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Abstract

We study an efficient time-stepping scheme for the 1D Fujita equation that is implicit for the linear
terms but explicit for the nonlinear terms. We analyze the long-time stability of the scheme for
varying parameter values, which reveal parameter value regimes in which the method is stable.
We provide numerical results that illustrate the theory and show the analytically derived stability
conditions are sufficient to achieve long-time st ability results.

1 Introduction
We consider the Fujita semilinear heat equation which is given in 1D by [3]:

uw —Au+ B (u—ug) =alul” on (a,b),
u(a,t) = u(b, t) = ug, (1)

u(x, 0) = Ug,

where u = u(z,t) is the unknown temperature, a > 0, § > 0, and 7 > 0 are problem dependent
constants, and u, is the (assumed constant) temperature of the surrounding medium. This sys-
tem models various chemical and physical phenomenon such as diffusion and reaction, combustion,
quantum mechanics, and fluid mechanics [7]. Our particular interest is the modeling of viscoelastic
materials under cyclic deformation due to vibrational loading accompanied by self-heating [13]. In
some cases, this self-heating can cause catastrophic heat explosion which can change the mechanical
properties of the material, and the material itself will ultimately fail [5].

Our goal is to study a numerical discretization for (1), and in particular its long-time stabil-
ity. As there are many different notions of stability [8, 9, 10, 12], uniform boundedness of the
solution in the L? norm will be understood to be our definition of stability throughout the paper.
Understanding the stability properties of discretizations often reveals information about its well-
posedness, robustness, and accuracy. Moreover, the stability of our discretization is directly related
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Gamma Sufficient Conditions

v=1 B> 3
1<y<3 Atgmin{l,z},aﬁmin ia '
’ 21027 (2o (3(2)7) + 213 112) 4 +i0k (2 (3(2)°)+2103112) £)°)
v=3 At < min{l, %}, a < '
B 2(|Q|2’Y(%(Q’Y)QaQHu’;HQ)%+|Q|27<ﬁ(27)2a2”ug”2)2éi2)
v >3 At<Za<

16‘9'(2(%(ﬁ(27)2a2||u3||2)>6+<%(ﬁ(Q’Y)QaQHug'P))iS)

Table 1: Shown above are the parameter restrictions for the different ranges of ~.

to the stability of (1), and thus can give insight into when blowup phenomenon/material failure
may occur.

A great deal of literature exists on this Fujita equation, including conditions for its well-
posedness, blowup criteria, and other mathematical properties. In much of this literature, the
Cauchy problem (no boundary conditions) is considered [3, 4, 11], and Newtonian relaxation is
neglected (8 = 0). However, there is much less in the literature regarding the Fujita equation with
physical boundary conditions and even less on numerical methods, and to our knowledge none for
long-time stability of numerical methods.

Before discretizing, we first rewrite the system (1) in terms of a new variable & which is defined
by % = u — ug. This transforms (1) into

U — Al + fu=ali+uy|” on (a,b),

We consider a backward Fuler temporal discretization together with a first order explicit approxi-
mation of the nonlinear term to get, on a domain €2 = (a,b),

,&n—H —qn

A7 — AT 4 BT = ala™ + w7,

(2)

W’ =0,

where At > 0 denotes the time step size. The purpose of this paper is to prove long-time stability
results for (2), and we show herein that the stability properties depend on 7, «, and [ values as
well as (mild) restrictions on At. A summary of our results is shown in Table 1. From the table,
observe that there are different p arameter r estrictionsin t he d ifferent ranges of . In fact, the
stability proof structures change in each of these cases as well, as each seems to require a different
proof technique. Section 3 of this paper proves these results. In Section 4, we perform numerical
tests that illustrate our theory that picking parameters in the ranges yields long-time stability; on
the other hand, picking them outside of these ranges can lead to blow up.
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2 Preliminaries

We assume the domain 2 C R is a bounded open interval. The space L?(Q) is defined as
L2(Q) :={v: Q = R, [, Jv]*dz < oo},

and the L?(Q) inner product and norm will be defined as

(v,w) == [0 wdz,
1
o] == (v, 0)>.

We utilize Young’s inequality: for p,q > 0 with % + % =1,
a? | b?
s P+T
for any a,b € R.
We define the space X to be
X := H}(Q).

