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Abstract

Defective interfering particles (DIPs) are virus-like particles that occur naturally during
virus infections. These particles are defective, lacking essential genetic materials for repli-
cation, but they can interact with the wild-type virus and potentially be used as therapeutic
agents. However, the effect of DIPs on infection spread is still unclear due to complicated
stochastic effects and nonlinear spatial dynamics. In this work, we develop a model with a
new hybrid method to study the spatial-temporal dynamics of viruses and DIPs co-infec-
tions within hosts. We present two different scenarios of virus production and compare the
results from deterministic and stochastic models to demonstrate how the stochastic effect
is involved in the spatial dynamics of virus transmission. We compare the spread features
of the virus in simulations and experiments, including the formation and the speed of virus
spread and the emergence of stochastic patchy patterns of virus distribution. Our simula-
tions simultaneously capture observed spatial spread features in the experimental data,
including the spread rate of the virus and its patchiness. The results demonstrate that
DIPs can slow down the growth of virus particles and make the spread of the virus more
patchy.

Author summary

Defective interfering particles (DIPs) are viral mutants in which a crucial part of the parti-
cle’s genome has been lost. DIPs are not infectious but can still co-infect cells with natural
viruses. Such mutations are not uncommon. In fact, it has been found in most classes of
viruses, including SARS coronavirus and influenza virus. It gives DIPs a promising future
as a medium for disease treatment. However, the mechanism by which DIPs affect virus
transmission remains unclear. In this paper, we develop a model to study the interaction
between viruses and DIPs within host cells and the role stochastic effects play in virus
transmission. Our simulations can capture patchy patterns and other spatial spread
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Introduction

Many diseases such as COVID-19, Ebola virus disease, AIDS, and SARS, are caused by the
transmission of viruses. Various antiviral drugs have been proposed to inhibit the gene and
protein functions of viruses. Still, a major challenge in drug development is caused by occa-
sional mutations in the viral genomes. However, some of these mutations may help us create a
new type of treatment through developing defective interfering particles (DIPs), which are
virus-like particles that have been detected in patients infected with influenza A virus [1], and
with dengue virus, as well as birds infected with West Nile virus [2]. DIPs lack some viral
genes that are essential for replication. But, when they co-infect a cell with viable viruses, DIPs
divert replication or packaging resources from the virus towards their own growth, thereby
compromising normal virus growth [1, 3]. The mechanism of viral material egress is very com-
plex [4], and many factors have been shown to influence it [5, 6], such as empty capsid [7]. In
this work, we are focusing specifically on the effect of DIPs on virus production. The competi-
tion between infectious viruses and DIPs for the resources in a host may induce a delay and
decrease in infectious virus production [3, 8]. For example, in the recent work [9], a combined
experimental evolution and computational approach identified defective viral genomes that
optimally interfere with Zika virus infection and show antiviral activity in mice and mosqui-
toes. Therefore, DIPs interfere with virus production, a feature that underscores their promise
as therapeutic agents [9-12].

In a recent experimental study [3], engineered reporter viruses and DIP were constructed,
which enabled measurement of the gene expressions of both viral and DIP during co-infection
of susceptible host cells. Quantitative microscopy imaging in [3] demonstrated that levels of
virus and DIP production from co-infected cells can be highly sensitive to their input ratios
(multiplicities of infection, MOI), and revealed diverse spatial patterns during co-infection
spread. The experimental results showed that viral gene expression was more delayed and that
patterns of spread became more “patchy” with a higher level of DIPs to the initial cell. How-
ever, it is not clear that how the timing and level of this spatial distribution of DIP expression
are related to the spread of virus infection, and what are the key mechanisms responsible for
the diverse spatial patterns of the virus and DIP levels.

Many mathematical models were built to study the growth of virus [13-22] and the
interaction of DIPs and viruses [23-28]. The simulations and analyses provide us a theoret-
ical idea to understand the development of infectious diseases and how to control the
growth of viruses. For example, in [23], a simple mathematical model was proposed for
studying the deterministic chaos caused by DIPs. However, there are not many models con-
sidering the spatial effect of the interaction of DIPs and viruses in a one- or two-dimen-
sional domain. Frank [24] developed a one-dimensional partial differential equation model
for studying the dynamics of the populations of DIPs and viruses within hosts. His work
studied how the dynamics of virus spreading depend on the rate at which killed host cells
are replaced. These results explain the key processes that control the diversity of observed
experimental outcomes and provide a stepping stone to study the spatial model of the trans-
missions of DIPs and viruses. A two-dimensional domain has to be considered for
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reproducing the patchy pattern. Akpinar et al. [25] built a two-dimensional computational
model, adapting a cellular automaton approach to incorporate kinetic data on virus growth,
but the model is not able to capture the spread rate and the spatial patterns simultaneously
observed in [3].

The existing computational studies provide a keystone for modeling the interaction of DIPs
and wild-type viruses. However, the mechanism by which DIPs affect the spatial distribution
of virus expression is still unclear partly due to complicated stochastic effects and nonlinear
spatial dynamics. In [29], the authors applied a stochastic model to study different solutions
for continuous and burst production of virions which cannot be studied through deterministic
models. In [30], a hybrid stochastic-deterministic computational model was applied to capture
experimentally observed variation in the fitness difference between two virus strains. The sim-
ulations of the model suggest a way to minimize the variation and dual infection in experi-
ments. In [31], a stochastic model was built to study the effect of DIPs and the results support
that DIPs have a slowing effect on the growth of viral plaques, but the spread features are not
quantified in that study. These computational studies suggest that stochastic effects play an
important role in virus spreading, but the stochastic effects in the virus and DIP transmissions
are poorly understood. It inspires us to build a stochastic spatial model to study the interaction
of DIPs and viruses and how the effect of DIPs leads to patchy patterns of virus expression
observed in experiments.

In this paper, we develop and analyze a new mathematical model to study the spreading
speed and the spatial pattern generated by the interaction of viruses and DIPs. To incorporate
the random movements of the virus and the DIPs and the stochastic effect of the interactions
due to finite number of particles, we developed a stochastic reaction-diffusion system for the
virus and DIP co-infection and built a hybrid method for stochastic simulation. Our stochastic
model enables also the study and comparison of two common scenarios of virus production.
Our simulation results demonstrated that this model can regenerate simultaneously the patchy
patterns and the spread rates observed in wet-lab experiments [3], which was not achieved in
previous studies [25].

