
A Comparative Study of Software Secrets Reporting
by Secret Detection Tools

Setu Kumar Basak∗, Jamison Cox†, Bradley Reaves‡ and Laurie Williams§

North Carolina State University, USA

Email: ∗sbasak4@ncsu.edu, †jcox3@ncsu.edu, ‡bgreaves@ncsu.edu, §lawilli3@ncsu.edu

Abstract—Background: According to GitGuardian’s monitor-
ing of public GitHub repositories, secrets sprawl continued
accelerating in 2022 by 67% compared to 2021, exposing over 10
million secrets (API keys and other credentials). Though many
open-source and proprietary secret detection tools are available,
these tools output many false positives, making it difficult for
developers to take action and teams to choose one tool out of
many. To our knowledge, the secret detection tools are not yet
compared and evaluated. Aims: The goal of our study is to aid
developers in choosing a secret detection tool to reduce the exposure
of secrets through an empirical investigation of existing secret
detection tools. Method: We present an evaluation of five open-
source and four proprietary tools against a benchmark dataset.
Results: The top three tools based on precision are: GitHub
Secret Scanner (75%), Gitleaks (46%), and Commercial X (25%),
and based on recall are: Gitleaks (88%), SpectralOps (67%)
and TruffleHog (52%). Our manual analysis of reported secrets
reveals that false positives are due to employing generic regular
expressions and ineffective entropy calculation. In contrast, false
negatives are due to faulty regular expressions, skipping specific
file types, and insufficient rulesets. Conclusions: We recommend
developers choose tools based on secret types present in their
projects to prevent missing secrets. In addition, we recommend
tool vendors update detection rules periodically and correctly
employ secret verification mechanisms by collaborating with API
vendors to improve accuracy.

I. INTRODUCTION

GitGuardian measured the exposure of secrets in GitHub

repositories for the last three years and reported in March 2023

that secrets sprawl continued accelerating in 2022 by 67%

compared to 2021, exposing more than 10 million secrets [1].

In addition, they discovered that one out of 10 GitHub code

authors exposed at least one secret in 2022. Secrets (such as

API keys and access tokens) are indispensable for software as

secrets are needed for third-party service integration, such as

payment systems. However, developers leak secrets in plain

text in the version control systems (VCS) and application

packages [2], [3]. In September 2022, an attacker took over

Uber’s internal tools and applications by leveraging hard-

coded admin credentials in their PowerShell scripts [4].

To prevent secrets from leaking in VCS, several open-source

and proprietary tools such as Gitleaks and SpectralOps are

available. However, these tools generate many false positives.

Chess and McGraw [5] state that a high percentage of false

positives may lead to 100 percent false negatives because

people stop using the tool. This phenomenon is called alert

fatigue [6]. In addition, a tool will be unsound if it allows

false negatives to escape to reduce false positives. As a

result, developers face challenges in selecting secret detection

tools. To our knowledge, no research has been conducted yet

evaluating and comparing existing secret detection tools.
The goal of our study is to aid developers in choosing a

secret detection tool to reduce the exposure of secrets through

an empirical investigation of existing secret detection tools.

In this study, we analyzed existing open-source and pro-

prietary secret detection tools and provided answers to the

following research questions:

• RQ1: How do the secret detection tools perform in

detecting secrets in terms of precision and recall?

• RQ2: What features are offered by the secret detection

tools to aid in preventing secrets exposure?

We selected five open-source and four proprietary tools

and compared the tools against a benchmark dataset of 818

repositories. We analyzed the tools report and evaluated how

tools perform in detecting secrets. In addition, we analyzed

the features offered by the tools in preventing the exposure of

secrets and identified future research needs for secure software

secret management. We have also made a dataset of the false

positive secrets reported by the tools publicly-available for

future researchers to aid in expediting research on the accuracy

of the tools [7]. We summarize our contributions as follows:

• A first comparative study of the existing open-source

and proprietary secret detection tools and a qualitative

analysis of the reports generated by the tools;

• A categorization of the features provided by the secret

detection tools to aid in preventing secrets exposure; and

• A dataset of false positive secrets reported by the tools.

The rest of our paper is structured as follows: Section II, III

and IV introduce the benchmark dataset, selection process of

tools, and the methodology to compare and evaluate the tools

result, respectively. We discuss the findings and implications

of our work in Section V and VI. Section VII discusses the

ethics, followed by the limitation of our paper. We discuss the

related work in Section IX and conclude in Section X.

II. BENCHMARK DATASET

To compare the secret detection tools, we selected Secret-

Bench [8], a publicly-available benchmark dataset of software

secrets. We accessed the dataset using Google Cloud Stor-

age (Bucket Name: secretbench) [9] and Google BigQuery

(Dataset ID: dev-range-332204.secretbench.secrets) [10]. A

detailed description of the dataset is given below:978-1-6654-5223-6/23/$31.00 ©2023 IEEE

20
23

 A
CM

/I
EE

E
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Em
pi

ric
al

 S
of

tw
ar

e
En

gi
ne

er
in

g
an

d
M

ea
su

re
m

en
t (

ES
EM

) |
 9

78
-1

-6
65

4-
52

23
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

ES
EM

56
16

8.
20

23
.1

03
04

85
3

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

Repositories: The dataset has been curated from the Google

BigQuery Public Dataset of GitHub [11] using 761 regular

expression patterns of different types of secrets. The dataset

consists of 818 public GitHub repositories.

Secrets: The dataset consists of 97,479 labeled plain-text

secrets (labeled as true and false) extracted from 818 reposi-

tories. The secrets were manually labeled by the two authors of

SecretBench [8]. Among the 97,479 candidate secrets, 15,084

are true secrets. In addition, among the true secrets, 4,457 are

unique since the same secret can have multiple instances in a

repository (multiple commits and files).

Categories: The secrets of the dataset are categorized into

eight categories. The number of total candidate secrets and

true secrets of the eight categories are presented in Table I.

The top three categories based on the number of true secrets

are: “Private Key”, “API Key and Secret” and “Authentication

Key and Token”. The candidate secrets of the “Other” category

are random strings and non-exploitable IDs such as GitHub

commit IDs which are mostly false positives (99.29%).

TABLE I: The eight categories of secrets in SecretBench.

Category True Secrets Total Secrets

Private Key 5,789 8,584
API Key and Secret 4,529 5,162
Authentication Key and Token 3,569 5,833
Other 524 66,690
Generic Secret 334 439
Database and Server URL 162 9,970
Password 150 705
Username 27 96

Programming Languages: The dataset repositories com-

prised source codes of 49 programming languages. The top

five programming languages based on the number of reposito-

ries are Shell (459), JavaScript (414), Python (312), Java (180),

and Ruby (172). The number in the parenthesis denotes the

number of repositories that used the specific language.

File Types: The dataset consists of 311 file types in which

secrets have been found. All the 311 file types and the number

of true secrets present in these file types can be found in the

GitHub repository of SecretBench [12]. The top five file types

based on the number of true secrets are presented in Table II.

TABLE II: SecretBench’s top five file types on true secrets.

File Type Description True Secrets

txt Text File 2,935
toml Configuration File 1,985
js Javascript file 1,583
html Hypertext Markup Language File 1,337
pem Privacy Enhanced Mail Format File 813

Secrets Metadata: The dataset provides secrets metadata,

such as repository name, file path, commit id and start line

of where the secrets are matched. We used the metadata to

compare the tool-reported secrets, as discussed in Section IV.

III. SECRET DETECTION TOOLS

In this section, we explain the selection process of secret

detection tools; provide a brief description of each tool; how

we installed each tool; and how we scanned the benchmark

repositories using each tool.

A. Selection of Secret Detection Tools

To find the existing open-source and proprietary secret

detection tools, we searched both the web and academic

literature. We constructed a set of the following search strings:

(secret OR credential OR password) AND (detection OR

scanning OR digger) AND (tool OR utility). For web search,

we used the Google Search Engine and selected the top 100

results for each search string according to the Google Search

Engine’s Page Rank algorithm. The stopping criteria of 100 for

each search string has been set based on the guideline of grey

literature search in prior works [13]. Similarly, for academic

literature search, we searched the top five scholar databases

recommended in the computing science domain [14], [15],

[16], [17], [18]. We identified 20 tools from the search result

and applied the following selection criteria to choose the secret

detection tools for our study.

1) Accessible: The tool can be installed into a local system

or accessed via subscription from the tool vendors.

2) Scans Git Repositories: The tool can scan Git reposi-

tories since our dataset contains Git repositories.

