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Abstract—According to GitGuardian’s monitoring of public
GitHub repositories, the exposure of secrets (API keys and other
credentials) increased two-fold in 2021 compared to 2020, totaling
more than six million secrets. However, no benchmark dataset is
publicly available for researchers and tool developers to evaluate
secret detection tools that produce many false positive warnings.
The goal of our paper is to aid researchers and tool developers
in evaluating and improving secret detection tools by curating a
benchmark dataset of secrets through a systematic collection of
secrets from open-source repositories. We present a labeled dataset
of source codes containing 97,479 secrets (of which 15,084 are true
secrets) of various secret types extracted from 818 public GitHub
repositories. The dataset covers 49 programming languages and
311 file types.

I. INTRODUCTION

GitGuardian reported in March 2022 that the number of

secrets leaked on GitHub repositories doubled in 2021 com-

pared to 2020, totaling more than six million secrets [1]. Often,

a software program uses third-party services, including pay-

ment systems, location services, and social media integration.

Software developers need secrets (API keys, access tokens,

and private keys) to authenticate these third-party services as

part of system integration. However, developers may expose

these secrets in plain text in the version control systems (VCS)

or the application packages [2], [3]. Although the problem

with checked-in secrets is well known, the secret leakage

incidents continued. On September 2022, Uber confirmed

an organization-wide cybersecurity breach because of having

hard-coded secrets in a PowerShell script [4]. The attackers

got the administrator access and compromised Uber’s AWS,

GCP, Google Drive, and Slack workspaces.

To avoid exposing secrets in VCS, several open-source and

proprietary secret detection tools [5], such as TruffleHog [6]

and Microsoft CredScan [7], are available. However, these

tools have been shown to produce false positive warnings [8].

In previous studies [9], [10], researchers have worked on

reducing false positives. However, their curated datasets are

not large and varied and are unavailable for future research and

evaluation purposes. In addition, developers face challenges

in choosing one tool out of many, and no publicly-available

dataset is available for comparing the effectiveness of the tools.

The goal of our paper is to aid researchers and tool de-

velopers in evaluating and improving secret detection tools by

curating a benchmark dataset of secrets through a systematic

collection of secrets from open-source repositories.

We present SecretBench, a labeled dataset of source codes

consisting of 97,479 secrets extracted from 818 public GitHub

repositories using two secret detection tools. We manually

inspected each secret and labeled 15,084 secrets as true secrets.

The dataset encompasses 49 programming languages and 311

file types. The dataset is hosted in Google BigQuery [11] and

Cloud Storage [12] and designed to be amenable to expansion

by the community. Our dataset will aid in expediting the

research to evaluate and improve secret detection tools.

II. DATA EXTRACTION

We provide our eight-step process for data collection of

SecretBench as follows:

Step 1: Open Source Software Repository Platform

Selection: We choose GitHub [13] to select candidate reposito-

ries containing secrets for our study. GitHub is the most pop-

ular platform for hosting open-source software development

projects [14]. As of December 2022, GitHub has over 94 mil-

lion developers and more than 330 million repositories [14],

including at least 36 million public repositories [15].

Step 2: Build Regular Expression (Regex) Pattern

Set: We build a regex pattern set for different types of

secrets to identify the candidate repositories containing se-

crets for our study. For example, the regex pattern for

a Slack token is “(xoxb|xoxp|xapp|xoxa|xoxr)-

[0-9]10,13[a-zA-Z0-9]*”. TruffleHog [6], a popular

open-source secret-scanning tool, has a package of secret

detectors [16]. We extracted 751 regex patterns from the source

code of the detector package and included those in our pattern

set. In addition, we included 10 regex patterns from Meli et

al. [2] to find the presence of secrets in GitHub repositories

that are not present in the TruffleHog detector package. In

total, we used 761 regex patterns in our pattern set, which is

available online [17].

Step 3: Identify Candidate Software Repositories: To

identify the candidate software repositories, we used the

Google BigQuery Public Dataset of GitHub [11] (Dataset

ID: bigquery-public-data.github_repos), which was released in

2016 by Google in collaboration with GitHub. The source code

of over 2 billion files from more than 2.9 million open-source

licensed repositories can be accessed with SQL queries [11].

