2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE) | 978-1-6654-5701-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICSE48619.2023.00141

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

What Challenges Do Developers Face About
Checked-in Secrets in Software Artifacts?

Setu Kumar Basak*, Lorenzo Neilf, Bradley Reavest and Laurie Williams?
North Carolina State University, USA
Email: *sbasak4 @ncsu.edu, Tlcneil@ncsu.edu, 1bgreaves@ncsu.edu, $1awilli3 @ncsu.edu

Abstract—Throughout 2021, GitGuardian’s monitoring of pub-
lic GitHub repositories revealed a two-fold increase in the
number of secrets (database credentials, API keys, and other
credentials) exposed compared to 2020, accumulating more than
six million secrets. To our knowledge, the challenges developers
face to avoid checked-in secrets are not yet characterized. The
goal of our paper is to aid researchers and tool developers in
understanding and prioritizing opportunities for future research
and tool automation for mitigating checked-in secrets through
an empirical investigation of challenges and solutions related to
checked-in secrets. We extract 779 questions related to checked-
in secrets on Stack Exchange and apply qualitative analysis to
determine the challenges and the solutions posed by others for
each of the challenges. We identify 27 challenges and 13 solutions.
The four most common challenges, in ranked order, are: (i)
store/version of secrets during deployment; (ii) store/version of
secrets in source code; (iii) ignore/hide of secrets in source
code; and (iv) sanitize VCS history. The three most common
solutions, in ranked order, are: (i) move secrets out of source
code/version control and use template config file; (ii) secret
management in deployment; and (iii) use local environment
variables. Our findings indicate that the same solution has been
mentioned to mitigate multiple challenges. However, our findings
also identify an increasing trend in questions lacking accepted
solutions substantiating the need for future research and tool
automation on managing secrets.

I. INTRODUCTION

In March 2022, GitGuardian stated that the number of
secrets exposed on public GitHub repositories doubled in
2021 compared to 2020, reaching a total of over six million
secrets [1]. To perform authentication across software artifacts
as part of system integration, software developers need secrets
(database credentials, API keys, and other credentials). During
software development, these secrets may need to be shared by
developers working on a team, and after deployment may need
to be distributed to applications.

Version control system (VCS) repositories, such as
GitHub [2] and GitLab [3], are widely used by developers for
managing source code. However, the VCS repository’s nature
makes securing secrets in developer projects challenging. In
2019, Meli et al. [4] studied a 13% snapshot of public GitHub
repositories and found over 200K API keys checked into the
repositories. Secrets are not only pushed into VCS repositories
by developers but also kept in Android and iOS application
packages [5]. Secrets in software artifacts (CWE-798: Use
of Hard-coded Credentials [6]) have also been identified as
a CWE Top 25 Most Dangerous Software Weaknesses [7].

While the checked-in secrets issue is well-known through
prior works [4], [8], [9], [10], little is known about devel-
opers’ technical challenges in preventing secrets from being
stored in software artifacts. Developers query online forums,
such as a developer who posted a question on how to keep
secrets out of VCS repositories [11]. Systematically analyzing
questions asked by developers and solutions posed by others
can reveal the technical challenges and practices adopted by
the developers to protect the secrets.

The goal of our paper is to aid researchers and tool
developers in understanding and prioritizing opportunities for
future research and tool automation for mitigating checked-in
secrets through an empirical investigation of challenges and
solutions related to checked-in secrets.

In this study, we analyze developers’ questions and related
solutions about checked-in secrets and provide answers to the
following research questions:

« RQI1: What are the technical challenges faced by devel-
opers related to checked-in secrets?

« RQ2: What solutions do developers get for mitigating
checked-in secrets?

Users can post questions describing a particular technical
challenge for which they need support on Stack Exchange [12],
a major question and answer (Q&A) site. An answer is a
suggestion or solution to a technical challenge. Users can pose
multiple answers to a question, but either zero or one answer
is accepted. The answer approved by the user who posted
the question is termed as the accepted answer. We refer to a
question lacking an accepted answer or having no answers as
a question with unsatisfactory answer.

We extracted 779 questions related to checked-in secrets
from Stack Exchange spanning from September 2008 to De-
cember 2021. From these questions, we conducted a qualitative
analytical approach called card sorting [13] to determine the
question categories and related answer categories. We also
perform quantitative analysis of question categories, which
will help researchers and tool developers prioritize further
study and tool development. In addition, the answer categories
we presented give insights into which practices developers
may have adopted. Following is a summary of the paper’s
contributions:

e A set of challenges faced by the developers about
checked-in secrets; and

1558-1225/23/$31.00 ©2023 IEEE 1635
DOI 10.1109/ICSE48619.2023.00141
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

o A set of solutions or suggestions posed by other devel-
opers to mitigate the checked-in secret challenges

The rest of our paper is structured as follows: The method-
ology used in our work is described in Section II. We discuss
our findings and recommendations in Section III and IV, re-
spectively. The ethics and limitations of our paper is discussed
in Section V and VI, respectively. Section VII summarizes
previous research findings pertinent to our paper. Finally,
Section VIII draws the paper’s conclusion.

II. METHODOLOGY

We provide our four-step process for data collection and
question and answer analysis as follows:

A. Step 1: Q&A Site Selection

For collecting questions related to checked-in secrets, we
selected Stack Exchange [12] which has been extensively
used to gain insights from developers’ questions to align
future research and guide tools providers [14], [15]. Stack
Exchange consists of 179 Q&A sites [12]. We extract the
name and description of all the sites and manually read them.
Then, we select sites that allow questions related to software
development, software engineering, and software security. For
example, the site “Software Engineering” can feature queries
from developers, according to the site description “Q&A for
professionals, academics, and students working within the
systems development life cycle”. The first author selected
three Q&A sites: “Stack Overflow” [16], “Information Secu-
rity” [17] and “Software Engineering” [18]. The basic statistics
of the three sites are shown in Table I. In Step 2, we use these
sites for question collection.

TABLE I: Basic statistics of Stack Overflow (SO), Information
Security (IS) and Software Engineering (SE) sites'

‘ Site ‘ #Questions ‘ #Answers ‘ #Users ‘ #Questions/Day ‘

SO 23m 34m 18m 5.5k
1S 66k 114k 228k 9.6
SE 61k 173k 352k 5.5

B. Step 2: Content Collection

Start with initial tags and keywords for title and body:
To increase the likelihood of speedy response and aid in
automated search, each question can be given one or more
tags [19]. Tags allow the extraction of questions that are
specific to a given technology. For example, the tag “secret-
key” can be used for identifying questions related to checked-
in secrets according to the tag description “Use this tag for
questions related to the creation, storage and usage of secret
keys”. Initially, we select “secret-key”” and “‘access-keys” tags.
Users can also post questions without giving tags. To avoid
missing candidate questions, we use secrets-related keywords,
such as “expose”, “protect”, and “sensitive”, to search in the
body and title of the questions to extract relevant questions.

'Based on data retrieved from the Stack Exchange Data Explorer [12] on
June 2022

1636

Extract questions from Stack Exchange data explorer:
The Stack Exchange dataset is accessible publicly via data
dumps [20] and the Stack Exchange data explorer [19]. The
data dumps are released quarterly, whereas the online Stack
Exchange data explorer provides the most recent data. We use
the tags and keywords in a SQL query and extract data from
the Stack Exchange data explorer instead of data dumps. We
collect the ID, title, body, accepted answer, view count, score,
creation date, closed date, and tags of each extracted question
from the three sites identified in Step 1. We collected 6022,
2591, and 1415 questions from Stack Overflow, Information
Security, and Software Engineering sites, respectively.

Identify relevant questions: We manually inspected each
question’s title and body and accepted questions with a dis-
cussion related to checked-in secrets while rejecting all others.

Find new relevant tags and keywords: We use snowball
sampling [21] which is a non-probability sample selection
technique to locate hidden populations by relying on the char-
acteristics of initial sample. Since a question can have multiple
tags, we find new relevant tags by looking at all the tags
present in the questions. For example, the question “Where to
keep static information securely in Android app?” [22] can be
found by “secret-key” tag. The question also has tags “access-
token” and “security” which we can add to our list of tags
for finding more questions. Similarly, add new keywords by
reading the title and body of the question. Altogether, we used
59 tags and 42 keywords which can be found in Table II.

