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Abstract

We study an efficient time-stepping scheme for the 1D Fujita equation that is implicit for the linear 
terms but explicit for the nonlinear terms. We analyze the long-time stability of the scheme for 
varying parameter values, which reveal parameter value regimes in which the method is stable. 
We provide numerical results that illustrate the theory and show the analytically derived stability 
conditions are sufficient to  achieve long-time stability results.

1 Introduction

We consider the Fujita semilinear heat equation which is given in 1D by [3]:

ut − ∆u + β (u − ug) = α|u|γ on (a, b),
u(a, t) = u(b, t) = ug,

u(x, 0) = ug,

(1)

where u = u(x, t) is the unknown temperature, α > 0, β > 0, and γ > 0 are problem dependent
constants, and ug is the (assumed constant) temperature of the surrounding medium. This sys-
tem models various chemical and physical phenomenon such as diffusion and reaction, combustion,
quantum mechanics, and fluid mechanics [7]. Our particular interest is the modeling of viscoelastic
materials under cyclic deformation due to vibrational loading accompanied by self-heating [13]. In
some cases, this self-heating can cause catastrophic heat explosion which can change the mechanical
properties of the material, and the material itself will ultimately fail [5].

Our goal is to study a numerical discretization for (1), and in particular its long-time stabil-
ity. As there are many different notions of stability [8, 9, 10, 12], uniform boundedness of the
solution in the L2 norm will be understood to be our definition of stability throughout the paper.
Understanding the stability properties of discretizations often reveals information about its well-
posedness, robustness, and accuracy. Moreover, the stability of our discretization is directly related
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Table 1: Shown above are the parameter restrictions for the different ranges of γ.

to the stability of (1), and thus can give insight into when blowup phenomenon/material failure
may occur.

A great deal of literature exists on this Fujita equation, including conditions for its well-
posedness, blowup criteria, and other mathematical properties. In much of this literature, the
Cauchy problem (no boundary conditions) is considered [3, 4, 11], and Newtonian relaxation is
neglected (β = 0). However, there is much less in the literature regarding the Fujita equation with
physical boundary conditions and even less on numerical methods, and to our knowledge none for
long-time stability of numerical methods.

Before discretizing, we first rewrite the system (1) in terms of a new variable û which is defined
by û = u− ug. This transforms (1) into

ût −∆û+ βû = α|û+ ug|γ on (a, b),

û(a, t) = û(b, t) = 0,

û(x, 0) = 0.

We consider a backward Euler temporal discretization together with a first order explicit approxi-
mation of the nonlinear term to get, on a domain Ω = (a, b),

ûn+1 − ûn

∆t
−∆ûn+1 + βûn+1 = α|ûn + ug|γ ,

û0 = 0,

(2)

where ∆t > 0 denotes the time step size. The purpose of this paper is to prove long-time stability 
results for (2), and we show herein that the stability properties depend on γ, α, and β values as 
well as (mild) restrictions on ∆t. A summary of our results is shown in Table 1. From the table, 
observe that there are different p arameter r estrictions i n t he d ifferent ra nges of  γ.  In  fa ct, the 
stability proof structures change in each of these cases as well, as each seems to require a different 
proof technique. Section 3 of this paper proves these results. In Section 4, we perform numerical 
tests that illustrate our theory that picking parameters in the ranges yields long-time stability; on 
the other hand, picking them outside of these ranges can lead to blow up.
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2 Preliminaries

We assume the domain Ω ⊂ R is a bounded open interval. The space L2(Ω) is defined as

L2(Ω) := {v : Ω → R,
∫
Ω |v|2dx < ∞},

and the L2(Ω) inner product and norm will be defined as

(v, w) :=
∫
Ω v · w dx,

||v|| := (v, v)
1
2 .

We utilize Young’s inequality: for p, q > 0 with 1
p + 1

q = 1,

ab ≤ ap

p + bq

q

for any a, b ∈ R.

We define the space X to be

X := H1
0 (Ω).

Poincare’s inequality also holds in X: for all vectors, there is a constant Cp dependent only on the
size of the domain such that

||v|| ≤ Cp||∇v||.

We also utilize a polarization identity that states for a, b ∈ R,

(a− b)a = 1
2(a

2 − b2 + (a− b)2).

Our analysis uses the following inequality taken from [2], which is valid in 1D:

||f ||Lp ≤ CGN (p)||f ′||θL2 ||f ||1−θ
L2 if p ∈ (2,∞), (3)

with θ = p−2
2p and CGN only dependent upon p.

We also use the 1D Agmon inequality [1]: For any u ∈ H1
0 (Ω) with Ω ⊂ R, there exists a constant

C such that

||u||L∞(Ω) ≤ C||u||
1
2 ||u||

1
2

H1(Ω)
.