3) Active: The tool’s repository has shown activity for the

last two years. We checked the last commit date in the

repository of the open-source tools.

4) Flags Secrets: The tool flags individual secrets instead

of flagging only secret-containing suspicious file names.

5) Reports Plain Text Secret: The tool reports secrets

in plain text as we must compare the secrets with our

benchmark dataset.

Based on the above selection criteria, we excluded 11

tools. After each tool, we provide in parenthesis the criteria

we used to exclude a tool using the enumerated criteria

listed above: Credential-Digger [19] (1), Credscan [20] (1),

Cycode [21] (1), detect-secrets [22] (5), git-all-secrets [23] (3),

git-hound [24] (5), gitrob [25] (3), Gittyleaks [26] (3), repo-

security-scanner [27] (4), SecretHunter [28] (1) and Saha et al.

Tool [29] (1). Ultimately, we selected 9 secret detection tools,

of which 5 tools are open-source and 4 tools are proprietary.

B. Tools Description

For the selected secret detection tools, we provide a) a

brief description of the tool, b) how we installed the tool,

and c) the scanning technique employed for finding secrets in

benchmark repositories. Since each tool provides configuration

options for detecting secrets, we installed and ran the tools

with recommended configurations by contacting the tool ven-

dors or by obtaining suggested configurations in the product

documentation to get higher accuracy.

git-secrets: git-secrets [30] developed by AWS-Labs [31]

is an open-source tool. We installed Version 1.3.0

of the tool using HomeBrew. In addition, as a pre-

requisite to scan for secrets in the repositories, we in-

stalled two git hooks (git secrets --install and git

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

secrets --register-aws) separately for each reposi-

tory. We used the --scan-history flag (git secrets

--scan-history &> report.txt) to scan the entire

Git history and outputted the secrets in a text file.

Gitleaks: Gitleaks [32] is an open-source tool written in Go.

We installed Version 8.2.7 of the tool using HomeBrew and

scanned the repositories using the detect command

(gitleaks detect -v --source=repo_dir

--report-path=report.json). The verbose flag

(-v) has been used to retrieve metadata information of the

matched secret, and we extracted the secrets in JSON files.

Repo-supervisor: Repo-supervisor [33] is an open-source

tool written in JavaScript. We downloaded the binary re-

lease (Version 3.2.0) and installed Node Package Manager

(NPM) dependencies (npm ci && npm run build). The

tool operates in two separate modes. The first mode allows to

scan GitHub pull requests through webhooks, and the second

mode works from the command line, where it scans local

repository directories. We performed the latter by executing the

cli.js file (JSON_OUTPUT=1 node ./dist/cli.js

repo_dir) and extracted the output in JSON file.

TruffleHog: TruffleHog [34] is an open-source tool de-

veloped by Truffle Security [35] and written in Go. We

installed Version 3.18.0 of the tool using HomeBrew. We

scanned the repositories with --regex and --entropy

flags enabled (trufflehog git --regex --entropy

file://repo_dir) and downloaded the JSON report.

Whispers: Whispers [36] is an open-source tool written

in Python. The tool supports different formats for structured

text parsing, such as YAML and XML. The tool parses the

source code in key-value pairs, where the key is the field name

and the value is the potentially hard-coded secret assigned to

the given key. We installed Version 2.1.5 of the tool using

pip3. To scan the repositories, we executed the whispers

repo_dir > report.json command and extracted the

output in JSON files.

Commercial X: Since the proprietary tool vendor would

not allow their identity to be disclosed in the paper, we refer

to them as “Commercial X”. In addition to scanning GitHub

repositories, the tool can find secrets in images and non-

searchable PDFs. The tool can be integrated with Slack, JIRA,

and Google Drive to find any secrets exposure. We contacted

their team and provided the snapshot of 818 repositories of

our benchmark. They ran their tool on those repositories and

provided us with the scan report. We parsed the scan report

and outputted the secrets with the metadata in a CSV file.

ggshield: ggshield [37] has been developed by Git-

Guardian [38]. We installed the tool (Version 1.14.3) using

HomeBrew. Though the tool is open-sourced in GitHub, the

tool requires an API key for scanning a repository since

ggshield internally uses GitGuardian’s public API [39] through

py-gitguardian [40] client to scan and detect secrets. We con-

tacted GitGuardian to get an API key (API Quota Limit: 8 Mil-

lion) and set the key in the local environment variable to scan

all the benchmark repositories. We executed the scan repo

command (ggshield secret scan repo repo_dir

--show-secrets --json -v -o report.json) for

searching secrets in each repository. The --show-secrets

flag has been used to extract the secrets in non-redacted form,

and the found secrets are outputted in a JSON file.

Github Secret Scanner: GitHub has an integrated secret

scanner [41] to scan for secrets in the repositories. The “Secret

Scanner” settings can be enabled from the “Code security and

analysis” option in GitHub. To scan the repositories of the

benchmark dataset, we forked each repository into the first

author’s GitHub account. We enabled the “Secret Scanner”

settings for each repository. As soon as we enabled the

settings, the scanner was triggered and displayed the detected

secrets under the “Security/Secret scanning alerts” tab of the

specific repository. We wrote a Python script to extract each

repository’s secrets in a CSV file using GitHub Rest API [42].

SpectralOps: SpectralOps [43] is a proprietary tool.

To scan repositories in a local environment, we created

a Spectral account and contacted the Spectral support

team to gain access for seven days. We received a

Spectral Data Source Name (DSN) key and saved it in

the local environment. The tool provides three scanning

modes: “Developer”, “Security” and “Audit” based on

different precision and recall rates. The Spectral team

recommended using the “Security” mode for better precision

and recall. We ran the scan command (spectral

scan --all --forensic --ok --show-match

--include-tags base,audit --with-branches

--json report.json) and outputted secrets in JSON

files. The base and audit tags are used for “Security” scan

mode, and --forensic flag retrieves the secret’s metadata.

C. Machine Configuration

We installed eight tools in two Mac instances except for the

GitHub Secret Scanner and Commercial X. The configuration

of the instances are as follows: Instance 1 (OS: Monterey

version 12.3.1, RAM: 64 GB, Persistent Disk: 1 TB) and

Instance 2 (OS: Monterey version 12.6.2, RAM: 32 GB,

Persistent Disk: 1 TB). We used two Mac instances to speed

up the scanning process since the benchmark dataset contains

large repositories with a large commit count. After scanning

with each tool, we wrote Python scripts to extract the secret

with additional metadata from the JSON and text files and

outputted in CSV files. The extracted results are used for

analysis and comparison, as discussed in Section IV.

IV. ANALYZING TOOL RESULTS

In this section, we explain the secret and tool metadata we

analyzed and how we filtered and compared the tool results

to answer our research questions.

A. Secret Metadata

Below, we discuss the metadata information related to

secrets we processed to answer our research questions.

Commit ID: A commit id in Git is a unique SHA-1 hash

created whenever a new commit is recorded. The commit id

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

helps to identify the exact commit reference where the secrets

have been found during comparison.

File Path: The file path is the file’s location in the repository

where the secret has been found. We normalized the file path as

it contained either the computer root folder location where the

tool has been installed or the repository directory. For example:

Repo-supervisor outputs the file path as “<Repo_dir>/

conf/file.py” while Spectralops outputs as “/Users/

<User_name>/<Repo_dir>/conf/file.py”. We ex-

tracted the file path as “conf/file.py” for comparison.

Line Number: The line number denotes the line in the file

where the secret has been matched, which helps to identify if

the same secret is present in multiple places of the same file.

Plain Text Secret: The plain text secret is the tool-

reported hard-coded secret in the source code. However,

some tools report secrets along with the source code con-

text. For example, git-secrets outputs the function or variable

declaration where the secret is used (bitly_token <-

bitly_auth(key = "xxxxxx")). The “xxxxxx” is the

secret where bitly_auth and bitly_token are the func-

tion and variable name, respectively. As a result, matching

reported secrets with the benchmark through automation is

difficult. In addition, manual inspection is impractical due to

the large number of reported secrets by the tools. However,

we observed patterns such as “key=”, “token=” and “id:”

in the reported secret text. We removed non-alphanumeric

characters, such as brackets and space, from the string and

extracted the secret by only taking the string part after the

pattern. We used these normalized secrets for comparison.

Alert Count: The alert count is the total number of alerts

reported by each tool which indicates the amount of audit

effort required by the practitioners. Tools such as SpectralOps

and ggshield provide the number of alerts in the respective

reports. For tools that do not provide the number of alerts in

the report, we calculated the total number of alerts using a

Python script by iterating through each report.

