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We study the stochastic spatial Lotka-Volterra model for predator-prey interaction subject to a periodically
varying carrying capacity. The Lotka-Volterra model with on-site lattice occupation restrictions (i.e., finite local
carrying capacity) that represent finite food resources for the prey population exhibits a continuous active-to-
absorbing phase transition. The active phase is sustained by the existence of spatiotemporal patterns in the form
of pursuit and evasion waves. Monte Carlo simulations on a two-dimensional lattice are utilized to investigate
the effect of seasonal variations of the environment on species coexistence. The results of our simulations are
also compared to a mean-field analysis in order to specifically delineate the impact of stochastic fluctuations
and spatial correlations. We find that the parameter region of predator and prey coexistence is enlarged relative
to the stationary situation when the carrying capacity varies periodically. The (quasi-)stationary regime of our
periodically varying Lotka-Volterra predator-prey system shows qualitative agreement between the stochastic
model and the mean-field approximation. However, under periodic carrying capacity-switching environments,
the mean-field rate equations predict period-doubling scenarios that are washed out by internal reaction noise in
the stochastic lattice model. Utilizing visual representations of the lattice simulations and dynamical correlation
functions, we study how the pursuit and evasion waves are affected by ensuing resonance effects. Correlation
function measurements indicate a time delay in the response of the system to sudden changes in the environment.
Resonance features are observed in our simulations that cause prolonged persistent spatial correlations. Different
effective static environments are explored in the extreme limits of fast and slow periodic switching. The
analysis of the mean-field equations in the fast-switching regime enables a semiquantitative description of the
(quasi-)stationary state.
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I. INTRODUCTION

The study of population dynamics has gained popular-
ity among various fields of research in recent years [1–24].
Ecosystems of multiple interacting species are traditionally
modeled as a dynamical system described by a set of de-
terministic differential rate equations. Yet such deterministic
descriptions do not capture the stochastic nature of real-
life systems and ignore temporal and spatial correlation
effects that certainly affect the system’s quantitative fea-
tures and maybe its qualitative behavior [9,25]. Therefore,
various efforts have been made in trying to adequately rep-
resent such systems in terms of coupled stochastic processes
[9,13,14,17,19,26]. An additional difficulty in the study of
stochastic population dynamics stems not just from the fact
that they are nonlinear dynamical systems with a large num-
ber of degrees of freedom, but also because they do not
reside in thermal equilibrium: Hence the stationary proba-
bility distribution is not the standard Boltzmann distribution,
nonvanishing probability currents decisively characterize the
ensuing nonequilibrium steady states, and irreversibility is
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crucial, as becomes manifest in absorbing states that charac-
terize population extinction. However, lattice simulations can
be used effectively to gain insight on the interacting popula-
tions’ behavior and may thus guide the development of new
techniques for studying nonequilibrium systems.

This study focuses on the paradigmatic predator-prey
model introduced independently by Lotka and Volterra
[27,28], owing to its simplicity and extensive prevalent liter-
ature. The original formulation of the Lotka-Volterra model
utilized a coupled set of deterministic differential equa-
tions describing the temporal evolution of the predator and
prey densities. It was successful in explaining population
oscillations that are present in predator-prey ecologies. How-
ever, the Lotka-Volterra mean-field model was aptly met with
criticism because it did not account for stochastic fluctuations,
and since it predicts stable density oscillations that are fully
determined by the initial population densities, whereas in
nature, predator-prey systems can exhibit extinction or fixa-
tion. The neutral limit cycles of the original Lotka-Volterra
model are also not stable under straightforward modifica-
tions to the model [2,4,21]: Allowing for intrinsic stochastic
noise or introducing a finite carrying capacity render the
limit cycles unstable, and the system is instead driven to a
stable fixed point with constant predator and prey densities.
We remark that there exist alternative predator-prey models
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that can predict stable limit cycles such as those discussed
in Refs. [29,30]. Further it is well established that spatial
structure in ecological systems promotes species coexistence
[31–34]. This assertion was supported by experiments done
by Huffaker et al. [35], who found that coexistence of a
predator-prey system of mite species was maintained via
spatial heterogeneity of species densities. This was later hy-
pothesized to be a result of asynchronous system states in
different patches (lattice sites) [32,34,36].

A substantial body of experimental work has been
performed on ecologies that exhibit predator-prey type in-
teractions [10,35,37–41]. While the Lotka-Volterra model is
able to capture the periodic behavior of such systems, with
good numerical agreement for well-mixed microbial sys-
tems [37,40], its mean-field approximation cannot capture the
stochastic fluctuations in the population densities. As pointed
out in Ref. [37], the issue is that the deterministic Lotka-
Volterra model (even with a finite carrying capacity) allows
only for decaying or constant oscillation amplitudes. It is
hence preferable to consider the Lotka-Volterra model as a
stochastic reaction-diffusion system incorporating the follow-
ing reactions that involve the predator species A and the prey
species B:

A
μ−→ ∅, predator death, (1a)

B
σ−→ B + B, prey reproduction (birth), (1b)

A + B
λ−→ A + A, predation, (1c)

where μ, σ , and λ denote the corresponding reaction rates
that quantitatively characterize the stochastic processes. The
reaction (1c) combines the actions of simultaneous predation
and predator reproduction, a common simplification [5,13–
15,18,21,42–51]; as shown in Ref. [22], for spatially ex-
tended stochastic realizations of the Lotka-Volterra processes,
separating (1c) into two independent reactions does not qual-
itatively change the stochastic, spatially extended system’s
behavior.

