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Abstract

Semantic guidance theories propose that attention in real-world scenes is
strongly associated with semantically informative scene regions. That is,
we look where there are recognizable and informative objects that help us
make sense of our visual environment. In contrast, image guidance theories
propose that local di↵erences in semantically uninterpreted image features
such as luminance, color, and edge orientation primarily determine where
we look in scenes. While it is clear that both semantic guidance and image
guidance play a role in where we look in scenes, the degree of their relative
contributions and how they interact with each other remains poorly under-
stood. In the present study, we presented real-world scenes in upright and
inverted orientations and used general linear mixed e↵ects models to un-
derstand how semantic guidance, image guidance, and observer center bias
were associated with fixation location and fixation duration. We observed
distinct patterns of change under inversion. Semantic guidance was severely
disrupted by scene inversion, while image guidance was mildly impaired and
observer center bias was enhanced. In addition, we found that fixation du-
rations for semantically rich regions decreased when viewing inverted scenes
relative to upright scene viewing, while fixation durations for image salience
and center bias were una↵ected by inversion. Together these results provide
important new constraints on theories and computational models of atten-
tion in real-world scenes.

Keywords: scene perception, semantic guidance, image guidance, inversion,
eye movements

1. Introduction

We process our complex visual world by shifting our overt attention to prioritize some scene
regions over others (Hayhoe & Ballard, 2005; Henderson, 2003, 2011). However, how we determine
which scene regions to prioritize for attention remains a fundamental question in cognitive science.
Image guidance theories propose that attention is primarily guided by local contrasts in semantically
uninterpreted image features such as luminance, color, and edge orientation (Itti & Koch, 2001; Koch
& Ullman, 1985; Parkhurst, Law, & Niebur, 2002). In contrast, semantic guidance theories propose
that attention is primarily guided by scene semantics, where attention is guided by the cognitive system
to scene regions that are recognizable, informative, and relevant to our current goals (Henderson, 2007;
Henderson, Brockmole, Castelhano, & Mack, 2007; Henderson, Malcolm, & Schandl, 2009; Henderson,
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2011). Therefore, the key di↵erence between image-guidance and semantic-guidance theories is the
degree to which semantically uninterpreted low-level image features and semantic representations guide
attention in scenes.

Much of the research on how attention is guided in scenes centers on or is influenced by image-
guidance theory in part because it is computationally tractable. Computational image saliency models
use local image feature contrasts (e.g., luminance, color, and edge orientation) that are computed at
multiple spatial scales and pooled to form an image saliency map (Borji, Parks, & Itti, 2014; Harel,
Koch, & Perona, 2006; Itti & Koch, 2001; Parkhurst et al., 2002). The image saliency map provides a
distribution of image salience for every pixel in the scene image and reflects the predicted distribution of
attention for that scene. Critically, computing an image saliency map requires no semantic knowledge
of the scene category or the objects within it. In comparison, semantic-guidance theory proposes that
semantic knowledge of the scene category, the objects it contains, and/or the goals of the viewer are
the primary determinants of the attentional priority in scenes (Buswell, 1935; Hayhoe & Ballard, 2005;
Henderson & Hollingworth, 1999; Henderson, 2003). However, unlike image-guidance theory, there
are no computational models that can generate a semantic analogue of an image saliency map from
only a scene image due to the inherent di�culty in modeling the complexities of human semantic
knowledge. For our purposes, semantic-guidance and image-guidance are very constrained terms, and
simply distinguish between attention guided by scene features that are semantically interpreted versus
those that are based on semantically uninterpreted low-level image properties1.

A large and growing body of evidence supports the semantic guidance of scene attention. This
includes research demonstrating that a viewer’s task (Yarbus, 1967; Tatler, Hayhoe, Land, & Ballard,
2011; Rothkopf, Ballard, & Hayhoe, 2007; Einhäuser, Rutishauser, & Koch, 2008; Castelhano, Mack,
& Henderson, 2009) and scene semantics (Potter, 1975; Biederman, 1972; Võ, Boettcher, & Draschkow,
2019; Williams & Castelhano, 2019; Wu, Wick, & Pomplun, 2014; Hwang, Wang, & Pomplun, 2011;
Malcolm, Groen, & Baker, 2016; de Haas, Iakovidis, Schwarzkopf, & Gegenfurtner, 2019; Henderson &
Hayes, 2017; Hayes & Henderson, 2021b) are the primary determinants of attention in scenes. Because
there is no computational model of scene semantics (though recent advancements are being made in
that direction Hayes & Henderson, 2021b), the association between scene semantics and attention has
typically been studied by actively manipulating a small number of isolated objects in each scene (Loftus
& Mackworth, 1978; Biederman, Mezzanotte, & Rabinowitz, 1982; Boyce, Pollatsek, & Rayner, 1989;
Hollingworth & Henderson, 1998; Henderson, Weeks, & Hollingworth, 1999; Castelhano & Heaven,
2011; Võ & Henderson, 2011). In these paradigms, isolated scene objects are manipulated to be either
more or less semantically consistent with the broader scene category. While these previous studies
provide important direct demonstrations of the e↵ect of scene-object semantics on attention, they are
all spatially limited to only small portions of the broader scene.