Modeling

Our new hybrid model is developed based on the deterministic reaction-diffusion model
introduced by Frank [24], but has several differences and new features. Importantly, our
model and simulation results capture spatial spread features in two-dimensions observed in
experiments and overcome computational challenges in stochastic simulations in two-
dimensional domains, while the results in [24] are for one-dimension. Furthermore, we
introduced and compared two different scenarios of virus production in the stochastic
simulations.

Below we describe firstly the deterministic part of our model which is a system of partial dif-
ferential equations, and secondly our stochastic model that incorporates two different scenar-
ios of virus production.

Deterministic model

Based on the model in [24], we propose a new model which includes the virus and DIP produc-
tions. As shown in Fig 1, in the model, we consider free natural infectious virus, denoted by
V(t,%), and defective interfering particles (DIPs), denoted by D(t,¥) where ¥ = (x,,x,) isa
vector which represents a spatial location in a two-dimensional domain [0, X} pax] X [0, X2 max]-
Also, there are six types of cells: uninfected cells, cells infected only by natural viruses but not in
the period of virus production, cells infected only by natural viruses and in the period of virus
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Fig 1. Schematic diagram
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production, cells infected by DIPs only, cells infected by DIPs and natural viruses but not in the
period of virus production, and cells infected by both DIPs and natural viruses as well as in the
period of virus production. The numbers of the respective cells are denoted by C, Cy, Cy,, Cp,
Cyp and C;,,, respectively.

Considering infection by DIPs of cells late in the replication cycle is too late to affect the
production of the virus, we assume that DIPs cannot infect the cells C;, [24]. There are two
age categories for each of the Cy and the Cyp cells in our model. Ultimately, the DIPs are
produced only by the mature C;, cells, and virus particles are produced by both C;, and C;,,
cells. While Cy cells can get to maturity by themselves and produce virus, Cp, cells cannot
produce DIP unless they are co-infected by the virus and become Cyp and get to maturity.
The latter models the situation that DIPs cannot replicate unless they co-infect a cell with a
wild-type virus.

The following two equations are for modeling the dynamics of the virus and DIP:

ov
_ 2 * *
E = dVV V+ OCICV + OCQCVD — 5VV y
—— — ——— ~—

Diffusion virus production clearance of virus
oD m
T —4Vv'D+ «C, — 6,0
ot N— et ~—~

Diffusion DIP production clearance of DIP

where V? is the Laplacian operator, describing the virus and DIP diffusion.
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We assume that cells are not moving in the spatial domain and we can model the dynamics
of the cell densities by the following system:

ac;, .
a v, Cy - pCy
~—— ~——
maturing for virus production cell death
oC;
VD . *
ot V,Cyp =BG
~—— ——
maturing for virus production cell death
ocC
i o.C(1 - C,/K) — 7,CV - %CD — §.C,
—_—— —— ~—— ~—
Cell growth infected by normal viruses infected by DIPs cell death
e (2)
V _— L — — p—
o ), CV 7.CvD v, Cy OcvCy s
—— —— ~—— —
infected by normal viruses infected by DIPs maturing for virus production cell death
ocC
D _
Bt 7.CD  — 1CpV —0cpCp s
——
infected by DIPs infected by normal viruses cell death
9Cy, 5
— " _ —
o 7.CD + 1CpV v,Cyp cvoCip
—— —— —— ——
infected by DIPs infected by normal viruses maturing for virus production cell death

where C, = C+ C, + C, + C, + C;, 4 C;,, is the total density of all cells.

Our model Egs (1) and (2) is different from that of [24] in several ways: (i) there are two age
categories for Cyp, cells in our model, but there is no age structure for Cyp, cells in [24]; (ii) the
mature Cj, cells can produce virus in our model, but the Cy, cells in [24] cannot produce
virus; (iii) Cp cells cannot recover to be uninfected cells in our model, but they can recover in
[24]; (iv) our parameters y; and ¥, can be different, but they are the same in [24].

Stochastic models in two different scenarios of virus production

Since the outcome of the model with DIPs is sensitive to the competition between viruses and
DIPs, different kinds of perturbation to the production of viruses and DIPs may contribute to
a huge change in the probability distribution of the outcome. The study in [29] suggested that
there are two scenarios of virus production, which can create different kinds of perturbations
to virus production:

Scenario 1: infected cells produce virus and DIPs through cell bursting;
Scenario 2: infected cells keep producing viruses and DIPs continuously.

However, these two scenarios cannot be distinguished by our deterministic PDE model
[29] as both models with different scenarios have identical mean-field kinetics. In this study,
we built a stochastic model and developed an efficient simulation method to examine the
effects on the spatial distribution of viruses under different scenarios.

Due to the high computational cost of the spatial stochastic model, there are not many stud-
ies considering the effects of different scenarios for virus production on the spreading speed
and distribution of the virus. To improve the computational efficiency, here we simulate our
model with Spatial Stochastic Simulation Algorithm (SSA) [32], which is a method to generate
an exact sample from the probability mass function that is the solution of the chemical master
equation.
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In SSA, we consider the spatial domain as a two-dimensional square with length L. The
domain is partitioned into N, x N, identical compartments that are uniform squares with
length h = L/N,. The subsystem in each compartment is assumed to be homogeneous. The
same types of particles and cells in different compartments are treated as different species; for
example, we denote by V;; the virus level in the compartment at location (i, j) and consider
Vie s Vins Vs oy Voo o Vi y }- Diffusion is treated as a reaction in which a mole-
cule jumps to one of its neighboring compartments at a constant rate. Then with no-flux
boundary conditions (or other conditions which depend on the experimental setting), diffu-

sive jumps obey the following chain reactions for each j € {1, 2, - - -, N.}:
P1 P1 P1 P1 P1 P1
Vij=Vy=Vy =V Vin=V,=V =V,
P1 P1 7 P P1 7

where p; = dy/ h?. We assume that D, j has similar chain reactions with p, = dp/h?. We define
the propensity function for the jumps, for example, at the location (3, j), for the four types of
jumps (L: left, R: right, U: up, D: down) of virus: o, () = p, V;;(£), oy, (£) = p, V()
Oy, (t) = p,V,(t),and Opy,, (t) = p,V;;(t). At the boundary, some jumping directions will
not be considered for no-flux boundary conditions. For reactions, we assume that only mole-
cules in the same compartment can react with each other.