This simplest Lotka-Volterra model variant can be readily
extended to account for finite resources for the prey popu-
lation. On the mean-field level, one may just add a logistic
growth-limiting factor for the prey species [4,52,53]. For the
stochastic model realized on a regular lattice, this can be
achieved by implementing on-site lattice occupation restric-
tions [13,14,17,19,42–44,49,54,55]. An alternative method of
modeling competition between prey individuals for resources
would be to implement the binary reaction B + B −→ B, which
provides “soft” local particle number constraint [51]. In con-
trast to imposing “hard” on-site restrictions in the lattice
model, the corresponding mean-field rate equation would
directly lead to a logistic equation. Either modification of
the stochastic Lotka-Volterra model induces a continuous
nonequilibrium phase transition between two-species coexis-
tence and predator extinction. If the predators are not efficient
in hunting their prey, or if the food resources available to
the prey are scarce, the predator population eventually goes
extinct [13,14,19,49–51]. The critical exponents of this active-
to-absorbing state phase transition were shown to be in the
directed percolation universality class by means of numeri-
cal simulations [19,44,45,55–57] as well as a field-theoretic

analysis [21,50,51]. Persistent spatiotemporal structures
emerging in the coexistence phase of the stochastic lattice
Lotka-Volterra model that substantially enhance species co-
existence and thus promote ecological diversity have been
thoroughly studied as well [12,16,34,50,58,59]. Prominent
traveling pursuit and evasion waves arise due to the fact that
predators must move towards high concentrations of prey
in order to survive, leaving behind them areas of low prey
concentration, while the prey similarly need to evade regions
of high predator densities. These waves lead to asynchronous
states and therefore enhance coexistence [34], which under-
scores the importance of spatial modeling for predator-prey
systems.

Experimental in vitro as well as in vivo systems are
often exposed to varying nutrients, which affects species
survival. Therefore the modeling of population dynamics
with temporally varying environments has gained attention
in recent years [46–48,60–74]. Traditionally, fluctuations
in the environment are modeled as variable reaction rates
[47,48,61,64,69–72] which usually enter linearly. On the
other hand, to investigate the effects of varying nonlinear
parameters, typically time-dependent carrying capacities are
introduced [65–68] but in a nonspatial setting. Yet spatial
models with a varying carrying capacity have also not been
properly explored in the literature. Lattice models are often
simulated with a fixed on-site restriction [13,14,17,19,42–
44,49,54,55].

In this study, in order to gain a full understanding of
how a time-varying on-site resource constraint can change
the (quasi-)stationary properties as well as transient kinet-
ics of predator-prey competition dynamics, we consider the
stochastic Lotka-Volterra model on a regular two-dimensional
lattice (with periodic boundary conditions) with a finite lo-
cal prey carrying capacity that varies periodically over time.
This oscillatory environmental variability resembles seasonal
changes in food availability for the prey population. While
seasonal changes may additionally affect other parameters
such as the reproduction rate, in this study we focus on the
effects of temporal oscillations in resource availability, since
we anticipate variability in this nonlinear parameter to gener-
ate the most prominent modifications relative to the stationary
case. This variation in the environment leads to indefinite pop-
ulations oscillations, whereas the static Lotka-Volterra model
supports only damped oscillations with a decreasing ampli-
tude (in the coexistence regime). Similar conclusions were
already drawn in Ref. [63]. We investigate how a sudden
increase in prey food resources can prevent the predators
from going extinct. Specifically, intriguing dynamical behav-
ior is observed when the system switches between carrying
capacity values that would result in species coexistence and
predator extinction, respectively, in stationary environments.
One may regard this Lotka-Volterra system with periodically
varying environment as a dynamical system subject to an
oscillating external driving force. In periodically driven dy-
namical systems, there are two limiting situations that allow
for quantitative theoretical analysis, namely the fast- and
slow-switching regimes, for which the driving force oscilla-
tion period is small or large, respectively, compared to the
intrinsic oscillation timescale of the system. In order to quan-
titatively analyze our model, we measure the time evolution
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of the population density for each species and their two-point
correlations functions. We demonstrate that an analysis of the
coupled mean-field rate equations allows a semiquantitative
description of the (quasi-)stationary state of the system for
rapidly varying environments. As mentioned in Ref. [63],
density oscillations tend to have the same period as the en-
vironmental oscillations. However, our model exhibits period
doubling effects when an asymmetric environment is consid-
ered.

Our aim is to understand the mechanism for the enlarge-
ment of the region of parameter space that permits species
coexistence in the Lotka-Volterra predator-prey model, as a
consequence of the periodic variations in the environment. In
the fast-switching regime, we delineate under which condi-
tions the environmental variability may be captured through
effective averaged parameters. Direct comparisons between
mean-field and the lattice model results allows us to determine
quantitatively when the analysis of approximate mean-field
rate equations suffices. We also address the question of how
the externally imposed carrying capacity dynamics interacts
with the intrinsic spatiotemporal pursuit and evasion waves
characteristic of predator-prey models. Indeed, this interplay
between the spreading population waves and the chang-
ing environment causes intriguing resonant behavior in the
system.

This paper is organized as follows: Sec. II gives an
overview of the stationary states of the Lotka-Volterra model
for predator-prey competition and their stability within the
mean-field theory framework. It next describes the fea-
tures found by numerically integrating the coupled rate
equations for periodically varying carrying capacity. We
then mathematically analyze the (quasi-)stationary state of
the mean-field model in both the slow- and fast-switching
regimes. Our implementation for our corresponding stochastic
lattice model and the ensuing simulation data are presented in
Sec. III and compared with the mean-field results. Finally, our
summary and concluding remarks are provided in Sec. IV.

II. LOTKA-VOLTERRA PREDATOR-PREY
COMPETITION: MEAN-FIELD THEORY

A. Constant carrying capacity: Mean-field rate
equations and stability analysis

Mean-field rate equations for stochastic dynamical reaction
systems are approximate deterministic equations that aptly
describe a well-mixed setup. Even though they neglect spatial
correlations and temporal fluctuations, they are often useful
to gain intuition on the system’s expected behavior. In Sec. III
we compare the results obtained with the mean-field equations
with the Monte Carlo simulation data from the full stochastic
model (1).

For the Lotka-Volterra predator-prey competition model
(1), the classical mean-field rate equations that describe the
time evolution of the mean predator and prey densities a(t )
and b(t ) read

da(t )

dt
= −μa(t ) + λa(t )b(t ), (2a)

db(t )

dt
= σb(t ) − λa(t )b(t ). (2b)

These rate equations can be understood as representing gain
or loss terms for reactions that increase or decrease the popu-
lation densities. Linear stability analysis of this system shows
that the system exhibits a species coexistence fixed point, and
numerical integration of these equations leads to oscillatory
behavior, namely, neutral limit cycles. We will perform our
analysis on the more generalized Lotka-Volterra model with
a growth-limiting factor for the prey species (for reviews, see
Refs. [5,50,75]).