A more complete understanding of the role semantic features on scene attention requires a
complete map of the distribution of semantic features across entire scenes (i.e., a semantic map).
Therefore, to address this spatial limitation in studying scene semantics, we introduced a technique
called ‘meaning mapping’ that uses human raters to build a map of di↵erent local semantic features
across entire scenes (Henderson & Hayes, 2017, 2018; Rehrig, Peacock, Hayes, Henderson, & Ferreira,
2020). The meaning mapping idea is simple: use human raters’ rich semantic knowledge to tell us
how di↵erent semantic features are distributed across scenes. In this way, a meaning map serves as a
semantic analogue of an image saliency map and allows us to examine how semantically interpreted
features are associated with attention across the entire scene (Henderson & Hayes, 2017).

The meaning mapping approach takes a scene and splits it into small circular patches at multiple
spatial scales and then uses crowd-sourced ratings of these patches to estimate how informative and
recognizable each scene patch is in isolation (Henderson & Hayes, 2017). These isolated patch ratings

1Image-guidance and semantic-guidance theory should not be conflated with ‘bottom-up’ and ‘top-down’ processing
which have much broader and varied connotations in the attention literature.
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are then combined back into their location in the scene to form a ‘meaning map’ that provides an
estimate of the local semantic density at every location in the scene. Scene patches that are rich in
recognizable semantic information are rated as highly meaningful (e.g., a cluttered counter top in a
kitchen), while scene regions that are unrecognizable and/or contain very little information (e.g., a
patch of texture or a white wall) are rated as very low meaning. Between these two extremes exists
a rich continuum of patches of varying degrees of meaning (for an example of ratings produced by a
typical human rater see https://osf.io/yt2dk/). Meaning maps have been used as a tool to demonstrate
that across entire scenes local semantic density is one of the strongest predictors of attention in a wide
range of scene tasks including scene memorization (Henderson & Hayes, 2017, 2018), visual search
(Hayes & Henderson, 2019), free viewing (Peacock, Hayes, & Henderson, 2019b), scene description
(Henderson, Hayes, Rehrig, & Ferreira, 2018), brightness estimation (Peacock, Hayes, & Henderson,
2019a), and even when the scene semantics are task-independent (Hayes & Henderson, 2019). While
this work highlights the importance of generating a full map of semantic features, one limitation of
this body of work is that it is largely correlational unlike the previous work that actively manipulates
scene-object consistency.

A complementary approach to studying the role of semantic guidance and image guidance across
entire scenes is to manipulate the entire scene in ways which should impact each of them di↵erently.
Previous work suggests that inverting scenes and/or objects makes a scene harder to identify, scene
changes harder to detect, and object properties more di�cult to extract (Shore & Klein, 2000; Rock,
1974; Kelley, Chun, & Chua, 2003; Epstein, Higgins, Parker, Aquirre, & Cooperman, 2006; Peterson &
Gibson, 1994; Jolicoeur, 1988; Rock & DiVita, 1987; Tarr & Pinker, 1990). Importantly, semantically
uninterpreted image feature contrasts remain the same when a scene is inverted. Therefore, scene
inversion has a number of appealing qualities for studying the distinct roles of semantic guidance and
image guidance in scenes. First, inversion is an active manipulation that should disrupt semantic
guidance while leaving image guidance intact. Second, scene inversion provides a strong control for
low-level image features since the image feature contrasts are identical in the upright and inverted
scene viewing conditions. Finally, scene inversion manipulates the entire scene, and so, in conjunction
with image saliency maps and meaning maps, it will allow us to estimate the degree of change across
an entire scene for semantically uninterpreted low-level image features and semantically interpreted
features for the first time.

In the present study, we actively manipulated scenes using a scene inversion paradigm and
measured the e↵ect on semantic-guidance, image-guidance, and observer center bias using a mixed-
e↵ects modeling approach. There are two important questions we wish to answer with this approach.
First, to what degree are local scene semantics impaired by inversion across entire scenes? Previous
studies have shown decrements in manipulated local regions, but these studies do not provide an
estimate of how attention to local semantic features is a↵ected globally across entire scenes. Second,
if scene semantics are significantly disrupted by scene inversion, does this disruption then modulate
image guidance and/or observer center bias? Since computational models of scene attention produce
full maps of prediction, it is important to know how attention to both image features and critically
semantic features are globally a↵ected by inversion and how they interact when one is disrupted.
Answering these questions has the potential to provide important new constraints on both theory and
computational models of scene attention. That is, in addition to how attention operates in upright
viewing, theories of scene attention and computational models will also have to be able to account for
how attention to local semantic density, image salience, and observer center bias change with scene
inversion.
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2. Method

2.1. Eye tracking study

2.1.1. Participants. University of California, Davis undergraduate students (age mean=20.1,
standard deviation=1.7) with normal or corrected-to-normal vision participated in the eye tracking
(N=40) study in exchange for course credit. All participants were naive concerning the purposes of
the experiment and provided verbal or written informed consent as approved by the University of
California, Davis Institutional Review Board.