Lemma 1 Suppose that a and b are nonnegative real numbers and γ > 0. Then,

(a+ b)γ ≤ max
(
1, 2γ−1

)
(aγ + bγ) . (4)

Proof. For γ = 1, (4) is trivially true. Therefore, let us assume that γ ∈ (0, 1) ∪ (1,∞). If
a = b ≥ 0, the inequality trivially holds. Without loss of generality, let 0 ≤ a < b. Then, we define
x as x := a

b ∈ [0,∞). Dividing both sides of (4) by bγ , we get the following:
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(x+ 1)γ ≤ max
(
1, 2γ−1

)
(xγ + 1) ∀x ∈ [0,∞). (5)

We will now prove that (5) holds for all γ ∈ (0, 1) ∪ (1,∞).

Case I When γ ∈ (0, 1), the function f : x ∈ [0, 1] 7→ (xγ + 1)
1
γ is concave. Therefore, the secant

connecting the points (0, f (0)) and (1, f(1)) lies below the graph of f , i.e.,

f(1)−f(0)
1−0 (x− 0) + f(0) ≤ f(x) ∀x ∈ [0, 1].

Because f(0) = 1, f(1)− f(0) = 2
1
γ − 1 ≥ 1 and 1 = max(1, 2γ−1), we have that

(x+ 1)γ ≤ max
(
1, 2γ−1

)
(xγ + 1) ∀x ∈ [0, 1]. (6)

If x ∈ [1,∞), then 1
x ∈ (0, 1], and therefore, upon replacing x by 1

x in inequality (6) and multiplying
both sides of the resulting inequality by xγ , we deduce that (4) also holds for all x ∈ [1,∞).

Case II When γ ∈ (1,∞), the function g : x ∈ [0,∞) 7→ xγ is convex. Therefore, for all
x, y ∈ [0,∞) and all θ ∈ [0, 1],

g(θx+ (1− θ)y)) ≤ θg(x) + (1− θ)g(y).

Thus, in particular, for y = 1 and θ = 1
2 we have that(

x+1
2

)γ ≤ 1
2x

γ + 1
21

γ ∀x ∈ [0,∞).

If we multiply this inequality by 2γ and observe that 2γ−1 = max(1, 2γ−1), this inequality reduces
to (5).

Thus, (5) holds for all γ ∈ (0, 1)∪(1,∞), and therefore, (4) is true for all positive γ and nonnegative
a and b.

Lemma 2 [Lemma 2.5 from [6]] Suppose constants r and B satisfy r > 1, B ≥ 0. Then if the
sequence of real numbers an satisfies

ran+1 ≤ an +B,

we have that

an+1 ≤ a0
(
1
r

)n+1
+ B

r−1 .

3 Numerical Scheme and Stability Analysis

For our numerical scheme below, we use a finite difference method which is  equivalent to  a spatial 
finite element method with a  conforming finite element space, Vh  ⊂ H0

1((a, b) ). We  note that if  we 
use continuous piecewise linears on a uniform subdivision of Vh, the analysis that follows can be 
repeated verbatim.
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The time stepping algorithm we study reads as follows: Given ûn, form ûn+1 satisfying

ûn+1 − ûn

∆t
−∆ûn+1 + βûn+1 = α|ûn + ug|γ ,

û0 = 0.

(7)

In this section, we will analyze (7) for long-time stability for varying γ. There appears to be distinct
regimes for these analyses, γ < 1, γ = 1, 1 < γ < 3, γ = 3, γ > 3. We begin with γ = 1.

Remark. The theorems below prove long-time stability under certain conditions on parameters
α, β, γ. These conditions are only sufficient for the results, and a different analysis could potentially
provide slightly different results.

Theorem 1 Suppose that γ = 1 in algorithm (7) and β > 3α
2 . Then the solution is long-time

stable: for any given n ∈ N,

||ûn|| ≤
α
2
||ug ||2

C−2
p +β− 3α

2

.

Proof. Multiplying (7) by ûn+1 and taking the integral over Ω gives us(
ûn+1−ûn

∆t , ûn+1
)
− (∆ûn+1, ûn+1) + β||ûn+1||2 = α

(
|ûn + ug|, ûn+1

)
.

We can rewrite our first term using the polarization identity via(
ûn+1−ûn

∆t , ûn+1
)
= 1

2∆t

(
||ûn+1||2 − ||ûn||2 + ||ûn+1 − ûn||2

)
.

For the second term, we use Green’s Theorem:

−
(
∆ûn+1, ûn+1

)
= ||∇ûn+1||2 −

∫
δΩ

(
∇ûn+1 · u

)
ûn+1du = ||∇ûn+1||2.

Combining the terms on our left-hand side, we now have

1

2∆t

(
||ûn+1||2 − ||ûn||2 + ||ûn+1 − ûn||2

)
+ ||∇ûn+1||2 + β||ûn+1||2 = α

(
|ûn + ug|, ûn+1

)
. (8)

Decomposing the right-hand side term, we obtain

α
(
|ûn + ug|, ûn+1

)
≤ α

(
|ûn|, ûn+1

)
+ α

(
|ug|, ûn+1

)
,

and by the Cauchy-Schwarz inequality, we can bound these terms by

α
(
|ûn|, ûn+1

)
+ α

(
|ug|, ûn+1

)
≤ α||ûn||||ûn+1||+ α||ug||||ûn+1||.