The original Lotka-Volterra rate equations can be gener-
alized by including a growth-limiting factor 1 − a(t )/K1 −
b(t )/K2, where K1 and K2 respectively represent the (global)
carrying capacities induced by prey-predator and prey-prey
resource competition. For simplicity, we set K1 = K2, since
this does not change the qualitative behavior of the system
on the mean-field level; this implies the modified set of rate
equations

da(t )

dt
= −μa(t ) + λa(t )b(t ), (3a)

db(t )

dt
= σb(t )

(
1 − a(t ) + b(t )

K

)
− λa(t )b(t ), (3b)

where K denotes the (global) carrying capacity. Their mean-
field character resides in the assumed factorization for the
nonlinear predation reaction with rate λ of a two-point cor-
relation function into a mere density product, which assumes
statistical independence and the absence of correlations. The
growth-limiting factor is used to model limited finite re-
sources and vanishes if a(t ) + b(t ) = K . In that case, the prey
density’s temporal derivative becomes negative, indicating a
strictly decreasing prey population. We remark that adding
an explicit growth limiting term for the predator density is
not required since the predators’ growth is determined by the
prey density. Hence, if the prey species has a growth-limiting
factor, this will indirectly constrain the predator population
abundance as well.

The stationary states of this system are given by constant
solutions to (3). This results in three fixed points (a∗, b∗) =
{(0, 0), (0,K ), (a0, b0)}, where

a0 = σK

λK + σ

(
1 − μ

λK

)
, b0 = μ

λ
. (4)

The solution (0,0) represents total population extinction. At
the fixed point (0,K ), the predator species goes extinct while
the prey species fills the entire system to full capacity K .
Finally, the solution (a0, b0) with nonzero densities for both
species represents predator-prey coexistence. Note that a0 > 0
requires μ/λ < K .

Next we consider the (linear) stability of these solutions,
which is achieved by linearizing (3) around the three distinct
stationary states. Shifting the densities by their stationary
solutions a(t ) = a∗ + δa(t ), b(t ) = b∗ + δb(t ), inserting this
transformation into the original rate equations, and keeping
only terms linear in the small deviations (δa(t ), δb(t )), we
obtain the matrix equation ẋ = Jx, where x = (δa(t ) δb(t ))T ,
the dot represents the time derivative, and the Jacobian matrix
J is explicitly given by

J =
(

λb∗ − μ λa∗

−(
σ
K + λ

)
b∗ −λa∗ + σ

K (K − a∗ − 2b∗)

)
. (5)
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The dynamical behavior of the system in the vicinity of a fixed
point follows from the eigenvalues ε± of the Jacobian matrix
at each stationary point. First, let us consider the extinc-
tion fixed point (0,0) with associated eigenvalues (ε−, ε+) =
(−μ, σ ). Both eigenvalues are real, indicating exponential be-
havior near the fixed point. Yet the extinction stationary point
is linearly unstable in mean-field theory against prey growth,
since ε+ = σ is positive. While this result is intuitive con-
sidering the fact that any small deviation in the prey density
leads to exponential growth of the prey, we recall that in the
original stochastic model, in any finite system total extinction
represents the only asymptotically stable stationary absorbing
state. Next, the eigenvalues for the predator extinction fixed
point (0,K ) are (ε−, ε+) = (λK − μ,−σ ), which are also
both real. This stationary state is stable only with respect
to small perturbations if λ < λc = μ/K . Finally, the two-
species coexistence stationary point (a0, b0) has associated
eigenvalues

ε∓ = − σμ

2λK

⎡
⎣1 ±

√
1 − 4λK

σ

(
λK

μ
− 1

) ⎤
⎦. (6)

For λs = (μ/2K )(1 + √
1 + σ/μ) > λ > λc, both eigenval-

ues are real and negative, and hence the stationary point is
stable and small perturbations exponentially relax back to-
wards it. If λ > λs, the eigenvalues acquire complex conjugate
imaginary components with a negative real part, indicating
that the stationary point is still stable, but the system ex-
hibits decaying oscillations in its vicinity. Yet for λ < λc the
eigenvalues are both real with ε− < 0 and ε+ > 0 assuming
opposite signs. Consequently, the stationary solution (a0, b0)
turns into an unstable saddle point.

This analysis demonstrates that the mean-field rate
equations (3) predict a continuous active-to-absorbing state
transition at λ = λc. The absorbing state is the predator ex-
tinction phase (0,K ), which is stable only for λ < λc. The
active phase is the species coexistence phase (a0, b0), which
only exists and is then stable for λ > λc. This fixed point
is a stable node for λ < λs and becomes an attractive focus
for λ > λs. The active-to-absorbing phase transition describ-
ing predator extinction is also observed in spatially extended
stochastic systems. Away from criticality the system’s be-
havior changes quantitatively only relative to the mean-field
analysis. Near the phase transition the critical exponents gov-
erning the model’s dynamical scaling laws acquire substantial
corrections due to fluctuations in dimensions d � dc = 4.
For a more thorough review of the stochastic Lotka-Volterra
predator-prey model in a static environment, we refer to
Refs. [49–51].

B. Periodically switching carrying capacity: Numerical
integration of the coupled rate equations

In this section we describe results obtained from numer-
ically integrating the coupled rate equations (3) subject to
a periodically switching carrying capacity. As depicted in
Fig. 1, the carrying capacity K (t ) is taken to be a rectangular
time signal ranging between the low and high values K− and
K+, and with full switching period Tk (i.e., from K∓ back to
K∓). This functional variation of the carrying capacity does of

FIG. 1. Sketch illustrating the time dependence of the periodi-
cally switching carrying capacity K (t ): Tk is the full period of the
signal; K− and K+ are its the low and high values.

course not constitute a realistic model for species interacting
in nature since food resources do not change in a discontinu-
ous manner. However, it can be argued that seasonal changes
lead to a sudden carrying capacity drop or increase between
winter and summer, as resource availability may seasonally
vary. The following results will later be utilized to highlight
the differences between the mean-field approximation and the
stochastic lattice model. We remark that a full quantitative
comparison between the two models is uninformative due to
the fact that in the lattice model one prescribes microscopic
reaction probabilities, whereas in the mean-field system one
controls the effective macroscopic reaction rates. A thorough
quantitative analysis would require fitting the stochastic lattice
data to the mean-field results in order to extract the effec-
tive (and usually scale-dependent) macroscopic rates. Here
we are not interested in the detailed quantitative differences
between the lattice and mean-field models. Rather we fo-
cus on the qualitative distinctions between the two models
and specifically highlight features predicted by the mean-
field equations that are not present in the stochastic lattice
system.

