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ARTICLE INFO ABSTRACT

Keywords: We consider a single genetic locus with two alleles A; and A, in a large haploid population. The locus is

Recurrent mutation subject to selection and two-way, or recurrent, mutation. Assuming the allele frequencies follow a Wright—

Selection ) Fisher diffusion and have reached stationarity, we describe the asymptotic behaviors of the conditional gene

](S:welns san:plmg formula genealogy and the latent mutations of a sample with known allele counts, when the count », of allele A, is
oalescen

fixed, and when either or both the sample size n and the selection strength |a| tend to infinity. Our study
extends previous work under neutrality to the case of non-neutral rare alleles, asserting that when selection
is not too strong relative to the sample size, even if it is strongly positive or strongly negative in the usual
sense (@ - —oo Or a — +o0), the number of latent mutations of the n, copies of allele A, follows the same
distribution as the number of alleles in the Ewens sampling formula. On the other hand, very strong positive
selection relative to the sample size leads to neutral gene genealogies with a single ancient latent mutation.
We also demonstrate robustness of our asymptotic results against changing population sizes, when one of |a|

Wright-Fisher diffusion

or n is large.

1. Introduction

The observed copies of a particular allele in a sample descend from
an unknown number of distinct mutations. If k; is the number of these
‘latent’ mutations for allele A; when it is observed n, times in a sample,
then k; € {1,2,....,n;}. Although latent mutations are not observed
directly, they can be modeled as outcomes of the stochastic ancestral
process of a sample and inferred from patterns of variation in DNA
data (Harpak et al.,, 2016; Seplyarskiy et al., 2021; Johnson et al.,
2022). Analytical results on the distribution and timing of latent mu-
tations of rare neutral alleles are given in Wakeley et al. (2023). Here
we consider non-neutral alleles which may be under strong selection
and which may or may not be rare. We take two different approaches
to modeling latent mutations under selection and recurrent mutation.
The first approach uses the idea of coalescence in a random background
of allele frequencies in the population (Barton et al., 2004). The sec-
ond uses the conditional ancestral selection graph (Slade, 2000a) and
demonstrates results consistent with those from the first approach.

Wakeley et al. (2023) also contains an application to the frequencies
of single-nucleotide sites with counts n; € {1,2,...,40} of synonymous
mutations in a subsample of 57K non-Finnish European individuals
(n = 114 K) from the gnomAD database (Karczewski et al., 2020).
Dramatic differences in sample frequency distributions of rare alleles
with different mutation rates, categorized by the ‘Roulette’ method
of Seplyarskiy et al. (2023), were well explained by an empirical
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demographic model with recurrent mutation but no selection. Sepl-
yarskiy et al. (2023, Fig. 3a) showed using simulations that a neutral,
parametric demographic model fitted to these data also explained the
frequencies of mutation in counts n; < 10* Polymorphic sites with
small mutation counts comprise the bulk of variation in humans. They
represent a rich source of information about demographic history and
possibly selection. Sites with n; € {1,2,...,40} make up about 95% of
all polymorphic sites in the gnomAD data used in Wakeley et al. (2023).

At present humans are the only species with sufficient genomic data
to apply such models of rare variants which rely on limiting approxi-
mations for large sample sizes. Whereas the neutral models in Wakeley
et al. (2023) and Seplyarskiy et al. (2023) also account for the extreme
population growth of humans (Keinan and Clark, 2012; Gazave et al.,
2014; Gao and Keinan, 2016), in considering selection here we focus on
populations of constant size. Previous theoretical work on populations
of constant size has shown that distributions of rare alleles are in fact
unaffected even by moderately strong selection (Joyce and Tavaré,
1995; Joyce, 1995). Specifically, the counts of latent mutations obey
the independent Poisson statistics of rare alleles in the Ewens sampling
formula (Ewens, 1972; Arratia et al., 1992, 2003). This is also the
case in Wakeley et al. (2023) when the population size is constant.
In the present work we investigate the robustness of these results to
very strong selection. Theory also predicts that rare alleles tend to
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be young (Kimura and Ohta, 1973; Watterson, 1976). Mathieson and
McVean (2014) and Platt et al. (2019) have demonstrated empirically
that rare non-synonymous or otherwise functional alleles in the human
genome are even younger than non-functional rare alleles. In the
present work we also investigate how strong selection and rarity affect
the ages of latent mutations.

We assume there are two possible alleles, A; and A,, at a single
genetic locus in a large haploid population. We begin by assuming that
the population size N is constant over time. In Section 3.4 we consider
time-varying population size. One allele or the other is favored by direc-
tional selection. Mutation is recurrent and happens in both directions.
In the diffusion approximation, time is measured in proportion to N,
generations where N, is the effective population size (Ewens, 2004).
Under the Wright-Fisher model of reproduction, N, = N. Under the
Moran model of reproduction (Moran, 1958, 1962), N, = N /2. With
these assumptions, the frequency of A, alleles is well approximated by
a process X that solves (1) below and has parameters 6, 6, and a as
N — oo. For a haploid population, 6§, = 2N, u; and a« = 2N,s, in which y;
is the per-generation rate of A;_; - A; mutations and s is the selection
coefficient. If there is no dominance, these results can be extended to
diploids, in which case 6; = 4N,u; and @ = 4N,s.

Thus, we assume that allele-frequency dynamics in the population
obey the Wright-Fisher diffusion (Fisher, 1930; Wright, 1931; Ewens,
2004) with parameters 6, and 6, for mutations A, - A; and A, — A,,
respectively, and « for the selective advantage (if « > 0) or disadvan-
tage (if « < 0) of allele A,. That is, we let X (¢) be the relative frequency
of A, in the population at time 7, and assume that its forward-time
dynamics is described by the stochastic differential equation

0, 0, a
dX(t) = 7(1 - X)) — 7X(t)+ EX(I)(I - X(@))| dt

+ VXA - X@)dW,, t>0 @

in which W, is the Wiener process, also called the standard Brownian
motion.

Both of the approaches (random background and ancestral selection
graph) we take to modeling latent mutations rely on the assumption
that the population has reached equilibrium, which occurs in the limit
t — co. The stationary probability density of X is

() = CxI71 (1 —x)27le™, 0<x<1 (2)

(Wright, 1931; Ewens, 2004). We explicitly denote the dependence
on « because this parameter plays a key role in what follows. The
normalizing constant C guarantees that /01 ¢, (x)dx = 1. It is given by

Co r@, +0,)

- I'O)I0,),F(01;0; +6,;a)
in which I'(a) is the gamma function and | F;(a; b; z) is the confluent
hypergeometric function, or Kummer’s function; see Abramowitz and
Stegun (1964) and Slater (1960).

By definition, latent mutations occur in the ancestry of a sample.
When a sample of total size » is taken from a population with stationary
density (2), it will contain a random number N of copies of allele A4,
and N, = n— N, copies of allele A,. The probability that N is equal
to n, is equal to

3

q(ny,ny) :=P(N| =n;;n,a,0,,0,)

1
=/ <">x"1(1—x)"-"1¢,,(x)dx
o \M

_ C(nl " ,,2> T, +n)T (O, +n,)

F,(0, +n;0,+0,+n +ny;a
F(0]+02+n1+n2)11(1 10 6 4 g a)

n
4

for n; € {0,1,...,n} and n, = n—n,, and with C again given by (3). The
notation g(-) is from Slade (2000a,b) and is convenient for the ancestral
selection graph.

Suppose now we are given the sample count, that is, we know that
among the n uniformly sampled haploid individuals, n, of them are of
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type 1 and the remaining n, = n — n; are of type 2. Then the posterior
density of the population frequency of A, conditional on the sample is

(nl:nz)xnl (1- x)n2¢a(x)
a0 = — ®)

q(ny, ny)
_ re@,+60,+n + ”2)x9‘+"1_1(1 — x)Patm=lpax
L6 +n)T(0, +ny) Fi(6) + 1130, + 6, +ny +ny5)

(6)

from Bayes’ theorem with prior density ¢,.

The sampling probability ¢(n,,n,) in (4) and the resulting posterior
density d)(,;'""z) play major roles in the two approaches we take to
modeling latent mutations. Specifically, transition probabilities in the
conditional ancestral selection graph depend on ratios of sampling
probabilities (Slade, 2000b) and the allele frequency in the ancestral
process of Barton et al. (2004) has initial density ¢f,"“"2)(x) when
conditioned on the sample.

We describe the occurrence of latent mutations in the ancestry of
allele A, conditional on the sample count n;. We say that A, is rare
when the sample size n is much larger than n,. We enforce this rarity
of A, by letting n, ~ n tend to infinity with n, fixed, or finite. We
present some results for cases in which A, is not rare in this sense, that
is when neither n; nor n, is large. In this case we also describe the
conditional ancestry of A,, but overall our focus is on large samples
and rare A,;. This is the same, sample-based concept of rarity that was
used in Wakeley et al. (2023) and previously considered by Joyce and
Tavaré (1995) and Joyce (1995). It may be distinguished from rarity
in the population, though of course finding A, rare in a large sample
is most likely when the population frequency x is small.

By strong selection we mean large |a|. We model rarity and strong
selection together under the assumption that « = @n, for some constant
a € R. We study latent mutations and the ancestral processes which
generate them under three scenarios: (i) |«| large with n, fixed, (ii) n,
large with « fixed, and (iii) both |«| and n, large with @ = «/n, fixed. In
making approximations for large n, and/or large |a|, we make extensive
use of asymptotic results for ratios of gamma functions and for the
confluent hypergeometric function which are presented in Appendix A.

The parameters 0, and 6, are fixed constants throughout, with
0,,0, > 0. For single nucleotide sites, these population-scaled mutation
rates have been estimated for many species, using average pairwise
sequence differences and assuming constant population size, and are
typically about 0.01 with a range of about 0.0001 to 0.1 (Leffler et al.,
2012). Values for humans are smaller but they vary almost as widely
among sites in the genome, with a mean of about 0.0008 and a range
of about 0.0001 to 0.02 (Seplyarskiy et al., 2021, 2023; Wakeley et al.,
2023). In contrast, there is no reason to suppose that the selection
parameter |a| is small (Eyre-Walker and Keightley, 2007; Chen et al.,
2020; Agarwal et al., 2023). Note that our introduction of a constant
@ = a/n, is simply a device to specify the relative importance of rarity
as opposed strong selection, not a hypothesis about biology.

The case of a rare neutral allele was considered in Wakeley et al.
(2023) where it was shown that the number of latent mutations in the
ancestry of the n; copies of allele A, follows the same distribution as
the number of alleles in the Ewens sampling formula (Ewens, 1972)
with sample size n; and mutation parameter 6,. Let K| be the random
number of these latent mutations for allele A in the ancestry of the
sample. Further, let §; be a Bernoulli random variable with probability
of success

0,

P¢ =1)= m

, Ji=12,.. @
Under neutrality for large sample size and conditional on N| = n,,

Ki S8 +& 1+ +56+8 ®)

which gives the stated Ewens sampling result (Arratia et al., 1992).

d
In (8) and below, = denotes equal in distribution. Note that, because
coalescence is among exchangeable lineages, the full Ewens sampling
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formula should apply if we were to keep track of the sizes of latent
mutations; see Crane (2016) and Tavaré (2021) for recent reviews.

Here we apply the model of coalescence in a random background
described by Barton et al. (2004) to prove these results (7) and (8) for
rare alleles in large samples and especially to extend the analysis of
latent mutations to scenarios which include selection. We investigate
both the number of latent mutations and their timing in the ancestry
of the sample, and we allow that selection may be strong. We also show
how the same scenarios can be treated using the conditional ancestral
selection graph (Slade, 2000a), giving the same limiting results for all
three scenarios.

Briefly, we find that positive selection does not in general lead to (7)
and (8), that very strong positive selection (relative to the sample size)
leads to neutral gene genealogies with a single ancient latent mutation
for the favored allele. This is described in Section 3 for scenario (i) and
for the case @ € (1, o) in scenario (iii). On other hand, when selection
is not too strong relative to the sample size, then extreme rarity of
A, in the sample can effectively override strong positive selection and
retrieve (7) and (8). This is described in Section 3 for scenario (ii) and
for the case @ € (—oo, 1) in scenario (iii). Figs. 1-3 illustrate our results
in the three scenarios.

We note that Favero and Jenkins (2024) have recently performed
detailed analysis of a d-allele diffusion model, where the selective
advantage of one allele grows to infinity and the other parameters
remain fixed. Their findings confirm and extend what we establish
for scenario (i) in the two-allele model in Sections 3.1 and 4.1. In
addition, Favero and Jenkins (2024) prove the duality of the strong-
selection limit of the diffusion and the corresponding ancestral selection
graph.

2. Sample frequencies and posterior population frequencies

In this section, we present asymptotic results for the sampling
probability g(n;,n,) in (4) and the posterior density ¢""?(x) in (5)
in our three regimes of interest: (i) |a| large with n, fixed, (ii) n, large
with « fixed, and (iii) both |a| and n, large with @ = a/n, fixed.

2.1. Asymptotics for sampling probabilities

In the case of strong selection and moderate sample size, that is |a|
large with n, fixed, applying (A.4)(a) and (A.4)(b) to (4) gives

(""l)—”r”a';')mr"l(1+o(|a|—')) ifa<0, (a)

() gn = (140(a™))

9

q(ny,ny) =
ifa>0. (b)

Here we focus on the leading-order terms but note that the next-order
terms are straightforward to obtain using (A.4)(a) and (A.4)(b) and
additional higher-order terms could be computed using (4.1.2) and
(4.1.6) in Slater (1960). In (9)(a), each additional copy of A, decreases
the sampling probability by a factor of 1/|«| so the most likely sample
is one which contains no copies of A,. In (9)(b), each additional copy of
A, increases the sampling probability by a factor of a so the most likely
sample is monomorphic for A,. However, these results are perfectly
symmetric for the two alleles. Switching allelic labels and swapping
|a| for a changes (9)(a) into (9)(b). That is, allele A, experiences the
same effects of positive/negative selection in (9)(a)/(9)(b) as the focal
allele A does in (9)(b)/(9)(a).
In the case of large sample size and moderate selection, that is n,
large with « fixed, applying (A.5) to (4) gives
I, +n;) _g

) =C—nb 1
q(ny,ny) , n

—ny ' (1+0(n7')). (10)
1.

