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Abstract: It is well known that relocation strategies in ecology can make the di↵erence between ex-
tinction and persistence. We consider a reaction-advection-di↵usion framework to analyze movement
strategies in the context of species which are subject to a strong Allee e↵ect. The movement strategies
we consider are a combination of random Brownian motion and directed movement through the use
of an environmental signal. We prove that a population can overcome the strong Allee e↵ect when the
signals are super-harmonic. In other words, an initially small population can survive in the long term
if they aggregate su�ciently fast. A sharp result is provided for a specific signal that can be related
to the Fokker-Planck equation for the Orstein-Uhlenbeck process. We also explore the case of pure
di↵usion and pure aggregation and discuss their benefits and drawbacks, making the case for a suitable
combination of the two as a better strategy.
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1. Introduction

Around 1930 Warder Clyde Allee experimentally showed that the survival rate of goldfish was
positively correlated with population density. In [1] Allee documented his finding and concluded that
aggregation and cooperation are beneficial for the survival of species. This e↵ect was dubbed the Allee
e↵ect, which, informally, is the decreased individual fitness at low population densities [2–4]. Since
its discovery, the Allee e↵ect has been documented for many taxa and it is believed that social species
are especially prone to it [5]. For example, many species, such as the prairie dogs, communicate via
a social network that breaks down when the population density is low [6]. This positive dependence
between fitness and population density can put these species at high danger of extinction due to habitat
alterations or a decreased population that is, for example, due to hunting. Allee e↵ects that cause the
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existence of a critical population density necessary for persistence are called strong and those that do
not are called weak. The critical population density needed in the case of the strong Allee e↵ect is
referred to as the Allee threshold.

Populations tend to use heterogeneities in the environment and positive influence of the presence
of congeners to aggregate and take advantage of social structures [7]. Thus, on the one hand, species
develop movement strategies by using environmental cues in order to aggregate and potentially in-
crease their fitness. On the other hand, dispersal, i.e., the spreading of organisms from one location
to another, has also been found to help populations establish themselves [8]. For example, dispersal
can help populations control their size or expand their territory. While dispersal can be beneficial to
species, in some situations it has been found to be detrimental. One example being the case of high
dispersal rates, which can prevent the adaptation of a population to a new environment and hinder the
survival of small populations [9]. In fact, aggregation and dispersal can be viewed as competing ef-
fects, and many works have studied this competition from a mathematical point of view; see [10–12]
and the references therein. As mentioned earlier, population aggregation can occur in multiple ways.
One way is by individuals moving toward areas where there is a high population density. This type
of model has been studied extensively, see, for example [13, 14]. Alternatively, individuals can fol-
low environmental cues [15], such as through taxis on an environmental signal. In [16] the authors
considered aggregation in species subject to logistic growth through nonlinear di↵usion, meaning that
individuals slow down if the population density increases. They showed that this movement strategy,
under Dirichlet boundary conditions, allows the population to persist on smaller domains than if they
moved using linear di↵usion. On the other hand, this movement strategy also produces an Allee e↵ect
for some parameter regimes. Naturally, di↵erent species will develop di↵erent movement strategies to
optimize their survival and it is believed that species subject to a strong Allee e↵ect might benefit from
aggregation more than species subject to a weak Allee e↵ect or to logistic growth. In [17], Fernan-
dez and collaborators used di↵erential equations and stochastic simulations to compare the survival of
species when individuals moved between patches either using individual information or collectively
moving though trail setting and following behavior. They found that collective movement was more
advantageous than individual movement only when the Allee e↵ect was su�ciently strong.

For this paper we are interested in understanding the benefits of dispersal versus aggregation as
movement strategies, in particular for species which are subject to the strong Allee e↵ect. Specifically,
we are motivated by the question of whether a population can employ specific movement strategies
to overcome a strong Allee e↵ect. The notion of “overcoming the Allee e↵ect” will be made mathe-
matically precise in what follows; but in essence, it means that a population with initial resources that
would lead to extinction, if the species were to only employ dispersal as a movement strategy, would
otherwise persist if it instead also aggregated. Recall that classical spatially explicit population models
typically use simple di↵usion to describe dispersal; see [8]. However, in recent years there has been
considerable interest in models that include some type of biased movement. There are two natural
phenomena that give rise to such biased movement. The first is movement by physical advection, such
as movement in rivers. This movement is typically unidirectional, constant, a↵ects all populations in
a similar way and often does not involve behavior on the part of the individuals. The second is taxis
along environmental gradients in heterogeneous environments, such as directed movement toward re-
gions with more resources, fewer predators or other favorable features. That sort of biased movement
may be in any direction and may di↵er qualitatively between populations because it depends on be-
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havioral considerations and the perceptual and cognitive abilities that allow people or organisms to
sense and respond to their environment. An early paper on population dynamics in the presence of
physical advection is [18]; some representative results on that topic are given in [19–22]. More refer-
ences and discussion on models with physical advection can be found in [23]. Early papers on taxis
along environmental gradients include [24, 25] and further discussion and references for that class of
models are given in [15]. A related class of models involves movement biased by the density of the
population itself or another population with which it interacts; see for example [26–29]. A discussion
of models with physical advection versus models for directed movement and additional references is
given in [30].

