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Abstract We determine the bounded cohomology of the group of homeomor-
phisms of certain low-dimensional manifolds. In particular, for the group of
orientation-preserving homeomorphisms of the circle and of the closed 2-disc,
it is isomorphic to the polynomial ring generated by the bounded Euler class.
These seem to be the first examples of groups for which the entire bounded
cohomology can be described without being trivial. We further prove that
the Cr -diffeomorphisms groups of the circle and of the closed 2-disc have the
samebounded cohomology as their homeomorphismgroups, so that both differ
from the ordinary cohomology of Cr -diffeomorphisms when r > 1. Finally,
we determine the low-dimensional bounded cohomology of homeo- and dif-
feomorphism of the spheres Sn and of certain 3-manifolds. In particular, we
answer a question ofGhys by showing that the Euler class in H4(Homeo◦(S3))
is unbounded.
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1440 N. Monod, S. Nariman

1 Introduction

Bounded cohomology H•
b has many motivations and applications; a few

examples in geometry, topology and dynamics are [11,15,17,24,27,64]. If
a classical invariant is bounded, then determining a representative in bounded
cohomology can refine the invariant considerably, see e.g. [25,63]. Contrari-
wise, showing that a class in not bounded is a restriction by itself, see e.g. [45,
Q. F.1], [12].

Unfortunately, bounded cohomology remains largely elusive: as stated in
[57, §1], there was no group for which all of H•

b was known, unless it is trivial.
Recent advances broughtmore exampleswhere bounded cohomology is trivial
and new examples where it is pathologically huge [20,46].

Missing were examples where we can actually describe non-trivially, and
understand, the entire bounded cohomology, especially for groups of relevance
in geometry, topology or dynamics. This article is a first step in that direction.

Since our results concern groups of homeomorphisms and diffeomorphisms
of manifolds, they can be compared to the very rich supply of results on the
ordinary cohomology of these groups and how the latter relates to the under-
lying manifold. Interestingly, some of our results exhibit a close similarity to
the classical case, while others stand in strong contrast. It turns out that this
behaviour depends on the category: topological or smooth.

1.1 The circle S1

Ourfirst results regard the circle and aremuch simpler to prove than for the disc;
they constitute therefore an excellent warm-up for the techniques introduced
in this paper.

The ordinary cohomology of the group Homeo◦(S1) of orientation-
preserving homeomorphisms of the circle is known to be a polynomial ring
generated by the Euler class E ∈ H2 for flat S1-bundles:

H•(Homeo◦(S1)) ∼= R[E ] (1)

(we take cohomology with coefficients in R). This can be deduced from a
remarkable theorem that Thurston ([76, Cor. (b) of Thm. 5]) established for
any closed manifold M . It states that that the natural map BHomeo(M) →
BHomeoτ (M) induces a cohomology isomorphism, wherein Homeoτ denotes
the topological group endowed with theC0-topology. (A group without super-
script τ will always refer to the “abstract”, i.e. discrete, group; see Sect. 2.)
Thurston’s theorem applies to the neutral component Homeo◦ as well. In fact,
we always work with Homeo◦, since this subgroup also determines the coho-
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Bounded cohomology of the group 1441

mology of Homeo by analysing the action of the group of components. In the
case of the circle, we have BHomeoτ◦(S1) � CP∞ and hence (1) follows.

Our first theorem is the analogue of (1) for bounded cohomology. This is
probably the first case where the entire bounded cohomology of a group can be
determined without being either trivial or too pathologically large to describe.
For the statement, recall thatE is a bounded class by theMilnor–Wood inequal-
ity ([53,82]) and that it admits a unique bounded representative [55, Cor. 2.11]
in H2

b , the bounded Euler class Eb ∈ H2
b , because Homeo◦(S1) is uniformly

perfect (see [55, Cor. 2.11] and [16, Thm. 2.3]).

Theorem 1.1 We have H•
b (Homeo◦(S1)) ∼= R[Eb], the polynomial ring gen-

erated by the bounded Euler class.

Thus the comparison map H•
b (Homeo◦(S1)) → H•(Homeo◦(S1)) is an

isomorphism in every degree. Such a statement completely fails already for a
surface �g of genus g > 0. Indeed, a recent result of Bowden–Hensel–Webb
([2]) shows that H2

b (Homeo◦(�g)) is infinite-dimensional; by contrast, the
the results of Hamstrom [32] and Thurston [76] imply that H2(Homeo◦(�g))

vanishes. Quasimorphisms and low dimensional bounded cohomology of vol-
ume preserving diffeomorphisms and symplectomorphisms have also been
extensively studied (see [7,23,70] and references therein). Another example
to which we shall return is a theorem due to Mann [47] stating that the map
H2
b (Homeo(M)) → H2(Homeo(M)) has a nontrivial cokernel for certain

Seifert fibered 3-manifolds M .
For diffeomorphism groups, the usual group cohomology is related to deep

open questions in foliation theory, in particular to the homotopy type of the
Haefliger space (see [77] and references therein). Let BDiffr (M) be the homo-
topy fiber of the map

η : BDiffr (M) → BDiffr,τ (M)

that is induced by the identity homomorphism. For C1-diffeomorphisms,
remarkably Tsuboi proved (see [78]) that η is a homology isomorphism. In
all regularities, Mather–Thurston’s theorem ([76, Thm. 5], [51]) says that the
space BDiffr (M) is homology isomorphic to the space of sections of a cer-
tain bundle over M . For Cr -diffeomorphisms when r > 1, as a consequence
of Mather–Thurston’s theorem and a conjecture about the connectivity of the
Haefliger space ([76, Conjecture], [31, Section 6]), it is expected that η induces
a homology isomorphism for degrees less than or equal to dim(M). For regu-
larities r > 1 and a compact manifold M , it is known that there are non-trivial
Godbillon–Vey classes in Hdim(M)+1(Diffr (M); R) (see [9,54]) and in partic-
ular for the case of the circle, Thurston ([75]) proved that there is a surjective
map
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1442 N. Monod, S. Nariman

H2(Diff
r◦(S1); Z) � R ⊕ Z,

where the map to Z summand is induced by the Euler class and the map to R
is induced by the Godbillon–Vey class. It is conjectured ([62]) that this map
is in fact injective. Morita ([60,61,67]) generalised Thurston’s theorem and
showed that there exists a surjective map

H2n(Diff
r◦(S1); Z) � R ⊕ Z,

for all n where the map to Z summand is induced by the power of the Euler
class. Although determining the group cohomology of Diffr◦(S1) for r > 1
seems to be a very difficult open problem, the smooth group cohomology of
the infinite dimensional Lie group Diffr◦(S1) satisfies the van Est isomorphism
([30, Page 44]) and is completely determined as

H•
sm(Diffr◦(S1)) ∼= R[E ,GV ]/(E · GV = 0).

Similarly, the group cohomology of the piecewise linear homomeomorphisms
PL◦(S1) is much richer than the group cohomology of homeomorphisms of
the circle. In fact, there is a discrete analogue of Godbillon–Vey classes ([28])
that is non-trivial in H2(PL◦(S1)). Combining Mather–Thurston’s theorem
for PL foliations and the work of Peter Greenberg ([26, Cor. 1.12]), one can
see that H•(PL◦(S1)) is much bigger than the ring that is generated by the
Euler class.

In contrast to this classical picture, we prove that bounded cohomology
does not distinguish between homeomorphisms, PL homeomorphisms and
diffeomorphisms of S1.

Theorem 1.2 For every r ∈ N ∪ {∞}, the inclusion Diffr → Homeo induces
an isomorphism in bounded cohomology:

H•
b (Diffr◦(S1)) ∼= H•

b (Homeo◦(S1)) ∼= R[Eb].

The same statement holds for the piecewise-linear category:

H•
b (PL◦(S1)) ∼= H•

b (Homeo◦(S1)) ∼= R[Eb].

As we shall see, the proof itself is rather robust with respect to changes of
categories of circle transformations. For instance, it also holds for the countable
subgroup of PL◦(S1) known as Thompson’s group T . Therefore, the bounded
cohomology of T is also R[Eb]; this contrasts with the ordinary cohomology
determined by Ghys–Sergiescu [28] and provides a concrete example of a
countable group whose bounded cohomology is entirely known. We note that
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Bounded cohomology of the group 1443

the bounded cohomology of T can also be determined by combining [59]
with [19, §6].

1.2 The closed disc D2

Some methods introduced for the proof of Theorem 1.1 find their full use in
higher dimensions. A rather more involved implementation of our strategy
allows us to determine completely the bounded cohomology of Homeo◦(D2).

Theorem 1.3 The restriction map Homeo◦(D2) → Homeo◦(S1) induces an
isomorphism in bounded cohomology.
In particular, the algebra H•

b (Homeo◦(D2)) is isomorphic to R[Eb].
This recalls McDuff’s theorem ([52, Cor. 2.13]) stating that the restriction

homomorphism Homeo◦(Dn) → Homeo◦(Sn−1) induces an isomorphism in
ordinary cohomology for all n.

It turns out that our proof is again robust when changing to the smooth
category:

Theorem 1.4 The statement of Theorem 1.3 also holds for Cr diffeomor-
phisms, r ∈ N ∪ {∞}.
In particular, the algebra H•

b (Diffr◦(D2)) is also isomorphic to R[Eb].
Bowden showed ([10, Prop. 5.1]) that in ordinary group cohomology not

only the Euler class but also the Godbillon–Vey class pulls back nontrivially
to the second group cohomology H2(Diffr◦(D2); R) for r > 1. Hence, the
comparison map H2

b (Diffr◦(D2)) → H2(Diffr◦(D2)) is not an isomorphism
for r > 1. Shigeyuki Morita mentioned to the authors the interesting fact that
the Bott vanishing theorem ([8]), however, implies that E 4 in H8(Diffr◦(D2))

vanishes for r > 1.