This has the same form as the neutral result, equation (22) in Wakeley
et al. (2023), only with the additional factor | F;(0,;6, + 6,;a) in the
denominator of the constant C. With respect to the count of the focal
allele A, the distribution is similar to a (degenerate) negative-binomial

Theoretical Population Biology 158 (2024) 1-20

distribution with parameters p = 1/n, and r = 6|, like the corresponding
result in Theorem 2 of Watterson (1974) for neutral alleles which
propagate by a linear birth-death process. The effect of selection is
only to uniformly raise or lower the chances of seeing n, copies of
A, in a very large sample. The additional factor | F|(6;;0, + 6,;a) in
the denominator of C is a decreasing function of a, which is equal
to 1 when a = 0 and approaches 0 quickly from there as « increases.
Greater selection against (respectively, for) A, increases (respectively,
decreases) the chance of it being rare but does not affect the shape of
the distribution of n,, at least to leading order in 1/n,.

In the case of large sample size and strong selection, that is both |«|
and n, large with @ = «/n, fixed, applying (A.4)(a), (A.4)(b), (A.6)(a),
(A.6)(b) to (4) gives

) (L )9‘ (1+0(n3")) if@<0 (@
alm.n) = 1B, L (LN (140(n3"))

ny! 1-a

1 (a-1 m _1
B L ()" (1+0(n)"))

F(91+"1)( 1
M@ \ 1+l

if0<a<1 (b)

ifa>1 (c)
1n

with constants B, and B, which are unremarkable except in their

dependence on n,:

0,-0, _&
By xn,’ e

02_% ~ \—hp
By xn, (ae)

such that g(n;,n,) becomes tiny as n, grows. In (11)(b) and (11)(c),
allele A; is favored by selection so it will be unlikely for its sample
count to be very small.

To see how (11)(b) and (11)(c) compare to (11)(a), consider how
these three sampling probabilities change as n; increases:

01+n; L~
e SE<0 @
gl +1,m) | 0,4n A ~
) T TD if0<a<l1 (b) 12)
a—1 L~
—g’;nli"lz) if@>1  (©

where the approximation is for large n,, i.e. omitting the O(n;l) parts
of (11)(a), (11)(b) and (11)(c). The first two differ from the correspond-
ing neutral result (9, +n,)/(n, +1) by the constant factors 1/(1+a|) < 1
in (12)(a) and 1/(1 —@) > 1 in (12)(b). Note that (10) gives the neutral
result, as do (12)(a) and (12)(b) as @ — 0. Relative to this, negative
selection in (12)(a) makes additional copies of A, less probable whereas
positive selection in (12)(b) makes them more probable. But (12)(a)
and (12)(b) differ from the neutral result only by these constant factors.
Eq. (12)(c) is quite different. With @ > 1, each additional copy of 4,
increases the sampling probability by a large factor, proportional to
n,, making this case similar to the case of strong positive selection in
(9)(b). This is as expected. What is surprising is (12)(b), namely that
strong selection (¢ — o0) in favor of A; can be made to resemble
neutrality simply by increasing the sample size relative to n,.

2.1.1. Comparison to discrete Moran and Wright-Fisher models

We emphasize that our analyses in this work are of the Wright—
Fisher diffusion model, given here as the SDE (1) with stationary
density (2). It is of interest to know how well our results hold for
discrete, exact models such as the Moran model and the Wright-Fisher
model, especially as |a| - o or n — oo for finite n;, in which cases
we might expect the diffusion to be a relatively poor description of
the dynamics. In this section, we focus on (11)(a) and show that it
can be obtained in a different way from a discrete-time Moran model,
without first passing to the diffusion limit, but that this cannot be done
in general starting from the discrete-time Wright-Fisher model.

To leading order in 1/m,, (11)(a) is identical to the probability
mass function of a negative binomial distribution with parameters p =
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|@]/(1 + |a|) and r = 6,. Charlesworth and Hill (2019) found this
same result starting from the strong-selection approximation which Nei
(1968) had obtained for the diffusion model of Wright (1937). Here
selection against A, is so strong that it never reaches appreciable
frequency in the population. In the limit, or ignoring the O(n;l) part
in (11)(a), this distribution sums to one over all n; € {0,1,2,...}. The
corresponding sum for the degenerate distribution in (10) diverges,
because under neutrality there is a non-trivial chance that A, reaches
appreciable frequency in the population.

Consider a discrete-time haploid Moran model with population size
N, in which allele A, is favored by selection. Specifically, A; and A,
have equal chances of being chosen to reproduce but different chances
of being chosen to die: each A, has an increased chance 1+ s compared
to each A,. Upon reproduction, the offspring of an A;, i € {1,2}, has
type A; with probability 1—u;_; and the other type A;_; with probability
us_;. If there are currently ¢ copies of A; and N — ¢ copies of A,, then
in the next time step there will Z + 1 copies of A, with probability

N-¢ z
N-¢+¢(1+s) N

N-¢ N-¢

1_
=)t 70+ N

u (13)

and ¢ — 1 copies of A, with probability

(1 +s) N-¢
N-¢+¢(1+s) N

£(1+s) ¢

N—/+70+s N as

1 =up)+

The fraction of A, converges to the Wright-Fisher diffusion process (1)
as N — oo if time is measured in units of N(N — 1)/2 discrete steps,
ie. dr=2/N(N —1), with u; =6,/N, uy = 6,/N and s = —a/N.

As another way of obtaining (11)(a), we assume that s > u,u,.
In particular, let Nu; —» 6, and Nu, —» 6, as N — oo just as in the
diffusion model, but let s be a constant. Then we may appeal to the
analogous model and limit process (iii) of Karlin and McGregor (1964)
which had no selection but instead assumed that u, > u,. Similarly here
we expect that allele A; will be held in negligible relative frequency in
the population and instead be present in a finite number of copies as
N — oo, only here due to strong selection rather than strong mutation.

In view of this scaling of the mutation rates by N and for compar-
ison with the Wright-Fisher model below, we rescale time so that it is
measured in unit of generations, or N time steps. Then with dt = 1/N,
we can rewrite (13) and (14) as

N -7

NF A o )

N-¢
(F=rraaeyt

and

N -7

( (1 +s)
N-¢+7¢(1+5s)

l—uy+ —0FD o Y
Wt T 0 1) ”2>

<f(1 +5)

Then in the limit N — oo, (13) and (14) describe to a continuous-time
process in which

. {f+1 atrate (£ +0,) (1s)

¢ —1 atrate Z(1+s).
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In other words, the number of copies of A, in the population evolves
according to a birth-death process with immigration where the birth
rate is A = 1, the death rate is 4 = 1 + s and the immigration rate is
x = 6,. From (52) in Kendall (1949), the distribution of the number of
copies of A, in the population at stationarity will be negative binomial
with parameters 1 — A/u =s/(1+s) and k/A=6,, or

4

p(f)=<f+?_l>(1j—s) (lis)gl’

In getting to (11)(a) above, which we note is for « < 0, we first
applied the diffusion limit then let the selection parameter |«| be large,
specifically proportional to the number #, of copies of 4, in a sample of
large size n for a given fixed number n; of copies of A,. In the current
haploid Moran model with selection against A, || = Ns, and the
scalar |a| = |a|/ny = Ns/n,. Define a := n,/N. Then |a| = s/a and we
may think of @ as (close to) the proportion of the population sampled,
because n,/N ~ n/N.

If the number of copies of A, in the population is #, then the
probability there are n, copies in a sample of size n taken with-
out replacement from the total population of size N is given by the
hypergeometric distribution

tet,. (16)

14 N—f)

ny/ \n—ny
pm|fsN) = —=—. n=0,12,..,7. a7

()
Since n — n; = n, = aN and taking N — oo, (17) converges to the
binomial distribution
— 14 ny _ \Cm —
p(ny|6) = " a"'(1 —a) R n =0,1,2,...,7. (18)
1

This gives another route to (11)(a), namely using (16) and (18), and
setting y=¢ —n,,

pln) =Y p(m1£)p(€)

£=ny

= 5 (O )ema—arn (O () (1)

£=n,
L( a )"1< s )“’lif()"*‘"l“'el)
n!\1+s a+s = I'(y+6,)
<y+9]—1>(1—_a>y(a+s>9l

y 1+s 1+s

=%<ais>nl(ais)el~ (19)

The end result (19) is equal to the leading order part of (11)(a) since
|a| = s/a.

We can contrast this with a discrete-time haploid Wright-Fisher
model with population size N, in which time is already measured in
generations. Under the same assumptions that gave (15), namely s
constant and u;,u, « 1/N as N — oo, we can use equation (33)
in Nagylaki (1990) which specifies that, conditional on the number
¢, of copies of A, in generation g, the number #,,, has the Poisson

g
distribution

. 0
f‘gﬁ_llf‘g~P01sson<?l +fg<l—%>> (20)

with 6, := 2Nu,. Now ¢ evolves by a Poisson branching process
with Poisson immigration rather than by the birth-death process with
immigration in (15). Although here too the number of copies of A, in
the population will converge to a stationary distribution (Heathcote,
1965), it will not in general be a negative binomial distribution. Thus
(11)(a) is consistent with the per-generation dynamics of rare alleles in
the Moran model but not in the Wright-Fisher model.
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2.2. Asymptotics for population frequencies conditional on the sample

Next, we obtain asymptotics for the posterior probability density
"™ in (6). Let P([0, 1]) be the space of probability measures on [0, 1]
endowed with the weak convergence topology (i.e with test functions
in the space C,([0, 1]) of bounded continuous functions on [0, 1]).

Lemma 1.
hold.

Let n; € N be fixed. The following convergences in P([0, 1])

(i) Suppose n, € N is fixed and a — co. Then ¢ (x)dx — 6,.
(i) Suppose a € R is fixed and n, — co. Then ¢ (x)dx — &
(iii) Suppose a = @n, + ¢ where @, ¢ € R are fixed and n, - . Then

(1) 8o when a € (—o0,1]
Dy F (x)dx — 21D
Si_1/z when @€ (1,00)

where &, is the Dirac delta measure.

The proof of Lemma 1 is given in Appendix B.

3. Conditional coalescence in a random background

In this section, we extend the approach of coalescence in a random
background in Barton et al. (2004) to study the number and timing
of latent mutations and other asymptotic properties of the conditional
gene genealogy given the sample frequencies of A; and A,. We also
extend our results to time-varying populations in Section 3.4. While
the setting of Barton et al. (2004) covers the case of a neutral locus
linked to the selected locus, here we focus on the selected locus.

Suppose we are given a sample from the selected locus at the present
time ¢ = 0, and that we know the allelic types of the sample but we do
not know how the sample was produced. What is the genealogy of the
sample? This question was answered by Barton et al. (2004), who mod-
eled the ancestral process using the structured coalescent with allelic
types as subpopulations. The structured coalescent can be a model of
subdivision with migration between local populations (Takahata, 1988;
Notohara, 1990; Herbots, 1997) or a model of selection with mutation
between allelic types (Kaplan et al., 1988; Darden et al., 1989). For
samples from a population at stationarity as in Section 1, Barton et al.
(2004) proved that this could be done rigorously starting with a Moran
model with finite N then passing to the diffusion limit. Barton and
Etheridge (2004) explored some properties of gene genealogies under
this model, and Etheridge et al. (2006) used the same idea to describe
genetic ancestries following a selective sweep.

Even if the sample frequencies are known, the allele frequencies
in the population are unknown. A key feature of this method is to
model allele-frequency trajectories backward in time. As pointed out
by Barton et al. (2004), the Moran model with finite N is reversible,
meaning that at stationarity the time-reversed process is the same (in
distribution) as the forward-time Moran process. This is not a property
of the Wright-Fisher model with finite N but does hold for their shared
diffusion limit (1) with stationary density (2); see for instance (Millet
et al., 1989) for why this holds. Fig. 1 gives an illustration of a
genealogy with mutations and allele frequencies varying backward in
time.

Looking backward in time, let pr ) be the fraction of type 1 in
the population and an )(¢) be the number of ancestral lineages of type
i € {1,2} at time r. From Barton et al. (2004, Lemma 2.4), under
the Moran model with stationary distribution, (pSN ), n(lN )(t), n(ZN )(t)),e]&
is a Markov process for each fixed N. Furthermore, Barton et al.
(2004, Theorem 5.1) describes the joint convergence of the processes
(p(N), n(1N>, n(ZN)) as N — oo.
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Lemma 2 (Lemma 2.4 and Theorem 5.1 of Barton et al. (2004)). Let pr )
and nEN )(t) be the fraction of type 1 in the population and the number of
ancestral lineages of type i respectively, at time t backward, under the sta-
tionary Moran model. Then (p™, nﬁN ), n;N )) is a Markov process for each
N € N. As N — oo, this process converges in distribution in the Skorohod
space D(R,, [0,1] X Z, X Z,) to a Markov process (p;, n;(t), nz(t)),eR+
described as follows:

(D (P)er, s a solution to Eq. (1) with stationary initial density ¢,. In
particular, it does not depend on (n, (1), nz(t)),e]&.

(ii) Suppose the current state is (p, m;, m,). Then (n(t), nz(t)),ER+ evolves
as

atrate - (") coalescence of type 1

(ml - l’mz) 5

- s =

(my—1L,my+1) atrate —£m, %‘ mutation of 1 to 2

(m1,m2) -

-~

at rate (™) coalescence of type 2

(m1am2_1) 5

1—

=

0
2

|'§

(m; +1,my, — 1) at rate my mutation of 2 to 1

=

(22)

We compare the notation here with that of Barton et al. (2004)
and Etheridge (2011). Type 1 here is their type P, type 2 here is their
type Q. So, 972 (resp. %) here is p; (resp. u,) in Barton et al. (2004),
and is v; (resp. v,) in Etheridge (2011, eqn. (2.11)). The rescaled
selection coefficient % here is s in Barton et al. (2004). The Moran
model in Barton et al. (2004) has population size 2N and each of the
(2N)(2N — 1)/2 unordered pairs is picked to interact (one dies and
immediately the other reproduces) at rate 1/2. Therefore, the diffusion
limit in Barton et al. (2004, Lemma 3.1) is slower by a factor of 1/2
than the limit we consider here in this paper.