TABLE II: List of Tags and Keywords used to extract ques-
tions from Stack Exchange sites

\ Tags \ Keywords \
secret-key, access-keys, access-token, security, | expose, exposing
credentials, passwords, api-key, private-key, | protect, protecting,
app-secret, connection-string, sensitive-data, | sensitive, remove;
environment-variables, config-files, certificate, | removing, commit,
configuration, google-api, amazon-s3, oauth, | committing, share
youtube-api, stripe-api, square, paypal, | sharing, keep, keeping
braintree, amazon-mws, gmail-api, twilio- | manage, managing,
api, mailgun, mailchimp, google-drive-api, | delete, deleting
key-management, development-process, | clear, clearing
coding-style, password-protection, source- | ignore, ignoring

code-protection, code-security, source-code,
secure-coding, open-source, azure-key-vault,

secure, securing, store
storing, hide, hiding

password-storage, password-management, | avoid, avoiding,
key-exchange, confidentiality, sensitive-data- | push, pushing, host|
exposure, web-development, git, gitignore, | hosting, security
version-control, ~github, svn, tfs, gitlab, | connection string,
repository, bitbucket, launchpad, mercurial, secret, password

git-rewrite-history, git-history, git-filter-branch | credential, private key]
token, api key, access

key

Repeat and stop criteria: We repeat the previous step until
we no longer found new tags and keywords in each set of
extracted questions.

Finally, we identified 694 questions in Stack Overflow, 40
questions in Information Security, and 45 questions in Soft-
ware Engineering. In total, we identified 779 questions from
the three sites spanning from September 2008 to December
2021 which are available online [23]. The count of questions
from each year before and after filtering is shown in Table III.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Question Count Per Year for Stack Overflow
(SO), Information Security (IS) and Software Engineer-
ing (SE) sites

[Year | SO*[SO°| IS* | ISP[SE® | SEP| Total*| Total®]
2008 | 23 4 0 0 0 0 23 4
2009 | 136 | 22 0 0 0 0 136 22
2010 | 212 | 30 5 0 | 28 1 245 31
2011 | 284 | 43 | 73 | 0 | 163 | 5 520 48
2012 | 370 | 44 | 129 | 2 | 170 | 8 669 54
2013 | 447 | 48 | 160 | 6 | 146 | 7 753 61
2014 | 485 | 41 | 257 | 5 | 136 | 3 878 49
2015 | 481 | 47 | 361 | 5 | 152 | 4 994 56
2016 | 581 | 51 | 340 | 6 | 126 | 2 | 1047 59
2017 | 581 | 76 | 323 | 5 | 110 | 4 | 1014 385
2018 | 538 | 63 | 268 | 5 | 107 | 4 913 72
2019 | 518 | 54 | 235 | 1 | 102 | 3 855 58
2020 | 722 | 88 | 226 | 1 | 90 | 2 | 1038 51
2021 | 644 | 83 | 214 | 4 | &5 2 943 39

2 Total number of questions before filtering
b Total number of questions after filtering

C. Step 3: Identifying Question and Answer Categories

From the 779 checked-in secrets-related questions, two
authors independently apply card sorting [13], a qualitative
analysis technique, to identify the question and answer cate-
gories. Card sorting is a qualitative technique for classifying
textual items into categories [13]. Card sorting aids in creating
informative categories and is commonly used in research [15].
The following three phases of card sorting are implemented in
accordance with Zimmerman et al. [13]’s recommendations.

Preparation: Each question’s ID, title, body, and accepted
answer are collected.

Execution: The first and second authors perform card
sorting by giving labels to each question and the corresponding
answer and sort into categories. The body and title of the
questions are used to derive question categories, whereas the
accepted answers are used to derive answer categories.

Analysis: The obtained question and answer categories
are cross-checked by both authors after the first and second
authors finish their card sorting analysis individually. We use
a negotiated agreement [24] to resolve the disagreed-upon
categories. A negotiated agreement is an approach to discuss
the disagreements among the raters to resolve disagreements
when two or more raters code the same artifacts [24]. We
resolve disagreements by discarding categories inappropriate
for checked-in secrets or combining similar categories into
one category. The first author determines 32 unique question
categories and 16 unique answer categories. The second au-
thor determines 30 unique question categories and 14 unique
answer categories. The first and second authors finalize 27
question and 13 answer categories by resolving the disagree-
ments presented in Table IV and Section III, respectively.

D. Step 4: Analysis

We use the identified question and answer categories from
Step 3 to answer our research questions.

1637

1) RQ1: What are the technical challenges faced by devel-
opers related to checked-in secrets? We break down RQI into
four sub-research questions as below:

RQ1.1 What are the questions developers ask about
checked-in secrets?

RQ1.2 Which questions related to checked-in secrets
exhibit more unsatisfactory answers?

RQ1.3 Which questions are the most popular among
developers related to checked-in secrets?

RQ1.4 How do question categories related to checked-in
secrets trend over time?

We investigate the four sub-research questions as following:

RQ1.1: What are the questions developers ask about
checked-in secrets? We first provide the set of question
categories to answer RQ1.1 along with a description and an
example of each category which we determine from Step
3. Next, we compute the proportion of questions for each
category z, QC(x).

RQ1.2: Which questions related to checked-in secrets
exhibit more unsatisfactory answers? A question with no
accepted answer could indicate that the developer who asked
the question was dissatisfied with the responses. Lacking
accepted answers or having no answers may suggest an
important category that needs assistance. We answer RQ1.2 by
quantifying which of the checked-in secrets-related question
categories has more questions with unsatisfactory answers.
We compute the proportion of questions with unsatisfactory
answers for question category x, UNC(z).

Furthermore, we compute the proportion of questions with
unsatisfactory answers for each year y, TUN(y) to see how
the proportion of unsatisfactory answers related to checked-in
secrets has changed over time.

RQ1.3: Which questions are the most popular among
developers related to checked-in secrets? Developers can
view a question and corresponding answers without becoming
registered users on Stack Exchange. The number of total visits
for a question by registered and non-registered users of the
website is used to calculate the View Count of a question [19].
The View Count can help us observe which questions are
most popular among the developers. Registered users can
also vote up or down on questions. Upvotes indicate that
users find the question helpful, well-researched, or thought-
provoking. Downvotes indicate that users believe the question
lacks real explanation, contains misleading information, or is
poorly researched. A question’s Score on Stack Exchange is
calculated by subtracting the number of downvotes from the
number of upvotes [25]. Rather than selecting a single metric,
we use both View Count and the Score of the question as a
better approximation for question popularity. Previous studies
use a similar a popularity metric [14].

We use Spearman’s rho p [26] to verify the rank correlation
between View Count and Score. View Count is found to have
a significant correlation with Score (p = 0.72, a < 0.001).
We use Feature Scaling [27] to normalize the View Count and
Score values of each question by Equation 1 since the range
of both the metrics are different.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

X - Xmin

Xnor =
Xmaz - X’mzn

(1

where X denotes the original value, X,,;, denotes the
range’s minimum value, X,,,, denotes the range’s maximum
value and X,,,, denotes the normalized value.

To determine how popular a question is, we use the average
of normalized View Count and Score values. Next, we calcu-
late the popularity of each category x, PQ(z) using Equation
2. A question category x with a high popularity score means
developers need support to mitigate the specific challenge.

sum of popularity score of questions in category z
total questions in category x

PQ(z) =

2)

RQ1.4: How do question categories related to checked-
in secrets trend over time? We examine temporal trends,
similar to previous studies [15], [28], to see how the number of
questions relevant to the identified question categories changes
over time. We first use Equation 3 to compute the temporal
trend of category x for each month m.

number of questions of category x in month m
TT(z, m) =

number of questions in month m

3)

Then, to see whether the observed trend is significantly
increasing or decreasing, we use the Cox-Stuart test [29], a
statistical method that compares earlier data points in a time
series to later data points to evaluate the trend. To assess which
question categories have increasing or decreasing trends, we
apply a 95% statistical confidence level (p < 0.05). We term
the temporal trend to be “Consistent” if we can not determine
whether the trend is increasing or decreasing.

2) RQ2: What solutions do developers get for mitigating
checked-in secrets? To answer RQ2, we first provide the an-
swer categories to mitigate the challenges related to checked-in
secrets, which we determine from Step 3. Then, we provide
a mapping of answer categories to each of the question
categories. From the question-answer category mapping, we
can understand the solutions posed by developers to mitigate
a specific technical challenge.

ITI. RESULTS

In this section, we discuss our findings and answer our
research questions.

A. Answer to RQI1: What are the technical challenges faced
by developers related to checked-in secrets?

We answer the four sub-research questions of RQI in the
following sub sections.

1638

100 100

90

No. of Questions
UNC(%)

2008 2009 2010 2011 2012 2013 2014 2015

Year

2016 2017 2018 2019 2020 2021

Questions in Yearx ~ mmmm Questions with Unsatisfactory Answer in Yearx e UNC(%)

Fig. 1: Trend of Unsatisfactory Answer Per Year

1) Answer to RQ1.1: What are the questions developers
ask about checked-in secrets? We identify 27 unique question
categories of 9 domains, which we present in Table IV sorted
based on the number of questions in a domain. The domain
name, question category name, a description of the question
category, and a representative example are provided for all the
question categories. The number of questions in each category
is indicated in parenthesis in the “Category” column.