The mean-field equations were numerically integrated by
employing a fourth-order Runge-Kutta scheme with (dimen-
sionless) time increment �t = 0.01; i.e., t0 = 100 �t sets
the basic unit timescale relative to which all times and in-
verse rates will henceforth be measured in this section. We
set the initial conditions to ρa(0) = ρb(0) = 0.5 and K (0) =
K− and have confirmed that our results do not depend on
these chosen initial values. Figure 2 displays the resulting
predator and prey densities ρ(t ) as functions of time. For both
switching periods Tk = 60 and Tk = 80, we clearly observe
period-doubling effects in the time traces. This is further con-
firmed by the Fourier transforms of these temporal evolutions
shown in Fig. 3. For Tk = 60, the highest Fourier peak occurs
at a period t = 120 indicating period doubling. However, an
additional smaller peak emerges at t = 240, reflecting that the
density repeats after four switching periods of the carrying ca-
pacity, suggesting even the presence of a period-quadrupling
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FIG. 2. Predator (full red) and prey (dashed blue) density time traces obtained by numerical integration of the coupled mean-field rate
equations with periodically switching carrying capacity K (t ) (the shaded gray areas indicate the excluded densities). Parameters are σ = μ =
λ = 0.1, and K− = 1, K+ = 10.

effect. Similar period doubling is visible for Tk = 80, but
no period quadrupling is discernible. Further increase in the
carrying capacity period evidently eliminates period-doubling
phenomena as shown in Fig. 3(c). We detect the highest peak
in the density Fourier transforms for t = 2π/ω = Tk/3, a
harmonic of the driving period. This feature is in fact also
observed in the lattice model, in contrast to the period dou-
bling at smaller periods Tk , for which we shall find that the
internal reaction noise in the stochastic model washes away
these intriguing nonlinear effects.

C. Quantitative analysis: Slow-switching regime

The stationary mean-field population densities in the co-
existence phase are given in Eq. (4). For an environment
where K periodically switches between two constant values
K− and K+, the long-time behavior of the system depends
on these stationary densities. If the period of the oscillating
environment is sufficiently long such that the system reaches
the stationary state for either K value, then the densities can
effectively be described as oscillating between two constant
values with the same period Tk as the carrying capacity. In that
case, the averages of the predator and prey densities over one
period can simply be approximated by the arithmetic means
(ã, b̃) of the two stationary values (a−, b−) and (a+, b+)

pertaining to K = K− and K = K+, respectively. Thus we
obtain

ã = a− + a+
2

= σ

2λ

(
λK− − μ

λK− + σ
+ λK+ − μ

λK+ + σ

)

= σ

λ

2λ2K−K+ + λ(σ − μ)(K− + K+) − 2μσ

2(λK− + σ )(λK+ + σ )
, (7a)

b̃ = b− + b+
2

= μ

λ
. (7b)

We rewrite the mean predator density in terms of an equiv-
alent time-averaged effective carrying capacity K∗ defined
through

ã = σ

λ

λK∗ − μ

λK∗ + σ
. (8)

Comparison with the explicit result (7a) yields

K∗ = 2K−K+ + (K− + K+) σ/λ

K− + K+ + 2σ/λ
, (9)

which reduces to the rate-independent harmonic average
K̄ = 2K−K+/(K− + K+) for large K−,K+ � 1. Hence, in the
slow-switching regime, the system can be described as oscil-
lating around the average population densities corresponding
to the constant rate-dependent effective carrying capacity
K∗. Through numerical integration of the mean-field rate

FIG. 3. Fourier transforms of the predator (red squares) and prey (blue crosses) density time evolution from Fig. 2, with parameters
σ = μ = λ = 0.1, K− = 1, K+ = 10.
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FIG. 4. Long-time predator and prey densities ρ∞ averaged over
10 periods of the switching carrying capacity, vs Tk in units of τ ,
where τ represents the characteristic intrinsic oscillation period for a
Lotka-Volterra model with fixed carrying capacity K̄ . The parameters
used for the oscillating environment are σ = μ = λ = 0.1, and K− =
2, K+ = 6, which yields the harmonic average K̄ = 3 (red) and K∗ =
3.2 (dashed orange). The corresponding stationary densities follow
from Eq. (4).

equations, we tested the harmonic average hypothesis for
different switching periods and confirmed Eq. (9) in the
slow-switching regime. We note that this comparison is fa-
cilitated for the mean-field model compared to the stochastic
lattice system because we have exact formulas available for
the stationary density values, and K is not required to be
an integer. Figure 4 shows the comparison of the numeri-
cally obtained population densities with periodically varying
K (t ) with the corresponding stationary values obtained with
a simple harmonic average of the carrying capacities and the
rate-dependent effective carrying capacity (9). Interestingly,
computing the stationary prey density from the straightfor-
ward harmonic carrying capacity average K̄ yields accurate
results for a large range of switching periods, as is apparent in
Fig. 4. This is due to the fact that for a static carrying capacity,
the prey density oscillates about its stationary value, and the
fluctuations about it almost precisely average out, as verified
in Fig. 5. Since within the mean-field framework, b∗ and
hence b̃ do not depend on K , any equivalent carrying capacity

FIG. 5. Numerical integration for the prey density b(t ) for a
static environment (full black) for σ = μ = λ = 0.1 and K = 10,
compared with the stationary value b0 = 1 (dashed red). The average
of the oscillating black curve over time is b̄ = 1.00246.

would work for the prey population. The predator density
also follows the harmonically averaged carrying capacity for
small periods (see below) and is indeed aptly captured by
the rate-dependent equivalent carrying capacity (9) for large
switching periods. For intermediate periods Tk , we observe a
nonmonotonic crossover regime with a large resonance-like
spike; see Fig. 4(a). We verified that these findings do not
depend on the initial conditions of the system.

D. Quantitative analysis: Fast-switching regime

The coupled mean-field rate equations (3) suggest that in
the fast-switching regime, both species’ densities oscillate
about values that are equal to the stationary population den-
sities for an equivalent carrying capacity K̄ that is just the
harmonic average of K− and K+. This follows from the fact
that the prey density rate equation (3a) depends explicitly on
1/K . Based on these observations, we construct an ansatz for
the long-time behavior of both species’ densities as follows.