The proof of Barton et al. (2004, Theorem 5.1) leads to more
information for the limiting process. Let nt(.N )"’bs(t) be the number of
type i lineages at backward time ¢ which are ancestral to the nl(.N )0)
observed in the sample. Thus nf,N 2963 (4) is non-increasing in #, but nﬁN (1)
can increase as ¢ increases due to mutations from type 3 — i to type i.
Clearly, nEN 20b5 () = nﬁN )(0). Note that a mutation from type 3—i to type
i backward in time corresponds to a mutation from type i to type 3 —i
forward in time. To keep track of the number of mutation events versus
the number of coalescent events, we let L,(.N )(t) be the total number of
latent mutations for type i during [0, 1] backward in time. We have the

following generalization of Lemma 2.

Lemma 3 (Joint Convergence). Under the stationary Moran model, the
backward process

(p(N); n(lN),n(lN),obs’L(lN); n(N) n(N),ohx’L(ZN))

2 ™
is a Markov process for each fixed N € N. As N — oo, this process
converges in distribution in the Skorohod space D(R,, [0, 1] x Zﬁr) to a
continuous-time Markov process

(P> my (), 137 (), Ly (8); ny(8), n3 (1), Ly()) e,

such that

@ (p,),eR+ is a solution to Eq. (1) with stationary initial density ¢,.
In particular, it does not depend on (ny (1), 1% (1), L (1); ny(t), n5>* (),
Ly(®)ser, -

(ii) At state (p; my,a,,¢1; my,ay,¢,), the process ("1(’),n‘1’hs(1),L1(1)§
ny (), n (1), Ly(1))er, evolves as in Box 1.

Now suppose that in addition to knowing the sample counts n;
and n,, we also know that these are the outcome of uniform random
sampling, as in (4). Let P, be the conditional probability measure of the
ancestral process in Lemma 3 including both p, and the lineage dynam-
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(my —1,a; = 1,¢1; my,a,,¢5) at rate %(”2‘) coalescence of two type 1°%
( , g’) (my —1,a,,¢; my,ay,¢5) at rate % [(";‘) (“2‘)] other coalescence of type 1
my,ay, s My, a3,03) =

(m—l,a, = 1,¢,+1; my+1,a,,¢,) atrate % a, %‘ mutation of 1°

(my—1,a1,0; my+1,a,,¢5) at rate % (m) —ay) %‘ mutation of other type 1
and, similarly,

(my,ay, €15 my—1,a, = 1,¢5) at rate l—ip (?) coalescence of two type 2°%
( , . (my,ay,¢1; my—1,a5,6,) at rate l—ip [(";2) - (“22)] other coalescence of type 2
my, ay, ty; My, dp,03) =

(my +1,a,¢y; my—1,a,— 1,6, + 1) at rate 1%,;‘12972 mutation of type 2°

(my + L,a,,¢y; my — 1,a,,8,) at rate ﬁ (my — ay) %2 mutation of other type 2

Box L

ics, given that a uniformly picked sample has allelic counts n = (1, n,).
Under P,, the limiting process in Lemma 3 has initial frequency p, ~
¢y (x) dx given by (6), and (1, (0), n%**(0). Ly (0); ny(0). n3*(0), L,(0)) =
(ny,ny,0; ny, ny, 0). This follows from Bayes’ theorem, because by part (i)
of Lemmas 2 and 3, the initial frequency has prior density given by (2).

Focus on type 1 for now. We care about the sequence of events
(coalescence and mutation) backward in time for type 1, and the timing
of these events. At each of these events, the number of type 1 lineages
decreases by 1, either by coalescence or by mutation from type 1 to
type 2. Hence n‘l’bs(t) is non-increasing, but n,(r) can increase over time
(backward) due to mutations from type 2 to type 1 (see Fig. 1 for an
illustration). Furthermore, the difference n,(r) — n‘l””(t) is the number of
type 1 at time 7 that came from lineages that are of type 2 in the sample
(at t = 0). We do not care about these n(r) — n‘l”"‘(t) lineages, nor the
mutation events from type 2 to type 1. Analogous considerations hold
for type 2.

From Lemma 3, we immediately obtain the following simplified
description for the conditional ancestral process in the limit N — o
for the two types. This description is the starting point of our analysis
for constant population size; later in Proposition 2 we also obtain the
analogous result for time-varying population size.

Proposition 1 (Conditional Ancestral Process). The process (p;, n‘fl”(t),
L@, n;’”(t), Lz(t)),eR+ under P, is a Markov process with state space
[0,11x {0, 1,...,n,}> x {0,1,...,n,}? described as follows:

(D (P )er, is asolution to (1) with initial density #M" In particular,
it does not depend on the process (n‘l’bs , Ly, n;’” , Ly).

(ii) The process (n‘l””, L, ng’”, L,) starts at (ny,0,n,,0). When the cur-
rent state is (p,a;, |, a,,¢,), this process evolves as

at rate ]]-)("‘) coalescence of type 1°*

(a1_17f1) 5

(a,0)) = o

3 mutation of 1°* to 2

(a, - 1,2, +1) atrate ?al

(23)

and, independently,

@t (a, = 1,¢,) at rate coalescence of type 2°*°
ay,05) =

(a,—-1,¢,+1) atrate Lp a, 972 mutation of 2°* to 1

1-
24)
The total rate in (23), at which a, decreases by 1, is

;—1‘)(0 — Py +ay— 1) =t 4, (D), 25)

and the one-step transition probabilities are

a—1

antp) = (a; - 1,¢)) with probability =
’ . i 1-p)8
(a; —1,£;+1) with probability % = h, (p)
(26)

As t increases from 0 to oo, the process (n‘l’bs(t)),e]RJr decreases from n,
to 0, and the process (L l(t)),eR+ increases from 0 to a random number
K; :=lim,_ L;(*) € N which is the total number of latent mutations
for type 1. Similarly, the total number of latent mutations for type 2 is
defined by K, :=Ilim,_ L,(r) € N.

We now give a more explicit description of (K,,K,) using the
frequency process p and independent Bernoulli random variables. Note
these are conditional on the sample counts (N = n;, N, = n,) as in
(8.

Let 7y < 7, < -+ < 7, be the jump times of the process n‘l””.
At time 7, the process nﬁ'b“ decreases from n; to n; — 1, etc., until
finally at 7, , n‘l”” decreases from 1 to 0. It can be checked that 7, <
oo almost surely under P, using the ergodicity of the process p and
(25). Thus (nf’”(t)),eRJr will indeed decrease to 0 eventually under P,,.

The allele frequencies at these random times are p., p,,, ..., Pr,y By
Proposition 1, under P,, we have

d
Ki = &0, (Pe) + &t (ey) + EnyaPey) + -+ Eape, )+ 1, @27)

where {§,€(~)}Z‘=2 is a family of independent random processes such that,
for a constant p € [0, 1],

. :1s k—1
0 with probablllty m
aw=1 e 28)
1 with probablllty m

which is a generalization of &, in (7) and (8), where &, = £,(0).
Similarly, if we let s; < s, < ++ < s, be the jump times of the
process n5™*, then

Ky 2 6 (pe) + 1 (00) + Gy o)) + - + Galpy )+ 1, (29)

ny—1

where {¢ k(~)}22=2 is a family of independent random processes such that,
for a constant p € [0, 1],

. . k=1
= 0 with probability i

«(p) =
1 with probability pgz”le
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Analogous to &, in reference to K;, in what follows we will use the
notation

G =4 (30)

in reference to K.

Having described the ancestral process in Proposition 1 and the
latent mutations in (27) and (29) under the conditional probability
P,, we study their asymptotic properties under 3 scenarios in the next
3 subsections. These 3 scenarios are a consequence of the asymptotic
behaviors of the initial frequency p, described in Lemma 4.

Lemma 4 (Asymptotic Initial Frequency). Let n; € N be fixed. The initial
frequency p, converges in probability under P, to a deterministic constant
as follows.

(D Suppose n, € N is fixed and a — . Then p, — 1.
(i) Suppose a € R is fixed and n, — oco. Then p, — 0.
(iii) Suppose a = @n, + c where @, ¢ € R are fixed and n, - co. Then

0 when @ € (—o,1]
Do = » ~ (31
1-1/a when a€(l,00)

Furthermore, when @ € (—o,1), it holds that n,p, converges in
distribution to the Gamma random variable Gam(n, + 6,1 — @) with

e . . _\(np+01) ~
probability density function U= ym+6i-1 o@-Dyy,
I'(n+6,)

The proof of Lemma 4 is given in Appendix B.

3.1. Scenario (i): strong selection, arbitrary sample size

The first scenario is when |a| large with n, fixed. We consider the
case a« — +oo only, since the other case « > —oo follows by switching
the roles of type 1 and type 2.

The conditional genealogy of the n; +n, sampled individuals, under
P,, has three parts with different timescales. First, the n, type-2 lineages
quickly evolve (coalesce and mutate) as in the Ewens sampling formula,
producing K, type 1 lineages at a short time s,,. Thus, K, 2 2
where (¢, } are independent Bernoulli variables taking values in {0 1}
and having means 5 k . Next, the resulting n,+K, type 1 lineages will
coalesce according to the Kingman coalescent without mutation until
only one lineage remains. Hence it takes O(1) amount of time for the
number of lineages of type 1 to decrease to 1, as @« — . Finally, it takes
a long time, 7, ~ for the single lineage to mutate. In particular,
K|~ 1.

This description is justified by Theorems 1 and 2. See Fig. 1 for an
illustration.

06’

Theorem 1. Suppose (n,,n,) € N? is fixed. Then under P, as a — oo,

(D supieo7y |1 = p;| — 0 in probability, for any T € (0, «0); and

(i) the triplet (K{, K5, s,,) converges in distribution to (1, 222:1 & 0),
where {{,} are independent Bernoulli variables taking values in {0, 1}
and having means

2
O)+k—1"
(i) limsup,_,o, 7, _; is stochastically dominated by the height of the
Kingman coalescent with n; + n, leaves.

Proof. By (1), the process ¢ := 1 — p solves the stochastic differential
equation

6, 6, o
q,) dW,; — 7qt+2(1—q,)—§q,(1—q,), t>0. (32)

Fix any e € (0, 1). We shall to show that P, (sup,go 1) 4 > 2€) — 0 as
a — 0.

By the comparison principle (Karatzas and Shreve, 1991, Proposi-
tion 2.18 in Chap. 5), we can replace the process g by another process

dq, = +/q,(1 -

Theoretical Population Biology 158 (2024) 1-20

L1

r PO

|

:\i 1.9
~
I
(an)}

Fig. 1. Conditional genealogy of a sample with (n,,n,) = (3,7) at the present time 7 = 0.
The fluctuating blue curve shows the process (p,)cr, of the population frequency of type
1 backward in time. In this example, p, approaches 1 from p, and the 7 type-2 lineages
coalesce and mutate, producing an additional K, = 2 type-1 lineages. The 5 = 3+2 type-
1 lineages then coalesce without mutating, reaching their common ancestral lineage at
time 7, _; and finally mutating at time 7, . Under scenario (i), that is when «a is large:

m
p, will already be close to 1, coalescence and mutation among the type-2 lineages will
occur quickly, with K, according to the Ewens sampling formula, coalescence among
the type-1 lineages will follow the Kingman coalescent, and 7, ~ 2a/ (6,6,).

g that solves

~ [~ 6
d%: qz(l_%)dVV["' E_

with an initial condition g, that is equal in distribution to ¢,. By
Girsanov’s theorem, we can further take away the constant drift Bzzdt
That is, it suffices to show that there exists a probability space (£, F, )
on which P(sup,¢jo 7 Q, > 2¢) - 0 as «a — oo, where the process Q

solves

d0, = \/0,(1-0)dw, - 50,(1 - 01 (34)

with an initial condition O, that is equal in distribution to q,. The initial
frequency g, — 0 in probability under P,, by Lemma 1(i). Hence it
suffices to show that

(SUP {/ \/de——/Q(l Q)dS}>€>

1€[0,T]

%@(1 - a,)] dt (33)

- 0 asa— co. (35)

This is true by the time-change representation of the martingale M, :=

/O’ \/ @S(l - @S) dW, (Karatzas and Shreve, 1991, Theorem 4.6 in Chap.

3) and the fact that
P( su B Y > e)
<IE[OF’T] { (M), ~ 5 (M), }

=P sup {Br—gr}>e
rel0. (M)r] 2

<P sup {B,—gr}>e
rel0.T/4] 2

_ 252
(e + 27)

T4

= exp

0 \V2xt3 2
where in the inequality we used the fact that the quadratic variation
(M); < T/4 almost surely (since ¢,(1 — ¢;) < 1/4 for all t € R,).
Convergence (i) is proved.

Note that the coalescence rate and the mutation rate in (23) con-
verge to a;(a; — 1)/2 and O respectively as p — 1. In (24) both rates
converge to infinity but their ratio converges in such a way that the

}dt—>0 as a — oo,
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limiting one-step transition probabilities are

(ay—1,4,) with probability 2L
(a5, £5) = 2 (36)
(ay — 1,4, +1) with probability “—21
2ta—

Convergence (ii) then follows from (i) and the representations (27)
and (29).

