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Abstract—According to GitGuardian’s monitoring of public
GitHub repositories, the exposure of secrets (API keys and other
credentials) increased two-fold in 2021 compared to 2020, totaling
more than six million secrets. However, no benchmark dataset is
publicly available for researchers and tool developers to evaluate
secret detection tools that produce many false positive warnings.
The goal of our paper is to aid researchers and tool developers
in evaluating and improving secret detection tools by curating a
benchmark dataset of secrets through a systematic collection of
secrets from open-source repositories. We present a labeled dataset
of source codes containing 97,479 secrets (of which 15,084 are true
secrets) of various secret types extracted from 818 public GitHub
repositories. The dataset covers 49 programming languages and
311 file types.

1. INTRODUCTION

GitGuardian reported in March 2022 that the number of
secrets leaked on GitHub repositories doubled in 2021 com-
pared to 2020, totaling more than six million secrets [1]. Often,
a software program uses third-party services, including pay-
ment systems, location services, and social media integration.
Software developers need secrets (API keys, access tokens,
and private keys) to authenticate these third-party services as
part of system integration. However, developers may expose
these secrets in plain text in the version control systems (VCS)
or the application packages [2], [3]. Although the problem
with checked-in secrets is well known, the secret leakage
incidents continued. On September 2022, Uber confirmed
an organization-wide cybersecurity breach because of having
hard-coded secrets in a PowerShell script [4]. The attackers
got the administrator access and compromised Uber’s AWS,
GCP, Google Drive, and Slack workspaces.

To avoid exposing secrets in VCS, several open-source and
proprietary secret detection tools [5], such as TruffleHog [6]
and Microsoft CredScan [7], are available. However, these
tools have been shown to produce false positive warnings [8].
In previous studies [9], [10], researchers have worked on
reducing false positives. However, their curated datasets are
not large and varied and are unavailable for future research and
evaluation purposes. In addition, developers face challenges
in choosing one tool out of many, and no publicly-available
dataset is available for comparing the effectiveness of the tools.

The goal of our paper is to aid researchers and tool de-
velopers in evaluating and improving secret detection tools by
curating a benchmark dataset of secrets through a systematic
collection of secrets from open-source repositories.

We present SecretBench, a labeled dataset of source codes
consisting of 97,479 secrets extracted from 818 public GitHub
repositories using two secret detection tools. We manually

inspected each secret and labeled 15,084 secrets as true secrets.
The dataset encompasses 49 programming languages and 311
file types. The dataset is hosted in Google BigQuery [11] and
Cloud Storage [12] and designed to be amenable to expansion
by the community. Our dataset will aid in expediting the
research to evaluate and improve secret detection tools.

II. DATA EXTRACTION

We provide our eight-step process for data collection of
SecretBench as follows:

Step 1: Open Source Software Repository Platform
Selection: We choose GitHub [13] to select candidate reposito-
ries containing secrets for our study. GitHub is the most pop-
ular platform for hosting open-source software development
projects [14]. As of December 2022, GitHub has over 94 mil-
lion developers and more than 330 million repositories [14],
including at least 36 million public repositories [15].

Step 2: Build Regular Expression (Regex) Pattern
Set: We build a regex pattern set for different types of
secrets to identify the candidate repositories containing se-
crets for our study. For example, the regex pattern for
a Slack token is “(xoxb|xoxp|xapp|xoxa|xoxr)—
[0-9110,13[a-2zA-Z0-9]«". TruffleHog [6], a popular
open-source secret-scanning tool, has a package of secret
detectors [16]. We extracted 751 regex patterns from the source
code of the detector package and included those in our pattern
set. In addition, we included 10 regex patterns from Meli et
al. [2] to find the presence of secrets in GitHub repositories
that are not present in the TruffleHog detector package. In
total, we used 761 regex patterns in our pattern set, which is
available online [17].