By Young’s inequality, we can further upper bound this inequality and obtain

α||ûn||||ûn+1||+ α||ug||||ûn+1|| ≤ α

(
1

2
||ûn||2 + 1

2
||ûn+1||2

)
+ α

(
1

2
||ug||2 +

1

2
||ûn+1||2

)
. (9)

Combining (8) with (9) and rearranging terms, we get that
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1
2∆t ||û

n+1||2+ 1
2∆t ||û

n+1−ûn||2+||∇ûn+1||2+β||ûn+1||2−α||ûn+1||2 ≤ α
2 ||û

n||2+ 1
2∆t ||û

n||2+ α
2 ||ug||

2

Next, we drop the nonnegative term 1
2∆t ||û

n+1 − ûn||2 from the left-hand side of our bound. Thus,
we now have that

1
2∆t ||û

n+1||2 + ||∇ûn+1||2 + β||ûn+1||2 − α||ûn+1||2 ≤ α
2 ||û

n||2 + 1
2∆t ||û

n||2 + α
2 ||ug||

2.

Using Poincare’s inequality, we can lower bound our left-hand side even further via(
1

2∆t + C−2
p + β − α

)
||ûn+1||2 ≤

(
α
2 + 1

2∆t

)
||ûn||2 + α

2 ||ug||
2.

Dividing both sides by α
2 + 1

2∆t , we find that(
1

2∆t
+C−2

p +β−α
α
2
+ 1

2∆t

)
||ûn+1||2 ≤ ||ûn||2 +

(
1

α
2
+ 1

2∆t

)
α
2 ||ug||

2.

Let r :=
1

2∆t
+C−2

p +β−α
α
2
+ 1

2∆t

and note that since β > 3α
2 , we can now use Lemma 2 to get

||ûn+1||2 ≤ ||û0||2
(
1
r

)n+1
+

(
1

α
2 + 1

2∆t

)
α
2
||ug ||2

r−1 = 0
(
1
r

)n+1
+

(
1

α
2 + 1

2∆t

)
α
2
||ug ||2

C−2
p +β− 3α

2
1

2∆t
+α

2

=
α
2
||ug ||2

C−2
p +β− 3α

2

,

which finishes the proof.

For the case of 0 < γ < 1, we use the γ = 1 result in the proof.

Theorem 2 Suppose that 0 < γ < 1 in algorithm (7) and β > 2α (|Ω|+ 1). Then the solution is
long-time stable: for any given n ∈ N,

||ûn|| ≤ α||ug ||2

C−2
p +β−2α(|Ω|+1)

.

Proof. Following as in the proof of Theorem 1 up to (8), we get

1

2∆t

(
||ûn+1||2 − ||ûn||2 + ||ûn+1 − ûn||2

)
+ ||∇ûn+1||2 + β||ûn+1||2 = α

(
|ûn + ug|γ , ûn+1

)
. (10)

By Lemma 1, we have that

α
(
|ûn + ug|γ , ûn+1

)
≤ α

∫
Ω
|ûn + ug|γ |ûn+1|

≤ α

∫
Ω
2γ (|ûn|γ + |ug|γ) |ûn+1|

≤ 2γα

∫
Ω
|ûn|γ |ûn+1|+ 2γα

∫
Ω
|uγg ||ûn+1|. (11)

We upper bound the first term of (11) by utilizing Young’s inequality and obtain

2γα
∫
Ω |ûn|γ |ûn+1| ≤ 2γα

∫
Ω

(
γ
2 |û

n|2 + 2−γ
2 |ûn+1|

2
2−γ

)
= 2γα

∫
Ω

γ
2 |û

n|2 + 2γα
∫
Ω

2−γ
2 |ûn+1|

2
2−γ .
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Rewriting these terms as their equivalent Lp norms, we get

2γα
∫
Ω

γ
2 |û

n|2 + 2γα
∫
Ω

2−γ
2 |ûn+1|

2
2−γ = 2γαγ

2 ||û
n||2 + 2γα2−γ

2 ||ûn+1||
2

2−γ

L
2

2−γ
.

By our assumption that 0 < γ < 1, we can further upper bound these terms via

2γα
γ

2
||ûn||2 + 2γα

2− γ

2
||ûn+1||

2
2−γ

L
2

2−γ
≤ α||ûn||2 + 2α|Ω|||ûn+1||2. (12)

For the second term of (11), we utilize Cauchy-Schwarz and Young inequalities to obtain

2γα

∫
Ω
|uγg ||ûn+1| ≤ 2γα||uγg ||||ûn+1|| ≤ 2γα

(
1

2
||uγg ||2 +

1

2
||ûn+1||2

)
≤ α||uγg ||2 + α||ûn+1||2. (13)

Combining (10) with (12) and (13) and dropping the nonnegative term 1
2∆t ||û

n+1 − ûn||2 from the
left-hand side, we get that

1
2∆t ||û

n+1||2 + ||∇ûn+1||2 + β||ûn+1||2 − (2α|Ω|+ α) ||ûn+1||2 ≤
(

1
2∆t + α

)
||ûn||2 + α||ug||2.