Finally, for part (iii), note that the convergence Sy, = 0 in part (ii)
says that the time for type-2 lineages to disappear is negligible. There-
fore, it follows from part (i) and (23) that the conditional distribution
of 7/ Ky given K,, converges weakly to the height of the Kingman
coalescent with n;+K, leaves, where T:'1+K2—1 =inf{reR, : n(®) =1}
is the first time when the process n, decreases to 1. Part (iii) then
follows Since 7, _; < 7/ | +Ky—1 and K, < n, by definition. []

In Theorem 2 below, we obtain that the mean of the age 7, is about
2a
0,6,

Theorem 2 (Age of the Oldest Latent Mutation of a Favorable Allele).
Tﬂ .
Suppose (ny,n,) € N? is fixed. Then under P,, as a — o, 7‘ converges in
distribution to an exponential random variable with mean ﬁ. That is,
192

7, d 0,6
ﬂ—>Exp<#> as o — oo.
a 2

Proof. By part (iii) of Theorem 1, it takes O(1) amount of time for the
number of lineages of type 1 to decrease to 1, as @ — co. It remains to
consider the time 7, -7, _; for this single lineage to mutate. Recall the
rate of mutation in (23) with a; =1 lineage, for any t e R,

T 0y ar lops g
Pn<ﬂ>t>z]E[e Tk, db] as a — oo. 37)
a

The exponent inside the expectation is, by the ergodic theorem and
using the stationary probability density (2) and (3),

—Oiat 1 [ 1-p;

2 o 0 Ps
—Glat 1 1—x
) /0 < G (x)dx
—Oar !
e / C X721 = x)f2e™ dx
2 Jo

—0,at T'(6; — )6, + 1), F(6; — 1,6, + 6,;0)

ds

almost surely, as a — o

Q

2 T@ONT(0,),F, 0,30, + 0,:0)
—0,a1 0
~ A% s, by (A4)(D)
2 a
_ —0,0,t
e

-6,

Oyt
Hence, by (37), lim,_,,, P, (T':T‘ > t) —e 7 forallre R,. The proof

is complete. []

In Theorem 2, (37), as in all proofs in this paper, A ~ B means that
A/B - 1 in the limit specified, which is either « - oo or n — 0. This is
equivalent to A = B+o0(1) where B converges and o(1) represents terms
which tends to 0 in the limit.

3.2. Scenario (ii): arbitrary selection, large sample size

The second scenario is when n, large with « fixed. We deal with this
briefly because it is effectively covered by scenario (iii) when @ = 0.

The conditional genealogy of the n; type 1 individuals in the sample
can be described as follows. Events among the type 1 lineages occur
quickly under P, in the sense that 7, is of order O(1/n). However, if we
measure time in proportion to 1/n coalescent time units and measure
frequency on the scale of numbers of copies of alleles, then the n,
type-1 lineages evolve (coalesce and mutate) as in the Ewens sampling
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Fig. 2. Conditional genealogy of a sample with observed frequencies (n,,n,) at the
present time r = 0, where n, = 5 and n, is large, and « = an, for a constant
@ € (—o0,1). The n, samples are not shown. In this figure, K, = 2 and the two red
bullets are mutation events from type 1 to type 2. In scenario (iii), K, is distributed
like the number of alleles in the Ewens sampling formula, and the timing of the type-1
events are small (of order O(1/n) on the coalescent time scale). The rescaled process
(np: )lEK is well approximated by the diffusion process (40) with initial distribution
Gam(n, +0,,1—@).

formula. In particular, K; ~ 1 + ZZ‘:Z &, where {&,} are independent
Bernoulli variables taking values in {0, 1} and having means %.
The rescaled frequency process for type 1 can be described precisely

under the rescaling above by the Feller diffusion with drift:

0
dZ,=\Z,dW, + 7‘ dt,

with the initial distribution being the Gamma random variable Gam(n +
0, 1). See Fig. 2 for an illustration. Remark 1 below explains how this
is a special case of scenario (iii), with @ = 0.

Eq. (38) (also (40) below) is a Cox-Ingersoll-Ross (CIR) model for
interest rates in financial mathematics. It has several other names
including the Feller process and the square-root process (Dufresne,
2001). It has a unique strong solution. This equation is not explicitly
solvable, but its transition density is explicitly known (Vanyolos et al.,
2014) and its moments and distributions have been intensively studied.

teR,, (38)

3.3. Scenario (iii): strong selection, large sample size

The third scenario is when both |«| and rn, large with @ = a/n, fixed.
Lemma 4 implies that

2l when @€ (—co,1)
Eplpol 4 ¢ "N _ as n — oo. (39)
1-1/a when ae€(l,o)

Therefore, it makes sense under this scenario to consider two cases:
a € (—o0,1) and @ € (1, 00).

3.3.1. Case @ € (—o0,1)

In this case, under P, and as n — o0, we have that p, = O(1/n) by
Lemma 4. The genealogy of the n, type 1 lineages are the same as that
in scenario (ii); see Fig. 2. This description is justified by Theorems 3-4
below.

Let (Z)),er, be the R, -valued process that has initial state Z; ~
Gamma(n; + 6,1 — @) and solves the stochastic differential equation

dZ, = \/Z,dW, + %(91 +&@Z)d,  1eR,, (40)

where W is the Wiener process.
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Theorem 3 (Convergence of Rescaled Genealogy). Suppose @ = a/n, €
(-0, 1) is fixed. As n — oo, the process np, ”b“(’) Lt )) - con-
verges in distribution under P, in the Skorohod space DR, R, x Z, %

Z,), to a Markov process (Z,, n (), Ll(t)>t€]R+ with state space R, X
{0,1,...,n,} x{0,1,...,n,} described as follows:

() (Z)er, s a solution to (40) with initial state Z, ~ Gamma(n; +
0,,1 — @). In particular, its transition kernel does not depend on
@iy, Ly).

(ii) Suppose the current state is (z,a;,¢;). Then (1|, Zl) evolves as

(a; = 1,¢)) atrate - (%) coalescence of type 1

n

(a;, %)) = X 0
(@, -L¢,+1) atrate -a; =

z

mutation of 1 to 2
(41)

Proof. Let Y, := np,/,. By Lemma 4, under P, we have ¥, = np, —
Gam(n; + 60,1 —@). By (1),

Y, =Yy =n(pyn = po)
t/n
=n ps(1 = p) dWy
0

t/n
+ g/ 01(1_ps)_92ps+aps(l_ps)ds
0

d n !
= 7 pr/n(l _pr/n)d”/r

d
+ _/ 6;(1 - Pr/n)_GZPr/n+apr/n(l pr/n)f

-\/_/ \/7dw
S

/,/ Y dW
0,1 [ Y 1 Y d 42
=7 1(‘7) (=)o e

where in the third line above we used the fact that the processes
t/n 1ot

(/0 f(s)dVVS),E]& and (\/;/0 f(r/n)dW,>

tion, where f(s) = 1/p,(1 — p).

Using (42), the fact sup, E[YOZ] < oo and the assumption @ = a/n, €
R is fixed, we can check by Gronwall’s inequality that limsup,_, .,
E,[sup,epor) Y;] < oo for all T > 0. Now, note that Eq. (40) is the same
as (42) after we get rid of the terms % and replace % by @. As n — oo,
the process (Y,),cor) converges in distribution under P, to a process
(Z)seo,r) With initial state Z, ~ Gam(n, + 6,, 1 — @) and solving (40).

Using (23), the desired weak convergence in the Skorohod space
DR,, R, X Z, x Z,) can be checked using a standard compactness
argument as in Billingsley (1999, Chap. 2) or Ethier and Kurtz (2005,
Chap. 3). That is, we first show that the family is relatively compact:
any subsequence has a further subsequence that converges in distribu-
tion as n — oo. This can be done using the Prohorov’s theorem. Next,
we identify that any subsequential limit is equal in distribution to the
process (Z, nj, Zl), by showing that they solve the same martingale
problem. []

are equal in distribu-
1€R,

By Theorem 3, the jump times of the process (n‘l’b“( %)) g, Converge
teR,

to those of the process 7, as n — . See, for instance, Proposition 5.3
in Ethier and Kurtz (2005, Chap. 3). We give a stronger statement and
an explicit proof in Theorem 4 below. Theorem 4 also implies that when
@ € (—, 1), the total number of latent mutations for type 1 is predicted
by the Ewens sampling formula, as n — co. Let 7} <7, < - < T, be
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the jump times of the process n, in Theorem 3, at each of which the
process decreases by 1.

Theorem 4 (Timing of Events and Number of Mutations). Suppose @ =
a/ny € (—,1) fixed. Then as n — oo,
n
() the random vector (n2 Tjy My Py, ) _ 11 under P, converges in distribu-
i=
tion to (?, Zﬁ). v
i=

(i) K, converges in distribution under P, to 1 + ZZ‘:Z &, where {&}
are independent Bernoulli variables taking values in {0, 1} and having
means

n

0
O +k—1"

Proof. For part (i), we first give a more explicit description of the jump
times 7} <7, < - <7, , in terms of the function

~ a
Ay (2) = 2—;(01 +a; - 1)

that comes from (41) in Theorem 3. At the first jump time 7|, the
process #; decreases from n, to n; — 1. Thus 7| is the first jump time of

a Poisson process with time inhomogeneous rate (Inl (Z,)) . given
teR,

the trajectory (Z,),cg, - Hence,

PGE >1)=E [e-/o’ %@‘“] . 1eR,. (43)

Given (7}, Zz), the difference 7, — 7; is the first jump time of an
independent Poisson process with time inhomogeneous rate (Inl,l
(ZH'?'))teR
. +. . s .
time of an independent Poisson process with time inhomogeneous
rate (I"]_Z(Z,Jr;z) . and so on. Finally, given (7, _;, Zz _), the

teR, "o

_y is the first jump time of an independent Poisson

. Given (7,, Zz), the difference 73 — 7; is the first jump

difference ? - ?
process w1th time 1r1homoger1eous rate ( (Z,z ])>
n=

Using the total rate of type-1 events, 4, (p) deflneJ in (25), and
Theorem 3, as n — oo we have

t/n 1) (p )
/ Aa](ps)ds=/ Za g
0 0 n

1
=/ U (@ = 14 (1= pyy,)0,) ds
0 nzp.s/n

t
_,/ _(91_,_”1 l)dsz/ Ia](Zs)ds.
0

Hence P,(ny7; > t) - P(7) > 1) for all 1 > 0, by (43). Combining with
Theorem 3, we have that n, (T] s Py,

) under P, converges in distribution

to (?l’ Z;]
Applying the strong Markov property of the process Z at 7| and that
of the process p at 7;, we can similarly show that n, (11,12 =Ty, Py

)asn2—>oo.

P, = pTl) under PP, converges to (?1,?2 =T, Zz,Zz — Zﬂ) in distri-

7 ’
bution. Continuing in the same way, we obtain that n, (r,- = Ti_1s Pq

mn
_pTi—l)

i=1
n
-7~ ) ! , where 7, = 7, = 0. The desired convergence in part (i)

under P, converges in distribution to (?,-—?,-_1, z;

Ti-1
then folfows

We now prove part (ii). the vector (pT ) converges in probability
to the zero vector in R"1~! as n — oo, by Theorern 3. This implies that

(hk(P ))nl (o) 3: U
Tkt = O +k=1/,_,

(1-p)0, . .
T bt defined in (26). Hence the follow-

ing weak convergence in R"~! holds:

ny d n
(fk(Pf,,l,Hl))k:z - (gk)klz
The proof of part (ii) is complete by (27). [

"1

where we recall 4, (p) :=
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In Wakeley et al. (2023, Appendix), we showed that for the case
a = 0 (no selection) and n; > 1, the jump times 7; < 7, < -+ < 1,
of n‘]’b“ are of order 1/n and the re-scaled vector (nr,-):':‘1 converges in
distribution. Theorem 4 therefore generalizes the latter convergence in
the presence of selection, in scenario (ii) and in the case @ € (-, 1)
within scenario (iii). This can further be generalized to time-varying
populations, as we shall show below. By equation (18) in Wakeley et al.

(2023), E,[r,] ~ 2'% and E,[7] = co when n, = 1 and & = 0.

Remark 1. Theorems 3-4 remain valid if “@ = a/n, € (—o0, 1) is fixed”
is replaced by “a = @n,+c where @, ¢ € R are fixed”. In particular, these
results hold for scenario (ii).

3.3.2. Case a € (1, )

In this case, under P, and as n - oo, we have that p, > 1 -1/a >0
by (31). The process (p,),cr, increases very quickly and stays close to 1.
As a result, the conditional ancestral process for the n; type 1 samples
has two parts with different timescales. First it coalesces only as the
Kingman coalescent (without mutation) until there is only one lineage.
Then it takes a very long time (about n:l—;’z ~ 921—;’2) for the single latent
mutation to occur. In particular, K; ~ 1.

This description is justified by Theorems 5-6. See Fig. 3 for an
illustration.

Theorem 5. Suppose @ = a/n, € (1, ) is fixed. As n — oo, under P,,

(D) sup,es 11 = p| = 0 in probability, for any 0 < .S < T < co; and
(ii) For any T > 0, the process (n‘l”” (1), Ly()eo,r) converges in distribu-
tion to a process (°%(t), 0),[0.7}, Where 7°b5 is a pure death process
with jump rate (';) = @ from k to k — 1.
(iii) K; — 1 in probability.

Proof. We first observe that the process p gets close to 1 quickly, when
a € (1, 00), in the sense that for any € € (0, 1),

n—oo n—oo

lim P, (7;_, > ) = lim ]P’n< sup p, < 1—€> =0,

1€[0,S]

where 7,_, = inf{r € R, : p, > 1 — ¢} is the first time p hits a value
above 1 —e. This is true because p, — 1 — 1/a € (0, 1) in probability, so
that the growth term an, p,(1 — p,) is large at least when ¢ > 0 is small.
Next, suppose the process p starts at 1—e (i.e. the process g = 1 —p starts
at ¢), we show that the exit time of the process g out of the interval
[0, 2¢) is longer than T with probability tending to 1, as n — co. More
precisely,

P inf py<1-2¢)="P,( s >2
= <t€ll%,TJ b e) ‘ <t€s&1)%] o €>

which tends to 0 as n, » oo, as in the proof of Theorem 1(i).
From these two estimates and the strong Markov property of the
process p, we have that for any € € (0, 1),

P, < sup |1 —p,| > 2€>
1€[S.T]

<P, ( sup |1 —p,| >2e, 7_, < S> +P, (11 > S)
te[S.T]

=]E“ [HTI?SSS) Pl_e <t€[S—r1{r:.fT—fl—g]pI <= 2€>] " P“ (Tl_e g S)
<P <t€i[3‘fﬂp, <1l- 2€> +P, (11_6 > S) -0 as n — oo.

