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Abstract

In this paper, we generalize the original idea of Thurston for the so-called Mather-Thurston’s theorem for foliated
bundles to prove new variants of this theorem for PL homeomorphisms and contactormorphisms. These versions
answer questions posed by Gelfand-Fuks ([GF73, Section 5]) and Greenberg ([Gre92]) on PL foliations and
Rybicki ([Ryb10, Section 11]) on contactomorphisms. The interesting point about the original Thurston’s technique
compared to the better-known Segal-McDuff’s proof of the Mather-Thurston theorem is that it gives a compactly
supported c-principle theorem without knowing the relevant local statement on open balls. In the appendix, we
show that Thurston’s fragmentation implies the non-abelian Poincare duality theorem and its generalization using
blob complexes ((MW12, Theorem 7.3.1]).
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1. Introduction

Thurston ([Thu74]) found a remarkable relation between the identity component of diffeomorphism
groups of an n-dimensional compact manifold M and ‘singular’ foliations, induced by Haefliger struc-
tures (see [Hae71]), on M. His theorem can be thought of as a homology h-principle theorem or a
c-principle theorem (see [Fuk74, Theorem 3.3]) between the space of genuine foliations on M-bundles
that are transverse to the fiber M and the space of singular foliations on M-bundles, whose normal
bundles are isomorphic to the vertical tangent bundle.

More concretely, a Haefliger structure H comes with the data of a vector bundle vH (see [Hae71]),
which is called the normal bundle of the Haefliger structure #, and a germ of a foliation near the zero
section of vH that is transverse to the fibers but not necessarily to the zero section. So the intersection
of this germ of foliation with the zero section will be described by a ‘singular’ foliation or a Haefliger
structure.

For a closed manifold N, we consider a Haefliger structure on a productbundle 7: NXM — N, whose
normal bundle is isomorphic to the vertical tangent bundle of 7. One can ask whether this Haefliger
structure is homotopic to a genuine foliation on N X M that is transverse to the fibers (i.e., whether an
h-principle theorem holds for this formal data). However, this is not true in general. Thurston’s theorem
in ([Thu74]) implies that there exists a ‘cobordism’ (hence, a c-principle) of a trivial M-bundle with a
Haefliger structure whose normal bundle is isomorphic to the vertical tangent bundle that starts from
the bundle 7 and ends with a bundle N’ X M — N’ with a genuine foliation on the total space N’ X M,
which is transverse to the fibers.

The space of foliation on a trivial M-bundle transverse to fibers is related to Diffy(M), the identity
component of the diffeomorphism group, and the formal space that does not have the transversality con-
dition is related to a section space over M whose fiber is at least n-connected. Thurston showed that these
two spaces satisfy a certain fragmentation property. It is easier to state this property for Diffo(M). So
let {U;}; be a finite open cover for M. Fragmentation with respect to this cover means that any element
f € Diffo(M) can be written as a composition of diffeomorphisms f;, such that f; is compactly sup-
ported in some element of the cover {U; };. He used the fragmentation property to filter these two spaces
and compare their filtration quotients to prove his c-principle theorem. In this paper, we first improve
and make the method of Thurston more abstract to be able to apply it to other geometric structures.

To set up a more general context, let F : (Mfldﬁ)”” — S be a presheaf from the category of
smooth n-manifolds (possibly with nonempty boundary) with smooth embeddings as morphisms to a
convenient category of spaces S. For our purpose, we shall consider the category of simplicial sets
or compactly generated Hausdorff spaces. Let F/ be the homotopy sheafification of F with respect to
1-good covers, meaning contractible open sets whose nontrivial intersections are also contractible (see
[BABW 13] for more details). One can describe the value of F/ (M) as the space of sections of the bundle
Fr(M) gL, ®) F(R") — M, where Fr(M) is the frame bundle of M. We say F satisfies an h-principle
if the natural map from the functor to its homotopy sheafification,

j:F(M) — Ff (M),

induces a weak equivalence, and we say it satisfies the c-principle if the above map is a homology
isomorphism.

Some important examples of such a presheaf in the manifold topology are the space of generalized
Morse functions ([Igu84]), the space of framed functions ([Igu87]), the space of smooth functions on
M™ that avoid singularities of codimension # + 2 (this is, in general, a c-principle theorem, see [Vas92]),
the space of configuration of points with labels in a connected space ([McD75]), and so on. h- and
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c-principle theorems (see [EMO02]) come in many different forms, but the general philosophy is that a
space of a geometric significance F (M), which is sometimes called ‘holonomic solutions’, is homotopy
equivalent or homology isomorphic to ‘formal solutions’, F/ (M) (the superscript f stands for formal).
The space of formal solutions, F/ (M), is more amenable to homotopy theory since it is often the space
of sections of a fiber bundle, and therefore, it is easy to check its homotopy sheaf property with respect
to certain covers. Hence, from the homotopy theory point of view, proving the h-principle theorem
consists of a ‘local statement’, which is an equivalence of holonomic solutions and formal solutions on
open balls, and a “local to the global statement” which is a homotopy sheaf property for the geometric
functor of holonomic solutions.

Thurston in ([Thu74]), however, found a remarkable compactly supported c-principle theorem with-
out knowing the ‘local statement’. The main goal of this paper is to abstract his ideas to prove new
variants of compactly supported c-principle theorems without knowing the local statement. To briefly
explain his compactly supported c-principle theorem, let Fol. (M) := BDiff.(M)! be the realization of
the semisimplicial set whose k-simplices are given by the set of codimension n foliations on M™ x A*
that are transverse to the fibers of the projection M x A¥ — A and the foliations are horizontal outside
of some compact set.

To describe the space of formal solutions in this case, we need to recall the notion of Haefliger
classifying space, which is the space of formal solutions on an open ball. Let Fol/ (R") := BT, 2 be the
realization of a semisimplicial set whose k-simplices are given by the set of the germs of codimension n
foliations on R” x A around {0} x A¥ that are transverse to the fibers of the projection R x AKX — Ak,
After fixing a base section of the space of sections of Fr(M) XgL,, (r) Fol/ (R") — M, we can define the

support of sections to be the set on which they take different values from the base section. Let Fol{ (M)
be the space of compactly supported sections with respect to the fixed base section. Thurston proved
that there exists a natural map Fol. (M) — Folf (M), which induces a homology isomorphism.

Although Segal later proved (see [Seg78]) the local statement that BDiff (R”) is homology isomorphic
to BI',;, which led to a different proof ([McD79]) of Thurston’s theorem, Thurston’s original proof of
the fact that a natural map Fol.(M) — Folg (M) induces a homology isomorphism did not use this
local statement.

The main idea is, given a metric on M satisfying a mild condition (see Definition 1.4), Thurston gives
a compatible filtration on the space of foliated M-bundles Fol. (M) and the space of formal solutions
Fol{ (M), which is a section space, and compares the spectral sequences of these filtrations to prove
his compactly supported c-principle theorem. These filtrations are inspired by his idea of ‘fragmenting’
diffeomorphisms of manifolds that are isotopic to the identity.

1.1. c-principle theorems via fragmentation

Part of the method Thurston used to prove his c-principle theorem is, of course, specific to foliation
theory. In particular, the fact is that the local statement, in that case, was very nontrivial, and the way
he proved the compactly supported version without the local statement is specific to foliation theory.
However, we show that given the local statement (which is often the easy case, unlike foliation theory),
we can still apply Thurston’s method to obtain a compactly supported c-principle theorem. Then, we
also use this general strategy to prove versions of Thurston’s theorem for other geometric structures that
were conjectured to hold.

Normally, in c-principle theorems, the local statement is that the map F(R") — F/(R") is a
homology isomorphism or even a homotopy equivalence. In this context, when the functor is defined
on manifolds with boundaries, we would like to consider closed disks instead. To do this, we first need

Historically, as in [Thu74], for any topological group G, the space BG is defined to be the homotopy fiber of the map
BG? — BG, where G9 is the group G with discrete topology and the map induced by the identity homomorphism G¢ — G.

2Historically, as in [Hae71], BT, is defined to be the homotopy fiber of the map v: BI',, — BGL, (R), where BT, is the
classifying space of codimension n Haefliger structures, and v classifies their normal bundles.
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to define F/ (=) on Mfldg and, in particular, on closed disks. Fixing the space F/ (R"), we can define
F7 (=) on other manifolds ‘linearly’ as follows.

Definition 1.1. Given that the group GL,,(R) acts on F/ (R"), since it acts on R”, and it also acts on
the frame bundle Fr(M), we can form the following natural bundle over M:

Fr(M) xgL,®) F/ (R") — M,

whose fiber is F/ (R"). Let the space of formal solutions, F/ (M), be the space of sections of this fiber
bundle.

Remark 1.2. Note that since D" is contractible F/ (D") ~ Ff (R"), and in all the examples of c-
principle in the introduction, the common feature is the space F f (D™), it is, in fact, at least (n — 1)-
connected. Therefore, the cosheaf of compactly supported sections Fcf (—) satisfies the fragmentation
property and non-abelian Poincare duality.

The setup of the c-principle theorem that we are interested in is the following: we have a natural
transformation ¢ : F(—) — F/ (-) that respects the choice of base sections. Hence, for any manifold
M, we have an induced map

F.(M) — F/ (M).

We want to find conditions under which the above map induces a homology isomorphism.

Definition 1.3. For a given metric space (M, d), the intrinsic metric between two points x and y in M is
defined to be the infimum of the lengths of all paths from x to y. If the intrinsic metric agrees with the
original metric d on M, we call (M, d) a length metric space. Additionally, if there always exists a path
that achieves the infimum of length (a geodesic) between all pairs of points, we call (M, d) a geodesic
space.

Definition 1.4. Let sg € F(M) be a fixed global section, and we fix a metric d(—, —) on M. We suppose
that the metric is complete and (M, d) is a geodesic space and there exists an € > 0 such that all balls
of radius € are geodesically convex. If M is compact, then these two conditions are automatically given.
For any other element s € F(M), we define the notion of support, supp(s), with respect to sy to be
the closure of points in M at which the stalk of s and s¢ are different. Now, let Fe (M, sg) denote the
subspace of F (M) consisting of elements s such that the support of s can be covered by k geodesically
convex balls of radius 27 ¢ for some positive integer k. Also, we can define the subspace of compactly
supported elements. We shall suppress the fixed global section s( from the notation for brevity. In the
case of a nonempty boundary, we assume that the supports of all elements of F,. (M, s¢) and FL (M, s0)
are away from the boundary.

Definition 1.5. We say the functor F satisfies the fragmentation property if the inclusion
Fe(M) — F.(M) is a weak equivalence for all M.

Definition 1.6. We say F : (Mfld?)°? — S is good, if it satisfies

o The subspace of elements with empty support in F (M) is contractible.

o For an open subset U of a manifold M, the inclusion F.(U) — F.(M) is an open embedding (we
will consider the weaker condition in Definition 3.3).

o Let U and V be open disks. All embeddings U < V induce a homology isomorphism between F. (U)
and F.(V).

o For each finite family of open sets Uy, . .. Uk, such that they are pairwise disjoint and are contained
in an open set Up, we have a permutation invariant map

k
1o | | Fen) = Fe(Uo),
i=1

.....
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Uo

where this map satisfies the obvious associativity conditions. For Uy = Ut]'(:I U;, the map u Ur.oUs

a weak equivalence.
o Let 0; be the northern-hemisphere boundary of D". Let F(D", d;) be the subspace of F(D") that
restricts to the base element in a germ of 0, inside D". We assume F (D", dy) is acyclic.

Theorem 1.7. Let F be a good sheaf on n-dimensional manifolds such that

o FT(D") is at least (n — 1)-connected.
o F has the fragmentation property.

Then, for any manifold M which admits a metric that makes M a complete geodesic space, the map
Fe(M) — FL (M)

induces a homology isomorphism.

