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ABSTRACT: Sulfation widely exists in the eukaryotic proteome. However, understanding the biological functions of sulfation in
peptides and proteins has been hampered by the lack of methods to control its spatial or temporal distribution in the proteome.
Herein, we report that fluorosulfate can serve as a latent precursor of sulfate in peptides and proteins, which can be efficiently
converted to sulfate by hydroxamic acid reagents under physiologically relevant conditions. Photocaging the hydroxamic acid
reagents further allowed for the light-controlled activation of functional sulfopeptides. This work provides a valuable tool for probing
the functional roles of sulfation in peptides and proteins.

O-Sulfation of the tyrosine residue is a post-translational
modification (PTM) that widely exists in eukaryotic peptides
and proteins (Figure 1a), and has been implicated to regulate a

variety of biological functions such as immune response,
hemostasis, and pathogen evasion.1,2 However, only a small
fraction of the sulfoproteome has been annotated.3,4 A long-
standing challenge for studying the sulfoproteome is that
sulfation is highly heterogeneous, with various sulfopeptides and
sulfoproteins existing in different sulfoforms.5 The seminal
works of Schultz,6 Liu,7 Chatterjee,8 Niu,9 and Xiao10 that
incorporate sulfotyrosine (sY) into proteins as a noncanonical
amino acid (ncAA) represent notable examples to address this
challenge. Expanding upon these advances, methods that allow
researchers to spatiotemporally control sulfation in the
proteomic context would be highly valuable for studying their
functional roles in biology.11 Caging strategies have been
developed for various protein PTMs to probe how these PTMs
regulate dynamic cellular events. Although a broad collection of
caging groups are available for a variety of PTMs, a caging group
that stably protects sulfotyrosine (sY) residues in peptides and
proteins and can be efficiently removed under physiological
conditions remains elusive.12 The reasons for such a knowledge
gap includes the high energy barrier for chemically activating the
sulfate group for coupling chemistries, the lability of sY to acid,
heat, and high-energy ionization, and the strong electron-
withdrawing propensity of sulfate that renders commonly used
benzylic ester caging groups unstable.13−15 On the other hand,
while multiple alkyl and aryl esters have been successfully used as
protecting groups of sY in solid-phase peptide synthesis,17,18

such as 2,2,2-trichloroethyl (TCE),18,19 2,2-dichlorovinyl
(DCV),20,21 2,2,2-trifluoroethyl (TFE),22 neopentyl,23,24 and
phenyl25 sulfate diesters, their deprotection conditions (e.g.,
hydrogenolysis,18−21,25 strong base,22 heating,23 high salt
concentraton,24 etc.) are incompatible with living systems.
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Figure 1. Background and our approach. (a) Sulfation widely exists in
diverse bioactive peptides and proteins. (b) In this work, fluorosulfate is
incorporated in peptides and proteins as a latent sulfate and can be
efficiently converted to sulfate by hydroxamic acid reagents under
physiologically relevant conditions. (c) Our approach mirrors the
myrosinase-catalyzed Lossen-like rearrangement of glucosinolates in
nature.
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In 2014, Sharpless et al. reported the reactivity of fluorosulfate
in Sulfur(VI) Fluoride exchange (SuFEx) reaction.26−29

Compared to other halogen-substituted sulfate derivatives,
fluorosulfate not only has a size closest to that of sulfate, but is
also far less electrophilic due to the π-donation from fluorine to
sulfur.30 As a result, fluorosulfate has demonstrated excellent
metabolic stability in vivo.31,32 The chemical inertness of
fluorosulfate has allowed its tyrosine derivative, L-fluorosulfotyr-
osine (fsY), to be incorporated into peptides and proteins via
solid-phase peptide synthesis12,33 and ncAA mutagenesis.13,32