The proof of part (i) is complete.

By part (i) and (25), the times for the type 1 events are of order
O(1) and h,(p;) - 0 where A (p) is defined in (26). Hence parts (ii) and
(iii) follow. [

Now we consider the second part of the genealogy, when there is a
single lineage left (i.e. during 7, _; and 7, ).

10
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o I S

W t=0

Fig. 3. Conditional genealogy of a sample with observed frequencies (n;,n,) at the
present time ¢ = 0, where n; =4 and n, is large, and « = a@n, for a constant @ € (1, ).
The n, samples are not shown. This scenario is reminiscent of scenario (i) if we focus
on the genealogy of only the A, lineages. These lineages first coalesce as the Kingman
coalescent (without mutation) until there is only one lineage, which take O(1) amount
of time. Then it takes O(n,) amount of time for the single latent mutation to occur at
time 7,

n
1

To estimate the age 7, of the single latent mutation, we can ignore
the n, — 1 jump times of the process #** (since they are of order 1 by
Theorem 5). The frequency of type 1 is tightly regulated in the sense
that it is close to 1 in the sense of Theorem 5(i). However, we need to
know “how close it is to 1” in order to get an estimate of z, , because
simply setting p =1 in 12;:91 will give us zero.

Theorem 6 below is analogous to Theorem 2. We obtain that the
mean of the age 7, is about n:]—;‘z ~ QZI—ZZ when it is larger than 9]2—22
and n is large.

Theorem 6 (Age of the Unique Latent Mutation). Suppose @ = a/n, €
(1,00) is fixed. As n — oo, 1"7‘ converges in distribution under P, to an
exponential random variable with mean %. That is,

EYva

T,
ﬂi)Exp<9192> as n— .
n

Proof. By Theorem 5 (ii), for any t € R,,

T nt p(1 —Dr/n)
P, <1 > t) ~ E |exp / = B
n 0 Pr/n

The rest follows exactly as the proof of Theorem 2.

—9,1
2n2t

dr}] as n — oo.

|
3.4. Time-varying population size

For a population with time-varying size p(f)N at forward time ¢
where p is a non-constant function, neither the Moran process nor
its diffusion approximation possess a stationary distribution. However,
the random background approach of Barton et al. (2004) can be gen-
eralized to this setting by considering the time-reversed frequency
process.

Our main message in this section is that the limiting results in sce-
narios (i) and (ii) are robust against continuously-changing population
sizes and the initial distribution y of the initial (ancient) frequency X|,.
Roughly speaking, in scenario (ii) as n, ~ n - oo, events among the
finite-count A, alleles in the sample are so sped up that the population
size will have hardly changed by the time all their coalescent and latent
mutation events have occurred. The same is true for events among the
finite-count A, alleles in scenario (i) as @ — oo. Events among the
finite-count A, alleles occur more slowly in scenario (i), but the rate of
latent mutations among them remains exceedingly small. The limiting
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result for scenario (iii) is more subtle. It depends on the large deviation
behavior of the present day frequency as n, — .

Let T > 0 be the present. For comparison with our results for
constant population size, we keep the same definitions of 6,, 6, and
a and we set p(T) = 1. Thus, N is the population size at the present
time 7, and 6,, 6, and « are the present-day values of these variables.
The corresponding values at some other time ¢ are Np(t), 6, p(1), 6,p(t)
and ap(t). The demographic function p could for example represent
exponential population growth, in which case p(f) = p(0)e’’ for some
positive constant f. This model was used in Wakeley et al. (2023)
to illustrate the effects of rapid growth on neutral rare variation in
humans. Here we allow that p(r) is piecewise continuous. As will
become clear, the key feature of p for our results is that it is continuous
atT.

Since the random background approach of Barton et al. (2004) was
formulated based on the lineage dynamics of the Moran model, we
begin by describing the diffusion process arising from a Moran model
with time-varying population size.

Lemma 5 (Diffusion Limit for Time-Varying Moran Model). Let p : R, —
(0, o0) be a piecewise continuous function with finitely many jumps, and N
be a positive integer. Consider the discrete-time Moran process in which,
at step k = [N(N — 1)t/2], the total population size is [p(t)N] and N is
replaced by p(t)N in the one-step transition probabilities (13)—(14). Suppose
u, = 60,/N, u, = 6,/N and s = —a/N. Then as N — oo, the relative
frequency of A, at step [N(N —1)t/2] converges in distribution to X, solving

X,(1-X,)
p2(1) "
(44)

0, a
2 x4 %
20" T 50" 26

= me X,(1 - X,)] di+

where W, is the Wiener process, provided that the initial relative frequency
converges to X (0).

Setting p(r) = 1 for all t € R, or # = 0 in the exponential growth
model, makes (44) identical to (1). The term p2(¢) in the denominator
inside the square root comes from the diffusion timescale of the Moran
model: for a population of constant size, one unit of time in the
diffusion is N(N — 1)/2 « N? time steps in the discrete model. To
explain the term > (t) = _ZS;’%N note that the rate of change of X, due
to selection is proportlonal to the product of the total size p(r)N and the
parameter s, which is then multiplied by 1/p?(t) because the timescale
in (44) is defined in terms of the present-day population size N. The
proof of Lemma 5 is given in Appendix B.

Remark 2 (Wright-Fisher Model with Varying Size). The analogous diffu-
sion process XWF for the discrete Wright—Fisher model with total size
[p(t)N] in generation [Nt] is different from the process X in (44), except
in the case p(r) = 1 for all + € R,. This diffusion solves the SDE

XWF+ XVE( - X VB[ ar

dXVF = [ (1 —XWF)— 5

X1 - XV
(D) "

which is the adaptation of equation (1) in Schraiber et al. (2016) to our
haploid model of selection and recurrent mutation; see also equation
(21) in Evans et al. (2007). The generators of XVF and X are related
by AV = p(1)A, for all 1 € R,. In other words, the diffusion X“F from
the discrete Wright-Fisher model is sped up by the factor p(z) at time z.

To compare X and XWF, we can perform deterministic time-changes
to normalize their diffusion coefficients to be the same. In general,
suppose X satisfies the SDE dX, = b(t, X,)dt + o(t, X,)dW, and Y is
a time-change of X defined by Y, := X, where y is any fixed
continuous and strictly increasing function, then

dY, = by (n), Y)w' (N dr + o(w(),Y,) Vy'(r) dW,.
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Hence, when X is a (weak) solution to (44) and y = g~! where g

is the unique continuous function such that g(¢) = fot %ds, we obtain
that Y, := X,-1(, solves

dY, = p(g~ (r) b(Y,) dr + /Y, (1 —

where b(y) = 971(1 —-y)— %2 v+ % y(1-y). Analogously, following Schraiber
et al. (2016) - see their Eq. (6) and the SDE below it — and taking f

such that f(t) = fo e ~5ds, we find that YWF := X }"'F] " solves

dy = p(f 7 ) b dr + [V - YV dW,. (46)

Since f # g unless p(t) = 1 for all t € R,, we have that Y # YVF,
ie. X o) F xW in general. Nonetheless, (45) and (46) have the
same form, the only difference being the way time r in these diffusions
is related back to time ¢ in the discrete models.

Y)W, (45)

Note that the law of the present-time frequency of A, in the model
of Lemma 5 depends on the distribution g, of the initial frequency X (0).
This law is denoted by P, (X7 € dy).

Suppose a sample of »n individuals are picked uniformly at random
at the present time T > 0, i.e. when the frequency of A, is X, and
we know that n; of them are of type 1 (and n — n; are of type 2). Let
P, = Py, 4y be the conditional probability measure given the sample
count n = (n;,n,). We also denote the conditional law of the present

frequency py = X, under Py, by L" := Py (Xy € dy) =P, (Xy €dy |
n). Then
LM =Cpy" (1 -y P, (Xr € dy), (47)

where Cp = ( fol Yl = y"P, (Xr €dy) l is a normalizing constant.
This follows from Bayes’ theorem, just like (5) did, but with prior
distribution IP”O (X7 €dy).
Similar to Proposition 1, the conditional ancestral process in the
diffusion limit can be described as follows. This description involves
the backward frequency process

pi=Xr_y for te€[0,T] (48)

which is by definition the time-reversal of the process X.

Proposition 2 (Conditional Ancestral Process). Let T > 0 and pu, €
P([0, 1]) be fixed, and the demographic function p be as in Lemma 5. The
process  (p,, n‘l’bs(t), L), ng’”(t), Ly®)eory under P, is a time-
inhomogeneous Markov process with state space [0,1] X {0,1,...,n, 12 x
{0,1,...,n,}? described as follows:

(D (p)repo.r), defined by (48), has the law of (X7_,),e(o ) under Py. In
particular, it has initial distribution £™ in (47) and it does not depend
on the process (nT’”, Ly, ng nbs, Ly).

(ii) The process (n‘l””, Ly, ns "“ , L,) starts at (n;,0,n,,0). When this pro-
cess is at time t and the current state is (p,a;, ¢y, a,,¢,), this process
evolves as

(a, - 1,7)

at rate coalescence of type 1

1 1
» (%) 2(T—0)

—1,¢,+1) atrate 2a O
(a 1+ D PRl Ry

(a 1 ¢ 1) nd
mutation of 1°*° to 2

(49)
and, independently,

1
P(T=1)

0,
(ay—1,¢,+1) atrate ]pazm

(ay — 1,¢,) coalescence of type 2°

1 ap
at rate ;= (%)
(ay,7,) —
mutation of 2°* to 1

(50)

Note the term p(T —¢) in (49)-(50) indicates the dependence of the
conditional ancestral process on the demographic function. Nonethe-
less, Proposition 2 still gives a description for K, and K, in terms of
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Bernoulli random variables, like (27) and (29) respectively. For exam-
ple, under P, (27) still holds but (28) needs to be modified. Indeed,
given {(r,.,pfl)};'z'l_l, the random variables {fk(~)}:':2 are independent
and
ny—i
(I=p)0y p(T=7;)+n  —i
(1=p; )01 p(T=7)

0 with probability
‘):nl—i+l(p‘r‘-) = (1)

1 with probability

which further generalizes £, (p) in (28) to include p(r). An analogous
description holds for K.

Remark 3. A more explicit description for the process (X,),co ) under
PP,,, hence also that for its time-reversal (p,);c[o 1}, can be obtained by
Doob’s h-transform (Doob, 1957, 2001). More precisely, we define the
function

h(t,x) :=Pm| X, =x)=E [(” >X;'(1 — Xy ‘X, =x] )
n

Then (X,),c[0r) under the conditional probability P, solves the SDE
dX, = [b(t, X)) + 6°(t. X,) 0, log h(t, X,)| dt + o(t, X,) d W,

= Oy~ @1 — _ [x(-x)
where b(t, x) 1= 2p(r)(1 x) zpmx: 2pmx(l x) and o(t, x) 20
are the coefficients in (44), and W is a Brownian motion. Sufficient
conditions on the function p for which the process (p,),co.r) satisfies a

stochastic differential equation may be deduced from an integration by
parts argument as in Millet et al. (1989).

Next, we look at asymptotics. The following analogue of Lemma 1
holds for any initial distribution u, of X(0) and any demographic
function p that is bounded and positive. Note that in Lemma 1, g = ¢,
depends on «, but here g, is fixed.

Proposition 3. Let T > 0 and u, € P([0, 1]) be fixed, and the demographic
function p be as in Lemma 5. The following convergences in P([0, 1]) hold.

(D) Suppose n, is fixed and a — oo. Then L™ — §,.

(ii) Suppose a is fixed and n, — oco. Then L™ — &,

(iit) Suppose @, c € R are fixed and a = &n, + ¢ — co. Suppose P, (X €
dy) has a density p(T, uy. y) dy and there exists a large deviation rate
function T : [0, 1] — [0, co] such that for each y € [0, 1],
log p(T', g, y)
—_—

n

(y)

as n — oo.

Suppose also that (1 — y) e has a unique maximum at y, € [0, 1].
Then L™ - 6, , and 1(y,) = #

Remark 4. The assumptions in (iii) hold when p(t) = 1 and y, = ¢,
in (2), i.e. constant population size with stationary initial condition. In
this case, Z(y) = @y is the linear function, and £ = ¢ in (6). The
rate function has a phase transition at @ = 1, as shown in Lemma 1.
Namely, y, =0 when @ € (-0, 1) and y, = 1 — 1/a when @ € (1, ).

Remark 5. The large deviation principle for P, (X1 € dy) as n, — oo
can be checked using the Gartner-Ellis theorem (Dembo and Zeitouni,
2009, Theorem 2.3.6). When it holds, the rate function 7 is equal to
the Legendre transform of the function

AG) = lim — logE,, [V Xr],
ny—o 1y 0

Proof. A proof follows from that of Lemma 1. Let f € C,([0,1]), a
bounded continuous function on [0, 1]. Then
E”O[f(XT)X;l(l - X))

" (52)
E, (X7 (1= Xpym]

1
Eu[f (po)] =/0 FO) LYdy) =

For part (i), note that if (n,,n,) is fixed and @ — oo, then P, (X7 <
1 —¢€) - 0 for any ¢ > 0 as in the proof of Theorem 5(i). Hence

12
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E, [1/(X7) = f(D]] = 0 for any f € C4([0, 1]). In particular, P, (X; €
dy) — §,. Hence £ tends to &, in P([0, 1]), as @ — oo.

For part (ii), note that (1 — y)"» has maximum at y = 0, and
y" P, (Xp € dy) does not depend on n,. Hence L" tends to §, in
P([0,1]), as ny — oo.