2.1.2. Stimuli. Each participant in the eye tracking study viewed 102 real-world scene images
in upright and inverted orientations. The 102 scenes consisted of a mix of indoor and outdoor scenes.

2.1.3. Apparatus. Participant eye movements were recorded using an EyeLink 1000+ tower-
mount eye tracker (spatial resolution 0.01�) sampling at 1000 Hz (SR Research, 2010b). Participants
sat 85 cm away from a 21” monitor and viewed scenes that subtended approximately 27� x 20� of
visual angle. Head movements were minimized using a chin and forehead rest. Although viewing was
binocular, eye movements were recorded from the right eye. The display presentation was controlled
with SR Research Experiment Builder software (SR Research, 2010a).

2.1.4. Procedure. Each participant viewed 102 scenes while performing a scene memorization
task. Participants were instructed to memorize each scene for a later memory test, but no memory
test was administered. These task instructions were used to provide a concrete viewing task to keep
participants consistently engaged throughout the experiment. Each trial began with a fixation on a
cross at the center of the display for 300 ms followed by a scene presented for 6 seconds. The main
manipulation was that each participant viewed half the scenes upright and half the scenes inverted,
counterbalanced across participants. The upright and inverted scenes were presented in a di↵erent
random order for each participant to control for presentation order and expectancy e↵ects.

2.1.5. Eye tracking calibration and data quality. A 9-point calibration procedure was performed
at the start of each session to map eye position to screen coordinates. Successful calibration required
an average error of less than 0.49� and a maximum error of less than 0.99�. Fixations and saccades
were segmented with EyeLink’s standard algorithm using velocity and acceleration thresholds (30/s
and 9500�/s2). A drift correction was performed before each trial and recalibrations were performed
as needed. The recorded eye tracking data were examined for data artifacts from excessive blinking or
calibration loss by calculating the mean percent signal across trials (Holmqvist, Nyström, Dewhurst,
Jorodzka, & van de Weijer, 2015). Five subjects with less than 75% signal were removed, leaving 35
subjects that were tracked well (signal mean=91.9%, SD=4.7%).

The remaining participants (N=35) produced an eye-movement data set that contained 61260
fixations with an average of 1750 fixations per participant. The average participant fixation duration
was 267 msec (SD=155 msec).

2.2. Meaning map rating study

2.2.1. Participants. University of California, Davis undergraduate students (N=416; age
mean=20.2, standard deviation=1.7) with normal or corrected-to-normal vision participated in the
meaning rating study for course credit. All participants were naive concerning the purposes of the ex-
periment and provided verbal or written informed consent as approved by the University of California,
Davis Institutional Review Board.

2.2.2. Stimuli. Each participant in the meaning rating study viewed and rated 300 random
isolated, small circular scene regions taken from the same set of 102 scenes from the eye tracking
study.
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2.2.3. Procedure. Meaning maps were generated for each scene as a representation of the spatial
distribution of local semantic density (Henderson & Hayes, 2017, 2018; see https://osf.io/654uh/ for
code and complete rater instructions, and https://osf.io/ptsvm/ for the 102 scene meaning maps). A
meaning map was created for each scene by cutting the scene into a dense array of overlapping circular
patches at a fine spatial scale (300 patches with a diameter of 87 pixels) and coarse spatial scale (108
patches with a diameter of 207 pixels). Raters (N=416) viewed 300 isolated scene patches and provided
ratings using a 6-point Likert scale based on how informative or recognizable they thought the content
of each patch was (Henderson & Hayes, 2017; Mackworth & Morandi, 1967). Patches were presented
in random order and without scene context, so ratings were based on context-independent judgments.
Each unique patch was rated by 3 unique raters. A meaning map (Figure 1b) was generated for each
scene by averaging the rating data at each spatial scale separately, then averaging the spatial scale
maps together, and then smoothing the grand average rating map with a Gaussian filter (i.e., Matlab
‘imgaussfilt’ with � = 10, FWHM=23 pixels).

2.2.4. Meaning ratings for inverted scenes. To assess whether meaning map ratings were signif-
icantly di↵erent for inverted scenes compared to upright scenes, we randomly sampled approximately
one third of the scenes (33 scenes) and meaning mapped them using the inverted scenes (N=135). We
then directly compared the inverted patch meaning ratings to the upright patch meaning ratings. The
results showed no significant di↵erence (t(13463)=0.213, p=0.83, 95% CI [ -0.006 0.007]) in meaning
ratings across the 13464 upright and inverted scene patches that were rated in these 33 scenes (i.e.,
300 fine patches and 108 coarse patches per scene). The correlation across all the upright and inverted
patch ratings was also high (R=0.908). Since there was not a significant di↵erence between upright
and inverted meaning patch ratings, the upright meaning map for each scene (e.g., Fig. 1b) was simply
inverted (Fig. 1f) to serve as the map of local semantic density for the inverted viewing condition.