We used the most recent snapshot available at the start of

this project (September 20, 2022). We wrote an SQL script

with all the 761 regex patterns to search for secrets in the

source code files and executed the script in Google BigQuery.

The SQL script took almost 22 hours to complete, as every

file is checked with all the regex patterns. The returned result

is a table of two columns: “repo_name” and “matches”. The

“repo_name” column represents the repository name, and the

“matches” column represents the list of regex patterns matched
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with the specific repository. In total, we have found 2,234,618

repositories with at least one regex pattern match.
Step 4: Apply Selection Criteria on Candidate Reposito-

ries: As suggested by prior research [18], GitHub repositories

need to be curated by removing inactive, beginner, and tech-

demo projects. To curate the repositories collected in Step 3,

we collected fork information, contributor counts, and commit

counts using the GitHub Rest API [19]. We applied the

following selection criteria to curate the collected repositories.

The number in parenthesis with the criteria name indicates

the number of filtered repositories after applying that specific

criteria.

• Availability (2,013,913): The repository is available to

download.

• Uniqueness (1,735,864): The repository is not a forked

repository. This criteria is applied to avoid near duplicates

of the same repository.

• Collaboration (889,984): The repository contributor

count must be at or above the dataset median of 2. This

criteria is applied to avoid personal or hobby projects.

• Development History (622,719): The repository commit

count must be at or above the dataset median of 20

commits.

• Recent Activity (93,958): The repository must have at

least one commit in the last one year. This criteria is

applied to avoid inactive projects.

In addition, we observed some repositories with different

“repo_name” fields point to the same repository. For exam-

ple, repositories “Jasig/cas” and “apereo/cas” are the same

repository though having different repository names in the

dataset. This duplication happened because the repository

owner changed the repository name at some point, but the

Google BigQuery dataset kept both names. However, GitHub

stores the actual repository name of the duplicate repository.

We collected the actual repository name of each repository

using the GitHub Rest API and filtered the duplicate repos-

itories. After all selection criteria, we passed 89,070 unique

repositories to Step 5.
Step 5: Find Multiset-Multicover Repositories of Regex

Patterns: In this step, we further select repositories so that

we get a sample of multiple secrets for each secret type while

minimizing the overall repository count of the dataset. In later

steps, we manually determine if identified secrets were actually

secret or not. However, identifying and manually labeling

secrets from the 89,070 repositories remaining in Step 4 is

impractical. Our goal of identifying the smallest selection of

repositories that altogether include a specified count of each

identified secret pattern is actually an instance of the multiset-

multicover problem, so we applied the multiset-multicover

algorithm described in Algorithm 1. This algorithm is an

extension of the Minimum Set Cover algorithm [20] to select

a minimal set of repositories covering all the regex patterns

with a certain number of repositories for each pattern.
Before applying the multiset-multicover algorithm, we ob-

serve that 390 out of 761 regex patterns found no match in any

repository. The median regex pattern matched 10 repositories,

with 186 regex patterns matching 10 or more repositories. We

term these patterns “upper tail” regex patterns. An additional

120 regex patterns matched between 1 and 9 repositories; we

will refer to these as “lower tail” regex patterns. The median

lower tail regex pattern matched 2 repositories.

For a comprehensive dataset, we seek a balance between

examples of common and uncommon secret types, so we

applied the multiset-multicover algorithm in two phases. In

Phase 1, we ran the multiset-multicover algorithm for the 186

upper tail regex patterns to find a set of repositories where each

regex pattern matches at least 10 repositories. We identified

649 repositories among the upper tail regex patterns. For Phase

2, we ran the multiset-multicover algorithm for the 120 lower

tail regex patterns to find a set of repositories where each regex

pattern should match at least 2 repositories and identified 190

repositories. Then, we merged the repositories of Phase 1 with

Phase 2 and removed duplicate repositories. Altogether, we

identified 818 repositories for SecretBench to collect candidate

secrets.