Here, we specifically explore the benefits of dispersal and aggregation movement strategies and the
benefits of a balance between the two, i.e., when the population occupies the whole space. The ag-
gregation will come from the species following a directed movement strategy. In particular, they will
be advected by a spatially heterogeneous environmental signal, which provides the velocity field that
advects the population. We are motivated by some numerical experiments presented in [31] that illus-
trate that directed movement via certain signals can indeed aid a population in overcoming the Allee
e↵ect. In other words, there are environmental signals for which a population that is initially below
the Allee threshold and moving with a combination of unbiased and directed movement, as defined by
the environmental signal, can persist. The numerical experiments presented in [31] are complemented
with a partial theoretical result. Specifically, it is proved that for initial data below, but close to the
Allee threshold, the population will, at some point in time, be larger than the Allee threshold in certain
regions. More or less, the concentration happens in regions where the spatially heterogeneous signal is
larger than its average. However, this concentration need only be for a finite amount of time. Indeed, if
the directed movement is not su�ciently strong, then the population eventually becomes extinct. The
proof required a change in convexity of the environmental signal, which made it challenging for the
development of super and sub-solutions at the boundary, to prove a global-in-time result. To make
progress on the theoretical side we study the problem in the whole space, which removes the challenge
of working with the boundary, but it adds the challenge of finding global-in-time solutions for a model
with unbounded coe�cients in an unbounded domain.

1.1. Summary of results

The questions motivating us here force us to work with reaction-advection-di↵usion models with
unbounded coe�cients in the whole space. Thus, the first issue we must address is that of the global
existence and uniqueness of classical solutions to these models. Note that the global-in-time existence
of classical solutions does not follow from classical theory due to the unbounded nature of the co-
e�cients in the equations that we study. Instead, we prove global existence of solutions using ideas
from the Krzyżański Method, first introduced in [32] to study the global existence of solutions to the
Cauchy problem for a general class of second order linear parabolic equations in non-divergence form
with unbounded coe�cients.

In terms of the dynamics of the solutions, we observe that when the initial population is bounded at
all locations, but has unbounded mass, that is u0 2 L1(Rn) but u0 < L1(Rn), then species can overcome
a strong Allee e↵ect if they aggregate su�ciently fast. This is true even if the initial population is below
the Allee threshold at every point. More specifically, we show that super-harmonic signals can help a
population overcome the Allee threshold, thus populations with initial data that would not survive with
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the simple use of random motion can indeed persist if the directed movement is su�ciently strong. In
such cases, the population survives even under a purely aggregative movement strategy through pure
taxis. One example of such a signal comes from the Fokker-Planck equation for the Orstein-Uhlenbeck
process, where the signal is given by A = �1

2 x2. It is important to note that with the same initial
conditions, the population would not survive if it employed only dispersal as a movement strategy.
We also show that subharmonic signals are detrimental to the population and that directed movement
along those signals can cause a population to go extinct, when it would otherwise have persisted under
a simple di↵usion strategy.

If we require that the initial population have bounded mass, that is u0 2 L1(Rn) \ L1(Rn), then the
situation is quite di↵erent. We show that pure di↵usion is more beneficial for a population than pure
aggregation. In fact, a population with initial data with compact support will never survive under pure
aggregation. Moreover, we use a scaling argument to show that a combination of the two movement
strategies is better than employing only one of either of these strategies. This scaling argument is ver-
ified through various numerical experiments; see Figure 1 for an illustration of the results. A relevant
result in this direction was obtained by Chen et al. who studied pairs of competing populations subject
to logistic growth in heterogeneous environments and showed in [33] that if the di↵usion e↵ect is large,
but advection on resource gradients is small, then increasing advection relative to di↵usion is beneficial
for a population. However, if the di↵usion e↵ect is small then the opposite result holds.

We are also interested in understanding the connection between the unbounded domain and the
bounded cases, specifically, we study the bounded domain case with Neumann boundary conditions.
For the bounded domain case with zero-Neumann boundary conditions we obtain similar results to
those obtained on the whole space.

Outline: We present the modeling framework and main results in Section 2. Section 3 considers
the case of infinite resources, that is u0 2 L1(R), as well as the connections to the bounded domain
problem. Section 4 considers the case when we have initial data in L1(Rn) \ L1(Rn).

2. Background and model

In this section we discuss our modeling framework, some previous results that are relevant to this
work, and some assumptions. We begin by discussing some aspects of the dynamics of solutions to the
classical reaction-di↵usion equation that are relevant to our story. In the most general context, without
competition, we will work with the following modeling framework:

(
@tu(x, t) =M[u] + g(x, u)u, x 2 Rn, t > 0,
u(x, 0) = u0(x), x 2 Rn,

(2.1)

whereM is an operator modeling the movement of a population u : Rn ⇥ [0,1)! [0,1) and u0 is the
initial distribution of the population.

2.1. Dynamics of classical reaction-di↵usion equations

Classically, dispersal has been represented by linear di↵usion, modeling random dispersal of indi-
viduals in the population. In such a case, we haveM[u] = µ�u. Specifically, the process of dispersal
and growth/decay on the whole space has been traditionally modeled by the now classical reaction-
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di↵usion equation: (
ut = µ�u + f (u, x), x 2 Rn, t > 0,
u(x, 0) = u0(x); (2.2)

see for example [8, 34] and the references therin. In such a model the species does not take the envi-
ronment or population density into account when making movement decisions. When the population
is subject to logistic growth this equation is known as the Fisher-KPP equation, which has been the
subject of much interest; see for example [35–37] and the references therein. For a population that
is subject to the Allee e↵ect the prototypical reaction term is given by f (u) = u(1 � u)(u � ✓) with
0 < ✓ < 1. Note that at the microscopic level, individuals are simply moving randomly here.

2.1.1. Long-term behavior of solutions on R

The spatio temporal dynamics of populations subject to the Allee e↵ect can be quite complex be-
cause the population grows at high densities but decays at low densities. It is, however, beneficial to
understand the dynamics of solutions to (2.2) in two specific cases, i.e., in the case of infinite resources,
that is u0 2 L1(R) but not L1(R) and, in the case of L1(R) initial data (more specifically when u0 has
compact support).