2.3. Additional feature maps

2.3.1 Image Saliency Map. An image saliency map was also generated for each scene (Figure 1c)
using the Graph-based Visual Saliency (GBVS) toolbox with default settings (Harel et al., 2006). We
chose the GBVS model because it is based on known low-level mechanisms of the human visual system
(Borji & Itti, 2013; Itti, Koch, & Niebur, 1998; Itti & Koch, 2001) and is one of the best performers
among low-level image saliency models (Walther & Koch, 2006). In comparison, state-of-the-art deep
neural network models learn where people attend in scenes from training on scene fixation data over
object features and are known to contain a mix of low-level, mid-level, and high-level features (Hayes
& Henderson, 2021a; Henderson, Hayes, Peacock, & Rehrig, 2021). Therefore, a pure low-level image
saliency model like GBVS provides a better estimate of how semantically uninterpreted image features
are a↵ected by scene inversion than a deep saliency model.

Since local contrasts in luminance, color, and orientation are una↵ected by scene inversion, the
image saliency map (Fig. 1c) was simply inverted (Fig. 1g) to serve as the image salience map for the
inverted viewing condition.

2.3.2. Center Proximity Map. A center proximity map served as a global representation of
how far each location in the scene was from the scene center. Specifically, the center proximity map
measured the inverted Euclidean distance from the center pixel of the scene to all other pixels in
the scene image (Figure 1d, h). The center proximity map (Hayes & Henderson, 2021b) was used to
explicitly control for the general bias for observers to look more centrally than peripherally in scenes,
independent of the underlying scene content (Tatler, 2007; Hayes & Henderson, 2020) and was therefore
identical in the upright (Fig. 1d) and inverted (Fig. 1h) viewing conditions.
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Figure 1. Scene viewing conditions, eye movement data, and feature maps. Each scene was presented in
a upright (a) and inverted (e) orientation counterbalanced across viewers. The green dots show the fixation
locations for a typical viewer and the cyan dots indicate randomly sampled non-fixated regions that indicate
where each subject did and did not look (a, e). Together these locations provide an account of the regions in
each scene that did and did not capture each subject’s attention in the upright and inverted viewing conditions.
Each fixated and non-fixated location was used to compute a mean value for each feature map, both for the
upright condition (b, c, d) and the inverted condition (f, g, h), across a 3� window (shown as circles around an
example fixated/non-fixated location).

2.4. General linear mixed e↵ects models (GLMM) of eye movement behavior

2.4.1. Fixated and non-fixated scene locations. We modeled the association between the eye
movement data and the di↵erent feature maps by comparing where each subject looked in each scene
to where they did not look (Hayes & Henderson, 2021b; Nuthmann, Einhäuser, & Schütz, 2017).
Specifically, for each region a subject fixated, we computed the mean value for each feature map for
each viewing condition (upright: Figures 1b, 1c, 1d; inverted: Figures 1f, 1g, 1h) by taking the average
over a 3� window around each fixation (Figure 1, neon green locations). To represent the scene regions
that were not associated with overt attention, for each individual subject, we randomly sampled an
equal number of scene locations where that subject did not look in each scene they viewed (Figure 1,
cyan locations). The only constraint for the random sampling of the non-fixated scene regions was they
could not overlap with any of the fixated 3� windows, which reflects a logical constraint that for a given
scene viewed by a given subject, no scene region can be both fixated and not-fixated. This sampling
procedure was performed separately for each individual scene viewed by each individual subject.

2.4.2. Fixation location general linear mixed e↵ects models. We then used a general linear mixed-
e↵ects model (GLMM) approach to estimate the association between the fixated and non-fixated scene
regions, our feature maps, and viewing condition (upright vs. inverted) using the lme4 package (Bates,
Mächler, Bolker, & Walker, 2015) in R (R Core Team, 2017). All continuous predictors (i.e., meaning,
GBVS, and center proximity) were standardized to have mean 0 and standard deviation of 1 prior to
model fitting and the glmer function with a binomial distribution, logit link function, and the default
optimizer (bobyqa and Nelder Mead) were used for fitting. A mixed e↵ects modeling approach has a
couple of important advantages. First, it does not require aggregating the eye movement data at the
subject or scene-level like ANOVA or map-level correlations; instead, both subject and scene can be
explicitly modeled as random e↵ects. Second, the GLMM approach allowed us to explicitly control
for center bias by including the center proximity for both viewing conditions (upright and inverted,
Figure 1d, h) of each fixated and non-fixated region as both a fixed e↵ect and as an interaction term.