Herein, we demonstrate that fluorosulfate can serve as a latent
sulfate in sulfopeptides and sulfoproteins and can be efficiently
converted to sulfate (hereafter denoted as “decaging”) by
hydroxamic acid (HA) reagents under physiologically relevant
conditions. Mechanistic studies revealed an unusual Lossen
rearrangement pathway of fluorosulfate activation and decaging
(Figure 1b) that is analogous to the myrosinase-mediated
Lossen-like rearrangement of glucosinolate in nature (Figure
1c).34

Our initial investigation confirmed that fluorosulfate is stable
in various aqueous physiologically relevant conditions, such as
buffer solution, cell lysate, and serum at neutral pH. Specifically,

negligible (<5%) hydrolysis of fluorosulfate could be detected in
aqueous buffer at neutral pH after 24 h (Table S1, entries 1−2).
Fluorosulfate also remained mostly intact after 12 h in serum
and after 48 h in cell lysate (Table S2). Even tetramethylgua-
nidine, a reagent previously reported to promote SuFEx reaction
in aqueous solution,35 showed no reactivity against fluorosulfate
alone (Table S1, Entry 3). Interestingly, we found the hydrolysis
product of N-hydroxylsuccimide (Table S3 and Figure S2), N-
hydroxylsuccinic acid monoamide (3), converted a fsY-
containing hexapeptide 1 into the corresponding sulfopepitde
2 in 57% yield in 1 h (Figure 2a). Encouraged by this finding, we
examined other HA derivatives (Figures 2a, S4). Acetohy-
droxamic acid (4) promoted the reaction to 78% over 1 h. Good
yield (95%) of 2 was obtained using aromatic benzohydroxamic
acid (5) under the same conditions. The highest efficiency was
observed when the cationic HA 6 and heteroaromatic HA 7were
used, achieving quantitative conversion in 30 min. Other non-
HA α-nucleophile reagents such as oxime 8,36 2-aminoxime 9,
and 1-hydroxybenzotriazole (10)37 resulted in lower reaction
efficiency. In contrast, triisopropylsilyl ether (TIPS)-maskedHA
11 showed no reactivity until potassium fluoride (KF) was
added to remove the TIPS protecting group (Table S4 and

Figure 2. Reagent screen and mechanistic investigation. (a) A variety of HA reagents were investigated for their ability to activate fluorosulfate in
model peptide 1. Yields were determined by HPLC. (b) Real-time LC-MS reaction monitoring identified two adducts of 7, 12, and 13, suggesting a
Lossen rearrangement mechanism. (c) No 18O-labeled products were found from the reaction in H2

18O buffer, suggesting that the sulfate product was
not generated from direct hydrolysis.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.3c07937
J. Am. Chem. Soc. 2023, 145, 20189−20195

20190

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07937/suppl_file/ja3c07937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07937/suppl_file/ja3c07937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07937/suppl_file/ja3c07937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07937/suppl_file/ja3c07937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07937/suppl_file/ja3c07937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07937/suppl_file/ja3c07937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07937/suppl_file/ja3c07937_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07937?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07937?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07937?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07937?fig=fig2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c07937?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure S5), confirming that HA is the reactive center for
fluorosulfate activation. It is also noteworthy that the decaging
reaction mediated by 7 proceeded with no detectable side

reaction in the presence of 20 equiv of amino acids including
lysine, histidine, tyrosine, and cysteine (Table S5).

Figure 3. Decaging of fluorosulfate-containing peptides and proteins under physiologically relevant conditions. (a) Fluorosulfate decaging in fsY-
containing synthetic peptides. (b) Light-mediated fluorosulfate decaging in C5aR1 22mer peptide using photocaged reagent 20. (c) TTI peptide
sequences and sulfation patterns. (d) Thrombin inhibition assay of TTI peptides. Data were fitted to the Morrison inhibition model, and error bars
represent the standard deviation of three independent measurements. (e) Light-mediated activation and decaging of fluorosulfate-containing TTI
peptide TTI04(fsY) regulate its sulfation-dependent thrombin inhibitory activity. (f) Fluorosulfate decaging in fsY-containing protein sfGFP-151 fsY
and its corresponding high-resolution mass spectrometry.50
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To gain insight into the reactionmechanism, the reaction with
1 as the substrate and reagent 7 was monitored using liquid
chromatography−mass spectrometry (LC-MS) to capture the
reaction intermediates (Figure 2b and Figure S6). An adduct
(12) of 7 and 1 was detected, confirming the nucleophilic
coupling between the HA reagent and the substrate.
Surprisingly, an isocyanate adduct 13 was also detected within
10 min at 37 °C, suggesting an uncommon intramolecular
Lossen rearrangement pathway. To further probe this
possibility, we performed the decaging reaction of 1 by 7 in
the buffer prepared exclusively using H2