Now using Poincare’s inequality, we lower bound our left-hand side even further via(
1

2∆t + C−2
p + β − 2α|Ω| − α

)
||ûn+1||2 ≤

(
1

2∆t + α
)
||ûn||2 + α||ug||2.

Dividing both sides by 1
2∆t + α, we find that(

1
2∆t

+C−2
p +β−2α|Ω|−α

1
2∆t

+α

)
||ûn+1||2 ≤ ||ûn||2 +

(
α

1
2∆t

+α

)
||ug||2.

Let r :=
1

2∆t
+C−2

p +β−2α|Ω|−α
1

2∆t
+α

and note that since β > 2α (1 + |Ω|), we can now use Lemma 2 to get

||ûn+1||2 ≤ ||û0||2
(
1
r

)n+1
+

(
α

1
2∆t

+α

)
||ug ||2

r−1 = 0
(
1
r

)n+1
+

(
α

1
2∆t

+α

)
||ug ||2

C−2
p +β−2α|Ω|−2α

1
2∆t

+α

=
α||ug ||2

C−2
p +β−2α(|Ω|+1)

,

which completes the proof.

Next we consider γ = 3. We note that this is the critical exponent for blowup of the Cauchy
problem for the Fujita equation [4] when β = 0, and also seems to be an inflection point for our
stability analysis approach.

Theorem 3 Suppose that γ = 3 in the scheme (7). Assume that ∆t ≤ min{1, 1
β}, and

α ≤ 1

2

(
|Ω|2γ

(
1
2β (2γ)2 α2||uγg ||2

)
2
β + |Ω|2γ

(
1
2β (2γ)2 α2||uγg ||2

)2
4
β2

) .

Then the solution is long-time stable: for any given n ∈ N,

||ûn|| ≤
√

2
β

(
1
2β (2γ)2 α2||uγg ||2

)
.
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Proof. Following as in the proof of Theorem 1 up to (11), we get

α
(
|ûn + ug|γ , ûn+1

)
≤ 2γα

∫
Ω
|ûn|γ |ûn+1|+ 2γα

∫
Ω
|uγg ||ûn+1|. (14)

We add and subtract ûn to ûn+1 in the first right-hand side term. From the triangle inequality,

2γα

∫
Ω
|ûn|γ |ûn+1| ≤ 2γα

∫
Ω
|ûn|γ |ûn+1 − ûn|+ 2γα

∫
Ω
|ûn|γ+1 (15)

= 2γα

∫
Ω
|ûn|γ |ûn+1 − ûn|+ 2γα||ûn||γ+1

Lγ+1 . (16)

We utilize Cauchy-Schwarz and Young on the first term of (16) and multiply by 2∆t
2∆t to obtain

2γα
∫
Ω |ûn|γ |ûn+1 − ûn| ≤ 2γα

(
1

4∆t ||û
n+1 − ûn||2 +∆t|| (ûn)γ ||2

)
.

Rewriting the last term in its equivalent Lp norm, we find that

2γα

(
1

4∆t
||ûn+1 − ûn||2 +∆t|| (ûn)γ ||2

)
= 2γα

(
1

4∆t
||ûn+1 − ûn||2 +∆t||ûn||2γ

L2γ

)
. (17)

Combining the last term of (16) with (17) gives us

2γα

∫
Ω
|ûn|γ |ûn+1 − ûn|+ 2γα

∫
Ω
|û|γ+1 ≤ 2γα

(
1

4∆t
||ûn+1 − ûn||2 +∆t||ûn||2γ

L2γ

)
+ 2γα||ûn||γ+1

Lγ+1 .

(18)
We also utilize Cauchy-Schwarz and Young inequalities on the second term of (14) and multiply it
by β

β to obtain

2γα

∫
Ω
|uγg ||ûn+1| ≤ 1

2β
(2γ)2 α2||uγg ||2 +

β

2
||ûn+1||2. (19)

Combining (10) with (18) and (19) and dropping the nonnegative term ||ûn+1 − ûn||2 from the
left-hand side, we get that

1

2∆t
||ûn+1||2 + ||∇ûn+1||2 + β

2
||ûn+1||2

≤ 2γα∆t||ûn||2γ
L2γ + 2γα||ûn||γ+1

Lγ+1 +
1

2∆t
||ûn||2 + 1

2β
(2γ)2 α2||uγg ||2. (20)

By our assumption that γ = 3 and from (3) with θ = 1
3 , we can upper bound the first term on the

right-hand side of (20) to find that

2γα∆t||ûn||2γ
L2γ ≤ C2γα∆t||ûn||4||∇ûn||2, (21)

with C depending only on Ω.
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Similarly, we upper bound the second-term on the right-hand side of (19) with the L∞ norm and
Agmon’s inequality to get

2γα||ûn||γ+1
Lγ+1 ≤ C2γα||ûn||2||∇ûn||2, (22)

with C again depending only on Ω.