Algorithm 1 Multiset-Multicover Algorithm

Require: PatternsToCover, U
Require: InstanceSize,K
1: Ra ← ReadAllRepos()
2: CoveredRepos, Cr ← ∅
3: CoveredPatterns, Cp ← ∅
4: while Cp �= U do

5: M ← FindRepoWithMostUncoveredPatterns(Ra, Cp, U)
6: Cp ← Cp ∪ FindMatchedPatternsForRepo(M,Ra)
7: Cr ← Cr ∪M
8: end while

9: Rcc ← FindRepoCountPerPatternInInitialCover(Cr, Ra, U)
10: Up ← FindPatternsLessThanKInstance(Rcc)
11: while len(Up) �= 0 do

12: M ← FindRepoWithMostUncoveredPatterns(Ra, Cp, Up)
13: Rp ← FindMatchedPatternsForRepo(M,Ra)
14: Cp ← Cp ∪Rp

15: for e in Rp do

16: Rcc[e] ← Rcc[e] + 1
17: end for

18: Up ← FindPatternsLessThanKRepoInstance(Rcc)
19: Ra ← RemoveSelectedRepoFromList(M,Ra)
20: Cr ← Cr ∪M
21: end while

22: Cr ← RemoveDuplicateRepos(Cr)
23: return Cr

Step 6: Find Candidate Secrets: We wrote a Python

program to clone the repositories. We used GitPython [21] to

download all the branches of a repository and saved the files

into a Google Cloud VM Instance [22] (OS: Ubuntu 18.04

LTS, RAM: 16 GB, Persistent Disk: 500 GB). Next, we ran

two secret detection tools, TruffleHog [6] and Gitleaks [23], to

identify candidate secrets from the repositories. Both tools are

widely used for secret detection and can identify secrets buried

in the repository’s history and logs. We used these tools since

manually inspecting each file of a repository to find secrets

is infeasible and would be error-prone. The tools provide a

JSON output for each repository. The JSON output contains

the candidate secrets with additional metadata such as the

commit id, commit date, committer email, file path, start line,

end line, start column, and end column of the file where secrets
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are matched. Next, we wrote another Python program to read

each report generated by the tools and extract the candidate

secrets along with the metadata. Altogether, we identified

97,479 candidate secrets present in different commits of 818

repositories, of which 27,336 secrets are unique.

Step 7: Label Candidate Secrets: The first and second au-

thors manually inspected each candidate secret independently

using the metadata collected in Step 6. A candidate secret is

labeled as “True” if the secret is a true secret, otherwise labeled

as “False”. We observed the agreement of the labeling of

secrets with a Cohen’s Kappa [24] score of 0.86 between two

raters, which indicates a “near perfect agreement” according

to Landis and Koch’s interpretation [25]. The disagreements

were resolved after a discussion between the two raters. In

our dataset, we identified 15,084 true secrets, of which 4,014

secrets are unique.

Step 8: Developer Survey: We conducted a developer

survey to evaluate whether the committer of the secrets

agrees with our label. First, we selected unique secrets com-

mitted between 2021 and 2022 to avoid recall bias [26]

from the developers and identified 7,617 secrets. Since

GitHub allows the developers to use a noreply email ad-

dress (user-name@users.noreply.github.com) as

the commit email address [27], we filtered those secrets

and identified 2,115 secrets. Then, we selected 200 secrets

(randomly selected to avoid selection bias [28]) and emailed

the developers to know if they agreed with our labeling of the

secret and the reason they disagreed. In the email, we provided

the repository name, commit id with the commit GitHub link,

file path, start line, end line, and a screenshot of the code

where the secret is found. We received 56 responses, a 28.0%

response rate. Altogether, 44 (78.6%) respondents fully agreed

with our label, while 6 (10.7%) respondents disagreed. The

remaining 6 (10.7%) respondents were not sure.

III. DATA DESCRIPTION

In this section, we provide brief details of our dataset.