Remark 1.8. The connectivity hypothesis in Theorem 2.1 and Theorem 1.7 is improved by one compared
to the original Thurston’s deformation technique. And as we shall see, this improvement will be useful to
prove Mather-Thurston-type theorems for different geometric structures. One can also use this method to
give adifferent proof of McDuff’s theorem on the local homology of volume-preserving diffeomorphisms
([McD83b, McD82]) using the methods of this paper. In that case, F(D") is at best (n — 1)-connected
(see [Hae71, Remark 2, part (a)]).

It would be interesting to see if Thurston’s method gives a different proof of Vassiliev’s c-principle
theorem ([Vas92]). In the last section, we discuss how one could use Thurston’s fragmentation idea for
the space of functions on M, avoiding singularities of codimension dim(M) + 2. However, our main
motivation still lies in foliation theory.

The fragmentation property of foliation with different transverse structures ([Tsu08, Tsu06, Ryb10])
has been extensively studied, and conjecturally, it is expected that an analog of Thurston’s theorem or
so-called Mather-Thurston’s theory (for PL-homeomorphisms, see [GF73, Section 5], and for a different
version, see also [Gre92], for contactomorphisms see [Ryb10]) should also hold for them. In Section 4,
we prove new variants of Mather-Thurston’s theorem for contactomorphisms and PL-homeomorphisms,
which were conjectured by Rybicki and Gelfand-Fuks/Greenberg, respectively.

Recently, there were new geometric approaches to Mather-Thurston’s theory due to Meigniez
([Mei21]) and Freedman ([Fre20]). However, in this paper, we follow Mather’s account ([Mat76]) of
Thurston’s proof of this remarkable theorem in foliation theory. McDuff followed in [McD80, McD79]
Segal’s method ([Seg78]) to find a different proof of Mather-Thurston’s theorem and she proved the
same theorem for the volume-preserving case ([McD82, McD83a, McD83b]). The techniques in Segal
and McDuff’s approach and in particular, their group completion theorem ([MS76]) are now well-
understood tools in homotopy theory. The author hopes that this paper also makes Thurston’s ideas
available to a broader context.

1.2. Mather-Thurston theory for new transverse structures

We consider two different transverse structures of foliated bundles for which the fragmentation properties
were known, and hence, conjecturally, the analogs of Mather-Thurston’s theorem were posed ([Ryb10,
Gre92]). We shall first recall these transverse structures.

Definition 1.9.

o Let M be a smooth, odd-dimensional manifold with a fixed contact structure «. Let Fol. (M, a) be
the realization of the simplicial set whose k-simplices are given by the set of codimension dim(M)
foliations on M x A* that are transverse to the fibers of the projection M x AKX — AKX, and the
holonomies are compactly supported contactomorphisms of the fiber M.

o Let M be a PL n-dimensional manifold. Let FOIEL(M ) be the realization of the simplicial set whose
k-simplices are given by the set of codimension dim(M) foliations on M x A* that are transverse
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to the fibers of the projection M x AX — A, and the holonomies are compactly supported PL-
homeomorphisms of the fiber M.

The analogue of Mather-Thurston’s theorem in these cases can be summarized as follows.
Theorem 1.10. The functors Fol.(M, a) and Fol’* (M) satisfy the c-principle.

Remark 1.11. Gael Meigniez told the author that he has a forthcoming paper to show that the PL case
could also be obtained using his geometric proof for the smooth case ([Mei21]), and there is a work in
progress to use his method in the transverse contact structure.

1.2.1. Perfectness and Mather-Thurston’s theorems

Often, in h- and c-principles theorems, the formal solutions are easier to study than the holonomic
solutions. However, Thurston used the Mather-Thurston theorem and the perfectness of the identity
component of smooth diffeomorphism groups to improve the connectivity of the Haefliger space, which
is on the formal side of the theorem. Similarly, our c-principle theorems and the perfectness results in
[Ryb10, Tsu08, Tsu06] can be used to improve the connectivity results of the corresponding Haefliger
structures. In particular, as a corollary (see Corollary 4.3) for transverse contact structures, we obtain
the following.

Corollary 1.12. The Haefliger classifying space BIapi1,c+ of codimension 2n + 1 Haefliger structures
with a transverse contact structure is at least (2n + 2)-connected.

These connectivity ranges are improved by one from the previously known ranges (see [McDS87,
Proposition 7.4]).

However, for a PL manifold M, unlike other transverse structures, the perfectness result is, curiously,
not known in general. It was asked by Epstein ([Eps70]) whether PLy(M), as an abstract group, is
perfect, and he proved it for PLo(S'). In [Nar22], the author used the c-principle for Fol’“(M) and the
work of Greenberg ([Gre92]) to show that PLy(M) is perfect for any closed surface M.

1.3. Organization

In Section 2, we discuss fragmentation homotopy, and we improve it to prove Theorem 2.1. In Section 3,
we apply Thurston’s fragmentation ideas in foliation theory in a broader context to prove Theorem 1.7.
In Section 4, we prove a compactly supported version of Mather-Thurston’s theorem for PL and contact
transverse structures. In these cases still, the local statements are not known, and therefore, the non-
compactly supported versions are still open. In Section 6, we use microfibration techniques to show that
Thurston’s fragmentation method implies the non-abelian Poincaré duality.

2. Thurston’s fragmentation

In this section, we explain Thurston’s idea of fragmentation, and we improve the hypothesis of the
connectivity of the fiber in Mather’s note [Mat76, First deformation lemma] by one. Throughout the
paper, we assume that M satisfies the hypothesis in Definition 1.4.

To explain his fragmentation idea, it is easier to start with fragmenting the space of sections. Let
. E — M be a Serre fibration over the manifold M, and suppose E is Hausdorff. Let so be a base
section of this fiber bundle.

Condition. We assume that the base section satisfies the following homotopical property: there is a
fiber preserving homotopy 4, of E such that i = id, and hl‘1 (s0(M)) is a neighborhood of s¢(M) in E,
and h; (so(M)) = so(M) for all ¢. In other words, the base section is a good base point in the space of
sections. We fix a metric on M and assume that it is a geodesic space (see Definition 1.3) and that there
exists a positive € so that every ball of radius € is geodesically convex.

https://doi.org/10.1017/fms.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.29

Forum of Mathematics, Sigma 7

By the support of a section s, we mean the closure of the points on which s differs from the base
section s¢. Let Sect. (7r) be the space of compactly supported sections of the fiber bundle 7 : E — M
equipped with the compact-open topology.

Let Sect. () denote the subspace of sections s such that the support of s can be covered by k
geodesically convex balls of radius 2 X e for some positive integer k. Note that there is a filtration on
Sect (1) by the number of balls that cover the support.

The reason for the choice of 2 % ¢, as we shall see in detail in Section 3.1.1, is to have nice filtration
quotients where the filtration is induced by the number of balls that cover the support of a section. For
example, suppose the support of a section can be covered by two balls of radius 272¢, but it cannot
be covered by one ball of radius 2-le, so it is a nontrivial element in the second term of the filtration
quotients. Then, one could choose those two balls to be disjoint. This phenomenon will be useful in
describing the filtration quotients, and in particular, in proving Proposition 3.8.

Theorem 2.1 (Fragmentation property). If the fiber of  is at least (n — 1)-connected, the inclusion
Secte () — Sect. ()

is a weak homotopy equivalence.

Remark 2.2. In [Mat76], Mather refers to the above statement as a deformation lemma, and he assumed
that the fiber is n-connected. However, we show that (n — 1)-connectedness is enough.

Remark 2.3. In general, if the fiber of x is (n — k)-connected, the same techniques apply to localize
the support of the sections. For example, for a fixed neighborhood U of the (k — 1)-skeleton, one could
show that the space Sect. () is weakly equivalent to the subspace of sections that are supported in U
union s balls of radius 27*¢ for some nonnegative integer s. However, this is not the direction we want
to pursue in this paper.

As we shall see in Section 2.1, given a D*-family of sections in Sect,. (), we subdivide the parameter
space D* and change the family up to homotopy such that on each part of this subdivision, the new
family is supported in the union of k balls of radius 2 .

2.1. Fragmentation homotopy

Let {,u,-}l.’\:’ , be a partition of unity with respect to an open cover of M. We define a fragmentation
homotopy with respect to this partition of unity. Let vo = 0, and for j > 0, let v; be the function

Jj
Vi) = ) ().
k=1

We shall write A4 for the standard g-simplex parametrized by
{t=(t1,12,...,14);0< 1 <--- <ty < 1}
‘We now consider the following map:

Hi :MxA?T - Mx A4,
Hl(x, ([1,[2,...,Iq)) = ()C, (ul,uz,...,uq)),

u;(x,t) = v ny ) (%) + f Ny e (X)) (Nt = [N5]).

Note that u; only depends on ¢; and x. Since H| (t, x) preserves the x coordinate, we can define a straight
line homotopy H; : M X A9 — M x A9 from the identity to H;. As in Figure 1, the map H; is defined
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} supp(p3)
Hl R

supp(py)

Al Al

Figure 1. Fragmentation map for N = 3 and q = 1. The bold lines are the images of M x {0}, M X
{1/3}, M x {2/3} and M x {1} under the map H,.

so that the gray area is mapped onto the union of the bold lines in the target where the union of bold
lines is a subcomplex of M x A9 of dimension n = dim(M).

It is easy to check that H, is compatible with the face maps d; : A9~! — A4. Therefore, for any
simplicial complex K, we still can define the homotopy H; : M x K — M x K. Note that we can choose
the integer N as large as we want, but, as we shall see in the proof of Theorem 2.1, we want to homotope
amap g : K — Sect. (), and the choice of N depends on the dimension of the parameter space K.

Definition 2.4. To define the analogue of bold lines in Figure 1 for the simplicial complex K, let V(A%)
be the sett € A? such that Ntis a vector with integer coordinates. Let V(K be the union of V(A?), where
the union is taken over simplices of K. The analogue of bold lines is L(K) = H{(M xV(K)) ¢ M XK.

Note that the topological dimension of the subcomplex L is n. But if we choose any small open
ball B, of radius (e.g., 279 '€, where ¢ = dim(K)), then the homotopical dimension of L. (K) :=
H{((M\B¢) X V(K)) is n — 1. This is because the n-dimensional manifold M\B,. has homotopical
dimension n — 1, meaning that it has the homotopy type of a CW complex of dimension n — 1.

The fragmentation map H; has the following useful property.

Lemma 2.5. Let Hy : M X A9 — M x A9 be the fragmentation map. For each t € A4, the space
(M x t)\H ]_1 (Le(A)) can be covered by the support of at most q functions among the partition of
unity functions and the ball B.

Proof. This is straightforward from the definitions. As in Figure 1, the complement of the gray area in
each slice M X t can be covered by the support of one function from the chosen partition of unity. In
general, the complement of H 1‘1 (L(A%)) in the slice M X t can be covered by the support of at most g
functions (one for each coordinate of A7) among the partition of unity functions. Given that H; preserves
the M factor, to cover the complement of H 1‘1 (Le(A)) in the slice M X t, we only need to add B.. O

Now, we want to use this lemma to prove Theorem 2.1. To deform a family of sectionsof 7 : E — M,
parametrized by amap g : K — Sect. (), we consider its adjoint as amap G : M X K — E. We also
define the support of g over K with respect to the base section sq as follows.

Definition 2.6. Let supp(g|x ) consist of the closure of those points x € M for which there exists at least
one t € K, such that G(x, 1) # so(x).

We shall need the following lemma that uses the fiber of the map 7 : E — M is (n — 1)-connected
to prove Theorem 2.1.

Lemma 2.7. Given a family g : D9 — Sect. (), there exists a homotopy g; : DY — Sect.(n) so that
forallt € D9 and s € [0, 1], we have supp(gs(t)) C supp(g(t)), and at time 1, the adjoint G| of g;
satisfies G1(Le (D)) = so(M).