Different scenarios of virus production will contain different sets of reactions. In the first
scenario, the reactions in the (7, j) compartment are as follows:
nv 72D

ocC(1-Cr/K nv
=

0] )C7 C_’Cva ClD}CD7 Cv—’CVDv CD—)CVD7
Cy,5Cy, Cpp-3Chpy, D2, V%0,

C%g, C, %0, €%, C\p" 20,
. B v P
Cy - (,/B)V, Cyp - (%y/B3)V + (o3/B,)D-
In the second scenario, the reactions (the first three rows of the previous scenario) are the
same as the first one except for the production of viruses and DIPs. That is, we replace the last
row by the following:

a1 Cy ey Cy 3C . B . B
oY, 6D, C =6y Crpd.

A new hybrid method for stochastic simulation

In general, the computational cost for a stochastic simulation of a system in two-dimensional
domain is extremely high. To reduce the computational cost and maintain the accuracy, we
built up a new hybrid method which combines the advantages of our previous works: method
of operator splitting [33], and spatially coupled hybrid method with adaptive interface [34]. In
the new method, we use operator splitting to improve the efficiency and maintain the accuracy
of the simulation; also, through this method with mixing stochastic and deterministic meth-
ods, we can apply the hybrid method for specific reactions while keeping others deterministic
and hence consider only part of random effects to study which stochastic behavior plays an
essential role in the pattern formation.

The hybrid method combines two classes of simulation methods for modeling the reaction
processes at two different scales. To capture the advantages of the methods with different
scales, we use the method in our previous work [34] to separate the spatial compartments into
two types of regions with adaptive interfaces: 1) the regions with “large” numbers of molecules;
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2) the regions with “small” numbers of molecules. A more precise criteria for determining
“large” and “small” will be given in Eq (3).

To better adapt to the complex system, we separate the compartments for each operator
independently. That is, only the number of molecules of the species involved in an operator is
considered in the regional division of that operator. We then apply SSA to approximate the
dynamics in the region (1), and apply the PDE approximation in the region (2). For coupling
two regions, we will apply the pseudo-compartment method [35] with the adaptive interface
method we used in [34] in which the locations of the interfaces between different approaches
are changing according to the distribution of molecules. With the idea of operator splitting
mentioned above [33], our method can provide a numerical framework for studying the spatial
stochastic effect of virus transmission. Through this new tool, we will have an efficient method
to gain a better understanding about the spatial effect of DIPs in virus transmission.

The domain and multiple interfaces for different reactions

Consider a general reaction-diffusion system of S species and M chemical reactions and diffu-
sion in 4 directions in a two-dimensional domain €, which is partitioned into N, regular com-
partments of width h. Let N(k, t) represent the amount of the s-th species in the k-th
compartment at time ¢. Each compartment is small enough so individuals in it can be assumed
well mixed.

The subdomain in which we employ the compartment-based regime for the j-th reaction at
time ¢ is denoted by Q/.(t) C Q, and the other part of Q that employs PDE is represented by
Q,(t). €.(t) contains all compartments in which the amount of at least one of the reactants in
the j-th reaction is below the threshold value ©. To be specific, assume that reactants of the j-th

reaction are {S;, Sy, - - -, S,,}. If

i:?,qz?nrlm{Ni(k’ N} <O, (3)

then the k-th compartment is assigned to the stochastic domain €.(t), otherwise to the PDE
domain ,(¢). The parameter O is introduced due to the inherent cut-off in experiments, such
as the technical minimum detectable level of RFP/GFP. We tested different values of © and
selected the most appropriate one. In our algorithm, interfaces are adaptive. Domain division

and multiple interfaces I' = ¥, (t) N Q. (¢) are updated every At;. Fig 2 shows a one-dimen-
sional illustration of the approach stated above.

It’s worth noting that I and I can be the same if there is an inclusion relationship between
the sets of reactants in the j;-th and j,-th reaction. In fact, the number of non-coincident inter-
faces is no more than the total number of species in the system. Therefore, compared with a
single interface, multiple interfaces can capture stochastic fluctuations more accurately without
increasing too much computation costs.

The pseudo-compartment method

In this section, we will outline the pseudo-compartment method [35], which is the basis of our
algorithm. In [35], Yates et al. introduced the pseudo-compartment method for diffusion. On
this basis, we propose the possibility of multiple adaptive interfaces.

Consider a reaction-diffusion system of S species, M chemical reactions and diffusion in the
four directions of the cross in a 2D domain Q. In our algorithm, the PDE region varies for
each reaction. So instead of just dividing the PDE based domain, we discretize the whole
domain, Q, into a regular grid with spacing Ax. We consider the density of each species. For
the j-th reaction at time ¢, the PDE numerical solution is updated for all grid points lie in
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Fig 2. An illustration of the domain division and interface of the j-th reaction. Here we show an example with two reactants. The
domain Q) (t) is modeled by PDE and the domain €/.(t) is modeled by compartment-based SSA. The amount of each species in a
compartment in Q) (¢) is ka p.(x, t)dx. If any reactant amount is below the threshold ©, then that compartment is part of Q/.(t).

Individuals can move between the boundary compartment of Q..(¢) and the pseudo-compartment in Q,(¢). In the two-dimensional
case, diffusion takes four directions: up, down, left and right.

https://doi.org/10.1371/journal.pcbi.1011513.9002

Y, (¢). Diffusion terms are treated in a similar way, but employing the implicit Euler method.
A zero-flux boundary condition is implemented in & (¢), including domain boundaries and
interfaces. Flux at the interface is implemented in the compartment-based regime.

The compartment-based regime evolves from the Gillespie algorithm (SSA). Consider the
propensity function of reactions and diffusion, e (t), for compartment C;, C Q’C(t) a;()dt
represents the probability that the j-th reaction (for j € {1, - - -, M + 4}, including diffusion)
occurs in C; during the small time interval [t, ¢ + dt].