A. Curated and Derived Fields:

We collected the metadata related to the secret such as

repository name, commit id, commit date, committer email,

file path, start line and end line. To further enrich the dataset,

we have augmented the mined data with additional features

that are computed or derived from the source code files

and secrets. Example of computed and derived fields are

“file_type”, “is_template”, “in_url”, “entropy”, “character_set”

and “has_words”. An overview of our SecretBench dataset is

presented in Table I.

B. Data Characteristics

Our SecretBench dataset is diverse in terms of different

project characteristics. The dataset consists of 97,479 secrets in

818 repositories, and some repositories use multiple program-

ming languages. For example, the repository “paradite/hn-

ratio” [30] consists of two programming languages: JavaScript

TABLE I: Overview of the SecretBench Dataset

Field Name Description Data Type

id Unique identifier of the secret. Integer
secret Candidate secret string. String
repo_name Name of the repository. String
domain Domain of the repository such as GitHub. String
commit_id Commit hash where the secret is added. String
file_path File path where the secret is included. String
file_type Type of the file such as .py and .config. String
start_line Start line no. where the secret is present. Integer
end_line End line no. where the secret is present. Integer
start_column Start index of the secret in the start line. Integer
end_column End index of the secret in the end line. Integer
committer_
email

Email address of the committer. String

commit_date The timestamp of the commit. TimeStamp
label The ground truth label of the secret. Boolean
is_template Flag to indicate if the secret is a place-

holder such as “MY_PASSWORD".
Boolean

in_url Flag to indicate if the secret is part of URL
such as “http://user:pwd@site.com".

Boolean

entropy Shannon entropy of the secret. Float
character_set Characters used in the secret (Num-

berOnly, CharOnly, Any).
String

has_words Flag to indicate if any common English
word [29] of at least length of 4 is present
within the secret.

Boolean

length Length of the secret. Integer
is_multiline Flag to indicate if the secret is present in

multiple lines.
Boolean

category The category of the secret. String
file_identifier Unique identifier of the file to check the

secret from local system.
String

repo_iden
tifier

Unique identifier of the repository to check
the secret from local system.

String

and Shell. Altogether, our dataset repositories used 49 pro-

gramming languages. The top 5 programming languages based

on the number of repositories are Shell (459), JavaScript (414),

Python (312), Java (180), and Ruby (172). The number in

parenthesis denotes the number of repositories containing the

specific language. In addition, our dataset consists of secrets

present in 311 file types. The top 5 file types based on the

number of secrets in those files are js (10,412), nix (8,623),

json (8,132), txt (7,737), and xml (6,429). Besides, the top 5

file types based on the number of true secrets are txt (2,935),

toml (1,985), js (1,583), html (1,337), and pem (813). The

number in parenthesis denotes the number of secrets in the

specific file type.

The secrets in our dataset are categorized into eight cate-

gories and presented in Table II, sorted based on the number

of true secrets. More details of our dataset is presented in our

GitHub repository [31].

C. Data Storage

Our dataset is stored as relation structured data in Google

BigQuery (Dataset ID: dev-range-332204.secretbench.secrets).

Users can run SQL queries to access and expand the dataset.

In addition, we stored the downloaded 818 repositories and

the secret-containing individual source code files in Google

Cloud Storage. When downloaded into the local system, the

“repo_identifier” and “file_identifier” mentioned in Table I can
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TABLE II: The categories of secrets in SecretBench

Category True Secrets Total Secrets

Private Key 5,789 8,584
API Key and Secret 4,529 5,162
Authentication Key and Token 3,569 5,833
Other 524 66,690
Generic Secret 334 439
Database and Server URL 162 9,970
Password 150 705
Username 27 96

be used to locate the repository and specific source code file

related to the secret, respectively.

Since our dataset is sensitive, Google BigQuery and Cloud

Storage enable us to give access to the dataset to only selected

groups, such as fellow researchers and tool developers. To get

access to our dataset, researchers and tool developers need to

contact us through email.