Proof. We think of the desired homotopy G; : M x DY — E as a section of the pullbackof 7 : E — M
over M x D9 x [0, 1]. The map Gy is the adjoint of g. Let Z ¢ M x D9 be the subcomplex consisting
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of points (x, t) so that Go(x, t) = so(x). By the homotopy extension property, we will obtain the desired
homotopy G, if we show that G can be extended to a section G over

MxD9x{0}UuZx][0,11UL.(D?) x[0,1],

so that G on M x D7 x {0} is the same as G, on Z x [0, 1] is given by G(x,t,s) = so(x) and on
L (D7) x {1} is also given by G(x,t,1) = so(x). So far, we know how to define G on M x D9 x
{0} U Z x [0, 1]. We extend it over L¢(D?) x [0, 1] with a prescribed value on L(D?) x {1} by
obstruction theory. Note that the homotopical dimension of L.(D9) x [0, 1] is n, and the fiber of the
pullback of 7 over M x D9 x [0, 1] is (n — 1)-connected. Hence, all obstruction classes that live in
H*(Lc(D%) x [0, 1]; 7, (fiber)) vanish, and we obtain the desired extension G. O

2.2. Proof of Theorem 2.1

The idea is roughly as follows. To deform a family g: DY — Sect. () to a family of sections in
Secte (1), we use Lemma 2.7 to assume that for the family g, we have G(L¢ (D)) = so(M). We then
use the fragmentation homotopy to deform this family so that for each s € D4, the section g(s) sends
the ‘most’ part of M to G(L.(D49)). For example in Figure 1, for each s € D!, the support of the section
g(s) lies inside the support of one function from the partition of unity, which can be chosen to be very
small.

More precisely, we shall prove that homotopy groups of the pair (Sect,. (7), Secte (7)) are trivial. To
do so, we show that for any commutative diagram

sa-1 L Secte (1)

| |

D4 i> Sect. (1),

(D

there exists a homotopy of pairs (g;, f;) : (D9,597") — (Sect.(7r), Secte(n)) so that fo = f, g0 =g
and g; : D9 — Sect. () factors through Sect, (7). We first use the condition in Section 6 to satisfy the
following.

Claim 2.8. Note that for all x € S\, the support of f (x) can be covered by at most k balls of radius 2 * e
for some k. But, we can also change f up to homotopy to f’ such that, for sufficiently fine triangulation
of 971, we can assume that for every simplex o C S971, we can cover supp(f’|s) by at most k balls of
radius 2~ ¥ € for some k.

This is because there exists a fiberwise homotopy /, : E — E that is the identity on so(M) and
whose time 1 maps a neighborhood of so(M) onto so(M). So we can define a homotopy F;(x,s) =
hi(F(x,5)),Gs(x,s) = hs(G(x,s)) where F and G are adjoints of f and g, respectively. These maps give
a homotopy of the diagram 1, and it is easy to see that for every s € S9!, there exists a neighborhood
o of s so that supp(Fi|s) C supp(f)(s). So from now on, we assume that f satisfies the claim.

To deform the family g : D? — Sect. () to a family in Secte (7), we choose a partition of unity
{u;} for a neighborhood of supp(g|pa) so that each supp(u;) can be covered by a ball of radius 279 e.
Let H; : M x D94 — M x D4 be the fragmentation homotopy associated with this partition of unity.
By Lemma 2.7, there exists a homotopy G" : M X D? x [0,1/2] — E so that G is the adjoint of
g. For all s € D? and t € [0,1/2], we have supp(G;(s)) C supp(g(s)), and at time 1/2, we have
G12(Le (D)) = so(M). Note that if s € 8§91, then G/(s) lies in Sect (r). Therefore, G, gives a
homotopy of the pairs (D9, S97!) — (Sect. (), Secte (7).

https://doi.org/10.1017/fms.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.29

10 S. Nariman

Now, we use the fragmentation homotopy to define G, : M Xx D9 — E

o . |G 0<r<1/2,
"G oHy 12<1< 1.

To show that G, is the desired homotopy, we first need to show that G, (-, $97!) is also in Sect, ()
for 1/2 <t < 1.Recall that by the claim, for every x € 97, there exists a simplex o containing x so that
supp(f|o) is contained in at most k balls of radius 2% ¢ for some k. We showed that supp(G1ls) also
has the same property. Since the fragmentation homotopy preserves the M factor, supp(G| o Hy—1c)
also has the same property. Hence, G, (—, S97!) lies in Sect, (7). So G, induces a homotopy of the pair
of the map (g, f).

Now, it is left to show that G (—, s) lies in Sect () for all s € D4. Note that the section G (-, s)
is the same as the base section on Hl‘l(Lf(Dq)) N M x {s}. Hence, by Lemma 2.5, the support of
G (-, s) can be covered by ¢ + 1 balls of radius 279~ '¢. Therefore, G| (-, s) is Sect, (7) for all s € D9.

Remark 2.9. As we mentioned in the introduction, Morrison and Walker, in their blob homology paper
(MW 12, Theorem 7.3.1]), dropped the connectivity assumption but relaxed the notion of support to
prove a key deformation lemma ([MW 12, Lemma B.0.4]). For a family F : D*¥ — Sect, (), they say
F is supported in S ¢ M if F(p)(x) does not depend on p for x ¢ S. Our notion of support, however,
requires F(p)(x) to be equal to the value of the base section at x for x ¢ S.

Note that when we drop the connectivity hypothesis, we no longer have Lemma 2.7. However, for
each t € A9, by Lemma 2.5, we know that (M X t)\Hl’l(LE(Aq)) is covered by at most g open
sets. Therefore, the same deformation G, as above, deforms a A?-family of sections to sections whose
supports, in the sense of (MW 12, Lemma B.0.4]), can be covered by g open balls.

Note that Sect, (), which is a subspace of Sect, (7), has a natural filtration whose filtration quotients
are similar to the filtration quotients induced by the non-abelian Poincaré duality (see [Lur, Theorem
5.5.6.6)).

We, in fact, show in Appendix 6 that this theorem implies the non-abelian Poincaré duality for the
space of sections of 7 : E — M. To recall its statement, let Disj(M) be the poset of the open subsets of
M that are homeomorphic to a disjoint union of finitely many open disks. For an open set U € Disj(M),
let Sect.(U) denote the subspace of sections that are compactly supported, and their supports are
covered by U. Although the non-abelian Poincaré duality holds for topological manifolds, to use the
fragmentation idea, we assume that M admits a metric for which there exists € > 0, such that all balls
of radius € are geodesically convex. For example, this holds for all compact smooth manifolds.

Corollary 2.10 (Non-abelian Poincaré duality). If the fiber of the map m is (n—1)-connected, the natural
map

hocolim Sect.(U) — Sect.(n),
U eDisj(M)

is a weak homotopy equivalence.

3. On h-principle theorems whose formal sections have highly connected fibers

Let us recall the setup from the introduction. Let F : (Mfldg)"” — S be a topologically invariant sheaf
in the sense of [Kup19, Section 2] from the category of smooth n-manifolds (possibly with nonempty
boundary) with smooth embeddings as morphisms to a convenient category of spaces S (see [Kup19,
Appendix A]). For our purpose, it is enough to consider the category of simplicial sets or compactly
generated Hausdorff spaces. For brevity, when we refer to a simplicial set as a space, we mean the
geometric realization of it. Recall that we defined the space of formal solutions F/ (M) to be the space
of sections of the bundle Fr(M) xgr, (r) F f(R") — M, where Fr(M) is the frame bundle of M.
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We say F satisfies an h-principle if the natural map from the functor to its homotopy sheafification (see
[BABW 13, Proposition 7.6]),

j:F(M)— F' (M),

induces a weak equivalence. We say F satisfies the c-principle if the above map induces a homology
isomorphism.

Often, in proving h- and c-principles theorems, proving that the local statement F (D) .y (D™),
which is a statement for 0-handles, is the easy step. The hard step often is to inductively deduce the
statement for higher handles relative to their attaching maps. Then, one could prove the statement for
compact manifolds using handle decompositions. Thurston, however, proved a c-principle theorem in
foliation theory (see [Mat76] and [Ser79]) using his fragmentation idea without using the corresponding
local statement. Proving the local statement in this c-principle theorem is surprisingly very subtle, and
it was later proved by Segal ([Seg78]) for smooth foliations and McDuff ([McD&81]) for foliations with
transverse volume form when the codimension is larger than 2!

Let us first recall Thurston’s theorem in this language. Let F : (Mfldﬁ)"” — sSet be the functor
from manifolds with a possibly nonempty boundary to simplicial sets so that the g-simplices F, (M)
are the set of codimension n foliations on M X A4 that are transverse to the fibers of M X A? — A4,
Let F. : Mfldg — sSet be the compactly supported version of F, meaning that we impose the condition
that the foliations on M x A? are horizontal near the boundary M X A4.

Since, in this case, F/ (M) is given by the section space of a bundle over M whose fiber is F/ (D"),
one could make sense of the compactly supported version by choosing a base section. In fact, there is a
canonical choice of the base section so that we could define a map

Jj:F.(M) = Fl (M),

Thurston uses his fragmentation technique on the closed disk D" to show directly (instead of induction
on handles and inductively deloop) that

|Fe o (int(D™))| — |FL(int(D™))]

is ahomology isomorphism. Recall that for the right-hand side, we have the weak homotopy equivalence
|FLo(int(D™)| = Q"[F{ (D")].

Given the above delooping statement, Thurston showed that this statement and the fragmentation on
M implies that |F.(M)| — |F,f (M)| is a homology isomorphism for all compact manifolds M. If M
has a boundary, there is a version relative to the boundary. His fragmentation technique avoids the usual
delooping steps in other approaches to go inductively from the statement for a handle of index i to that
of a handle of index i + 1 and also avoids the step for 0-handles.

To recall the main theorem, let F be a topologically invariant sheaf enriched over S meaning that
the sheaf is space valued and restriction maps are continuous. Suppose that there is a canonical base
element in F (N) for each manifold N so that, for a manifold with boundary M, we can define the relative
version F (M, d) to be the subspace of those elements in F' (M) that restrict to the base element in the
germ of the boundary. We can also define the compactly supported version F.(M) to be the subspace
of F(M) consisting of those elements that restrict to the base element outside of a compact subset of
M. Similarly, we can define the relative and compactly supported versions for F/ so that we have a map
F.(M) - FLf (M). Similar to the previous section, we can define e-supported versions Fe (M) and
F Z (M). We need to impose a homotopy theory condition on F similar to the condition in Section 6.
It is easy to see that this condition is satisfied for all geometric examples in the introduction. It will be
necessary to find a simplicial resolution for ' in Lemma 3.16, and, as we shall explain, this is also a
technical oversight in Mather’s note.
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Definition 3.1. We say F is well-pointed if, for every manifold M, there exists a base point
so(M) € F(M) and an open neighborhood Vj; of so(M) such that

o The open set V), deformation retracts to so(M).
o If U c M is an open subset, the restriction r: F(M) — F(U) sends so(M) to so(U), and r(Vyy) also
is an open set that deformation retracts to so(U).

Definition 3.2. Given the base point so(M) and the neighborhood Vj;, we define the subspace
F.(M,Vyy) C F(M) consisting of all elements s such that there exists a compact set K ¢ M where the

restriction of s to F(M\K) lies in the restriction of Vj; to M\ K. These elements are said to be lax and
compactly supported.

Note that being compactly supported means that for some compact set K C M, the restriction of s to
F(M\K) coincides with the base point.

Definition 3.3. We say that a well-pointed F is good, if it satisfies

1. The subspace of elements with empty support in F (M) is contractible.

2. There exists a neighborhood Vj, that deformation retracts to so(M) such that the inclusion F. (M) —
F.(M,Vyy) is a weak equivalence.

3. Let U be an open subset of a manifold M, and let r: F(M) — F(U) be the restriction map. For all
such U, the inclusion F, (U r(Viy)) — Fe (M Viar) be an open embedding.

4. For each finite family of open sets Uy, Uy, . ..Uy such that Uy, ..., Uy are pairwise disjoint and
contained in Uy, we have a permutation invariant map

HF(U)%F(U@

i=1

.....

where this map satisfies the obvious associativity conditions, and for Uy = U U;, the map ,u U
is a weak equivalence.