Remark 1.5 Let Diffr,vol(D2) be the volume preserving Cr -diffeomorphisms
of D2 for the standard volume form. It is known ([79, Cor. 3.2]) that for the
restriction map Diffr,vol(D2) → Diffr◦(S1), the Euler class pulls back trivially
to H2(Diffr,vol(D2)).

Our general strategy is to construct a semi-simplicial set X•, depending on
the regularity r , on which G = Diffr◦(D2) acts in such a way that we decom-
pose D2 into pieces, and each piece will have a stabiliser in G that is easier
to handle cohomologically. We then resolve H•

b (G) in terms of H•
b (X•), of

H•
b (X•/G) and of the stabilisers. In the case of D2, the set X• consists of

configurations of neighbourhood germs of chords in the disc. The complexity
of these configurations, specifically the infinite possibilities for mutual inter-
sections of chords, has limited us to n = 2.
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1444 N. Monod, S. Nariman

For this strategy to actually simplify the problem, we need to show that
the stabilisers are boundedly acyclic, meaning that their bounded cohomol-
ogy vanishes in all positive degrees. We shall establish several such general
bounded acyclicity results, both as tools for the above and for the case of
Sn below. The first non-trivial bounded acyclicity statement is the theorem
of Matsumoto–Morita [55] which states that the group Homeoc(Rn) of com-
pactly supported homeomorphisms is boundedly acyclic. That result was a
refinement of Mather’s acyclicity in ordinary cohomology [48]. A tool for our
study of homeomorphisms and diffeomorphisms of Sn is the following gen-
eralisation of the Matsumoto–Morita theorem to the case of certain manifolds
that can be “displaced”, and also to higher regularities.

Theorem 1.6 Let M be any closed Cr -manifold and n ≥ 1 and let Z be
Cr -diffeomorphic to M × Rn. Then the groups Homeoc(Z), Homeoc,◦(Z),
Diffrc(Z) and Diffrc,◦(Z) are boundedly acyclic for all r ∈ N ∪ {∞}.

We note that earlier instances of the “displacement” technique, in degree
two, includeKotschick [41] andBurago–Ivanov–Polterovich [3] (notably their
notion of portable manifold).

1.3 Flat Sn-bundles and Ghys’s question

Recall that theMilnor–Wood inequality ([53,82]) for aC0-flat S1-bundle E
p−→

�g over a closed oriented surface �g of genus g > 0 states

|〈E (p), [�g]〉| ≤ 2g − 2.

Milnor proved this inequality when the flat circle bundle is linear meaning
that the monodromy group of the bundle lies in PSL2(R) and Wood proved
the case where the monodromy group lies in Homeo◦(S1). In the bounded
cohomology language, it says that the Euler class is a bounded class and has a
Gromov norm equal to 1

2 . Ghys [45, § F.1] asked the following question about
a generalisation of the Milnor–Wood inequality to flat S3-bundles:

Question 1.7 (Ghys) Let M4 be a compact orientable 4-manifold and

π1(M)
ρ−→ Homeo◦(S3) be a representation. Is it true that the Euler num-

ber of the associated S3-bundle over M is bounded by a number depending
only on M? Is E ∈ H4(Homeo◦(S3)) a bounded class?

One can define the Euler class for oriented S3-bundles using classifying
spaces as follows. Note that any oriented (not necessarily flat) S3-bundle
over the 4-manifold M up to isomorphism corresponds to a map M →
BHomeo◦(S3)τ which is well-defined up to homotopy. By Smale’s con-
jecture in the topological category ([34]), we know that Homeo◦(S3)τ �
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Bounded cohomology of the group 1445

SO(4). Hence, there is a universal Euler class E in H4(BSO(4)) ∼=
H4(BHomeo◦(S3)τ ) and in fact H4(BSO(4)) ∼= R2 which is generated by
the universal first Pontryagin classP1 and E (see also [67, Remark 3.3]). Now
as a consequence of Thurston’s theorem ([76, Cor. (b) of Thm. 5]), we know
the natural map

H4(BHomeo◦(S3)τ ) → H4(Homeo◦(S3))

is an isomorphism. Therefore, the pull back of the universal P1 and E on
the universal C0-flat S3-bundle are nontrivial. By the abuse of notation, we
denote the pull back of these classes to flat bundles by the same notation. So
H4(Homeo◦(S3)) is also generated byP1 and E .
Back to Ghys’s question above, proving the boundedness of E is the

approach suggested by theGromov–Hirzebruch proportionality principle. This
boundednesswould generalize theMilnor–Wood inequality and be compatible
with the Hirsch–Thurston theorem [37] stating that the Euler class vanishes
when π1(M) is amenable. Moreover, for linear sphere bundles, the bound-
edness does indeed hold, as proved by Sullivan [74] and Smillie [73] (see
also [38] for this boundedness, and [6] for the exact bound).

In Sect. 6, we use the higher dimensional version of the semi-simplicial set
we used for the circle case to answer Ghys’s question in the negative:

Theorem 1.8 We have H4
b (Homeo◦(S3)) = 0 and H4

b (Diffr◦(S3)) = 0 for
all r �= 4. In particular, the Euler class and the first Pontryagin class P1 in
H4(Homeo◦(S3)) are unbounded.

Remark 1.9 Our proof of the unboundedness of the Euler class for orientedC0

flat S3-bundles is not constructive. In particular, it would be very interesting
to construct explicit families of flat S3-bundles over a given 4-manifold with
unbounded Euler number.

As we shall see, it is not hard to use the same semi-simplicial set to prove:

Theorem 1.10 We have H2
b (Homeo◦(Sn)) = 0 and H3

b (Homeo◦(Sn)) = 0
for all n > 1.

The same holds for Diffr◦(Sn) with r ∈ N ∪ {∞}.
But to get the calculation up to H4

b , we will use the homotopy type of the
group of diffeomorphisms of 3-dimensional pair of pants and also uniform
perfectness of such groups in dimension 3. To approach the same calculation
for S2, the main obstacle is that uniform perfectness is likely to fail in that con-
text, in view of thework of Bowden–Hensel–Webb [2]. For higher dimensional
spheres, the main obstacle is the homotopy type of group of diffeomorphisms
of higher dimensional pair of pants.
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1446 N. Monod, S. Nariman

In a first draft of this paper we established Theorem 1.10 for n = 2, 3 only,
due to a restriction on stabilisers appearing for the semi-simplicial sets. Thanks
to a result of Fournier-Facio and Lodha [18], this restriction is lifted. Likewise,
we did not cover the case of diffeomorphisms. That generalisation was made
possible by the recent note [59] (which also lifts the restriction on n).

2 Notation and background results

We write Dn ⊆ Rn for the closed n-dimensional disc (ball), Bn = int(Dn)

for the open one, and Sn−1 = ∂Dn for the (n − 1)-sphere.
Notations such as Homeo, Diffr and their variants shall refer to the corre-

sponding groups, without any additional topological structure. If we drop the
order of regularity r for diffeomorphisms, we mean smooth diffeomorphisms.
If we endow them with a topology, in this case the C0 or Cr -topology, then
we shall write Homeoτ , Diffr,τ etc. for the resulting topological groups. We
warn the reader that several authors adopt the opposite convention, where the
groups are topologized by default and a superscript δ is added to indicate that
e.g. Homeoδ is stripped of its topology, or endowed with the discrete topology.

(The present convention, arguably more pedantically precise, is convenient
here since the objects of study are “abstract” groups of homeomorphism; it
leads occasionally to an unusual notation such as SO(3)τ for the compact
group of rotations.)

Given a subsetY ⊆ X of a topological space X , we denote byHomeo(X; Y )

the subgroup of Homeo(X) consisting of those homeomorphisms that fix Y
pointwise. We denote by Homeo(X; near Y ) the subgroup of Homeo(X; Y )

of all elements that fix pointwise a neighbourhood of Y ; this neighbourhood
depends a priori on the element.

If no coefficients are explicitly indicated, then cohomology, bounded coho-
mology and any function spaces are always understood with coefficients in R
viewed as a trivial module.

Given a semi-simplicial set X•, the bounded cohomology H•
b (X•) of X•

refers to the cohomology of the associated complex of spaces of bounded
functions

0 −→ 	∞(X0) −→ 	∞(X1) −→ 	∞(X2) −→ · · ·

Although Hn
b is still poorly understood for general n, we note that X• is

connected if and only if H0
b (X•) has dimension one. The semi-simplicial set

is called boundedly acyclic if Hn
b (X•) vanishes for all n > 0.

The bounded cohomology H•
b (G) of a group G and the corresponding

notion of bounded acyclicity are obtained by taking X• to be the Milnor join
of G. Equivalently, the homogeneous resolution leads to an identification of
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Bounded cohomology of the group 1447

H•
b (G) with the cohomology of the complex of invariants

0 −→ 	∞(G)G −→ 	∞(G2)G −→ 	∞(G3)G −→ · · ·
where G acts diagonally on G•+1 and where the differentials are given by
the simplicial Alexander–Kolmogorov–Spanier face maps (alternating sums
omitting variables).

The following fundamental result ofMatsumoto–Morita will be used exten-
sively.

Theorem 2.1 (Matsumoto–Morita, Thm. 3.1 in [55]) The groupHomeoc(Rn)

of compactly supported homeomorphisms ofRn (equivalently of Bn) is bound-
edly acyclic. ��

That result has recently been extended by various authors to other and wider
settings. First, to all mitotic groups [46]. Then, at the same time as we wrote
the first version of the present article, to binate groups [19]. After this, a
criterionwas established in [59]which covers the following situation including
numerous homeomorphism or diffeomorphism groups:

Theorem 2.2 (Cor. 6 in [59]) Let G be a group acting faithfully on a set Z.
Suppose that Z contains a subset Z0 and that G contains an element g ∈ G
with the following properties:

(i) every finite subset of G can be conjugated so that all its elements are
supported in Z0;

(ii) g p(Z0) is disjoint from Z0 for every integer p ≥ 1.