We first shift time according to t → t − NTk , where N is
a large integer such that at t = NTk the system has reached
its quasistationary state. Hence this time axis shift defines t =
0 to be the start of an environmental cycle in the long-time
regime. If the system is thus initialized at the onset of the low
carrying capacity state, i.e., at t = 0 it just switched from K+
to K−, then at t = Tk/2 it will flip back from K− to K+, and
that cycle repeats at t = Tk . We now derive an approximate
solution that describes the densities in one cycle t ∈ [0,Tk].
Henceforth we shall refer to the region t ∈ [0,Tk/2] as T−,
and the time interval t ∈ [Tk/2,Tk] as T+.

Since the prey density exhibits a discontinuity in its first
time derivative at t = Tk/2, it can be described by a piecewise
function. In the fast-switching regime, we may apply a short-
time Taylor expansion for the population dynamics and retain
only the linear term. The absolute values of the prey density
slope in the intervals T− and T+ must be the same, due to
the fact that the prey density is periodic, b(Tk ) = b(0), and
continuous at the jumps between these two regions. In T− the
system is in the low carrying capacity state, therefore the prey
density is a decreasing function of time, and its slope should
be negative. For t ∈ T+, the prey density has a positive slope,
since now the system is in the high carrying capacity state.
These considerations motivate the following simple ansatz for
the prey density:

b(t ) =
{
b1 − αt t ∈ T−,

b2 + αt t ∈ T+,
(10)

which is numerically verified in Fig. 6.
The prey density is continuous at the boundary t =

Tk/2, whence b2 = b1 − αT . Moreover, in the fast-switching
regime, the density variations of both species over one period
of the carrying capacity should be assumed to be small rela-
tive to their average values. Consequently, 1/K (t ) is the only
significant term when averaging Eq. (3b). Its average leads to
an equivalent carrying capacity that is equal to the harmonic
average K̄ . Therefore, the system reaches a quasistationary
state, where both densities oscillate around their stationary
values for an equivalent carrying capacity K̄ . The temporal
average of Eq. (10) needs to be b0. Imposing this condition,
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FIG. 6. Numerical integration of the mean-field equa-
tions (black) for the parameters σ = μ = 0.1, λ = 0.5, Tk = 10, and
K− = 2, K+ = 6. The dashed red graph represents a linear fit applied
to the numerical data, resulting in α = 0.00125.

we obtain

b(t ) =
{
b0 − α

(
t − Tk

4

)
t ∈ T−,

b0 + α
(
t − 3Tk

4

)
t ∈ T+;

(11)

we determine the slope constant α later.
The rate equation for the predator density (3a) may now be

cast into a more suggestive form,

ȧ(t ) = λ a(t )[b(t ) − b0], (12)

which indicates that the extrema of a(t ) occur at times when
b(t ) = b0. Using the ansatz (11), this happens at t = Tk/4 and
t = 3Tk/4. Equation (12) can then be integrated to solve for
the predator density,

a(t ) ∼ A eλ[
∫ t b(t ′ ) dt ′−b0t] =

⎧⎪⎨
⎪⎩
A e

− λα
2

(
t2− Tk

2 t
)

t ∈ T−,

A′ e
λα
2

(
t2− 3Tk

2 t
)

t ∈ T+,

where A and A′ are integration constants. Since the predator
density is required to be continuous at t = Tk/2, one arrives
at the relation A′ = A eλαT 2

k /4, which yields the approximate
predator density solution

a(t ) =

⎧⎪⎨
⎪⎩
A e

− λα
2

(
t2− Tk

2 t
)

t ∈ T−,

A e
λα
2

(
t2− 3Tk

2 t+ T 2
k
2

)
t ∈ T+.

(13)

The average of the predator density over one cycle of environ-
mental switching then becomes

1

Tk

∫ Tk

0
a(t ) dt = 2

√
2πA eT

2
k αλ/32

erf
(
Tk

√
αλ

4
√

2

)
Tk

√
αλ

. (14)

Under the assumption of fast environmental switching, Tk
should be the smallest timescale in the system, and the explicit
form of Eq. (14) suggests that the fast-switching regime is
quantitatively delineated by Tk

√
αλ � 1. The still undeter-

mined parameter is the (initial) slope of the prey density

FIG. 7. Relative root mean-square error of the approximate solu-
tion as function of Tk

√
λα for the predator (full red) and prey (dashed

blue) populations.

α = |ḃ|0. To zeroth order in α, either immediately from
Eq. (13) or by expanding Eq. (14) in Tk

√
αλ, gives the simple

result

1

Tk

∫ Tk

0
a(t ) dt = A + O(Tk

√
αλ). (15)

Since this average must equal the stationary value of predator
density for a harmonically averaged carrying capacity, we
may fix the integration constant

A ≈ σ

λ

λK̄ − μ

λK̄ + σ
= σ

λ

2λK+K− − μ(K+ + K−)

2λK+K− + σ (K+ + K−)
, (16)

to leading order in an expansion in powers of Tk
√

αλ.
The left-hand side of Eq. (3b) equals the constant slope

of the prey density under the fast-switching approximation.
Since t < Tk , we also have t

√
αλ � 1, and with a(t ) = A +

O(Tk
√

αλ) one has b(t ) = b0 + O(Tkα). Upon inserting these
asymptotic values into (3b) for t ∈ T−, we arrive at

−α ≈ σb0

(
1 − A + b0

K−

)
− λAb0, (17)

and thus inserting Eq. (16) we obtain

α ≈ μσ

λ

(μ + σ )(K+ − K−)

2λK+K− + σ (K+ + K−)
. (18)

These approximations fully characterize the long-time quasis-
tationary state in the fast-switching regime. In order to test
this approximate solution, we computed the root mean-square
error between our ansatz and the result of numerically inte-
grating the mean-field equations. This error was then divided
by the actual density average as obtained from numerical
integration to obtain a dimensionless error measure σ̄ . In
Fig. 7 this relative error σ̄ is plotted against the dimensionless
carrying capacity period Tk

√
λα. As expected, our approxima-

tion yields small relative errors for Tk
√

λα � 1. Interestingly,
the asymptotic expansion seems to work even up to values
Tk

√
λα = 2 with relative errors less than 10%.
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III. STOCHASTIC LATTICE MODEL