Poincare’s inequality also holds in X: for all vectors, there is a constant ()}, dependent only on the
size of the domain such that

[lv]] < Gpl[Vvl].
We also utilize a polarization identity that states for a,b € R,
(a—b)a= 3(a® —b*+ (a —b)?).
Our analysis uses the following inequality taken from [2], which is valid in 1D:
1/1lee < Con®)If' 1721171127 i p e (2,00), (3)
with 0 = % and Cgy only dependent upon p.

We also use the 1D Agmon inequality [1]: For any u € HE(Q) with Q C R, there exists a constant
C such that

lull gy < CllullZllul 21 .
Lemma 1 Suppose that a and b are nonnegative real numbers and v > 0. Then,
(a+b)” <max (1,271 (a7 + 7). (4)
Proof. For v = 1, (4) is trivially true. Therefore, let us assume that v € (0,1) U (1,00). If

a = b > 0, the inequality trivially holds. Without loss of generality, let 0 < a < b. Then, we define
ras x:= ¢ €[0,00). Dividing both sides of (4) by b7, we get the following:
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(z+1)Y <max (1,271 (27 +1) Va € [0,00). (5)
We will now prove that (5) holds for all v € (0,1) U (1, c0).

Case I When v € (0,1), the function f: z € [0,1] — (27 + 1)% is concave. Therefore, the secant
connecting the points (0, f(0)) and (1, f(1)) lies below the graph of f, i.e.,

HO=IO) ;o) 1 £(0) < f(x) Va € [0,1].
Because f(0) =1, f(1) — f(0) = 25 — 1 > 1 and 1 = max(1,2771), we have that

(x+1) <max (1,277") (27 +1) Vz€0,1]. (6)

If z € [1,00), then % € (0, 1], and therefore, upon replacing = by % in inequality (6) and multiplying
both sides of the resulting inequality by 27, we deduce that (4) also holds for all z € [1, 00).

Case II When v € (1,00), the function g : € [0,00) — z7 is convex. Therefore, for all
x,y € [0,00) and all § € [0, 1],

90z + (1 —0)y)) < Og(x) + (1 —0)g(y).
Thus, in particular, for y = 1 and 0 = % we have that
() <2+ 117 vae0,00).
If we multiply this inequality by 27 and observe that 27~1 = max(1,27~!), this inequality reduces

to (5).

Thus, (5) holds for all v € (0,1)U(1, o), and therefore, (4) is true for all positive v and nonnegative
a and b. O

Lemma 2 [Lemma 2.5 from [6]] Suppose constants r and B satisfy r > 1, B > 0. Then if the
sequence of real numbers a,, satisfies

rany1 < an + B,

we have that

l)n—&—l

B
ans1 < ao (3)" + 75

3 Numerical Scheme and Stability Analysis

For our numerical scheme below, we use a finite difference method which is equivalent to a spatial

finite element method with a conforming finite element space, Vi, C H}((a, b) ). We note that if we
use continuous piecewise linears on a uniform subdivision of V}, the analysis that follows can be
repeated verbatim.
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The time stepping algorithm we study reads as follows: Given 4", form 4" satisfying

an+1 —qn

A _ A@”"H —|—ﬂﬂn+1 — amn +Ug|73

(7)

W =0.

In this section, we will analyze (7) for long-time stability for varying . There appears to be distinct
regimes for these analyses, v < 1,v=1,1<~v < 3,7 = 3,7 > 3. We begin with v = 1.

Remark. The theorems below prove long-time stability under certain conditions on parameters
«, 3,. These conditions are only sufficient for the results, and a different analysis could potentially
provide slightly different results.

Theorem 1 Suppose that v = 1 in algorithm (7) and 5 > 376“ Then the solution is long-time
stable: for any given n € N,

5 llugl®

18"l < g sm

Proof. Multiplying (7) by @"*! and taking the integral over Q gives us

<fm+it_an,7jn+1> _ (Aan—kl’fm—kl) + m|an+1‘|2 — (’ﬁn + ug‘,ﬁn"'l).

We can rewrite our first term using the polarization identity via

~ +17A ~ N N N “
(un = “n7un+1> _ 2%“ (Hun+1||2 o HunH2 4 Hu”'H —u”HQ).