Combining (20) with (21) and (22), we have that

(
1

2∆t
+

β

2

)
||ûn+1||2 + ||∇ûn+1||2

≤
(
|Ω|2γα∆t||ûn||4 + |Ω|2γα||ûn||2

)
||∇ûn||2 + 1

2∆t
||ûn||2 + 1

2β
(2γ)2 α2||uγg ||2. (23)

From here, we utilize mathematical induction to prove that ∀n, ||ûn||2 is bounded above by problem
data.

Base Case. For n = 0, by (23), we have that(
1

2∆t
+

β

2

)
||û1||2 + ||∇û1||2 ≤ 1

2β
(2γ)2 α2||uγg ||2.

Dropping the nonnegative term ||∇û1||2 and dividing by 1
2∆t +

β
2 , we find that

||û1||2 ≤
1
2β (2γ)2 α2||uγg ||2

1
2∆t +

β
2

.

We define λ as λ :=
1

2∆t
1

2∆t
+β

2

= 1
1+β∆t < 1. Therefore, we have that

||û1||2 ≤
1
2β (2γ)2 α2||uγg ||2

1
2∆t +

β
2

= 2∆tλ

(
1

2β
(2γ)2 α2||uγg ||2

)
.

By our assumptions on β and ∆t, we can immediately infer that 1
2 ≤ λ < 1. With this,

||û1||2 ≤ 2∆tλ

(
1

2β
(2γ)2 α2||uγg ||2

)
≤ 2

β

(
1

2β
(2γ)2 α2||uγg ||2

)
.

Induction Step. By mathematical induction, for the kth step, our induction hypothesis is that

||ûk||2 + 2λ∆t||∇ûk||2 ≤ 2

β

(
1

2β
(2γ)2 α2||uγg ||2

)
.

Therefore, the k + 1 solution satisfies, by (23),
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(
1

2∆t
+

β

2

)
||ûk+1||2 + ||∇ûk+1||2

≤
(
|Ω|2γα∆t||ûk||4 + |Ω|2γα||ûk||2

)
||∇ûk||2 + 1

2∆t
||ûk||2 + 1

2β
(2γ)2 α2||uγg ||2. (24)

By our assumptions on α and bounds on λ, we have that

α ≤ 1

2

(
|Ω|2γ

(
1
2β (2γ)2 α2||uγg ||2

)
2
β + |Ω|2γ

(
1
2β (2γ)2 α2||uγg ||2

)2
4
β2

)
≤ λ(

|Ω|2γ
(

1
2β (2γ)2 α2||uγg ||2

)
2
β +∆t|Ω|2γ

(
1
2β (2γ)2 α2||uγg ||2

)2
4
β2

) .

Hence by our induction hypothesis, we obtain

α ≤ λ

|Ω|2γ ||ûk||2 +∆t|Ω|2γ ||ûk||4
. (25)

Combining (24) with (25) yields(
1

2∆t
+

β

2

)
||ûk+1||2 + ||∇ûk+1||2 ≤ 1

2∆t
||ûk||2 + λ||∇ûk||2 + 1

2β
(2γ)2 α2||uγg ||2.

Utilizing our induction hypothesis once again, we get that(
1

2∆t
+

β

2

)
||ûk+1||2 + ||∇ûk+1||2 ≤

(
β∆t+ 1

β∆t

)
1

2β
(2γ)2 α2||uγg ||2.

Dropping the nonnegative term ||∇ûk+1||2 and dividing both sides by 1
2∆t +

β
2 , we obtain

||ûk+1||2 ≤

(
1

1
2∆t +

β
2

)(
β∆t+ 1

β∆t

)
1

2β
(2γ)2 α2||uγg ||2

=
2

β

(
1

2β
(2γ)2 α2||uγg ||2

)
,

which is precisely the induction hypothesis for step k + 1.

Thus, by mathematical induction, ||ûn|| ≤
√

2
β

(
1
2β (2γ)2 α2||uγg ||2

)
holds for every natural number

n.

To prove stability for 1 < γ < 3, the proof technique follows a similar strategy as the γ = 3 case.

Theorem 4 Suppose that 1 < γ < 3 in the scheme (7). Assume that ∆t ≤ min{1, 2
β}, α < 1

4 , and
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α ≤ 1

2

(
|Ω|2γ

(
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)

4
β + |Ω|2γ

((
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)

4
β

)2) .

Then the soultion is long-time stable: for any given n ∈ N,

||ûn|| ≤
√

4
β

(
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)
, ∀n ∈ N.