Consider a population whose density is denoted by u, and whose spatio-temporal dynamics are
governed by (2.2) with constant initial data u0 and f (u) = u(1�u)(u�✓). If 0  u0 < ✓, then u(x, t)! 0
uniformly in x as t ! 1 on compact sets. On the other hand, if ✓ < u0 < 1, then u(x, t)! 1 uniformly
on compact sets as t ! 1 (note that one is carrying capacity here). Of course, in this case, the
initial data are not in L1(R). On the other hand, we can consider now what happens to a population
whose initial distribution has compact support; for simplicity take u0 = 1[�L,L]. In [38], Aronson and
Weinberger showed that if L is su�ciently large, the population will persist, but it will go extinct if L
is too small. Later in [39], Zlatos proved that there exists a critical threshold, L⇤, separating persistence
versus extinction. More precisely, if L < L⇤ then u(x, t) ! 0 as t ! 1, uniformly on compact
sets. On the other hand, if L > L⇤ then u(x, t) ! 1 as t ! 1, uniformly on compact sets. In the
critical case, when L = L⇤, the population approaches a non-constant, positive equilibrium solution. To
understand the mechanisms at play we consider a simple scaling argument with the special case when
f (u) = ru(1 � u)(u � ✓). Let us make the following change of variables:

x̄ =
x
xc
, t̄ =

t
tc
, ū =

u
uc
, (2.3)

where xc, tc and uc are the characteristic length, time and solution scales to be determined later. Given
the new variables Eq (2.2) becomes

ūt =
µtc

x2
c

ūx̄x̄ + tcrū(1 � ucū)(ucū � ✓), x 2 R, t > 0.

If we consider initial data u0(x) = 1[�L,L], then the natural characteristic length scale is xc = 2L, which
is the size of the support of the initial data. One can consider various time scales, but let us look at the
reaction time scale, tc =

1
r , and let uc = 1.We then obtain the following equation:

ūt = �ux̄x̄ + ū(1 � ū)(ū � ✓), x 2 R, t > 0, (2.4)
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where � = µ
4rL2 . From this we can observe that for L large, the di↵usion term is overpowered by the

reaction term; thus, the population grows and can establish itself. On the other hand, when L is small,
� is large and the di↵usion overpowers the reaction term. Here, we expect the population to disperse
and eventually approach zero on compact sets. Apparently the two terms should balance around the
following value:

Lc =

r
µ

4r
.

This result gives an intuitive understanding of the results proved by Zlatos in [39] which are discussed
above. Now, for constant initial data u0 2 (0, ✓), although the reaction term dominates, the population
decays uniformly, as a consequence of the Allee e↵ect.
Remark 1. In the case of constant initial data u0 2 (0, ✓), the solution to (2.2) approaches zero uniformly
in compact sets. Thus, even if we have infinite resources, with this movement strategy the population
does not survive.

2.2. Passive di↵usion with directed movement

Let us now consider a reaction-advection-di↵usion equation, which has been used heavily in the
study of spatial ecology; see for example [15,34,40] and the references therein. Specifically, we study
the evolution of a population density:

(
ut = r · (µru � �urA) + g(x, u)u, x 2 Rn, t > 0,
u(x, 0) = u0(x), x 2 Rn,

(2.5)

with g as a bistable-type growth function, modeling the Allee e↵ect. Note that we assume that 0 <
✓(x) < m(x) for all x 2 R. In Eq (2.5), the function A provides an environmental signal for the biased
movement. We work with admissible signals, A, which satisfy the following:

(A1) A 2 C2+↵(Rn);
(A2) |rA|  c1

q⇣
1 + |x|2

⌘
and ��A(x)  c2 for some c1, c2 2 R and all x 2 Rn;

denote admissible growth patterns by g(x, u)u with g satisfying:

g(✓(x)) = g(m(x)) = 0, g(z) < 0 for z 2 (�1, ✓(x)) [ (m(x),1),
g(z) > 0 for z 2 (✓(x),m(x)) (2.6)

such that m and ✓ are bounded and su�ciently smooth so that the following is true:

(A3) g 2 C2(Rn ⇥ [0,1));
(A4) 0 < ✓(x) < m(x)  M for all x 2 Rn and 0 < M < 1;
(A5) limz!1 g(x, z) = �1 for all x 2 Rn.

As the main example, we keep in mind the classical growth pattern modeling the Allee e↵ect:

g(x, z) = (m(x) � z)(z � ✓(x)), (2.7)

where m represents the resources and ✓ represents the Allee e↵ect threshold.
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2.3. Global existence and equilibrium solutions

In this section we discuss the fundamental question of the global-in-time existence of solutions to
(2.5). We make use of the Krzyżański method [32], which involves constructing an auxiliary function
H(x, t), rewriting the equation in terms of u/H(x, t) and solving the new equation in small time steps,
which is needed in the construction of H. This a↵ords one more control mechanism for the growth
of the coe�cients and the solution as |x| ! 1. Here, the type of non linearities that are of interest
to us eliminate the need for the functional, H, and we can construct a solution in a more direct way.
The main idea is to solve the problem on bounded domains with Dirichlet boundary conditions. We
construct a sequence of solutions, each with a larger domain, that is monotonically increasing. Then,
using standard interior estimates for parabolic equations, we can construct a diagonal sequence of such
solutions that converge to a solution on the entire space.
Theorem 1. Assume that the assumptions (A1)–(A5) hold and u0 2 Cb(Rn). Then, for any T > 0 there
exists a solution u 2 C2,1(Rn ⇥ (0,T )) \C(Rd ⇥ [0,T ]) to (2.5) with initial data u0.

Proof. For the proof, it is useful to recast Eq (2.5) as follows:
(

ut = µ�u � �ru · rA � �u�A + f (x, u)u, x 2 Rn, t > 0,
u(x, 0) = u0(x), x 2 Rn,

(2.8)

where f (x, u) = ���A + g(x, u). Note that, by the conditions (A2) and (A5) there exists a constant
K > 0 such that f (x, z) < 0 if z � K. We first study an auxiliary problem cast on a bounded domain.
For this purpose, consider the parabolic domain DR

T = BR ⇥ (0,T ] where BR = {x 2 Rn : |x| < R}, as
defined for any R,T > 0. Then, consider the following problem:

8>>>>><
>>>>>:

ut = µ�u � �ru · rA � �u�A + f (x, u)u, x 2 DR
T ,

u(x, 0) = u0(x), x 2 BR,

u(x, t) = 0 for (x, t) 2 @BR ⇥ (0,T ].