Step 3: Identify Candidate Software Repositories: To
identify the candidate software repositories, we used the
Google BigQuery Public Dataset of GitHub [11] (Dataset
ID: bigquery-public-data.github_repos), which was released in
2016 by Google in collaboration with GitHub. The source code
of over 2 billion files from more than 2.9 million open-source
licensed repositories can be accessed with SQL queries [11].
We used the most recent snapshot available at the start of
this project (September 20, 2022). We wrote an SQL script
with all the 761 regex patterns to search for secrets in the
source code files and executed the script in Google BigQuery.
The SQL script took almost 22 hours to complete, as every
file is checked with all the regex patterns. The returned result
is a table of two columns: “repo_name” and “matches”. The
“repo_name” column represents the repository name, and the
“matches” column represents the list of regex patterns matched

2574-3864/23/$31.00 ©2023 IEEE 347
DOI 10.1109/MSR59073.2023.00053
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:14:26 UTC from IEEE Xplore. Restrictions apply.



with the specific repository. In total, we have found 2,234,618
repositories with at least one regex pattern match.

Step 4: Apply Selection Criteria on Candidate Reposito-
ries: As suggested by prior research [18], GitHub repositories
need to be curated by removing inactive, beginner, and tech-
demo projects. To curate the repositories collected in Step 3,
we collected fork information, contributor counts, and commit
counts using the GitHub Rest API [19]. We applied the
following selection criteria to curate the collected repositories.
The number in parenthesis with the criteria name indicates
the number of filtered repositories after applying that specific
criteria.

o Availability (2,013,913): The repository is available to

download.

o Uniqueness (1,735,864): The repository is not a forked
repository. This criteria is applied to avoid near duplicates
of the same repository.

« Collaboration (889,984): The repository contributor
count must be at or above the dataset median of 2. This
criteria is applied to avoid personal or hobby projects.

o Development History (622,719): The repository commit
count must be at or above the dataset median of 20
commits.

o Recent Activity (93,958): The repository must have at
least one commit in the last one year. This criteria is
applied to avoid inactive projects.

In addition, we observed some repositories with different
“repo_name” fields point to the same repository. For exam-
ple, repositories “Jasig/cas” and ‘“apereo/cas” are the same
repository though having different repository names in the
dataset. This duplication happened because the repository
owner changed the repository name at some point, but the
Google BigQuery dataset kept both names. However, GitHub
stores the actual repository name of the duplicate repository.
We collected the actual repository name of each repository
using the GitHub Rest API and filtered the duplicate repos-
itories. After all selection criteria, we passed 89,070 unique
repositories to Step 5.

Step 5: Find Multiset-Multicover Repositories of Regex
Patterns: In this step, we further select repositories so that
we get a sample of multiple secrets for each secret type while
minimizing the overall repository count of the dataset. In later
steps, we manually determine if identified secrets were actually
secret or not. However, identifying and manually labeling
secrets from the 89,070 repositories remaining in Step 4 is
impractical. Our goal of identifying the smallest selection of
repositories that altogether include a specified count of each
identified secret pattern is actually an instance of the multiset-
multicover problem, so we applied the multiset-multicover
algorithm described in Algorithm 1. This algorithm is an
extension of the Minimum Set Cover algorithm [20] to select
a minimal set of repositories covering all the regex patterns
with a certain number of repositories for each pattern.

Before applying the multiset-multicover algorithm, we ob-
serve that 390 out of 761 regex patterns found no match in any
repository. The median regex pattern matched 10 repositories,
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with 186 regex patterns matching 10 or more repositories. We
term these patterns “upper tail” regex patterns. An additional
120 regex patterns matched between 1 and 9 repositories; we
will refer to these as “lower tail” regex patterns. The median
lower tail regex pattern matched 2 repositories.

For a comprehensive dataset, we seek a balance between
examples of common and uncommon secret types, so we
applied the multiset-multicover algorithm in two phases. In
Phase 1, we ran the multiset-multicover algorithm for the 186
upper tail regex patterns to find a set of repositories where each
regex pattern matches at least 10 repositories. We identified
649 repositories among the upper tail regex patterns. For Phase
2, we ran the multiset-multicover algorithm for the 120 lower
tail regex patterns to find a set of repositories where each regex
pattern should match at least 2 repositories and identified 190
repositories. Then, we merged the repositories of Phase 1 with
Phase 2 and removed duplicate repositories. Altogether, we
identified 818 repositories for SecretBench to collect candidate
secrets.

