lenmax :=

maxi{i : F(v, q⃗, i) ≥ 0}, if such i exists,
0, o.w.

where

F(v, q⃗, i) :=

max1≤ j≤m{∆ (∅, ϖi(0, j))}, if i = 1,
max1≤ j≤m{∆

◦ (ϖi(0, j) |Π(i − 1,m))}, o.w.

Intuitively, Lenmax is the largest possible password index for which at least one of instruction
bundles ϖLenmax (1, j), 1 ≤ j ≤ m provide non-negative marginal utility no matter what previous
instructions are. Note that by Lemma 1, given any checking sequence π = ⃝i−1

i′=1ϖi(1, τi′ ) the
marginal utility upon concatenation of instruction bundle ϖi(0, j) satisfies

∆◦
(
ϖi(0, j)

∣∣∣⃝i−1
i′=1ϖi(1, τi′ )

)
≤ F(v, q⃗, i).

If F(v, q⃗, i) < 0, then ϖi(0, j) would certainly provide negative marginal utility, hence cannot be
included in π∗. This intuition is formalized by Theorem 1.

Lemma 1. ∆◦ (e | π1) ≤ ∆◦ (e | π2) , if λ(π1) ≤ λ(π2).

Proof. Suppose ek is the ith instruction bundle in e and takes the form of (pwi, t j), from equation
10 we have

∆◦ (e1 | π1) = Pr[pwi]q jv − (1 − λ(π1)) cM(t2
j − t2

j−1),

and
∆◦ (e1 | π2) = Pr[pwi]q jv − (1 − λ(π2)) cM(t2

j − t2
j−1).
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Thus,
∆◦ (e1 | π1) ≤ ∆◦ (e1 | π2) .

Similarly, we can repeatedly append instruction bundle ei to π1 ◦ ⃝
i−1
i′=1ei′ (resp. π2 ◦ ⃝

i−1
i′=1ei′ ) to

obtain
∆◦

(
ei

∣∣∣ π1 ◦ ⃝
i−1
i′=1ei′

)
≤ ∆◦

(
ei

∣∣∣ π2 ◦ ⃝
i−1
i′=1ei′

)
,∀ei ⊆ e.

Summing up the above inequalities over i, we have

∆◦ (e | π1) =
∑

i

∆◦
(
ei

∣∣∣ π1 ◦ ⃝
i−1
i′=1ei′

)
≤

∑
i

∆◦
(
ei

∣∣∣ π2 ◦ ⃝
i−1
i′=1ei′

)
= ∆◦ (e | π2) .

Theorem 1.
π∗ ⊆ Π(Lenmax,m).

Proof. Given π∗ = ⃝i∗
i′=1ϖi′ (1, τi′ ), suppose there existsϖi(1, τi) ⊆ π∗, for some i > Lenmax, τi >

0, we have

∆◦
(
ϖi(1, τi)

∣∣∣⃝i−1
i′=1ϖi(1, τi′ )

)
≤ max

1≤ j≤m

{
∆◦

(
ϖi(1, j)

∣∣∣⃝i−1
i′=1ϖi(1, τi′ )

)}
≤ max

1≤ j≤m
{∆◦ (ϖi(1, j) |Π(i − 1,m))} by Lemma 1

= F(v, q⃗, i) < 0. by definition of Lenmax

Then we can safely remove instructions ϖi(1, τi) for all i > Lenmax from π∗ to obtain another
checking sequence that yields a better utility. Contradiction.

5.3. Extension by Concatenation

We have established a superset of π∗ in last subsection, now we design a local search algo-
rithm that gives us a checking sequence πLOC which is a subset of π∗. Here, LOC stands for
“locally optimal with respect to concatenation." The sequence πLOC will be helpful in further
pruning down the search space for π∗. In fact, in the special case where the breakpoint distribu-
tion is uniform (qi =

1
m ) and cost-even breakpoints (βi =

√
i) are used, we can prove that equality

holds i.e., πLOC = π
∗ is the optimal solution.

To find our sequence πLOC we start with the empty sequence of instructions and repeatedly
include instructions that provide non-negative marginal utility upon concatenation to the cur-
rent solution. We design a local search algorithm ExtendbyConcat(v, q⃗, ∅) to find a checking
sequence πLOC . Our local search algorithm ExtendbyConcat(v, q⃗, ∅) terminates after at most np

rounds, recall that np is the number of distinct password. After the i − 1th round we obtain
πLOC ⊆ Π(i − 1,m) i.e., the current solution only includes checking instructions for the first i − 1
passwords. In the ith round we find an instruction bundle for password i which maximizes the
marginal utility upon concatenation. More specifically, in round i we compute the stopping la-
bel index τi = arg max0≤ j≤m{∆

◦ (ϖi(0, j) | πLOC)} and append this instruction bundle to obtain an
updated checking sequence πLOC = πLOC ◦ϖi(0, τi). Details can be found in Algorithm 1.

We can use equation (10) to compute the marginal utility in time O(1) by caching previously
computed values of λ(π). Thus, ExtendbyConcat(v, q⃗, ∅) runs in time O(Lenmaxm) ⊆ O(npm).
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Algorithm 1: ExtendbyConcat(v, q⃗, π)
Input: v, q⃗
Output: πLOC

1 πLOC = π;
2 start = i∗(πLOC);
3 for i = start : np do
4 for j = 0 : m do
5 Compute ∆◦ (ϖi(0, j) | πLOC);
6 end
7 τi = arg max0≤ j≤m{∆

◦ (ϖi(0, j) | πLOC)};
8 if τi > 0 then
9 πLOC = πLOC ◦ϖi(1, τi);

10 else break;
11 end
12 end
13 return πLOC

Theorem 2.
πLOC ⊆ π

∗.

Proof. Suppose π∗ = ⃝i∗
i=1ϖi(1, τi) and ϖi(τi + 1, j) ∈ πLOC is the first instruction bundle that π∗

and πLOC disagree.
Split π∗ into two parts π∗a and π∗b where π∗a is the sub-sequence from the beginning of π∗ to

instruction (pwi, tτi ) inclusive and π∗b is remaining checking sequence. Formally,

π∗a := ⃝i
i′=1ϖi′ (1, τi′ ),

and
π∗b := ⃝i∗

i′=i+1ϖi′ (1, τi′ ).