(2.9a)
(2.9b)
(2.9c)

System (2.9) is a standard reaction-advection-di↵usion equation on a bounded domain. Consequently,
it has a comparison principle and u ⌘ K + 1 is a supersolution to System (2.9). Moreover, for non-
negative initial data, u0, which is not identically zero there is a unique positive solution. We denote this
solution defined on DR

T , for R > 1, by uR. Furthermore, note that sup(x,t)2DR
T

uR(x, t)  K + 1, which is
independent of R.

Now, as BR ⇢ BR+1, it follows that uR and uR+1 both satisfy (2.9a) on DR
T . Additionally, given that

uR = 0 on @DT
R and uR+1 > 0 on @DT

R , it holds that uR+1(x, t) � uR(x, t) for all (x, t) 2 DR
T . Similarly,

we conclude that uR+2 � uR+1 on DR+1
T and, consequently on DR

T . Through this process we obtain a
sequence of functions {uR+n}1n=1 , that solve (2.9a) on DR+1

T . Moreover, on DR
T , the sequence of functions

are monotonically increasing:

uR+n � uR+n�1 in DR
T for all n 2 N

and uniformly bounded by K + 1. As a consequence, the sequence of functions converge pointwise to
a function, u⇤R, on DR

T . Moreover, by the Lebesgue dominated convergence theorem we also have that:

up
R+n ! (u⇤R)p
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for all p � 1. Due to the smoothness imposed on the equation coe�cients by the conditions (A1)–(A4)
we obtain standard interior parabolic estimates that guarantee that uR+n 2 W2,1

p (BR�1 ⇥ (0,T ]) [41].
Thus, by a Sobolev embedding

uR+n 2 C2+↵,1+ ↵2 (BR�1 ⇥ (0,T ])

for 0 < ↵ < 1. Then, there is a subsequence of {uR+n}1n=1 that converges in C2,1(BR�1 ⇥ (0,T ]) to a
solution of (2.9a) on DR�1

T , which must be u⇤R.
We denote the subsequence of functions of {uR+n}n�1 , defined above on DR+1

T by
n
uR

0,k

o
k�1
. By a

similar regularity argument as discussed above, we can extract a subsequence of
n
uR

0,k

o
k�1

that converges
to a function, u⇤R+1, on DR

T , which is a solution to (2.9a) and must equal u⇤R in DR�1
T . Denote such a

subsequence by
n
uR

1,k

o
k�1

. We continue with this process, for m > 2 the subsequence
n
uR

m,k

o
k�1

converges
to a function u⇤R+m, which is a solution to (2.9a) on DR+m�1

T . Moreover, it is equal to u⇤R+m�1 on DR+m�2
T .

We see that the diagonal sequence
n
u⇤k,k

o
k�1

converges to a function, which we can call u⇤ on DR
T for any

R. Note that the function u⇤ thus satisfies (2.8).
To prove uniqueness, assume that u and v are two bounded solutions to (2.8). Let w = u � v; then,

w is bounded and satisfies the following:

8><
>:

wt = µr · (rw � �wrA) + h(x, t)w, x 2 DR
T ,

w(x, 0) = 0, x 2 Rn,

(2.10a)
(2.10b)

where h(x, t) = g(u, x)u � g(v, x)v is a bounded function. It follows by Theorem 1 in [42] that w ⌘ 0
and thus u ⌘ v.

We remark that Theorem 1, follows from Theorem III in [43], which also uses a version of the
Krzyżański method. Actually, Theorem III in [43] only gives a local-in-time solution; however, in
our case it directly implies global-in-time existence, because the nonlinearity in our system provides a
global a priori bound on solutions. We have included the proof of global existence in order to keep this
paper self-contained as well as to provide a shorter and more direct proof for our particular problem.
Additionally, Theorem 1 in [42] implies that a comparison principle is available for System (2.5),
which a↵ords us the use of super- and sub-solutions.

Definition 1 (Super-solutions and sub-solutions). A function w 2 C2(Rn) is a super-solution to (2.5)
if it satisfies the following:

wt � µr · (rw � �wrA) + g(x,w)w, x 2 Rn, t > 0. (2.11)

A function w 2 C2(Rn) is a sub-solution to (2.5) if it satisfies (2.11) with the inequality reversed.

As a consequence of Theorem 1 and the comparison principle we obtain the existence of at least
one positive equilibrium solution to (2.5). This relies on the now-classical technique that dates back to
Aronson and Weinberger [44].
Theorem 2 (Existence of equilibrium solutions). Assume that the conditions for Theorem 1 hold. Ad-
ditionally, assume that Eq (2.5) admits a strict sub-solution, u0(x), which is bounded. There exists at
least one positive equilibrium solution to Eq (2.5).
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Proof. From Theorem 1 we know that System (2.5) has a global classical solution ũ with initial data
u(x, 0) = u0(x), where u0 is the strict sub-solution. Note that any constant function, u1, is a super-
solution if it satisfies the condition that u1 > supx2Rn u0(x). Since u0 is a strict sub-solution we see
that

µr · (ru0 � �u0rA) + g(x, u0)u0 > 0;

thus, ũt(x, 0) > 0 for all x 2 Rn. Hence, we know that ũ(x, t) > ũ(x, 0) by the strong maximum principle
applied on bounded regions. We define w(x, t) = ũ(x, t + �) for some arbitrary � > 0 and note that w is
a solution to (2.5), as the equation is autonomous in time. Moreover, w(x, 0) = ũ(x, �) > ũ(x, 0); thus,
by the comparison principle we have that ũ(x, t + �) = w(x, t) > ũ(x, t).