5. Let U and V be open disks. All embeddings U — V induce a homology isomorphism between
F.(U) and F.(V).

6. Let 9; be the northern-hemisphere boundary of D". Let F(D", d;) be the subspace of F(D") that
restricts to the base element in a germ of 9, inside D". We assume F(D", 0y) is contractible.

,,,,, Uk

Theorem 3.4. Let F be a good functor such that F(D') .y (D™). We assume that these spaces are
at least (n — 1)-connected and F has the fragmentation property, meaning that

Fe(M) — Fe(M),

is a weak homotopy equivalence for every small enough € > 0. Then, for any compact manifold M, the
map

F.(M) = F (M),

is a homology isomorphism.

Example 3.5. Let I''"°! denote the topological Haefliger groupoid whose objects are R with the usual
topology, and the space of morphisms are local volume-preserving diffeomorphisms of R" with respect
to the standard volume form (see [Hae71] for more details on how this groupoid is topologized). Let
BI''°! denote its classifying space. There is a map

6 : BI°! — BSL,(R),

which is induced by the functor I'Y°' — SL,,(R) that sends a local diffeomorphism to its derivative at its

source. We denote the homotopy fiber of 6 by BI'}°". Let M be an n-dimensional manifold with possible
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nonempty boundary with a fixed volume form w. Let 7*(6) be the bundle over M given by the pullback
of # via the map 7

B!

|
T

M —— BSL,(R). )
This is the classifying map for the tangent bundle. The space of sections of 7*(6) has a natural base point
so. Let Sect(7%(0), d) be those sections that are equal to s¢ in the germ of the boundary (see [Narl7,
Section 5.1] for more details). It was proved by Haefliger that the fiber of 7*(8) is (n — 1)-connected.
Note that Sect(7*(6), d) is not connected.

Let Diff , (M, 9) be the group of volume preserving diffeomorphisms with C*-topology. And let
Diff® (M, 3) be the same group with the discrete topology. Now let BDiff ., (M, ) denote the homotopy
fiber of the natural map

BDIff (M, ) — BDiff, (M, d),

induced by the identity homomorphism. This space can be thought of as the space of foliated M-
bundles with a transverse volume form. It is easy to check the conditions in Definition 3.3, except
the second condition, which is proved by McDuff in [McD83a]. McDuff ([McD81]) showed that
BDiff Z(R”) — BI°! is a homology isomorphism for n > 2, and it still not known for n = 2. So the
local statement in this case is known for n > 2. She used this fact to show that when dim(M) > 2,

BDiff, (M, d) — Sect(t*(8),d)

induces a homology isomorphism into the connected component that it hits. She also found a different
proof for dim(M) = 2 in [McD82]. However, by using Theorem 3.4, one could give a uniform proof for
the compactly supported version without using her local statement in dimension 3 and higher.

Example 3.6. Let M be a manifold of positive dimension, and let F(M) be the labeled configuration
space ([B&7], [Seg73]) for which proving the fragmentation property is easy. To recall the definition from
[B87], let X be a fixed connected CW complex with a base point xo. Let C(M; X) be the configuration
space of a finite number of distinct points in M with labels in X, and the topology is such that points can
vanish if their label is x( (for a precise definition of the topology, see [B87], [Seg73]). We shall write a
point ¢ € C(M; X) as a formal sum Y, x;m;, where m; € M are distinct points and x; € X, satisfying
the relation ), x;m; ~ ), x;m; + xom. For a subspace N C¢ M, we let C(M, N; X) be the quotient of
C(M; X) by the relation Y, x;m; ~ Y, x;m; +xn, where n € N. We define the support of Y x;m; to be the
set of the points m; whose label x; is not the base point xy. Note that, similar to section spaces, we can
define the subspace C¢ (M; X) to be that labeled configuration of points whose support can be covered
by k balls of radius 2% ¢ for some k. But, obviously, we have C. (M; X) = C(M; X).

It is easy to show that C(D", dD"; X) is homotopy equivalent to the reduced suspension £ X, which
is at least n-connected. The fragmentation method implies that the natural scanning map (see [Knul8,
Definition 6.3.5])

Cc(D"; X) -» Q"C(D",dD"; X)

is a homology isomorphism (it is, in fact, a weak homotopy equivalence by [Seg73]). Using fragmenta-
tion again for C(M; X), we could obtain the homological version of McDuff’s theorem ([McD75]) that
for any closed manifold M, the natural map

C(M; X) — Sect.(Fr(M) Xg1,,(») "X — M)

induces a homology isomorphism.
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3.1. n-fold delooping via fragmentation
The key step in proving Theorem 3.4 is to show that if F has a fragmentation property, then the map
F(D",d) — F/(D",8) ~ Q"F(D")

is a homology isomorphism. To do so, we filter F(D") and F/ (D™). Since D" is compact, the
fragmentation property for F and F/ implies that

Fe(D") = F(D"),
Fl (0" S F/ (D").

The spaces F¢(D") and F’ 5 (D™) are naturally filtered by the number of balls that cover the supports.
We shall denote these filtrations and the corresponding maps between them by

Fi(D") —— F,(D") < -+ <~ Fe(D") —— F(D")
lj lj lf l: 3)
Fl (D" — Ff{ (D") — --- — FL(D") —= F/ (D").
Note that the last vertical map is a weak equivalence because F/ (D) is a section space of a bundle

over contractible space D" with the fiber F(D"). Therefore, the map j in the diagram 3 also is a weak
homotopy equivalence.

Remark 3.7. We dropped € from our notations for filtrations Fy(—) and F ,{ (-), but if we want to
emphasize our choice of €, we shall instead use Fj(—, €) and F’ ]{ (-, €).

Proposition 3.8. Let F be a good functor satisfying the hypothesis of Theorem 3.4. Now, if j in the
diagram 3 induces a homology isomorphism, so does the map

F(D",9) — F/(D",d) ~ Q"F(D").

We first explain the strategy to prove that j; is a homology isomorphism before we embark on proving
Proposition 3.8. We have the following general lemma about filtered spaces ([Mat76, Lemma 2, Section
27]):

Lemma 3.9. Consider the commutative diagram of spaces

X — X — - —3 Xoo —— X

lﬁ lfz ) lfm l.f

Y| © > Yy ©

~

Suppose:

o X and Yo are the union of X;’s and Y;’s, respectively, and for each i, the pairs (X;, X;—1) and
(Y;,Y;—1) are good pairs.’
o f, tand V' are weak homotopy equivalences.

3The pair (A, B) of topological spaces where B C A is a good pair if there exists an open neighborhood of B in A, such that
its deformation retracts to B.
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q
k * 0
k-1 0 0 0
k-2 0 0 0 0
0 0 0 0 0
1 2 3 4 p
Figure 2. All the differentials that map to E 1l  have trivial domains. We drew differentials on the first,

second and third pages.

o The filtration is so that if fi is k-acyclic # for some k, then the induced map

fn i XN/ Xno = Y /Yno
is (2N + k — 2)-acyclic for every integer N > 1.
Then, f induces a homology isomorphism.

Proof. We can assume that the maps f; are inclusions by replacing them with the mapping cylinder of
fi. Therefore, the filtration (Y, X,,) of (Y, Xo0) gives rise to a spectral sequence whose first page is

1
EL o= Hpug(Yp, Ypoi UXp).

It converges to the homology of the pair (Yo, Xo), but this pair is weakly homotopy equivalent to the
pair (Y, X). Since the first condition f is a weak homotopy equivalence, the spectral sequence converges
to zero. Now, we suppose the contrary that f; is not a homology isomorphism, and we choose the
smallest k so that £ 11 ¢ = Hix (Y1, X1) # 0. Therefore, fi is k-acyclic and, by the third condition, ﬁ is
(2p + k — 2)-acyclic, which implies that E}, , = Hp1q(Yp. Y, 1 UX,) =0forg < p+k - 2.

Hence, as is indicated in Figure 2, no nontrivial differentials can possibly hit £ 11 o which contradicts

the fact that the spectral sequence converges to zero in all degrees. O

In order to apply Lemma 3.9 to the diagram 3, we need to establish the second condition of Lemma 3.9
for the diagram. The subtlety here is in the filtrations Fy (—) and F’ ]{ (=), where we know that the support
is covered by k small balls, but the data of these balls are not given. We shall define certain auxiliary
spaces by adding the data of covering balls.

3.1.1. Semisimplicial resolutions
To study the filtration quotients in the diagram 3, we shall define auxiliary semisimplicial spaces.

For the definition of semisimplicial spaces and the relevant techniques, we follow [ERW 19]. Briefly,
what we need about semisimplicial spaces and their (fat) realizations are as follows. First, we need a
semisimplicial map that is a weak homotopy equivalence in each degree that induces a weak homotopy
equivalence between fat realizations ([ERW 19, Theorem 2.2]). Second, there is a skeletal filtration on
the fat realization that gives rise to a spectral sequence calculating the homology of the fat realization
([ERW 19, Section 1.4]). Last, we need the technical lemma in [GRW 18, Proposition 2.8] that gives a

4We say f : A — B is k-acyclic if it induces a homology isomorphism for homological degrees less than k and surjection on
degree k
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useful criterion to prove that the augmentation map for an augmented semisimplicial space induces a
weak homotopy equivalence after taking realizations.

Recall that we assumed that M is a geodesic space and a small positive € exists so that all balls of
radius € are geodesically convex. We say that a subset U of M is e-admissible if it is open, geodesically
convex and it can be covered by an open ball of radius €.

Definition 3.10. Let O (M) be the discrete poset of open subsets of M that can be covered by a union
of k geodesically convex balls of radius at most 2% ¢ for some positive integer k.

Definition 3.11. Let CFy (M) be the subspace of F(M)* consisting of k-tuples so that each one has
support contained in one ball of radius 27%e. We define the subspace DFy (M) of CF;(M) to be
degenerate k-tuples; that is, the union of their supports can be covered by k¢ balls of radius 2 %€ for
some ko < k. We denote the quotient space CFy(M)/DF;(M) by NF(M). Similarly, we can define
CF] (M), DF] (M) and NF] (M).

The natural maps NFi(M) — Fi(M)/Fi_1(M) and NF} (M) — F[ (M)/F]_ (M) are (k!)-
sheeted covers away from the base points. So if X; denotes the permutation group on k letters,
we have the spectral sequence of the action whose E2-page is H,(Zy; H,(NFx(M))) converging to

Hpiq(Fx(M)/Fr-1(M)). Similarly, we have the same spectral sequence for N F’ ]{ (M), and the compar-
ison of the spectral sequences implies the following.

Lemma 3.12. Ifthe induced map NFy,(M) — NF kf (M) is j-acyclic, so is the map between the filtration
quotients

Fe(M)/Fi_ (M) — FL (M) /F]_ (M).

Hence, to establish the third condition of Lemma 3.9 for the diagram 3, it is enough to study the
acyclicity of the map NFy (M) — NF ]{ (M). To do so, we shall use the following semisimplicial spaces.

Definition 3.13. Let CF (M), be a semisimplicial space whose space of g-simplices is given by the
tuples (o, (B;j)), where o = (o71,...,0%) € CFr(M) and (B;;) is a k X (g + 1) matrix of (27%¢)-
admissible sets, such that B;; contains the support of o for all j (if the support of o7 is empty, then B;;’s
are just (27 €)-admissible sets). We topologize the g-simplices as a subspace of F(M)* x O (M)ka+k,

Definition 3.14. We define sub-semisimplicial space D Fy (M), so that its g-simplices are given by pairs
(o, (B;j)) so that for each 0 < j < ¢, the closure of U;B;; is covered by k¢ balls of radius 2 %0¢ for
some kg < k.

We similarly define Cka (M), and DF,{ (M),.

Remark 3.15. If we keep track of the choice of € in our notations, we have the useful identifications
CFy(M,e), =CF (M, 2‘"6)],c and the same for F/ .