Algorithm 1 Multiset-Multicover Algorithm

Require: PatternsToCover,U
Require: InstanceSize, K

I: Ry < ReadAllRepos()
: CoveredRepos, Cr. <+ )
: CoveredPatterns, Cp + 0
: while C), # U do
M <+ FindRepoWithMostUncoveredPatterns(Rq, Cp,U)
Cp < Cp U FindMatchedPatternsFor Repo(M, Rq)
Cr <+ CrUM
: end while
. Ree < FindRepoCountPer PatternInInitialCover(Cr, Rq,U)
: Up < FindPatternsLessThanK Instance(Recc)
: while len(Up) # 0 do
M <+ FindRepoW ithMostUncoveredPatterns(Rq, Cp, Up)
Ry, < FindMatchedPatternsFor Repo(M, Rq)
Cp + CpUR,
for ein R, do

Recle] + Recle] +1

end for
Up < FindPatternsLessThanK Repolnstance(Recc)
Ry < RemoveSelectedRepoFromList(M, Rg)
Cr+—CrUM
: end while
: Cr < RemoveDuplicate Repos(Cy)
: return C).

Step 6: Find Candidate Secrets: We wrote a Python
program to clone the repositories. We used GitPython [21] to
download all the branches of a repository and saved the files
into a Google Cloud VM Instance [22] (OS: Ubuntu 18.04
LTS, RAM: 16 GB, Persistent Disk: 500 GB). Next, we ran
two secret detection tools, TruffleHog [6] and Gitleaks [23], to
identify candidate secrets from the repositories. Both tools are
widely used for secret detection and can identify secrets buried
in the repository’s history and logs. We used these tools since
manually inspecting each file of a repository to find secrets
is infeasible and would be error-prone. The tools provide a
JSON output for each repository. The JSON output contains
the candidate secrets with additional metadata such as the
commit id, commit date, committer email, file path, start line,
end line, start column, and end column of the file where secrets
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are matched. Next, we wrote another Python program to read
each report generated by the tools and extract the candidate
secrets along with the metadata. Altogether, we identified
97,479 candidate secrets present in different commits of 818
repositories, of which 27,336 secrets are unique.

Step 7: Label Candidate Secrets: The first and second au-
thors manually inspected each candidate secret independently
using the metadata collected in Step 6. A candidate secret is
labeled as “True” if the secret is a true secret, otherwise labeled
as “False”. We observed the agreement of the labeling of
secrets with a Cohen’s Kappa [24] score of 0.86 between two
raters, which indicates a “near perfect agreement” according
to Landis and Koch’s interpretation [25]. The disagreements
were resolved after a discussion between the two raters. In
our dataset, we identified 15,084 true secrets, of which 4,014
secrets are unique.

Step 8: Developer Survey: We conducted a developer
survey to evaluate whether the committer of the secrets
agrees with our label. First, we selected unique secrets com-
mitted between 2021 and 2022 to avoid recall bias [26]
from the developers and identified 7,617 secrets. Since
GitHub allows the developers to use a noreply email ad-
dress (user—name@users.noreply.github.com) as
the commit email address [27], we filtered those secrets
and identified 2,115 secrets. Then, we selected 200 secrets
(randomly selected to avoid selection bias [28]) and emailed
the developers to know if they agreed with our labeling of the
secret and the reason they disagreed. In the email, we provided
the repository name, commit id with the commit GitHub link,
file path, start line, end line, and a screenshot of the code
where the secret is found. We received 56 responses, a 28.0%
response rate. Altogether, 44 (78.6%) respondents fully agreed
with our label, while 6 (10.7%) respondents disagreed. The
remaining 6 (10.7%) respondents were not sure.

ITII. DATA DESCRIPTION

In this section, we provide brief details of our dataset.