For the second term, we use Green’s Theorem:
— (At anth) = ||[Var )2 — [i (VAT w) amHdu = [[Vart ]2,

Combining the terms on our left-hand side, we now have

1
2At

Decomposing the right-hand side term, we obtain

(@ P = | + = a|?) + [[Va 12 + Blla™ P = a (|a" +ugl, @) . (8)

a (Ja" + ugl, 0" ) < a(la™], 2" ) + o (Jug|, a1,
and by the Cauchy-Schwarz inequality, we can bound these terms by
a (@], @) + o (Jugl, @) < af @™ [[]|[a | + af jug||[Ja" ).

By Young’s inequality, we can further upper bound this inequality and obtain

. . . 1, . 1. 1 1.
alla 11 + ol < @ (Gla"IP + 511 2) + o (Gl + 511 1) . )
Combining (8) with (9) and rearranging terms, we get that
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srella™ P g |[am = a| P [ Va2 4 Bllam [P —a[am 2 < §l1an P+ g |10 2 4+ § gl

Next, we drop the nonnegative term % ||a"*! — a"(|? from the left-hand side of our bound. Thus,
we now have that

axi &P+ Va2 4+ Blla P — afla™ ] < GllaM P + gaglla”|P + §llugll.
Using Poincare’s inequality, we can lower bound our left-hand side even further via
(57 +Cp 2+ B —a) [[a" P < (5 + 557) 18”117 + §luglI*.

Dividing both sides by § + ﬁ, we find that

A +Cy 2+ B—a . N
(B e < i + (52 ) Sl
2 2At 2 2At

1 -2
sx7+Cp “+B—a

Let r := - and note that since § > 2%, we can now use Lemma 2 to get
2taaz
a1 ) $llugll? T ) $llugl? o 2
~nt1(2 02 (1) +1 (%+ﬁ> 2 1\n+1 Stoxg /27 S llugll
ant < || t — 1 T — _2
a1 < a0 (1) + A o)+ g - il
LJ’_Q
2At T 2
which finishes the proof. O

For the case of 0 < v < 1, we use the v = 1 result in the proof.

Theorem 2 Suppose that 0 < v < 1 in algorithm (7) and B > 2« (|2 + 1). Then the solution is
long-time stable: for any given n € N,

nH aHugH2
- Cp +ﬁ—2cx(\Q|+1) ’

|

Proof. Following as in the proof of Theorem 1 up to (8), we get

1

2At (||An+1’|2

1a°|[2 + |Ja™ = a?|2) + [[Va P+ Blla" 1P = o (ja" + ugl7, ") . (10)
By Lemma 1, we have that
o (fa"+ i) < a [ Ji Pl
<a [ 2@ + g i
<2a / jamrlan | + m/ﬂ g |+, (11)
We upper bound the first term of (11) by utilizing Young’s inequality and obtain

2 2
Da [q [a"]am ] < 20 [, (g "2+ 2‘77\&”+1|ﬁ> = 2a [o 3|a"|? + 2o [, 2 [am
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Rewriting these terms as their equivalent LP norms, we get

2 2
2a fo 310" + 200 fo a7 = 2ag||an | + 205 e |PL

By our assumption that 0 < v < 1, we can further upper bound these terms via
v Y an 2 ~ 2= ntl ﬁ NP an41112
g [l + 2 a—— @™ 75 < of @7 + 2afQ A" (12)

For the second term of (11), we utilize Cauchy-Schwarz and Young inequalities to obtain

7o [ gl < Dalgllan ] < 2a (GlgIE + 518 R <l + allan R (13
Combining (10) with (12) and (13) and dropping the nonnegative term 5x||a"*! — @"||* from the
left-hand side, we get that

aag [P+ Va2 + Bl[am 1P = (2a)Qf + o) [[a]* < (g + @) [[a"]]7 + allug] .
Now using Poincare’s inequality, we lower bound our left-hand side even further via
(37 + Cp % + 8 = 2a]Q = a) [|[a"]? < (357 + @) [|a"]]* + o fug||*.

Dividing both sides by ﬁ + «a, we find that

3a3 TCp 2 +6—20|Q— 5 5
(BB ) a2 < i + (o) ol
2At

At

i +Cp 2 +B—2a|Q|—a

Let r := g —— and note that since 8 > 2a/(1 4 |€2]), we can now use Lemma 2 to get
2At
a 2
e < e e+t g gy, (G
r—1 r Cp 2 4B—-2alQ|—2a C;2+B—2a(|§2|+1)’
BN
which completes the proof. O

Next we consider v = 3. We note that this is the critical exponent for blowup of the Cauchy
problem for the Fujita equation [4] when § = 0, and also seems to be an inflection point for our
stability analysis approach.