The proportion of questions in each identified question
category and the other four metrics mentioned in Section
Il are presented in Table V. The proportion of questions,
percentage of unsatisfactory answers, popularity score, Cox-
Stuart test value of temporal trend of questions, and the
identified trend of questions in each question category are
represented in the columns “QC(%)”, “UNC(%) (Count)”,
“PQ”, “Cox Stuart, p-value” and “Trend” respectively. Ac-
cording to Table V, the top four question categories based
on QC metric are “(Deployment) Store/Version”, “(Secrets)
Store/Version”, “(Secrets) Ignore/Hide”, and “(VCS Feature)
History Sanitize”. These four categories constitute 56.1% of
all questions.

2) Answer to RQ1.2: Which questions related to checked-in
secrets exhibit more unsatisfactory answers? Table V shows
that UNC scores of more than 40% are found in 16 of
the 27 identified question categories. Our finding indicates
that 44.3% of questions within our dataset have unsatisfac-
tory answers. The top four question categories, “(Deploy-
ment) Store/Version”, “(Secrets) Store/Version”, “(Secrets) Ig-
nore/Hide” and “(VCS Feature) History Sanitize” have UNC
scores of 43.0%, 47.1%, 34.1% and 45.7% respectively.

Figure 1 presents the trend of unsatisfactory answers for
each year between 2008 and 2021. We observe that the per-
centage of unsatisfactory answers shows an increasing trend.
More than 50% of questions have unsatisfactory answers since
2017, thus indicating that the developers are not getting desired
answers to mitigate the challenges of checked-in secrets.

3) Answer to RQ1.3: Which questions are the most popular
among developers related to checked-in secrets? The popular-
ity of each question category is presented in the “PQ” column
of Table V. In our study, the popularity score varies between
0.005 and 0.030. For example, a question with Score 0 and
View Count 17 has a PQ score of 0.005, whereas a question

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: 27 question categories. References to all the examples and developer quotes are available online [30]

[D [Category (Count) | Description [Exampl
Q1: Store/Version | We observe that the same questions of knowing the best way to store secrets have been asked for | How should 1
(121) different technologies, such as ASP.NET and Python. We also observe developers asking about | store a password
Secrets versioning the secrets for environments, such as development and production environments, where | used by a service
they do not know the consequences of storing secrets in VCS repositories. written in .NET?
Q2: Ignore/Hide | We observe that developers are aware of the consequences of secrets presence in the source code | Hide API keys
(85) and want to hide the secrets. As one developer stated: “The credentials are hard-coded at the | from github public
moment, but they should not be. What is the proper way of hiding them?”. Developers also question | repo?
about challenges faced in avoiding secrets from being committed to the VCS repository.
Q3: Exploitability | Developers do not know whether storing a secret such as a Google API key or testing credentials | Is having sensitive
(30) in source code or a VCS repository can be exploited. For example, one developer stated: “I'm | data in a PHP
making use of google API for location. Can the key be hardcoded? ... If it’s sensitive, why is it | script secure?
sensitive and how can attackers exploit this?”.
Q4: Distribute | Developers ask questions about sharing secrets with other developers so that they can run the | Push to GitHub
(11) project successfully in their environment. As one developer stated: “How can I keep my API key | that project is still
secret, but have my project still be functional if someone clones the repo?”. We observe that | functional —when
developers are unsure how to share secrets with specific developers without exposing them. the repo cloned?
Q5: Restriction | We observe questions posted for restricting a specific group of developers from having access to | What are ways to
2) secrets. For example, “What happens if a malicious developer decides to steal the secret (say, an | manage secrets in
API key) and use it for malicious purposes? Is there a way to store secrets such that a backend | a big organisa-
developer doesn’t have direct access to the API Key?”. tion?
Deploy- Q6: Store/Version Platform as a service. (PgaS), such as Heroku [31] and Google App Engine [32], are 'commonly Where to store
ment (149) used to manage applications. During deployment, the code is fetched from the repositories. We | sensitive files for
observe developers asking questions about where to store the secrets needed for deployment since | heroku platform?
secrets are not pushed in the repository. Developers want to know the secure way of versioning
secrets for deployment environments. This question category is the most frequently asked.
Q7: Improper | As the configuration (config) files are ignored in the repository and source code is fetched from the | Azure Django
Configuration repository for deployment, developers are getting exceptions due to improper configuration in the | App has
(34) deployment server. We observe developers asking for help resolving the build and deploy-related | SECRET_KEY
exceptions. We observe that most of the exceptions are during Django application deployment. Exception
Q8: Ignore/Hide | During the build and deployment of an application, developers use the secrets present in the | Docker-Compose
(15) continuous integration and continuous deployment (CI/CD) scripts or the VCS repository. We | with Gitlab
observe developers asking to know the best practice of hiding the secrets from CI/CD scripts or | CI managing
repositories and perform successful build and deploy. sensitive data
Q9: Dot File (3) Developers deploy directly from VCS repositories using Git tools. They push sensitive dot files | How to make .git-
such as .git and .gitignore files that can be accessed at the website’s root location. Previous research | ignore safe?
[4] has found secrets in the .gitignore file, even though the .gitignore file is designed to restrict
unintended source files committing into VCS. We observe developers facing challenges restricting
the dot files” access from the website’s root.
Q10: History San- Developers accidentally or knowingly push sensitive information into the VCS repository. One | How to remove
VCS itize (81) developer stated: “I am using a shared github repository to collaborate on a project ... I committed | sensitive data
Feature and pushed a script file containing a password which I don’t want to share”. The sensitive | from a file in
information remains in the VCS history even when removed in another commit. Developers ask | github history?
questions about sanitizing the VCS history using different tools but could not use the tools properly.
Rahman et al. [33] also observed developers bypassing secret scanning tools warning because of
facing technical challenges of eliminating secrets completely from the VCS history.
Ql1: Ignore Al- Knowing the exploitability of secrets present in source code, developers want to commit a default | Stop tracking file
ready Committed file without secrets. However, they want to untrack further local changes of the file from VCS | in Git after a first
(14) repositories to avoid accidentally committing the local changes, and VCS does not support the | commit?
functionality [34]. As a result, we observe developers ask questions about ignoring an already-
committed file from VCS tracking.
QI2: Line Level “Do any version control systems allow you to specify line level security restrictions rather than | hide or change
Security (11) file level?” stated by one developer. VCS, such as Git, only supports file-level restrictions. We | value a line at git
observe developers wanting to mark specific lines in a file that contains secrets and tell the VCS | commit but not lo-
to secure the lines to avoid exposing the secrets. cally
Q13: Encrypt File | We observe developers asking questions about if there is a way to encrypt a secrets-containing | Encrypting files
(1) file before committing to VCS repositories. added to repos
Ql4: Conlfig files contain secrets. We observe developers face challenges storing the config files in the | Preferred way to
Store/Version VCS repository since it would expose the secrets. For example, one developer stated: “I'd like to | store application
Configur- . .) ; , ” L
ation File (56)) version control the whole project, znc{udzng conﬁg ﬁle,.but 1 do'n 1 want to ;Imre my passwq‘d; . conﬁgu(attons?
Q15: Ignore/Hide | We observe developers asking questions about ignoring or hiding sensitive secrets-containing | Protecting the
(32) config files such as the web.config and database.yml files from the VCS repository. Developers | sensitive files
also complain about the lack of documentation or suggestions the specific technology provides | from pushing to
on ignoring config files. version control?
QI16: Distribute Developers face challenges sharing secrets-containing config files with other team members | Managing project
[©)] without exposing them publicly. For example, one developer stated: “Should I add these 2 files | config files in
to versioning or do I have to distribute these files manually to other team members?”. repository?
Q17: Exploitabil- Developers place environment variables replacing secrets in the config files and want to confirm | Storing sensitive
ity (3) the exploitability from outside. We also observe developers placing secrets in PHP .ini files and | info. inside .ini
asking about the exploitability of the secrets. For example, one developer stated: “Is better to | file is good or bad
hide somewhere .ini file and deny access via .htaccess?”. approach?
Q18: Accessibility | To avoid exposing secrets, developers load secrets dynamically by referencing external files in | How to securely
3) config files but get an undefined error. An example includes loading an external database settings | use credentials
file into a web.config file. We observe developers facing challenges in avoiding the undefined | outside
error and could not find the proper documentation. web.config?
Pre-open | Q19: Cross-check | We observe developers asking questions before open-sourcing their projects. The questions include | OpenAuth & Open
Source (52) should developers clean VCS history and what checklists should they run to avoid exposing secrets. | Source Projects?