Since ϖi(τi + 1, j) ∈ πLOC , by criterion of constructing πLOC in Algorithm 1 we have

∆◦
(
ϖi(τi + 1, j)

∣∣∣ π∗a) ≥ 0.

We can contrive another checking sequence σ = π∗a ◦ϖi(τi + 1, j) ◦π∗b. By Lemma 1 we have

∆◦
(
π∗b

∣∣∣ π∗a ◦ϖi(τi + 1, j)
)
> ∆◦

(
π∗b

∣∣∣ π∗a)
Adding both sides of above two inequalities, then both sides of the resulting inequality are

added by ∆
(
∅, π∗a

)
, we have

Uadv(v, q⃗, σ) = ∆
(
∅, π∗a

)
+ ∆◦

(
ϖi(τi + 1, j)

∣∣∣ π∗a) + ∆◦ (π∗b ∣∣∣ π∗a ◦ϖi(τi + 1, j)
)

> ∆
(
∅, π∗a

)
+ ∆◦

(
π∗b

∣∣∣ π∗a)
= Uadv(v, q⃗, π∗),

contracting optimality of π∗.

From Theorem 1 and Theorem 2, we can derive the following corollaries.
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Corollary 1.
Len(πLOC) ≤ Len(π∗) ≤ Lenmax,

and
Len(πLOC), Len(π∗), Lenmax ∈

{
x0, x1, . . . , xne

}
,

where

xk =

0, if k = 0,∑k
k′=1 |esk′ |, if k = 1, . . . , ne.

(12)

Corollary 2.
λ(πLOC) ≤ Padv = λ(π∗) ≤ λ (Π(Lenmax,m)) .

Now we have a polynomial algorithm that returns a checking sequence πLOC locally op-
timal with respect to concatenation. The following theorem states that πLOC = π

∗ if break-
points are cost-even and follow uniform distribution. Intuitively, When qi =

1
m and βi =

√
i,

ExtendbyConcat(v, q⃗, ∅) always sets τi ∈ {0,m}, leaving πLOC—the subset of π∗ andΠ(Lenmax,m)—
the superset of π∗ to be the same. Thus, πLOC is optimal.

Theorem 3. When qi =
1
m and βi =

√
i, ExtendbyConcat(v, q⃗, ∅) returns the optimal checking

sequence, i.e., πLOC = π
∗.

Proof. Given these parameters it is easy to verify that

∆◦
(
ϖi(1, 1)

∣∣∣⃝i−1
i′=1ϖi(1, τi′ )

)
< ∆◦

(
ϖi(2, 2)

∣∣∣⃝i−1
i′=1ϖi(1, τi′ ) ◦ϖi(1, 1)

)
< · · ·

< ∆◦
(
ϖi(m,m)

∣∣∣⃝i−1
i′=1ϖi(1, τi′ ) ◦ϖi(1,m − 1)

)
.

Therefore,

max
0≤ j≤m

{
∆◦

(
ϖi(0, j)

∣∣∣⃝i−1
i=1ϖi(1, τi)

)}
= max

{
0,∆◦

(
ϖi(1,m)

∣∣∣⃝i−1
i=1ϖi(1, τi)

)}
Algorithm ExtendbyConcat(v, q⃗, ∅) will set τi = m for i ≤ Len(πLOC) and τi = 0 for i >
Len(πLOC). In other words,∆◦ (ϖi(1,m) |Π(i − 1,m)) ≥ 0, if i ≤ Len(πLOC),

∆◦ (ϖi(1,m) |Π(i − 1,m)) < 0, if i > Len(πLOC).

Those are also the criterion of defining Lenmax under current parameter settings, hence Len(πLOC) =
Lenmax. Moreover, the superset and subset of π∗ are identical, i.e., Π(Lenmax,m) = πLOC . Since
there are no unchecked instruction bundle ϖi( j1, j2) for i ≤ Lenmax, we have πLOC = π

∗ =

Π(Lenmax,m).

Notice that if the breakpoints are cost-even and follow uniform distribution, the optimal
checking sequence takes a simple form of π∗ = Π(Lenmax,m), i.e., checking all labels for each
password until the password indexed Lenmax is reached. By adopting these parameter setting, we
ensure that our mechanism yields a lower fraction of cracked passwords compared to determin-
istic cost hashing. In the deterministic cost hashing, the cost of checking each password remains
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constant (password hashes are computed using a predetermined label if a memory-hard function
were employed). The attacker’s optimal strategy for cracking would be checking a sequence
of passwords in descending order of likelihood up to a cut point, at which point the attacker
ceases the attempt (i.e., πd = pw1, pw2, ..., pwd). The following theorem formally highlights the
advantage of our mechanism over traditional approach.

Theorem 4. Let AM1 (authentication mechanism) be cost-asymmetric memory hard password
hashing with βi =

√
i and qi =

1
m and AM2 represent the traditional deterministic cost hashing

where each password is hashed with cost Cmax (which also equals to the expected hash cost of
AM1 per password for the purpose of fair comparison), Assuming optimal attacker strategy, AM1
outperforms AM2 in terms of attacker’s success rate. Specifically, let π∗ = Π(Lenmax,m) and
πd = pw1, pw2, ..., pwd be the optimal strategy against AM1 and AM2, respectively, then we have
λ(π∗) ≤ λ(πd) where λ(πd) is defined analogously as

∑d
i=1 Pr[pwi].

Proof. When using cost-even breakpoints with uniform distribution, the execution trace of the
attacker’s cracking process is similar to that of deterministic hashing, i.e., sequentially eliminat-
ing the possibility of pwu = pwi (or verifying it with any luck) for i = 1, 2, . . .. It can be verified
(see Appendix .1) that

Cu
adv(ϖi(1,m)|Π(i − 1,m)) ≥ Cd

adv(pwi| ⃝
i−1
i′=1 pwi′ ), ∀i,

where Cu
adv(ϖi(1,m)|Π(i − 1,m)) is the marginal cost of checkingϖi(1,m), given Π(i − 1,m) has

already been checked. Cd
adv(pwi| ⃝

i−1
i′=1 pwi′ ) is the marginal cost of checking pwi under deter-

ministic cost hashing given passwords pw1, . . . , pwi−1 have been checked. In order to achieve
the same success rate, uniform cost-even breakpoints would incur more cost than determinis-
tic cost hashing. See it in another way, when v/Cmax is fixed for both cases uniform cost-even
breakpoints results in a lower adversary success rate.