Since, � was arbitrary we see that ũ(x, t) is increasing in time. However, ũ(x, t) < u1 and thus
ũ(x, t) ! u⇤(x) as t ! 1 pointwise in x. Furthermore, classical local parabolic interior estimates on
bounded domains imply that u⇤ has to be smooth and satisfy (2.5).

3. Case of infinite resources: u0 2 L1(R)

The first result in this section states that for general super-harmonic signals, a population can over-
come the Allee e↵ect provided that the signal used by the population provides a su�ciently strong pull
from infinity. However, if the signal pull is too weak, then the population will approach zero in the long
term if the initial population is below the Allee threshold; thus, the population is unable to overcome
the Allee e↵ect through aggregation. The strength of pull of the signal is represented in the coe�cient
�.

Theorem 3 (Super-harmonic signal). Let A and g respectively represent an admissible signal and
growth pattern with

�A0  �A(x)  �A1 < 0 for all x 2 Rn. (3.1)

Moreover, let u be the C2,1(Rn⇥ [0,1)) solution to (2.5) with constant initial data 0 < u0 < infx2Rn ✓(x).
There exist constants 0 < �(u0, A) < �(u0, A) such that, if

(i) If � < � then u(x, t)! 0 as t ! 1 uniformly for all x 2 Rn;
(ii) If � > � then u(x, t) ! u⇤(x) as t ! 1 for all x 2 Rn, where u⇤ is a positive equilibrium solution

to (2.5).

Remark 2. For more general signals, A, that satisfy �A(x)  �A1 < 0 for all x 2 Rn, such as those in
one dimension for A(x) = �a4x4 � a2x2 + a1x + a0 with a4, a2 > 0 and a0, a1 2 R, part (ii) of Theorem
3 also holds.

For a specific case, connected to the Fokker-Planck equation for the Orstein-Uhlenbeck process, we
obtain the following sharp result. This connection is explained in more detail after the statement of the
result.

Theorem 4 (Sharp result). Let g be an admissible growth pattern, u be the solution to (2.5) with A(x) =
�A0x2 with A0 > 0 and initial data u0 be a positive constant with 0 < u0 < infx2Rn ✓(x). There exist
0 < �⇤(u0, A) such that the following is true:

(i) If � < �⇤ then u(x, t)! 0 as t ! 1 for all x 2 Rn;
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(ii) If � > �⇤ then u(x, t)! u⇤(x) as t ! 1 for all x 2 Rn, where u⇤ is a positive equilibrium solution
to (2.5).

Remark 3. The results of Theorem 4 continue to hold for signals of the form A(x) = �a2x2 + a1x + a0

with a2 > 0 and a1, a0 2 R.

The Ornstein-Uhlenbeck process [45] is a stochastic process with applications in financial math-
ematics, where it is commonly known as the Vasicek model [46]; in the physical sciences, where it
models large Brownian particles under the influence of friction [47]; and in evolutionary biology, im-
proving the Brownian motion selection of changes in organism phenotype [48]. This stochastic process
is given by the stochastic di↵erential equation:

dxt = �↵xt dt + �dWt,

where ↵,� > 0 and Wt represents a Wiener process. We can interpret this stochastic process as a
modification of Brownian motion where particles are drawn to the central location at x = 0. The pull
of the particle towards the origin is strengthened as the particles move further away from the origin.
It can be described in terms of the evolution of a probability density function, u(x, t), specifying the
probability of finding the process in state x at time t. The evolution equation for u is given by the
Fokker-Planck equation:

ut =
�2

2
�u + ↵r · (xu). (3.2)

Note that (2.5) corresponds to (3.2) with µ = �2

2 and A(x) = �↵µ x2

2 , for which we obtain the sharp
result stated in Theorem 4.

Finally, we obtain that for strictly subharmonic signals, if the directed movement is su�ciently fast,
then the population will always become extinct, even if initially it is above the Allee threshold.

Theorem 5 (Sub-harmonic signal). Let A and g respectively represent an admissible signal and growth
pattern with

�A(x) � A1 > 0 for all x 2 Rn. (3.3)

Moreover, let u be the C2(Rn ⇥ [0,1)) solution to (2.5) with positive constant initial data, u0. There
exist constants 0 < �⇤ = �⇤(u0, A1) such that if � > �⇤, then u(x, t) ! 0 as t ! 1 uniformly for all
x 2 R.

To prove Theorems 3 and 4 we need the following lemma. First, we show the existence of super-
and sub-solutions.

Lemma 1 (Super versus subsolution). Let A satisfy the conditions of Theorem 3 and v = u0 < ✓. For
� > � with

� := �g(u0)
A1µ

(3.4)

v is a sub-solution and for � < � with

� = �g(u0)
A0µ
, (3.5)

v is a super-solution.
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Proof. Let v = u0 < ✓(x) for all x and define the operator L[w] = µr · (rw � �wrA) + g(x,w)w. We
show that v is a sub-solution for � su�ciently large. Note that we simply need to show that Lv � 0. For
this purpose, we compute the following, taking into account that L[w] = µ (�w � �w�A � �rw · rA):

Lv � (�µA1 + g(u0)) > 0,

provided that (3.4) holds, in which case v is a sub-solution However, if � satisfies (3.5) then we have

Lv  (µ�A0 + g(u0))v < 0,

in which case v is a super-solution.

We are now in the position to prove Theorem 3.