For part (iii), the numerator of (52) is

1
B, [f (X7) X7 (1 = Xp)2] = /0 FY" A=y P, (Xr €dy)

1
~ / FO)Y I = p) P12 o) dy,
0

for some function ¢ such that I"Z’& — 0, by assumptions of part (iii).
2
Since (1—y) e’® has a unique maximum at y,, lim,_, ., E,[f(po)] = f(7,)

by (52) and a standard argument as in the proof of Lemma 1. []

By Propositions 2 and 3, similar limiting results for the conditional
coalescent process for scenarios (i) and (ii) hold for any positive func-
tion p : [0,T] = (0,00) that is continuous near the current time T.
Note that p is bounded away from zero on any compact time interval
[0, T'] and therefore analogous approximations for the frequency process
(P)erory under P, still hold, where the new approximating functions
now involve the 4 function in Remark 3.

More precisely, in scenario (i), Theorem 1 still holds, and Theorem 2
still holds but with a possibly different limiting random variable. Hence
sy, ~ O(1/a) is very small and p, ~ 1, so K; — 1 by (51), and the single
latent mutation for type 1 is very old.

In scenario (ii), 7, ~ O /n) is very small, and recalling that p(T") =
1, we have K; ~ 1+ ZZ‘:Z & by (51), where {&} are independent
Bernoulli variables taking values in {0,1} and having means Blfllc—l'
Theorem 3 with « € R fixed still holds, but the statement needs to be
modified because the approximating process Z in (40) will be replaced
by another one that involves the 4 function in Remark 3.

Scenario (iii) is harder to analyze and we leave it for future work.
We conjecture that if y, = 0, then the conditional genealogy behaves
like scenario (ii); and if y, € (0, 1], then the conditional genealogy
behaves like scenario (i).

4. Conditional ancestral selection graph

Our aim in this section is to see how the results of the previous
section can be obtained from a different model: the ancestral selection
graph. We concentrate on the ancestry of focal allele A, and on constant
population size, and proceed more heuristically than in the previous
section.

The ancestral selection graph is an augmented coalescent model
for the joint distribution of the gene genealogy and the allelic states
of the sample (Krone and Neuhauser, 1997; Neuhauser and Krone,
1997). It includes the usual coalescent rate 1 per pair of lineages and
mutation rate 6/2 per lineage. Additionally, under the stationary model
of Section 1, it includes a branching rate of |a|/2 per lineage. When a
branching event occurs, the lineage splits into an incoming lineage and
a continuing lineage. One of these is real, meaning it is included in the
gene genealogy. The other is virtual, meaning it is there only to model
the gene genealogy correctly with selection. Which is which could be
resolved if their allelic states were known: the incoming lineage is
real if its allelic type is the one favored by selection, otherwise the
continuing lineage is real. But the allelic states are not known in the
construction of the ancestral selection graph.

The conditional ancestral selection graph models gene genealogies
given a sample with allelic states specified (Slade, 2000a,b; Fearn-
head, 2001, 2002; Stephens and Donnelly, 2003; Baake and Bialowons,
2008). In this case it is known which lineages are real and which
are virtual. This allows a simplification in which there is a reduced
rate of branching and only virtual lineages of the disfavored type
are produced (Slade, 2000a). A second simplification is possible if
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mutation is parent-independent: then any lineage which mutates may
be discarded (Fearnhead, 2002).

We assume parent-independent mutation, specifically §, = 6z, and
0, = Orn,, with =; + 7, = 1. Any two-allele mutation model can
be restated in this way, leaving the stationary probability density (2)
and the sampling probability (4) unchanged. But doing so introduces
“spurious mutations to one’s own type” (Donnelly, 1986) or “empty
mutations” (Baake and Bialowons, 2008) which occur only in the model
and do not correspond to a biological process. These are not latent
mutations. Including them allows us to discard real A, lineages and
any virtual lineage once these mutate, but we must distinguish between
empty and actual mutations in the ancestry of A,.

The resulting conditional process tracks the numbers of real and
virtual ancestral lineages from the present time r = 0 back into the
past. Let r{(r), ro(t) and v;(r), where i = 1if a < Oori =2 if a > 0,
be the numbers of real type-1, real type-2 and virtual type-i lineages at
past time 7. The process begins in state r|(0) = n;, r,(0) = n,, v;(0) =0
and stops when r(r) + r,(t) = 1. We suppress ¢ in what follows, and
focus on the instantaneous transition rates of the process.

The conditional ancestral process is obtained by considering rates
of events in the unconditional process, which has total rate (r; +
ry + 0@ + |a| + r; + ry + v; — 1)/2, then weighting rates of events
depending on how likely they are to produce the sample. Rates of some
events are down-weighted to zero. For instance, the sample could not
have been obtained if there were a coalescent event between lineages
with different allelic types, whereas in the unconditional process these
happen with rate r r, plus either r,v, or r,v,, depending on whether
a<0ora>0.

Rates of events for which the sample has a non-zero chance of being
observed are up-weighted or down-weighted by ratios of sampling
probabilities like (4). This method of conditioning a Markov process
on its eventual outcome is stated simply in Kemeny and Snell (1960, p.
64), a familiar example being the Wright-Fisher diffusion conditioned
on eventual fixation (Ewens, 2004, p. 89), and is characterized more
generally by Doob’s h-transform (Doob, 1957, 2001). In the conditional
ancestral selection graph, the Markov process is the (unconditional)
ancestral process of Krone and Neuhauser (1997) and the eventual
outcome is the sample with allelic states specified.

In our formulation, the samples and their ancestral lineages all
are distinguishable, which we denote with a subscript “0” for ordered
as in Wakeley et al. (2023). The probability of any particular allelic
configuration in the ancestry of the sample, in which there are r,
lineages of type 1, r, lineages of type 2 and v; lineages of type i € {1,2},
is

1
q,(r1, 19, 01) = / X1 = x)2¢,(x)dx  if @ <0 (53)
0

1

q,(r1, 1y, 0p) = / X1 = x)2*t2¢ (x)dx  if @ >0 (54)
0

with ¢,(x) as in (2). Note, the additional binomial coefficient in the

sampling probability (4) is the number of possible orderings of a sample

containing n; and n, copies of A; and A,.

The rate of any particular event with non-zero probability in the
conditional process is the product of its rate in the unconditional pro-
cess and a ratio of sampling probabilities from either (53) or (54). For
event (r,r,,v;) — (r’l,r;,u;), the required ratio is qo(r’l,r;,u;)/qa(r],rz,
v;). The denominator ¢,(r|, r,, v;) is the probability of the sample given
all events so far in the conditional ancestral process, which have led
to the current state (r;,r,,v;), and the numerator qo(r’l,r’z,ul’.) is the
probability of the sample given these events and the event (r|,r,,v;) —
(v}, 7}, v}). Appendix C provides the details of how the minimal ancestral
process we use here to model latent mutations in the ancestry of the
sampled copies of allele A, is obtained from the full conditional ances-
tral process, using the simplifications of Slade (2000a) and Fearnhead
(2002).
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The resulting conditional ancestral process differs depending on
whether « < 0 or @ > 0 but in either case it includes five possible
transitions from state (ry,r,,v;). If @ <0,

071 go(ri=lirp+lv))

r—1Lrn+1v at rate r
(ry 2 D) 1 PO

_ 1\ 4o(ri=1.rp.01)
(ry = 1,r5,0)) at rate (2)—%(”%01)
i+l
(r1> 79, 0)) = 4 (rps a5 0 + 1) atrate (r, +ry + vy) 1 220D
2 golryra.vy)
_ (228 o1\ \ do(rira.v1 =1
(ry>ry, 0 = 1) at rate (UJ Lo+ (2))—%0]”2&])
— Omy )\ \ 4(rir2—1.v1)
(ry,r — Lv)) at rate (r2 2+ (2))—%(““’”])
(55)
whereas if a > 0,
Or, (ri—1,ry+1,05)
-1, 1o at rate 0 LT LT L)
(r nt 2) 2 4, (r1ory.0)
- ) G —Lr.vy)
(r, = 1,ry,0,) at rate (2)—%(“@”2)
Uy +1
(1222 03) = 3 (12 Fae 0y + 1) at rate  (r, + ry + vy) % L0020
2 q,(riarp0)
_ o, 0\ \ 4 (r =)
(1, 1y 05 — 1) at rate (uz 2+ ry0, + (2))—%)(“2'”2)
_ 0ny 12\ lriramloy
(r,ry — 1,05) at rate (r2 2+ (2))—%(”%(]:)
(56)

which differ owing to the different resolutions of branching events
when a < 0 versus a > 0. We may note that the total rates of events
in (55) and (56) are less than in the unconditional ancestral process
because the conditional process has a reduced rate of branching (Slade,
2000a) and because empty mutations do not change the number or
types of ancestral lineages. If a < 0, the total rate is r\ 0z, /2 + ry|a|/2
less, whereas if a > 0, it is r|07;/2 + rja/2 less.

Asymptotic approximations for the ratios q,(r], 7}, v})/q,(r|, 15, v;) in
these rates of events can be obtained using the results in Appendix A.
In the following three subsections we present approximations to the
conditional ancestral process for our three scenarios of interest: (i) ||
large with n, fixed, (ii) n, large with « fixed, and (iii) both |«| and n,
large with @ = a/n, fixed. Because initially r, = n,, we consider r,
large in the scenarios with n, large. For each scenario, we compute the
transition rates up to leading order in |a| or r,, then consider how these
conform to the corresponding results of Section 3.

4.1. Scenario (i): strong selection, arbitrary sample size

Here || is large with n, fixed, along with n, and 6. In Section 3.1,
Theorem 1, we treated the ancestries of A; and A, simultaneously as
a — +o0, so that A; was favored and A, was disfavored. Here we cover
these same two possibilities by modeling the ancestry of A, using (55)
when A, is disfavored (« < 0) and (56) when A4, is favored (« > 0). We
disregard the ancestry of the non-focal allele A, except insofar as it is
needed to model events in the ancestry of A,.

When « < 0, using (A.4)(a) in (55) gives

(&3]

— o Om

(rp=Lry+1,0) atrate r= prre—— + 0(1)
_ lal __ nm-l

(ry = 1,r5,0)) at rate r prre—— + O(1)

(ri>r2,00) = (ry, rps 0 + 1) at rate w +O(|a|’1)

_ lal 0m+2r 40,1

(ry,ry,v; = 1) atrate v, = + O(1)

(ry,rs = Lv)) at rate r2%+('22) + O(|al™)

(57)
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for the ancestry of a disfavored allele under strong selection (as a —
—o0). Latent mutations and coalescent events occur with rates pro-
portional to |a|. Virtual lineages are removed similarly quickly but
are produced at a much lower rate. So v, will stay zero during the
O(1/]a|) time it takes for the requisite n; latent mutations or coalescent
events to occur. Then the analogous result to (36), namely (7) and
(8), follows from the first two lines of (57). Coalescence and mutation
among the copies of A, occur at the slower rate, so none of these should
occur before all the type-1 lineages disappear. These results were first
suggested in Wakeley (2008).

When « > 0, using (A.4)(b) in (56) gives

(ry=1ry+1,0,) atrate rllw + 0(a™?)

a
(ry = 1,7y, 09) atrate (1) + O(a™)

(1,79, 07) = (12 rp 0y + 1) at rate (r1+ry+vp)(@my+rp+0vy) + O(a—l)
_ a Omp+2rp+vy—1
(ri,ry, v, —=1) atrate 03 r— + O(1)
_ a _Omy+ry—1
(ri,ry—1,0p) atrate rp3 Frarv— + O(1)
(58)

for the ancestry of a favored allele under strong selection (as @ — +o0).
Now A, is undergoing the fast process just described for A, in (57),
so these lineages will disappear quickly. Again the rate of removal of
virtual lineages greatly exceeds their rate of production. In O(1/a) time,
the ancestral state will become (r;, r,, v;) = (n;,0,0). But now with A,
favored, the rates of coalescence and latent mutation differ by a factor
of a, so the first n; — 1 events will be coalescent events, followed by
a long wait for a single latent mutation with rate §%r,7,/(2e) as in
Theorem 2.

4.2. Scenario (ii): arbitrary selection, large sample size

Here n, is large with « fixed, along with n, and 6. Because r, = n, at
the start of the ancestral process, we present rates of events to leading
order in 1/r,. In Section 3.2 we deferred this scenario to Section 3.3,
because in the limit it is equivalent to @ = 0. Of course, there are two
ways for @ to approach zero, and the sign of @ matters in (40) for any
@ not strictly equal to zero. Here we consider the two cases, a < 0 and
a > 0, separately.

When « < 0, using (A.5) in (55) gives

- n__ 0m
(ry=1,rp+1,v)) atrate r; P rv— + O(1)

- n__n-l
(ry=1,r,v) atrate r - prrv— + O(1)

(Ory+ri+v) _
(1700 = (om0 +1) atrate ORI o)
_ r O +2r1+v;—1
(ry,ry,v1 = 1) atrate v, Orriro T + O(1)
r2
(ry, 5 — 1,07) at rate 72 + 0(ry)
(59)

This differs from the neutral case (Wakeley et al., 2023) only by the
possibility of virtual lineages. As in (57), these will be removed quickly
if they are produced. The process of latent mutation and coalescence
happens in O(1/r,) time, with relative rates in the first two lines of
(59) again giving (7) and (8). Because r, — oo, this approximation will
hold long enough for the required fixed number of events among the A,
lineages to occur, despite the rapid decrease of r, in the last line of (59).
A proof of this is given in Wakeley et al. (2023, Appendix). Theorem 4
addresses the corresponding issues for the model of Section 3.
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When « > 0, using (A.5) in (56) gives

_ rp_ 0m
(ry—=1,rp+1,v,) atrate r, P + O(1)

_ rp_r-l
(ry—1,r,0y) atrate r 3 pr— + O(1)

(r, 72, 0) = 3 (ry, 72,0 + 1) at rate % + o) (60)
(ri,rp,0p = 1) atrate ov,r, + O(1)
7‘2

(ri;ry = 1,0p) atrate 2 + O(r,)

which differs from (59) in two ways. Now the rate of production of
virtual lines is non-negligible. But here their presence does not affect
the rates of latent mutation and coalescence. Again we have (7) and (8),
and the process of latent mutation and coalescence happens in O(1/r,)
time.