Lemma 3.16. The natural maps
ICFi(M).|| = CFr(M), |IDF(M),|| = DF.(M)

are all weak homotopy equivalencies where || — || means the fat realization of a semisimplicial space
(see [ERW19]). Similarly, the corresponding statement holds for FY.

Proof. This is [Mat76, Lemma in section 20] for the functor defined by Thurston. However, there is
an oversight in that proof where Mather assumes that the augmentation map from the realization of
semisimplicial sets to Fi (M) is a fibration and says that it is enough to show that their fibers are
contractible. To fix this oversight, we need Definition 3.3. The idea is to show that the augmentation
maps are microfibrations with contractible fibers.
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Let CFy(M, V) be the subspace of F(M)* consisting of k-tuples, such that each one has a lax
support (see Definition 3.2) in ball of radius 2 ¥e. Similarly, we define CF (M, Vy),. Hence, it is
enough to show that

a: ||CF (M, Vp)oll = CF (M, V)

is a weak homotopy equivalence.

Let S, be the simplicial set whose g-simplices are given by g + 1 ordered (27%¢)-admissible sets. By
the third condition of the goodness of the functor (see Definition 3.3), it is clear that CFy (M, Vy), C
CFy(M, V) % (S4)* is open. Similar to the proof of Lemma 6.4, this inclusion satisfies the conditions
of [GRW 18, Proposition 2.8]. Therefore, the map « induced by the projection to the first factor is
microfibration. To identify the fiber over o = (o, ..., o), let S; be the set of (27%€)-admissible sets
containing the support of o;. Let S;, be the simplicial set whose g-simplices are given by mappings
[¢]1 =1{0,1,...,4q} to S;. Therefore, the realization of this simplicial set is contractible. The fiber over
o can be identified with the fat realization of S, X - - - Sge. Since the fat realization and the realization
for the simplicial sets are weakly equivalent, and the realization commutes with products ([Mil57]), we
deduce that the fiber over o is contractible. The proof for the other augmentation map is similar. O

Now, the strategy to check the third condition of Lemma 3.9 for the diagram 3 is as follows. We define
a functor v,y on spaces so that when we apply it to a k-acyclicmap f : X — Y, we obtaina (2N + k —2)-
acyclic map vy (f) : va (X) — vy (Y). Then, we construct a homotopy commutative diagram

ICF (D) |I/IIDF(D"),|| —— vi(F(D",d))

L |

\CF[ (D™ I/IDE] (D™ || — vi(F (D", 8)),

where the horizontal maps induce homology isomorphisms. In the next section, we shall define a suitable
functor vy satisfying the desired properties.

3.1.2. A thick model of the suspension of a based space

To define the functor v that receives a map from the above semisimplicial resolutions, we need to
modify the definition of the suspension of a space. First, we define auxiliary simplicial sets associated
with the manifold M with the fixed choice of €.

Definition 3.17. Let S(r) be the set of (27" ¢)-admissible sets in M. Let A, (M, r) denote the simplicial
set whose g-simplices are given by mappings [¢] into S(r) (i.e., (¢ + 1)-tuple of elements in S(r)). Let
M. (r) be the subsimplicial set of A.(M, r) whose g-simplices consist of those admissible sets that the
intersection of the entries of the tuple is nontrivial. Let dM,(r) be the subsimplicial set of A.(M,r)
whose g-simplices consist of those admissible sets that the intersection of the entries of the tuple and
OM is nontrivial.

Remark 3.18. For each k, the geometric realizations of A.(M,r) are contractible because it is a full
simplex, and the geometric realizations of M, (r) and d M, (r), by the nerve theorem, have the homotopy
type of M and 0 M, respectively.

Our modification of the suspension of a space X is as follows.

Definition 3.19. Let 3" X be the realization of the following semisimplicial space:

<n _(A(D™, 1) x {x}) U (D7 (r) X X)
T X () = S < () ifr € aDI ()
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Note that for each r, the space ¥"X has the same homotopy type of the suspension "X, so we do
not write the dependence on r. Because D7 (r) and d D% (r) are semisimplicial sets that realize to the
disk D™ and the sphere S"~!, respectively. And A, (D", r) X {#} is a contractible semisimplicial set that
is glued to the base point. Note that we also have a natural projection r : E”X(r) — ||As(D", r)||.

Definition 3.20. Let Ty . (M) be the subsimplicial set of (A.(M, k))* whose g-simplices are given by
matrices (B,-j), i=0,1,...,q9,j=1,..., k of admissible sets so that for each i, the union U; B;; can be
covered by k( open balls of radius 2% ¢ for some ko < k. For k = 1, we define Tie =

Definition 3.21. We define 6 (X) to be the pair
(E"X)", () (ITiea (D),

where 7% : (2" X)k — ||A.(D™, k)||* is the natural projection. Let v (X) denote the quotient
E"X)* /(7)1 (DM)).

Remark 3.22. Note that for k = 1, the space v{(X) has the homotopy type of " X.

We suppress n, the dimension from the notations 6, (X) and v, (X), as it is fixed throughout. The
following technical lemma is the main property of the functor v.

Lemma 3.23. If f : X — Y is j-acyclic, the induced map of pairs vi(f) : vi(X) — vi(Y) is
(j+n+2k —2)-acyclic.

Proof. Recall that the reduced suspension of X for a based space (X, ) is the smash product S A X,
and we represent points in this smash product by a pair (s, x), where s € §" and x € X. First, it is not
hard to see ([Mat76, Section 24]) that the space v, (X) is homotopy equivalent to

(8" A X)X/ Agar i (S", X),

where Agy (8", X) consists of tuples ((s1,x1), (s2,%2), . .., (sk, Xk)), such that s; = s; for some i # j.
We can further simplify the homotopy type of vi(X) by separating S™ and X in the above quotient to
obtain

Vi (X) = (S" /A ik (S™)) A XK.

Note that if f : X — Y is j-acyclic, the long exact sequence for the homology of a pair implies that
the induced map > : X A X — Y A Y is (j + 1)-acyclic. Hence, one can inductively show that the
induced map ¥ : X"k — Y is (j + k — 1)-acyclic. Thus, it is enough to show that (S"¥ /A g (S™))
is (n + k — 2)-acyclic. Using again the long exact sequence for the homology of a pair, we need to show
that A x (™) is (n + k — 3)-acyclic.

Fori # j,letAq jy(S", k) C (8™)"* be the subspace given by tuples (s1, 52, . . ., Sx), Where s; = Sj.
Note that A ; ;) (S™, k) = (S")"k=D_ The fat diagonal Ay« (S™) is the union of A ; (", k) € (S™)"*
for all pairs (i, j), where i # j. These are not open subsets. Instead, they are sub-CW complexes, so we
still can apply the Mayer-Vietoris spectral sequence for this cover to compute the homology of A e x (™).
Let A, ..., ) (8", k) denote the intersection A ;, ;) (8", k)N---NA, ; (S, k). Hence, we have

(im>jm)

where the sum is over different tuples of pairs (i, jm). Since the intersection A iy jy).....(ip.j,) (5" k)
isan(k — p — 1)-connective space, E},’q =0for ¢ < n(k — p —1). Note that p is at most k — 2 so we
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have n + k —3 < n(k — p — 1) + p. However, if p + g < n(k — 1) — pn + p, we have E},’q = 0, which
implies that Ay (S™) is (n + k — 3)-acyclic. O

Now, we are ready to prove the third condition of Lemma 3.9 for the diagram 3.

3.1.3. Proof of Theorem 3.4 for M = D"
We want to prove that the natural map

F(D",8) — F/ (D", d) ~ Q"F(D")

induces a homology isomorphism. To do this, we show that

Lemma 3.24. There exists a commutative diagram of pairs,

(ICF(D") |l [IDFie(D")a]]) — 0, (F (D", 0))

| |

(IICEL (D™ I, IDE] (D™ |l) — 6x(F/ (D", 8)), @

so that the horizontal maps are homology isomorphisms (by which we mean homology isomorphism on
each member of the pair).

Before we prove this lemma, let us explain how the above lemma finishes the proof of Theorem 3.4
for M = D". By Lemma 3.16, Lemma 3.23 and Lemma 3.24, the third condition of Lemma 3.9 for the
diagram 3 holds. Hence, j; in the diagram 3 is a homology isomorphism. Recall that for £ = 1, the
pair 61 (X) has the homotopy type of (X£"X, x). Therefore, Proposition 3.8 follows from Lemma 3.24
for k = 1.

Construction 3.25. To define the horizontal map in the diagram 4, we first define a semisimplicial map

(Ae(D"™, k) X {x}) U (D (k) X F(D",9))

fo: CF(D",27%¢), — ZNF(D",8) (k) = ()~ G.x) i1 € 3D (0

For a g-simplex (o, By, . . ., By) on the left-hand side, we know that N; B; contains supp(c-).

o If (By,...,By) is a g-simplex in D7 (k), then we send (o, By, ..., Bg) to the base point on the
right-hand side.

o If (By,...,By) is a g-simplex in D7 (k), but not in 0D (k), then the support of o lies inside D”".
Therefore, o € F(D", d), so we send (o, By, ..., By) to the corresponding element in F'(D", 0) X
D% (k).

o Andif (Bo,...,Bgy)isin A,(D", k), but notin D7 (k), we send (o, By, ..., By), to (By,...,By) in
Ay (D", k) x {*}.

Since the above map is a semisimplicial map, we could take the realization to obtain
fHlICF (D", 27 e),|| - E"F(D". ). (5)

Recall from Remark 3.15 that CFy(M,€), = CF;(M,27% e)k. Therefore, the above construction
gives rise to maps

ICFx(D™),|l = (E"F(D", 9))*.
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Definition 3.20 and Definition 3.14 are so that the above map induces a map
IDF] (D™ Il = ) (1ITes (D).

The lower horizontal map in diagram 4 is similarly defined.

Proof of Lemma 3.24. From the naturality of the construction, we obtain the commutative diagram 4.
We show that the top horizontal map is a homology isomorphism. The proof for the bottom horizontal
map is similar. We first show that the map f in 5 induces a homology isomorphism. Recall that
for all semisimplicial spaces X., there is a spectral sequence E },’q (X.) = Hy(X,) that converges to
Hpiq([IXe]]). The map f induces a comparison map between spectral sequence

(fp) =
Hy(CFy(D",27%€),) — " H,(S1F(D",0))

ﬂ |

n H- £ Sn n
Hpg(IICFI(D™,27%€),|) —— Hpig(I[ZIF(D",0)])).

So to prove f is an isomorphism, we need to show that f), induces a homology isomorphism. Note that
we have the following commutative diagram:

i _
CF(D",27%¢),, —"—— SnF(D", )

| §

Ay (D" k) —— = A, (D", k),

(N

where 7 and T are natural projections to the simplicial set A.(D", k). Hence, to show that f,, induces
a homology isomorphism, it is enough to prove that f,, induces a homology isomorphism on the fibers
of T and .

We have three cases:

o If = (By,...,Bp)liesinA, (D", k), butnotin D}, (k), then the fiber of T consists of those elements
in F(D™) that have empty support, which is a contractible space by Definition 3.3. The fiber of 7
over [ is a point.

o If B = (Bo,...,B)p) lies in D’ (k), but not in dDY,(k), then the fiber of T over 3 is the subspace
Fc(N;B;). The fiber of 7 over B is F(D™, d). Note that by the second condition in Definition 3.3, the
inclusion F.(N;B;) < F(D",d) is a homology isomorphism.

o If B = (By,...,Bp) lies in D}, (k), then the fiber of 7 over S is acyclic by the third condition of
Definition 3.3, and the fiber of 7 over  is a point. Therefore, f,, induces a homology isomorphism,
which in turn implies that f induces a homology isomorphism.