Theorem 3 Suppose that v = 3 in the scheme (7). Assume that At < min{l, %}, and
1

—
2<|mzv(; (@) a([u]|?) £ + 12127 (55 () a2|lud12) 5‘)

Then the solution is long-time stable: for any given n € N,

~ 2
Il <3 (3 @ il ).
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Proof. Following as in the proof of Theorem 1 up to (11), we get

o ([ + ugl?, @™+ S27a/§2|ﬁ”]”’|ﬁ”+1]—1—270¢/Q|ug||ﬂ”+1|. (14)

We add and subtract 4" to 4" in the first right-hand side term. From the triangle inequality,

m/ P ja+| < m/ et — an| +2m/ [+ (15)
Q Q
~ ~ N 1
=2« /\u At — At 4 20al[a]] 1 (16)

We utilize Cauchy-Schwarz and Young on the first term of (16) and multiply by 2At to obtain
2a fo @@ — @ < 20a (g llatt - at|P + Adf @) ]]?).

Rewriting the last term in its equivalent LP norm, we find that

1 U A U ’\ ’* A

Combining the last term of (16) with (17) gives us

N Lo N N N
v [ Jarpiantt - an) 2 [ < 2ia (il - @R+ i, ) + 2all
(18)
We also utilize Cauchy-Schwarz and Young inequalities on the second term of (14) and multiply it
by % to obtain

2”04/ uglla™™ < oz (2”)2a2|!ugll2 HU"HH2 (19)

n+l _ nHQ

Combining (10) with (18) and (19) and dropplng the nonnegative term ||u from the

left-hand side, we get that

2At|mn+1”2+||vﬂn+1”2 Hun—HHQ

1
35 (27)* a?|lug %, (20)

By our assumption that v = 3 and from (3) with § = %, we can upper bound the first term on the
right-hand side of (20) to find that

< Zalt|[a”|[*), + 27afja"|| 1L + 2AtH a"[|* +

2 aAt||G < C2aAt||a"| Y| Var| %, (21)

"l
L2

with C' depending only on €.
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Similarly, we upper bound the second-term on the right-hand side of (19) with the L* norm and
(22)

L < o2valan| || van

Agmon’s inequality to get
2 allt"|[;1 <

with C' again depending only on (2

Combining (20) with (21) and (22), we have that

1
(27)* a?|lug | (23)

S|P +
25

/3 An N7
+ 5 )l [ var
is bounded above by problem

1
2At
(1927 aAt|[a"(|* + Q27 alla™]?) V"] +
nHZ

From here, we utilize mathematical induction to prove that Vn, ||a

data.
Base Case. For n =0, by (23), we have that
G+ o) NP+ 1ValP < o (21 0?ljug
2At 23 o lug ]
Dropping the nonnegative term HVQ1H2 and dividing by 5 At —|— , we find that
2
o 28 (27 @ |ug|f?
A T2

< 1. Therefore, we have that

1
We define A as \ := %:tﬁg = 1+5At
2’y 2 2 U'Y 2

s112 < 25 (
|a||” < .
2At
By our assumptions on 3 and At, we can immediately infer that 1 < X\ < 1. With this

+

]2 < 2A0A ( 5 @) 2||u7|\2)
2 1
<2 (g5 @relgie).

25 & 2Hu’*|!2)

Induction Step. By mathematical induction, for the kth step, our induction hypothesis is that
a1 + 20wt < 5

Therefore, the k + 1 solution satisfies, by (23)
289



1 BY ka1 2 k112
(32 + 5 ) IR + vas+1)

1
< (100 + 21270 ldH ) 11VaHE + gl + 5 (1) a2l (24
By our assumptions on a and bounds on A, we have that
1
a<
_2 Q27 (L (27 2 +1Q127 (L (27)% a2 2\ 4
2127 (35 (27 ?l[u]1?) 3 + 12127 (35 (27 0?lu]|?) s
A

< . .
0 2
<’ 27 (21 (27)? a?||ug|[? >% At[]27 (% (27) OcQHugHQ) ;2>
Hence by our induction hypothesis, we obtain