Proof. (Theorem 3) Let u0 be a constant which is below ✓(x) for all x. To prove (ii) consider the case
when � > �. We have by Lemma 1 that v = u0 is a sub-solution. Moreover, for a fixed �, take u as
constant. Then we have

Lu  µ�A0u + g(u)u < 0,

provided that u is chosen su�ciently large. Note, that v < u. Thus, if u(x, 0) = u0 then u(x, t) % w(x)
where w(x) is the minimal steady state sandwiched between v and u. This solution can be constructed
by using a standard monotone iteration scheme. Note that w(x) > ✓(x) for all x 2 Rn.

To prove (i) consider � < � we have by Lemma 1 that v = u0 is a super-solution. This implies that
for u(x, 0) = u0, u(x, t)& v(x) where v(x) is the maximal equilibrium solution satisfying 0  v(x) < u0.
For contradiction, assume that v(x) is non-zero. Let v1 := maxx2D v(x) < u0; thus, if u(x, t) is a solution
with initial data u(x, 0) = v1 then we have that u(x, t) decreases, which is a contradiction. We can then
conclude that v(x) ⌘ 0.

We now move on to the proof of Theorem 4.

Proof. (Theorem 4) The proof follows that of Theorem 3 by simply recognizing that

�⇤ = � = � =
�g(u0)
µA0

.

Finally, we consider the proof of Theorem 5.

Proof. (Theorem 5) Let �⇤ = 1
µA1

sup0<u {g(u)} . Then, for any � > �⇤ we obtain that u ⌘ u0 > 0 is
a super-solution and by a similar argument made in Theorem 3 we see that u(x, t) ! 0 uniformly as
t ! 1.

3.1. Connection to the bounded domain problem

It is more physically relevant to study our equation on a bounded domain, which motivates us
to study the connection between our equation posed on a bounded domain with di↵erent boundary
conditions and the Cauchy problem.
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3.1.1. Directed movement on a bounded domain

In this section we explore the relation between the Cauchy problem and Eq (2.5), but now defined
on a bounded domain with zero Neumann boundary conditions. Specifically, consider the following
system:

8>>>><
>>>>:

ut = µr · (ru � �ru · rA) + g(x, u)u, x 2 ⌦, t > 0,
u(x, 0) = u0(x), x 2 ⌦,
u(rA · ~n) = 0, x 2 @⌦,

(3.6a)
(3.6b)
(3.6c)

where ⌦ ⇢ Rn is smooth and star-shaped. Recall, that the star-shaped condition means that there
exists an x0 2 ⌦ such that for all x 2 ⌦, the line segment from x0 to x is contained in ⌦. Due to
the smoothness condition imposed on the signal A, classical theory provides a global-in-time classical
solution. Also, in this case, Neumann boundary conditions and no-flux boundary conditions are not
the same; see Remark 4. In the case of zero-Neumann boundary conditions we obtain the same results
as for the Cauchy problem.

Proposition 1 (Super-harmonic signal). Let A and g respectively represent an admissible signal and
growth pattern with

�A0  �A(x)  �A1 < 0 for all x 2 ⌦. (3.7)

Moreover, let u be the C2,1(⌦ ⇥ [0,1)) solution to (3.6) with initial data u0(x) = u0, i.e., a positive
constant with 0 < u0 < infx2⌦ ✓(x). There exist constants 0 < �(u0, A) < �(u0, A) such that if

(i) � < �, then u(x, t)! 0 as t ! 1 uniformly for all x 2 ⌦;
(ii) � > �⇤, then u(x, t)! u⇤(x) as t ! 1 for all x 2 ⌦, where u⇤ is a positive equilibrium solution to

(2.5).

Proof. The proof follows exactly that of Theorem 3, as we can use constant super- and sub-solutions.

The sharp result observed in the Cauchy problem also holds, we state the relevant version for con-
venience.

Proposition 2 (Sharp result). Let g be an admissible growth pattern, u be the solution to (2.5) with
A(x) = �A0x2 with A0 > 0 and initial data u0 be a positive constant with 0 < u0 < infx2⌦ ✓(x). There
exist 0 < �⇤(u0, A) such that the following holds:

(i) If � < �⇤ then u(x, t)! 0 as t ! 1 for all x 2 ⌦;
(ii) If � > � then u(x, t) ! u⇤(x) as t ! 1 for all x 2 ⌦, where u⇤ is a positive equilibrium solution

to (3.6).

Proof. The proof follows exactly that of Theorem 4, as we can use constant super- and sub-solutions.

Remark 4. To gain insight into what is happening in this case, we rewrite the zero Neumann boundary
condition as follows:

(ru · ~n � �urA · ~n) = �(�rA · ~n)u,

which is the flux into ⌦. Thus, if ⌦ is a star-shaped domain (relative to zero), for the super-harmonic
potentials considered in Propositions 1 and 2 we have that �(�µrA · ~n) > 0. Thus, in e↵ect, there
is a positive net-flux into the domain that is proportional to the population density on the boundary,
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reflecting an unlimited source of population. This is similar to what is happening in the unbounded
domain case where we start with a constant initial population; there, we also have an unlimited source
of population. Naturally, this makes it much easier for a population to overcome the Allee e↵ect,
because when (3.7) holds there is a net influx on the boundary and the population is gaining. In the
more physically relevant case of no-flux boundary conditions, the boundary does not aid the population,
and if a population overcomes the Allee e↵ect it will only be due to the aggregation of the population.
In the case of zero-Dirichlet boundary conditions, it is unclear that a population would be able to
overcome the Allee e↵ect.

3.1.2. Classical di↵usion on a bounded domain with an in-flux

If we are trying to compare the benefits of directed movement versus unconditional dispersal on a
bounded domain, a fair comparison of System (3.6) is the classical bistable reaction-di↵usion equation,
but with an influx. Specifically, consider the following system:

8>>>><
>>>>:

ut = µ�u + g(x, u)u, x 2 ⌦, t > 0,
u(x, 0) = u0(x), x 2 ⌦,
ru · ~n = �(�rA · ~n)u, x 2 @⌦.