A. Stochastic Monte Carlo simulation algorithm

In this section we employ a lattice model to numer-
ically simulate the stochastic Lotka-Volterra predator-prey
system (1), which allows us to investigate spatial structures
and reaction-induced spatiotemporal correlations. Utilizing a
stochastic lattice model allows us to investigate resonance
effects on correlations and their relation to the intrinsic
spatiotemporal patterns of our system. Direct comparison
with the mean-field rate equation approximation delineates
the latter’s validity range, thus providing information when
stochastic fluctuations and correlation effects may be ignored
without losing pertinent qualitative features. The stochasticity
of the system is implemented through an individual-based
Monte Carlo algorithm. We implement the model on a two-
dimensional square lattice with periodic boundary conditions
(i.e., a toroidal simulation domain), where each lattice site
holds information about the number of individuals of each
species at that location. The initial configuration of the system
is set up as a disordered state where each individual is placed
at a randomly selected lattice site. We employ the following
notation: na(x, y; t ): number of predator individuals at site
(x, y) and at time t ; nb(x, y; t ): number of prey individuals at
site (x, y) and at time t ; Na(t ): total number of predator indi-
viduals across the entire lattice at time t ; Nb(t ): total number
of prey individuals across the entire lattice at time t ; and n̄i(t ):
Ni(t )/L2, where L is the linear lattice size, denotes the average
species i ∈ (a, b) density. Time is simulated via Monte Carlo
steps (MCSs), such that at each MCS

(1) A random location on the lattice (x, y) is picked
(2) A random neighboring site is selected from the von

Neumann neighborhood (four nearest neighbors) (xnew, ynew)
(3) If (x, y) contains a predator individual, we attempt

nb(xnew, ynew; t ) predation reactions as follows:
Generate a uniformly distributed random number r and If

r < λ, decrease the number of prey at (xnew, ynew) by 1 and
increase the number of predators at (xnew, ynew) by 1

(4) Next attempt a death reaction for the predator as de-
scribed below:

Generate a uniformly distributed random number r
If r < μ, decrease the number of predators at (x, y) by 1
(5) If (x, y) contains a prey individual, attempt a reproduc-

tion reaction as follows:
Generate a uniformly distributed random number r
If r < σ and na(xnew, ynew; t ) + nb(xnew, ynew; t ) < K , in-

crease the number of prey at site (xnew, ynew) by 1
(6) If (x, y) is empty [na(x, y; t ) + nb(x, y; t ) = 0], return

to step 1
(7) The above steps are repeated Na(t ) + Nb(t ) times.
This implementation ensures that at each MCS, on average,

all individuals in the lattice attempt a reaction. We utilize
random updates (i.e., picking new lattice sites at random)
rather than systematic sequential updates (going over each
lattice site in a specific sequence) in order to avoid introducing
any bias in how reactions occur in the system.

A choice now has to be made in how to precisely manage
the population after switching from the high to the low car-
rying capacity because there will likely be an excess number
of individuals at some lattice sites. We have considered two

implementations to deal with this issue: In the first variant,
we randomly removed any excess individuals to immediately
reach the allowed low carrying capacity value K−. While this
implementation leads to interesting period-doubling behavior,
we deemed it to be unrealistic. In the second implementa-
tion, we left the excess particles on site but restricted further
prey reproduction at lattice locations with more individuals
than permitted. Therefore, we allow the system to intrinsi-
cally relax to a configuration without excess individuals, since
eventually any superfluous predators would be forced to per-
ish, and any excess prey would be devoured by predators. This
intrinsic relaxation introduces a timescale set by the internal
response time of the system, which is in turn determined by
the reaction rates.

The stochastic lattice system was simulated over multiple
runs, thus averaging both over ensembles of different initial
conditions and distinct temporal histories; 〈. . .〉 denotes
the resulting (double) ensemble averages. We measured
the average spatial species densities ρi(t ) = 〈n̄i(t )〉 and
computed the (connected) autocorrelation functions at
fixed positions, Ci j (t, t0) = 〈n̄i(t )n̄ j (t0)〉 − 〈n̄i(t )〉〈n̄ j (t0)〉.
The static correlations as functions of spatial distance
|x − x0| were extracted using the definitionCi j (x, x0; y0, t0) =
〈ni(x, y0, t0)n j (x0, y0, t0)〉 − 〈ni(x, y0, t0)〉〈n j (x0, y0, t0)〉. In
the long-time regime, the system should be isotropic at
length scales large compared with the lattice constant, so that
static correlations along the x or y directions will become
identical. We also assume that the system is homogeneous at
those scales, and hence that the autocorrelations should be
independent of the reference positions (x0, y0). Consequently
we determine the autocorrelations using the densities
averaged over lattice sites, which improves our statistics. Both
these assumption were confirmed via explicit simulations.
Furthermore, we evaluated the static correlations at a specific,
sufficiently late fixed time step t0, but again checked that
all correlations are invariant under discrete time translation
t0 → t0 + Tk with the environmental switching period Tk .

The various parameters of the system are the three reaction
rates (σ,μ, λ), the low and high carrying capacity values
(K−,K+), and the period of the oscillating environment Tk .
However, we can eliminate one of these parameters by rescal-
ing the units of time. In our Monte Carlo simulations, which
are not intended to match any specific experimental or obser-
vational data, we chose to always fix σ = μ because these
parameters represent the rates for the linear prey reproduction
and predator death reactions, and we are predominantly inter-
ested in the behavior of the system as the nonlinear coupling
λ is varied. Thus our varying control parameters consist of the
set (λ,K−,K+,Tk ). For fixed σ and μ, the critical predation
rate λc depends only on the carrying capacity. Therefore, for
the remainder of this paper we shall implicitly assume a fixed
value for σ = μ and indicate the critical threshold as λc(K ).