We then computed two separate fixation location GLMMs. First, we fit a model to just the
upright scene data. Specifically, whether a scene region was fixated (1) or not fixated (0) was modeled
as a function of meaning, GBVS, and center proximity with subject and scene treated as full random
e↵ects. This served as a reference model that demonstrated how meaning, GBVS, and center proximity
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are typically associated with attention when scenes are viewed in their common upright orientation.
Then, we fit a second fixation location GLMM model to the full scene data (i.e., upright and inverted
scene data) to estimate how inversion a↵ected the association between attention and meaning, GBVS,
and center proximity. Specifically, whether a region was fixated (1) or not fixated (0) was modeled as
a function of the meaning, GBVS, center proximity, and viewing condition (dummy coded). Subject
and scene were again treated as full random e↵ects. The inversion interaction terms were of primary
interest as they are the terms that reflect the e↵ect of scene inversion on where viewers looked as
it relates to meaning (semantic-guidance), GBVS (image-guidance), and center bias relative to the
upright viewing condition.

Fixed e↵ects Random e↵ects, SD

Predictors � 95% CI SE z statistic p Subject Scene

Intercept -0.288 [-0.448 -0.127] 0.083 -3.46 0.001 0.123 0.776

Meaning 1.900 [1.721 2.078] 0.091 13.00 < .001 0.138 0.831

GBVS 0.510 [0.321 0.698] 0.096 5.33 < .001 0.225 0.828

Center Proximity 0.666 [0.442 0.889] 0.114 5.86 < .001 0.384 0.874

Meaning:GBVS -0.108 [-0.271 0.054] 0.083 -1.31 0.191 0.127 0.706

Meaning:Center Proximity 0.159 [-0.068 0.386] 0.116 1.37 0.171 0.061 1.076

GBVS:Center Proximity 0.019 [-0.155 0.193] 0.089 0.22 0.829 0.225 0.775

Meaning:GBVS:Center Proximity 0.167 [-0.015 0.349] 0.093 1.78 0.075 0.103 0.857

Table 1: Fixation location general linear mixed e↵ects model results: upright only model. Beta estimates (�),
95% confidence intervals (CI), standard errors (SE), Z�statistic, and p-values (p) for each fixed e↵ect and

standard deviations (SD) for the random e↵ects of subject and scene.

Figure 2. E↵ects of meaning, GBVS, and center proximity: upright only model. The line plots show the fixed
e↵ects of meaning, image saliency, and center proximity as a function of fixation probability. A scene region’s
meaning value showed the strongest association with attention, followed by center proximity, and image salience.
Error bands reflect 95% confidence intervals.
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2.4.3. Fixation duration general linear mixed e↵ects models. Finally, we used a GLMM to
examine how fixation durations changed with inversion as a function of meaning, GBVS, and center
proximity values. Specifically, we modeled fixation duration using a GLMM with a gamma distribution
and identity link function (Lo & Andrews, 2015) in the lme4 package (Bates et al., 2015) as a function
of meaning, GBVS, center proximity, and viewing condition. Just like in the fixation location model,
condition was dummy coded and subject and scene were treated as full random e↵ects. The fixation
duration model was used to o↵er some additional insights into how processing of semantic features,
uninterpreted image features, and center bias are altered by scene inversion relative to upright viewing.

Results

Before examining scene inversion e↵ects, it is helpful to first show how attention typically varies
as a function of a scene region’s meaning, GBVS, and center proximity value in upright scene viewing
only. Table 1 and Fig. 2 show the general linear mixed e↵ects model (GLMM) results for the upright
viewed scene data only. The model results showed significant positive fixed e↵ects of meaning (� = 1.90,
CI [1.72, 2.07], p < .001), GBVS (� = 0.51, CI [0.32, 0.69], p < .001), and center proximity (� = 0.66,
CI [0.44, 0.88], p < .001). No significant interactions were observed. The fixed e↵ects are shown as a
function of fixation probability in Fig. 2, with meaning showing the greatest e↵ect on the probability a
scene region would be fixated followed by center proximity and GBVS image salience. This pattern of
results replicates previous findings that show a stronger e↵ect of local meaning on attentional guidance
than local image salience (for review see Henderson, Hayes, Peacock, & Rehrig, 2019). Finally, the
random e↵ects revealed larger scene variability than subject variability consistent with previous findings
(Nuthmann et al., 2017; Henderson & Hayes, 2017; Hayes & Henderson, 2021b). With these typical
e↵ects in mind, we can now examine how these e↵ects are altered by scene inversion.