The coupling is implemented with a pseudo-compartment, C_;, presented for diffusion
between the deterministic and stochastic domains. This is a compartment adjacent to the
interface but within deterministic domain ¥, (¢), where j € {M + 1, - - -, M + 4}, representing
diffusion (four directions of the cross). In order to correctly model the flux over the interface,
individuals in the boundary compartment in €Y. can jump into the pseudo-compartment with
the usual diffusive rate, and vice versa. The amount of each species within the pseudo-com-
partment is calculated through direct integration of the PDE,

N.(—i, t) = /C_ ,PS(X’ t)dx, (4)
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where p,(x, ) is the PDE solution of density of the s-th species. Then the propensity function
for jumping from the pseudo-compartment to the adjoining compartment in (/.(¢) is given by
N(—i,t)D. D .
a?.(t):%:h—; px,t)dx, j=M+1,--- M+4. (5)
Covi

The Gillespie’s direct method [36] is used to simulate the time evolution of stochastic
regime. The time interval for next reaction, 7, is determined by:

M+4 M+4
EDIDIEACED DR PRAG
=t C,e(}"c(t) j:MHC,l_,‘eQ"P(t) (6)
1 1
T=—In—,
% 1

where r; is a random variable uniformly distributed in (0, 1). We then use the second random
number 7, to find the corresponding reaction or jump. The algorithm then checks whether the
closer update time is for PDE or SSA. If t + 7 < tp, then the update is for SSA and ¢ = t + 7; oth-
erwise it is for PDE and t = tp, tp = t + Afp.

Moving interface

The multiple interfaces are updated with time step At;, by recomparing amounts in a compart-
ment of all reactants of each reaction with the threshold ©. Similar to [37], after the interfaces
are updated, we need to keep numbers in the stochastic domain as integer values, but we can-
not simply get rid of the fractional parts. Suppose the compartment Cy, is moved from the PDE
domain to the stochastic domain, and the fractional part is

p:{Lf@ﬂa} 7)

where {-} is the fractional part function. P is used as the probability that an additional individ-
ual is kept in this compartment. We then take a uniform random number r € [0, 1]. If r < P
then we place the individual in compartment Cy; otherwise it is placed in the deterministic
domain.

The pseudocode for our algorithm is given in Algorithm 1.

Algorithm 1 The hybrid algorithm for reaction-diffusion systems.

1. Initialize the time, t = ty and set the final time, T. Specify the
PDE-update time step Atp and initialize the next PDE time step to be
tp =t + Atp. Specify the interface-update time step At; and initialize
the next interface-update time step to be t; = t + At;.

2. Specify the PDE spacial step Ax and the compartment width h. Ini-
tialize the amount of each species in each compartment, Ns(k, t) for
ke {1, ..., K} and specify the threshold ©. Compute the density,

ps(x, t) = Ng(k, t)/h for PDE grid points.

3. Determine the initial interface for each reaction j, j € {1, 2, ---,
M} .

(2) Find all k such that min_ {N,(k, t)} <©, where S; contains all
species involved in reaction j, then the k-th compartment is part of
the stochastic domain QJ, and otherwise part of the PDE domain Q.

(b) All compartments adjacent to Qg (no diagonal angles) are regarded
as pseudo compartments.

4. Determine the time for the next ‘compartment-based’ event according
to the Gillespie algorithm, to =t + 1.
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5. If min{tes, tp, t;} = te then the next compartment-based event
occurs:

(a) Determine which event occurs according to the Gillespie
algorithm.

(b) If the event is moving from stochastic domain to a pseudo com-
partment, C.;, then for the corresponding (s, k), Ng(k, t + 1) = Ng(k,
t) - 1 and p(x,t+1) =p(x,t) + 1, ;/h. Here, I, is an indicator function
that takes the value 1 when x € A and 0 otherwise.

(c) If the event is moving from a pseudo compartment C_; to stochas-
tic domain and p(x, t) > 1/h for all x € C;, then N (k, t + 1) = Ng(k,
t) + 1 and p(x, t+1) =p(x,t) =L /h.

(d) Update the density for the pseudo compartment.

(e) Update the current time, t = te.

6. If min{te, tp, try} = tp then the PDE domain is updated:

(a) Apply backward Euler for diffusion terms and forward Euler for
reaction terms.

(b) Update the density for the pseudo compartment.

(c) Update the current time, t = tp and set tp =t + Atp.

7. If min{tes, tp, tr} = t; then the interfaces are updated, similar to
step 3:
(a) For each reaction, find all k such that min_ {N,(k, t)} <©®, where

xea)

S; contains all species involved in reaction j, then the k-th compart-
ment is part of the stochastic domain Qg, and otherwise part of the PDE
domain QJ.
(b) All compartments adjacent to Qé (no diagonal angles) are regarded
as pseudo compartments.
(c) For the compartment Cp that change from PDE domain to stochastic
domain, let Ps:{fckps(x7 t)dx}. Take a random number ry, € [0, 1].
e If ro < P; then Ng(k, t;) = ceil (Ng(k, t)) and ps(x, t;) = ps(x, t)
- (1 - P,)/ Area (Q;) for XGQZJ;
« otherwise, Ng(k, t;) = floor (Ngs(k, t)) and ps(x, t;) = ps(x, t) +
P,/ Area (Q)) for xeQl.
(d) Update the current time, t = t; and set t; = t + At;.
8. If t £ T, return to step 4.
Else end.

Parameter selection

We consider the spatial domain as a two-dimensional square with length L = 2.552mm, which
is the same as the experimental data; for the PDE numerical scheme, we apply the central dif-
ference scheme to discretize the Laplace operation with Ax = Ay = 0.058mm; for the temporal
numerical scheme, we use the backward Euler method for the Laplace operation and forward
Euler method for the other terms with time step At = 0.01h. In the SSA approximation, the
domain is partitioned into square compartments with dimension 4 x h = Ax x Ay.

Diffusion coefficients of virus and DIP are set to be 2.38 x 10 %cm? in [31] while the decay
rate is 4.0 x 107%s~". As the diffusion rate varies according to the environment and plays a vital
role in spatial distribution, we increased the former dy = dp = 2.38 x 10> mm?/h to provide
qualitative agreement with experimental data and left the latter unchanged &y = 85 = 0.144h ™.