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

1639

TABLE IV: 27 question categories (Continued). References to all the examples and developer quotes are available online [30]

[Domain | Category (Count) [Description | Example
Client- Q20: Store (28) Developers work on client-side applications without a server-side implementation and store secrets | Securely —storing
Side on the client-side, such as in Javascript and Android applications. Developers face challenges in | secret data in a
Applicat- storing the secrets securely as secrets can easily be exposed from the developer console or by | client-side — web
ion decompiling the binary packages. application?

Q21: Hide (14) One developer stated: “Using Javascript however, I don’t feel comfortable that the client secret | How do 1 hide
is exposed in my code ... because if someone looks at my source they have the client_id and | API key in create-
client_secret which makes it possible to authenticate themselves with my code”. We observe | react-app?
developers looking for ways to hide client-side application secrets.

Q22: Exploitabil- Developers ask questions to confirm whether the implementation of keeping secrets in the client- | In iOS, is there

ity (5) side application code is exploitable or not. “Could I sleep at night knowing that I won’t see | leak risk if I write
“Super Cool Web App Hacked, change your passwords!” all over HN and Reddit ... as a result | the secret key in
of this implementation.” stated by one developer. the code?

Secure- Q23: Private One developer stated: “Is it safe for me to store my Amazon S3 keys/secrets in a private Github | Storing Amazon
ness Repository (13) repo? I know that it is not safe for a public repo but I am wondering if a private repo is safe?”. | S3 keys in private
We observe developers asking about the safety of secrets present in a private repository. repo

Q24: Unpushed | We observe developers ask questions about the security of secrets if they do not push the secrets- | Commit password

Branch (1) containing branch to a public repository. For example, one developer stated: “Is there any chance | to branch that
my sensitive data could end up in the remote repository index somehow?”. never pushed?

External | Q25: Setup (3) We observe developers moving secrets to external secret management services, such as HashiCorp | Storing DB Con-
Secret Vault [35] and Azure Key Vault [36]. However, developers face challenges in properly setting up | nection Strings in
Manage- these hardware security modules. Examples of such questions include where to store the vault | Azure Key Vault
ment key, the feasibility of using vaults, and how to store the database connection strings in the vault.

Others Q26: Importance | We observe developers asking questions about why they should keep secrets out of the VCS | Why should you

2) repository. For example, one developer stated: “It seems like common knowledge that it’s a good | keep secrets out of
practice to keep secrets files ... checked out of your git repository ... Why?”. your repository?

Q27: Decision (1) One developer stated: “Today I found what looked to be my supervisor’s password in some code | What should I do
in version control ... How should I handle this situation?”. We observe developers being hesitant | when I find sensi-
about making decisions when they find secrets in the VCS repository. tive info in VCS?

TABLE V: Summary of identified question categories, sorted by decreasing question proportion (QC)

[(Domain) Question Category [QC (%) | UNC (%) (Count) [PQ [Cox Stuart, p-value | Trend |

(Deployment) Store/Version 19.2 43.0 (64) 0.020 1, 0.11 Consistent
(Secrets) Store/Version 15.6 47.1 (57) 0.023 1, 0.003 Increasing
(Secrets) Ignore/Hide 10.9 34.1 (29) 0.015 1, 0.11 Consistent
(VCS Feature) History Sanitize 10.4 45.7 (37) 0.018 1, < 0.001 Increasing
(Configuration File) Store/Version 7.2 39.3 (22) 0.022 M, 0.5 Consistent
(Pre-open Source) Cross-check 6.7 40.4 (21) 0.010 4,03 Consistent
(Deployment) Improper Configuration 4.4 58.8 (20) 0.008 1, < 0.001 Increasing
(Configuration File) Ignore/Hide 4.1 40.6 (13) 0.008 ., 0.34 Consistent
(Secrets) Exploitability 3.9 56.7 (17) 0.014 4, 0.59 Consistent
(Client-Side Application) Store 3.6 60.7 (17) 0.030 1, 0.002 Increasing
(Deployment) Ignore/Hide 1.9 46.7 (7) 0.010 1, 0.09 Consistent
(VCS Feature) Ignore Already Committed 1.8 28.6 (4) 0.007 1, 0.29 Consistent
(Client-Side Application) Hide 1.8 35.7 (5) 0.022 1, 0.13 Consistent
(Secureness) Private Repository 1.7 46.2 (6) 0.014 1, 0.27 Consistent
(Secrets) Distribute 14 63.6 (7) 0.007 1, 0.11 Consistent
(VCS Feature) Line Level Security 1.4 36.4 (4) 0.007 4,05 Consistent
(Configuration File) Distribute 1.2 66.7 (6) 0.007 1, 0.14 Consistent
(Client-Side Application) Exploitability 0.6 40.0 (2) 0.008 1, 0.5 Consistent
(Configuration File) Exploitability 0.4 0.0 (0) 0.012 1, 0.5 Consistent
(Configuration File) Accessibility 0.4 33.3 (1) 0.008 1, 0.13 Consistent
(Deployment) Dot File 0.4 33.3 (1) 0.007 M, 0.5 Consistent
(External Secret Management) Setup 0.4 66.7 (2) 0.015 1, 0.13 Consistent
(Others) Importance 0.3 100.0 (2) 0.005 1, 0.25 Consistent
(Secrets) Restriction 0.3 50.0 (1) 0.007 4, 0.75 Consistent
(VCS Feature) Encrypt File 0.1 0.0 (0) 0.008 4,05 Consistent
(Secureness) Unpushed Branch 0.1 0.0 (0) 0.005 ,0.5 Consistent
(Others) Decision 0.1 0.0 (0) 0.008 4,05 Consistent
with Score 12 and View Count 17847 has a PQ score of ranking of the 27 question categories:
0.030. The top three most popular question categories are o “(Client-Side Application) Store” and “(Client-Side Ap-

“(Client-Side Application) Store”, “(Secrets) Store/Version”
and “(Client-Side Application) Hide”. In Table VI, we also
provide the question categories in descending order, sorted
by PQ and UNC(%). Further observations are aided by the

plication) Hide” rank first and third based on the popu-
larity score (PQ) and have a UNC score of 60.7% and
35.7%, respectively. The observation indicates that the
questions related to storing and hiding secrets in client-

1640

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Ranked Order of Question Categories Based on Popularity (PQ) and Unsatisfactory Answer Percentage (UNC)

[Metric |

(Domain) Question Category (Sorted in decreasing order of metric) \

PQ

(Client-Side Application) Store, (Secrets) Store/Version, (Client-Side Application) Hide, (Configuration File) Store/Version, (Deployment)
Store/Version, (VCS Feature) History Sanitize, (Secrets) Ignore/Hide, (External Secret Management) Setup, (Secureness) Private Repository,
(Secrets) Exploitability, (Configuration File) Exploitability, (Pre-open Source) Cross-check, (Deployment) Ignore/Hide, (VCS Feature)
Encrypt File, (Configuration File) Accessibility, (Others) Decision, (Configuration File) Ignore/Hide, (Client-Side Application) Exploitability,
(Deployment) Improper Configuration, (Deployment) Dot File, (Secrets) Restriction, (Secrets) Distribute, (Configuration File) Distribute, (VCS
Feature) Line Level Security, (VCS Feature) Ignore Already Committed, (Others) Importance, (Secureness) Unpushed Branch

UNC
(%)

(Others) Importance, (Configuration File) Distribute, (External Secret Management) Setup, (Secrets) Distribute, (Client-Side Application)
Store, (Deployment) Improper Configuration, (Secrets) Exploitability, (Secrets) Restriction, (Secrets) Store/Version, (Deployment) Ignore/Hide,
(Secureness) Private Repository, (VCS Feature) History Sanitize, (Deployment) Store/Version, (Configuration File) Ignore/Hide, (Pre-open
Source) Cross-check, (Client-Side Application) Exploitability, (Configuration File) Store/Version, (VCS Feature) Line Level Security, (Client-
Side Application) Hide, (Secret) Ignore/Hide, (Configuration File) Accessibility, (Deployment) Dot File, (VCS Feature) Ignore Already
Committed, (Configuration File) Exploitability, (Others) Decision, (Secureness) Unpushed Branch, (VCS Feature) Encrypt File

side applications are most popular among developers but
do not receive satisfactory answers. Therefore, future
research is needed on the client-side frameworks for
securely managing secrets.

“(Secrets) Store/Version” ranks second based on the pop-
ularity score (PQ) and has a UNC score of 47.1%. Our
observation indicates that developers are showing more
interest in the question of securely storing secrets for
different technology frameworks such as ASP.NET, Ruby
on Rails and Python. But, developers could not implement
propetrly because of lacking proper documentation.
“(Secrets) Distribute” and “(Deployment) Improper Con-
figuration” question categories rank fourth and sixth
for unsatisfactory answers, respectively. However, these
question categories rank 22"¢ and 19*" based on popular-
ity score. Though the popularity score is low, developers
are not receiving satisfactory answers for distributing se-
crets and fixing improper configuration errors during de-
ployment. Therefore, future research can address secure
secret distribution, and respective technology providers
can provide proper documentation to fix improper con-
figuration errors during deployment.