Then G is boundedly acyclic. ��
In general we have no reason to believe that an infinite product of boundedly

acyclic groups is necessarily boundedly acyclic. However, the above sufficient
condition is stable under products; indeed, it suffices to consider the action
of the product on the corresponding disjoint union Z of sets, and to define
Z0 as the disjoint union of the corresponding subsets. Hence, we record the
following.

Lemma 2.3 Any product of groups satisfying the conditions of Theorem 2.2
will satisfy them too, and hence be boundedly acyclic. ��

Next, we state a fundamental stability result for the vanishing of bounded
cohomology (without any claim of originality); it implies in particular that
bounded acyclicity is preserved under finite direct products.

Proposition 2.4 Let G be a group, K � G a normal subgroup and N ∈
N ∪ {∞}.

If Hn
b (K ) vanishes for all 0 < n < N, then there is an isomorphism

Hn
b (G) ∼= Hn

b (G/K ) for all 0 ≤ n < N.
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1448 N. Monod, S. Nariman

Proof This follows from a bounded version of the Lyndon–Hochschild–Serre
spectral sequence, see e.g. [56, §12]. For the reader’s convenience, we expand
on the necessary details:

Define Q = G/K and consider the double complex

	∞(Gp+1 × Qq+1)G ∼= 	∞(
Gp+1, 	∞(Qq+1)

)G

∼= 	∞(
Qq+1, 	∞(Gp+1)

)G

indexed by p, q ≥ 0, with the two differentials being given by the usual homo-
geneous differential on the variables inG and in Q respectively.We are now in
a very special case of the setting considered in [56, §12], the differences being
as follows. (1) The reference allows for non-trivial coefficients F , while here
F = R. (2) The reference considers locally compact groups acting onmeasure
spaces S, T , while here all groups are discrete and simply act on themselves,
so S = G and T = Q. (3) The reference assumes that the locally compact
groups are second countable in order to avoid difficulties with measurability;
this assumption is not needed here since we have no measurability questions.

We can therefore quote from [56, §12] as follows. The double complex
gives rise to two spectral sequences, the first of which collapses already in the
first page and abuts to the bounded cohomology H•

b (G) of G, see Prop. 12.2.1
in [56]. The second spectral sequence yields the same limit up to isomorphism
and Prop. 12.2.2(ii) in [56] states that the second page of this sequence is

E p,q
2

∼= H p
b

(
Q, Hq

b (K )
)

as soon as Hq
b (K ) is Hausdorff. Since H0

b (K ) ∼= R is always Hausdorff, E p,0
2

is isomorphic to H p
b (Q) and our vanishing assumption on Hn

b (K ) allows us
to deduce that E p,q

2 vanishes for 0 < q < N and all p. These facts together
imply the stated isomorphisms Hn

b (G) ∼= Hn
b (G/K ) for all 0 ≤ n < N . ��

In more elaborate vanishing arguments, it will be crucial to have a more
refined, quantitative, control of the vanishing. To that end, we introduce the
notion of vanishing moduli as follows.

Definition 2.5 Let X• be a semi-simplicial set satisfying Hn
b (X•) = 0 for

some n. Then we define the nth vanishing modulus of X• as

sup
c∈C1

inf
{
‖b‖∞ : b ∈ 	∞(Xn−1) with db = c

}
,
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where

C1 =
{
c ∈ 	∞(Xn) with dc = 0 and ‖c‖∞ ≤ 1

}
.

In other words, the vanishing modulus controls the smallest norm of a
cochain b that witnesses that a given cocycle c is a coboundary. This modu-
lus is finite by the open mapping theorem applied to the coboundary map d.
This quantity is dual to the “uniform boundary condition” constant considered
by Matsumoto–Morita [55], although they consider it more generally for the
trivial cycles within possibly non-acyclic normed complexes.

In particular, if G is a group with vanishing Hn
b (G), we can speak of the nth

vanishing modulus of G. It can be computed either on the Milnor join of G or
on the homogeneous resolution since they give isometric cochain complexes.

A first occurrence of this notion is as follows. The direct factors of a bound-
edly acyclic product of groups are boundedly acyclic, but we will need the
following uniformity statement which is a priori stronger for infinite products.

Proposition 2.6 Fix a positive integer q and let (Gi )i∈I be any family of
groups.

If the product
∏

i∈I Gi is boundedly acyclic, then the qth vanishingmodulus
of all subproducts

∏
j∈J G j is bounded independently of J ⊆ I .

In particular, the qth vanishing modulus of all Gi is bounded independently
of i .

The proof uses the following elementary technical observation, which we
isolate for later reference.

Lemma 2.7 Let G be a group and G1 < G a subgroup such that Hq
b (G1) = 0

for some q > 0. Then the qth vanishing modulus of G1 coincides with the qth
vanishing modulus of the semi-simplicial orbit set given by (Gp+1)/G1 in
each dimension p.

Proof of Lemma 2.7 It is known that the bounded cohomology H•
b (G1) can

be realised isometrically on the homogeneous resolution

· · · −→ 	∞(Gq)G1 −→ 	∞(Gq+1)G1 −→ 	∞(Gq+2)G1 −→ · · ·
see e.g. [56, 7.4.10] for a more general statement. The proof given in this
reference proceeds by exhibiting maps between this resolution and the homo-
geneous resolution for G1 which are non-expanding already at the cocycle
level, which implies the statement of the lemma.

We point out that in the case considered here, the technical tools used in [56,
7.4.10] simply boil down to extending functions from Gq+1

1 to Gq+1 by using
coset representatives. ��
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1450 N. Monod, S. Nariman

Proof of Proposition 2.6 We claim that for a boundedly acyclic product G =
G1 × G2 of two groups, the factor G1 is boundedly acyclic with its qth van-
ishing modulus bounded by that of G. This claim implies the statement of the
proposition by regrouping the factors in the (possibly infinite) product.

Recall that inflation refers to the morphism H•
b (G1) → H•

b (G) induced by
the projection G → G1 while restriction is the morphism H•

b (G) → H•
b (G1)

induced by the inclusionG1 → G; thus their composition gives the identity on
H•
b (G1). Moreover, the inclusion of G1-invariants into G-invariants realizes

the inflationmap.Therefore,we can compute the normsof the relevant cocycles
and coboundaries while realising the inflation-restriction morphisms by the
following two inclusions of (differential complexes of) Banach spaces:

	∞((G1)
q+1)G1 = 	∞((G/G2)

q+1)G ⊆ 	∞(Gq+1)G ⊆ 	∞(Gq+1)G1 .

The fact that we obtain the correct norms also in the right hand side follows
from Lemma 2.7 and hence the claim is established. ��

3 Bounded cohomology of semi-simplicial sets

The following is a versatile method for constructing boundedly acyclic semi-
simplicial sets.

Definition 3.1 Let X be a set and let ⊥ be any binary relation on X . We say
that the relation⊥ is generic if, given any finite set F ⊆ X , there exists x ∈ X
with x ⊥ y for all y ∈ F .

Furthermore, we define a semi-simplicial set X⊥• as follows: X⊥
n consists of

all (n + 1)-tuples (x0, . . . , xn) in Xn+1 such that xi ⊥ x j holds for all i < j .
Note that X⊥

n is non-empty when ⊥ is generic (and X �= ∅). The face maps
are defined to be the usual simplex face maps.

In general⊥will be thought to represent a suitable transversality condition.
A basic example is the relation �=, which is generic as soon as X is infinite. A
non-symmetric example is the relation < on X = R. We shall later see more
interesting examples with tuples of germs of arcs.

We emphasize that even though X⊥• consists of pairwise-⊥ tuples, the def-
inition of genericity must be verified for all finite sets F , without assuming
any relation between their elements.

Proposition 3.2 If ⊥ is generic, then X⊥• is boundedly acyclic (and con-
nected).

Proof Given F ⊆ X finite, let VF = {x ∈ X : x ⊥ y∀ y ∈ F}. Note that
VF ∩ VF ′ ⊇ VF∪F ′ . Thus our assumption implies that the collection of all
such VF is a proper filter base on X . Choose an ultrafilter U on X containing
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the filter generated by this base. For any bounded function f on X , we can
therefore consider the ultralimit limx→U f (x).

We define a map

hn : 	∞(X⊥
n ) −→ 	∞(X⊥

n−1)

by

(hn f )(x1, . . . , xn) = lim
x→U

f (x, x1, . . . , xn).

We note that hn is linear and bounded (of norm one); the crucial point is
that it is well-defined, since the collection of x for which f (x, x1, . . . , xn) is
defined belongs to U . It is now routine to verify that h• provides a contract-
ing homotopy, because for any given x1, . . . , xn and x as above, the points
x, x1, . . . , xn determine a full simplex in X⊥• . Explicitly, recall that the dif-
ferential 	∞(X⊥

n−1) → 	∞(X⊥
n ) is the alternating sum of the maps dn,i over

0 ≤ i ≤ n, where dn,i omits the i th element of a (n + 1)-tuple. Then the
relations dn,i hn = hn+1dn+1,i+1 and hn+1dn+1,0 = Id hold, which shows that
h• is a contracting homotopy. ��

Let G be a group acting on a semi-simplicial set X•. This gives rise to
hypercohomology spectral sequences relating the bounded cohomology of G
to that of X• and of its quotient X•/G, stated in Theorem 3.3 below. Some
care is needed since a number of standard cohomological techniques do not
hold for bounded cohomology. Definition 2.5 affords us a quantitative control.

Theorem 3.3 Let G be a group acting on a boundedly acyclic connected semi-
simplicial set X• and let N ∈ N ∪ {∞}. We make the following assumptions
for each 0 ≤ p < N:

(i) The stabiliser of any point in X p has vanishing Hq
b for all q > 0 with

p + q < N.
(ii) Given q > 0 with p + q < N, the qth vanishing moduli of all those

stabilisers are uniformly bounded.

Then there is an isomorphism H p
b (G) ∼= H p

b (X•/G) for every 0 ≤ p < N.