In [27], the rate of virus production is expressed as the product of the number of viruses
released per cell after packaging and the rate at which each cell produces viruses. Therefore
a, = 758.045 X (68.503 x 10%2d™") = 2163.682 x 10*°h ™}, and a; = 38.259 x (21.782 x 10*2d™})
=34.723 x 10"*h~". The wide range of parameters allows us to choose a suitable value to obtain
a good agreement with the experimental results qualitatively. So we set & = 6.491h™" and
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Table 1. Parameters used in the simulations.

Parameter Definition Value Reference
dy Diffusion coefficient of virus 2.38 x 107> mm?/h [31]
dp Diffusion coefficient of DIP 2.38 x 107> mm?/h [31]
o Rate of virus production from virus-infected cell 6.491h7" [27]
o Rate of virus production from co-infected cell a5/10 this work
s Rate of DIP production from co-infected cell 69.446 h™! [27]
ac Rate of uninfected cell proliferation 0.634h7! [27]
K Cellular carrying capacity of proliferation 3.505 x 10° x h* cell/compartment [27]
Vi Rate of maturation of Cy, cells into C;, cells 0.205h7! [27]
vy Rate of maturation of Cyp, cells into C;,, cells 0.205h™* [27]
B Death rate of C;, 0.05 [27]
i Death rate of C;, 0.05 [27]
7 Virus infection rate 4x107*h™! this work
V2 DIP infection rate 4x107*h! this work
Sy Virus decay rate 0.144h7! [31]
Sp DIP decay rate 0.144h7" [31]
Sc Death rate of cells 0.059h™" [31]
Scv Death rate of cells 0.059 h™" [31]
Scp Death rate of cells 0.059 h™ [31]
Scvp Death rate of cells 0.059 h™! [31]

https://doi.org/10.1371/journal.pcbi.1011513.t001

a3 = 69.446h™". Since DIPs may exhibit a replication advantage over infectious viruses [3], we

assumed a, = @3/10 in this work.

Same as [27], the intrinsic rate of uninfected cell proliferation is ac = 15.217d ™" = 0.634h™".
But the cellular carrying capacity of proliferation varies depending on the experimental envi-
ronment. We let K = 3.505 x 10° x h” cells/compartment to achieve qualitative agreement with
experimental data, where /” is the compartment area.

The rate of maturation of Cy cells into C}, cells is 9.863 x 10*> d™" in [27]. We slightly
increase it to v; = v, = 0.205h™! because mature infected cells are observed later in experi-
ments. B; and f3, are considered as the death rate of C}, and that of C;, respectively, which are

2.426 x 10*2d ™" in [27]. We take 8; = 8, = 0.05h™" in simulations.

Virus and DIP infection rate is 2.45 x 107'°=1.02 x 10d ™' = 1.02 x 10""*h " in [27], which
is relatively small. Different experiments and higher cell density may lead to a larger infection
rate. Hence we set y; = 7, = 4 x 10 *h ™%,

The infected cell death rate is 5.91 x 1072h ™! in [31], which is used as death rates for all cells

in our simulations.

All parameters are listed in Table 1. It is worth noting that our set of parameters can guar-
antee that species in the system without DIPs will coexist in the following simulations. A
detailed proof is provided in S1 Appendix.

Interpretation of experimental data

To validate the usefulness of our model, we compare the simulation results with the experi-
ment data published in 3], the latter is composed of time series of images obtained via Micros-
copy from the co-propagation of infectious and defective viruses in a population of biological
cells. These co-infection experiments were initiated with the same virus inputs (MOI 30) but
different DIP inputs (namely MOI 0,1,10 and 84). and microscopy images were taken at 7
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Fig 3. A representative example of interpreting the preprocessing of experimental figures. A: An original experiment figure. B: The red single
channel is extracted (virus expression) and denoised. C: Morphological transformations (dilation followed by erosion).

https://doi.org/10.1371/journal.pcbi.1011513.9003

hours, 13 hours, 19 hours and 25 hours post infection. The DIP expresses a green fluorescent
protein (GFP) and the wild-type virus expresses a red fluorescent protein (RFP). There are
three to five time series for each of the RFP intensity and the GFP intensity. Each image has
size of (2200, 2200) with diameter of 1.16 um pixel. The scale bar is 0.5 mm.

Fluorescent protein labeling is usually used for qualitative purposes, and there is no linear
relationship between brightness and intensity. Therefore the experimental images only provide
a reference for virus expression in simulations.

Since in the following simulations we employed the compartment-based method while
experiments provide scatter diagrams, we have done some preprocessing to compare them
with the computer simulation results. Fig 3A is a representative experiment figure. We
extracted the red single channel (the virus is expressed) and filtered noise, as shown in Fig 3B.
We then did morphological transformations (dilation followed by erosion) to close small holes
inside the objects. Therefore Fig 3C maintains the critical features of virus expression in exper-
iments and is more approximate to compartment-based.

Results
Dynamics and pattern formation of virus expression

We first study the PDE model in Eqs (1) and (2). Fig 4 shows the spatial distribution of C;, and
C;;, in a 2D domain at time ¢ = 25h with different initial DIPs, as well as images of experimen-
tal data at the same time in [3]. When there is no DIP, viruses are uniformly radially distrib-
uted in both simulations and experiments. When the initial condition is Cyp(0) = 200 for the
PDE model, then viruses are distributed in a ring while the DIPs are radially distributed in the
center. Compared with the experimental results under similar conditions, the PDE model
shows good agreement in the speed of infection with experimental data but the spatial distri-
bution does not match and the patchiness of C;, is not observed in PDE simulations.

In stochastic simulations, the same types of particles and cells in different compartments
are treated as different species, for example, for V, denoted by
{Vis s Vins Vaus oy Vans oo+ Vi, }- The initial condition is V;;(0) = D,;(0) =
Cy;;(0) = Cyp,;(0) = Cp,,;(0) = 0and C;(0) = 1000 for all (7, j), Cy;j(0) = Cyp;(0) = 0 for all
(3, j) except the midpoint Cy; 2,(0) = 100, and Cypy;22(0) varies from 0 to 400.