We have shown that our mechanism configured with cost-even breakpoints sampled from uni-
form distribution will only decrease the percentage of cracked passwords. In the next subsections
we consider how the attacker would react to general configuration of the mechanism.

5.4. Local Search in Two Directions

In the previous section we introduced an algorithm ExtendbyConcat(v, q⃗, ∅) to produce a lo-
cally optimal solution πLOC with respect to concatenation. We showed the instruction sequence
πLOC is a subset of the instructions in π∗ and argued that in specific cases the algorithm is guaran-
teed to find the optimal solution. However, in more general cases the local optimum may not be
globally optimum. One possible reason for this is that there may be a missing instruction from
π∗ that we would like to insert into the middle of the checking sequence πLOC , while our local
search algorithm ExtendbyConcat(v, q⃗, ∅) only considers instructions that can be appended to
πLOC .

In this subsection we extend the local search algorithm to additionally consider insertions.
Note that we can still use local search to test if inserting instruction bundleϖi( j1, j2) improves the
overall utility, i.e., ∆+ (ϖi( j1, j2) | π) ≥ 0 . We design an algorithm ExtendbyInsert(v, q⃗, π) which
performs such an update. Combining ExtendbyConcat(v, q⃗, π) and ExtendbyInsert(v, q⃗, π), we
design an Algorithm Extend(v, q⃗) to construct a checking sequence πLO (LO=Locally Optimal)
which is locally optimal with respect to both operations: concatenation and insertions. Specifi-
cally, after each call of ExtendbyInsert(v, q⃗, π) we immediately run ExtendbyConcat(v, q⃗, π) to
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ensure that the solution is still locally optimal with respect to concatenation. See Algorithm 3 for
details. The algorithms still maintain the invariant that πLO is a subset of π∗ — see Theorem 5.

Given πLOC computed in timeO(npm), the number of unchecked instructions is upper bounded
by |Π(Lenmax,m)| − |πLOC |. By caching the probability summation of previous and future in-
structions at each insertion position, verify if an instruction bundle is profitable and update
the checking sequence take time O(1). One pass of repeat loop of Algorithm 3 takes time
O(|Π(Lenmax,m)| − |πLOC |) ⊆ O(npm), the number of repeat loop execution is finite (in experi-
ment it terminates after at most 3 passes). Therefore, Extend(v, q⃗) runs in time O(npm).

Algorithm 2: ExtendbyInsert(v, q⃗, π)
Input: v, q⃗, π
Output: πLOI

1 πLOI = π;
2 while e exists such that ∆+ (e | πLOI) ≥ 0 do
3 πLOI = πLOI + e
4 end
5 return πLOI

Algorithm 3: Extend(v, q⃗)
Input: v, q⃗
Output: πLO

1 πLO = ExtendbyConcat(v, q⃗, ∅);
2 repeat
3 πLO = ExtendbyInsert(v, q⃗, πLO);
4 πLO = ExtendbyConcat(v, q⃗, πLO);
5 until no single profitable instruction bundle exist;
6 return πLO

Lemma 2. If π ⊆ π∗ and ∆+ (e | π) ≥ 0 then π + e ⊆ π∗.

Lemma 2 is trivially true and it guarantees that + operation preserves the invariance that our
construction is subset of π∗. Naturally follows Theorem 5, which states the output of Extend(v, q⃗)
is a subset of π∗.

Theorem 5. Let πLO = Extend(v, q⃗), then πLO ⊆ π
∗.

Proof. In proof of Theorem 2 we already know ◦ operation preserves the following invariant

π ◦ e ⊆ π∗, if π ⊆ π∗ and ∆◦ (e | π) ≥ 0.

Lemma 2 states
π + e ⊆ π∗, if π ⊆ π∗ and ∆+ (e | π) ≥ 0.

πLO is obtained by alternatively applying ◦ and + operation, hence is a subset of π∗
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Since we are using local search to construct πLO, together with Theorem 5 we know πLO is
a local optimum. When Algorithm 3 terminates, advancing any number of labels for any single
password cannot improve the overall utility, but there is no guarantee of utility reduction upon
inclusion of multiple instruction bundles that associated with different passwords. In the next
subsection we will discuss how to verify if the local optimum πLO is indeed the global optimum
and design an efficient brute force algorithm that improves local optimum to global optimum
under specific parameter settings.

5.5. Optimality Test
In the previous subsections, we designed a polynomial algorithm Extend(v, q⃗) to construct

locally optimal checking sequence πLO with respect to insertions and concatenation. We also
proved that the sequence πLO is a subset of the optimal sequence π∗. In practice we find that it is
often the case that πLO = π

∗ and we give an efficient heuristic algorithm which (often) allows us
to confirm the global optimality of πLO. In particular, our procedure will never falsely indicate
that πLO = π

∗ though it may occasionally fail to confirm that this is the case.
Since πLO is locally optimal adding any instruction bundle for a single password e = ϖi( j1, j2)

into πLO will decrease the overall utility, namely, ∆ (e | π) < 0, recall that ∆ (e | π) denotes the
marginal utility by including e into π, either through concatenation or insertion. However, there
is no guarantee ∆ (S | πLO) < 0 where S is an ordered set of instruction bundles {e1, e2, . . . , eb}

since marginal utility is not additive with respect to instruction bundles. To see this, from equa-
tion (6) we can derive

∆ (S | πLO) =
∑
e∈S

∆ (e | πLO) +
∑
e2∈S

cost reduction for e2︷              ︸︸              ︷
c(e2)

∑
e1∈S
e1<e2

Pr[e1], (13)

where Pr[e] and c(e) are probability summation and round cost summation of instructions in e,
respectively. Equation (13) shows that the marginal cost by including a ordered set S to πLO

stems from 2 parts. The first is the summation of individual contribution and the second is cost
reduction when checking e2 ∈ S because previously included instruction bundles e1 < e2, e1 ∈ S
have already eliminate some uncertainty. Even though every instruction bundle solely contributes
negative marginal utility i.e, ∆ (e | πLO) < 0, e ∈ S , the sign of ∆ (S | πLO) is not determined
because of the cost reduction term. If a set S exists such that ∆ (S | π) ≥ 0, we will refer it to as a
good set.