A
< .
—QI20][ak(1? + AtQ[27]ak(|*

Combining (24) with (25) yields

1
(27) &lug |1

LBy A
( ; >||u’f+1||2+r|wk+l||2 Sl NI+ 5

2At

Utilizing our induction hypothesis once again, we get that

1 BN | akt1)2 k112 pAt+1) 1 2,2 2
< Y v
(57 5 ) NI+ Iwas P < (2500 ) 0 @ allg P

and dividing both sides by ﬁ + g, we obtain

1 BAL+1Y 1
k1)2 < 92 02[17 |12
a2 < <21m§>< ) 55 @l

2 /1
=2 (g5 @7 egl).,

which is precisely the induction hypothesis for step k + 1.

Dropping the nonnegative term ||Va 1|2

Thus, by mathematical induction, ||a"|| < \/ % <2i (27)2 a2||u] |2 ) holds for every natural number
n. O

To prove stability for 1 < v < 3, the proof technique follows a similar strategy as the v = 3 case.

Theorem 4 Suppose that 1 <y < 3 in the scheme (7). Assume that At < min{l, %}, a< i, and
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1

2 (192 (2 0o (3 %) + 301E) #0027 (20 (3 %) + 3le) 3)°)

Then the soultion is long-time stable: for any given n € N,

Il <[4 (20 (3 3)°) + 3ldll) vn e

Proof. Following as in the proof of Theorem 1 up to (11), we get

a(ji" +ugl, ") < 20 / " a" + 2 / Jug|[a" . (26)
Q Q

Rewriting the first term of the right-hand side and using Young’s inequality, we get that

2704/ (’ﬁ""y-l)‘ﬁn+1’ §2'Ya/ /y‘ﬁn‘i%ﬁn—i-l’_i_?ya/ 3_77‘@%1’_

Since 1 < v < 3, we further bound this term and obtain

3_
Va/ 7\7:/“”’|fa”+1|+2m/ 2 gt gwa/ \an\3yan+1|+2w/ et (21)

Combining (26) and (27), we see that

@ (i + gl @) < Do [P ga [ Zat s [ ela )
Q
We add and subtract 4" to 4" in the first right-hand side term. From the triangle inequality,
2“’0[/ [ Blantt — a4 an| < 2”@/ [ 3antt —an| + 27a/ [7 (29)
2A¢

We utilize Cauchy-Schwarz and Young inequalities on the first term of (29) and multiply by 537
to obtain

T [ Pl - i) < D (gl - P ad @ R).
Q

Rewriting the last term as an L® norm and combining with (29) gives us

2w/aWWM—w%ww/mWsma( VMI”W+AWM&)HM/MW.
Q Q 4At Q

Rewriting the last term as an L* norm and combining with (28) gives us

o (Ja™ + ugl, "H)Sﬁa( !

Ll - a1 + a1

2
+allilfh+ 2 [ Za e ra [ i (@)
Q Q
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By Lemma 2, we see that

o ([a" + ug |7, a™HY) < St — | + (Ca2|[a||* + Ca2Y||a"|?) [[Va"|?

2
+2704/ \ﬂ”“—f—Z"’a/ B aall
o3 Q

- 4At

with C' depending only on €.

Utilizing Young on the third term of (30) and multiplying by %, we get that

N N 2« N N ) N
a (Ja" + ug?, @™ < = fJat Tt — @)+ (1Q)a27]|a[ + Qa2 |[a"]?) [V

= 4At
2 /2\?\ 278
—1—2704/ <) + = jantt 2—1—2704/ wY||an Tt
Q<6 3 3 [[a" | Q! @™

We use Cauchy-Schwarz and Young inequalities on the last term of (30) and after multiplying by
%, we obtain

N 2« . N . .
a (Ja" 4+ ug|?, 4" ) < T Jat Tt — @t + (1Q]a27]|a[ + Qa2 |[a]?) [V

2 (2\*\ | 208 10, L 2 2 2 | +1)12
+27a/9<ﬂ (3> >+8||Un | +%(27) o |ug||” + Hun 1= (31)