B. Filter and Compare Tool Alerts

We observe that tools provide non-secret alerts, such as

alerts for suspicious files and dangerous functions. For exam-

ple, Whispers flags suspicious files, such as database.sql

file, and dangerous functions, such as exec and eval. In

the output, the tool provides a rule identifier for different

types of alerts, such as secret and api-key for secrets;

file-known for suspicious files; and system for danger-

ous functions. We filtered the non-secret alerts using the rule

identifiers. We also filtered secrets committed after November

25, 2022, since the benchmark dataset contains secrets intro-

duced before that date. For example, the GitHub secret scanner

scans the repository’s latest snapshot (February 25, 2023) since

the tool can not scan a local repository. We retrieved the

commit date of each commit using GitHub Rest API [42].

We filtered any secrets introduced after November 25, 2022,

for a fair comparison of the tools with the benchmark.

Next, we compare the secret of each repository reported

by the tool with the secrets of the same repository in the

benchmark. We mark the secret reported by the tool as true

positive (TP) if the secret is matched. Otherwise, we mark

the secret as a false positive (FP). However, we are unable to

match different types of secrets with exact string comparison

for all the tools though we normalized the secrets. Below, we

discuss the different scenarios of the secret match and how we

calculated the match for each.

Jaro-Winkler Similarity: After normalizing the se-

crets for source code context, we observe that addi-

tional source code as a suffix can be present. For ex-

ample, git-secrets outputs secrets with additional source

code context ("analytics_configuration": {key:
"xxxxxxxxxxxxx", type: "Traffic"}). The secret

is “xxxxxxxxxxxxx” and after normalizing, we got

“xxxxxxxxxxxxxtypeTraffic” where the string part

“typeTraffic” is not part of the secret. As a result, we cannot

perform an exact match of the secret with the benchmark. To

address this scenario, we used Jaro-Winkler Similarity [44]

for string comparison, a variant of the Jaro Distance met-

ric [45]. The Jaro–Winkler similarity employs a prefix scale

that rewards strings that match from the beginning with

high scores [44]. The Jaro–Winkler algorithm provides a

similarity score between [0,1] where 0 represents two en-

tirely dissimilar strings and 1 represents identical strings.

We used the jaro_winkler_similarity function of

jellyfish [46] package in Python to calculate the simi-

larity. We found the similarity score of “xxxxxxxxxxxxx”

and “xxxxxxxxxxxxxtypeTraffic” is 0.82. We termed

two secrets a match if the similarity score equals or exceeds

0.7. We set the cut-off similarity score of 0.7 by randomly

sampling secrets and observing the score with the benchmark.

Gestalt Pattern Match: We observe that a secret can

contain additional context in the middle, especially for multi-

line secrets. For example, private keys are generally present

as multi-line in the source code. Tools output these private

keys differently, making it difficult to perform an exact match

with the benchmark. Figure 1 shows three different outputs of

the same secret. Tool A outputs the “Proc-Type” and “DEK-

Info” properties along with carriage return (“\r”) and line

feed (“\n”), which is the same as the benchmark. However,

Tool B excludes the “Proc-Type” and “DEK-Info” properties

in the output, and Tool C includes the properties but outputs

the secrets in a single-line instead of a multi-line without

“\r\n”. To address this scenario, we used the Gestalt pattern

matching algorithm [47] after removing non-alphanumeric

characters from the secret and making the secret single-line.

The algorithm calculates the similarity score by finding the

longest common substring and then recursively finding the

number of matching characters in the non-matching regions

on both sides of the longest common substring [47]. As a

result, we could match a secret even if the secret does not

contain the middle context (the properties of the private key).

We used the SequenceMatcher function of difflib [48]

package in Python to calculate the Gestalt similarity score. We

termed two secrets a match if the similarity score equals or

exceeds 0.6. Similar to the Jaro-Winkler similarity, we set the

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Different outputs of the same secret by three tools.

cut-off similarity score of 0.6 by randomly sampling secrets

and observing the score with benchmark secrets.

We marked a secret reported by a tool as TP if the secret

equals or exceeds the cut-off similarity score of either the Jaro-

Winkler or Gestalt algorithm. To check whether the combina-

tion of algorithms correctly matches tool-reported secrets with

benchmark and label automatically, we randomly selected 100

unique reported secrets from each tool and manually inspected

the label calculated by the algorithms. The combination of

both algorithms correctly labeled 97% of the secrets.

Recall Cases: We observe that the same secret can be

present in multiple commits, multiple files, and different lines

of the same file of a repository. As a result, finding and remov-

ing all instances of a secret from the source code is necessary.

However, every tool does not provide all the metadata related

to secrets, such as the commit id, file path, and line number,

as shown in Table V. As a result, we calculated the recall

of each tool in two cases to have a fair comparison. Case

1 of recall denotes when the secrets of the benchmark are

found exactly in the same commit, file, and line number of

the tools report, and Case 2 denotes that the secrets of the

benchmark are found at least in the repository, irrespective of

the metadata. For Case 1, we matched each tool’s reported

secrets with all the benchmark secrets for a repository. If a

secret of the benchmark matches the tool-reported secret but

does not match the metadata, then we mark the secret as a false

negative (“FN”). However, for Case 2, we matched the unique

secrets of the benchmark for a repository with the reported

secrets of the tools. If a secret of the benchmark matches the

tool-reported secret but does not match the metadata, we still

mark the secret as true positive (“TP”) since the secret is at

least found in the repository. We could not calculate Case 1

for Repo-supervisor and SpectralOps as these tools do not

provide either commit id or line number, thus calculating F1-

score using precision and Case 2 of recall.

C. Tool Metric

Below we discuss the tool metric we calculated to answer

our research questions.

Scan Time: Scan time helps to understand how quickly

secrets will be identified to remediate any secrets exposure.

Running each tool multiple times on all 818 benchmark repos-

itories is impractical since scanning takes a long time. Hence,

we calculated the scan time on a sample set of repositories of

our benchmark to calculate the efficiency of the tools. First,

we curated the sample set of 15 repositories as follows:

• Repository Size: The largest, smallest and median size

of a repository in the benchmark is 5,658.22 MB, 0.04

MB, and 37.42 MB, respectively. We selected a random

sample of 6 repositories based on the repository size: 4

repositories with repository sizes greater than the median

and 2 repositories less than the median.

• Commit Count: Since a repository of a larger size can

have a low number of commit counts, and vice-versa,

we also included repositories in the sample set based on

the commit count. The benchmark repository’s highest,

lowest and median commit count is 425,699, 22, and

1,200, respectively. We selected a random sample of 6

repositories based on the commit count: 4 repositories

with a commit count greater than the median and 2

repositories less than the median.

• Programming Language: The sample set should have at

least 1 repository for each of the top 5 programming lan-

guages of the benchmark (see, Section II). We randomly

selected 3 additional repositories since 2 languages were

already present in the above-selected 12 repositories.

Next, we ran each tool 5 times on each of the 15 repos-

itories, calculated the total scan time using the time [49]

package of Python, and calculated the average scan time.

Popularity: Since the open-source tools publish their source

code in a public repository, we can measure the tool’s popular-

ity among the developers. Developers can fork the open-source

tools repository in GitHub. The fork count of a repository

indicates a higher chance of attracting potential contributors

to the project. Developers can also star a repository when they

want to appreciate the project and watch when they want to

be notified of all the activities (bug fixes, new features) of the

project. We used each open-source tools repository’s fork, star,

and watch count as a proxy to calculate the tool’s popularity

instead of considering a single metric. Previous studies [50],

[51] have also used these metrics to calculate the popularity of

a repository. To verify the rank correlation among fork, star,

and watch count, we calculated the Spearman’s rho (ρ) [52]

using Kaggle’s GitHub repository dataset [53]. We observed a

significant correlation between star and fork (ρ = 0.71), watch

and fork (ρ = 0.60), and watch and star (ρ = 0.55) counts. To

calculate the popularity score for each tool, we normalized the

fork, star, and watch counts using min-max normalization [54]

and calculated the average of the counts.

V. RESULTS

In this section, we discuss our findings and answer our

research questions.

A. RQ1: How do the secret detection tools perform in detect-

ing secrets, in terms of precision and recall?

Below we discuss a) the precision, recall, and F1-score of

each tool; b) the overlap of secrets reporting by the tools; c)

a comparison of the scan time and popularity of the tools;

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

and d) an analysis of the false positives and false negatives

reported by the tools.