By definition of good set and Theorem 5, we have

π∗ = πLO ∪ S ∗, s.t. S ∗ = arg max
S
∆ (S | πLO) . (14)

Recall that ∪ denotes inclusion (whether through concatenation or insertion) while maintaining
natural ordering. 4

Verify if S is a good set of πLO is easy but find one is hard. We design a polynomial algorithm
to check if the local optimum πLO is in fact a global optimum, i.e., πLO = π

∗. Our algorithm
utilizes the following observation.

4Technically, arg maxS returns a set of solutions S ∗. However, if this set contains multiple elements we can break ties
according to the size of |S ∗ | and followed by an arbitrary lexicographic ordering over solutions with same size.
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Observation 1. if S = {e1, . . . , eb} is a good set for πLO, then its last element eb must provide
non-negative utility (otherwise, it can be safely removed from S without hurting marginal utility),
namely

∆ (eb | πLO ∪ S \ eb) ≥ 0,

where S \ eb is the ordered set excluding eb.

It is not clear which elements are inside S \ eb but we know S \ eb ⊆ Before (eb | πLO) where
Before (eb | πLO) is the ordered set of all unchecked instructions that appear before eb in natural
ordering, given πLO already being checked, namely,

Before (eb | πLO) := {e : e < eb and e < πLO}.

We use following Lemma to negate the existence of a good set ending with eb.

Lemma 3. For a unchecked instruction bundle eb, define

test(eb) := ∆ (eb | πLO) +
∑

e∈Before(eb | πLO)

Pr[e]c(eb),

if test(eb) < 0 then a good set S for πLO ending with eb does not exist.

Proof.
∆ (eb | πLO ∪ S \ eb) = ∆ (eb | πLO) +

∑
e∈S \eb

Pr[e]c(eb),

≤ ∆ (eb | πLO) +
∑

e∈Before(eb | πLO)

Pr[e]c(eb)

= test(eb).

If test(eb) < 0, then ∆ (eb | πLO ∪ S \ eb) < 0. By contrapositive of Observation 1, S cannot
be a good set.

We can interpret the term
∑

e∈Before(eb | πLO) Pr[e]c(eb) as the maximum possible cost reduction
when checking eb, then test(eb) is the maximum marginal utility eb can provide as the last in-
struction bundle in S . If test(eb) < 0, a set ending with eb cannot be a good set; if this is the case
for all instructions eb ∈ Π(Lenmax,m) \ πLO that might be added to πLO, then a good set ending
with any unchecked instruction bundle does not exist. Thus, in Equation (14) we have S ∗ = ∅
and πLO = π

∗. We use OptimalityTest(v, q⃗, πLO) to examine if πLO = π
∗ — see Algorithm 4.

Algorithm 4: OptimalityTest(v, q⃗, πLO)
Input: v, q⃗, πLO

Output: π∗

1 foreach eb ∈ Π(Lenmax,m) \ πLO do
2 if test(eb) ≥ 0 then
3 return FAIL;
4 end
5 end
6 return PASS
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Theorem 6. If OptimalityTest(v, q⃗, πLO) returns PASS, then πLO = π
∗.

Proof. Since OptimalityTest(v, q⃗, πLO) returns PASS, then we have

∆ (eb | πLO ∪ S \ eb) ≤ test(eb) < 0, ∀S .

For any S it would only increase overall utility by repeatedly removing the last element in S until
it is empty. Therefore, a good set is a empty set. Equivalently, πLO = π

∗.

By storing of λ(πLO, i) and
∑i

i′=1 Pr[pwi′ ] for all i, which are intermediate values in execu-
tion of Extend(v, q⃗), in amortized sense we can evaluate test(eb) in time O(1), then algorithm
OptimalityTest(v, q⃗, πLO) runs in time O(npm). Even if πLO fails OptimalityTest(v, q⃗, πLO), it does
not imply πLO , π

∗, since test(eb) < 0 is a sufficient condition of no good set ending with eb,
not a necessary one. Fortunately, OptimalityTest(v, q⃗, πLO) returns PASS for most of the time
in our experiments, confirming πLO = π

∗ for most v/Cmax ratios; otherwise, we might discard
OptimalityTest(v, q⃗, πLO) as well.

5.6. Finding π∗ for cost-even breakpoints when m ≤ 3
When our optimality test fails in rare cases, we design algorithms to promote locally optimal

solution to globally optimal solution for cost-even breakpoints and m ≤ 3.
If πLO fails OptimalityTest(v, q⃗, πLO), we cannot deduce any conclusions about the optimality

of πLO, but when βi =
√

i and m ≤ 3 we can design an efficient brute force algorithm to find
π∗. We first define the concept of peak(q⃗) and show that it is true that the stopping label indices
τi ∈ peak(q⃗) for both πLO (Lemma 4) and π∗ (Lemma 5). Therefore, an instruction bundle e in a
good set S can only the form of spanning two peaks, i.e., e = ϖi( j1, j2) where j1, j2 ∈ peak(q⃗),
then we use this intuition to prune down the search space of good set S .

Definition 4. Given a vector of real numbers q⃗ = (q1, . . . , qm) we call index j of q a peak of q⃗ if
(1) j = m, or (2) j = 1 and q1 > q2, or (3) q j−1 ≤ q j and q j > q j+1. We use peak(q⃗) to denote the
set of all peak indices in q⃗.

Lemma 4. Fix an arbitrary breakpoint distribution q⃗ = (q1, . . . , qm). Suppose that β j =
√

j for
all j ≤ m and πLO = ⃝

Len(πLO)
i=1 ϖi(1, τi), then for all i ≤ Len(πLO) we have τi ∈ peak(q⃗).

Proof. Suppose τi = j , m, since (pwi, t j) ∈ πLO, then

∆
(
πLO − (pwi, t j), πLO

)
≥ 0,

where − is removal operation. Since j is not a peak, then we have q j+1 ≥ q j which leads to

∆
(
(pwi, t j+1), πLO

)
> ∆

(
πLO − (pwi, t j), πLO

)
.