Taking advantage of our assumptions that v < 3 and o < % 1,we further upper bound the right-hand
side in order to get that

a ([ + ugl?, 4" ) < A = a2+ (1Q]a2”|a"(* + |Q]a27([a" ) ||Vt |* + HU”HH2

18 ~n+1(|2 2 (2 ? 2 2

Combining (10) with (32) and combining like terms, we get

2At

Saglla" 112 + ([Qla2[Ja"||* + |©]a27||a"]]?) [|Var |

+2/Q (; <§>2> +;|ug||2. (33)

nHZ

1 /8 AN AN
( T )| HI2 4 v <

2A¢t 2A¢

From here, we utilize mathematical induction to prove that Vn, ||a"||* is bounded above by problem

data.
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Base Case. For n =0, by (33), we have that

1 1012 1112 2 (2)° 2 2
(30 +5) I+ 19t <2/<ﬁ <3)>+5Hu3\|-

1|2 and dividing by ﬁ + g gives us

2 (2)2 2
L. (36)) + 3l

1 B
oAl T 1

Dropping the nonnegative term ||V

1

We define € := 1% F =7 +16At < 1. Therefore, we have that
acta

2
2fo (3(3)°) + 312 2 /2\?\ 2
ot < =L e (2 [ (5(3)) + Sl
SAL + Y Q 6 3 B
By our assumptions on 8 and At, we can immediately infer that % < e < 1. With this,
|Gt ]|? < 2Ate 2/ 2<2>2 —l—gHzﬂHQ
B a\B\3 g
4 / 2 (2)2 2.
<2 =13 + —||u)
. < i < ~(3) )+ 3l
Induction Step. By mathematical induction, for the kth step, our induction hypothesis is that

4 2 /2\? 2
|[a¥(|* + 2Ate| | VaF||* < 3 <2/Q (5 <3> > +5HUZH2>

Therefore, the k + 1 solution satisfies, by (33),

1 B 1 . ) )
(3 + ) 18R 4 IV < 4P + (j0la2 41" + [@la2l1at|P) Ve

2At
+2/Q (; <§>2> +;yu3\12. (34)

By our assumptions on « and our bounds on €, we have that

1

2(|mm(zfﬂ(z(§)2) 2lgl2) 4 + 1902 (2 (3 3)7) + mluf/!\)é))

€

(10 (200 (3 @°) + Blalie) § 1o (200 (3 9) + i) 8)°)

a <

<
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Hence by our induction hypothesis, we obtain

€
a< = = .
= Q27]|ak)? + Q27| [ak| 14

Combining (34) with (35) yields

1 5 k+1)2 k+1 2 k12 k|12 / 2 2 ? 2 2
2 2 2|2
(3 + 5 ) NP 4 19as P < ot +divatie+2 [ (3(3) )+ 31

Utilizing our induction hypothesis once again, we get that

Lo B\ kt12 ky1p2 o (21 BAL 2 (2)%) 2 2
(g + 2) et assne < (25280) (2/9(5 (3) )+/3Hug|>.

k:+1H2

Dropping the nonnegative term ||V and dividing both sides by 5 At + 4 g , we obtain

a1 < (21&1%) <2;§ft> (2/9 (; @)2) +;|Iu3!|2>
R0

which is precisely the induction hypothesis for step k + 1.

Thus, by mathematical induction, ||4"|| < \/g (2 Jo <% (%)2> 5”“9” > holds Vn € N. O

From here, we prove that sufficient conditions exist for any v > 3. We pick v = 4 for simplicity as
the powers of 6 from (3) become increasingly complex with higher values for ~.

Theorem 5 Suppose that v = 4 in the scheme (7). Assume that At < 2 5, and
p

: 16|Q|< ( (15( )% 02| |ug ||? )) ( (,3(2”) 0‘2”“3H2>)3>’

with 0 < p < 1 arbitrary but fived. Then the solution is long-time stable: for any given n € N,

~ 2
Il <3 (3 @ allage).

Proof. Following as in the proof of Theorem 3 up to (20), we have that

~ ~ N N N 1
2A75H @t P+ vart PP + HU”“H2 < 2”04At\lun|!m + 2%l |a"|[J 1 + TMHU”II +
1 2
N2 2|2, (36
2ﬁ( )7 o [ugl]®. (36)
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Using our assumption that v = 4 as well as (3) with p = 8 on our first right-hand side term, we
obtain
2aAt[a"|[7h, < 16CaAt|Var||lall?, (37)
where C' is only dependent upon Q.
Bounding the second right-hand side term by the L* norm as well as the 1D Agmon inequality,
we get that
Valli" ||} < 160al|var|2|la"|?, (38)

with C' only dependent upon €.