B. Population densities

Snapshots of a single simulation run of a representative
system at different times are depicted in Fig. 8. According
to our setup, the system is initially in a random configuration,
so the predators consume the prey available in their neighbor-
hood. At t = 46 the predators have devoured most of their
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FIG. 8. Snapshots of a single run for a system with parameters L = 256, σ = μ = λ = 0.1, K− = 1, K+ = 10, and Tk = 100; time t is
measured in units of MCSs. The red and blue pixels indicate the presence of predators and prey, respectively, with the brightness representing
the local density, the pink pixels pertain to sites with both predator and prey present, and the black pixels represent empty sites. The system is
initialized with K (t = 0) = K− = 1. The full movie can be viewed at the link provided in Ref. [76].

prey, and their number decays over time: The system is in
the predator extinction phase for K = 1. Therefore, without
the external periodic environmental variation, the predators
would eventually go extinct. However, we see that at t = 70,
after the carrying capacity has jumped at t = Tk/2 = 50 from
K = 1 to K = 10, the prey are permitted to reproduce more
abundantly. The prey population increase induces spreading
waves of predators, in turn causing an enhancement of the
predator density, until by t = 88 the latter almost fill the entire
lattice. When the carrying capacity drops back to K = 1 at
Tk = 100, the predator density starts decaying again over time
towards the point of extinction until the carrying capacity is
once more reset and the whole process (stochastically) re-
peats. Figure 9 shows the long-time behavior of the density
for two different values of the predation rate λ. For λ = 0.1
[Fig. 9(a)], the system oscillates between the predator ex-
tinction phase, approached when K = 1, and the two-species
coexistence phase, when K = 10. In contrast, for λ = 0.275
[Fig. 9(b)] the system resides in the species coexistence phase
at both K values. Both population time traces show stable
oscillations with the switching period Tk , as expected for a
dynamical system driven by a periodic external force. This
is further confirmed by the Fourier transform plots displayed
in Fig. 10. The prey density becomes nonsmooth at points

FIG. 9. Predator (full red) and prey (dashed blue) population
densities averaged over 50 realizations for a system with L = 256,
σ = μ = 0.1, K− = 1, K+ = 10, and Tk = 100; the shaded gray ar-
eas are excluded by the switching carrying capacity K (t ). The critical
predation rate values associated with fixed carrying capacities K−,
K+ are λc(K = 1) = 0.26(5) and λc(K = 10) = 0.01(0).

where the carrying capacity switches from K+ to K− or vice
versa, while the predator density remains smooth at those
points. This is indicative of the fact that only the prey density
explicitly depends on the carrying capacity, while the predator
density depends on K through its coupling to the prey species.
In Fig. 8 we see that even though the system is in the predator
extinction phase when K = 1, the A species are still able to
maintain a nonzero population density through the periodic
environmental variation. Indeed, we observe that the key dif-
ference between the runs for λ = 0.1 and λ = 0.275 resides
in the amplitude of the oscillations, which drops significantly
when the predation rate increases. This is a general feature of
the static Lotka-Volterra model. However, the amplitude of
the oscillation in Fig. 8 is even higher than would be attained
in a static system with fixed K = 10: Driving the system
away from reaching the absorbing state causes the densities
to overshoot their stationary state values for K = 10. While
a static system would go extinct for low values of the pre-

FIG. 10. Population density Fourier transforms as functions of
the period 2π/ω (predators: red squares; prey: blue crosses). The first
2000 MCSs were discarded before computing the Fourier transform
in order to eliminate the initial behavior. The parameters used here
are L = 256, σ = μ = λ = 0.1, K− = 1, K+ = 10, and Tk = 100.
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FIG. 11. Maximum population densities achieved in the late time
interval t ∈ [2000, 5000], plotted against the dimensionless rate ratio
λ/σ , where L = 256, σ = μ = 0.1, K+ = 10, K− = 1, and Tk = 100
for the oscillating environment (black crosses), and for the same
parameters with fixed K = 10 for the static case (red squares).

dation rate, the periodic temporal variation of the carrying
capacity allows both species to coexist in this situation. In
fact, the population oscillations become most prominent if the
carrying capacity effectively switches the system between the
predators’ absorbing and active phases. To demonstrate that
this is a generic feature of our model, we plot the maximum
density values reached in the simulations in the long-time
limit in Fig. 11. For λ > 6σ , we observe predator extinction;
as was noted in Ref. [13], the system may, depending on the
initial conditions, evolve into one of the two absorbing states
for large predation rates. We interpret this extinction transition
to be caused by stochastic fluctuations in our finite simulation
system: As the predation rate becomes large, stochastic fluc-
tuations are increasingly likely to drive the simulation towards
the absorbing predator extinction state. For smaller predation
rates, the asymptotic predator density decreases with growing
λ. In the two-species coexistence region, the simulation results
for the systems with periodically varying environment exhibit
markedly larger oscillation amplitudes for both predatator and
prey populations. This enhancement of the maximum popu-
lation density in a periodically varying environment relative
to the static case is responsible for sustaining species coex-
istence in an extended region of parameter space. Moreover,
the extinction transition at high predation rate is moved to
larger values of λ/σ for the simulation runs with periodically
varying carrying capacities compared to systems with fixed
environment.

The predator-prey density phase space plots are con-
structed in Fig. 12 by simulating the system for multiple
predation rate values. We see that for each λ the system
fluctuates around a closed orbit. Upon increasing the predation
rate λ, the radius of this closed orbit becomes smaller, while
the influence of stochastic fluctuations become more apparent.
For λ = 0.8, the orbit approaches ρA = 0 which means that
the predator population is close to extinction. Raising the
predation rate further to λ = 0.9, the system reaches the (finite
system size) absorbing state with vanishing predator density;
see Fig. 11.

C. Fast- and slow-switching regimes

We next carefully investigate how the system behaves
in the two opposite limits of fast and slow environmental

FIG. 12. Predator-prey density phase space plots for various val-
ues of the predation rate λ (as indicated), with L = 256, σ = μ =
0.1, K− = 1, K+ = 10, and Tk = 100. The initial behavior of the
system was discarded for all λ values, except for λ = 0.9, for which
the predator population becomes extinct.

switching, relative to the intrinsic period of the Lotka-Volterra
population oscillations. Figures 13(a) and 13(b) show the
both populations’ densities for Tk = 10 (fast switching) and
Tk = 460 (slow switching). The time-averaged behavior of the
density in the fast-switching regime resembles a system with a
constant effective equivalent carrying capacity K∗ that should
be related to K− and K+. In the slow-switching regime the
system is given sufficient time to approach a (quasi-)stationary
state when K+ = 10. The prey density then reaches very high
values, and the system is slowly driven to predator extinction;
however, it would take many cycles of the changing environ-
ment for this absorbing state to be attained. As the switching
period Tk is increased, the predator population may survive for
only a few cycles; eventually, when Tk is set too large, it will
go extinct before the prey food resources become abundant
again.