A. Curated and Derived Fields:

We collected the metadata related to the secret such as
repository name, commit id, commit date, committer email,
file path, start line and end line. To further enrich the dataset,
we have augmented the mined data with additional features
that are computed or derived from the source code files
and secrets. Example of computed and derived fields are
“file_type”, “is_template”, “in_url”, “entropy”, “character_set”
and “has_words”. An overview of our SecretBench dataset is
presented in Table I.

B. Data Characteristics

Our SecretBench dataset is diverse in terms of different
project characteristics. The dataset consists of 97,479 secrets in
818 repositories, and some repositories use multiple program-
ming languages. For example, the repository ‘“paradite/hn-
ratio” [30] consists of two programming languages: JavaScript
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TABLE I: Overview of the SecretBench Dataset

[ Field Name | Description | Data Type |
id Unique identifier of the secret. Integer
secret Candidate secret string. String
repo_name Name of the repository. String
domain Domain of the repository such as GitHub. | String
commit_id Commit hash where the secret is added. String
file_path File path where the secret is included. String
file_type Type of the file such as .py and .config. String
start_line Start line no. where the secret is present. Integer
end_line End line no. where the secret is present. Integer
start_column | Start index of the secret in the start line. Integer
end_column End index of the secret in the end line. Integer
committer_ Email address of the committer. String
email
commit_date | The timestamp of the commit. TimeStamp
label The ground truth label of the secret. Boolean
is_template Flag to indicate if the secret is a place- | Boolean
holder such as “MY_PASSWORD".

in_url Flag to indicate if the secret is part of URL | Boolean
such as “http://user:pwd @site.com".

entropy Shannon entropy of the secret. Float

character_set | Characters used in the secret (Num- | String
berOnly, CharOnly, Any).

has_words Flag to indicate if any common English | Boolean
word [29] of at least length of 4 is present
within the secret.

length Length of the secret. Integer

is_multiline Flag to indicate if the secret is present in | Boolean
multiple lines.

category The category of the secret. String

file_identifier | Unique identifier of the file to check the | String
secret from local system.

repo_iden Unique identifier of the repository to check | String

tifier the secret from local system.

and Shell. Altogether, our dataset repositories used 49 pro-
gramming languages. The top 5 programming languages based
on the number of repositories are Shell (459), JavaScript (414),
Python (312), Java (180), and Ruby (172). The number in
parenthesis denotes the number of repositories containing the
specific language. In addition, our dataset consists of secrets
present in 311 file types. The top 5 file types based on the
number of secrets in those files are js (10,412), nix (8,623),
json (8,132), txt (7,737), and xml (6,429). Besides, the top 5
file types based on the number of true secrets are txt (2,935),
toml (1,985), js (1,583), html (1,337), and pem (813). The
number in parenthesis denotes the number of secrets in the
specific file type.

The secrets in our dataset are categorized into eight cate-
gories and presented in Table II, sorted based on the number
of true secrets. More details of our dataset is presented in our
GitHub repository [31].

C. Data Storage

Our dataset is stored as relation structured data in Google
BigQuery (Dataset ID: dev-range-332204.secretbench.secrets).
Users can run SQL queries to access and expand the dataset.
In addition, we stored the downloaded 818 repositories and
the secret-containing individual source code files in Google
Cloud Storage. When downloaded into the local system, the
“repo_identifier” and “file_identifier” mentioned in Table I can
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TABLE II: The categories of secrets in SecretBench

\ Category [ True Secrets [ Total Secrets |
Private Key 5,789 8,584
API Key and Secret 4,529 5,162
Authentication Key and Token 3,569 5,833
Other 524 66,690
Generic Secret 334 439
Database and Server URL 162 9,970
Password 150 705
Username 27 96

be used to locate the repository and specific source code file
related to the secret, respectively.

Since our dataset is sensitive, Google BigQuery and Cloud
Storage enable us to give access to the dataset to only selected
groups, such as fellow researchers and tool developers. To get
access to our dataset, researchers and tool developers need to
contact us through email.