4.3. Scenario (iii): strong selection, large sample size

Here both |a| and n, are large with @ = «/n, fixed, along with n,
and 6. Again since the process begins with r, = n,, we present rates
of events to leading order in 1/r,. Because the conditional ancestral
process differs for a < 0 versus a > 0, i.e. with (55) and (56), and
the asymptotic approximation we use for the hypergeometric function
differs for @ < 1 versus a > 1, i.e. with (A.6)(a) and (A.6)(b), here we
have three cases. Note these are the same three cases in (11)(a), (11)(b)
and (11)(c).

When @ < 0, using (A.6)(a) in (55) gives

(ry—1,r,+1,0;) atrate @# + 0(1)
(ry=1,r5,0)) at rate rl@# + o)
(rysrp,01) = R (ry, 10,00 + 1) at rate % +0(r3")
Corvy =D atrate v 2 GIEAS 4 o)
(ry,ry = 1,0)) at rate % + 0(ry)
(61)

which is comparable to (57) and (59). Again we may effectively ignore
virtual lineages. The rates of latent mutation and coalescence in (57)
and (59) differ only by the interchange of r, for |«|. In (61), the factor
rz(l + |E|) encompasses the effects of both. The larger |a| is, the more
quickly these events will occur, and again (7) and (8) describe the
number of latent mutations.

When 0 < @ < 1, using (A.6)(a) in (56) gives

ry(1-a 0
(r1_15r2+1,U2) at rate rlzT)ﬁ + 0(1)

rz(lf'ti) ri—1
(ry = 1,r3,07) atrate rj— s+ o)

(r1512,02) = (ry, r9y 0y + 1) at rate % + O(1)
(ri,rp, 00 = 1) at rate ov,r, + O(1)
2
(ri;ry = 1,0p) atrate - + O(r,)
(62)

which is comparable to (60). In contrast to (61), now with A, favored,
the larger « is (i.e. the closer it is to 1) the smaller the rates of latent
mutation and coalescence become. Otherwise, for any given @, the same
conclusions regarding latent mutations and their timing follow from
(62) as from (61), and these conform to what is stated in Theorem 4.
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When @ > 1, using (A.6)(b) in (56) gives

0y 1 -
(rp—1,r,+1,0,) atrate ’l%ﬂ + O(rzl)
(ry = 1,79,05) atrate (7)=% +O(r3')
(F1s 19, 09) = (P, 72,05 + 1) atrate 2 + O(1) (63)

(ry,rp, 05— 1) atrate vyra + O(1)

2
s~
(ri,rp — 1,09) atrate 2@ + 0(r,)

which paints a very different picture. Whereas (57), (59), (60), (61) and
(62) all give the Ewens sampling result described by (7) and (8) and
have these events occurring quickly on the coalescent time scale, (63)
is rather like (58) in that the rates of latent mutation and coalescence
are too slow to register on the time scale of events involving the non-
focal allele A,. The overwhelmingly most frequent events in (63) will
be coalescent events between A, lineages at rate « r%, so an effectively
instantaneous transition will occur from r, large to r, comparable to
ry. Then this case (63) will collapse quickly to the corresponding case
(58) where coalescence without mutation will happen among the A,
followed by a long wait for a single latent mutation. For the model in
Section 3.3.2, this is described by Theorems 5 and 6. Finally we may
note that initially the rates of latent mutation and coalescence in (63)
are precisely those predicted for the model in Section 3.3.2 from (23)
starting at p, - 1 — 1/a as specified for @ € (1, ) in (31).

5. Discussion

In this paper, we have considered a two allele model at a single
genetic locus subject to recurrent mutation and selection in a large
haploid population with possibly time-varying size. We assumed that
a sample of size n was drawn uniformly from an infinite popula-
tion under the diffusion approximation. By extending the framework
of Barton et al. (2004), we described the asymptotic behaviors of
the conditional genealogy and the number of latent mutations of the
sample, given the sample frequencies of the two alleles. This moves
beyond what is in Wakeley et al. (2023) by the inclusion of selection
and by the use of an entirely different model, i.e. coalescence in a
random background (Barton et al., 2004). This yields novel results. For
example, in the strong selection case in which the selection strength « is
proportional to the sample size n and both go to infinity (our scenario
(iii)), the genealogy of the rare allele can be described in terms of a
Cox-Ingersoll-Ross (CIR) diffusion with an initial Gamma distribution.

The concept of rare alleles in this paper and in Wakeley et al. (2023)
is the same as the one considered by Joyce and Tavaré (1995) and Joyce
(1995). It focuses on the counts of the alleles in a large sample rather
than their relative frequencies in the population. In scenarios (ii) and
(iii) we consider a fixed number n; of the rare type 1 when the
sample size n tends to infinity. Joyce and Tavaré (1995) considered rare
alleles in a large sample drawn from the stationary distribution of a d-
dimensional Wright-Fisher diffusion with selection and mutation. They
showed that the counts of rare alleles, from different latent mutations in
our terminology, have approximately independent Poisson distributions
with parameters that do not depend on the selection parameters, and
that the Ewens sampling formula describes their distribution. Their
model with d = 2 and genic selection corresponds to our scenario (ii).
Our results for very strong selection (@ — oo) in scenario (iii) differ
from those of Joyce and Tavaré (1995) in that the rare-allele sampling
probabilities (11)(a), (11)(b) and (11)(c) do depend on selection. Inter-
estingly, the number of latent mutations given », still follows the Ewens
sampling formula when lim,,_, , «/n € (-0, 1). But this is not true when
lim,_,, a/n € (1,), in which case the number of latent mutations is
always k; = 1.

Some of our results for rare alleles have empirical relevance, specif-
ically those for scenario (ii) including their robustness to time-varying
population size demonstrated in Section 3.4, and those for scenario (iii)
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with @ < 0. In scenario (ii), as » increases for fixed but arbitrary «a, the
distributions of latent mutations and the ages of those latent mutations
become identical to those for neutral alleles described in Wakeley et al.
(2023). Our results also show that selection does have an effect in this
case, but it is only to raise or lower the rare-allele sampling probability
(10) by the constant factor C for every value of n,. This relative
insensitivity to selection suggests confidence in using rare alleles for
demographic inference and genome-wide association studies (O’Connor
et al., 2015; Nait Saada et al., 2020; Zaidi and Mathieson, 2020). Slatkin
and Rannala (1997b), who obtained the Ewens sampling formula result
for rare deleterious alleles by assuming they evolve independently
according to a linear birth-death process, cf. Slatkin and Rannala
(1997a), suggested that deviations from this neutral prediction at two
human-disease-associated loci were due to population growth. Reich
and Lander (2001) made a similar argument for a number of other
disease-associated loci starting from the mutation-selection balance
model of Hartl and Campbell (1982) and Sawyer (1983) which also
gives the Ewens sampling formula result for rare disease alleles.

Our exploration of time-varying populations in Section 3.4, namely
the robustness of the Ewens sampling formula result for the number
of latent mutations, suggests that rare alleles may not always be well
suited for demographic inference. With only a mild constraint on the
trajectory of population sizes through time, increasing the sample size
will eventually make the distribution of latent mutations of rare alleles
look as if the population size has been constant at its current size.
There is no doubt that demographic inferences improve as sample sizes
increase. What Section 3.4 implies is that these improvements will
not come from focusing exclusively on the lower end of sample allele
frequencies (i.e. any fixed n; as n — o). How relevant this is for a given
sample will depend on the actual ages of its latent mutations and the
degree of population-size change between those times and the present.
To illustrate, consider the O(1/n) ages of latent mutations under the
exponential growth model with rate . If f/n <« 1, the ancestral
process of tracing back to these mutations will be complete before the
population has changed much in size and the results of Section 3.4 will
hold. But this is clearly not the case for the gnomAD data in Wakeley
et al. (2023) and Seplyarskiy et al. (2023). The distribution of n, in the
non-Finnish European sample with n = 114 K is well fit by g/n = 3.
See for example Fig. 3 in Seplyarskiy et al. (2023). Sample sizes would
need to be orders of magnitude greater for the results in Section 3.4 to
hold in this case.

Scenario (iii) with @ < 0 is applicable to strongly deleterious
alleles. An appreciable fraction of new mutations are strongly dele-
terious (Eyre-Walker and Keightley, 2007; Kim et al., 2017; Weghorn
etal., 2019; Dukler et al., 2022). Previous theoretical work includes Nei
(1968), who found a gamma density analogous to ours in Lemma 4
but for the population allele frequency of partially recessive lethal
mutations, and Charlesworth and Hill (2019), who used Nei’s ap-
proximation to derive the negative binomial distribution for n;, our
(11)(a). In this case, (12)(a) shows that the sampling probabilities of
rare alleles fall off quickly as n; grows: each additional copy of A, in
the sample lowers its probability by a factor of 1/(1 + |@|) compared
to the neutral case. Even so, the distribution of k, given n; follows
the Ewens sampling formula. Hartl and Campbell (1982) and Sawyer
(1983) obtained similar results by assuming that both selection and
mutation are strong. Our analysis of scenario (iii) with @ < 0 also shows
that latent mutations of rare strongly deleterious alleles are especially
young: selection speeds up the ancestral process of latent mutation by a
factor of 1+|a| on top of the factor of n already present under neutrality.
This is most easily seen by comparing the first two lines of (61) to the
first two lines of (59).

Our results for scenario (i) with @« < 0, which hold as ¢ —» —o0
for arbitrary sample size and alleles at any sample frequencies, are also
applicable to strongly deleterious alleles. They are similar to the results
just discussed for scenario (iii) with @ < 0. We expect that our results for
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very strong positive selection, i.e. scenario (i) with a« > 0 and scenario
(iii) with @ > 0, will be of limited applicability. Mutations to strongly
positively selected alleles are uncommon and observing such an allele
a small number of times in a very large sample would be exceedingly
unlikely.

Many open questions remain. Joyce (1995) obtained a result similar
to that of Joyce and Tavaré (1995), for a Wright-Fisher diffusion
with selection and infinite-alleles mutation. This diffusion process is
a particular case of the Fleming-Viot process (see Ethier and Kurtz
(1993) for a review) and it has a unique stationary distribution denoted
Veelee JOyCe (1995) considered a large sample of size n drawn from
Veelee- Let Cy(n) € Zb be the first b allele counts in a sample of size
n drawn from the stationary distribution, and K, be the total number
of alleles in the sample. Joyce (1995) showed that for any fixed b, the
distribution of (C,(n), K,) under v, is arbitrarily close to that under
the neutral model. It would be interesting to know if analogous results
for our scenario (iii) also hold for the infinite allele model. In particular,
is there a threshold for the selection strength relative to » that controls
whether selection is washed out or not in the limit as n - o0?

For time-varying populations, little is known in scenario (iii). For
example, will the assumptions in Proposition 3 hold for a general de-
mographic function? Will there be a phase transition for the value of y,
in terms of @ and if so, what will determine the phase transition? Also,
both our results and those of Joyce and Tavaré (1995) and Joyce (1995)
are for the infinite-population diffusion limit. Further consideration of
the issues raised in Section 2.1.1 is needed to assess the relevance of
these results to various kinds of finite populations.

The critical case @ = 1 in scenario (iii) is omitted in this paper.
Results for this case are expected to lie between those of @ > 1 and
@ < 1, and require more in-depth asymptotic analysis. For example,
one can first obtain asymptotic results for the hypergeometric function
in (A.6)(a)-(A.6)(b) for the case @ = 1, and then follow the argument in
Lemma 4 to obtain the asymptotic of the expectation E,[p,] as n, - o
in this critical case. Lemma 4 asserts that E,[p,] = O(1) when @ > 1 and
E,lpo] = O(1/n,) when @ < 1. We conjecture that E [p,] = o(n;%) for
some o € (0, 1) in the critical case.

Finally, we have ignored the possibility of spatial structure. Spatially
heterogeneous populations in which reproduction rates, death rates,
mutation rates and selection strength can depend both on spatial posi-
tion and local population density present challenges. This is because the
population dynamics now take place in high or infinite dimension (Hal-
latschek and Nelson, 2008; Barton et al., 2010; Durrett and Fan, 2016;
Louvet and Véber, 2023; Etheridge et al.,, 2023). For example, the
spatial version of (1), the stochastic Fisher-Kolmogorov—Petrovsky—
Piskunov (FKPP) equation introduced by Shiga (1988), is a stochastic
partial differential equation that arises as the scaling limit of various
discrete models under weak selection (Miiller and Tribe, 1995; Durrett
and Fan, 2016; Fan, 2021). Under the stochastic FKPP, Hallatschek
and Nelson (2008) and Durrett and Fan (2016) studied the backward-
time lineage dynamics of a single sample individual, conditioned on
knowing its type. It would be interesting to see if our results in this
paper can be extended to spatial stochastic models with selection.
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Appendix A. Asymptotic approximations used in the text

From the series expansion for a ratio of gamma functions with a
common large parameter, 6.1.47 in Abramowitz and Stegun (1964) or
equation (1) in Tricomi and Erdélyi (1951), we have

(1 + (n;2)>

for constants a and b which will depend on the application. For exam-
ple, we can apply (A.1) twice in the sampling probability (4) when n,
is large: once with ¢ = n; + 1 and b = 1 (in the binomial coefficient)
and once with a =6, and b=0, + 0, +n,.