18O. This reaction
yielded 2 that contained no 18O isotope (Figure 2c and Figure
S7), suggesting that the conversion of fluorosulfate into sulfate is
not through direct hydrolysis. These results further support a
Lossen rearrangement mechanism.38−40 Such a pathway is
similar to the myrosinase-catalyzed Lossen-like rearrangement
of glucosinolate in Brassia plants, in which an inorganic sulfate
and isothiocyante are generated from a thiohydroximate-O-
sulfate intermediate (Figure 1c).34

We then examined the decaging of various fluorosulfate-
containing peptides mediated by 7 under physiological pH.
Notably, peptides that contain multiple fsY residues or
nucleophilic residues (e.g., lysine or cysteine) were successfully
decaged in high yields (Figure 3a). In addition, decaging can be
achieved in a light-mediated fashion. The fsY residues in 16 was
efficiently decaged after a 2-nitrobenzyl-caged reagent 20 was
exposed to 370 nm UV light irradiation (Figure 3b).41 No
conversion was observed in the dark or without 20 (Figure S31).

We used tsetse thrombin inhibitor (TTI)42 peptides as a
model system to probe the utility of the HA reagents in
controlling the bioactivities associated with sulfation under
physiologically relevant conditions. We used a standard human
α-thrombin activity assay with Chromozym TH substrate to
determine the inhibitory effects of the TTI peptides (latent)
consisting of fsY residues at position 9 and 12: TTI02(fsY),
TTI03(fsY), and TTI04(fsY), and the corresponding sY-
containing TTI peptides (active): TTI02(sY), TTI03(sY),
and TTI04(sY) (Figure 3c).43,44 Although the latent TTI
peptides still exhibited minor inhibitory effects compared to the
nonsulfated control TTI01, the active TTI peptides demon-
strated significantly higher potencies (Figure 3d and Figure
S9).45 The latent TTI peptides that were decaged in situ by
reagent 7 all showed inhibitory effects similar to those of the
purified active TTI peptides (Figure 3d). These results
confirmed that fluorosulfate can serve as an effective latent
sulfate in peptides, and can be facilely decaged in aqueous
solution at neutral pH. Light-controlled decaging is also
possible. For example, while the latent TTI04 (fsY) remains
inactive for thrombin inhibition at 3.7 nM in the presence of 2-
nitrobenzyl protected reagent 21 in the dark, after irradiation,
thrombin activity was reduced to 21% (Figure 3e).
The small size of fluorine atom allows fsY to be facilely

incorporated into proteins as a ncAA.32,46 Following the
procedure established by Wang et al.,32 we cloned the fsY-
specific aminoacyl tRNA synthetase FsTyrRS and an optimal
pyrrolysyl tRNA into plasmids for fsY incorporation into
proteins. A sfGFP gene containing a TAG codon at position