We observe developers searching for VCS features to
ignore the tracking of already-committed files to avoid
local changes being accidentally committed in the VCS
repository. An option exists to delete the file from remote
repository and then ignore the file by placing the file name
in the .gitignore file. However, developers do not want to
delete and want a copy of the file in the remote repository,
which VCS does not support [37]. Developers are also
looking for line-level restrictions in VCS to hide secrets
in particular lines of the source code. Though VCS has a
feature called git smudge-clean [38] which can be used
to replace a secret with a dummy value during commits,
developers face difficulties in implementing the process.
Despite “(VCS Feature) Ignore Already Committed” and
“(VCS Feature) Line Level Security” ranking 25" and
24%" respectively, based on popularity score, the two
question categories consist of 25 questions where devel-
opers are seeking the new VCS feature.

4) Answer to RQ1.4: How do question categories related
to_checked-in secrets trend over time? Figure 2 depicts the

1641

temporal trend of 15 question categories that have at least
10 questions. For each category, the figure provides a scatter
plot with a smoothing plot with the trends highlighted. We
can understand whether the trend of each question category
is increasing, decreasing, or consistent from the “Cox Stuart”,
“p-value” and “Trend” columns of Table V. Table V highlights
the question categories with a p-value less than 0.05 in grey.

From Table V, we observe an increasing trend in four ques-
tion categories. While only four question categories showed
increases, the trend is across 13 years of the data. We
also observe that developers are posting more questions in
“(Secrets) Store/Version”, “(VCS Feature) History Sanitize”,
“(Deployment) Improper Configuration”, and “(Client-Side
Application) Store” categories, but their questions are not well-
answered. The four question categories have a UNC score of
more than 45%, and three out of four question categories
are also in the top six categories based on the popularity
score (PQ). The increasing trend of these four question cate-
gories substantiates the absence of proper documentation on
managing secrets during the deployment and the need for
future research on client-side frameworks. In addition, the
increasing trend also substantiates the need to improve existing
VCS history sanitizing tools to make integration easier for
developers.

B. Answer to RQ2: What solutions do developers get for
mitigating checked-in secrets?

We identify 13 answer categories from our analysis, which
we present below based on the descending order of the
number of questions in which StackExchange users suggest
the specific answer category. For example, 179 answers to the
779 questions suggest the ‘Al: Move Secrets out of Source
Code/Version Control and Use Template Config File’ category.
We do not declare all the answer categories as best practices.
Indeed, below we highlight the shortcomings of these answer
categories as appropriate.

Al: Move Secrets out of Source Code/Version Control
and Use Template Config File (179): Developers may put
secrets, such as database credentials, in a file where the code
for database functionalities are present. As a result, developers
face challenges in hiding the credentials from VCS reposito-
ries. In such cases, developers are suggested to move the se-
crets to a config file. Then, the config file with original secrets

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

(Client-Side Application) Hide (Client-Side Application) Store

(Configuration File) Ignore

(Configuration File) Store (Deployment) Ignore

9 0 & Q v QY v a v R
SN D N DS > N NS
Fy ¢ ¢ ¥ I ¥ ¢ §F I
O M P S R

(Deployment) Store

(Pre—open Source) Cross—check

2 v QNS o W2 2 QNS v 2 o &
N N PUEENIPN N N N PSP N N N
AR AN QQ%/ Q@/ & ¢ ¥ F& & & & &
% v %
R S .

(Secrets) Exploitability (Secrets) Ignore

(Secureness) Private Repo

(VCS Feature) History Sanitize

(VCS Feat.) Ignore Already Committed ~ (VCS Feature) Line Level Security

Fig. 2: Temporal Trend of each identified question category. The month of the x-axis is shown in three-year interval. The zero
value of Temporal Trend indicates no question is posted on the specific month for a category.

should be ignored from the VCS repository, and a template
config file should be committed to the repository. Template
config files, such as database.sample.yml file of Ruby on Rails,
contain the minimum configurations with dummy secrets to
avoid build failure. Developers will replace the dummy secrets
in their development environment. Furthermore, a .gitignore
file should be included with all repositories to ignore the
secrets-containing files. GitHub has published a collection of
.gitignore templates [39] for different technologies.

A2: Secret Management in Deployment (78): We observe
that developers mostly face challenges storing or versioning
secrets for multiple environments during deployment. Con-
figuration management systems, such as Ansible-Vault [40]
and Chef-Vault [41], provide support for secret management.
Developers are advised to use deployment variables, such as
Heroku Config Vars [42], which create environment variables
for respective environments. Developers are also suggested to
keep the dot files such as .git and .hg files out of the root
directory during deployment to avoid exposing secrets.

A3: Use Local Environment Variables (56): An environ-
ment variable is a dynamic object which is set outside of the
application and used to avoid the storage of secrets in code or
local config files. Developers are suggested to use environment
variables to load the secrets at runtime. The benefits of using
environment variables are switching secrets between deployed
versions without modifying any code and making it less
likely that secrets get checked into the repository. However,
environment variables can leak secrets as they are passed down
to child processes, which allows for unintended access [43].

A4: Rewrite VCS History (48): Secrets will not be re-

moved entirely by removing in another commit as secrets will
remain in the VCS history. Developers suggest removing se-
crets using git-filter-repo [44], git-filter-branch [45], and BFG
repo cleaner [46]. Though official GitHub documentation [47]
suggests using BFG repo cleaner instead of git-filter-repo and
git-filter-branch, we have seen Stack Exchange users mostly
suggest using the latter. GitHub has also suggested contacting
them with the repository name to clear the secrets from their
cache and advised to tell the project collaborators to do git
rebase instead of git merge [47] though no Stack Exchange
users’ solutions suggested these actions.

AS5: Store Encrypted/Obfuscated Secrets (39): Storing
secrets as encrypted, encoded, or obfuscated is one of the solu-
tions suggested by Stack Exchange users. Different encryption
algorithms, such as AES and RSA, are suggested. In some
cases, developers are suggested to encode secrets using Base64
encoding in Android applications. Another suggestion is to
split the secrets into multiple parts and keep them in the source
code. The number of parts should be high, so the attacker
will have to check for more than a billion permutations.
Tools such as git-secret [48] and git-crypt [49], are available
for encrypting secrets-containing files. The disadvantage of
encryption is to deal with the encryption keys securely.

A6: Use of External Secret Management Service (26):
Developers are recommended to implement external secret
management services, such as HashiCorp Vault [35] and AWS
KMS [50]. These hardware security modules can safely store
secrets with tightly-controlled access. However, because they
are challenging to set up and maintain, these solutions may
be unsuitable in some situations. In addition, they need a

1642

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

significant investment of time and money.

A7: Load Externally and Use Secondary Private Repos-
itory (23): Since developers want to avoid committing secrets
into VCS that are needed for the application’s functioning,
developers are advised to load secrets externally using AWS
S3 or a secondary private repository. Since AWS S3 needs
access keys to retrieve stored files, the same problem of storing
the access keys may occur. A secondary private repository
can be used to store secrets and loaded dynamically using git
submodules [51]. However, private repositories are not free
from exploitation by attackers [52].

A8: Revocation and Rotation (16): The first step to stop
secrets sprawl is to revoke the secrets immediately. One devel-
oper suggested: “The important bit: Consider your credentials
compromised. Change them. No matter what you do at this
point, they are no longer secure” [30]. A good practice is
to rotate the secrets periodically. Short-lived secrets prevent
previously-undetected data breaches from posing a threat, as
access will be cut off even if the breach is not identified.

A9: Server-Side Implementation (16): To avoid keeping
secrets in client-side applications for fetching data from web
services, developers are recommended to implement web
service functionality on the server side. Then, the server will
use the secrets and fetch data for the client side, thus removing
the necessity to keep secrets in client-side applications.

A10: VCS Feature (Git Hooks and Flags) (10): To
avoid secrets from pushing in VCS repositories, developers
are suggested to implement git hooks [53] and git flags [54],
[55]. The pre-commit and post-commit hooks can be used
to filter and smudge before commit or after pull, respec-
tively [38]. However, developers are warned as implementing
git hooks properly is difficult. Developers are also suggested
to use the git flags such as —skip-worktree [55] and —assume-
unchanged [54] to prevent changes from being committed to
existing files.

Al11l: Add Files to the Staging Area Explicitly (3): A
simple strategy to avoid exposing secrets accidentally is to
add files explicitly in the VCS staging area. Developers are
suggested to avoid using wildcards (git add -A or git add *)
for adding files, thus having complete control and visibility
over what files are committed.