Therefore, ∆
(
πLO, πLO + (pwi, t j+1)

)
> 0. It is still profitable to advance a label for pwi i.e., check

(pwi, t j+1), so (pwi, t j+1) should have been included into πLO in local search but in relity it is not.
Contradiction.

Lemma 5. Fix an arbitrary breakpoint distribution q⃗ = (q1, . . . , qm). Suppose that β j =
√

j for
all j ≤ m and π∗ = ⃝Len(π∗)

i=1 ϖi(1, τ∗i ), then for all i ≤ Len(π∗) we have τ∗i ∈ peak(q⃗).
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Observation 2. when m = 2, peak(q⃗) is in {{2}, {1, 2}}; when m = 3, peak(q⃗) is in {{3}, {1, 3}, {2, 3}};

|peak(q⃗)| = 1 corresponds to uniform breakpoint distribution for which ExtendbyConcat(v, q⃗, ∅)
already gives the optimal checking sequence π∗.

Lemmas 4 and 5 imply that if a good set S with respect to insertion exists for πLO, every in-
struction bundle in S must start at a peak position and end with another peak position. Specially,
when peak(q⃗) = {peak1,m}, the only tentative insertion operation to promote locally optimal πLO

to global optimal π∗ is to check a password to completion, i.e., change the largest label index τi

from peak1 to m.
The following theorem states that we can efficiently construct an ordered set S c(i, π) which

provides largest marginal utility upon insertion (on the basis of π) than any other ordered set of
the same size. Thus, we can efficiently search S c(i, π),∀i instead of all subsets of unchecked(π)
in order to find a good set.

Theorem 7. If peak(q⃗) = {peak1,m} and βi =
√

i for i ≤ m, given π = ⃝Len
i=1ϖi(1, τi) with

τi ∈ peak(q⃗) and unchecked(π) = {ϖi(peak1,m) : i ≤ Len(π) and τi = peak1}—the set of
unchecked instruction bundles spanning two peaks, we define

S c(i, π) :=

∅, if i = 0,
{e1, . . . , ei}, if i > 0,

where ei, ∀i > 0 is recursively defined as

ei := arg max
e∈unchecked(π+S c(i−1,π))

∆+ (e | π + S c(i − 1, π)) .

Then we have

∆+ (S c(i, π) | π) ≥ ∆+ (S | π) , ∀i, ∀S ⊆ unchecked(π) s.t. |S c(i, π)| = |S |.

We first prove the following Lemma, which is utilized in proof of Theorem 7.

Lemma 6. When βi =
√

i, suppose e1 = ϖi1( j1, j2), and e2 = ϖi2 ( j1, j2), if ∆+ (e1 | π) ≥
∆+ (e2 | π), then Pr(e1) ≥ Pr(e2).

Proof. Proof by contradiction. Let cM(t2
j2
− t2

j1
) = c. Suppose Pr(e1) < Pr(e2), then e1 > e2, we

have

∆+ (e1 | π) − ∆+ (e2 | π)

= Pr(e1)

v + ∑
e>e1,e∈π

c

 −
1 − ∑

e<e1,e∈π

Pr(e)

 c − Pr(e2)

v + ∑
e>e2,e∈π

c

 +
1 − ∑

e<e2,e∈π

Pr(e)

 c

= (Pr(e1) − Pr(e2))

v + ∑
e>e1,e∈π

c

 − Pr(e2)
∑

e2<e≤e1,e∈π

c + c
∑

e2≤e<e1,e∈π

Pr(e)

= (Pr(e1) − Pr(e2))

v + ∑
e>e1,e∈π

c

 + c
∑

e2<e<e1

Pr(e) − Pr(e2)

≤ (Pr(e1) − Pr(e2))

v + ∑
e>e1,e∈π

c

 < 0,
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which contradicts the precondition ∆+ (e1 | π) ≥ ∆+ (e2 | π)

Now we prove Theorem 7.

Proof. In this proof S c(i, π) is written in S c(i) for simplicity. Let S = {e′1, e
′
2, . . . , e

′
i}. Lemma 4

and 5 guarantee that instruction bundles in S and S c(i) have the same size, i.e, |e j| = |e′k |,∀ j, k.
Let c(e) = c,∀e ∈ S c(i), ∀e ∈ S . By Theorem 7 and Lemma 6 we have Pr(e j) ≥ Pr(e′j), ∀ j.

Theorem 7 equivalently claims for fixed i and π,

∆+ (S c(i) | π) ≥ ∆+
(
S c(i − n) ∪ {e′i−n+1, . . . , e

′
i}

∣∣∣ π) ,∀n, (15)

We will use mathematical induction to prove the above inequalities.
Base case n = 1:

∆+ (S c(i) | π)

= ∆+ (S c(i − 1) | π) + ∆+ (ei | π + S c(i − 1))

≥ ∆+ (S c(i − 1) | π) + ∆+
(
e′i

∣∣∣ π + S c(i − 1)
)

= ∆+
(
S c(i − 1) ∪ {e′i}

∣∣∣ π) .
The inequality holds because of the definition of ei i.e., ei = arg maxe ∆

+ (e | π + S c(i − 1)).
Inductive hypothesis: equation (15) holds true for n = k.
Inductive step: in the following we prove that equation (15) holds true for n = k + 1.

∆+ (S c(i) | π)

≥ ∆+
(
S c(i − k) ∪ {e′i−k+1, . . . , e

′
i}

∣∣∣ π)
= ∆+ (S c(i − k − 1) | π) + ∆+ (ek | π + S c(i − k − 1)) + ∆+

(
{e′i−k+1, . . . , e

′
i}

∣∣∣ π + S c(i − k − 1) + ek

)
≥ ∆+ (S c(i − k − 1) | π) + ∆+

(
e′k

∣∣∣ π + S c(i − k − 1)
)
+ ∆+

(
{e′i−k+1, . . . , e

′
i}

∣∣∣ π + S c(i − k − 1) + ek

)
≥ ∆+ (S c(i − k − 1) | π) + ∆+

(
e′k

∣∣∣ π + S c(i − k − 1)
)
+ ∆+

(
{e′i−k+1, . . . , e

′
i}

∣∣∣ π + S c(i − k − 1) + e′k
)

= ∆+
(
S c(i − k − 1) ∪ {e′i−k, . . . , e

′
i}

∣∣∣ π) .
The first inequality is inductive hypothesis; the second inequality holds because of the defi-

nition of ek; the third inequality is the result of Lemma 1 given Pr[ek] ≥ Pr[e′k].