Proof. Following as in the proof of Theorem 1 up to (11), we get

α
(
|ûn + ug|γ , ûn+1

)
≤ 2γα

∫
Ω
|ûn|γ |ûn+1|+ 2γα

∫
Ω
|uγg ||ûn+1|. (26)

Rewriting the first term of the right-hand side and using Young’s inequality, we get that

2γα

∫
Ω
(|ûn|γ · 1) |ûn+1| ≤ 2γα

∫
Ω

γ

3
|ûn|3|ûn+1|+ 2γα

∫
Ω

3− γ

3
|ûn+1|.

Since 1 < γ < 3, we further bound this term and obtain

2γα

∫
Ω

γ

3
|ûn|3|ûn+1|+ 2γα

∫
Ω

3− γ

3
|ûn+1| ≤ 2γα

∫
Ω
|ûn|3|ûn+1|+ 2γα

∫
Ω

2

3
|ûn+1|. (27)

Combining (26) and (27), we see that

α
(
|ûn + ug|γ , ûn+1

)
≤ 2γα

∫
Ω
|ûn|3|ûn+1|+ 2γα

∫
Ω

2

3
|ûn+1|+ 2γα

∫
Ω
|uγg ||ûn+1|. (28)

We add and subtract ûn to ûn+1 in the first right-hand side term. From the triangle inequality,

2γα

∫
Ω
|ûn|3|ûn+1 − ûn + ûn| ≤ 2γα

∫
Ω
|ûn|3|ûn+1 − ûn|+ 2γα

∫
Ω
|ûn|4. (29)

We utilize Cauchy-Schwarz and Young inequalities on the first term of (29) and multiply by 2∆t
2∆t

to obtain

2γα

∫
Ω
|ûn|3|ûn+1 − ûn| ≤ 2γα

(
1

4∆t
||ûn+1 − ûn||2 +∆t|| (ûn)3 ||2

)
.

Rewriting the last term as an L6 norm and combining with (29) gives us

2γα

∫
Ω
|ûn|3|ûn+1 − ûn|+ 2γα

∫
Ω
|ûn|4 ≤ 2γα

(
1

4∆t
||ûn+1 − ûn||2 +∆t||ûn||6L6

)
+ 2γα

∫
Ω
|ûn|4.

Rewriting the last term as an L4 norm and combining with (28) gives us

α
(
|ûn + ug|γ , ûn+1

)
≤ 2γα

(
1

4∆t
||ûn+1 − ûn||2 +∆t||ûn||6L6

)
+ 2γα||ûn||4L4 + 2γα

∫
Ω

2

3
|ûn+1|+ 2γα

∫
Ω
|uγg ||ûn+1|. (30)
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By Lemma 2, we see that

α
(
|ûn + ug|γ , ûn+1

)
≤ 2γα

4∆t
||ûn+1 − ûn||2 +

(
Cα2γ ||ûn||4 + Cα2γ ||ûn||2

)
||∇ûn||2

+ 2γα

∫
Ω

2

3
|ûn+1|+ 2γα

∫
Ω
|uγg ||ûn+1|,

with C depending only on Ω.

Utilizing Young on the third term of (30) and multiplying by 4β
4β , we get that

α
(
|ûn + ug|γ , ûn+1

)
≤ 2γα

4∆t
||ûn+1 − ûn||2 +

(
|Ω|α2γ ||ûn||4 + |Ω|α2γ ||ûn||2

)
||∇ûn||2

+ 2γα

∫
Ω

(
2

β

(
2

3

)2
)

+
2γαβ

8
||ûn+1||2 + 2γα

∫
Ω
|uγg ||ûn+1|.

We use Cauchy-Schwarz and Young inequalities on the last term of (30) and after multiplying by
β
β , we obtain

α
(
|ûn + ug|γ , ûn+1

)
≤ 2γα

4∆t
||ûn+1 − ûn||2 +

(
|Ω|α2γ ||ûn||4 + |Ω|α2γ ||ûn||2

)
||∇ûn||2

+ 2γα

∫
Ω

(
2

β

(
2

3

)2
)

+
2γαβ

8
||ûn+1||2 + 1

2β
(2γ)2 α2||uγg ||2 +

β

2
||ûn+1||2. (31)

Taking advantage of our assumptions that γ < 3 and α < 1
4 ,we further upper bound the right-hand

side in order to get that

α
(
|ûn + ug|γ , ûn+1

)
≤ 1

2∆t
||ûn+1 − ûn||2 +

(
|Ω|α2γ ||ûn||4 + |Ω|α2γ ||ûn||2

)
||∇ûn||2 + β

4
||ûn+1||2

+
β

2
||ûn+1||2 + 2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2. (32)

Combining (10) with (32) and combining like terms, we get

(
1

2∆t
+

β

4

)
||ûn+1||2 + ||∇ûn+1||2 ≤ 1

2∆t
||ûn||2 +

(
|Ω|α2γ ||ûn||4 + |Ω|α2γ ||ûn||2

)
||∇ûn||2

+ 2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2. (33)

From here, we utilize mathematical induction to prove that ∀n, ||ûn||2 is bounded above by problem
data.
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Base Case. For n = 0, by (33), we have that(
1

2∆t
+

β

4

)
||û1||2 + ||∇û1||2 ≤ 2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2.