Two scenarios are considered in simulations and compared with experimental results:
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Fig 4. Spatial distributions of virus and DIP in cells in PDE simulations and experiments. A: Spatial distributions of virus in cells (C;,) and DIP in
cells (C;,) in PDE simulations and representative experiment with initial DIP equal to 0. B: Spatial distributions of virus in cells (C;,) and DIP in cells
(C;p) in PDE simulations and representative experiment with initial DIP equal to 84.

https://doi.org/10.1371/journal.pcbi.1011513.9004

Scenario 1: infected cells produce virus and DIPs through cell bursting;
Scenario 2: infected cells keep producing viruses and DIPs continuously.

Fig 5 shows the evolution of viruses in cells and DIPs in cells without initial DIP from
t=17h to t = 25h. Row 1 and 2 show the spatial distribution of matured infected cells C;, and
Cyp» which is proportional to viral expression and DIP—virus expression in Scenario 1 and
Scenario 2, at time ¢ = 17 h and t = 25 h respectively. The experimental observation has an
inherent threshold, and images have been denoised; therefore, we also introduced a cut-off for
simulation data. Namely the amount of cells is set to be zero if it is less than the cut-off value
50, which is also applied to all the following simulations. The last column is the evolution of a
representative experiment without initial DIP. When there is no DIP in the system initially,
there is no DIP growth, and the virus growth is radially symmetric and flat in both scenarios
and experiments.

In experiments, the radial symmetry disappears as the initial amount of DIP increases. In
fact, patchy formation of cells infected by virus is sensitive to the dose of DIP. It can be
observed even with a small initial dose of DIP (Fig 6). When the initial DIP is raised from 10 to
84 in experiments, the majority of the virus at the end is concentrated (see Fig 7 and S1 Fig).
Simulations show similar results, but Scenario 1 shows a much higher probability of forming a
pattern than S2 and matches the experimental data better. In scenario S1, infected cells pro-
duce viruses and DIPs through cell bursting, and then viruses and DIPs diffuse, which leads to
a more accidental position; while in Scenario 2, infected cells keep producing viruses and
DIPs, meaning the location of those cells will continuously produce virus and DIPs. Hence the
spatial distribution is more centralized rather than patchy.
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Fig 5. Dynamics of virus and DIP in cells in 2 scenarios simulations and representative experiment with initial DIP equal to 0. A: spatial
distribution of virus in cells (C},) and DIP in cells (Cy,)) in Scenario 1 (infected cells produce virus and DIPs through cell bursting) at time ¢ = 17h and
t = 25h; B: spatial distribution of those in Scenario 2 (infected cells keep producing viruses and DIPs); C: the representative experimental results.

https://doi.org/10.1371/journal.pcbi.1011513.9005
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Fig 6. Dynamics of virus and DIP in cells in 2 scenarios simulations with Cyp,, »,(0) = 4 and representative experiment with initial DIP equal to
1. A: spatial distribution of virus in cells (C;,) and DIP in cells (C;,,) in Scenario 1 (infected cells produce virus and DIPs through cell bursting) at time
t = 17h and t = 25h; B: spatial distribution of those in Scenario 2 (infected cells keep producing viruses and DIPs); C: the representative experimental
results.

https://doi.org/10.1371/journal.pcbi.1011513.9006
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Fig 7. Dynamics of virus and DIP in cells in 2 scenarios simulations with Cyp,, »,(0) = 40 and representative experiment with initial DIP equal
to 10. A: spatial distribution of virus in cells (C;,) and DIP in cells (C;,,) in Scenario 1 (infected cells produce virus and DIPs through cell bursting) at
time t = 17h and ¢ = 25h; B: spatial distribution of those in Scenario 2 (infected cells keep producing viruses and DIPs); C: the representative

experimental results.

https://doi.org/10.1371/journal.pcbi.1011513.g007

Spread rate of virus

To quantify the spread characteristics of viral expression under stochastic effects, we define the
virus radius as:
Area(C,(x,y,t
R(l’): ( V( Y )), (8)
T

where Cy(x, y, t) represents the amount of cells infected by virus at grid point (x, y) at time ¢.
Since a certain amount of virus expression is required to be observed in the experiment and
noise is filtered, we also set a cut-oft 0 = 50 for computing area, i.e.

Area(Cy(x,y,1)) = Z e, (ey>0AXAY. (9)

(xy)

For experimental data, a detailed illustration is in Fig 3. Fig 8 shows the radius of virus versus
time 9 < ¢ < 25 (h) with different initial DIP inputs in 2 scenarios simulations and experi-
ments. We can see the radius keeps increasing and viruses keep spreading in all cases. Whereas
as initial DIPs increase, in both experiments and simulations, the growth rate of radius goes
down, which is due to the inhibitory effect of DIPs on viruses. On the other hand, the Scenario
1 can better match the experimental results, both in terms of the dynamics and the level of
fluctuations.

We note that after a certain time, the plague radius grows linearly with respect to time for
each fixed initial dose of DIPs, and studied the relationship between the virus radius growth

rate and initial DIP dose. To get rid of the difference in units of initial conditions in simula-

Cvp(0
Cy(0)

remain the same, p is proportional to initial DIPs. Fig 9 shows the relationship between the

tions and experiments, we consider a dimensionless ratio p = ) Since initial viruses
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Fig 8. Radius of virus against time with different initial DIP inputs in 2 scenarios simulations and experiments. In each subfigure, curves in
different colors are different simulations (or experiments) with the same initial conditions. The initial conditions for the same row are the same.

https://doi.org/10.1371/journal.pchi.1011513.9008

virus radius growth rate and initial DIP dose intuitively. We used a logarithmic x-axis, so it is
shifted by 0.01 to avoid troubles when p = 0. The growth rate was computed using the data
points after t = 13 h to ensure in all cases we have close to linear growth in radius vs. time
(slope of lines in Fig 8). We run 50 group simulations for each initial condition to compute the
average. When there is no DIP in the system, the virus radius growth rates are the same in
both scenarios; as initial DIPs increase, the growth rate drops dramatically, which means DIPs
slow down the growth of virus particles.