The full (upright and inverted) fixation location GLMM results are shown in Table 2 and Fig. 3
and reflect how attention to each feature was a↵ected by scene inversion (i.e., the di↵erence in slope
between the upright baseline condition and scene inverted condition). The model results indicated a
negative meaning by inversion interaction (� = �1.18, CI [�1.38,�0.98], p < .001). Fig. 3b shows a
plot of the model interaction e↵ect as a function of fixation probability and meaning value by condition.
In the upright scene viewing condition, the probability of a scene region being fixated increased strongly
as the meaning value increased. However, in the inverted viewing condition a region’s meaning value
was essentially uninformative. That is, high meaning scene regions were no more likely to be fixated
than low meaning scene regions. This finding suggests that scene inversion strongly disrupts local
semantic guidance.

As a comparison, we also examined the e↵ect of scene inversion on low-level, presemantic image
saliency using the GBVS maps. We observed a smaller negative GBVS by inversion interaction (� =
�0.21, CI [�0.37,�0.05], p = .009). The inversion e↵ect on image salience is shown visually as a
function of fixation probability in Fig. 3c for the upright and inverted scene conditions, suggesting
that image guidance remained largely intact during inverted scene viewing. These findings support
the view that low-level image features are predominantly presemantic and attentionally distinct from
semantic features like local semantic density.

The model also revealed a positive center proximity by inversion interaction (� = 0.60, CI
[0.46, 0.74], p < .001). The model center proximity inversion e↵ect is shown visually in Fig. 3d by
viewing condition, indicating that when scenes were inverted viewers were more likely to fixate more
central scene regions and less likely to fixate more peripheral scene regions compared to the upright
viewing condition (Fig. 3d). These findings suggest that observer center bias is at least partially
modulated by scene semantics, since the center of the scene and visual information it contained were
constant across the upright and inverted viewing conditions.

In addition to the significant inversion e↵ects, we also observed a significant negative meaning
by GBVS interaction and positive meaning by center proximity interaction. As shown in Fig. 3e and
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Fixed e↵ects Random e↵ects, SD

Predictors � 95% CI SE z statistic p Subject Scene

Intercept -0.254 [-0.405 -0.103] 0.077 -3.299 0.001 0.142 0.708

Meaning 1.220 [1.059 1.381] 0.082 14.841 < .001 0.124 0.759

GBVS 0.633 [0.467 0.800] 0.085 7.459 < .001 0.209 0.730

Center Proximity 0.654 [0.443 0.866] 0.108 6.061 < .001 0.412 0.789

Inversion 0.106 [-0.045 0.257] 0.077 1.380 0.167 0.045 0.732

Meaning:Center Proximity 0.193 [0.072 0.314] 0.062 3.121 0.002 0.118 0.518

GBVS:Center Proximity 0.075 [-0.028 0.179] 0.053 1.422 0.155 0.163 0.423

Meaning:GBVS -0.290 [-0.410 -0.170] 0.061 -4.728 < .001 0.083 0.542

Meaning:Inversion -1.183 [-1.380 -0.985] 0.101 -11.739 < .001 0.167 0.923

GBVS:Inversion -0.213 [-0.372 -0.054] 0.081 -2.623 0.009 0.110 0.728

Center Proximity:Inversion 0.609 [0.469 0.749] 0.072 8.510 < .001 0.132 0.614

Table 2: Fixation location general linear mixed e↵ects model: full model. Beta estimates (�), 95% confidence
intervals (CI), standard errors (SE), Z�statistic, and p-values (p) for each fixed e↵ect and standard deviations
(SD) for the random e↵ects of subject and scene.

a b c

d e

Figure 3. Fixation location general linear mixed e↵ects model: full model. Whether a scene region was fixated
or not was modeled as a function of its meaning map, GBVS image saliency map, center proximity map, and
inversion condition. The black dots with lines show the beta weight estimates from the model and their 95%
confidence intervals for each model term. Subject (blue dots) and scene (grey dots) were both accounted for in
the model as full random e↵ects. The line plots to the right show the interactions between inversion and meaning
(b), image saliency (c), and center proximity (d). Panel e shows the marginal e↵ects of meaning, GBVS, and
center proximity. All error bands reflect 95% confidence intervals.



10

Fixed e↵ects Random e↵ects, SD

Predictors � 95% CI SE t statistic p Subject Scene

Intercept 259.342 [252.738 265.947] 3.370 76.966 < .001 17.929 11.564

Meaning 4.658 [2.340 6.976] 1.183 3.938 < .001 4.001 2.135

GBVS -1.546 [-5.206 2.114] 1.867 -0.828 0.408 5.889 9.075

Center Proximity 5.877 [1.624 10.129] 2.170 2.709 0.007 9.341 9.251

Inversion 4.110 [-0.706 8.926] 2.457 1.673 0.094 8.051 12.543

Meaning:Center Proximity -1.591 [-5.106 1.924] 1.793 -0.887 0.375 5.466 8.556

GBVS:Center Proximity 4.178 [1.242 7.114] 1.498 2.789 0.005 4.909 8.195

Meaning:GBVS -1.678 [-5.173 1.817] 1.783 -0.941 0.347 5.404 9.027

Meaning:Inversion -9.701 [-14.931 -4.470] 2.669 -3.635 < .001 9.481 12.465

GBVS:Inversion -0.103 [-6.008 5.802] 3.013 -0.034 0.973 7.509 17.972

Center Proximity:Inversion 2.937 [-2.370 8.244] 2.708 1.085 0.278 6.176 16.647

Table 3: Fixation duration general linear mixed e↵ects model results. Beta estimates (�) in msec, 95% confidence
intervals (CI), standard errors (SE), tstatistic, and p-values (p) for each fixed e↵ect and standard deviations (SD)
for the random e↵ects of subject and scene.