Precision, Recall and F1-score: Table III presents the pre-

cision, recall and F1-score of each tool. The column “Precision

(Total Alerts, TP)” denotes the precision of each tool in

detecting secrets. The numbers in parenthesis denote the total

number of alerts reported by the tool and the count of true

positives detected by the tool, respectively. The columns “Re-

call - Case X (TP, FN)” present the recall of each tool, where

X denotes the two cases as discussed in Section IV-B. The

numbers in parentheses denote the number of true positives

and false negatives found by the specific tool, respectively.

Low precision indicates more false positives causing the tool

to be unusable and low recall indicates more false negatives

causing a missed opportunity to be alerted of a secret. The

column “F1 Score” denotes the F1-score of each tool, the

harmonic mean of precision and recall (Case 2) as discussed

in Section IV-B. Below, we discuss our observations related

to precision, recall, and F1-score.

TABLE III: Precision, Recall, F1-Score, Scan Time (ST), and

Popularity Score (PS) of each tool.

Tool
Precision Recall - Case 1 Recall - Case 2 F1

Score
ST

PS(Total Alerts, TP) (TP, FN) (min.)
git-secrets 0.05 (94491,4907) 0.04 (671,14413) 0.21 (956,3501) 0.08 6.71 0.92
Gitleaks 0.46 (45932,21047) 0.86 (12954,2130) 0.88 (3901,556) 0.60 46.29 0.85
Repo-supervisor 0.02 (181310,3652) X 0.17 (751,3706) 0.04 0.32 0.04
TruffleHog 0.06 (90982,5426) 0.31 (4736,10348) 0.52 (2323,2134) 0.11 8.52 0.87
Whispers 0.01 (416516,2448) 0.01 (122,14962) 0.38 (1707,2750) 0.02 0.91 0.00
Commercial X 0.25 (86607,21674) 0.22 (3255,11829) 0.48 (2151,2306) 0.32 X X
ggshield 0.19 (167046,32277) 0.23 (3536,11548) 0.46 (2068,2389) 0.26 228.94 0.06
GitHub-scanner 0.75 (1721,1292) 0.03 (408,14676) 0.36 (1606,2851) 0.48 54.48 X
Spectralops 0.01 (1547994,4777) X 0.67 (2979,1478) 0.02 50.03 X

Highest Second Highest Third Highest

• We observe that based on the precision, the top three

tools are GitHub Secret Scanner (75%), Gitleaks (46%),

and Commercial X (25%), respectively. Among the nine

tools, five tools have a precision score of less than 7%.

• Based on recall, we observe that Gitleaks is the top tool

in both cases (Case 1: 86% and Case 2: 88%) and the

second-best based on precision. In addition, TruffleHog

has the second-best recall in Case 1 (31%) and third-best

in Case 2 (52%) though the precision is only 6%.

• We observe that based on F1-score, the top three tools

are Gitleaks (60%), GitHub Secret Scanner (48%), and

Commercial X (32%).

• Though GitHub Secret Scanner is the top tool based on

precision, the recall score is low (6%), indicating the

tool misses many secrets. In contrast, SpectralsOps is the

third-best based on recall (68%), with a precision score

of only 1%. Thus, our findings indicate that no current

tool has the coveted high precision and high recall scores.

• Recent research [55], [29] utilizes machine learning (ML)

to reduce false positives. However, Commercial X and

SpectralOps, which employ ML to detect secrets, have

lower precision scores 25% and 1%, respectively.

git-secrets
Gitleaks

Repo-supervisor
TruffleHog

Whispers

Commercial X
ggshield

Github-scanner

SpectralOps

git-secrets

Gitleaks

Repo-supervisor

TruffleHog

Whispers

Commercial X

ggshield

GitHub-scanner

SpectralOps

1 0.58 0.02 0.37 0.09 0.17 0.26 0.13 0.38

0.02 1 0.02 0.18 0.27 0.34 0.59 0.07 0.54

0.02 0.11 1 0.24 0.32 0.24 0.19 0.05 0.21

0.02 0.1 0.04 1 0.1 0.59 0.59 0.08 0.48

0.08 0.35 0.32 0.57 1 0.59 0.56 0.06 0.44

0.02 0.33 0.05 0.69 0.13 1 0.62 0.1 0.54

0.01 0.18 0.03 0.76 0.1 0.72 1 0.06 0.53

0.04 0.35 0.03 0.22 0.07 0.26 0.29 1 0.21

0.01 0.25 0.04 0.58 0.17 0.59 0.38 0.1 1

Tool Overlap Ratio

0.2

0.4

0.6

0.8

1.0

Fig. 2: Overlap ratio of secrets reported by each tool.

Since the secrets of our benchmark dataset are categorized

into eight categories, such as “Private Key” and “API Key and

Secret”, we calculated the recall score per category for each

tool. As a result, we identified which tool performs best in

which category of secrets to aid developers in choosing tools

based on the category of secrets present in their code. Table IV

presents the recall score of each tool for the eight categories

in two cases (Case 1 and Case 2). The numbers in parentheses

denote the number of true positives and false negatives found

by the tool for a specific category. We observed that Gitleaks

and TruffleHog are the top two tools in most categories.

However, SpectralOps has the second-best recall score for

categories such as “Private Key” (Case 2) and “Generic Secret”

(Case 2), whereas ggshield has the second-best recall for

“Username” (Both cases). In addition, SpectralOps has the

second-best recall score for categories such as “API Key and

Secret” (Case 2), whereas GitHub Secret Scanner has the

second-best recall for “Database and Server URL” (Case 2).

Tool Overlap: We measured how much unique true positive

(TP) secrets one tool reported overlap with another to identify

which tools output similar secrets. The heatmap of Figure 2

depicts the overlap ratio between each pair of tools. For a

pair of tools (A, B), the heatmap shows how many unique

TP secrets reported by tool A are also reported by tool

B. For example, 76% of the unique TP secrets reported by

ggshield are also reported by TruffleHog. However, only 18%

of the unique TP secrets reported by ggshield are reported

by Gitleaks. The Venn diagrams in Figure 3 show the non-

overlap unique TP secrets among Gitleaks, TruffleHog, and

ggshield (Top three tools based on recall (Case 1)) and

among Gitleaks, SpectralOps, and TruffleHog (Top three tools

based on recall (Case 2)). Figure 3a shows that Gitleaks

and TruffleHog outputs 1533 and 438 non-overlap unique TP

secrets, respectively. Similarly, as shown in Figure 3b, we

observed that Gitleaks and TruffleHog outputs 632 and 334

non-overlap unique TP secrets, respectively. As a result, our

findings substantiate the necessity of not relying on a single

tool to identify all the secrets present in a repository.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Recall of each tool for eight secrets categories.

Category Case git-secrets Gitleaks Repo-supervisor TruffleHog Whispers Commercial X ggshield GitHub-scanner Spectralops

Private Key
Case 1

R
ec

al
l (

TP
,F

N
)

0.00 (4,5785) 0.96 (5585,204) X 0.39 (2284,3505) 0.00 (28,5761) 0.37 (2133,3656) 0.38 (2227,3562) 0.00 (22,5767) X
Case 2 0.28 (782,2018) 0.99 (2759,41) 0.16 (441,2359) 0.59 (1648,1152) 0.55 (1546,1254) 0.57 (1606,1194) 0.53 (1470,1330) 0.33 (914,1886) 0.77 (2166,634)

API Key and Secret
Case 1 0.05 (233,4296) 0.86 (3917,612) X 0.18 (802,3727) 0.01 (26,4503) 0.12 (547,3982) 0.14 (624,3905) 0.05 (205,4324) X
Case 2 0.09 (55,586) 0.75 (478,163) 0.17 (111,530) 0.33 (211,430) 0.11 (68,573) 0.34 (220,421) 0.44 (284,357) 0.38 (241,400) 0.55 (352,289)

Auth Key and Token
Case 1 0.09 (338,3231) 0.71 (2539,1030) X 0.36 (1274,2295) 0.01 (46,3523) 0.08 (286,3283) 0.10 (378,3191) 0.04 (125,3444) X
Case 2 0.14 (74,463) 0.56 (299,238) 0.24 (127,410) 0.58 (308,229) 0.09 (49,488) 0.27 (143,394) 0.33 (176,361) 0.48 (258,279) 0.43 (233,314)

Generic Secret
Case 1 0.17 (57,277) 0.96 (321,13) X 0.09 (29,305) 0.04 (12,322) 0.31 (105,229) 0.44 (148,186) 0.01 (4,330) X
Case 2 0.14 (18,114) 0.94 (124,8) 0.11 (15,117) 0.14 (18,114) 0.08 (10,122) 0.42 (56,76) 0.58 (76,56) 0.42 (56,76) 0.61 (81,51)