Since CFy(M,€), = CF|(M, 2‘ke)k. Therefore, the fact that f induces a homology isomorphism
implies that the map

ICFi(D"), |l = (Z"F(D".,9))*
is also a homology isomorphism. Similar to the diagram 7, one can fiber the map

DF{(D"), > (x*)™ (Tk..(D"))
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over Ty «(D") to prove that
IDEL (D™, || = (=)' ([T (DM)I])

is also a homology isomorphism. O

Remark 3.26. Let U be an open subset of M that is homeomorphic to the disjoint union of Euclidean
spaces of dimension n. The same proof as the case of D" implies that

Fe(U) — FLu) = [ | @"F(D",9),
7o (U)

is a homology isomorphism.

3.1.4. Proof of Theorem 3.4

Since both F and F/ satisfy the fragmentation property, the spaces F.(M) =~ F.(M) and Ff (M) ~
F Z (M) can be filtered, and the natural map Fc (M) — F z (M) respects the filtration. Hence, it is
enough to show that the induced map between filtration quotients induces a homology isomorphism.
Using Lemma 3.12, it is enough to prove that the induced map between pairs

(Fe(M), DF(M)) — (F! (M), DF] (M))

induces a homology isomorphism. Let us first show that Fy (M) — F,{ (M) induces a homology
isomorphism using the same idea as in the proof of Lemma 3.24. We use Lemma 3.16 to resolve
Fi. (M) and F]{ (M) by Fr. (M), and ka (M).. Recall that Fi. (M, €) = (F{(M,27%€))* and ka (M,e) =
(Flf (M, 27%€))k. Therefore, it is enough to show that

Fi(M), — F (M),

induces a homology isomorphism for each simplicial degree p. To do so, we consider the commutative

diagram
Fi(M), L F/ (m),
| Lﬂ
Ap(M) - Ap(M),

®)

where 7 and T are natural projections to the simplicial set A.(M). Hence, to show that f,, induces a
homology isomorphism, it is enough to prove that f}, induces a homology isomorphism on the fibers of
7 and 7. Let o, = (Bo, By, ..., B)) be a p-simplex in A, (M). There are two cases for the fibers of 7
and 7 over o7p:

o The intersection of B;’s is empty. Therefore, the preimages of o, under 7 and = are contractible by
the first condition in Definition 3.3.

o The intersection of B;’s is not empty. Given that the disks B;’s are geodesically convex, their
intersection is homeomorphic to a disk. Hence, the induced map on fibers over o7, is

F.(niB;) — FL (niBy),

which is a homology isomorphism, as we proved the main theorem for the disks relative to their
boundaries in Section 3.1.3.
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Similarly, we could see that DF(M)) — DF, ]{ (M) induces a homology isomorphism by fibering the

semisimplicial resolutions DF| (M), and DF lf (M). over the semisimplicial set T} +(M). Hence, we
conclude that the map between pairs

(Fe(M), DF(M)) — (F (M), DF] (M))

induces a homology isomorphism.

Remark 3.27. One could give a different proof of Theorem 3.4 using Definition 3.3 and goodness of F
directly. As in Appendix 6, we could use the notion of lax support to show that

I = S
hocolim F; (U F: (M).
ocolim £/ (U) = F (M)
Since F satisfies Definition 3.3, the same proof implies that
hocolim F.(U) = F.(M).
UeD(M)

Using Remark 3.26 for U € D(M), we know that F.(U) — Fcf (U) is a homology isomorphism.
Using the spectral sequence to compute the homology of the homotopy colimits and the bar construction
model for the homotopy colimits, it is enough to prove that the natural map

Bu(F.(=).D(M), %) — B.(FL (=),D(M), )

is ahomology isomorphism which easily follows from F,. (U) — FZ (U) being ahomology isomorphism
forall U € D(M).

4. Mather-Thurston’s theory for new transverse structures

In this section, we prove Mather-Thurston’s type Theorem 1.10 for foliated bundles with new transverse
structures. We shall first explain, in more detail, what it means for the functors Fol..(M, ) and Fol?X (M)
to satisfy the c-principle. We then explain how Thurston avoids the local statement for the foliated bundle
by using the method of the proof of Theorem 1.7.

o Fol. (M, @): Let (M, a) be a contact manifold where M is a manifold of dimension 2n + 1 and «
is a smooth 1-form such that @ A (da)" is a volume form. The group of C*-contactomorphisms
consists of C*-diffeomorphisms such that f*(a) = Ay, where Ay is a nonvanishing smooth
function on M depending on f. Since we are working with orientation-preserving automorphisms,
we assume that Ay is a positive function. Let Cont. (M, a) denote the group of compactly supported
contactomorphisms with induced topology from C*-diffeomorphisms. It is known that this group is
also locally contractible ([Tsu08]). Let Contf (M, ) denote the same group with the discrete topology.

The functor Fol. (M, @) is homotopy equivalent to BCont. (M, @), which is the homotopy fiber of
the natural map

BContZS (M, a) — BCont.(M, a).
The space of formal sections in this case is easier to describe.
Let I,41.c¢ be the etale groupoid whose space of objects is R>**!, and the space of morphisms

is given by the germ of contactomorphisms of (R?"*!, a,), where ay; is the standard contact form
dxo + 2.i_, Xi+ndx;. Note that the subgroup of GL;,.1(R), formed by orientation preserving linear
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transformations that preserve ay,, has U, as a deformation retract. Hence, the derivative of morphisms
in 241+ at their sources induces the map

v: Blapet.cr — BU,.

Let 7ps be the map M — BU,, that classifies the tangent for the contact manifold (M, ). The space
of formal sections, Fol{ (M, @), is the space of lifts of the map 7as to BI'2p41,c1

Br2n+1,ct

_
P Jv

-7 ™
—————  BU,,.

The universal foliated M-bundle BCont.(M,a) X M — BCont.(M, a) with the transverse contact
structure (i.e., the holonomy maps respect the contact structure of the fibers) induces a classifying map
BCont. (M, @) X M — BI'2,41.c¢. The adjoint of this classifying map induces a map Fol. (M, @) —
Folf, (M, ). Rybicki [Ryb10, Section 11] mentioned that an analog of the Mather-Thurston theorem
is not known for smooth contactomorphisms and he continues saying that ‘it seems likely that such a
version could be established, but a possible proof seems to be hard’. We show that the above adjoint
map induces homology isomorphisms in the compactly supported case. The noncompactly supported

version remains open. In particular, it is unknown whether the map BCont(R?*!, o, ) — BIons1,cr
induces a homology isomorphism, where BI2,,+1 ¢ is the homotopy fiber of the map v. The original
Thurston’s technique is useful to avoid such subtle local statements to get the compactly supported
version.

o FolfL (M): Let M be an n-dimensional manifold that has a PL structure. Let PL.(M) be the sim-
plicial group of PL. homeomorphisms of M. The set of k-simplices, PLy (M), is the group of PL
homeomorphisms M x A¥ that commute with projection to A*. The topological group, PL(M), of PL
homeomorphisms of M is the geometric realization of PL,(M). Hence, the 0-simplices of PL.(M)
is PL(M)?, which is the group of PL homeomorphisms of M as a discrete group. Therefore, we have
a map

BPL(M)® — BPL(M),

whose homotopy fiber is denoted by BPL(M). This space is homotopy equivalent to Fol?“(M). The
space of formal sections is defined similarly to the contact case. Let T''™ denote the etale groupoid
whose space of objects is R and whose space morphisms are given by germs of PL homeomorphisms
of R". Note that a germ of PL homeomorphism at its sources in R" uniquely extends to a PL
homeomorphism of R”. Hence, we obtain a map

BI'PL — BPL(R").

Let 7ps: M — BPL(R") be a map that classifies the tangent microbundle of M. The space Folz’P L(m)
is the space of lifts of 7 in the diagram

BI“EL
o
T
- Tm
M — BPL(R").

Similar to the previous cases, the universal foliated M bundle with transverse PL structure induces a
map BPL(M) x M — BT whose adjoint gives the map Fol?“(M) — FolPX(M). We show that
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this map induces a homology isomorphism which answers a question of Gelfand and Fuks in [GF73,
Section 5]. However, the noncompactly supported version even for M = R" is not known.

4.1. Strategy to avoid the local data

Recall that the strategy is first to prove F(D",d) — Q"Ff (D™) induces a homology isomorphism, and
then, for a compact manifold M, the proof is exactly the same as Section 3.1.4. For smooth foliations
without extra transverse structures, Thurston’s idea to avoid the local statement, as is explained in
Mather’s note ([Mat76]), is to consider disk model for ﬁn (see [Mat76, Section 9]). More concretely, he
proved that BDiff.(R") — Q"BT,, induces a homology isomorphism without using BDiff(R") — BT,
as a homology isomorphism.

To recall the disk model for BI,,, we define F(D™) to be the realization of the semisimplicial set
whose g-simplices are given by germs of foliations on the total space of A xR — A% around A? x D"
that are transverse to the fibers. It is easy to show that F(D™) is homotopy equivalent to BI,,. The
advantage of the disk model is that one can define the support for the germ of the foliation by taking
the intersection of the support of a representative with the disk D", and it has Thurston’s fragmentation
property. However, note that if a germ of a foliation is supported in an open set U in int(D"), it would
give a simplex in Fol. (U) ~ BDiff. (U). In particular, we have F(D", d) ~ BDiff.(R").

Similarly, we define F/ (D") to be the space of maps Map(D", BT,,). Since BT, is at least (n — 1)-
connected, it has the fragmentation property, and given that D" is contractible, we have F(D") =~
FT(D™). Also, we have F/ (D", d) ~ Q"BT,,. Therefore, we have a diagram 3 for these choices, and
Proposition 3.8 applies to prove that BDiff.(R") — Q"BI,, induces a homology isomorphism.

One can use the corresponding disk model for each case in Theorem 1.10 and follow the same strategy
as Theorem 1.7. Hence, in each case, to show that the corresponding F satisfies the c-principle, we need
to show that the fragmentation properties and the goodness conditions (Definition 3.3) for F are satisfied.

It is easy to see that these functors satisfy the first and the fourth conditions in Definition 3.3. Since
the subspace of foliations with empty support is a point, it is therefore contractible. And the third and
fourth conditions are obvious in this case. The second condition is also satisfied for these spaces of
foliations because there exists a metric on the space of foliations that makes them complete metric
spaces (see [Hir73, Section 2]). ° Hence, it is easy to see that the base point in these spaces, which is
the horizontal foliation, makes them well-pointed. In particular, it is a strong neighborhood deformation
retract. Therefore, similar to Lemma 6.3, all these functors satisfy Definition 3.3, meaning that enlarging
the subspace of compactly supported foliations to lax compactly supported (which is an open subspace)
does not change the homotopy type. Hence, to prove the goodness of these functors, we need to check
the last two conditions in Definition 3.3.

The case of the contactomorphisms and PL. homeomorphisms are similar, and given what we already
know about the connectivity of the corresponding Haefliger spaces, as we shall see, we have all the
ingredients to check the above conditions. Hence, we prove the c-principle for Fol.(M, ) and Fol?™ (M)
first.

4.2. The case of the contactomorphisms and PL homeomorphisms

Haefliger’s argument in [Hae71, Section 6] implies that BIEX is (n — 1)-connected. Haefliger showed
([Hae70, Theorem 3]) that Phillips’ submersion theorem in the smooth category implies that BT, is
n-connected. Given that Phillips’ submersion theorem also holds in the PL category ([HP64]), one

could argue similar to the smooth case that BI" EL is, in fact, n-connected. However, McDuff in [McD87,
Proposition 7.4] also proved that BI’5,,41 ¢/ is (2n + 1)-connected, which is even one degree higher than
what we need. Hence, Fol/ P& (D™) is n-connected and Fol/ (D?"*!, @) is (2n+1)-connected. Therefore,

SEpstein ([Eps77, Section 6] showed that in the case of smooth foliations, the topology induced by such a metric is the same
as the subspace topology of space of plane fields.
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the space of formal sections satisfies the fragmentation property. To prove the fragmentation property
for Fol®™(D™) and Fol(D***!, a), we shall use the following lemma.