We can loop over all candidates S c(i, πLO), ∀i and find the good set w.r.t insertion S ∗c(πLO),
which provides the largest marginal utility for πLO, namely,

S ∗c(πLO) = arg max
S c(i,πLO)

∆+ (S c(i, πLO) | πLO) . (16)

A good set S ∗ might contain instruction bundles that can be concatenated to πLO, to handle
this case we also need to loop over len—possible length of π∗. The efficient brute force algorithm
FindOptSeq(v, q⃗, π) is present in Algorithm 5.

Suppose |unchecked(π)| = n, finding e1 takes time O(n); finding e2 takes time O(n − 1), etc.
Thus, the inner loop in Algorithm 5 takes time O(n2) ⊆ O(n2

p), and the total running time is
O(n2

p (Lenmax − Len(π)).
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Algorithm 5: FindOptSeq(v, q⃗, π)
Input: v, q⃗, π
Output: π∗

1 U∗ = ∆ (∅, π);
2 for len = Len(π) : Lenmax do
3 if len > Len(π) then
4 π = π ◦ϖlen(1, peak1);
5 end
6 foreach i do
7 construct S c(i, π);
8 compute ∆+ (S c(i, π | π);
9 end

10 S ∗c(π) = arg maxi ∆
+ (S c(i, π | π);

11 if ∆
(
∅, π + S ∗c(π)

)
≥ U∗ then

12 π∗ = π + S ∗c(π);
13 U∗ = ∆

(
∅, π + S ∗c(π)

)
;

14 end
15 end
16 return π∗

Theorem 8. When |peak(q⃗)| = 2 and βi =
√

i, FindOptSeq(v, q⃗, πLO) returns the optimal check-
ing sequence.

Proof. Lemma 4 and 5 restrict a good set to be a subset of unchecked(π). Theorem 7 guarantees
that S c(i, π) is “better” than any other set S of the same size, namely,

∆ (∅, π + S c(i, π)) ≥ ∆ (∅, π + S ) ,∀S ⊆ unchecked(π).

By definition of S ∗c(π), we have ∆
(
∅, π + S ∗c(π)

)
≥ ∆ (∅, π + S c(i, π)) ,∀i. The outer loop of

FindOptSeq(v, q⃗, π) traverses all possible Len(π∗) and returns the π + S ∗c(π) with largest util-
ity. By equation (14) the the returned checking sequence is optimal.

We could potentially run FindOptSeq(v, q⃗, ∅) to find the optimal checking sequence π∗. As a
shortcut, we run FindOptSeq(v, q⃗, πLO) instead to reduce the running time.

Corollary 3. When m ≤ 3 and βi =
√

i, There are polynomial algorithms that always find the
optimal checking sequence.

If |peak(q⃗)| = 1, ExtendbyConcat(v, q⃗, ∅) returns the optimal checking sequence; if |peak(q⃗)| =
2, FindOptSeq(v, q⃗, πLO) returns the optimal checking sequence.

6. Defender’s Optimal Strategy

When making decisions about breakpoint distribution, the defender will take attacker’s best
response into consideration. Specifically, the defender would choose q⃗∗ = arg min λ(π∗) where
π∗ = arg max Uadv(v, q⃗, π)). Formally, the optimization problem (OPT) is
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min
q⃗

λ(π∗)

s.t. 0 ≤ qi ≤ 1, ∀1 ≤ i ≤ m,
m∑

i=1

qi = 1,

m∑
i=1

qicMt2
i ≤ Cmax,

π∗ = arg max Uadv(v, q⃗, π))

(17)

The optimization goal is to minimize attacker’s success rate. The first two constrains guaran-
tee qi are valid probabilities. The third constraint forces that the expected cost does not exceed
maximum workload Cmax. The last constraint states that the attacker responds optimally given
password value v and the defender’s strategy q⃗. Since there is no closed form expression of λ(π∗)
we use a heuristic black box optimization solver [36] to optimize q⃗. We refer to the black box
solver as FindOptDis(). This heuristic algorithm is parameterized by the attacker’s value v and
by the password distribution P and outputs a distribution q⃗. As a caveat our heuristic algorithm
is not absolutely guaranteed to find the optimal breakpoint distribution q⃗∗.

In the following, we present two examples illustrating the potential issues that may arise when
setting breakpoints {ti} to be time-even, emphasizing the advantages of adopting our suggested
cost-even breakpoints.

6.1. Example 1: Zipf’s Law with Time-Even Breakpoints
Boyen [9] proposed that when the user selects the running time parameter the resulting dis-

tribution will follow Zipf’s law i.e., Pr[tu = i] = c · i−β for some Zipf Law parameters c, β > 0.
Boyen’s analysis [9] indicated that setting β = 1 maximizes the attacker’s expected workload
ratio i.e., the work performed by a persistent attacker who does not know the secret running time
parameter divided by the work performed by a persistent attacker who does know tu. However,
there are several important differences between Boyen’s model and the rational attacker model
we use for our analysis. The most significant difference is that Boyen’s considers a persistent
attacker who will always continue guessing until the password is cracked5. By contrast, we
consider a rational attacker who might choose to partially check or even completely ignore a
password if the expected cost outweights the expected reward. Similarly, our optimization goal
for the defender is to directly minimize the probability that a rational attacker cracks the user’s
password. Thus, it is natural to ask whether or not Zipf’s Law is still an appropriate distribution
in our context. We argue that the answer is no.