DB and Server URL
Case 1 0.00 (0,162) 0.34 (55,107) X 0.93 (150,12) 0.01 (2,160) 0.43 (69,93) 0.51 (83,79) 0.26 (42,120) X
Case 2 0.08 (5,61) 0.41 (27,39) 0.29 (19,47) 0.98 (65,1) 0.11 (7,59) 0.60 (40,26) 0.59 (39,27) 0.67 (44,22) 0.53 (35,31)

Password
Case 1 0.07 (11,139) 0.70 (105,45) X 0.32 (48,102) 0.04 (6,144) 0.38 (57,93) 0.26 (39,111) 0.00 (0,150) X
Case 2 0.08 (5,55) 0.85 (51,9) 0.15 (9,51) 0.17 (10,50) 0.18 (11,49) 0.57 (34,26) 0.15 (9,51) 0.23 (14,46) 0.55 (33,27)

Username
Case 1 0.85 (23,4) 0.85 (23,4) X 0.85 (23,4) 0.00 (0,27) 0.00 (0,27) 0.26 (7,20) 0.00 (0,27) X
Case 2 1.00 (2,0) 1.00 (2,0) 0.00 (0,2) 1.00 (2,0) 0.00 (0,2) 0.00 (0,2) 0.5 (1,1) 0.00 (0,2) 0.00 (0,2)

Other
Case 1 0.01 (5,519) 0.78 (409,115) X 0.24 (126,398) 0.00 (2,522) 0.11 (58,466) 0.06 (30,494) 0.02 (10,514) X
Case 2 0.07 (15,204) 0.74 (161,58) 0.13 (29,190) 0.28 (61,158) 0.07 (16,203) 0.24 (52,167) 0.06 (13,206) 0.36 (79,140) 0.41 (89,130)

Highest Second Highest Third Highest

1533 438

418

2

576 116

1374

Gitleaks
TruffleHog

ggshield

(a)

632

334

512

2

1477

220

1280

Gitleaks
TruffleHog

SpectralOps

(b)

Fig. 3: Venn diagram for overlap of unique true positive secrets

among top three tools based on recall. Subfigure (a) depicts the

overlap of Gitleaks, TruffleHog, and ggshield. Subfigure (b)

depicts the overlap of Gitleaks, SpectralOps, and TruffleHog.

Scan Time: The column “ST” of Table III shows the time

taken by each tool in minutes to scan the sample set of repos-

itories. We could not calculate the scan time of Commercial

X as the tool vendor has conducted the scanning, and the

report does not contain any scan time. The top three tools

based on scan time are Repo-supervisor, Whispers, and git-

secrets, which took 0.32, 0.91, and 6.71 minutes, respectively.

However, these tools have relatively low precision and recall

scores indicating that tools did not scan the source code

thoroughly. In contrast, the top two tools based on precision

- GitHub Secret Scanner and Gitleaks took 54.48 and 46.29

minutes, respectively. However, we observe that tools having

higher scan times do not always yield high precision and recall

scores. For example, ggshield took the highest amount of time

(4.8 hours) among all the tools, but the precision and recall

were relatively low. We identified that Gitleaks, GitHub Secret

Scanner, and SpectralOps showed a balance between scanning

time and either high precision or recall.

Tool Popularity: The column “PS” of Table III presents

the popularity score of each tool. We could only calculate

the popularity score of the five open-source tools and one

proprietary tool, ggshield. The source code of ggshield is

open-sourced in GitHub, except for their proprietary scanning

API implementations. Based on the PS score, the top three

tools are git-secrets (0.92), Gitleaks (0.87), and TruffleHog

(0.85), respectively. Though git-secrets is the most popular

among the developers, the precision and recall are relatively

low. In contrast, Gitleaks and TruffleHog are popular among

developers having relatively high precision or recall scores.

Analysis of False Positives: Since we observed a high

false positive rate by the tools, we inspected a random sample

of 50 false positives from each tool to identify the types

of false positive secrets. Below, we discuss our observations

related to the false positive secrets and the detection rules

triggering the false positives.

1. Generic Regular Expressions (regex): Tools use generic

regex to detect secrets that trigger false positives. Below we

discuss the generic regex for different types of secrets.

1.1 API Keys and Tokens: Tools, such as Whispers, em-

ploy generic regex (.*[A-Za-z0-9_]+(key|token)$)

for finding API keys and tokens. The regex treats any

string having a “key” or “token” at the end as an API

key or token. As a result, placeholder API keys or

tokens such as “testkey” and “sampletoken” are

output as secrets. However, tools such as Gitleaks and

GitHub Secret Scanner identify API keys and tokens by

applying regex for specific API keys and tokens. For

example, the regex employed for the Stripe API key is

(?i)(sk|pk)_(test|live)_[0-9a-z]{10,32}.

However, the regex matches “sk_live_111111111111”,

a dummy API key, and outputs as a Stripe API key.

1.2 Password: To detect passwords, generic regex such

as (passwords?|passwd|pass|pwd)_?[0-9]*$ is

used. As a result, strings such as “testpassword” or a

UNIX command (“pwd”) are detected as passwords.

1.3 Cryptographic Key: According to a study by

Meli et al. [2], cryptographic keys are the most exposed

secrets in the source code. However, tools employ generic

regex (.*[-]{3,}BEGIN (RSA|DSA|EC|OPENSSH)?

?(PRIVATE)? KEY[-]{3,}.*) to identify cryptographic

keys, thus reporting false positives. For example, a template

string such as “---BEGIN RSA KEY---” with no

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

following RSA key characters matches as a secret.

2. Ineffective Entropy Calculation: We observe that tools

employ Shannon entropy [56] to identify possible secrets.

Though the core Shannon entropy algorithm is correct,

differentiating secrets from false positives is not always

effective. For example, TruffleHog computes the entropy of

“2b95710rD1e6287e69Z8f2E24373449d879b70c7601B3x9”

and “ThisIsAReallyLongString” as 4.08 and 4.11 respectively,

thus having higher entropy score for the latter [57]. As a

result, the dummy string is termed as a secret. We also

observed substantial instances of GitHub commit ids, such as

“0e2b3d4e3dec5f38ae95f62519eb2736f73c0b”, outputted as

secrets because of ineffective entropy calculation.

3. Insufficient Filters/Prefix Regex: We observe that tools

apply filters for HTML attributes and CSS selectors. For ex-

ample, Repo-supervisor applies regex to prevent false positives

such as “input[val=‘test’]” and “button[value=‘submit’]” [58].

However, the filters are insufficient as we observed

strings such as “shape=rect;rounded=1” and “child{margin-

bottom:10px;}” are still marked as secrets. In addition,

tools apply prefix regex to ensure that at least one of

the specified keywords related to the API key and to-

ken are within some characters (e.g., 40 characters) of

the capturing group. For example, if a Strava API key is

found by regex “[0-9a-z]{40}”, then the specified pre-

fix regex checks whether the keyword “strava” is present

within 40 characters of the capturing group [59]. How-

ever, checking with prefix keywords does not always pre-

vent false positives. For example, TruffleHog applies regex

((?:glpat|)[a-zA-Z0-9=_]{20,22}) with “gitlab”

as prefix keyword to identify GitLab tokens. However, for

a string such as “https://docs.gitlab.com/gitlab-basics/add-

file.html#add-a-file-using-the-command”, TruffleHog treats

“add-a-file-using-the-” as a token since the string matches the

regex and the prefix keyword is present within 40 characters.

Analysis of False Negatives: Since we observed a low

recall score by the tools, we inspected a random sample of 50

false negatives from each tool. Below, we discuss the reasons

behind the low recall score.

1. Faulty Regex: We observe that tools miss secrets because

of employing faulty regular expressions. For example, Whis-

pers employ regex (.*[A-Za-z0-9_]+(key|token)$),

which expects a secret will have a “key” or “token” word at

the end. However, the “key” or “token” word can be present

at the start of the context of the secret (api_key="xxxx")

or even not present at all, thus unable to capture secrets.

2. Skip Specific File Types: We observe tools skip specific

file types while scanning. For example, ggshield does not

scan HTML files to prevent false positives [60]. However, we

observed that secrets are present in the HTML files either

inside the HTML tags or in the JavaScript code embedded in

the HTML files in a <script></script> tag. In addition,

the HTML file type is in the top five file types containing

secrets in the benchmark dataset (Table II).