A12: Restrict API Access and Permissions (3): Since
attackers frequently use secrets within their scope, detecting
when they are doing so maliciously might be challenging.
However, damage and lateral movement can be limited by
restricting access and permissions of the secrets. For example,
GitHub IP white-listing [56] can be employed to prevent any
untrusted sources from accessing the GitHub repositories.

A13: VCS Scan Tools (1): Developers are advised to run
VCS scan tools, such as TruffleHog [57] and Gitrob [58],
before any commit or in an existing repository to find out
the presence of secrets. The tools can find secrets buried in
histories that manual searches and reviews will miss. However,
tools may return a significant number of false positives [33].

The mapping of answers to each question category can be
found online [59]. We observe that the same answer category

1643

has been mentioned to mitigate challenges of multiple question
categories. For example, ‘Al: Move Secrets out of Source
Code/Version Control and Use Template Config File’, ‘A3:
Use Local Environment Variables’ and ‘A2: Secret Manage-
ment in Deployment’ have been mentioned as part of a solution
in 20, 12, and 10 out of 27 question categories, respectively.

IV. DISCUSSION AND RECOMMENDATIONS

Below we discuss our findings and make recommendations.
In our discussion, we trace the questions and answers by their
identifiers assigned in Table IV and Section III-B, respectively.

Tool enhancement. We find that developers face difficulty
with properly sanitizing VCS history (Q10). Developers com-
monly use git-filter-branch [45] and git-filter-repo [44] to
sanitize VCS history. However, both the tools have safety
and usability issues which can easily corrupt the repository’s
history [60]. For example, these tools can easily mix up the
old and new history of the repository. In addition, coming up
with the correct shell script is difficult as developers find out if
the sanitizing code script is right or wrong by trying the script
out. Even worse, broken filters often result in silent incorrect
rewrites without proper output. Even if the developers sanitize
the VCS history properly using the tools, the tools can not
clear the cache in the respective version control systems, such
as GitHub, as the sensitive information can appear again from
the cache, according to GitHub’s official documentation[3]. As
of now, clearing from the cache is a manual process that can
be automated.

In addition, we observe that developers are suggested to
use VCS scan tools (A13) to avoid accidentally committing
secrets, but developers seem to bypass scan tool warnings due
to high false positives [33]. There are currently many open-
source and proprietary VCS scan tools [61], but developers
find it challenging to choose one tool out of many. Researchers
and tool developers can work on comparing the effectiveness
and efficiency of the VCS scan tools and improving the tools
by reducing false positive warnings.

We also found that developers want new VCS features, such
as line-level security, where developers can quickly point to
the specific lines to which they want to restrict visibility in
the VCS (Q12). In addition, we found that developers want
to ignore local changes of already-committed files from VCS
tracking without removing the file from the repository (Q11).
Though Stack Exchange users suggested using —assume-
unchanged [54] and —skip-worktree [55] flags to ignore local
changes of already-committed files from VCS tracking (A10),
the official Git documentation suggests these flags not be
used [34].

Recommendation 1: We recommend improving the
existing tools, such as making the integration of VCS
history sanitizing tools easy for the developers and
reducing VCS scan tool false positives. We also recom-
mend developing new tools for line-level security and
ignoring local changes of already-committed files.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

Documentation. We find that developers face challenges
in securely managing secrets while developing with different
technologies due to the absence of proper documentation (Q1,
Q6-Q8). For example, Foursquare APl documentation [62]
suggests developers use a client secret in userless or server-
side authentication. However, a developer did not understand
the documentation and asked in Stack Exchange whether the
secret could be used in the client-side authentication [63]. De-
velopers also seem to query to understand the safest approach
when multiple approaches are suggested in the same docu-
mentation [64]. For example, ASPNET Core documentation
suggests using local environment variables and secret manager
tools to store secrets securely but does not specify which one
will be the safest approach in specific use cases [65]. However,
we agree that no solution will be perfectly secure, but the
documentation should be clear and detailed so that developers
understand which use cases are appropriate for each approach.
Furthermore, we observe that developers want reference links
on how to implement a specific approach suggested in the
documentation. For example, Google API provides documen-
tation of the best practices for securely using API keys [66].
However, developers could not figure out how to implement
these suggestions as reference links to the specific suggestions
are not given [67]. We also observe that documentation does
not explicitly mention whether the particular suggestion, such
as setting up continuous deployment in Azure Function, is for
the development or production environment [68]. As a result,
developers may implement a suggestion in the production
environment that was intended for use in the development
environment [69], thus exposing secrets to the attackers.

Recommendation 2: We recommend that each technol-
ogy improve the technical documentation for managing
secrets by 1) clearly explaining the suggested approach’s
use cases and restrictions; ii) mentioning which approach
will be safest for specific use cases when multiple
approaches are suggested; iii) providing reference links
to implement the suggested approaches; and iv) explic-
itly mentioning whether the particular approach is for
development, production, or both environments.

Client-side applications. Often, developers architect ap-
plications with only a client-side implementation and only
later realize they must securely embed a secret in the code
they distribute. As a result, questions about client-side secret
storage (Q20), were the most popular among all topics we
studied, as seen in Table V. One solution is for the developer
to operate an API for their app that wraps the third-party API
and keeps the secret server-side. Instead, novice developers
embed third-party API calls in the client because it seems
easier, cheaper (no infrastructure costs), and functions as
expected. Unfortunately, secrets in the client-side application
can not be protected against even a basic adversary with
access to a debugger or decompiler. Inspired by popular DRM
schemes such as Apple’s FairPlay Streaming [70], we posit
that privileged system elements, such as virtual machines,

1644

runtimes, browsers, or kernels could provide an interface for
secure secret management.

Recommendation 3: We recommend that kernels and
privileged runtimes develop frameworks to provide se-
cure secret management for client-only applications.

Guidelines. From the identified challenges in Table IV, we
observe that developers have a knowledge gap about whether a
secret is exploitable or not (Q3), why they should keep secrets
out of VCS (Q26), and what to do if they find secrets in
the source code (Q27). We also found that some solutions
are insecure for managing secrets by analyzing the solutions
posed by Stack Exchange users. For example, storing secrets
as Base64 encoded in the source code can be exploitable
as secrets can be decoded easily (AS). Furthermore, storing
secrets in a private repository is not a safe approach (A7)
as private repositories are not free from exploitation by at-
tackers or insider threats [52], [71]. Therefore, a guideline to
train developers on securely managing secrets can eliminate
the knowledge gap, and developers can make correct deci-
sions during development. The National Institute of Standards
and Technology (NIST) [72] provides a framework SP 800-
218 [73] to mitigate the risk of software vulnerabilities but
does not have practices specific to securely managing secrets.

Recommendation 4: We recommend that NIST update
the SP 800-218 framework by including practices spe-
cific to securely managing secrets to train developers.

V. ETHICS

The contents of all the Stack Exchange sites are under
Creative Commons (CC BY-SA 3.0) license [74] with the
following requirements: “You are free to: Share - copy and
redistribute the material in any medium or format, Adapt
- remix, transform, and build upon the material for any
purpose, even commercially” [74]. Stack Exchange inspires
academics to utilize the data in research articles [75] and
requires researchers to give attribution to posts using a direct
link [76]. As a result, we include hyperlinks to connect our
quotes to the original posts, which are available online [30].

VI. THREATS TO VALIDITY

In this section, we discuss the limitations of our paper.
Q&A Site Selection: We did not collect questions from other
Q&A sites, such as CodeProject [77] and Coderanch [78]. We
accounted for this limitation by considering three Q&A sites
of Stack Exchange instead of only using Stack Overflow.
Manual Analysis Bias: Caused by multiple interpretations
and oversight, the manual analysis may induce bias. For
example, the identified question and answer categories are sus-
ceptible to bias. We mitigated this bias by cross-checking the
obtained question and answer categories and adding question
and answer categories that both participants agreed on.
Closed Questions: The nature of inquiries about checked-
in secrets in software artifacts may be broad, and Stack

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

Exchange moderators do not like such questions. As a result,
the moderators may decide to close some of the important
questions. However, only 52 questions were flagged as closed,
accounting for less than 7% of the 779 questions in our dataset.
We also observed that the closed questions had a high View
Count (as high as 49471) and high Score (as high as 126)
[79]. As a result, we claim that the closed questions of our
dataset have remained active after being closed, proving the
significance of the topics under discussion.

Popularity Metric: We measured the popularity metric of a
question by taking the question’s View Count and Score values
into account. On the other hand, this metric may be biased
because it ignores the time span of the views. Therefore, a
new question with a low View Count and Score value may
be regarded as unpopular. Also, Stack Exchange does not
provide the temporal View Count of a question. As a result,
a significant percentage of the View Count may accumulate
when the question is initially posted or may have recently
increased. Unfortunately, we have not yet arrived at a suitable
treatment for this threat.