Lemma 4.1 (McDuff). Let G(M) be a topological group of compactly supported automorphisms
of M with a transverse geometric structure (e.g., PL homeomorphisms, contactomorphisms, volume-
preserving diffeomorphisms and foliation preserving diffeomorphisms). We assume that

o G(M), with its given topology, is locally contractible.
o For every isotopy h; as a path in G(M) and every open cover {Bi}{‘=1 of M, we can write h; =
ht 10« hs i, where each h; ; is an isotopy supported in B;.

Let F.(M) be the realization of the semisimplicial set whose p simplices are the set of foliations on
AP X M transverse to fibers of the projection AP X M — AP and whose holonomies lie in G(M). Then,
the functor F.(M), which is homotopy equivalent to BG(M), has the fragmentation property in the
sense of Definition 1.5.

Proof. See section 4 of [McD83a] and the discussion in subsection 4.15. O

The PL homeomorphism groups are known to be locally contractible ([Gau76]) and, as is proved by
Hudson ([Hud69, Theorem 6.2]), they also satisfy an appropriate isotopy extension theorem which gives
the second condition in Lemma 4. 1. Therefore, Fol?" (M) satisfies the fragmentation property. However,
the group of contactomorphisms is also locally contractible ([Tsu08, Section 3]), and it satisfies the
second condition ([Ryb10, Lemma 5.2]). Hence, Fol. (M, @) also satisfies the fragmentation property
in the sense of Definition 1.5.

Now we are left to show that Fol..(—, @) and Fol’" (~) are good functors in the sense of Definition 3.3.

Lemma 4.2. Fol.(—, @) and Fol?*(~) are good functors.

Proof. Recall that we need to check the last two conditions in Definition 3.3. We focus on Fol. (-, @),
and we mention where Fol™(-) is different.

We may assume that U and V are balls B(r) and B(R) of radi r < R in R>"*!. We want to show that
the induced map

¢t: BCont.(B(r), as;) — BCont.(B(R), ay;)

is a homology isomorphism.

Note that for any topological group G, the homology of BG can be computed by subchain com-
plex S,(BG) of singular chains Sing,(G) of the group G given by smooth chains A®* — G that
sends the first vertex to the identity (see section 1.4 of [Hal98] for more detail). Given a chain ¢ in
S«.(BCont.(B(R), as)), to find a chain homotopy to a chain in BCont,.(B(r), @), we need an easy
lemma ([Hal98, Lemma 1.4.8]) which says that for every contactomorphism & € Cont. o(B(R), @)
that is isotopic to the identity, the conjugation by % induces a self-map of BCont.(B(R), ), which is
the identity on homology. Hence, it is enough to show that there exists 4 a contactomorphism, isotopic
to the identity, that shrinks the support of the given chain to lie inside B(r).

To find such compactly supported contraction, consider the following family of contactomorphisms
D1 R2n+] N R2n+1

p(XO,X1, U ,x2n+1) = (t2~x0at~xl9 U 9t--x2n+1)'

For t < 1, it is a contracting contactomorphism, but it is not compactly supported. To cut it off, we use
the fact that the family p, is generated by a vector field p;.

Let A be a bump function that is positive on the support of the chain ¢ and zero near the boundary of
B(R). One wants to consider the flow of the vector field o, ; to cut off p,, but p, ; may not be a contact
vector field. However, there is a retraction 7 from the Lie algebra of smooth vector fields to contact
vector fields on every contact manifold ([Ban97, Section 1.4]). Briefly, the reason that this retraction
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exists is that there is an isomorphism (see [Ban97, Proposition 1.3.11]) between contact vector fields
on a contact manifold (M, @) and smooth functions by sending a contact vector field & to ¢z (a), the
contraction of @ by £. The retraction r is defined by sending a smooth vector field to the contact vector
field associated with the function t¢(a). Therefore, the flow of 7(p,,) gives a family of compactly
supported contactomorphisms of B(R) that shrinks the support of the chain c.

Hence, by conjugating by such contactomorphisms that are isotopic to the identity, we conclude that
¢ induces a homology isomorphism. The case of the PL foliations is much easier because the existence
of such contracting PL. homeomorphisms that are isotopic to the identity is obvious.

To check the last condition, we want to show that any chain ¢ in S,(BCont(D?"*!, §,)) is chain

homotopic to the identity. Recall that the chain complex S, (BCont(D?"+!,d;)) is generated by the set
of smooth maps from A*® to Cont(D?"*!, 3;) that send the first vertex to the identity contactomorphism.
Note that this set is in bijection with the set of foliations on the total space of the projection A* XM — A*®
that are transverse to the fibers M and whose holonomies lie in Cont(Dz””, 01). Thus, it is enough to
show that each of these generators is chain homotopically trivial. Geometrically, this means that for each
such foliation ¢ on A® X M, there is a foliation on A® X [0, 1] X M transverse to the projection to the first
two factors (i.e., it is a concordance) such that on A® x {0} x M, it is given by ¢, and on A®* x {1} X M, it
is the horizontal foliation. The idea is to ‘push’ the support of the foliation ¢ towards the free boundary
until the foliation becomes completely horizontal.

To do so, consider a small neighborhood U of d; in D?"*! that is in the complement of the support
of the foliation c¢. Note that, as in the previous case, there is a contact contraction that maps D2+l
to U and is isotopic to the identity. Let us denote this contact isotopy by /4, such that iy = id. Let
F: A*x[0,1] x D1 — A* x D>"*! be the map that sends (s, 7, x) to (s, i;(x)) and F; be the map F
at time . Since h, is a contact isotopy, for each ¢, the pullback foliation F;(c) on A* x D***! also gives
an element in S, (BCont(D21+13,)). Therefore, the pullback foliation F*(c) on A®* x [0, 1] x D*"*! is a
concordance from c to the horizontal foliation, which means that ¢ is chain homotopic to the identity in
the chain complex S, (BCont(D?2"+!_4;)).

Note that we only used that for each foliation ¢ on A® x D***!, there exists a neighborhood U away
from the support of ¢ and there is a contact embedding / that maps D>"*! into U which is also isotopic
to the identity. Such embeddings isotopic to the identity also exist in the PL case. Therefore, Fol. (-, @)
and FolEL (-) both satisfy the conditions of Definition 3.3. O

As an application of this theorem, we could improve the connectivity of BI'241,¢:.
Corollary 4.3. The classifying space BI'y,41.¢; is at least (2n + 2)-connected.

Proof. We already know by McDuft’s theorem([McD87, Proposition 7.4]) that BI'2,,41 ¢ is (21 + 1)-

connected. To improve the connectivity by one, note that Rybicki proved ([Ryb10]) that BCont,. (R2"+1)
has a perfect fundamental group. Therefore, its first homology vanishes. However, by Theorem 1.10,

the space BCont.(R?"*1) is homology isomorphic to Q2+, 1.ct- Hence, we have

0= Hi(Q""Blap1 3 Z) = 711 (' Blanat.er) = Mons2(Blonatcr)s

which shows that BI',41 ¢, is (2n + 2)-connected. O

However, as we mentioned in the introduction, the perfectness of the identity component of PL
homeomorphisms PLo(M)® of a PL manifold M is not known in general. Epstein ([Eps70]) proved that
PL.(R)® and PL((S!)? are perfect and left the case of higher dimensions as a question. In [Nar22,
Theorem 1.4], the author used the c-principle of FollZL(—) to prove the following.

Theorem 4.4. Let ¥ be an oriented surface so it has essentially a unique PL structure, and let
PLy(Z, rel 3) denote the identity component of the group of PL homeomorphisms of  whose supports
are away from the boundary. Then, the discrete group PL(‘)S (%, reld) is a perfect group.
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5. Further discussion
5.1. Space of functions not having certain singularities

It would be interesting to see if the space of smooth functions on M not having certain singularities
satisfies the fragmentation property. In particular, it would give a different proof of Vassiliev’s c-
principle theorem ([Vas92, Section 3]) using the fragmentation method. Let S be a closed semialgebraic
subset of the jet space J" (R";R) of codimension n + 2, which is invariant under the lift of Diff (R")
to the jet space. We denote the space of functions over M, avoiding the singularity set S by F(M, S).
It is easy to check that F is a good functor satisfying the conditions in 3.3. To prove that F satisfies
the c-principle, we need to check whether the functors F and F/ satisfy the fragmentation property. It
seems plausible to the author, as we shall explain, that using an appropriate transversality argument for
stratified manifolds ought to prove fragmentation property for F(M). But, since we still do not know if
fragmenting the space of functions F (M) is independently interesting, we do not pursue it further in this
paper.

Recall that to check that the space of formal sections F/ has the fragmentation property, we have
to show that F(R",S) is at least (n — 1)-connected. But, it is easy to see that F(R", S) is homotopy
equivalent J"(R",R)\S (see [Kup19, Lemma 5.13]), and this space by Thom’s jet transversality is at
least even n-connected. Therefore, the space of formal sections F/ has the fragmentation property.

It is still not clear to the author how to check whether F' has the fragmentation property, but here
is an idea inspired by the fragmentation property for foliations. We want to solve the following lifting
problem up to homotopy:

P—— Fe(M,S)

1
-
-
-
-
-
-

“ 8 FM.s),

where Q is a simplicial complex and P is a subcomplex. Let o € Q be a simplex. We can think of
the restriction of g to each o by adjointness as a map g: M X o — R. In Section 2.1, we defined the
fragmentation homotopy Hy: M X o — M X o after fixing a partition of unity {yi}f\i |- We have the
flexibility to choose this partition of unity. Note that for each point t € o, the space H (M X {t}) is
diffeomorphic to M (see Figure 1). So the restriction of the map g to this space gives a smooth function
on M. By jet transversality, we can choose the triangulation of Q fine enough so that for each simplex
o and each point t € o, the restriction of g to H; (M x {t}) avoids the singularity type S.

Let fp be a function in F (M, S) that we fix as a base section to define the support of other functions
with respect to fy. Similar to the proof of Theorem 2.1, consider the subcomplex L(o"), which is an n-
dimensional subcomplex of M X o, which is the union of finitely many manifolds L; that are canonically
diffeomorphic to M. In fact, L(o) is a union of the graphs of finitely many functions M — o inside
M x o. It is easy to choose the partition of unity so that L(o) is a stratified manifold. The goal is to
find a homotopy of the family of functions in F (M, S) denoted by g,: M X o — R so that gy = g, and
g1 restricted to Hj(M x {t}) for each t € ¢ is in F (M, S), and most importantly, the restriction of g
to each L; is given by the base function fy. If we can find such homotopy, then the rest of the proof is
similar to proving the fragmentation property for the space of sections in Theorem 2.1.

5.2. Foliation preserving diffeomorphism groups

Another interesting transverse structure is the foliation preserving case when we have a flag of foliations.
To explain the functor in this case, let M be a smooth n-dimensional manifold and F be a codimension
q foliation on M. Let Fol. (M, F) be the realization of the simplicial set whose k-simplices are given by
the set of codimension dim(M) foliations on M x A that are transverse to the fibers of the projection
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M x A¥ — A and the holonomies are compactly supported diffeomorphisms of the fiber M that
preserve the leaves of F.¢

To define the space of formal sections in this case, note that the foliation / on M gives a lifting of the
classifying map for the tangent bundle of M to BI'; x BGL,,_,(R), where I';, is the Haefliger groupoid
of germs of diffeomorphisms R?. Now consider the diagram

Bl
o
TF
M —2 5 B, x BGL,_,(R), )

where I,  is the subgroupoid I', given by germs of diffeomorphisms of R" that preserve the standard
codimension ¢ foliation on R" (see [LM16, Section 1.1] for more details). Let ﬁn,q denote the
homotopy fiber of 6. Let Fol{ (M, F) be the space of lifts of 7 to BI',, , up to homotopy.” Since the
trivial M-bundle Fol. (M, F) X M is the universal trivial foliated M-bundle whose holonomy preserves
the leaves of F, we have a homotopy commutative diagram

Fol,(M,F)xM ——— Bl 4

et

-
M ——— BI'y x BGL,_4(R).