IV. ORIGINALITY OF SECRETBENCH

Previous studies [2], [9], [10] have extracted secrets from

the GitHub repositories, but none made their dataset public

for future research purposes. Saha et al. [9] created a labeled

dataset of 5000 secrets (700 true secrets) from 300 GitHub

repositories using 32 regex patterns. With the dataset, they

applied machine learning algorithms to distinguish true secrets.

However, the repositories matched by regex patterns are not

filtered for demo and inactive projects, and no information is

provided on the files and languages covered. Sinha et al. [10]

created a dataset of 84 GitHub repositories and identified

pattern-based search and heuristics-driven filtering approaches

to reduce the false positive detection of secrets. However, their

dataset is small and contains only AWS credentials.

On the other hand, our dataset presented herein is large

and diverse. We applied 761 regex patterns of different types

of secrets and selected 818 GitHub repositories encompassing

49 programming languages. Our dataset consists of 97,479

labeled secrets, including 15,084 true secrets present in 311

different file types. We also provided different features related

to the secret, such as whether the secret is a template or present

in a URL. In addition, we will make our dataset available for

future researchers and tool developers.

V. RESEARCH OPPORTUNITIES

To prevent exposing secrets in VCS, there are several open-

source and proprietary secret detection tools [5]. However,

these tools are known to generate false positive warnings [8],

[9]. Researchers and tool developers can identify different

rules and patterns from false positive secrets to reduce false

positive warnings. However, mining data from open-source

and building ground-truth datasets is challenging and time-

consuming. In this case, our SecretBench dataset can be used

to circumvent the challenge and speed up the research and

tool evaluation on reducing false positives. In addition, since

several secret detection tools exist, developers face difficulty

choosing one tool out of many. Future research is needed to aid

developers in making informed choices about using different

secret detection tools through an analysis of the effectiveness

of the tools. In this case, our SecretBench dataset can act

as a benchmark for comparing the effectiveness of the secret

detection tools.

Dataset Enhancement: Our dataset can be further im-

proved by including repositories from other VCS services such

as GitLab and Bitbucket. In addition, we can add more features

regarding secrets to help in secret detection automatically

using machine learning algorithms. Example features include

whether the secrets have parentheses (possible function call),

begin with a $ sign (possible variable), and have context words

such as “dummy” and “fake” in the surrounding code of the

secret. We released these additional features online [32].

VI. ETHICS AND DATA PROTECTION

Since our dataset contains sensitive information such as true

secrets and the committer’s email addresses, we will distribute

our dataset selectively. Researchers and tool developers who

want to use our dataset will sign a data protection agreement

with us to avoid any unethical use. After that, we will give

access to our dataset from Google BigQuery and Cloud

Storage using their email addresses. In addition, at no point

we did not attempt to use the secrets to verify the validity of

the secrets. Instead, we labeled the secrets only by inspecting

the secrets and the source code context of the secrets.

To validate our labeling, we only contacted the developers

who committed the secrets. We did not reveal the identity of

the developers to any managers or higher officials where they

work. In addition, we are notifying every developer in our

dataset to remove the secrets from their VCS.

VII. THREATS TO VALIDITY

In this section, we briefly discuss the limitations of our

paper. VCS Selection: We did not consider other VCS services

such as GitLab [33] and Bitbucket [34]. In the future, we plan

to expand our dataset by including repositories of other VCS

services. Manual Analysis Bias: The labeling of the secrets in

our dataset is susceptible to bias. To mitigate the bias, a second

rater labeled the secrets independently, and we resolved the

disagreements. Recall Bias: For the developer survey, though

we have selected secrets that are committed in 2021 and

2022, the responses could have recall bias. We provided the

developers with a screenshot of the secret-containing source

code and additional metadata to mitigate the bias.

VIII. CONCLUSION

We provide the SecretBench dataset consisting of 97,479

labeled secrets extracted from 818 GitHub repositories encom-

passing 49 programming languages and 311 file types. Our

dataset will aid in evaluating and improving secret detection

tools, thus preventing secret leakage in VCS and application

packages. By adding new projects and features, we aim to

expand our dataset. We invite the research community to join

our effort to expand and enrich the dataset to create novel

software secret management research opportunities.
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