The confluent hypergeometric function is commonly defined in
terms of the integral

I'(a+ ny) amb

(@a=b)a+b-1)
[“(b+nz)_n2 +o

2, (A1)

()

1
Fi@abz= ———— [ ™" '(1-w' ' A2
1Fy (a6 2) F(a)l"(b—a)/o e u (1 —u) u (A.2)
or in terms of the series
X (k) k
e a®z
1 Fy (a,b,z>—]§)—b(k)k! (A.3)

which converges for all z € R and b > a > 0, where ¥ is the rising
factorial a(a + 1) -+ (a + k — 1) with ¢ = 1. Again a and b depend on
the context, e.g. as in (3) and (4). The parameter z corresponds to the
selection parameter a.

For large |a| and with constant a and b,

RO (b-a—1) - )
F, (a;b;a) = o0 a(l_%“LO('“' )) ifa<0  (a)
1Fr@aba) =
o — (b—a)(a—1) _ R
me"a“”(l—%+0(a 2)) ifa>0 (b)
(A.4)

where the middle, neutral case is given only for completeness. Eq.
(A.4)(a) is from (4.1.2) in Slater (1960), and (A.4)(b) is from (4.1.6)
in Slater (1960) or may be obtained from (A.4)(a) using Kummer’s first
theorem which appears as (1.4.1) in Slater (1960).

For large n,, with constants g, b and z,

\Fy (a;b+ny;2) =1+%+0(n;2) (A.5)
2
directly from (A.3).
For large n, and « = an,, with constants a and b,
(1-a)™ ifa<l @
. ~ - \/27[ 1 a—1 1 b—a+ny
1Fy (a,b+n2,an2)~ T (1_l§> (5)
n;_fe”l(a_l) ifa>1 (b)
(A.6)

which we present only to leading order for simplicity. Eq. (A.6)(a)
follows from (A.3) and (A.6)(b) was obtained by applying Laplace’s
method to the integral in (A.2) for this case.
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Appendix B. Proofs of Lemmas 1, 4 and 5

Proof of Lemma 1. Part (ii) then follows from part (iii) with @ = 0,
and the proof of part (i) follows from a similar argument.

To prove part (iii), we let a = 6, + n; for simplicity. The function
"™ is a constant multiple of the function

x071(1 — x)mHoa=lpax = [(1 _ X)eax]"z x071(1 = x)f2=Teex

=™ S(x) xafl(l _ X)HZ*IQCX’

where the function S : [0, 1) » R defined by S(x) := ax + In(1 — x)

is strictly decreasing when @€ (—o0,1]

has a global maximum at x=1-1/ad € (0,1) when @ € (1,)

(B.1)

Part (iii) then follows from asymptotic expansion of integrals such as
the Laplace method.

Let x* € [0,1] be the global maximum of the function .S. Then
x* = 0 when @ € (—o0,1] and x* = 1 — 1/& when @ € (1,00). Fix
an arbitrary ¢ € (0, 1). There exists 6 € (0,1) small enough such that
SUPe(0.1]: [y—x*|<s | (¥) = f(x*)| < e. For each of the two cases, by (B.1),
the ratio

1
/ oSy (] _ yfa=l gex dx// &S yamL(]  x)faleex gy
x€[0,1]: |x—x*|>5 0
(B.2)

as n, — oo. For any f € C,([0, 1]),

1
| /0 FB"™ () dx = £ (<)

/ SR x)dx|
x€[0,1]: |x—=x*|>6

/ S (xydx — f(x*)
x€[0,1]: |x—x*|<b

<

+

<I71 / S () dx 4 e
x€[0,1]: [x—x*|>6
176 / S0 () dx.
x€[0,1]: [x—x*|>6
Hence by (B.2), limsupnz_)co )fol f(x)(ﬁ(an],nz)(x) dx — f(x*)‘ < e. Since

€ > 0 is arbitrary, we have shown that ‘ fol f (x)¢(,;”’"2)(x) dx—f(x*)
asn, - oo. [

-0

Proof of Lemma 4. Convergence in distribution to a constant is
equivalent to convergence in probability. Hence Lemma 4, except the
last statement about the convergence in distribution of n,p,, follows
from Lemma 1. As in the main text, A ¥ B below means A/B — 1 in
the specified limit.

When @ € (-, 1), we let a = n| + 6, for simplicity. The probability
density function of np, under P, is

l@mmz)(l’) =l 1 (X)ail
n¢ n/  n Beta(a,n, +0,), F, (a;n+0, +0,;a) \n
(=) e
n
y)a—l o e,&y

1
n Beta(a,n, +0,), F, (a;n+ 0, +0,; @n,) (Z
1

Beta(a,n, + 6,) (1 — @)~
N 1

T T@-®
as n, — oo, where we used (A.6)(a) and then (A.1) in the last two
approximations above. Hence the probability density function of n,p,

Ju—

R

1 T
zn—u yaleyeay

ya—l eV
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(under P,) converges pointwise to that of the Gam(n; +6;,1—@) random
variable. This implies the desired convergence in distribution. []

Proof of Lemma 5. Fixr € R, and let k = [N(V —1)7/2]. Suppose A(k)
is the number of type 1 at step k of the discrete-time Moran process.
Direct calculations from (13) and (14) show that, as N — oo,

Akt D =AW AR _ ]y 2

= x| ~ b(t, X)_2
J(ON p(ON N
and

2
s <A(k+1)—A(k)> ) AW _ | ot 02,
P(ON PON N

where b(t,x) = %(1 - Xx) - %x ﬁx(l - x) and o(t,x) =

A : % are the coefficients in (44). The condition on p guarantees that
the SDE (44) has a unique weak solution and that the desired weak
convergence follows from standard (martingale problem) method; for
reference see Stroock and Varadhan (1979, Chapter 11). [

Appendix C. Events in the conditional ancestral selection graph

Here we show how the minimal conditional ancestral process in
Section 4 is obtained from the full conditional ancestral process. To
begin, we assume that at some time in the conditional ancestral process
there were r|, r,, v; and v, real and virtual lineages of type 1 and type
2. The associated sampling probability is g,(r;, 75, v, v,), the straightfor-
ward extension of (53) or (54) to include both type-1 and type-2 virtual
lineages. How branching events are resolved depends on which allele
is favored by selection. We begin here by assuming that A, is favored,
or a < 0. Grouping events by the types of lineages involved (real or
virtual of type 1 or type 2) then by whether it is mutation, branching
or coalescence gives fourteen possibilities which occur at the following
rates.

Oy (q,(r1,ry,01,05)  q,(ry — 1L,y +1,01,0,)
ot (BY
2\ qy(ry,ry,01,07) 4o(r1,r2, 01, 02)
O ri,ry, U1, U ri+1,r,—1,04,0
r2_2<qo( 1572, 01 02) | 47y 2 1 2)) €.2)
2\ qy(ry,rp,01,07) 4o(ri, 12, 01, 02)
Or ri,Fy, U, U Fi,ry, 0 — 1oy, + 1
U1_1<¢Io(1 2:01,02)  q,(ry, 19, 0; P )) .3)
2\ q,(ry,r2,01,07) qo(ry, 12, 01, 03)
Or ri,ry, Uy, 0 ri,ry, 0+ 1,0y — 1
U2_2(40(1 2:V1,02)  4(r1,72, 0y 2 )> (C.4)
2 qy(ry,rp, 01, 07) qy(ry,79,01,07)
ri,r, 0+ Lo
p 1 9ol 1+ 1 0) C5)
2 q,(ry,rp,01,07)
r,r, 0+ 1,0 Fi,Fy, U, 00 + 1
r2M<2%(1 2,1 2) | 9o, Uy, Vs )> .6)
2 qy(ry,1rp, 01, 07) q,(ry, 1,01, 0;)
ri,ry,0; + 1,0
p, 12 Golrr2 01+ 1.05) <7
2 q,(ry, . 01,07)
ri,ry, 01+ 1,0 ri,ry, U1, 0y + 1
02M<2%(1 2,V 2) | (s Uy, 0 )> .8)
2 q,(ry,75,01,07) qy(ry, 1,01, 07)
<r1>q9("1 —17"29111,1)2) (C.9)
2 q,(ry,75,01,07)
<r2> q,(r1,rp = 1,01, 0;) (€.10)
2 qa(rl7r27vl7l}2)
r,Fy, 0y — 1,0
ryv, Jelrz = 1 va) (€11)
qo(ry,12, 01, 1)
Fi,Fy, U1, 0y — 1
v, B2 0120 = 1) (C.12)
qo(ry,12, 01, 0)
<01>%(71,72,U1 —1302) (C.13)
2 ) qy(rysro, 01, 02)
<U2) q,(ry,rp, 01,05 = 1) (C.14)
2 %("1,"2,”1,”2)

The sum of (C.1) through (C.14) is equal to the total rate of events
in the unconditional ancestral process, (r; + r, + vy + 0,)(0 + |a| +
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ri + ry + v; + v, — 1)/2. Twenty-two distinct events (r,r,,v;,0,) —
(r’l,r’z,v’l,v;) are represented, one for each of the ratios of sampling
probabilities, qo(r’l,r’z, U’I,U’z)/qo(rl,rz, v, ;). Note that the assumption
of parent-independent mutation leads to the four kinds of spurious or
empty mutation events in (C.1) through (C.4) which do not change the
ancestral state of the sample (| = r|,r} = ry,0] = v;,0, = vy). Also,
only those events which have non-zero probabilities of giving the data
appear in (C.1) through (C.14); coalescent events between lineages with
different types and type-i mutation events on type 3 — i lineages would
make the data impossible.

Recall that the resolution of branching events depends on which
allele is favored by selection. The events and their probabilities in (C.5)
through (C.8) are just for the case a < 0, where A, is the favored allele.
Each branching event creates an incoming lineage and a continuing
lineage, both of which may be of type 1 or type 2. Let (I,C) be the
types of these lineages. In (C.5) and (C.7), only one of the four (I,C)
pairs has non-zero probability of producing the data: (I = 1,C = 1)
corresponding to the event (r|,r,,v;,v,) = (r),r, 0, + 1,0,). In (C.6)
and (C.8), the possibility (I = 1,C = 1) is discarded as it would then
be impossible for the descendant lineage to be of type 2. The other
three possibilities have non-zero chances of producing the data, and
associated events

(ry,ry,v1 +1,05) when(I =1,C =2) (a)
(ry,r2,01,07) = (1,1, 0 + 1,0p) when(I =2,C =1) (b) (C.15)
(ry,ry, 01,00+ 1) when(I =2,C =2) ().

In contrast, if « > 0 then branching events on type-2 lineages are the
ones for which only one of the four (1, C) pairs has non-zero probability
of producing the data: (/ = 2,C = 2) corresponding to the event
(ry, 79,01, 0p) = (r1,ry, 01,0, + 1). When « > 0, if the branching event
occurs on a type-1 lineage, then in place of (C.15)(a), (C.15)(b) and
(C.15)(c) we have

(ry,ry,vy +1,05) when(I =1,C=1) (a)
(rsrp,01,07) = (rp,rp, 01,0, + 1) when(I =1,C =2) (b) (C.16)
(ry,ry, 01,05 + 1) when(I =2,C=1) ().

Therefore, when a > 0, (C.5) through (C.8) must be replaced with

ri,ry, 01+ 1,0 P, U1, 05 + 1
rlg(%(l 25U 2)+2%(1 2,V U )> (C.17)
2 q,(ry,79, 01, 0,) 4o(r1,r2, 01, 02)
" gqo(rl’r2’vlvvz+1) (C.18)
22 g, (r1a .01, 0y)
ri,ry, 0+ 1,0 ri,ry, U1, 05 + 1
U]g(‘lo(l 201+ L0 4Ty Oty >> €19
2\ g,y 7. 01, 05) 4o(ry, 72,01, 07)
a 4o(ri-ry, 01,0 + 1) (C.20)

Uy —————
2 q,(ry,rp,01,0)

Egs. (C.1) through (C.7) and (C.9) through (C.14) are the same for a > 0
and « < 0.

The simplifications discovered by Slade (2000a) and Fearnhead
(2002) follow from the simple fact that each sampled lineage is either of
type 1 or type 2. Slade (2000a) noticed that when both the descendant
lineage and the incoming lineage have the favored type, the type of
the continuing lineage does not matter so there is no need to introduce
a new virtual lineage. Instead, these two possibilities can be collapsed
into a single null event which does not change the numbers and types
of ancestral lineages. That is, we can use

qo(r1, 1y, 01 + 1,0p) + q,(rq, 7y, 01,05 + 1) = q,(ry, 7, 01, 05) (C.21)

in (C.6), (C.8), (C.17) and (C.19). As a result, no type-2 virtual lineages
will be created.

Along the same lines, Fearnhead (2002) noticed that when mutation
is parent-independent there is no need to follow ancestral lineages once
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they have mutated, because the ancestral lineage could be of either
type. Any such lineage can be removed from the ancestral process. Here
we use

qo(r1, 79, 01, 09) + q,(r1 + 1,1y — 1,01, 05) = q,(ry, 70 — 1,01, 0,) (C.22)

in (C.2), and other appropriate identities in (C.3) and (C.4). But we do
not make use of this simplification in (C.1) because our specific goal
is to model latent mutations in the ancestry of A,. These are actual
mutations, where the ancestral type was A,. The remaining A, - A,
empty mutations are null events, which do not change the numbers and
types of ancestral lineages.

The conditional ancestral processes for « < 0 and a« > 0 given by
(55) and (56) in the main text each include just five kinds of (non-
null) events. We obtain these by applying the simplifications of Slade
(2000a) and Fearnhead (2002) then grouping events by their outcomes.
For example, the coalescent events in (C.10) have effect r, - r, — 1, as
do the combined mutations in (C.2) once the simplification of Fearn-
head (2002) is applied. So these appear together as one kind of event,
the fifth case in both (55) and (56).

We do not include null events in (55) and (56) since these by
definition have no effect on the ancestral lineages. In the case a < 0, the
null events are empty mutations on type-1 real lineages and branching
events on type-2 real lineages where the incoming line is also of type
2. These occur with total rate r 6z, /2 + r,|a|/2. In the case a > 0, the
null events are empty mutations on type-1 real lineages and branching
events on type-1 real lineages where the incoming line is also of type
1. These occur with total rate r 0z /2 + rja/2.
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