3. Insufficient Ruleset: We observe that tools do not have

sufficient rulesets for all secret types. For example, TruffleHog

does not have detectors for IGDB [61] and Mashape API [62]

keys. As a result, since TruffleHog matches prefix keywords

for a specific key, these API keys are not captured. We also

observe that tools do not periodically add/update rules for

detecting secrets. For example, the rules of the tools such as

Whispers were last updated on August 25, 2021.

False Positive Secrets Dataset: We created a dataset of the

false positives reported by the tools to expedite the research

on improving the accuracy of the tools. The dataset is stored

as a relational structured data in Google BigQuery (Dataset

ID: dev-range-332204.fpsecretbench), and users can run SQL

queries to access the dataset. However, the dataset may contain

sensitive information, such as mislabeled true positives since

the applied string-matching algorithms may mislabel the tool-

reported secrets (Section IV-B). As a result, we will distribute

only to fellow researchers and tool developers who should

email the authors to access the dataset [7].

B. RQ2: What features are offered by the secret detection tools

to aid in preventing secrets exposure?

Tools provide features to aid developers in preventing the

exposure of secrets. We categorized the features into seven

categories. Table V presents the features offered by each tool,

which we discuss as follows.

F1: Pre-commit Hook Integration: Pre-commit hook is a

VCS mechanism that can be used for any validation before

a commit is pushed. Secret detection tools can be integrated

into a pre-commit hook to prevent leaking secrets. The tools

will scan the source code of the current commit and reject

the commit if any secret is found. Developers can employ this

feature in accordance with “shifting left” on security [63].

F2: CI/CD Integration: Secret detection tools offer integra-

tion with continuous integration and continuous deployment

(CI/CD) pipelines such as GitHub Actions [64], Travis [65],

and CircleCI [66]. As a result, if a secret is found in the

deployment package, the deployment can be rejected.

F3: Custom Rule: Tools support adding custom rules, thus

allowing developers to devise rules to detect known secrets.

Tools allow adding custom detectors using regex or keywords

for scanning secrets. In addition, tools support custom rules for

ignoring secrets. If a dummy secret is knowingly committed

in the source code, developers can devise rules to ignore that

secret to reduce the false positive warnings from the tools.

F4: Secret Verification: If any potential secret is detected,

the tool verifies the validity of the secret by calling the

endpoint provided by the respective API vendor to reduce

false positives. For example, TruffleHog’s AWS credential

detector [67] performs a “GetCallerIdentity” API call against

the AWS API to verify if the credential is active. In addition,

if the secret is validated, GitHub Secret Scanner notifies the

repository administrators and owners through email.

F5: Remediation Steps: Tools provide remediation work-

flows when a secret is detected to revoke and rotate the secret

quickly. Tools assign the detected secret to the developer who

leaked the secret. The developer can resolve the secret alert

either by revoking the secret or marking it as a false positive.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

Tools also use developer feedback to improve their algorithm

to reduce false positives. In addition, tools also provide sug-

gestions, such as removing the secret from Git history and

reviewing access logs to nullify the threat completely.

F6: Infrastructure as Code (IaC) Script Scan: Scanning

for secrets in IaC script is essential as Rahman et al. [68]

identified hard-coded secret is the most occurring security

smell within IaC scripts. SpectralOps and ggshield provide

support for scanning secrets in IaC scripts.

F7: Non-source Code Scan: Developers can expose secrets

in screenshots added as images in a repository and non-

searchable PDFs shared for tutorials. These secrets can not be

captured using regular regex matches. However, Commercial

X employs Object Character Recognition (OCR) to detect

secrets in images and non-searchable PDFs.

VI. DISCUSSION AND RECOMMENDATIONS

Below we discuss our findings and make recommendations.

Developers should employ tools based on the type of

secrets present in the project. Table III shows that tools miss

secrets as the recall (Case 2) varies between 17% and 88%.

However, if developers know the secret types present in the

project, selecting tools based on secret types can yield higher

recall. For example, for “Database Server and URLs” category,

the recall (Case 2) score of TruffleHog is 98% (Table IV),

whereas the overall recall (Case 2) score is 52% (Table III).

Tool vendors should update detection rules periodically.

According to the State of APIs Report from Rapid [69], API

types are expanding, and API adoption is on the surge, with

63% of developers relying more on APIs in 2022. However,

we observe that tools do not update the detection rules for API

keys and tokens. For example, the rules of Whispers were last

updated on August 25, 2021. We recommend tool vendors to

update detection rules periodically to prevent missing secrets.

Tool vendors should correctly employ secret verification

by collaborating with API vendors. We find that tools

verify the found secrets with the API endpoints (F4). As

a result, tools show relatively higher precision by reducing

false positives. For example, before the verification option was

enabled (--only-verified), TruffleHog’s precision was

6%, outputting almost 100K alerts for our benchmark. In con-

trast, the precision changed to 90% when the verification was

enabled and outputted only 611 secrets. However, verification

methods are not 100% correct as we observe 10% false posi-

tives. For example, the tool tagged dummy server URLs such

as “http://dyn.example.com:password@dyn.dns.he.net” as se-

crets. In addition, TruffleHog does not report an active secret

if the API endpoint is unreachable [70]. We also find that

GitHub has a secret scanning partner program [71] where

API vendors can join in scanning their API keys and tokens

in GitHub repositories and receiving notifications for quick

remediation. However, only 66 API vendors have joined the

program [72]. Therefore, we recommend that API vendors

collaborate with tool vendors in correctly employing secret

verification to prevent the exposure of secrets.

Tool vendors should develop automated technology to

revoke and rotate secrets as remediation steps quickly.

We find that tools provide remediation workflows when a

secret is detected (F5). However, currently, the workflow is

a manual process where the leaked secret is assigned to

the developer to revoke and rotate the secret. In addition,

developers have to sanitize the Git history by themselves

using history sanitizing tools such as BFG repo-cleaner [73].

However, recent research [74] shows that malicious actors

take only one minute to start making calls with the leaked

API keys. Therefore, we suggest that tool vendors develop

an automated workflow that the organization can employ in

their system. The organization can mark the used secrets, and

if a secret is reported that are among the used secrets, the

workflow will automatically revoke and rotate the secrets. In

addition, the workflow will sanitize the Git history without

developers’ manual effort, deploy new artifacts if needed, and

review access logs to find any breaches.

VII. ETHICS AND DATA PROTECTION

Since the dataset of false positive secrets may contain mis-

labeled true positives, we will distribute the dataset selectively.

To prevent unethical use, researchers and tool developers will

sign a data protection agreement with us. Following that,

we will use their email addresses to grant them access to

our dataset from Google BigQuery. In addition, we have

redacted/obfuscated example secrets presented in our paper.

VIII. THREATS TO VALIDITY

In this section, we discuss the limitations of our paper.

Tool Selection: Our study’s list of tools is not exhaustive.

Though we have chosen the tools based on the selection

criteria mentioned in Section III-A, we could not access

proprietary tools such as Cycode [21] and CredScan [20]. As

a result, we do not claim the findings we have in Section V

to be generalizable for all tools.

Benchmark Dataset: Our selection of benchmark dataset is

susceptible to bias. Basak et al. [8] curated SecretBench using

open-source tools Gitleaks and TruffleHog, which also poses

bias to the result of these two tools. However, they manually

inspected and labeled each extracted secret using the tools. Out

of 97,479 reported secrets of these two tools, 15,084 are true

secrets. We used the true secrets to compare the tools of our

study. SecretBench also has the drawback of only extracting

secrets from GitHub repositories rather than from other VCSs,

such as GitLab and BitBucket. Since SecretBench is the only

publicly-available dataset, we could not compare the tools with

another benchmark dataset to mitigate the potential bias.

Secrets Matching: We employed two string matching al-

gorithms, Jaro-Winkler Similarity, and Gestalt Pattern Match,

to match a secret with the benchmark for some tools. The

similarity cut-off scores for both the algorithm we chose poses

a threat to internal validity. However, we randomly selected

100 unique reported secrets from each tool and found that

the combination of both algorithms’ cut-off scores correctly

labeled 97% of the secrets.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Seven categories of features and additional secrets metadata provided by each tool.