In this section we provide theoretical analysis demonstrating that Zipf’s Law with time-even
breakpoints can significantly increase the fraction of cracked passwords cracked by a rational
attacker. Fix Zipf’s law constants β = 1 and c =

∑tmax
i=1 i−β and let qi

.
= i−βc be the probability

of selecting t = i as the running time parameter. Observe that
∑tmax

i=1 qi = 1 so that we have

5There are several other differences. Boyen’s analysis [9] implicitly assumes a uniform distribution over passwords
while our model allows for non-uniform password distributions. Our model includes a parameter for the value of a
cracked password since we are considering rational attackers. Our model also captures the quadratic cost scaling in the
area-time complexity of an ideal memory-hard function while Boyen’s analysis assumes that costs scale linearly in the
running time parameter.
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a valid probability distribution and that the expected workload for the authentication server is
Cmax

.
=

∑tmax
i=1

1
i·c cMi2 = 1

c
∑tmax

i=1 icM ≈
cM t2

max
2 ln tmax

.
Our analysis is centered around the following observation: If the breakpoints are time-even,

for any t′ ≤ tmax we have Pr[t ≤ t′] =
∑t′

i=1
1
i∑tmax

i=1
1
i
≈ ln t′

ln tmax
. If, for example, we set t′ = tmax/ ln tmax

then as tmax → ∞ we have Pr[t ≥ t′] → 0 i.e., if tmax is sufficiently large then it is almost
certain that t ≤ tmax/ ln tmax. This suggests that the a rational attacker could benefit by adopting
a strategy where s/he checks every password up to breakpoint t′ ≈ tmax/ ln tmax. Observe that
the attacker’s expected work to check any password up to breakpoint t is upper bounded by
t′2cM =

cM t2
max

ln2 tmax
≈

2Cmax
ln tmax

. Thus, as tmax → ∞ we have t′2cM
Cmax

→ 0 i.e., the attacker’s work per
password guess is arbitrarily smaller than Cmax.

To provide a concrete example suppose that the distribution over passwords is uniform over
the range [1, 104] and the value of a cracked password is v = 100 · Cmax. If the defender simply
uses a deterministic MHF with cost Cmax then the value is small enough that a rational attacker
will crack 0% of passwords since expected guessing costs will greatly exceed the expected reward
i.e., if the attacker continues guessing until the password is cracked the expected costs will be
Cmax

∑104

i=1 i · 10−4 > 5v. By contrast, if uniform time-even breakpoints were used, we claim that
a rational attacker will crack nearly 100% of passwords as the parameter tmax grows large. To
see this we compute the utility of a (possibly sub-optimal) attacker who checks every password
up to breakpoint t′ = tmax/ ln tmax is at least v Pr[t ≤ t′] − 104t′2cM . We have Pr[t ≤ t′] ≈ 1 and
104t′2cM ≈

2·104Cmax
ln tmax

= 200v
ln tmax

. In particular, the utility of our attacker approaches v as tmax → ∞

grows large. This is significant because v upper bounds the maximum possibly utility of any
attack i.e., this would be the utility of an attacker who always cracks the password and somehow
incurs no guessing cost. We have not shown that the attacker’s strategy above (check every
password up to breakpoint t′ ≈ tmax/ ln tmax) is optimal. However, the expected utility of optimal
strategy can only be larger i.e., the expected utility of the optimal attack also approaches v as
tmax grow large. It follows that the optimal rational attacker will crack the user’s password with
probability approaching 1!

6.2. Example 2: Uniform Distribution with Time-Even Breakpoints

We also provide another (admittedly contrived) example to show that time-even breakpoints
could still be harmful even if the distribution over breakpoints is uniform. In particular, we
assume a uniform distribution over two passwords and assume that the value of a password is
v = 1.45Cmax.

Deterministic MHF. If the authentication server adopts a deterministic MHF with cost Cmax

then the rational attacker’s optimal strategy to maximize expected utility is simply to give up
immediately. If instead the attacker decided to keep guessing until he cracks the password the
attackers expected utility would be negative i.e., the expected guessing costs would be 1

2Cmax −
1
2 2Cmax = 1.5Cmax > v and utility would be v − 1.5Cmax = −0.05Cmax < 0. Thus, the optimal
strategy for our utility maximizing attacker is simply to give up immediately.

Time-Even Breakpoints. If we use time-even breakpoints with uniform distribution then the hash
cost of evaluating MHF to the first label is cMt2

1 = 0.4Cmax and the hash cost of evaluating MHF
to the second label is cMt2

2 = cM(2t1)2 = 1.6Cmax with the amortized cost being 0.4+1.6
2 Cmax =

Cmax. Checking the first label of both passwords gives the attacker utility v/2 − cMt2
1 − (1 −
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1
4 )cMt2

1 = 0.025Cmax > 0. Thus, a rational attacker will always want to check the first label of
both passwords. As a result, the probability of the user’s password being cracked is ≥ 1

4 .
More generally, if time-even breakpoints with uniform distribution is deployed, we have

Pr[pwu] Pr[t1]
Pr[pwu] = 1

m while cM t2
1

Cmax
= 1

(m+1)(2m+1) ≈
1

m2 . In other words, the probability that the the first
label is correct drops linearly in m while the cost of making that guess drops quadratically in m.
This makes checking (at least) the first label of a password guess an increasingly more attractive
target for a rational attacker.

7. Experiments

7.1. Experiment Setup

In this section, we evaluate the performance of our mechanism using empirical password
datasets. Due to length limitations we only report results for the two largest datasets: Linkedin
(1.74 ∗ 108 accounts with 5.74 ∗ 107 distinct passwords) and Neopets (6.83 ∗ 107 accounts with
2.8∗107 distinct accounts). We defer results for 6 additional password datasets (Bfield, Brazzers,
Clicksense, CSDN, RockYou and Webhost) to Appendix .3. 6

For each dataset we derive the corresponding empirical distributionDe (namely, Prpw∼De [pw] =
fi/na where fi is the frequency of pw) and analyze the attacker’s success rate under this password
distribution. The drawback is that the tail of empirical distribution De can significantly diverge
from real distributionP. We follow the approach of [37] and use Good-Turing Frequency estima-
tion to uppe bound the CDF divergence E betweenDe and P. In particular, we use yellow (resp.
red) to denote the unconfident region where the empirical distribution might diverge significantly
from the real distribution E > 0.01 (resp. E > 0.1).

We plot the attacker’s success rate λ(π∗) as the ratio v/Cmax varies under different conditions.
In Figure 3 we consider time-even breakpoints with uniform distribution over breakpoints. Sim-
ilarly, Figure 4 considers cost-even breakpoints under the uniform distribution as the number of
breakpoints m varies. In Figure 5, we fix m = 3 and continue to use cost-even breakpoints, then
run our algorithm FindOptDis() (implemented with BITEOPT [36]), to optimize the breakpoint
distribution.