Remark 3.4 In order to demystify the condition (ii), we note that it is obviously
satisfied when for instance there are finitely many group isomorphism classes
among the stabilisers in G of points in X p. In the even more special case
where there are only finitely many conjugacy classes in G of such stabilisers,
the above theorem admits a simpler proof which does not explicitly involve
vanishing moduli. In any case, we shall also need to apply it to situations with
infinitely many isomorphism classes of stabilisers.

123



1452 N. Monod, S. Nariman

The technical assumption (ii) is made to ensure the uniform boundedness
entering the following.

Lemma 3.5 Under the assumptions of Theorem 3.3, consider the G-
representation on 	∞(X p). Then Hq

b (G, 	∞(X p)) vanishes for all q > 0
with p + q < N.

Proof of Lemma 3.5 Fix p and q as in the statement. Let J ⊆ X p be a set of
representatives of the G-orbits and let G j < G be the stabiliser of j ∈ J .
Thus X p can be identified with

⊔
j∈J G/G j .

Consider now a cocycle c representing an element Hq
b (G, 	∞(X p)); that

is, c is a G-equivariant bounded cocycle c : Gq+1 → 	∞(X p). The above
decomposition of X p decomposes c as into G-equivariant bounded cocycles
c j : Gq+1 → 	∞(G/G j ) and moreover ‖c‖∞ = sup j∈J ‖c j‖∞. In order to
prove the statement, it suffices to show that each c j is a coboundary of some
bounded G-equivariant b j : Gq → 	∞(G/G j ) in such a way that ‖b j‖∞ is
bounded independently of j ; indeed in that case the map b : Gq → 	∞(X p)

defined by these b j will itself be bounded and witness c = db. We thus fix
some j ∈ J and proceed to show that fact:

Claim. Given c j as above, consider the corresponding G j -invariant map
c j : Gq+1 → R defined by c j (g0, . . . , gq) = c j (g0, . . . , gq)(e). Then
c j �→ c j is an isometric isomorphism on the cochain level from the stan-
dard resolution for Hq

b (G, 	∞(G/G j )) to the resolution for H
q
b (G j ) given by

bounded G j -invariant cochains on Gq+1 (as in Lemma 2.7).
This claim is a very explicit form of the Eckmann–Shapiro isomorphism for

bounded cohomology, on the cochain level, and it is proved e.g. in [56, 10.1].
With this claim in hand, the assumptions of Theorem 3.3 can now be applied
to obtain b j : Gq → 	∞(G/G j ) with ‖b j‖∞ bounded independently of j , as
desired. ��
Proof of Theorem 3.3 We consider the double complex

L p,q := 	∞(Gp+1 × Xq)
G ∼= 	∞ (

Gp+1, 	∞(Xq)
)G

.

The spectral sequence associated to the horizontal filtration of L•,• has E1-
page defined by the cohomology of

	∞ (
Gp+1, 	∞(Xq−1)

)G −→ 	∞ (
Gp+1, 	∞(Xq)

)G

−→ 	∞ (
Gp+1, 	∞(Xq+1)

)G

Since X• is boundedly acyclic, this cohomology vanishes for all p ≥ 0 and
all q > 0 because for fixed p the functor 	∞(Gp+1, −)G is exact for dual
morphisms (see e.g. [56, 8.2.5], wherein the second countability assumption
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is irrelevant in our setting since we consider G without topology). For q = 0,
we obtain 	∞(Gp+1)G by connectedness of X•. It follows that the spectral
sequence converges to H•

b (G).
Turning to the spectral sequence associated to the vertical filtration, the

E1-page is

E p,q
1 = Hq

b

(
G, 	∞(X p)

)
.

Applying Lemma 3.5 to X = X p, the assumption (i) and (ii) imply E p,q
1 = 0

for all q > 0 with p + q < N .
As for E p,0

1 , we have

E p,0
1 = 	∞(X p)

G ∼= 	∞(X p/G)

which implies

E p,0
2

∼= H p
b (X•/G).

Putting everything together, we have as claimed H p
b (G) ∼= H p

b (X•/G) for
0 ≤ p < N . ��

4 Homeomorphisms and diffeomorphisms of the circle

The case of the circle introduces already some of the ideas that will be used
repeatedly in this article, but it evades technical considerations such as moduli
of vanishing or difficult stabilisers. In fact, even the generic relation below is
not strictly needed in this case, although it does simplify the set of stabilisers
and the quotient.

We begin with a general definition: a fat point in an oriented n-manifold
M refers to a germ at 0 of an orientation-preserving embedding Bn → M ,
where Bn ⊆ Rn is the open unit disc. The image of 0 in M is the core of the
fat point.

We shall prove Theorem 1.1 using a semi-simplicial set of fat points. Let
thus X be the set of fat points in S1. Given x, y ∈ X , we write x ⊥ y if x
and y have distinct cores. This is a generic relation; therefore, Proposition 3.2
implies that X⊥• is a boundedly acyclic connected semi-simplicial set.

Proof of Theorem 1.1 Since the action of G = Homeo◦(S1) on X preserves
the relation ⊥, it induces an action on the semi-simplicial set X⊥• . We claim
that the conditions of Theorem 3.3 are satisfied for N = ∞.

Regarding condition (i), observe that the stabiliser in G of a fat point is iso-
morphic to the group Homeoc(R) of compactly supported homeomorphisms,
which is boundedly acyclic by Matsumoto–Morita’s Theorem 2.1.
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More generally, let L be the stabiliser of an element of X⊥
p . The cores to

the fat points determine p+ 1 components of the circle and these components
cannot be permuted by L since every element of L is trivial in some neigh-
bourhood of the cut-points. Thus L is isomorphic to the direct product of p+1
copies of Homeoc(R). Therefore, in view of Proposition 2.4, this subgroup is
also boundedly acyclic.

As to condition (ii), the above discussion of stabilisers already estab-
lishes that there are finitely many isomorphism types for each given p. We
observe, with Remark 3.4 in mind, that we have the stronger fact that there
are only finitely many G-orbits in every given X⊥

p . Indeed, the orbit of a tuple
(x0, . . . xp) is determined by the cyclic ordering of the cores ẋi of the xi . To see
this, consider another tuple (y0, . . . yp) such that the ẏi have the same cyclic
order as the ẋi . Choose orientation-preserving embeddings ξi : B1 → S1 rep-
resenting xi in such a way that all images ξi (B1) are pairwise disjoint, which
is possible since the ẋi are distinct. Define similarly ηi for yi . We have par-
tial homeomorphisms ηi ◦ ξ−1

i , which can be completed to a homeomorphism
h ∈ G since we have disjoint images in the same cyclic order. By construction,
h(xi ) = yi holds for all i .

In conclusion, Theorem 3.3 implies that H•
b (G) is isomorphic to the

bounded cohomology of the semi-simplicial set X⊥• /G, which coincides with
the usual cohomology H•(X⊥• /G) since all orbits sets X⊥

p /G are finite. In
fact we showed more, namely that X⊥• /G is the complex of cyclic orderings
of finite sets, which is well-known and easily verified to have R[E ] as its
cohomology ring, see e.g. [40, §5]. Alternatively, this can be seen by reversing
the above argument, but in usual cohomology (see [68, §3.1.3]). That is to
say, H•(X⊥• /G) is isomorphic to H•(G) because one checks that X⊥• is a
contractible semisimplicial set, and because the stabilisers are acyclic (in the
usual sense). The latter fact follows very much like in the bounded case above:
it is reduced to the acyclicity of Homeoc(R) established by Mather [48] by
using the Künneth formula.

Finally, the fact that H•(G) is isomorphic to R[E ] follows from Thurston’s
theorem ([76, Cor. (b) of Thm. 5]) as recalled in the introduction. All the
above arguments being completely natural and given by amorphismof spectral
sequences (the one for bounded cohomology is mapped to the ordinary one
by the forgetful functor), the isomorphism preserves also the ring structure of
[bounded] cohomology. ��

Proof of Theorem 1.2 We now turn to the Cr -diffeomorphism group Gr =
Diffr◦(S1), where r ∈ N∪{∞}. In analogy with the topological case, we define
Cr -fat points as germs of Cr -embeddings. This yields a corresponding semi-
simplicial Gr -set Cr X⊥• which is still boundedly acyclic by Proposition 3.2.
The quotient Cr X⊥• /Gr is isomorphic to the quotient X⊥• /G of the proof
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of Theorem 1.1 because the same transitivity property holds, namely: the
orbit of a tuple is determined by the cyclic order of the cores of the fat points
constituting the tuple. A priori, the only substantial difference between the two
settings resides with the stabilisers, which are products of copies of Diffrc(R).
Indeed, recall that Diffrc(R) is not an acyclic group for r > 1 since there is the
Godbillon–Vey class GV ∈ H2(Diffrc(R)) which is nontrivial. However, this
group is still boundedly acyclic by Theorem 4.2 below. Therefore we conclude
as above that H•

b (G) is isomorphic to R[Eb].
In order to complete the proof of Theorem 1.2 in the Cr case, is only

remains to justify that the isomorphism is induced by the restriction map
associated to the inclusion ι of Diffr◦(S1) into Homeo◦. This is the case
because the comparison between the two proofs goes through the ι-equivariant
semi-simplicial inclusion morphism Cr X⊥• , which induces the identification
between Cr X⊥• /Gr and X⊥• /G.

Finally, in the PL case, we consider likewise PL fat points and only need to
justify that PLc(R) is boundedly acyclic, which we do in Lemma 4.4 below.
This completes the proof of Theorem 1.2.

(In fact the PL case is even simpler because it is equally easy to show the
bounded acyclicity of PL(R), so that fat points can be replaced by usual points
in that instance.) ��

This proof can further be adapted to other circle transformation groups as
long as the main ingredients are preserved. Specifically, suppose that a group
G < Homeo◦(S1) acts transitively on all cyclically oriented tuples of points
in some G-orbit, or on some fat version thereof. If the stabiliser of any such
tuple (respectively fat tuple) is boundedly acyclic, then H•

b (G) is isomorphic
to R[Eb]. We record the special case of Thompson’s group T (see [14] for a
definition), where the bounded acyclicity of stabilisers is proved in [59].