Counting Questions: We counted questions of a category
posted by developers over time to find if a particular question
category trends. There can be questions in that specific cate-
gory that have been answered before, but developers are still
posting new questions. It implies that the particular category
continues to be a problem despite the ongoing effort. We agree
that there can be a trend of decreasing questions of a category,
but the problem may not be solved till today. However, we are
not claiming those categories as of less importance. Instead,
we are highlighting the recent ongoing problematic topics to
the research community so that researchers can prioritize the
challenges and work on resolving them.

Accepted Answer: We termed a question lacking an accepted
answer as a question with unsatisfactory answer. However,
a developer who posted the question may be satisfied with
the suggested solution posted by Stack Exchange users. Nev-
ertheless, the developer may forget or not know how to
mark the suggested solution as accepted in Stack Exchange.
Unfortunately, we have not yet arrived at a suitable treatment
for this threat.

VII. RELATED WORK

Prior work has found that root causes for widespread
secret leakage were insecure practices, such as embedding
hard-coded credentials [80], [81], organizational issues in-
fluencing software security vulnerabilities [82], [83], [84],
and compromising security for functionality when managing
software dependencies [85]. Researchers have looked into
instances of such insecure developer practices within open-
source projects [4], [8], [9], [86], [87]. Researchers have
discovered hard-coded secrets as a prevalent practice, resulting
in thousands of repositories on open-source coding platforms,
such as GitHub and Openstack, leaking hard-coded secrets [4],
[9], [88]. Within IaC scripts, Rahman et al. [10] looked for
security smells, which are repeating coding patterns indicating
a security flaw. They found 21,201 occurrences of seven

1645

security smells within 15,232 [aC scripts, and hard-coded
credential is the most occurring smell with 1326 occurrences.

To understand more clearly the challenges that developers
face, researchers have performed qualitative research into
investigating what questions developers are asking on Stack
Overflow (SO) [28], [89], [90], [15], [14] as developers con-
stantly search in SO for guidance on solving a challenge during
development. Tahir et al. [14] looked through 4000 posts
from three Stack Exchange sites to see what developers were
discussing about code smells and anti-patterns. They observed
that developers frequently post questions on Stack Exchange
to check the presence of smell in their code, effectively using
Q&A sites as an informal code smell and anti-pattern detector.

We take motivation from the above studies and concentrate
our research efforts on finding difficulties faced by developers
for checked-in secrets in software artifacts. We also determine
the solutions proposed by other developers to alleviate a
specific challenge.

VIII. CONCLUSION

Software relies heavily on the use of secrets for authentica-
tion and authorization, and the exposure of secrets is increasing
each day. By analyzing the questions developers ask, we can
understand the challenges developers face regarding checked-
in secrets. In our empirical study, we studied 779 questions
posted on Stack Exchange to investigate the challenges faced
by developers and the corresponding solutions posed by others
to mitigate the challenges. We identified 27 challenges and 13
solutions. The four most common challenges, in ranked order,
are: (i) store/version of secrets during deployment (Q6); (ii)
store/version of secrets in source code (Q1); (iii) ignore/hide
of secrets in source code (Q2); and (iv) sanitize VCS history
(Q10). The three most common solutions, in ranked order,
are: (i) move secrets out of source code/version control and
use template config file (Al); (ii) secret management in
deployment (A2); and (iii) use local environment variables
(A3). In addition, we observe that the same solution has been
mentioned to mitigate multiple challenges. We also observe
an increasing trend in questions lacking accepted answers.
Our findings will benefit researchers and tool developers who
can investigate how the secret management process can be
enhanced to facilitate secure development.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
2055554 grant. The authors would also like to thank the North
Carolina State University Realsearch research group for their
valuable input on this paper.

REFERENCES

“The State of Secrets Sprawl 2022, https://blog.gitguardian.com/
the-state- of-secrets-sprawl-2022, [Online; accessed March 16, 2022].
“GitHub,” https://github.com, [Online; accessed March 3, 2022].
“GitLab,” https://gitlab.com, [Online; accessed March 3, 2022].

M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories.” in NDSS,
2019.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

(51

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

S. Nichols, “Popular mobile apps leaking AWS keys, exposing user
data,” https://www.techtarget.com/searchsecurity/news/252500361/
Popular-mobile-apps-leaking- AWS-keys-exposing-user-data, 2021,
[Online; accessed December 25, 2021].

“CWE: Common Weakness Enumeration,” https://cwe.mitre.org/data/
definitions/798.html, [Online; accessed December 25, 2021].

“2021 CWE Top 25 Most Dangerous Software Weaknesses,” https://cwe.
mitre.org/top25/archive/2021/2021_cwe_top25.html, [Online; accessed
February 27, 2022].

V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting
and mitigating secret-key leaks in source code repositories,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 396-400.

M. R. Rahman, A. Rahman, and L. Williams, “Share, but be aware:
Security smells in python gists,” in 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 1EEE, 2019, pp.
536-540.

A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 1EEE, 2019, pp. 164-175.
“How to keep secret key information out of Git repository?” https:/
stackoverflow.com/questions/52293453, [Online; accessed February 27,
2022].

“Stack exchange sites,” https://stackexchange.com/sites, [Online; ac-
cessed December 23, 2021].

T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives
on Data Science for Software Engineering, T. Menzies, L. Williams,
and T. Zimmermann, Eds. Boston: Morgan Kaufmann, 2016, pp.
137-141. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128042069000271

A. Tahir, J. Dietrich, S. Counsell, S. Licorish, and A. Yamashita,
“A large scale study on how developers discuss code smells and
anti-pattern in stack exchange sites,” Information and Software
Technology, vol. 125, p. 106333, 2020. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0950584920300926

A. Rahman, A. Partho, P. Morrison, and L. Williams, “What questions
do programmers ask about configuration as code?” in Proceedings
of the 4th International Workshop on Rapid Continuous Software
Engineering, ser. RCoSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 16-22. [Online]. Available:
https://doi.org/10.1145/3194760.3194769

“Stack Overflow,” https://stackoverflow.com, [Online; accessed January
3, 2022].

“Information Security,” https://security.stackexchange.com, [Online; ac-
cessed January 3, 2022].

“Software Engineering,” https://softwareengineering.stackexchange.
com, [Online; accessed January 3, 2022].

“Stack exchange data explorer,” https://data.stackexchange.com, [Online;
accessed December 23, 2021].

“Stack exchange data dump,” https://archive.org/details/stackexchange,
[Online; accessed December 23, 2021].

T. P. Johnson, “Snowball sampling: introduction,” 2014. [Online].
Available: https://doi.org/10.1002/9781118445112.stat05720

“Where to keep static information securely in Android app?” https:
/Istackoverflow.com/questions/61724202, [Online; accessed June 15,
2022].

“GitHub Repository,” https://github.com/setu1421/ICSE-2023- Artifacts,
[Online; accessed January 28, 2023].

J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement,” Sociological Methods & Research, vol. 42,
no. 3, pp. 294-320, 2013.

Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Want a good
answer? ask a good question first!” 2013.

J. H. Zar, Spearman Rank Correlation. John Wiley & Sons, Ltd, 2005.
“Feature Scaling,” https://en.wikipedia.org/w/index.php?title=Feature_
scaling&oldid=1075231919, [Online; accessed 11-March-2022].

K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in Proceedings of the 11th Working conference on
mining software repositories, 2014, pp. 112-121.

D. R. Cox and A. Stuart, “Some quick sign tests for trend in location
and dispersion,” Biometrika, vol. 42, no. 1/2, pp. 80-95, 1955. [Online].
Available: http://www.jstor.org/stable/2333424

1646

[30]

[31]
[32]

[33]

[34]
[35]
[36]
[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]
[45]
[46]

[47]

[48]
[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]
[59]

[60]

“Example Links to Questions and Developer Quotes,” https://figshare.
com/s/edebdcb73def3bdb7ctb, [Online; accessed June 24, 2022].
“Heroku,” https://www.heroku.com, [Online; accessed March 7, 2022].
“Google App Engine,” https://cloud.google.com/appengine, [Online; ac-
cessed March 7, 2022].

M. R. Rahman, N. Imtiaz, M.-A. Storey, and L. Williams, “Why secret
detection tools are not enough: It’s not just about false positives-an
industrial case study,” Empirical Software Engineering, vol. 27, no. 3,
pp. 1-29, 2022.

“Git Update Index (Notes),” https:/git-scm.com/docs/git-update-index\
#_notes, [Online; accessed June 15, 2022].

“Manage Secrets & Protect Sensitive Data,” https://www.vaultproject.io,
[Online; accessed March 3, 2022].