Tool
Tools Feature Secrets Metadata

Pre-commit Hook CI/CD Integration Custom Rule Secret Verification Remediation Steps IaC Script Scan Non-source Code Scan Commit ID File Path Line No.
git-secrets ✓ ✓ ✓ ✓ ✓

Gitleaks ✓ ✓ ✓ ✓ ✓

Repo-supervisor ✓ ✓ ✓

TruffleHog ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Whispers ✓ ✓ ✓ ✓

Commercial X ✓ ✓ ✓ ✓ ✓ ✓ ✓

ggshield ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GitHub-scanner ✓ ✓ ✓ ✓ ✓ ✓

Spectralops ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Precision for Each Secret Category: We have the category of

a secret and the number of secrets in a category of benchmark

dataset. As a result, we could calculate the recall of each

category by checking if the secrets of the specific category

of the benchmark are present in the tool-reported secrets.

However, we could not calculate the precision for a category

since the tool can output false positives, which requires manual

inspection for categorization.

IX. RELATED WORK

The root causes of the widespread leakage of secrets in

software artifacts have been studied in prior work [2], [75],

[68], [76], [77]. Researchers have found that the most prevalent

insecure practice adopted by developers causing secret leakage

is hard-coded secrets in software artifacts. In 2019, Meli et

al. [2] studied a 13% snapshot of public GitHub repositories

and found over 100K hard-coded secrets in the source code.

Within Infrastructure as Code (IaC) scripts, Rahman et al. [68]

studied a recurring coding pattern known as “security smells”

which are indicators of security flaws that can result in

potential security breaches. They investigated 5,232 IaC scripts

extracted from 293 open-source repositories. They found seven

security smells and the hard-coded secret is the most occurring

security smell with 1,326 occurrences. In addition, hard-coded

secrets have also been found in GitHub Gists that are used to

share code snippets among developers. Rayhanur et al. [75]

investigated 5,822 publicly available Python Gists and found

689 instances of hard-coded secrets in the code snippets. All

of these prior works suggest that hard-coded secrets have been

leaking in different forms in software artifacts.

To prevent secret leakage in software artifacts, researchers

have suggested developers follow secure practices for secret

management [78], [79]. Basak et al. [78] conducted a grey

literature review of Internet artifacts, such as blog articles,

and identified 24 practices comprised of both developer and

organization practices. They suggested using VCS scan tools

to prevent accidental commit of secrets. In another work,

Basak et al. [79] investigated the questions related to checked-

in secrets in Stack Exchange (SE) and the solutions posted by

the SE users to mitigate the challenge. They identified that

the SE users have also suggested using VCS scan tools to

prevent accidental secrets leakage. However, in 2021, Rahman

et al. [80] conducted a developer survey in XTech company

(Anonymized) and found that developers bypass the alerts of

scan tools as the tools generate a lot of false positives. Recent

research [55], [29], [81] utilizes ML algorithms to reduce false

positives in secret detection. Saha et al. [29] employed a Voting

Classifier (a combination of Logistic Regression, Naive Bayes,

and SVM) to distinguish real secrets from false positives. Feng

et al. [55] applied deep neural networks to uncover the intrinsic

characteristics of textual passwords and detect real passwords

by reducing false positives.

At present, many open-source and proprietary secret detec-

tion tools are available. However, developers face difficulty

choosing one tool out of many because of a high number

of false positives. As far as we know, no research has been

conducted yet evaluating and comparing the existing secret

detection tools. In this work, we concentrated our research

efforts on evaluating and comparing 9 secret detection tools.

X. CONCLUSION

We investigated five open-source and four proprietary secret

detection tools against a benchmark dataset containing 818

GitHub repositories. We found that the top three tools based

on precision are: GitHub Secret Scanner (75%), Gitleaks

(46%), and Commercial X (25%), and based on recall are:

Gitleaks (88%), SpectralOps (67%) and TruffleHog (52%).

We also provided tools performance based on secret type

to aid developers select the best tools for their use cases.

Our manual analysis of the reported false positives indicates

that generic regex and ineffective entropy calculation are the

reasons for high false positives. We also analyzed the false

negatives and found that faulty regex, skipping file types, and

insufficient rulesets for secret detection are the reasons for low

recall. In addition, we provided a dataset of false positives to

expedite the research in secret detection. We also categorized

the features offered by the secret detection tools to aid in

preventing the exposure of secrets. We recommend developers

choose tools based on secret types present in the project to

prevent missing secrets. In addition, we recommend future

research on developing an automated technology for quick

remediation of the exposed secret.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-

dation (NSF) 2055554 grant. The authors would also like to

thank the Realsearch research group for their valuable input

on this paper.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “The State of Secrets Sprawl 2023,” https://www.gitguardian.com/stat
e-of-secrets-sprawl-report-2023, [Online; accessed April 12, 2023].

[2] M. Meli, M. R. McNiece, and B. Reaves, “How Bad Can It Git?
Characterizing Secret Leakage in Public GitHub Repositories.” in NDSS,
2019.

[3] S. Nichols, “Popular mobile apps leaking AWS keys, exposing user
data,” https://www.techtarget.com/searchsecurity/news/252500361
/Popular-mobile-apps-leaking-AWS-keys-exposing-user-data, 2021,
[Online; accessed April 25, 2023].

[4] M. Jackson, “Uber Breach 2022 – Everything You Need to Know,”
https://blog.gitguardian.com/uber-breach-2022, [Online; accessed April
10, 2023].

[5] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security

& Privacy, vol. 2, no. 6, pp. 76–79, 2004.
[6] Hadjy, Paul, “What Is Alert Fatigue? 4 Ways to Mitigate It and Prevent

Burnout,” https://learn.g2.com/alert-fatigue, [Online; accessed April 12,
2023].

[7] “False Positive Secret Dataset,” https://github.com/setu1421/FPSecret
Bench, [Online; accessed July 02, 2023].

[8] S. K. Basak, L. Neil, B. Reaves, and L. Williams, “SecretBench: A
Dataset of Software Secrets,” arXiv e-prints, p. arXiv:2303.06729, 2023.

[9] “Google Cloud Storage,” https://cloud.google.com/storage, [Online;
accessed March 24, 2023].

[10] “Google BigQuery,” https://cloud.google.com/bigquery, [Online;
accessed April 12, 2023].

[11] “GitHub on BigQuery: Analyze all the open source code,” https://clou
d.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-a
ll-the-open-source-code, [Online; accessed March 17, 2023].

[12] “SecretBench File Types,” https://github.com/setu1421/SecretBench/tr
ee/main/Metadata, [Online; accessed June 26, 2023].

[13] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, pp.
101–121, 2019. [Online]. Available: https://www.sciencedirect.com/scie
nce/article/pii/S0950584918301939

[14] “ACM Digital Library,” https://dl.acm.org, [Online; accessed April 11,
2023].

[15] “SpringerLink,” https://link.springer.com, [Online; accessed April 11,
2023].

[16] “IEEE Xplore,” https://ieeexplore.ieee.org/Xplore/home.jsp, [Online;
accessed April 14, 2023].

[17] “DBLP,” https://dblp.org, [Online; accessed April 13, 2023].
[18] “ScienceDirect,” https://www.sciencedirect.com, [Online; accessed April

11, 2023].
[19] S. Lounici, M. Rosa, C. Negri, S. Trabelsi, and M. Önen, “Optimizing

leak detection in open-source platforms with machine learning tech-
niques,” 01 2021, pp. 145–159.

[20] “CredScan,” https://secdevtools.azurewebsites.net/helpcredscan.html,
[Online; accessed April 10, 2023].

[21] “Cycode: The Application Security Platform,” https://cycode.com,
[Online; accessed April 10, 2023].

[22] “detect-secrets,” https://github.com/Yelp/detect- secrets, [Online;
accessed April 14, 2023].

[23] “git-all-secrets,” https://github.com/anshumanbh/git-all-secrets, [Online;
accessed June 26, 2023].

[24] “git-hound,” https://github.com/tillson/git-hound, [Online; accessed
June 26, 2023].

[25] “Gitrob,” https://github.com/michenriksen/gitrob, [Online; accessed
June 23, 2023].

[26] “Gittyleaks,” https://github.com/kootenpv/gittyleaks, [Online; accessed
June 26, 2023].

[27] “repo-security-scanner,” https://github.com/techjacker/repo-security-sca
nner, [Online; accessed April 14, 2023].

[28] E. Wen, J. Wang, and J. Dietrich, “Secrethunter: A large-scale secret
scanner for public git repositories,” in 2022 IEEE International Confer-

ence on Trust, Security and Privacy in Computing and Communications

(TrustCom), 2022, pp. 123–130.
[29] A. Saha, T. Denning, V. Srikumar, and S. K. Kasera, “Secrets in

source code: Reducing false positives using machine learning,” in 2020

International Conference on COMmunication Systems & NETworkS

(COMSNETS). IEEE, 2020, pp. 168–175.