(3.8a)
(3.8b)
(3.8c)

For this system, we have the following result.
Theorem 6 (Overcoming the Allee e↵ect with an influx: Classical case). Let A and g respectively
represent an admissible signal and growth pattern, which, additionally, satisfy the following:

(�2 |rA|2 � ��A) > min
z2⌦

g(x, z) for all x 2 ⌦. (3.9)

If u is the unique solution to (3.8) with strictly positive initial data, u0 > ✏, with some ✏ > 0, then
u(x, t)! u⇤(x), which is a positive equilibrium, uniformly in x.

Proof. First, consider that the boundary condition (3.8b) is equivalent to:

(ru + �urA) · ~n = 0.

Let w = e�Au so that ru = e��Arw � �e�AwrA. Thus, in fact we have that

[ru + �urA] = e��Arw.

Thus, we have that rw · ~n = 0 on @⌦. Moreover, we have that

�u = e��A[�w � 2�rw · rA + (�2 |rA|2 � ��A)w].

After multiplying (3.8a) by e�A we can rewrite the equation as follows:

wt = �w � 2�rw · rA + (�2 |rA|2 � ��A)w + g(x, e��Aw)w.

Now, note that if the condition (3.9) holds, then any u ⌘ ✏ > 0 is a sub-solution and will thus increase
to a positive equilibrium solution.

Thus, in fact it holds that for super-harmonic signals, if the directed movement is su�ciently large,
a population can overcome the Allee e↵ect with any positive initial data. Note that the condition (3.9)
actually allows signals that have a change in concavity; this just has to be made up by the gradient of
the signal.
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4. Case of L1(Rn) \ L1(Rn) initial data

In this section we explore what happens when a population pursues a movement strategy of pure
taxis versus a combination of dispersal and taxis. As a case study we continue to work with the
Ornstein-Uhlenbeck signal A(x) = �1

2 x2.

4.1. Case of pure directed movement

As it is believed that aggregation is beneficial for a population, in this section we explore what
happens when a population only advects following a signal that aggregates the population. The results
in this section hold for x 2 Rn. Taking into account that A(x) = �1

2 x2 we see that the dynamics of the
population follow the equation

@u
@t
= �r(ux) + g(u)u,

or, equivalently
@u
@t
= �x · ru + g(u)u + n�u. (4.1)

Note that Eq (4.1) can be solved by using the method of characteristics. Here the characteristics satisfy
the following equation:

dXt

dt
(x0) = ��Xt(x0),

which has the solution Xt(x0) = x0e��t. Along the characteristics the solution satisfies the following
di↵erential equation:

du(Xt(x0), t)
dt

= [n� + g(u(Xt(x0), t)]u(Xt(x0), t). (4.2)

We show that if the initial population has compact support then a movement strategy of taxis along
a signal that aggregates is not a good strategy. For example, consider an initial population density of
the form u0(x) = �1Br (x) where r > 0, 0 < � < 1 and Br is the ball of radius r.

Proposition 3. Let u0(x) = �1Br (x) with 0 < � < 1; then, the solution to (4.1) satisfies
Z

Rn
u(x, t) dx! 0

as t ! 1.

To prove Proposition 3 we need the following Lemma.

Lemma 2. For a fixed n and � there exist non-negative constants 0  vn,� < ✓ and 1 < un,� such that if
u(X0(x0)) = � with vn,� < � < un,�, then the solution to (4.2) u(Xt(x0)) is that � < u(Xt(x0)) < un,� and

lim
t!1

u(Xt(x0)) = un,�.

Proof. Define h(u) = (n� + g(u))u. Note that based on the assumptions on the function g, we have that
if � is small then h has two positive roots vn,�, un,� with vn,� < ✓ and un,� > ✓. In particular, we have that
un,� is an increasing function of � and n. Moreover, h(u) > 0 for u 2 (vn,�, vn,�).
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Proof. (Proposition 3) As u0(x) = ↵Br(x) we obtain the following estimate using Lemma 2:
Z

Rn
u(x, t) dx 

Z

Rn
u0(Xt(x0)e�t)un,� dx

= �un,�

Z

Xt(x0)2Bre��t
dx = C�re�n�tun,� ! 0,

as t ! 1. Thus, the mass of the population approaches zero as t ! 1 because the characteristics
compress exponentially and the solution is bounded.

Remark 5. (Biological interpretation) Proposition 3 is independent of r, which implies that in an un-
bounded domain if a population has an initial population density with compact support, taxis along an
environmental signal, which aggregates the population, will not help a population survive.

To explore how much initial mass is needed for a population to survive under a strategy of pure
taxis we consider the initial data u0 = ũ(x)1BR + �x�↵1Rn\BR with ũ as a bounded function and R > 0.
From the discussion above we note that if the mass of the population is to remain bounded below away
from zero it will be thanks to any mass coming from |x| ! 1. If 0 < � < ✓ then we can obtain the
following crude lower bound:

Z

Rn
u(x, t) dx �

Z

Rn
u0(Xt(x0)e�t)e(�n+g(0))t dx

�
Z

J
�[Xt(x0)e�t]�↵e(�n+g(0))t dx,

where J =
�
Xt(x0)e�t 2 Rn\BR

 
. Then, we have that
Z

Rn
u(x, t) dx � e(�↵�+�n+g(0))t

Z

J
�x�↵ dx.