Corollary 4.1 The bounded cohomology ring H•
b (T ) of Thompson’s group T

is isomorphic to R[Eb]. ��
Other examples of groups for which this argument holds (again using [59])

are piecewise-projective circle groups discussed in [58].
We now justify the bounded acyclicity that was used in the proof of The-

orem 1.2 for various compactly supported transformation groups of R. We
establish this in the following more general setting, as announced in Theo-
rem 1.6.

Theorem 4.2 Let n ∈ N and consider Z = Rn, or more generally Z =
M × Rn for any closed manifold M when n > 0.
Then the groups G = Homeoc(Z), Homeoc,◦(Z), Diffrc(Z) and Diffrc,◦(Z)

are boundedly acyclic for all r ∈ N ∪ {∞}.
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Proof In order to apply Theorem 2.2, we need to check the two conditions of
that theorem. Let Z0 = M × Dn , where Dn is the closed unit ball in Rn .

To verify the first condition, it suffices to show that every compact set
C ⊆ M × Rn can be mapped into Z0 by some element h ∈ G◦. We can
take h = IdM × h′, where h′ is a homothety on some large ball to ensure
h′(C) ⊆ Dn , and then radially smoothen it to the identity away from a larger
ball.

The second condition postulates the existence of g in G or G◦ such that
gp(Z0) is disjoint from Z0 for every integer p ≥ 1. For n = 1 and M trivial,
take first g0 to be any “bump shift”, that is, a transformation which is strictly
increasing on some bounded open interval I containing the interval D1. Then
any sufficiently high power g of g0 will have the required property since
g0 is order-preserving. For n > 1, we can use the one-dimensional case in
one coordinate and suitably smoothen it out to the identity along the other
coordinates. In the case of M × Rn , we extend g by the identity on the M
coordinate. ��

Since this proof reduces the statement to Theorem 2.2, we can combine it
with Lemma 2.3; we record this as follows:

Corollary 4.3 The powers Homeoc(Rn)N, Diffrc(R
n)N and Diffrc,◦(Rn)N are

boundedly acyclic. The same holds more generally for M × Rn instead of Rn,
where M is any closed manifold and n > 0. ��

If in the proof of Theorem 4.2 we replace the smooth bump shift by a PL
bump shift and the (local) homothety by an analogous PL shrinking map, we
obtain:

Lemma 4.4 The group PLc(Rn) is boundedly acyclic for all n ∈ N. ��

5 Homeomorphisms and diffeomorphisms of the disc

In this section, we further leverage the method of generic semi-simplicial sets
to prove a bounded version in dimension n = 2 of McDuff’s theorem ([52,
Cor. 2.13]) stating that the restriction homomorphism

Homeo◦(Dn) → Homeo◦(Sn−1)

induces a cohomology isomorphism:

Theorem 5.1 The restriction map Homeo◦(D2) → Homeo◦(S1) induces an
isomorphism in bounded cohomology.
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Fig. 1 Two fat chords in D2

with their cores

Thus we can apply Theorem 1.1 and deduce:

Corollary 5.2 H•
b (Homeo◦(D2)) ∼= R[Eb]. ��

Remark 5.3 As a consequence of McDuff’s result ([52, Cor. 2.12]) at least in
dimensions n ≤ 3 we know that the inclusion Homeo◦(Dn) ↪→ Homeo◦(Bn)

induces an isomorphism on group cohomology. Calegari ([12, §4.1]) how-
ever proved that the Euler class in H2(Homeo◦(B2)) is not a bounded class.
Therefore, the inclusion Homeo◦(D2) ↪→ Homeo◦(B2) does not induce
an isomorphism on bounded cohomology. It would be interesting to see if
Homeo◦(D3) has a non-trivial bounded cohomology.

To find a suitable resolution, we shall define semi-simplicial sets of fat
chords:

Definition 5.4 A chord is an embedding of the closed arc D1 into D2 such
that the endpoints ∂D1, but no other points of D1, are mapped to the circle
∂D2.

We fatten this definition by considering an orientation-preserving embed-
ding ϕ : D1 × R ↪→ D2 such that ϕ restricts to an embedding of (∂D1) × R
into ∂D2 and such that ϕ(B1×R) lies in B2. Then let [ϕ] denote the germ of ϕ
around D1×{0}, i.e. we say that ϕ andψ have the same germ if the restrictions
of ϕ and ψ to D1 × (−ε, ε) are equal for some unspecified positive ε. We call
the germ [ϕ] a fat chord and denote the set of fat chords by FCh. The chord
obtained by restricting ϕ to D1 × {0} depends on [ϕ] only and is called the
core of [ϕ]. See Fig. 1.

Definition 5.5 We call two fat chords strictly transverse if

• their cores do intersect, and
• their cores are topologically transverse, and
• the endpoints of their cores are all distinct.
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Consider a finite set of fat chords that are pairwise strictly transverse. Then
the complement in B2 of their cores is a finite union of open discs. The bound-
ary of each such disc is partitioned into pieces of chords and pieces of the the
original boundary S1 = ∂D2. The point of the first condition in Definition 5.5
is that there is at most one component from S1 for each of these open discs
in this partition. This restriction will later allow us to show that the stabilisers
described in the next lemma are boundedly acyclic.

WewriteHomeo(D2; near D) for the subgroupofHomeo(D2) consistingof
homeomorphisms that are trivial in some neighbourhood in D2 of a boundary
interval D ⊆ ∂D2, that is, and embedded interval D1 ∼= D ⊆ ∂D2. More
precisely, this definition understands that an arbitrary such D has been chosen,
but that each element of Homeo(D2; near D) can be trivial on a different
neighbourhood of D in D2. The above definitions thus imply the following
description.

Lemma 5.6 The stabiliser in Homeo◦(D2) of any (n + 1)-tuple of pairwise
strictly transverse fat chords is a finite product of groups, each isomorphic
either toHomeo(D2; near S1) or toHomeo(D2; near D). Moreover, there are
at most 2n + 2 factors of the latter type. ��
On the other hand, given that chords may intersect a large number of times,
there is no bound on the number of the factors of the Homeo(D2; near S1)
type.

Remark 5.7 The description recorded in Lemma 5.6 simplifies for the action
of the subgroupHomeo(D2; near S1). In that case, the stabiliser of any tuple of
pairwise strictly transverse fat chords is a finite power ofHomeo(D2; near S1).

Next, we show that as the name suggests, strict transversality satisfies the
condition of Definition 3.1.

Lemma 5.8 The relation of strict transversality is generic on FCh.

Proof Given finitely many fat chords a1, . . . , ak , the claim is that there is
a0 ∈ FCh strictly transverse to ai for all i > 0. We first outline the strategy of
the proof, writing ȧi for the core of ai .

There is no difficulty whatsoever in satisfying the first and last conditions
of Definition 3.1. The substance of the lemma lies in ensuring the second
condition, namely that the core ȧ0 of the desired a0 intersects transversely all
given ȧi . Adjusting a0 to be transverse to one ai at a time can immediately be
obtained by Schoenflies’s theorem applied to ȧi , but the difficulty is that the
various ȧi might intersect each other non-transversally, for instance in Cantor
sets: we remind the reader that for i, j > 0, no transversality assumption is
made for ai relatively to a j .
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The strategy is to construct a0 inductively, starting from a suitable fat chord
a00 satisfying the first and last conditions of Definition 3.1.We then use that the
second condition is in fact “generic” in a topological sense. This allows us to
perform a small perturbation (in the C0 sense) of our first choice a00 , to choose
inductively ai0 so that it is transverse to all {a j }ij=1. We then define a0 = ak0.
This topological genericity of transversality for arcs is a standard fact, nicely
explained in [83]; we shall recall the details below.

The base a00 of the induction must be chosen so that small C0 perturbations
do not make the intersections of cores empty. To that end, we choose a00 in such
away that for each i > 0 some sub-arc of the core ȧ00 intersects ȧi transversally.
This can be done in steps as follows. Start from a boundary point distinct from
all endpoints. By Schoenflies’s theorem, ȧ1 divides the disc into two discs and
thus we can choose an initial (fat) arc from the boundary point to a point in
the other disc component, crossing ȧ1 once transversally and stopping at an
interior point not lying on any ȧi . We then apply Schoenflies’s theorem to
the next core ȧ2 and cross it transversally in the same fashion, repeating this
argument until ȧk is crossed and ending on a new boundary point distinct from
all endpoints. We need to avoid self-intersections of ȧ00 , but this is possible
since at every intermediate step the partially constructed arc ȧ00 is retractable
to the boundary.

Now we prepare the inductive argument. Given i, j > 0, consider the
pairwise intersection ȧi ∩ ȧ j of the cores and denote by Ki j the topological
boundary Ki j = ∂ȧi (ȧi ∩ ȧ j ) in ȧi of this intersection. Notice that Ki j = K ji
holds because interior points of the intersection with respect to either ȧi or ȧ j
coincide. Consider the union Ki = ⋃

j Ki j . Since the boundary of a closed
set is always nowhere dense, Ki is a nowhere dense subset of the arc ȧi .

The inductive claim at step i (with 1 ≤ i ≤ k) is that ai−1
0 admits an

arbitrarily small perturbation ai0 such that for all 1 ≤ j ≤ i , the core ȧi0 is
transverse to ȧ j and avoids the set K j .

The proof of this claim for i = 1 is a simpler version of the proof for i > 1,
so we establish the latter while assuming that it already holds for all 1 ≤ j < i .
Consider

N = (ȧi−1
0 ∩ ȧi )\

⋃

1≤ j<i

(ȧ j ∩ ȧi ).

Since ȧi−1
0 avoids K ji = Ki j , we have in fact

N = (ȧi−1
0 ∩ ȧi )\

⋃

1≤ j<i

Intai (ȧ j ∩ ȧi )
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so that N is a closed set and hence it has a neighbourhood V separating it from
a j for all 1 ≤ j < i . Now each sub-arc of ȧi−1

0 in V can be perturbed within
V to become transverse to ȧi using Schoenflies’s theorem, and we can as well
do it with the corresponding portion of the fat arc ai−1

0 . We can additionally
ensure that the core of this new perturbation ai0 avoids Ki since Ki is nowhere
dense in the sub-arc of ȧi that we are crossing.