The adjoint of the top horizontal map induces the map Fol.(M, F)) — Fol{' (M, F). The method of
this paper can be applied to show that Fol.(M, F) also satisfies the c-principle, but we pursue this
direction and its consequences elsewhere.

6. Appendix

In this section, we prove Corollary 2.10 using Thurston’s fragmentation of section spaces. The non-
abelian Poincaré duality has been proved by various methods (see [Lur, Seg73, McD75, B87, Sal01,
AF15]). What makes the fragmentation property more useful in the geometric context, and in foliation
theory, is that it lets us deform certain spaces associated with a manifold (e.g., section spaces and spaces
of foliation with certain transverse structures) to its subspace (instead of a homotopy colimit) that has a
natural filtration (e.g., it deforms the section space to those sections whose supports have a volume less
than €).

The non-abelian Poincaré duality holds for topological manifolds with the same statement. But, we
are assuming (Definition 1.4) that M admits a metric for which there exists € > 0 such that all balls of
radius € are geodesically convex. Therefore, we give proof using the fragmentation method under this
assumption.

Let us recall the setup again. We have a Serre fibration 7: E — M over such a manifold M. Let s
be a fixed section for &, and we call the base section. We assume this base section satisfies the condition
in Section 6.

Condition. There is a fiber preserving homotopy 4, of E such that hy = id and h;l(so(M )) is a
neighborhood V of sq(M) in E and h,(so(M)) = so(M) for all ¢. In other words, the base section is

SHolonomies must be leaf preserving. One can also define a version that holonomies may not preserve the leaves, but they
preserve the foliation. By a recent result in [MINR 18], this version does not satisfy the fragmentation property in general.
"The classifying spaces in the diagram 9 are defined up to homotopy, but if we fix models for them so that 6 is a Serre fibration,

Foljcc (M, F) is homotopy equivalent to the space of lifts of 7+ along 6 in that model.
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a good base point in the space of sections. We assumed that M is a geodesic space and there exists a
positive € so that every ball of radius € is geodesically convex.

So with respect to this base section, we can define the support for any other section as in Definition
1.4. Let Sect. () be the space of compactly supported sections of 7 equipped with the compact-open
topology. Let Sect, (7r) denote the subspace of those sections s such that the support of s can be covered
by k geodesically convex balls of radius 2 e for some positive integer k. Recall that Disj(M) is the
poset of the open subsets of M that are homeomorphic to a disjoint union of finitely many open disks.
And for an open set U € Disj(M), the space Sect.(U) denotes the subspace of sections which are
compactly supported, and their supports are covered by U. The non-abelian Poincaré duality says that
if the fiber of the map 7 is (n — 1)-connected, the natural map

hocolim Sect.(U) — Sect.(r)
U eDisj(M)

is a weak homotopy equivalence.

To prove this statement, we shall recall below the reformulation due to Lurie [Lur, Proposition
5.5.2.13] in terms of a more flexible indexing category D(M). To use the fragmentation method, we
shall first describe Sect, (77) as a homotopy colimit over the category O (M). Recall from Definition
3.10 that this category is the discrete poset of open subsets of M that can be covered by a union of k
geodesically convex balls of radius at most 2% ¢ for some positive integer k.

Recall that by the fragmentation method (Theorem 2.1), we know that the inclusion
Secte () < Sect.(7) is a weak homotopy equivalence. Hence, we want to compare Secte () with
hocolim Sect.(U), and to do so, we shall define some auxiliary spaces.

U eDisj(M)
Definition 6.1. We define the lax support of a section s € Sect.. () to be the closure of the set of points
x where s(x) is not in the neighborhood V that is chosen in the condition above.

Definition 6.2. Let Sect, (7) be the subspace of space of sections whose lax support is compact and, in
general, for an open set U in M, let Sect. (U) denote the space whose lax support is compact and lies
inside U. Also, let Sect, (1) be the subspace of Sect, (m) cons1stmg of those sections whose lax support

can be covered by k geodesically convex balls of radius 27k ¢ for some positive integer k. And similarly,
let Sect. (U) denote the subspace of Sect, (7r) consisting of those sections whose lax supports can also
be covered by U.

Lemma 6.3. For an open set U in M, the inclusion Sect.(U) — §f;6tc(U) is a weak homotopy
equivalence, and similarly, the inclusion Secte (U) < Sect. (U) is a weak homotopy equivalence.

Proof. The proof of both statements is the same, so we shall do the first. We need to solve the following
lifting problem:

Sk L Sect. (U)

A
-
-
-
-
-
-

DK+l —— Sect, (V).
But, instead, we change the map of pairs
(H,F) : (D**',8%) — (Secte (U), Sect (V)
up to homotopy to find the lift. For € D**! and x € M, we define H;(a,x) € E to be h,(H(a,x)).

Similarly, we define F;. Note that for all a € D**! the section H; (a,-) in fact lies in Sect. (U), which
is our desired lift. ]
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Lemma 6.4. The natural map

n: l/}ocol(/m Secte(U) — Sect, ()
€0,

is a weak homotopy equivalence.

Proof. Note that, by definition, the subspaces Sect, (U) are open in Sect, (), and they give an open
cover as U varies in O¢(M). So the lemma is implied by [DI04, Theorem 1.1], but it is also easily
implied by the microfibration technique as follows. It is enough to show that the above map is a Serre
microfibration with weakly contractible fibers (see [Wei05, Lemma 2.2]). Recall that we say the map
n: T — B is a Serre microfibration if for every positive integer k and every commutative diagram

kx {0} ——T

[, ]

h
D¥ x [0,1] — B,

there exists an € > 0 and a (micro)lift 4 : D¥x[0,€) — Tsothat H(x,0) = f(x) and moH(x, ) = h(x).

We think of Secte (=) : O (M) — Top as a diagram of spaces. It is known (see [DI104, Appendix
Al) that for the diagram of spaces, the homotopy colimit is weakly equivalent to the realization of the
bar construction B, (Secte (=), O (M), *). Note that there is a continuous degree-wise injective map of
semisimplicial spaces

Ba(Sect (=), Oc (M), %) — Secte (n1) X Bo(%, Oc (M), %),

where the map 7 in the lemma is induced by the projection to the first factor. The lax support is defined
so that the subspace Sect (U) is open in Sect. (), and since these spaces are Hausdorff, we could use
[GRW 18, Proposition 2.8] to deduce that the map

|Bo(Secte (=), Oc (M), ¥)| — Sect (x)

is a Serre microfibration. The fiber over a section s € Sect. (wr) can be identified with
[Be (%, O e (M) lsupp(s)» *)|, where O¢ (M) |supp(s) consists of those open subsets in O (M) that contain
the support of s. But this subposet is filtered, therefore its realization is contractible. O

So using these spaces instead, we want to prove that

hocolim SectC(U) — Sectc(n)
U €Disj(M)

is a weak homotopy equivalence. However, the fragmentation method (Theorem 2.1) implies that the
inclusion Sect, (U) — Sect.(U) is a homotopy equivalence. So we need to prove that the map

hocolim Secte (U) — Sect, 10
Fogolm Sec (U) — Sect.(n), (10)

is a weak homotopy equivalence.
However, combining Theorem 2.1 with Lemma 6.4 and Lemma 6.3, we have the weak homotopy
equivalence

hocolim Sect (U) — Sect
hocolim Secte (U) — Secte(n).
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Let us first observe that there is a functor
conv: O¢ (M) — Disj(M)

defined as follows. Recall that every open set U in O (M) can be covered by a union of k geodesically
convex balls of radius at most 2% ¢ for some positive integer k.

Lemma 6.5. A union of k geodesically convex balls of radius at most 2~% € can be covered by at most k
disjoint geodesically convex balls of radius at most €.

Proof. Note that if the union of r geodesically convex balls of radius at most 2 %€ is connected, it can
be covered by a ball of radius at most 27%*"~1¢. So we consider the connected components of the union
of k balls of radius at most 27 ¢, and we inductively cover the connected components by bigger balls,
if necessary, until we obtain at most k disjoint balls of radius at most €. O

Let conv(U) be the union of convex hulls of the connected components which is homeomorphic
to the disjoint union of balls in M. Hence, conv(U) gives an object in Disj(M), and it respects the
containment so it is a functor between the two posets. Hence, we obtain a map

B hocolim SEEtJU) — hocolim §E€tf(U).
UeO (M) U eDisj(M)

Hence, to prove the non-abelian Poincaré duality for the space of sections over M, it is enough to prove
the following.

Theorem 6.6. The map 8 induces a weak homotopy equivalence.

In other words, we want to compare the homotopy colimit of two diagrams of section spaces over
indexing categories O (M) — Disj(M). To do that, we need a more flexible indexing category and
the reformulation of the non-abelian Poincaré duality by Lurie ([Lur, Theorem 5.5.6.6]) in terms of this
more flexible co-category.

Definition 6.7. Let Mfld,, denote the topological category of n-dimensional topological manifolds, and
the morphisms are given by space of the codimension zero embeddings. We let D(M) be the full
subcategory of the co-category of N(Mfld,,),»; spanned by those objects of the form j: § X R" — M,
where S is a finite set. Here, N(—) means the homotopy coherent nerve of the category (see [Lur,
Definition 5.5.2.11]).

The space of morphisms Mapp ) (f,g) between two objects embeddings (f : U — M) and
(g : V< M) in D(M) can be described by the following homotopy fiber sequence:

MapD(M) (f,g) — Sing(Emb(U,V)) — Sing(Emb(U, M)),

where the last map is induced by precomposing with g, and Sing means the singular simplicial set.
So roughly, we think of Mapp ) (f,g) as the space of pairs of embeddings (¢, f) in Emb(U, V) and
Emb(U, M), respectively, and a specified isotopy in Emb(U, M) between f and g o ¢.

Lurie in [Lur, Remark 5.5.2.12] defines an co-functor from the nerve of Disj(M) to D(M)

v: N(Disj(M)) — D(M)

by choosing a parametrization of each open disk in M. In [Lur, Proposition 5.5.2.13], he showed that
the functor vy is left cofinal. Hence, the colimits of diagrams over these co-categories are homotopy
equivalent. The same argument, as we shall sketch, shows that the composition of functors

a: N(Oc (M) =25 N(Disj(M)) 2 D(M)
is also cofinal.
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Proof. So we are left to show that @ = y o conv is also left cofinal, similar to proposition [Lur,
Proposition 5.5.2.13]. Let V € D(M), and D(M)y, is the slice category under V. By Joyal’s theorem
[Lur09, Theorem 4.1.3.1], it is enough to show that N(O (M)) Xp(m) D(M)y , is weakly contractible.
The projection N(O¢(M)) Xpm) D(M)y; — N(Oc(M)) is a left fibration associated to a functor
x : N(O¢(M)) — Top which sends U € N(O, (M)) to the homotopy fiber of the map

Sing(Emb(V, @(U))) — Sing(Emb(V, M)).
Hence, by [Lur(09, Proposition 3.3.4.5], it is enough to show that

N(C(geli(r?/[))Sing(Emb(V, a(-))) — Sing(Emb(V, M)) an

is a weak equivalence. Suppose that V is homeomorphic to S X R" for a finite set S. For any open subset
U in M, let Conf(S, U) denote the space of embeddings of the set S into U. Lurie showed ([Lur, Remark
5.4.1.11]) that the diagram

Sing(Emb(S x R",U)) —— Sing(Emb(S x R", M))

Sing(Conf(S,U)) ——— Sing(Conf(S, M)),

where the vertical maps are given by evaluation at 0, is a homotopy cartesian diagram. Hence, the weak
equivalence in 11 is equivalent to proving

colim  Sing(Conf(S, a(~))) — Sing(Conf(S, M)).
noglim g(Conf(S, a(-))) g(Conf(S, M))

Note that Conf(S, @(U)) is an open subspace Conf(S, M), and as U varies in O (M), the open subspaces
Conf(S, @(U)) cover Conf(S, M). So by [DI04, Theorem 1.1], the above map is a weak equivalence. O
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