“Azure Key Vault” https://azure.microsoft.com/en-us/services/
key-vault, [Online; accessed March 3, 2022].

“Ignoring a previously committed file,” https://www.atlassian.com/git/
tutorials/saving-changes/gitignore, [Online; accessed March 12, 2022].
“Smudge and clean your git working directory,” https://www.atlassian.
com/git/tutorials/saving-changes/gitignore, [Online; accessed March 12,
2022].

“Gitignore Templates,” https://github.com/github/gitignore, [Online; ac-
cessed February 13, 2022].

Michael DeHaan, “Ansible Vault,” https://docs.ansible.com/ansible/
latest/cli/ansible-vault.html, [Online; accessed March 2, 2022].

“Chef Vault,” https://docs.chef.io/workstation/chef_vault, [Online; ac-
cessed March 2, 2022].

“Heroku Config Vars,” https://devcenter.heroku.com/articles/config-vars,
[Online; accessed March 2, 2022].

Monica, Diogo, “Why you shouldn’t use ENV variables
for secret data,” https://diogomonica.com/2017/03/27/
why-you-shouldnt-use-env-variables-for-secret-data, 2017, [Online;
accessed February 15, 2022].

“Git Filter Repo,” https://github.com/newren/git-filter-repo, [Online; ac-
cessed March 29, 2022].

“Git Filter Branch,” https://git-scm.com/docs/git-filter-branch, [Online;
accessed March 7, 2022].

“BFG Repo Cleaner,” https://rtyley.github.io/bfg-repo-cleaner, [Online;
accessed March 7, 2022].

“Removing sensitive data from a repository,” https://docs.github.
com/en/authentication/keeping-your-account-and-data-secure/
removing-sensitive-data-from-a-repository, [Online; accessed February
13, 2022].

“git-secret,” https://github.com/sobolevn/git-secret, [Online; accessed
February 23, 2022].

“git-crypt,” https://github.com/AGWA/git-crypt,
February 23, 2022].

“AWS Key Management Service,” https://aws.amazon.com/kms, [On-
line; accessed March 3, 2022].

“Git Submodules,” https://git-scm.com/book/en/v2/
Git-Tools-Submodules, [Online; accessed February 15, 2022].
Cimpanu, Catalin, “Hacker gains access to a small number of
Microsoft’s private GitHub repos,” https://www.zdnet.com/article/

[Online; accessed

hacker- gains-access-to-a-small-number- of-microsofts-private- github-repos,

2020, [Online; accessed February 15, 2022].

“Git Hooks,” https://git-scm.com/book/en/v2/
Customizing-Git-Git-Hooks, [Online; accessed February 23, 2022].
“Git Flag (Assume-unchanged),” https://git-scm.com/
docs/git-update-index \#Documentation/git-update-index.
txt---no-assume-unchanged, [Online; accessed February 23, 2022].
“Git Flag (Skip-worktree),” https:/git-scm.com/docs/git-update-index\
#Documentation/git-update-index.txt---no-skip-worktree, [Online; ac-
cessed February 23, 2022].

“Keeping your organization secure,”
github.com/en/enterprise-cloud @latest/organizations/
keeping-your-organization-secure, [Online; accessed March 3, 2022].
“TruffleHog,” https://github.com/trufflesecurity/truffleHog, [Online; ac-
cessed February 23, 2022].

“Gitrob,” https://github.com/michenriksen/gitrob,
February 23, 2022].

“The Mapping of Answers to Question Category,” https://figshare.com/
$/1532991322add36e2ebS, [Online; accessed August 31, 2022].

“Git Filter Branch Safety,” https://git-scm.com/docs/git-filter-branch#
SAFETY, [Online; accessed January 27, 2023].

https://docs.

[Online; accessed

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:22:19 UTC from IEEE Xplore. Restrictions apply.

“Nine DevSecOps secret scanning tools to keep the
bad guys at bay,” https://www.cybersecasia.net/tips/
nine-devsecops-scanning-tools-to-keep-the-bad-guys-at-bay, [Online;

accessed Jan 7, 2023].

“Foursquare API (Search for Venues),” https://developer.foursquare.com/
reference/v2-venues-search, [Online; accessed April 15, 2022].
“Foursquare API exposing secret in javascript,” https://stackoverflow.
com/questions/32559855, [Online; accessed June 15, 2022].

“What is the safest way to store user secrets in a .NET Core applica-
tion?” https://stackoverflow.com/questions/47316330, [Online; accessed
June 15, 2022].

Rick Anderson and Kirk Larkin, “Safe storage of app secrets in de-
velopment in ASP.NET Core,” https://docs.microsoft.com/en-us/aspnet/
core/security/app-secrets ?tabs=windows&view=aspnetcore-6.0, [Online;
accessed June 15, 2022].

“Best practices for securely using API keys,” https://support.google.com/
googleapi/answer/6310037, [Online; accessed June 14, 2022].

“How do I securely use Google API Keys,” https://stackoverflow.com/
questions/39625587, [Online; accessed June 14, 2022].

“Continuous deployment for Azure Functions,” https://docs.microsoft.
com/en-us/azure/azure-functions/functions-continuous-deployment,
[Online; accessed June 11, 2022].

“How to configure Connection string in continuous deployment on Azure
functions,” https://stackoverflow.com/a/46790625/4299527, [Online; ac-
cessed June 14, 2022].

“Apple FairPlay Streaming,” https://developer.apple.com/streaming/fps/
FairPlayStreamingOverview.pdf, [Online; accessed June 29, 2022].
Cimpanu, Catalin, “Nissan source code leaked online after
Git repo misconfiguration,” https://www.zdnet.com/article/
nissan-source-code-leaked-online-after- git-repo-misconfiguration,
2021, [Online; accessed April 12, 2022].

“The National Institute of Standards and Technology (NIST),” https:
/Iwww.nist.gov/, [Online; accessed June 14, 2022].

K. S. Murugiah Souppaya and D. Dodson, “Secure Software Develop-
ment Framework (SSDF) Version 1.1: Recommendations for Mitigating
the Risk of Software Vulnerabilities,” https://csrc.nist.gov/publications/
detail/sp/800-218/final, [Online; accessed June 10, 2022].

“Stack Overflow Creative Commons Data Dump,” https://stackoverflow.
blog/2009/06/04/stack-overflow-creative-commons-data-dump, [Online;
accessed June 11, 2022].

“Academic Papers Using Stack Overflow Data,” https://stackoverflow.
blog/2010/05/31/academic- papers-using-stack-overflow-data, [Online;
accessed June 11, 2022].

“Attribution Required,” https://stackoverflow.blog/2009/06/25/
attribution-required, [Online; accessed June 11, 2022].

“CodeProject,” https://www.codeproject.com, [Online; accessed March
16, 2022].

“Coderanch,” https://coderanch.com, [Online; accessed March 16, 2022].
“Is it completely safe to publish an ssh public key?” https:/security.
stackexchange.com/questions/150540, [Online; accessed June 15, 2022].
“Medical Data Leaked on GitHub Due to Developer Errors,” https://
threatpost.com/medical-data-leaked-on- github-due-to-developer-errors/
158653, [Online; accessed Jan 15, 2022].

“No need to hack when it’s leaking,” https://www.databreaches.net/
wp-content/uploads/No-need-to-hack-when-its-leaking.pdf, ~ [Online;
accessed Jan 15, 2022].

H. Assal and S. Chiasson, “‘think secure from the beginning’ a survey
with software developers,” in Proceedings of the 2019 CHI conference
on human factors in computing systems, 2019, pp. 1-13.

J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make security
errors?” in 2011 IEEE symposium on visual languages and human-
centric computing (VL/HCC). 1EEE, 2011, pp. 161-164.

S. Nadi, S. Kriiger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do java developers struggle with cryptography apis?” in Proceed-
ings of the 38th International Conference on Software Engineering,
2016, pp. 935-946.

1. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study of de-
pendency management and its security implications,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1513-1531.

A. Saha, T. Denning, V. Srikumar, and S. K. Kasera, “Secrets in
source code: Reducing false positives using machine learning,” in 2020
International Conference on COMmunication Systems & NETworkS
(COMSNETS). 1IEEE, 2020, pp. 168-175.

1647

[87]

[88]

[89]

[90]

Z. Y. Ding, B. Khakshoor, J. Paglierani, and M. Rajpal, “Sniffing for
codebase secret leaks with known production secrets in industry,” arXiv
preprint arXiv:2008.05997, 2020.

A. Rahman and L. Williams, “Different kind of smells: Security smells
in infrastructure as code scripts,” IEEE Security & Privacy, vol. 19,
no. 3, pp. 33-41, 2021.

A. Rahman, E. Farhana, and N. Imtiaz, “Snakes in paradise?: Insecure
python-related coding practices in stack overflow,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 200-204.

A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619-654, 2014.