Figure 4. Cytocompatibility of the reagents. (a) Sortase A-mediated ligation of peptide 22 onto the S. aureus cell surface and its decaging followed by
the TEV protease cleavage. (b) Percent of S. aureus cells survived after sortase A-mediated ligation of 22 (Step I) and after fluorosulfate decaging by 7
(Step II) compared to the cells treated with PBS. The average data of two trials were plotted. (c) LC-MS analysis of samples after the TEV cleavage
identified the decaged peptide (24, bottom) compared to the cleaved peptide before decaging (23, top). (d)MTT assay of the mammalianHEK-293T
cells after incubation with various concentrations of reagents 5, 6, and 7. The average data of three trials were plotted.
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151 was cotransformed along with the genes containing the
FsTyrRA/tRNA pair into B95 E. coli cells.47 The targeted
sfGFP-151 fsY was successfully expressed in 12 mg/L yield.
TandemMS results verified the incorporation of fsY at the TAG-
specified position-151 (Figure S10).32,48 Next, to confirm the
conversion from fluorosulfate to sulfate in sfGFP-151 fsY by 7, as
well as the integrity of the resulting sulfoprotein, we performed
whole protein intact mass analyses of sfGFP-151 fsY before and
after decaging using high-resolution Orbitrap mass spectrome-
try, which is capable of achieving sub-5 ppmmass accuracy49 and
can confidently resolve the 1.996 Da mass shift after decaging
(Figure 3f and Figure S11).50 Similarly, incorporation of fsY at
position 3 of sfGFP and the subsequent decaging by 7 were also
confirmed (Figures S12−S13). Furthermore, we showed the
light-mediated decaging of sfGFP-151 fsY by the photocaged
reagent 19 (Figure 3f), highlighting the potential of our
approach for the spatiotemporal release of caged sulfoproteins.
Last, we tested the cytocompatibility of the fluorosuflate

decaging reagents. Previously, cesium carbonate (Cs2CO3)/
ethylene glycol33 or 2 M ammonium acetate (NH4OAc)
aqueous solution24,43 was used to remove the protecting groups
for sulfate in peptides and small molecules. However, these
conditions were found to be strongly denaturing to proteins
(Figure S15) and highly toxic to live cells (Figures S16 and S17).
In contrast, our reagents caused no protein denaturation and
have low toxicity to cells at various concentrations. Tomimic the
cell membrane-bound sulfoproteins,51 we examined in situ
fluorosulfate decaging on the surface of live Staphylococus aureus
(S. aureus) cells (Figure 4a−d). S. aureus cells were chosen
because there are no known endogenous sulfopeptides ex-
pressed on their surface, and the endogenous sortase A on their
surface can be used to ligate peptides.52,53 A fluorescently
labeled peptide 22 consisting of a Tobacco Etch Virus (TEV)
protease cleavage sequence54 and an LPETG sortase A-
recognition motif was ligated to the cell surface of S. aureus
(Figures 4a, S18, and S19). The cell-surface-ligated peptide was
then decaged by reagent 7. Compared to the phosphate-buffered
saline (PBS) buffer control, neither the cell surface ligation nor
the fsY decaging experiments caused a significant reduction of
cell viability (Figure 4b). LC-MS analysis of the peptide residues
cleaved after the decaging reaction (24) confirmed that the fsY
was successfully converted into sY on the live cell surface (Figure
4c). Finally, reagents 5−7 also exhibited low toxicity to
mammalian cells even at millimolar concentrations based on
the MTT assay (Figure 4d).55

In conclusion, we demonstrated that fluorosulfate is a
physiologically compatible latent sulfate in peptides and
proteins. Fluorosulfate is stable in neutral aqueous buffers, cell
lysates, and serum and can be efficiently converted into sulfate
by easily modified and readily accessible HA reagents under
physiologically relevant conditions via Lossen rearrangement.
Leveraging the facile incorporation of fluorosulfate-containing
amino acid fsY via solid-phase peptide synthesis and ncAA
mutagenesis, our reported approach can be applied to studying a
wide range of sulfopeptides and sulfoproteins in their
physiological states. The excellent compatibility of our reagents
with both bacterial and mammalian cells suggests that they are
promising candidates for decaging fluorosulfate-containing
peptides and proteins in experiments involving live systems.
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■ ABBREVIATIONS
CCR5, C−C chemokine receptor type 5; PGSL-1, P-selectin
glycoprotein ligand-1; HCII, heparin cofactor II; C5aR1,
complement component 5a receptor 1
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