The reason that this completes the induction step is that outside N , the
previous iteration ȧi−1

0 was already transverse to ȧi because any intersection
with ȧi in N would already occur in the interior of ȧi ∩ ȧ j for some j < i .
Now that the induction is complete, the final iteration ak0 is the desired a0. ��

We consider now the semi-simplicial set FCh⊥• of tuples of pairwise strictly
transverse fat chords. Then Lemma 5.8 allows us to apply Proposition 3.2 and
deduce:

Corollary 5.9 The semi-simplicial set FCh⊥• is boundedly acyclic. ��
We shall also need to consider a somewhat technical subset of FCh and

hence of FCh⊥• , as follows.

Definition 5.10 A fat chord [ϕ] is called radial (near the boundary) if we can
choose ϕ : D1 × R ↪→ D2 which is radial in a neighbourhood of {±1} × R
in the following sense: there exists ε > 0 such that

ϕ(±r, t) = rϕ(±1, t) ∀ 1 − ε < r ≤ 1, ∀ t.

We write RFCh ⊆ FCh for the set of radial fat chords and RFCh⊥• for the
corresponding sub-semi-simplicial set of FCh⊥• .

This specific definition is somewhat arbitrary since we are working in the
topological category; the point is only to choose some normalisation of the
germ near the boundary. We note that that the arguments given for FCh can be
repeated virtually unchanged to yield the following variation of Corollary 5.9.

Corollary 5.11 The semi-simplicial set RFCh⊥• is boundedly acyclic. ��
Remark 5.12 It is plausible to use more high powered transversality results
in the topological settings ([43]) to prove an analogue of Corollary 5.9 and
Corollary 5.11 in higher dimensions. We will, however, only be able to work
in dimension two because the fact that the complementary regions in D2 of
simplices of FCh⊥• is again a union of discs is, as we shall see, an important
feature in the proof Theorem 5.1.

The relevance of the radial semi-simplicial subset hinges on the following
observation:
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Lemma 5.13 The inclusion map RFCh → FCh descends to a bijection

RFCh /Homeo(D2; near S1) ∼=−−→ FCh /Homeo(D2; S1).
More generally, for all p it induces a bijection

RFCh⊥
p /Homeo(D2; near S1) ∼=−−→ FCh⊥

p /Homeo(D2; S1).
Proof By the isotopy extension theorem for homeomorphisms in dimension 2
(see [32, Thm. 1.7.10]) and the fact that Homeoτ (D2; S1) as a topological
group is contractible ([32, Thm. 1.5.2]), we know that space of embeddings
of chords with fixed ends in D2 is contractible. In particular, if two fat chords
have the same ends, they are isotopic relative to their ends. Hence, by an
isotopy fixing the boundary pointwise, we can make the fat chords radial near
the boundary and in fact we can make the support of this isotopy in any given
neighbourhood of the boundary. Hence the above maps are surjective. For
injectivity, note that if two radial fat chords have the same ends, they overlap
near the boundary so they will be isotopic by an isotopy that is identity near
the boundary. ��

In order to prove Theorem 5.1, we still need to deal with an auxil-
iary subgroup. We recall the notation Homeo(D2; near D) introduced before
Lemma 5.6 for some boundary interval D ⊆ S1.

Lemma 5.14 The group Homeo(D2; near D) satisfies the assumptions of
Theorem 2.2 and hence is boundedly acyclic.

Proof of Lemma 5.14 It suffices to justify that we are in the situation of The-
orem 2.2. To do so, we consider the following equivalent set-up (see Fig. 2).
Let Z be a square and let D be the union of three edges of this square. We
call the remaining edge the free edge since elements of Homeo(D2; near D)

can restrict to non-trivial homeomorphisms of that edge. An important point
is that each such edge homeomorphism will be supported in a compact subset
of the interior of that edge.

Let now Z0 be a smaller square inside Z whose free edge lies in the interior
the free edge of Z . Then indeed we can find a “displacement” g and both
conditions of Theorem 2.2 are satisfied. ��

Fig. 2 Z , Z0 and the first
displaced copy gZ0

Z0

Z
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Remark 5.15 In the first version of this article, we observed that Lemma 5.14
can be proved using the original Matsumoto–Morita method.

At this point, we can conclude from the description given in Lemma 5.6 that
the stabiliser of any (n+ 1)-tuple of pairwise strictly transverse fat chords is a
boundedly acyclic group since bounded acyclicity passes to products (Propo-
sition 2.4). However, we shall need to know that the vanishing moduli of this
bounded acyclicity does not depend on the combinatorics of chord intersec-
tions even though this combinatorics leads to unboundedly many factors in the
product described in Lemma 5.6 even if we fix n. The desired uniformity is a
consequence of Proposition 2.6, as follows.

Corollary 5.16 For everyq > 0 there is a constant bounding theqth vanishing
modulus of the stabiliser in Homeo◦(D2) or in Homeo(D2; near S1) of any
(n + 1)-tuple of pairwise strictly transverse fat chords.

Proof LetG be the product of countably many copies of Homeo(D2; near S1)∼= Homeoc(R2) and of Homeo(D2; near D). Both types of factors satisfy
the assumptions of Theorem 2.2 and hence Lemma 2.3 implies that G is
boundedly acyclic. According to Lemma 5.6 andRemark 5.7, all the stabilisers
considered in the statement of Corollary 5.16 are subproducts ofG. Therefore,
the statement follows indeed from Proposition 2.6. ��
Proof of Theorem 5.1 For shorter notation, we write

G = Homeo◦(D2) and G ′ = Homeo(D2; S1)
so that the restriction to S1 yields an identification G/G ′ = Homeo◦(S1).

We claim that the semi-simplicial set FCh⊥• /G ′ is boundedly acyclic. In
viewof Lemma5.13, it suffices to establish this for RFCh⊥• /Homeo(D2; near
S1) instead. We shall deduce this from Theorem 3.3. To that end, recall that
Homeo(D2; near S1) ∼= Homeoc(R2) is boundedly acyclic by Matsumoto–
Morita’s theorem, while RFCh⊥• is boundedly acyclic by Corollary 5.11. It
thus remains to check the conditions on the stabilisers, which are granted by
the Corollary 5.16. This confirms the claim.

The claim puts us in the position to apply Theorem 3.3 a second time, but
to the action of G/G ′ on FCh⊥• /G ′. The stabiliser of a (p + 1)-tuple for this
action corresponds to the stabiliser of 2(p+1) generic fat points in S1 under the
identification ofG/G ′ withHomeo◦(S1). Thus, as in the Proof of Theorem1.1,
these stabilisers are boundedly acyclic (and there is only one isomorphism type
when p is fixed). Therefore, Theorem 3.3 provides an isomorphism between
the bounded cohomology of Homeo◦(S1) and the bounded cohomology of the
quotient of FCh⊥• /G ′ by G/G ′, which is none other than FCh⊥• /G.

We invoke a third time Theorem 3.3, now for the G-action on FCh⊥• .
That semi-simplicial set is boundedly acyclic by Corollary 5.9. To justify
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the assumptions on the stabilisers, we recall the description of Lemma 5.6
and invoke again Corollary 5.16. We thus obtain an isomorphism between the
bounded cohomology of G and of FCh⊥• /G, which we previously identified
with the bounded cohomology of Homeo◦(S1).

It only remains to justify that this isomorphism is indeed induced by the
restriction map G → Homeo◦(S1), or equivalently by the quotient map
G → G/G ′. The two isomorphisms produced by the second and third
applications of Theorem 3.3 arise from parallel spectral sequences, con-
nected by the morphism of spectral sequences induced by the quotient maps
FCh⊥• → FCh⊥• /G ′ andG → G/G ′. Thus indeed the isomorphism is induced
by restriction (which in particular preserves the ring structure of bounded coho-
mology); this completes the proof of Theorem 5.1. ��
Proof of Theorem 1.4 Our proof of Theorem 5.1 is set up in such a way that
it can be followed equally well in the Cr case. We only need to replace our
semi-simplicial sets FCh⊥• and RFCh⊥• by the corresponding sets ofCr germs.
The main difference, viewed from the perspective of ordinary cohomology, is
that the bounded acyclicity of stabilisers still holds but cannot be traced back
to Matsumoto–Morita methods. Instead, we argue that Lemma 5.14 holds
unchanged for (the connected component of) diffeomorphism groups because
it relies on Theorem 2.2 and the latter does not discriminate according to
regularity. The same holds for the bounded acyclicity of Diffr◦(D2; near S1).

��

6 Homeomorphisms and diffeomorphisms of the sphere Sn

Our goal in this section is to prove Theorem 1.8 which in particular solves
Ghys’s question (see Sect. 1.3) about invariants of flat S3-bundles. We first
describe a strategy to determine the low degree bounded cohomology of
Diffr◦(Sn) for r �= n + 1 and later we restrict to S3.

Before proceeding, we recall that a quasimorphism on a group G is a
map f : G → R such that the quantity

∣∣ f (x) + f (x) − f (xy)
∣∣ is bounded

uniformly over x, y ∈ G. Every quasimorphism f lies at bounded distance
from a unique homogeneous quasimorphism f̄ , that is, a quasimorphism sat-
isfying f̄ (xn) = n f̄ (x) for all x ∈ G and n ∈ Z, see e.g. [1, §3.3]. A
quasimorphism is called trivial if it is at bounded distance of a true homomor-
phism, or equivalently if f̄ is a true homomorphism. Noting that the quantity
f (x) + f (x) − f (xy) is a coboundary (in the inhomogeneous model) and
hence a bounded cocycle, one verifies readily that the space of quasimorphisms
modulo trivial quasimorphisms is isomorphic to the kernel of the comparison
map H2

b (G) → H2(G) from bounded to ordinary cohomology in degree two
(compare again [1, §3.3]).
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In addition, Matsumoto–Morita have shown [55, Cor. 2.11] that this com-
parisonmap is injective ifG is uniformly perfect, that is, if there is a bound N
such that every element of G can be expressed as a product of at most N com-
mutators. We shall call this the “Matsumoto–Morita lemma” to distinguish
it from their bounded acyclicity theorem. This lemma can also be checked
directly on the above description in terms of quasimorphisms.