Dropping the nonnegative term ||∇û1||2 and dividing by 1
2∆t +

β
4 gives us

||û1||2 ≤
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2

1
2∆t +

β
4

.

We define ϵ :=
1

2∆t
1

2∆t
+β

4

= 1

1+β∆t
2

< 1. Therefore, we have that

||û1||2 ≤
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2

1
2∆t +

β
4

= 2∆tϵ

(
2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2

)
By our assumptions on β and ∆t, we can immediately infer that 1

2 ≤ ϵ < 1. With this,

||û1||2 ≤ 2∆tϵ

(
2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2

)

≤ 4

β

(
2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2

)
Induction Step. By mathematical induction, for the kth step, our induction hypothesis is that

||ûk||2 + 2∆tϵ||∇ûk||2 ≤ 4

β

(
2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2

)
Therefore, the k + 1 solution satisfies, by (33),

(
1

2∆t
+

β

4

)
||ûk+1||2 + ||∇ûk+1||2 ≤ 1

2∆t
||ûk||2 +

(
|Ω|α2γ ||ûk||4 + |Ω|α2γ ||ûk||2

)
||∇ûk||2

+ 2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2. (34)

By our assumptions on α and our bounds on ϵ, we have that

α ≤ 1

2

(
|Ω|2γ

(
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)

4
β + |Ω|2γ

((
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)

4
β

)2)
≤ ϵ(

|Ω|2γ
(
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)

4
β + |Ω|2γ

((
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)

4
β

)2) .

293



Hence by our induction hypothesis, we obtain

α ≤ ϵ

|Ω|2γ ||ûk||2 + |Ω|2γ ||ûk||4
. (35)

Combining (34) with (35) yields

(
1

2∆t
+

β

4

)
||ûk+1||2 + ||∇ûk+1||2 ≤ 1

2∆t
||ûk||2 + ϵ||∇ûk||2 + 2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2.

Utilizing our induction hypothesis once again, we get that(
1

2∆t
+

β

4

)
||ûk+1||2 + ||∇ûk+1||2 ≤

(
2 + β∆t

β∆t

)(
2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2

)
.

Dropping the nonnegative term ||∇ûk+1||2 and dividing both sides by 1
2∆t +

β
4 , we obtain

||ûk+1||2 ≤

(
1

1
2∆t +

β
4

)(
2 + β∆t

β∆t

)(
2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2

)

=
4

β

(
2

∫
Ω

(
2

β

(
2

3

)2
)

+
2

β
||uγg ||2

)
,

which is precisely the induction hypothesis for step k + 1.

Thus, by mathematical induction, ||ûn|| ≤
√

4
β

(
2
∫
Ω

(
2
β

(
2
3

)2)
+ 2

β ||u
γ
g ||2
)
holds ∀n ∈ N.

From here, we prove that sufficient conditions exist for any γ > 3. We pick γ = 4 for simplicity as
the powers of θ from (3) become increasingly complex with higher values for γ.

Theorem 5 Suppose that γ = 4 in the scheme (7). Assume that ∆t ≤ 2
β , and

α ≤ ρ

16|Ω|
(
2
(

2
β

(
1
2β (2γ)2 α2||uγg ||2

))6
+
(

2
β

(
1
2β (2γ)2 α2||uγg ||2

))3) ,

with 0 < ρ < 1 arbitrary but fixed. Then the solution is long-time stable: for any given n ∈ N,

||ûn|| ≤
√

2
β

(
1
2β (2γ)2 α2||uγg ||2

)
.

Proof. Following as in the proof of Theorem 3 up to (20), we have that

1

2∆t
||ûn+1||2 + ||∇ûn+1||2 + β

2
||ûn+1||2 ≤ 2γα∆t||ûn||2γ

L2γ + 2γα||ûn||γ+1
Lγ+1 +

1

2∆t
||ûn||2+

1

2β
(2γ)2 α2||uγg ||2. (36)
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Using our assumption that γ = 4 as well as (3) with p = 8 on our first right-hand side term, we
obtain

2γα∆t||ûn||2γ
L2γ ≤ 16Cα∆t||∇ûn||3||û||5, (37)

where C is only dependent upon Ω.

Bounding the second right-hand side term by the L∞ norm as well as the 1D Agmon inequality,
we get that

2γα||ûn||γ+1
Lγ+1 ≤ 16Cα||∇ûn||

5
2 ||ûn||

5
2 , (38)

with C only dependent upon Ω.

Combining (36) with (37) and (38), we see that

1

2∆t
||ûn+1||2+||∇ûn+1||2+β

2
||ûn+1||2 ≤

(
16|Ω|α∆t||∇ûn||||ûn||5 + 16|Ω|α||∇ûn||

1
2 ||ûn||

5
2

)
||∇ûn||2

+
1

2∆t
||ûn||2 + 1

2β
(2γ)2 α2||uγg ||2. (39)

From here, we utilize mathematical induction to prove that ∀n, ||ûn||2 is bounded above by problem
data.