a b c

d e

Figure 4. Fixation duration general linear mixed e↵ects model. Fixation duration was modeled as a function
of each fixated region’s meaning map, GBVS image saliency map, center proximity map value, and inversion
condition. The black dots with lines show the beta weight estimates from the model and their 95% confidence
intervals for each model term. Subject (blue dots) and scene (grey dots) were both accounted for in the model
as full random e↵ects. The line plots to the right show the interactions between inversion and meaning (b),
image saliency (c), and center proximity (d). Panel e shows the significant interaction between GBVS and center
proximity. All error bands reflect 95% confidence intervals.
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Table 2, the meaning by GBVS interaction (� = �0.29, CI [�0.41,�0.17], p < .001) reflected that as
a scene region’s meaning value increased, image salience was increasingly discounted in the guidance
of attention. This finding is consistent with previous work showing scene semantics can override image
salience in the control of attention (Wu et al., 2014; Hwang et al., 2011; Malcolm et al., 2016; Hayes &
Henderson, 2021b). The meaning by center proximity interaction (� = 0.19, CI [0.07, 0.31], p = .002)
was somewhat less interesting, reflecting that for very low and very high meaning regions, how close a
region was to the center had a smaller a↵ect on fixation probability.

Taken together, the upright only GLMM and full GLMM fixation location models show that
local semantic density, image salience, and center bias are each uniquely impacted by scene inversion.
In order to gain further insight into the underlying mechanisms that may contribute to these observed
patterns, we also modeled how fixation durations were a↵ected by scene inversion as a function of a
scene region’s meaning, GBVS, and center proximity value.

The fixation duration GLMM results are shown in Table 3 and Fig. 4. As can be seen, Table 3
has the same terms as Table 2, the only di↵erence is here the dependent variable is fixation duration
whereas before it was whether a region was fixated or not, reflected by the change in x-axis units in
Fig. 4a y-axes in Fig. 4b, c, d, and e. Again, we observed di↵erent patterns of interaction between our
predictors and scene inversion. In this case, only meaning showed a significant interaction with inversion
(� = �9.70, CI [�14.93,�4.47], p < .001) while GBVS and center proximity showed no significant
inversion interaction (see Table 3 and Fig. 4c and d). The meaning interaction indicated that under
upright scene viewing, fixation duration increased as a scene region’s meaning value increased (Fig. 4b).
However, the fixation duration meaning pattern reversed when scenes were inverted, with fixation
durations decreasing as a region’s meaning value increased. The dissociation with local meaning
in upright and inverted viewing suggests that the attentional and cognitive processing mechanisms
responsible for determining fixation duration are also significantly altered by scene inversion. Only
one other significant interaction was observed in the fixation duration GLMM, a GBVS by center
proximity interaction (� = 4.17, CI [1.24, 7.11], p = .005). As shown in Fig. 4e, this interaction
reflected a decrease in fixation duration for highly visually salient regions as distance from the center
increased.

Together the fixation location GLMM and the fixation duration GLMM results suggest that
scene inversion produces a unique pattern of changes in how semantic guidance, image guidance, and
observer center bias are associated with where and for how long people look in real-world scenes.

3. Discussion

Semantic guidance and image guidance theories make di↵erent predictions for how attention will
be allocated to di↵erent scene regions as exemplified by image salience maps (Harel et al., 2006) and
semantic feature maps (Henderson & Hayes, 2017). Here we examined how the association between
attention and semantically interpreted features, semantically uninterpreted low-level image features,
and observer center bias changed between upright and inverted scene viewing. Our results showed
distinct patterns of change when scenes were inverted. Semantic guidance, as indexed by local semantic
density, was knocked completely o✏ine when scenes were viewed from an inverted viewpoint, despite
being the best predictor of where people looked in upright scenes. Surprisingly, when semantic guidance
went o✏ine, image salience did not fill the attentional void; instead, center bias did. Finally, we showed
that fixation durations to local meaning were uniquely impacted by scene inversion. In upright viewing
we observed larger fixation durations for more meaningful regions, but this pattern reversed for inverted
scene viewing.