[30] “git-secrets,” https://github.com/awslabs/git-secrets, [Online; accessed
April 15, 2023].

[31] “Amazon Web Services - Labs,” https://github.com/awslabs, [Online;
accessed April 15, 2023].

[32] “Gitleaks,” https://github.com/gitleaks/gitleaks, [Online; accessed April
15, 2023].

[33] “Repo-supervisor,” https://github.com/auth0/repo-supervisor, [Online;
accessed April 13, 2023].

[34] “TruffleHog,” https://github.com/trufflesecurity/trufflehog, [Online;
accessed April 14, 2023].

[35] “Truffle Security,” https://trufflesecurity.com, [Online; accessed April
14, 2023].

[36] “Whispers,” https://github.com/Skyscanner/whispers, [Online; accessed
April 13, 2023].

[37] “ggshield,” https://github.com/GitGuardian/ggshield, [Online; accessed
April 13, 2023].

[38] “GitGuardian: Git Security Scanning & Secrets Detection,” https://ww
w.gitguardian.com, [Online; accessed March 27, 2023].

[39] “GitGuardian API,” https://api.gitguardian.com/docs, [Online; accessed
April 13, 2023].

[40] “py-gitguardian: GitGuardian API Client,” https://github.com/GitGuardi
an/py-gitguardian, [Online; accessed April 13, 2023].

[41] “Github Secret Scanner,” https://docs.github.com/en/code-security/secr
et-scanning, [Online; accessed April 16, 2023].

[42] “Getting started with the REST API,” https://docs.github.com/en/rest/gu
ides/getting-started-with-the-rest-api?apiVersion=2022-11-28, [Online;
accessed March 27, 2023].

[43] “SpectralOps,” https://spectralops.io, [Online; accessed April 13, 2023].
[44] W. E. Winkler, “String comparator metrics and enhanced decision rules

in the fellegi-sunter model of record linkage.” 1990.
[45] M. A. Jaro, “Advances in record-linkage methodology as applied to

matching the 1985 census of tampa, florida,” Journal of the American

Statistical Association, vol. 84, no. 406, pp. 414–420, 1989.
[46] “Python jellyfish package,” https://pypi.org/project/jellyfish, [Online;

accessed March 28, 2023].
[47] P. E. Black, “Ratcliff/obershelp pattern recognition,” Dictionary of

algorithms and data structures, vol. 17, 2004.
[48] “SequenceMatcher of difflib package,” https://docs.python.org/3/librar

y/difflib.html#module-difflib, [Online; accessed March 28, 2023].
[49] “Python time package,” https://docs.python.org/3/library/time.html,

[Online; accessed March 28, 2023].
[50] J. Zhu, M. Zhou, and A. Mockus, “Patterns of folder use and project

popularity: A case study of github repositories,” in Proceedings of

the 8th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, ser. ESEM ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2652524.2652564

[51] H. Borges and M. Tulio Valente, “What’s in a github star? understanding
repository starring practices in a social coding platform,” Journal of

Systems and Software, vol. 146, pp. 112–129, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121218301961

[52] J. H. Zar, Spearman Rank Correlation. John Wiley & Sons, Ltd, 2005.
[53] “Kaggle’s GitHub Repository Dataset,” https://www.kaggle.com/code/

pelmers/explore-github-repository-metadata, [Online; accessed March
12, 2023].

[54] “Feature Scaling,” https://en.wikipedia.org/w/index.php?title=Feature s
caling&oldid=1075231919, [Online; accessed April 18, 2023].

[55] R. Feng, Z. Yan, S. Peng, and Y. Zhang, “Automated detection of
password leakage from public github repositories,” in 2022 IEEE/ACM

44th International Conference on Software Engineering (ICSE), 2022,
pp. 175–186.

[56] C. E. Shannon, “A mathematical theory of communication,” The Bell

system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
[57] “Improving TruffleHog’s Entropy Calculation,” https://github.com/tru

fflesecurity/trufflehog/issues/168, [Online; accessed April 24, 2023].
[58] “Repo-supervisor: CSS Filters,” https://github.com/auth0/repo-supervi

sor/blob/3d6252571318a24c1ffbaba48e024d79e44f9ac0/src/filters/entro
py.meter/pre.filters/css.selectors.js, [Online; accessed April 24, 2023].

[59] “TruffleHog: Prefix Regex,” https://github.com/trufflesecurity/truffleho
g/blob/main/pkg/detectors/strava/strava.go, [Online; accessed April 13,
2023].

[60] “GitGuardian: Secrets Detection Engine,” https://docs.gitguardian.com/s
ecrets-detection/quick start#how-it-works, [Online; accessed April 10,
2023].

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

[61] “IGDB API Docs: Getting Started,” https://api-docs.igdb.com/#gettin
g-started, [Online; accessed April 10, 2023].

[62] “Mashape API Documentation,” https://rapidapi.com/rokity/api/mashap
e, [Online; accessed April 10, 2023].

[63] “DevOps tech: Shifting left on security,” https://cloud.google.com/archi
tecture/devops/devops-tech-shifting-left-on-security, [Online; accessed
April 23, 2023].

[64] “GitHub Actions,” https://github.com/features/actions, [Online; accessed
April 20, 2023].

[65] “Travis CI,” https://www.travis-ci.com, [Online; accessed April 12,
2023].

[66] “CircleCI,” https://circleci.com, [Online; accessed April 15, 2023].
[67] “TruffleHog AWS Detector,” https://github.com/trufflesecurity/truffle

hog/blob/main/pkg/detectors/aws/aws.go, [Online; accessed April 15,
2023].

[68] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). IEEE, 2019, pp. 164–175.
[69] “2022 State of APIs,” https://stateofapis.com/, [Online; accessed April

25, 2023].
[70] “TruffleHog: Verified secrets - unreachable website,” https://github.c

om/trufflesecurity/trufflehog/issues/1112, [Online; accessed April 10,
2023].

[71] “GitHub Secret scanning partner program,” https://docs.github.com/en/c
ode-security/secret-scanning/secret-scanning-partner-program, [Online;
accessed April 10, 2023].

[72] “GitHub Secret scanning patterns,” https://docs.github.com/en/code-s
ecurity/secret-scanning/secret-scanning-patterns#supported-secrets,
[Online; accessed April 10, 2023].

[73] “BFG Repo Cleaner,” https://rtyley.github.io/bfg-repo-cleaner, [Online;
accessed March 17, 2023].

[74] Hercz, Tibor, “What happens when you leak AWS credentials and how
AWS minimizes the damage,” https://xebia.com/blog/what-happens-w
hen-you-leak-aws-credentials-and-how-aws-minimizes-the-damage,
[Online; accessed April 10, 2023].

[75] M. R. Rahman, A. Rahman, and L. Williams, “Share, but be aware:
Security smells in python gists,” in 2019 IEEE International Conference

on Software Maintenance and Evolution (ICSME). IEEE, 2019, pp.
536–540.

[76] I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves,
A. Kapravelos, and A. Machiry, “Characterizing the security of github
CI workflows,” in 31st USENIX Security Symposium (USENIX Security

22). Boston, MA: USENIX Association, Aug. 2022, pp. 2747–2763.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
22/presentation/koishybayev

[77] A. Rahman and L. Williams, “Different kind of smells: Security smells
in infrastructure as code scripts,” IEEE Security & Privacy, vol. 19,
no. 3, pp. 33–41, 2021.

[78] S. K. Basak, L. Neil, B. Reaves, and L. Williams, “What are the practices
for secret management in software artifacts?” in 2022 IEEE Secure

Development Conference (SecDev), 2022, pp. 69–76.
[79] S. K. Basak, L. Neil, B. Reaves, and L. Williams, “What Challenges

Do Developers Face About Checked-in Secrets in Software Artifacts?”
arXiv e-prints, p. arXiv:2301.12377, 2023.

[80] M. R. Rahman, N. Imtiaz, M.-A. Storey, and L. Williams, “Why secret
detection tools are not enough: It’s not just about false positives-an
industrial case study,” Empirical Software Engineering, vol. 27, no. 3,
pp. 1–29, 2022.

[81] E. Wen, J. Wang, and J. Dietrich, “Secrethunter: A large-scale secret
scanner for public git repositories,” in 2022 IEEE International Confer-

ence on Trust, Security and Privacy in Computing and Communications

(TrustCom), 2022, pp. 123–130.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 08,2024 at 17:37:19 UTC from IEEE Xplore. Restrictions apply.