Base Case. For n = 0, by (39), we have that(
1

2∆t
+

β

2

)
||û1||2 + ||∇û1||2 ≤ 1

2β
(2γ)2 α2||uγg ||2.

Dropping the nonnegative term ||∇û1||2 and dividing by 1
2∆t +

β
2 , we find that

||û1||2 ≤
1
2β (2γ)2 α2||uγg ||2

1
2∆t +

β
2

.

Utilizing our definition of λ from Theorem 3, we see that

||û1||2 ≤
1
2β (2γ)2 α2||uγg ||2

1
2∆t +

β
2

= 2∆tλ

(
1

2β
(2γ)2 α2||uγg ||2

)
.

By our assumptions on β and ∆t, we can immediately infer that 1
2 ≤ λ ≤ 1. With this,

||û1||2 ≤ 2∆tλ

(
1

2β
(2γ)2 α2||uγg ||2

)
≤ 2

β

(
1

2β
(2γ)2 α2||uγg ||2

)
.
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Induction Step. Our induction hypothesis is that

||ûk||2 + 2ρ∆t||∇ûk||2 ≤ 2

β

(
1

2β
(2γ)2 α2||uγg ||2

)
.

Therefore, the k + 1 solution satisfies, by (39),

1

2∆t
||ûk+1||2+||∇ûk+1||2+β

2
||ûk+1||2 ≤

(
16|Ω|α∆t||∇ûk||||ûk||5 + 16|Ω|α||∇ûk||

1
2 ||ûk||

5
2

)
||∇ûk||2

+
1

2∆t
||ûk||2 + 1

2β
(2γ)2 α2||uγg ||2. (40)

Applying our induction hypothesis to our assumption on α and ∆t, we obtain

α ≤ ρ

16|Ω|2||∇ûk||||ûk||5 + 16|Ω|||∇ûk||
1
2 ||ûk||

5
2

. (41)

Combining (40) and (41) yields(
1

2∆t
+

β

2

)
||ûk+1||2 + ||∇ûk+1||2 ≤ ρ||∇ûk||2 + 1

2∆t
||ûk||2 + 1

2β
(2γ)2 α2||uγg ||2.

Utilizing our induction hypothesis once again, we get that(
1

2∆t
+

β

2

)
||ûk+1||2 + ||∇ûk+1||2 ≤

(
β∆t+ 1

β∆t

)
1

2β
(2γ)2 α2||uγg ||2.

Dropping the nonnegative term ||∇ûk+1||2 and dividing both sides by 1
2∆t +

β
2 , we obtain

||ûk+1||2 ≤

(
1

1
2∆t +

β
2

)(
β∆t+ 1

β∆t

)
1

2β
(2γ)2 α2||uγg ||2

=
2

β

(
1

2β
(2γ)2 α2||uγg ||2

)
,

which is precisely the induction hypothesis for step k + 1.

Thus, by mathematical induction, ||ûn|| ≤
√

2
β

(
1
2β (2γ)2 α2||uγg ||2

)
holds for every natural number

n.

4 Numerical Results

We now show the results of our method applied to a test problem. The problem is to solve (1) 
on [0, 12.7] with T = 1980, ug = 21.45, and u0 = uh+ small random noise that comes from the 
measurement error. Thus setup is an effort t o m imic a  r ecent l aboratory e xperiment performed 
here at Clemson. The initial condition is plotted in figure 1.
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Figure 1: Shown above is the initial temperature profile for the numerical tests.

We use our method combined with a second order finite difference approximation and equally
spaced points to approximate varying values of α, β, and γ, using time step size ∆t = .1563 and
spatial step size ∆x = .0638. We believe that these discretization parameters were sufficiently small
to resolve solutions.

The analysis of our scheme suggests different regimes based on the γ parameter. Hence, we
experiment with γ = 1

2 , 1, 2, 3, 4, 6. For each γ, we test various values of α and β, and ask the
question: is the method stable or not, which is determined by whether the final time step’s solution 
has L2 norm less that 106 (when unstable, the solution norm is always at least 1030, and when 
stable, it is less than 104). Plots of stability regions are shown in figure 2, and we observe a  linear 
relationship between the α and β parameters, as our analysis predicts. We observe that as γ grows, 
β must also grow in order to maintain stability for the same values of α; in particular, β must 
grow at a rate 10 times greater than γ. These observations are consistent with the parameter 
assumptions from our analysis that guarantee that solutions will lie within the stability regions for 
each value of γ.

5 Conclusions and Future Directions

We have shown conditions on the data that provide long-time stability of our scheme for any positive 
γ. Numerical tests illustrate the theory. For future work, we plan to consider extending to 2D, which 
will be challenging due to weaker Sobolev and Agmon inequalities.
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Figure 2: Shown above are the stability regions and instability regions (shaded in red) for the 
numerical tests with varying parameters.
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