7.2. Experiment Analysis and Discussion

Time-Even Breakpoints with Uniform Distribution. Figure 3 plots the attacker’s success rate (vs.
v/Cmax) when we use time-even breakpoints with the uniform distribution. In most parame-
ter ranges the usage of time-even breakpoints with the uniform distribution reduces the % of
cracked passwords in comparison to using deterministic (cost-equivalent) memory hard func-
tions. However, one significant observation is that for some parameters v/Cmax (highlighted with
amplified circles on the plots) time-even breakpoints with the uniform distribution can actually
increase the fraction of cracked passwords. Take LinkedIn as example, when v/Cmax = 100 no
passwords would be cracked with deterministic cost hashing while 0.2% would be cracked using
time-even breakpoints. Similar phenomenon can be observed in other datasets. Intuitively, these
findings are explained by the observation that it is relatively cheap for the attacker to check the
first few time-even breakpoints.

6The password datasets we analyze and experiment with are publicly available and widely used in literature research.
We did not crack any new passwords. Thus, our usage of the datasets would not cause further harm to users.
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Figure 3: Time-Even Breakpoints, Uniform Breakpoint Distribution
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Figure 4: Cost-Even Breakpoints, Uniform Breakpoint Distribution

Cost-Even Breakpoints and Uniform Distribution. Figure 4 plots the success rate of the ratio-
nal adversary when we use cost-even breakpoints with the uniform distribution. Our results are
consistent with Theorem 4 where we proved that cost-even breakpoints with the uniform dis-
tribution can never increase the attacker’s success rate. In Figure 4 we also explore the impact
of increasing the number of breakpoints m. We find that increasing m decreases the attacker’s
success rate although the impact diminishes as m increases — see [38] for additional discussion.
When m = 99 we find instances where the attacker’s success rate is decreased by an additive
factor of 10% for large value of v/Cmax while the advantage is less significant for small values of
v/Cmax.

Optimized Distribution and Cost-Even Breakpoints. Continuing to use cost-even breakpoints we
attempted to optimize the breakpoint distribution using BITEOPT [36] — see Figure 5. In all
instances we only obtained marginal reductions in the attacker’s success rate when compared to
the uniform distribution over breakpoints. Furthermore, optimizing the breakpoint distribution
q⃗ requires the defender to know the password distribution and the attacker’s value v a priori. In
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Figure 5: Cost-Even Breakpoints, Optimized Breakpoint Distribution

practice there is a very real risk that we would optimize q⃗ with respect to the wrong distribution
or value v. Thus we recommend to use cost-even break points with uniform distribution as this
solution can be implemented without any knowledge of v or the password distribution.

8. Conclusion

In this paper, we introduce cost-asymmetric memory hard password authentication, a prior
independent authentication mechanism, to defend against offline attacks. As traditional hash
function are replaced by memory hard functions, we propose to use random breakpoints in eval-
uation of an MHF in order to have the benefit of both cost asymmetry and cost quadratic scaling.
The interaction between the defender and the attacker is modeled by a Stackelberg game, within
the game theory framework we formulate the optimal strategies for both defender and attacker.
We theoretically proved that cost-asymmetric memory hard password authentication with cost-
even breakpoints sampled from uniform distribution will reduce attacker’s cracking success rate.
In addition we set up experiments to validate the effectiveness of our proposed mechanism for
arbitrary parameter settings, experiment results show that the reduction of attacker’s success rate
is up to 10%.
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Appendix .1. Marginal Cost

When breakpoints are cost-even and follow uniform distribution, let
∑i−1

i′=1 Pr[pwi] = λ,
cM(t2

i − t2
i−1) = c, then the marginal cost of checking all labels associated with pwi is

Cu
adv(ϖi(1,m)|Π(i − 1,m)) = (1 − λ)c +

(
1 − λ − Pr[pwi]

1
m

)
c+, . . . ,+

(
1 − λ − Pr[pwi]

m − 1
m

)
c

= (1 − λ)mc −
Pr[pwi]c(m − 1)

2
.

(.1)
Due to server workload constraint we have,

m∑
i=1

β2
i c/m =

m + 1
2

c = Cmax,

which leads to c = 2Cmax
m+1 . Substitute it into equation (.1), we have

Cu
adv(ϖi(1,m)|Π(i − 1,m)) =

2m
m + 1

(1 − λ)Cmax −
(m − 1) Pr[pwi]Cmax

m + 1
. (.2)

On the other hand, for deterministic hashing the marginal cost of checking password pwi

(given all previous passwords pwi′ , i′ < i have been checked) is

Cd
adv(pwi| ⃝

i−1
i′=1 pwi′ ) = (1 − λ)Cmax. (.3)

Take the difference of equation (.2) and equation (.3),

Cu
adv(ϖi(1,m)|Π(i − 1,m)) −Cd

adv(pwi| ⃝
i−1
i′=1 pwi′ ) =

m − 1
m + 1

Cmax ((1 − λ) − Pr[pwi]) ≥ 0.
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Appendix .2. Derivative-Free Optimization

There are many derivative-free optimization solvers available in the literature, generally they
fall into two categories, deterministic algorithm (such as Nelder-Mead) and evolutionary algo-
rithm (such as BITEOPT [36] and CMA-EA [39]). OptPepperDis() takes password value v
as input and outputs optimal pepper distribution q⃗∗ and attacker’s success rate P∗adv when play-
ing with best response given defender’s strategy q⃗∗. During one iteration of OptPepperDis(),
some candidate pepper distributions {q⃗ci } are proposed, together they are referred as population.
Then the algorithm BestRes(v, q⃗ci ) is called as a subroutine for each member of population, and
the returned Padv is recorded as “fitness”. At the end of each iteration, the population is updated
according to fitness of its’ members, the update could be either through deterministic transforma-
tion (Nelder-Mead) or randomized evolution (BITEOPT, CMA-EA). When the iteration number
reaches a pre-defined value ite, the best fit member q⃗∗ and its fitness P∗adv are returned.

Appendix .3. Results for Other datasets
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Figure .6: Cost-Even Breakpoints, Uniform Pepper Distribution
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