Patchiness via g-statistic

Patchy spatial patterns are typically observed in the image data when the initial dose of DIP is
large enough. To quantify the patchiness of the image data, we employ a standard spatial statis-
tic called the g-statistic [38]. We choose this statistic because it is suitable for our data and con-
venient to implement. The definition of this statistic depends on our choice of strata, which is
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Fig 9. The growth rate of virus radius against initial DIP inputs in 2 scenarios simulations and experiments. The x-axis is
a logarithmic scale and the errors are described by the 95% confidence intervals.

https://doi.org/10.1371/journal.pchi.1011513.9009

a decomposition of the image data. In our case, the entire image is divided into 30 sectors with
an equal ratio of the angle to form 30 strata S = {L;, L,, - - -, L3} and the union of L; is the
whole plaque P. A visual illustration is as shown in S2 Fig. In our case, since experiments
employed qualitative rather than quantitative methods, that is, we can see viral expression at
all fluorescent points but the brightness of these points is not proportional to the intensity. So
we convert all figures binary and M(3, j, t) denotes the brightness at the (i, j)-th pixel at time ¢
for the image, which range is {0, 255}. For simulation results, we set a threshold for the binary
transformation to approximate the threshold inherent in the experimental methods and offset
the loss when denoising the experimental images. Specifically, when C;, < 50, M = 0 and the
point is black in the image; when C;, > 50, M = 255 and the point is red (an example in S3
Fig). Then, the g-statistics is defined to be

YT (M(i, jt) — W)z
Z(i,j)EP (M(i’j’ t) — m)z (10)

q =1

1 2
=1 _WZNLO-L’

LeS

— ea M)
where M!, = Z“)‘+ and |A| is the cardinality of set A. N, Ny, g, 0, denote the number of

pixels in the entire image, the number of pixels in each stratum, the standard deviation of the
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entire image and the standard deviation of each stratum, respectively. This statistic is invariant
under spatial scale and remains the same if the intensity of the image is multiplied by a factor.

A more intuitive formula for the g-statistic is as follows [38], here we omit the time depen-
dence, meaning denote M(i, j, t) by M;; and g, by g; The denominator of Eq (10) can be written
as

SN, - M)+ I, — ). (1)

LeS (ij)el LeS

Call those two terms the sum of squares within strata (SSW) and the sum of squares between
strata (SSB) and note that the numerator of Eq (10) is exactly SSW, so

L (12)
SSW + SSB

So if g & 1, that means the sum of squares within strata is relatively more minor, indicating
in each stratum, the virus is concentrated and the sum of squares between strata is somewhat
more significant, meaning the differences between strata are large, so the image would appear
to be more patchy. If g ~ 0, the variance in each stratum is large, and the differences between
strata are minor, so the picture would appear to be not so patchy. The g-statistic provides a
suitable and convenient way to quantify the patchiness that are visibly observed in the experi-
mental data we studied in this work. By choosing different strata according to the data, like
rectangular grid in a non-radially symmetric system and triangular mesh for surfaces, this
method may be applicable to other studies of spatial temporal systems.

We study the behavior of g-statistic of cells infected by the virus at time ¢ = 25 h, that is
C;,(25) in simulations, when the initial dose of DIPs varies. To get rid of the difference in

. . . . . Cun(0 . e e .
units, we consider a dimensionless ratio p = CVVD(E])). Since we always keep the initial viruses con-

stant, p is proportional to the initial dose of DIPs.

In Fig 10, the x-axis is a logarithmic scale so we shift it by 0.01 to the right to avoid trouble
when p = 0 (initial DIP is zero). On the left, the blue line denotes the g-statistic of Scenario 1
(infected cells produce viruses and DIPs through cell bursting) while the red line denotes that
of Scenario 2 (infected cells keep producing viruses and DIPs) at time ¢ = 25 h. The errors are
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Fig 10. The average g-statistics of C;, against initial DIP inputs at time t = 25h in 2 scenarios simulations and experiments. A: the blue (red) line is
the g-statistic of Scenario 1 (Scenario 2), and the bands show the 95% confidence intervals; B: the g-statistic for each experimental image.

https://doi.org/10.1371/journal.pcbi.1011513.9010
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described by the 95% confidence intervals. On the right, we marked the g-statistic for each
experimental image at time ¢ = 25 h and plot the average for four groups of experiments. Both
scenarios show the same trend as experiments. When there is no DIP in the beginning, the g-
statistic is minor, meaning the spatial distribution is uniform. The g-statistic increases as the
initial dose of DIPs increases. Taking into account the conclusions of the previous section,
DIPs slow down the growth of virus particles and make them more patchy. But when the initial
dose of DIP is large enough, we observe a drop of g-statistic. It may be caused by the domina-
tion of DIPs. To be specific, when the infection of DIPs is dominated, cells infected by the
virus are distributed as sporadic patches and the majority of the domain is homogeneous

(C;, = 0). The g-statistic is sensitive to the changes in DIPs. On the other hand, Scenario 2
shows a closer magnitude of g-statistic to experimental data while that of Scenario 1 is rela-
tively higher. In fact, Scenario 1 leads to a higher level of amount of C;, and larger size of pat-
terns. When infected cells produce viruses and DIPs through cell bursting, their positions are
more stochastic, and hence there is a larger probability of patchy formation, which also
explains the wider confidence interval of Scenario 1.

Discussion

DIPs can co-infect a cell with viable viruses and interfere with virus production [1, 3]. How-
ever, the mechanism by which DIPs affect the spatial distribution of virus expression is still
unclear.

In this work, we constructed a PDE model to describe the interaction between viruses and
DIPs in a two-dimensional domain. Moreover, to study the stochastic effect on spatial dynam-
ics of the virus spreading and patchy formation, we developed a stochastic reaction-diffusion
system to describe the system in two different scenarios of virus production. In Scenario 1,
infected cells produce viruses and DIPs through cell bursting. Therefore the position of virus
production is accidental, which leads to a higher probability of patchy formation. In Scenario
2, infected cells keep producing viruses and DIPs. The virus is produced continuously at the
cell position, making the spatial distribution concentrated in one point. As shown in Fig 10,
compared to Scenario 2, Scenario 1 has a higher g-statistic value under the same conditions.
The reason is that Scenario 1 results in a higher level of C}, and a larger size of patterns. In Sce-
nario 2, more area has no C;, and hence is flat. In addition, Scenario 1 shows the non-monoto-
nicity; that is, when the initial dose of DIP is large enough, we observe a drop of g-statistic in
Scenario 1. A potential reason is that cells infected by the virus lose domination due to stochas-
tic extinction and are distributed as sporadic patches. Further work is needed to quantify the
conditions and mechanisms for this initial drop. The patchy pattern observed in the experi-
ments can be regenerated in our stochastic simulation results. Our model provides a good
framework for studying reaction-diffusion systems under stochastic effects.