IV. ORIGINALITY OF SECRETBENCH

Previous studies [2], [9], [10] have extracted secrets from
the GitHub repositories, but none made their dataset public
for future research purposes. Saha et al. [9] created a labeled
dataset of 5000 secrets (700 true secrets) from 300 GitHub
repositories using 32 regex patterns. With the dataset, they
applied machine learning algorithms to distinguish true secrets.
However, the repositories matched by regex patterns are not
filtered for demo and inactive projects, and no information is
provided on the files and languages covered. Sinha et al. [10]
created a dataset of 84 GitHub repositories and identified
pattern-based search and heuristics-driven filtering approaches
to reduce the false positive detection of secrets. However, their
dataset is small and contains only AWS credentials.

On the other hand, our dataset presented herein is large
and diverse. We applied 761 regex patterns of different types
of secrets and selected 818 GitHub repositories encompassing
49 programming languages. Our dataset consists of 97,479
labeled secrets, including 15,084 true secrets present in 311
different file types. We also provided different features related
to the secret, such as whether the secret is a template or present
in a URL. In addition, we will make our dataset available for
future researchers and tool developers.

V. RESEARCH OPPORTUNITIES

To prevent exposing secrets in VCS, there are several open-
source and proprietary secret detection tools [5]. However,
these tools are known to generate false positive warnings [8],
[9]. Researchers and tool developers can identify different
rules and patterns from false positive secrets to reduce false
positive warnings. However, mining data from open-source
and building ground-truth datasets is challenging and time-
consuming. In this case, our SecretBench dataset can be used
to circumvent the challenge and speed up the research and
tool evaluation on reducing false positives. In addition, since
several secret detection tools exist, developers face difficulty
choosing one tool out of many. Future research is needed to aid
developers in making informed choices about using different
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secret detection tools through an analysis of the effectiveness
of the tools. In this case, our SecretBench dataset can act
as a benchmark for comparing the effectiveness of the secret
detection tools.

Dataset Enhancement: Our dataset can be further im-
proved by including repositories from other VCS services such
as GitLab and Bitbucket. In addition, we can add more features
regarding secrets to help in secret detection automatically
using machine learning algorithms. Example features include
whether the secrets have parentheses (possible function call),
begin with a $ sign (possible variable), and have context words
such as “dummy” and “fake” in the surrounding code of the
secret. We released these additional features online [32].

VI. ETHICS AND DATA PROTECTION

Since our dataset contains sensitive information such as true
secrets and the committer’s email addresses, we will distribute
our dataset selectively. Researchers and tool developers who
want to use our dataset will sign a data protection agreement
with us to avoid any unethical use. After that, we will give
access to our dataset from Google BigQuery and Cloud
Storage using their email addresses. In addition, at no point
we did not attempt to use the secrets to verify the validity of
the secrets. Instead, we labeled the secrets only by inspecting
the secrets and the source code context of the secrets.

To validate our labeling, we only contacted the developers
who committed the secrets. We did not reveal the identity of
the developers to any managers or higher officials where they
work. In addition, we are notifying every developer in our
dataset to remove the secrets from their VCS.

VII. THREATS TO VALIDITY

In this section, we briefly discuss the limitations of our
paper. VCS Selection: We did not consider other VCS services
such as GitLab [33] and Bitbucket [34]. In the future, we plan
to expand our dataset by including repositories of other VCS
services. Manual Analysis Bias: The labeling of the secrets in
our dataset is susceptible to bias. To mitigate the bias, a second
rater labeled the secrets independently, and we resolved the
disagreements. Recall Bias: For the developer survey, though
we have selected secrets that are committed in 2021 and
2022, the responses could have recall bias. We provided the
developers with a screenshot of the secret-containing source
code and additional metadata to mitigate the bias.

VIII. CONCLUSION

We provide the SecretBench dataset consisting of 97,479
labeled secrets extracted from 818 GitHub repositories encom-
passing 49 programming languages and 311 file types. Our
dataset will aid in evaluating and improving secret detection
tools, thus preventing secret leakage in VCS and application
packages. By adding new projects and features, we aim to
expand our dataset. We invite the research community to join
our effort to expand and enrich the dataset to create novel
software secret management research opportunities.
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