Back to Sn , Tsuboi [80,81] proved that Homeo◦(Sn) and Diffr◦(Sn) for
r �= n+1 are uniformly perfect and henceMatsumoto–Morita’s lemma implies
that the map

H2
b (Homeo◦(Sn)) −→ H2(Homeo◦(Sn))

is injective and the same holds for Diffr◦(Sn) when r �= n + 1. By Thurston’s
theorem ([76, Cor. (b) of Thm. 5]), we know that

H2(Homeo◦(Sn)) ∼= H2(BHomeoτ◦(Sn)).

Given what is known of the right hand side, this already implies H2
b (Homeo◦

(Sn)) = 0 when n = 2, 3.
As announced in Theorem 1.10, we can establish this vanishing also for

H3
b , for all n, and perhaps surprisingly for diffeomorphisms as well.

Proof of Theorem 1.10 We apply Theorem 3.3 to the action of the group G =
Homeo◦(Sn) or Diffr◦(Sn) on the semi-simplicial set X⊥• of tuples of fat points
in Sn with disjoint cores, exactly as for Theorem 1.1. We work with Cr fat
point in the case of Diffr◦(Sn). The bounded acyclicity of X⊥• is granted by
Proposition 3.2. The difference with the case n = 1 is that we do not know
the higher bounded cohomology of stabilisers and therefore we take N = 4
in Theorem 3.3. Thus, we need to establish the vanishing of Hq

b (G1) for all
q > 0 with p + q < 4, where G1 denotes the stabiliser of a point in X⊥

p and
p ≥ 0. We note that condition (ii) of Theorem 3.3 then follows since there is
only one type of stabiliser in X⊥

p for each p.
The case p = 0 for homeomorphisms follows from the Matsumoto–Morita

theorem since in that case G1 ∼= Homeoc(Rn). In the Cr case we quote
Theorem 1.6 instead.

Since H1
b vanishes for every group, the only remaining case is the vanishing

of H2
b (G1) when p = 1. Now G1 ∼= Homeoc(Sn−1 × R) or Diffrc(S

n−1 × R)

and we can apply Theorem 4.2.
Now Theorem 3.3 shows that the bounded cohomology of G coincides

with that of the quotient semi-simplicial set X⊥• /G. This quotient, however,
is boundedly acyclic as soon as n > 1 because G acts transitively on tuples
of fat points with distinct cores by a germ pasting argument as in the proof of
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Theorem 1.1. That is, given two (p+1)-tuples of pairwise disjoint orientation-
preserving embeddings of open balls into Sn , there is an orientation-preserving
transformation of Sn in the corresponding regularity which sends each ball
embedding among the first tuple to the corresponding embedding among the
second tuple. The only difference with S1 for this transitivity is that in dimen-
sion one the cyclic order of the points must be preserved. ��

Now we restrict to the case of S3 and proceed to answer Ghys’s question.

Proof of Theorem 1.8 The proof follows exactly the strategy of Theorem 1.10,
but with N = 5 instead of N = 4, which requires the vanishing of H2

b
of the stabiliser of a simplex in X2. But this stabiliser group is isomorphic
to Diffrc(P) where P is obtained by removing 3 disjoint closed balls from
S3. The mapping class group π0(Diffrc(P)τ ) is generated by the Dehn twists
around sphere boundary components so it is a finite 2-torsion group (see [36,
Lemma 3.2]). Hence, it is enough to show that H2

b (Diffrc,◦(P)) = 0. To do so,
we first observe that the comparison map

H2
b (Diffrc,◦(P)) −→ H2(Diffrc,◦(P)), (2)

is injective, and then we show that its image is trivial. By [21, Thm. 4.1] we
know that Diffrc,◦(P) is uniformly perfect for r �= 4, 0. Therefore, in these
regularities, Matsumoto–Morita’s lemma implies that the map (2) is injective.
In particular, there is no nontrivial quasimorphism on Diffrc,◦(P).

It is likely that Homeoc,◦(P) is also uniformly perfect but we learned from
Bowden that one can use automatic continuity of homogeneous quasimor-
phisms on diffeomorphism groups ([2, Thm. A.5]) and the fact that home-
omorphisms of 3-manifolds can be C0-approximated by diffeomorphisms
([66, Thm. 6.3]) to deduce that if there were a nontrivial quasimorphisms on
Homeoc,◦(P), it would restrict to a nontrivial quasimorphisms on Diffc,◦(P)

which we know they do not exists by the uniform perfectness of Diffc,◦(P).
Hence, we also have the injectivity for the map

H2
b (Homeoc,◦(P)) −→ H2(Homeoc,◦(P)). (3)

Now we need the following input about the cohomology of Diffrc,◦(P)τ .

Claim H2(BDiffrc,◦(P)τ ) = 0.

Proof of the claim: Since Diffrc,◦(P)τ is a connected group, the classifying
space BDiffrc,◦(P)τ is simply connected. Hence, it is enough to show that
H2(BDiffrc,◦(P)τ ; R) = 0. The action of Diffrc,◦(S2 × R)τ on the space of
embeddings Emb◦(D3, S2 × R) gives rise to the fibration (see [69])

Diffrc,◦(P)τ → Diffrc,◦(S2 × R)τ
res−→ Emb◦(D3, S2 × R),
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where res is the restriction of a diffeomorphism to a fixed embedding of D3 into
S2 × R. It is standard (e.g. [44, Thm. 9.1.2]) to see that Emb◦(D3, S2 × R) �
Fr+(S2×[0, 1])where Fr+(−)means the oriented orthonormal frame bundle.
Since the tangent bundle of S2 × [0, 1] is trivial (which is in fact true for all
orientable 3-manifolds), we have Fr+(S2 × [0, 1]) ∼= S2 × [0, 1] × SO(3).
Hence, if we deloop the above fibration, we obtain a fibration

S2 × [0, 1] × SO(3)τ → BDiffrc,◦(P)τ → BDiffrc,◦(S2 × R)τ . (4)

Now, by Hatcher’s theorem ([34, Appendix]), we know that BDiffc(S2 ×
R)τ � SO(3)τ . Since BDiffc,◦(S2 × R)τ is the universal cover for
BDiffc(S2 × R)τ , we conclude BDiffc,◦(S2 × R)τ � SU(2). Hence, to cal-
culate H2(BDiffrc,◦(P)τ ; R), we look at the second page of the Serre spectral
sequence for the fibration (4), where we have a differential

d2 : E2
3,0 = H3(BDiffc,◦(S2×R)τ ; R) → E2

0,2 = H2(S
2×[0, 1]×SO(3)τ ; R),

whose cokernel is H2(BDiffrc,◦(P)τ ; R).
To determine this differential, note that BDiffc,◦(S2 × R)τ is 2-connected,

sowe have H3(BDiffc,◦(S2×R)τ ; R) = H2(Diffc,◦(S2×R)τ ; R). Therefore,
the differential d2 is the map induced by the map

res : Diffrc,◦(S2 × R)τ → S2 × [0, 1] × SO(3)τ

on the second homology.
To show that res induces a surjection on H2, first note that H2(S2 ×[0, 1]×

SO(3)τ ; R) is generated by the S2 factor. On the other hand, by Hatcher’s
theorem ([34, Appendix]), we know that Diffrc,◦(S2 × R)τ � �(SU(2)τ )
where �(SU(2)τ ) is the loop space on SU(2)τ . Hence, the map d2 is induced
by the natural map

α : �(SU(2)τ ) → S2 × [0, 1],
which is given by the Hopf map to the slice S2 × {t} at time t of the loop.
It can be easily seen that α induces an isomorphism on H2. So d2 is also an
isomorphism. Therefore, we have H2(BDiffrc,◦(P)τ ; R) = 0. �

We use this topological fact as an input to show that the image of the com-
parison map for Diffrc,◦(P) is trivial. This is easier for Homeoc,◦(P) since
by the classical theorem of Cerf ([13]), the proof of Smale’s conjecture ([34,
Appendix]) implies that Homeoc,◦(P)τ � Diffrc,◦(P)τ . Hence, by Thurston’s
theorem ([76, Cor. (b) of Thm. 5]), we have

H2(Homeoc,◦(P)) = H2(BHomeoc,◦(P)τ ) = 0.
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Therefore, the injectivity of the comparison map (3) already implies that
H2
b (Homeoc,◦(P)) = 0. For the case of Diffrc,◦(P), we do not know whether

H2(Diffc,◦(P)) vanishes so we need to work a little harder.

Claim Let Mn be a n-manifold such that H2(BDiffrc,◦(M)τ ) = 0 and suppose
that we know that the comparison map (2) is injective for Diffrc,◦(M). Then
for r �= n + 1 we have H2

b (Diffrc,◦(M)) = 0.

Proof of the claim: Recall that BDiffrc,◦(M) is homotopy fiber in the fibration

BDiffrc,◦(M) → BDiffrc,◦(M) → BDiffrc,◦(M)τ .

Given that BDiffrc,◦(M)τ is simply connected, and we know that for r �=
dim(M) + 1, we have H1(BDiffrc,◦(M)) = 0 by [50, Appendix] and also we
have H2(BDiffrc,◦(M)τ ) = 0 by the hypothesis, the spectral sequence for the
above fibration implies that the map

H2(Diffrc,◦(M)) → H2(BDiffrc,◦(M)),

is injective. On the other hand, from Mather–Thurston’s theorem for r �=
dim(M) + 1, it follows that H2(BDiffrc,◦(M)) only depends on dim(M)

(see [76, Second corollary at page 306] and the proof of the lemma in [50,
Appendix]). Therefore, the inclusion Diffrc,◦(Rn) → Diffrc,◦(M) induces an
isomorphism

H2(BDiffrc,◦(M))
∼=−→ H2(BDiffrc,◦(Rn)).