We must consider two scenarios here. On the one hand, if ↵ < n then e(�↵�+�n+g(0))t ! 1 as t ! 1 if �
is su�ciently large to guarantee that (�↵� + �n + g(0)) > 0. However, in this case u0 < L1(R). On the
other hand, if ↵ � n, the lower bound will approach zero and in fact we can obtain the upper bound for
� < ✓ Z

Rn
u(x, t) dx  e(�↵n�+�n+g(�))t

Z

J
x�↵ dx + e(�↵�+�+g(�))t

Z

BR

x�↵ dx,

which approaches zero as t ! 1. Thus, if we begin with initial data in L1(Rn), then the population will
not survive if it is initially below the Allee threshold outside of a compact set. In order for a strategy of
pure taxis along an environmental signal to help a species overcome the Allee e↵ect, it must initially
have a mass which is not in L1(Rn).
Remark 6. (Biological interpretation) A movement strategy based on a pure taxis movement following
the Orstein-Uhlenbeck signal will allow a population to persist only in the case where the initial data
is not in L1(Rn).
Remark 7. It is of interest to note some related results for the equation ut = r · (ru� �urm)+ (m(x)�
u)u. In [49], the authors considered the case when � ! 1. The authors prove that the equilibrium
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concentrates on the maxima of m. In particular, they proved that if m has only finitely many local
maxima and the other conditions hold, then, as � ! 1, the equilibrium approaches zero in L2, which
led to the conjecture that the solutions are concentrated at maxima. Later, Lam and Ni obtained more
detailed results on how the concentration works [50, 51]. We conjecture that a similar result holds in
our case.

4.2. Combination of dispersal and directed movement

From the above discussion we can conclude that if a population had to choose between a pure
dispersal strategy and a pure taxis strategy then it should choose based on the initial population density.
Indeed, if a population has initial data with compact support, then it is better o↵ employing the pure
di↵usive movement strategy, but if it has infinite resources it could be better o↵ employing a pure
taxis movement strategy. In this section we explore a movement operator that combines both of these
strategies. For simplicity, we consider the following model in one dimension:

(
ut = µuxx + �ux · x + ru(1 � u)(u � ✓) + �u, x 2 R, t > 0,
u(x, 0) = 1[�L,L], x 2 R. (4.3)

Performing the change of variables given by (2.3) with tc =
1
� and xc = L we obtain:

ūt = �ūx̄x̄ + ūx · x̄ +
r
�

ū(1 � ū)(ū � ✓) + ū, x 2 R, t > 0, (4.4)

where � = µ
�L2 . One can observe that when � is large it reduces the e↵ect of the di↵usion. In fact, when

�L2 is very large, initially, the dynamics of the solution are dominated by the following equation:

ūt = ux · x + u, x 2 R, t > 0.

The solution is initially dominated by taxis and exponential growth. Specifically, the characteristics
compress to the origin exponentially fast and the solution grows exponentially so that the mass is
initially conserved. Note that the di↵usion, growth and advection apparently balance when:

Lc =

r
µ

4�
. (4.5)

When the characteristics compress enough so that the length scale of the solution is less than Lc, then
di↵usion begins to dominate and the solution spreads out. This is consistent with what we can conclude
from the nonlinear Feynman-Kac representation of (4.3):

8><
>:

dYt = �Ys + 2µ dWs,R
R

u(x, t)'(x) dx = E
h
'(Yt)exp

⇣R t
0 g(Ys, u(s,Ys)) ds

⌘i
.

(4.6)

The Ornstein-Uhlenbeck with the drift coe�cient � and di↵usion coe�cient µ has an invariant measure
which is a Gaussian with variance µ� as is predicted by (4.5). Thus, we see that a small amount of
di↵usion is imperative for the population to stabilize and not concentrate at the origin.

We performed some numerical simulations to test our predicted critical value, Lc, which we con-
jecture separates the extinction versus persistence of a population. Figure 1 illustrates the predicted
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value, Lc, as computed by using Eq (4.5), versus the numerically approximated value, denoted by Lp.
The numerically approximated critical length, Lp, was found by approximating the transition between
extinction and persistence on a large, but bounded domain. We approximated the transition by numer-
ically approximating the time evolution of Eq (4.3) for characteristic initial data with di↵erent values
of L. We began with a value of L that guarantees that the solution will converge to zero as t ! 1.We
then iterated by adding a small increment to L (we increment by .02 in this case). The value Lp was
selected to be the first L for which the solution approaches a non-trivial equilibrium as t ! 1. We
did not expect this approximation to be exact, but you can see that they follow the same trend. The
predicted value given by (4.5) seemed to do a better job when � is large. To guarantee that the role of
the boundary was minimized, we ran the procedure outlined above for various domain sizes until the
change was not negligible.

(a) µ = 4 (b) µ = 8

Figure 1. Numerically approximated Lp versus the predicted value Lc =
q
µ

4� . The solutions
were obtained by using Matlab’s pdepe on a domain of size 40 with no-flux boundary con-
ditions with initial data u0(x) = 1[�L,L]. The value Lp is the smallest L where the numerical
solution is non-trivial.

5. Discussion

In this work we have explored the benefits of di↵erent movement strategies including pure di↵u-
sion, pure directed movement and a combination of the two, in the context of species who are subject
to a strong Allee e↵ect. We have found that some initial population with unbounded mass can lead to a
population surviving under the condition of pure directed movement, if the directed movement aggre-
gates the population, but not under pure di↵usion. On the other hand, if the initial population has finite
mass then it can survive provided that the mass is su�ciently large, but it will not survive under the
pure directed movement, even if it aggregates. A balanced combination of the two movement strate-
gies is ideal as proved in the whole space. We expect similar results to hold for the case of bounded
domains, but this remains an open problem. It is worth mentioning that the models we studied in this
work only include environmental signals with spatial heterogeneities and populations only use local
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information. In recent decades there has been increased interest in the study of more general signals
and the use of non-local information; see [52–54] and the references therein. Therefore, it would be
of interest to study signals that also depend on time and/or the population density. Another extension
of interest is the incorporation of non-local signals. In this direction, the authors have provided partial
results for a model with non-local aggregation through the use of a non-local velocity field modeled
by the convolution of the Newtonian potential and the population density. However, the picture in this
situation is much less clear as a big challenge is the lack of maximum/comparison principles.
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