Combining (36) with (37) and (38), we see that

a2 ) < (16|maAt||va"||r|a"||5+16|sz|a||va"||%||an||%)||wm|2

. 1
+ gl + 55 @ Qg @9
nHQ

From here, we utilize mathematical induction to prove that Vn, || is bounded above by problem

data.

Base Case. For n =0, by (39), we have that

1 . 1 2
(57 + 5 ) N+ IV < o @) el .
1”2

Dropping the nonnegative term ||V and dividing by 5 At —|— , we find that

2
< BEV I

1 B
At T2

Utilizing our definition of A from Theorem 3, we see that

1 2 2 Y112
35 (21) 02|
e < 2 ; ag‘ ‘%”( (27)? 2||w|2>
at T2 26

By our assumptions on 5 and At, we can immediately infer that % < A <1. With this,

a2 < 220n ( 7 2||u7|\2)

g 1 )2 2u72>
sﬁ(ﬁm 1

295



Induction Step. Our induction hypothesis is that
k12 k2 o 2 (1 o2 2 a2
1277 + 2pAt|[Va®||” < 3 %(2 )" a|ugl” ) -
Therefore, the k + 1 solution satisfies, by (39),

a4V P ik < (16]laad [Vak |14 + 16j0lol Va1t ) |t P

1 1
+ o8P 4+ 55 (2 0?2 (40

Applying our induction hypothesis to our assumption on « and At, we obtain

P
= Gk 4k |5 BRI (41)
16[Q[2[[Vak([||ak][> + 16]Q[[Var|[= [[a¥||=

Combining (40) and (41) yields

1 2
1a¥|1? + — (27)% o®[Ju] |2

1 R .
(37 + 5 ) 17112 + V0212 < AV 4 P + 5

2At

Utilizing our induction hypothesis once again, we get that

Lo BY k12 k12 o (PAEHTY 1 2 2012
< Y v
(57 + 5 ) IR Ivas e < (2500) o @ allug

and dividing both sides by %At + g, we obtain

2At

Dropping the nonnegative term ||Va#+||?

1 BAt+1\ 1
uk+1 2 ~ ( ) 27 2 o? u'y 2

; (35 @2 eg1R).

which is precisely the induction hypothesis for step k + 1.

28
n. O]

Thus, by mathematical induction, ||a"|| < \/ 5 < L (2)% a2|ju]| |2 ) holds for every natural number

4 Numerical Results

We now show the results of our method applied to a test problem. The problem is to solve (1)
on [0,12.7] with T" = 1980, uy = 21.45, and up = up+ small random noise that comes from the
measurement error. Thus setup is an effort t o mimic a recent 1 aboratory e xperiment performed
here at Clemson. The initial condition is plotted in figure 1.
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Figure 1: Shown above is the initial temperature profile for the numerical tests.

We use our method combined with a second order finite difference approximation and equally
spaced points to approximate varying values of «, 3, and -y, using time step size At = .1563 and
spatial step size Ax = .0638. We believe that these discretization parameters were sufficiently small
to resolve solutions.

The analysis of our scheme suggests different regimes based on the + parameter. Hence, we
experiment with v = %, 1,2,3,4,6. For each v, we test various values of a and (5, and ask the
question: is the method stable or not, which is determined by whether the final time step’s solution
has L? norm less that 10 (when unstable, the solution norm is always at least 103, and when
stable, it is less than 10*). Plots of stability regions are shown in figure 2, and we observe a linear
relationship between the o and 3 parameters, as our analysis predicts. We observe that as v grows,
B must also grow in order to maintain stability for the same values of «; in particular, S must
grow at a rate 10 times greater than . These observations are consistent with the parameter
assumptions from our analysis that guarantee that solutions will lie within the stability regions for

each value of .

5 Conclusions and Future Directions

We have shown conditions on the data that provide long-time stability of our scheme for any positive
~. Numerical tests illustrate the theory. For future work, we plan to consider extending to 2D, which
will be challenging due to weaker Sobolev and Agmon inequalities.
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Figure 2: Shown above are the stability regions and instability regions (shaded in red) for the
numerical tests with varying parameters.
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