It follows from the commutative diagram

H2(Diffrc,◦(M)) H2(BDiffrc,◦(M))

H2(Diffrc,◦(Rn)) H2(BDiffrc,◦(Rn)),

∼=

that the left vertical map is also injective. Now the commutative diagram of
comparison maps

H2
b (Diffrc,◦(M)) H2(Diffrc,◦(M))

H2
b (Diffrc,◦(Rn)) H2(Diffrc,◦(Rn)),
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implies that the left vertical map is also injective.
But we know that H2

b (Diffrc,◦(Rn)) is trivial by Theorem 4.2. Therefore,
H2
b (Diffrc,◦(M)) also vanishes. �
Hence, by the claim, for r �= 4, we obtain H2

b (Diffc,◦(P)) = 0 which
finishes the proof. ��

7 Further comments and questions

7.1 Homeomorphisms of certain geometric 3-manifolds

Burago–Ivanov–Polterovich ([3, Section 3.3]) proved that Diff◦(M) is uni-
formlyperfect for any closed3-manifoldM . Therefore, aswehave seen already
by Matsumoto–Morita’s lemma, the comparison map

H2
b (Diff◦(M)) → H2(Diff◦(M))

is injective. Again by automatic continuity of homogeneous quasimorphisms
on diffeomorphism groups ([2, Thm. A.5]) and the fact that homeomorphisms
of 3-manifolds can beC0-approximated by diffeomorphisms ([66, Thm. 6.3]),
we can also conclude that

H2
b (Homeo◦(M)) → H2(Homeo◦(M))

is injective. By Thurston’s theorem ([76, Cor. (b) of Thm. 5]), we know that

H2(Homeo◦(M)) = H2(BHomeoτ◦(M)).

Thanks to the generalised Smale conjecture which has been extensively stud-
ied for many cases ([22,33–35,39,65]) and recently has been proved in the
remaining cases by Bamler and Kleiner ([4,5]), we know the homotopy type
of Homeoτ◦(M) for a 3-manifold admitting a Thurston geometry. Combining
a number of known facts about Homeo◦(M), we prove:

Theorem 7.1 Let M be a closed hyperbolic 3-manifold or a closed Seifert
fibered space whose fundamental group has Z as its center.

Then H2
b (Homeo◦(M)) = 0.

Proof In the hyperbolic case, the generalised Smale conjecture was proved
by Gabai ([22]) which implies that Homeoτ◦(M) � ∗ as a topological group.
Therefore, by the above argument we obtain H2

b (Homeo◦(M)) = 0. However
for Seifert fibered manifold M , the generalised Smale conjecture implies that
Homeoτ◦(M) � (S1)k where k is the rank of the center of π1(M) except the
case of the solid torus for which Homeoτ◦(M) � S1 × S1 and the case of D3
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for which Homeoτ◦(D3) � SO(3)τ (see the introduction of [65]). Hence, in
our case of interest when H2(BHomeo◦(M)) is nontrivial it is isomorphic R
which is generated by the Euler class induced by the circle action on the Seifert
fibered space by rotating the circle fibers. Mann [47] showed that this Euler
class is not a bounded class. Therefore, injectivity of H2

b (Homeo◦(M)) →
H2(Homeo◦(M)) implies that H2

b (Homeo◦(M)) is also zero in this case. ��

7.2 Diffeomorphisms and homeomorphisms of Rn

The algebraic properties of the automorphism groups of non-compact man-
ifolds are more subtle to study. It would be interesting to apply the same
techniques we used for spheres and the 2-disc to extract information about
the bounded cohomology of diffeomorphisms and homeomorphisms of Rn .
The main motivation is to study which invariants of Cr -flat Rn-bundles for
r ≥ 0 are bounded. For the C0-case, recall that BHomeo◦(Rn)τ classifies
oriented Rn-microbundle and it has a nontrivial homotopy type (see [42] for
nontrivial characteristic classes of Rn-microbundles). In particular, the Euler
class E ∈ Hn(BHomeo◦(Rn)τ ) when n is even and all the Pontryagin classes
Pi for i ≤ n/4 are nontrivial. Hence, they also pull back nontrivially to
H•(Homeo◦(Rn)) since by McDuff’s theorem ([52]) we know that

H•(BHomeo◦(Rn)τ ) ∼= H•(Homeo◦(Rn)).

In fact, these classes are also nontrivial for Cr -flat Rn-bundles for all regular-
ities r > 0 by the following observation. Using a deep result of Segal ([72,
Prop. 1.3 and 3.1]), we know that there is a map

BDiffr◦(Rn) → B�r
n,◦,

which is a homology isomorphism, where B�r
n,◦ is the classifying space of

Haefliger structures for codimension n foliations that are transversely oriented,
see Section 1 in [72] for more details. On the other hand, there is map

ν : B�r
n,◦ → BGLn(R)τ◦,

which classifies oriented normal bundles to the codimension n foliations. For
all regularities, it is known that the map ν is at least (n + 1)-connected, see
Remark 1, Section II.6 in [29]. Hence, in particular the induced map

H•(BGLn(R)τ◦) → H•(Diffr◦(Rn)),

is an isomorphism for • ≤ n. Therefore, the classes Pi for i ≤ n/4 are
nontrivial and so is E when n is even in H•(Diffr◦(Rn)) for all r . However,
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for n = 2, Calegari ([12, Thm. C]) showed that E ∈ H2(Diffr◦(R2)) is not
a bounded class. We in fact show that there is no bounded invariant for flat
Rn-bundles over surfaces.

Theorem 7.2 We have H2
b (Diffr◦(Rn)) = 0 for all n and all r �= n + 1.

Proof As a consequence of Rybicki’s theorem ([71, Thm. 1.2]) we know that
Diffr◦(Rn) is uniformly perfect for r �= n+1. Therefore, Matsumoto–Morita’s
lemma ([55, Cor. 2.11]) implies that the map

H2
b (Diffr◦(Rn)) −→ H2(Diffr◦(Rn))

is injective for r �= n+ 1. The remaining part of the proof consists in showing
that the right hand side vanishes when n �= 2, while for n = 2 it turns out
that the non-zero elements of the right hand side are not in the image of the
comparison map.

Recall the deep result of Segal ([72, Prop. 1.3 and 3.1]) implies that there is
a map BDiffr◦(Rn) → B�r

n,◦ which is a homology isomorphism, where B�r
n,◦

is the classifying space of Haefliger structures for codimension n foliations
that are transversely oriented, see Section 1 in [72] for more details. Since
r �= n + 1, a theorem of Mather [49, Section 7], implies that the natural map
ν : B�r

n,◦ → BGLτ
n(R)◦ is at least (n+2)-connected. (Without the restriction

r �= n + 1, we still know that the map ν is at least (n + 1)-connected, see
Remark 1, Section II.6 in [29].) Therefore, by combining Segal’s theorem and
Thurston’s theorem, we have H2(Diffr◦(R1)) = 0 for r �= 2 as desired for
n = 1. For n = 2, we have H2(Diffr◦(R2)) = R generated by the Euler class
for all r . On the other hand, a theorem of Calegari ([12, Thm. C]) shows that
the Euler class in H2(Diffr◦(R2)) = R is not a bounded class. Finally, for
n > 2, since H2(BGLτ

n(R)◦; R) = 0, we have indeed H2(Diffr◦(Rn)) = 0. ��

7.3 Questions

We shall end with few questions regarding the borderline of some of the cases
we considered. For the case of spheres, it would be interesting to see if H4

b van-
ishes for Sn where n �= 1, 3. In particular, the case of S2 is already interesting.
By Thurston’s theorem ([76, Cor. (b) of Thm. 5]) we know

H4(Homeo◦(S2)) = H4(BHomeoτ◦(S2)),

and by Hamstrom’s theorem ([32]) we know that Homeoτ◦(S2) � SO(3)τ .
Therefore, we have H4(Homeo◦(S2)) = R generated by the Pontryagin class
P1 in H4(BSO(3)τ ).
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Question 7.3 Is the first Pontryagin class bounded or even more generally is
H4
b (Homeo◦(S2)) nontrivial?

Question 7.4 For n > 1, is there any nontrivial bounded class in H•(Homeo◦
(Sn))?

In proving Homeo◦(D2) → Homeo◦(S1) we used a huge semi-simplicial
set of transverse fat chords. There is an obvious way to generalize this semi-
simplicial set to higher dimensions which is still boundedly acyclic. But then,
given that the complement of simplices in Dn could be more complicated
when n > 2, it is not clear whether the stabilisers are boundedly acyclic.
One could try to define “smaller” semi-simplicial set whose stabilisers of its
simplices are among the bounded acyclic groups. But it becomes harder to
prove that the chosen semisimplicial set is boundedly acyclic. Hence, we pose
the generalisation of our result about Homeo◦(D2) as a question.

Question 7.5 Does the restriction map Homeo◦(Dn) → Homeo◦(Sn−1)

induce an isomorphism on bounded cohomology for n > 2?

We generalised Calegari’s theorem ([12, Thm. C]) about the second bounded
cohomology of Diffr◦(R2) by showing the vanishing H2

b (Diffr◦(Rn)) = 0 for
all n and all r �= n + 1. So the higher degrees of bounded cohomology of
Diffr◦(R2) remains to be determined.

Question 7.6 Is Diffr◦(Rn) a boundedly acyclic group? Is E ∈ H2n(Diffr◦
(R2n)) a bounded class?

And finally, as we mentioned in the introduction, our proof of the unbounded-
ness of the Euler class for oriented C0-flat S3-bundles is not constructive. It
would be geometrically enlightening to find a constructive proof.

Question 7.7 Find explicit families of orientedC0-flat S3 bundles over a given
4-manifold with unbounded Euler number.
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