We also built a hybrid algorithm for stochastic simulation. Classical stochastic methodolo-
gies are computationally intensive in two-dimensional cases. Our algorithm is based on the
pseudo-compartment method [35] and introduces adaptive multiple interfaces to adjust com-
plex systems. It combines two scales of simulation methods for modeling the reaction pro-
cesses and can capture the advantages of the methods with different scales. It improves
computational efficiency and maintains critical stochastic features. Our method can provide a
numerical framework for studying the spatial stochastic effect of other biological systems and
is compatible with different scale stochastic study methods like stochastic differential
equations.

We measured the spread rate of the virus and showed the relationship between the spread
radius growth rate and the initial dose of DIP. To measure the patchiness, we computed the g-
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statistic. Our simulations can simultaneously capture two spatial spread features (patchiness
and spread rate) in wet-lab experimental data, which was not achieved in previous works. In
previous studies, there were not many models considering the spatial effects of DIP-virus
interaction. Deterministic models in one or two dimensions were developed but could not
simultaneously capture the spread rate and the spatial patterns observed in experiments [24,
25]. A stochastic model has been established in [29] to investigate different solutions for con-
tinuous and burst production of viruses that cannot be studied by deterministic models.
Another stochastic model supports a slowing effect of DIPs on the growth of viral plaques, but
the spread features are not quantified [31]. Here we consider two mechanisms for virus pro-
duction and simultaneously regenerate the patchy patterns and spread rates observed in exper-
iments. It supports that the DIPs slow down the growth of virus particles and make them more
patchy. These methods and statistics are useful tools to understand and explain the diverse spa-
tial-temporal features in complex biological systems. For example, it is known that advection
can also play an important role in the passive mass transfer of infectious particles in tissue cul-
ture [39, 40]. The pattern of infection spread in [3] arises from autocatalytic reaction (virus
reproduction) and diffusion (of free virus particles), without any contribution from advection
or convection (fluid flow). In [3] the authors used a semi-solid agar overlay on top of the cells
that prevents any fluid flow, so the only motion is diffusion of free virus particles, forming pla-
ques. By contrast, in [41] (see Fig 1), the authors used a liquid overlay, where subtle changes in
fluid density owing to evaporative cooling allowed outward radial fluid flows (convection) to
sweep across the cells as virus was released, giving rise to ‘comet-like’ infections that span
much greater distances. We expect the computing methods and statistics we developed in this
paper are useful in studying advection and different spatial movements in complex biological
systems and to compare experimental and simulation results.

Supporting information

S1 Appendix. Virus infection without DIPs.
(PDF)

S1 Fig. Dynamics of virus and DIP in cells in 2 scenarios simulations with Cyp;55(0) =
200 and representative experiment with initial DIP equal to 84. A: spatial distribution of
virus in cells (C;,) and DIP in cells (C},,) in Scenario 1 (infected cells produce virus and DIPs
through cell bursting) at time t = 17h and ¢ = 17h; B: spatial distribution of those in Scenario
2 (infected cells keep producing viruses and DIPs); C: the representative experimental
results.

(EPS)

S$2 Fig. Strata used in the computation of g-statistics.
(EPS)

S3 Fig. A representative example to illustrate the image processing of simulation results
for computing the g-statistic. A: the spatial distribution of C}, in 2D with the same color bar
as Figs 5-7, which is then converted to binary. B: all points where C;, < 50 are black ((0,0,0) in
RGB); otherwise, they are red ((255,0,0) in RGB).

(EPS)

$4 Fig. Dynamics of virus and DIP in cells in PDE simulations and experiments. A: Time
series plot of virus in cells (C;,) and DIP in cells (C;,,) growth in PDE simulations and repre-
sentative experiment with initial DIP equal to 0. B: Time series plot of virus in cells (C;,) and
DIP in cells (Cy,,) growth in PDE simulations and representative experiment with initial DIP
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equal to 84.
(EPS)

S5 Fig. Dynamics of virus and DIP in cells in 2 scenarios simulations with Cyp;5,,(0) =0
and representative experiment with initial DIP equal to 0. Row 1, 2 are time series plots of
virus in cells (C;,) and DIP in cells (C},,) growth in Scenario 1 (infected cells produce virus
and DIPs through cell bursting); Row 3, 4 are time series plots of those in Scenario 2
(infected cells keep producing viruses and DIPs); Row 5 is the representative experimental
results.

(EPS)

S6 Fig. Dynamics of virus and DIP in cells in 2 scenarios simulations with Cyp,;2,(0) =4
and representative experiment with initial DIP equal to 1. Row 1, 2 are time series plots of
virus in cells (C;,) and DIP in cells (C;,,) growth in Scenario 1 (infected cells produce virus and
DIPs through cell bursting); Row 3, 4 are time series plots of those in Scenario 2 (infected cells
keep producing viruses and DIPs); Row 5 is the representative experimental results.

(EPS)

$7 Fig. Dynamics of virus and DIP in cells in 2 scenarios simulations with Cyp,; 5,(0) = 40

and representative experiment with initial DIP equal to 10. Row 1, 2 are time series plots of
virus in cells (C;,) and DIP in cells (C;,,) growth in Scenario 1 (infected cells produce virus and
DIPs through cell bursting); Row 3, 4 are time series plots of those in Scenario 2 (infected cells

keep producing viruses and DIPs); Row 5 is the representative experimental results.

(EPS)

S8 Fig. Dynamics of virus and DIP in cells in 2 scenarios simulations with Cyp»,2,(0) =
200 and representative experiment with initial DIP equal to 84. Row 1, 2 are time series
plots of virus in cells (C},) and DIP in cells (C;,)) growth in Scenario 1 (infected cells produce
virus and DIPs through cell bursting); Row 3, 4 are time series plots of those in Scenario 2
(infected cells keep producing viruses and DIPs); Row 5 is the representative experimental
results.

(EPS)
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