The e↵ect of scene inversion on semantic guidance to local semantic density was striking. A scene
region’s meaning value went from being the strongest predictor of attention under upright viewing to
being completely uninformative when scenes were inverted. Importantly, this finding was not specific
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to a single isolated scene region or object, but was observed taking into account attention across the
entire scene. This finding suggests that the mapping between local meaning and the current scene
stimulus is strongly dependent on the scene stimulus matching our internal models of scene structures
gained from experience, and without that, the attention system is not able to e↵ectively leverage our
stored semantic knowledge to guide attention.

In the absence of semantic guidance, image-guidance theory would predict observers should lean
more heavily on image salience to guide attention. However, our data does not support this hypothesis.
Image-guidance based on low-level presemantic image features remained relatively una↵ected by scene
inversion, actually showing a mild deficit instead of any enhancement when semantic guidance was
disrupted. While the inversion e↵ect was mild (See Fig. 3c) it was observed for all subjects and about
60% of scenes (See Fig. 3a random subject and scene slope estimates). The deficit in image saliency
under scene inversion suggests that image saliency may be mildly modulated by changes in semantic
guidance. This is another theoretically important finding, as it o↵ers a new intriguing piece of evidence
that scene semantics may have some influence on early visual processing mechanisms (Teufel, Dakin,
& Fletcher, 2018).

The significant enhancement of center bias we observed with scene inversion was also unexpected.
Given that the visual scene information remained at a consistent distance from the screen center in
the upright and inverted viewing conditions, the naive prediction would be that center bias would be
the same in the upright and inverted conditions. Instead, our findings suggest that the strength of
center bias is not purely a function of the screen center location, the distance of image features from
the screen center, or occulomotor regularities (Tatler, 2007), but is also partially modulated by how
readily semantic scene content can be used to guide attention. That is, when semantic guidance was
disrupted by scene inversion, observer center bias seemed to fill the attentional vacuum that was left
rather than image guidance.

Why does attention to local semantic density change so drastically in the inverted scene condition,
and why is observer center bias enhanced instead of image salience? Unlike previous scene inversion
work, the disruption of attention to local semantic density cannot be directly attributed to a disruption
in object-scene semantics because the meaning map ratings are for random, isolated scene patches
without scene context. However, it is likely that when scene context is available during viewing,
our knowledge of the scene category does help point us to scene regions that are more likely to be
semantically rich (e.g., the counter top in a kitchen or a desk in an o�ce). Therefore, it may be that the
disruption to scene-object semantics indirectly a↵ects the ability to guide attention to local semantic
density. The fixation duration results also provide some potential clues. The decrease in fixation
duration to semantically rich regions in the inversion condition suggests participants are actually
being slightly repelled from processing semantically rich regions. This in conjunction with the increase
in observer center bias we observed in the fixation location GLMM suggests that participants may
be under substantial cognitive load in the inverted condition and seeking refuge by looking at less
semantically rich regions. Therefore, one plausible explanation is that while participants are able
to accurately estimate local meaning for isolated regions regardless of orientation, it is simply too
cognitively taxing (and perhaps too slow as a result) to use local semantic density to e↵ectively guide
attention during scene viewing. This interpretation is consistent with previous findings showing that
increased working memory load during scene viewing increases observer center bias (Cronin, Peacock,
& Henderson, 2021).

While this study has shown a number of important findings, it also has limitations that should
be addressed in future work. First, the current work used an active scene memorization viewing task
and it may be that other active tasks (e.g., visual search) or no-task (e.g., free viewing) show di↵erent
inversion e↵ect patterns than we observed here. However, given the important role local semantic
density has been shown to play in a wide variety of di↵erent viewing tasks (Henderson et al., 2019),
we speculate that similar deficits may appear with scene inversion in other tasks. Second, the use of
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local meaning maps (Henderson & Hayes, 2017, 2018), is only one type of semantic feature map. It
would also be useful in future work to examine other types of semantic feature maps (e.g., graspability
and reachability Rehrig et al., 2020, or object-object and scene-object semantic similarity Hayes &
Henderson, 2021b) to determine if the inversion e↵ects we observed here generalize to other types of
semantic features. Finally, it would be useful to replicate the negative image saliency inversion e↵ect
in other low-level image saliency models to verify that this e↵ect is not specific to the GBVS model.

In summary, we quantified how scene inversion impacts attention to semantically interpreted
features, uninterpreted image features, and observer center bias for the first time. We found that
scene inversion a↵ected each in a unique way: local semantic guidance was knocked o✏ine, image
guidance was mildly impaired, and observer center bias was enhanced. In addition, an analysis of the
e↵ect of scene inversion on fixation durations suggested that observers may be actively repelled from
semantically rich regions when viewing inverted scenes. These findings reinforce that image guidance
and semantic guidance are attentionaly distinct, provide novel evidence that observer center bias can be
modulated by changes in semantic guidance, and o↵er tantalizing new clues for why semantic guidance
is disrupted by inversion. More broadly, our results provide important new constraints for theories
and computational models of attention by providing unique patterns of disruption and enhancement
that should be observed for inverted scenes.

Supplementary material

https://osf.io/bnwxv/
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