We now explore the equivalent static environment hy-
pothesis in the fast-switching regime in more detail. The
mean-field rate equations suggest that for very short periods

FIG. 13. Predator (solid red) and prey (dashed blue) population
densities averaged over 50 realizations, for L = 256, σ = μ = λ =
0.1, K− = 1, K+ = 10, and switching periods (a) Tk = 10, (b) Tk =
460, with the gray areas here indicating the population densities
excluded by K (t ).
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FIG. 14. Long-time population densities ρ∞ averaged over six
periods of the carrying capacity K (t ) plotted vs Tk/τ , where τ de-
notes the intrinsic period of the equivalent static system with K = K̄ ,
where L = 256, σ = μ = λ = 0.1, and K− = 2, K+ = 6 for the os-
cillating environment (black crosses), while K = K̄ = 3 for the static
environment with fixed carrying capacity (full red).

this equivalent carrying capacity equals the harmonic average
K̄ of K+ and K−, since Eqs. (3) only explicitly depend on
1/K . For longer periods, the mean-field model predicts that
the dynamics becomes effectively equivalent to a quasistatic
system with a rate-dependent equivalent carrying capacity
K∗, Eq. (9). One should expect the slow-switching equivalent
carrying capacity in the stochastic lattice model to display a
similar dependence on the microscopic reaction probabilities.
As mentioned earlier, their precise relationship with macro-
scopic reaction rates such as σ and λ is, however, subtle
and difficult to capture quantitatively, which poses a prob-
lem for stringently testing Eq. (9) for the stochastic lattice
model. Yet for large K− and K+, K∗ reduces approximately
to the harmonic average K̄ , independent of the reaction rates.
Hence we focus on testing the equivalent static environment
hypothesis mainly with this effective carrying capacity. To
this end, we first present Monte Carlo simulation data for our
system with K− = 2 and K+ = 6, hence K̄ = 3, obtained for
a series of different switching periods Tk , measured relative
to the intrinsic population oscillation period τ at fixed K̄ . For
comparison, we also display simulations with fixed carrying
capacity K = 3, and display the resulting population densities
in Fig. 14. We find that the predator density in the oscillat-
ing environment does not behave as if the environment were
static with a harmonically averaged carrying capacity K̄ , with
a discrepancy in the predator density of at least 18.4%. In
contrast, the time-averaged prey density ρ∞ matches the static
equivalent K̄ value for Tk ≈ 2.2τ . Yet for faster switching
rates, we observe worse agreement with a discrepancy of up
to 5.45%. For periods Tk > 2.2τ , ρ∞ increases monotonically
with Tk/τ , deviating further from the average prey density
for the static equivalent K̄ . For larger Tk/τ , the discrepancy
between the harmonically averaged and the oscillating envi-
ronments become more enhanced, although deviations remain
less than 10%. Hence we conclude that our prey density data
for an oscillating environment can be satisfactorily described
by an equivalent constant environment for a wide range of
oscillation periods. We note that both time-averaged popula-
tion densities exhibit resonance-like extrema at Tk ≈ τ , owing
to the environment switching just after the predators and
prey have reached their maximum and minimum population
counts, respectively, following their intrinsic Lotka-Volterra

FIG. 15. Long-time population densities ρ∞ averaged over six
periods of the carrying capacity K (t ) plotted vs Tk/τ , where τ de-
notes the intrinsic period of the equivalent static system with K = K̄ ,
where L = 256, σ = μ = λ = 0.1, and K− = 4, K+ = 12 for the
oscillating environment (black crosses), while K = K̄ = 6 for the
static environment with fixed carrying capacity (full red).

oscillations. As the period of the environment increases, more
of these population oscillations may occur before the carrying
capacity is reset, and integrating over one cycle of the environ-
mental switching effectively averages over multiple periods
of the intrinsic oscillations. In Fig. 15 we repeat this nu-
merical investigation for K− = 4, K+ = 12, thus K̄ = 6. The
time-averaged prey density ρ∞ for the oscillating environment
agrees well with the corresponding value for the static equiv-
alent environment for all switching periods. However, the
predator density for low periods does not match the harmonic
mean hypothesis. For periods Tk > τ , we see that the predator
density with the oscillating environment approaches ρ∞ for
the static equivalent environment. This suggests that the har-
monically averaged carrying capacity works well to describe
the mean predator population density for large K− and K+
values, and for large environment oscillation periods, such
that the system reaches the stationary state before switching
occurs. In conclusion, stochastic fluctuations may change the
form of the general equivalent static carrying capacity (9), yet
it can still be approximated by the harmonic average for large
carrying capacities.

Our simulation results indicate that the functional depen-
dence of the prey density on the carrying capacity can be well
approximated as b ∼ 1/K for a large range of environmental
switching periods. However, the predator density exhibits a
more complicated dependence on the carrying capacity values
and Tk; it can be approximated only by a ∼ 1/K for large K−
and K+ and for Tk � τ . In the latter limit, the system reaches
its (quasi-)stationary state before the environment switches,
which for the used parameter values corresponds to a stable
node with nonoscillatory kinetics; consequently, there is little
variation with Tk . Generally we observe that the long-time
behavior of both population densities depends on the carrying
capacity period in a nonmonotonic manner.

D. Correlation functions

The predator-prey pursuit and evasion waves characteris-
tic of the stochastic spatial Lotka-Volterra model are more
prominent in systems with high reaction rates. Therefore, we
study the ensuing correlations for σ = μ = 0.5 and λ = 0.1,
and leave K− = 1, K+ = 10. For these parameters the system
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FIG. 16. Snapshots of a single run for a system with parameters L = 256, σ = μ = 0.5, λ = 0.1, K− = 1, K+ = 10, and Tk = 10; time t is
measured in units of MCSs. The red and blue pixels indicate the presence of predators and prey, respectively, with the brightness representing
the local density, the pink pixels pertain to sites with both predator and prey present, and the black pixels represent empty sites. The system is
initialized with K (t = 0) = K− = 1. The full movie can be viewed at [76].

resides deep in the predator extinction-absorbing phase when
K = K−, and in the active two-species coexistence phase
for K = K+. The behavior of the system for environmental
switching period Tk = 10 is exemplified by the simulation
snapshots depicted in Fig. 16. The predators are initially
almost driven to extinction, but due to the switching envi-
ronment the prey population increases until it fills most of
the lattice. We observe that at t = 23 there remain only a
few surviving predators which become localized sources for
spreading waves. At t = 28, the prey may proliferate in the
interior of the fronts as well, causing the population waves
to spread both outwards and inwards, until they eventually
collide and interfere with each other as seen at t = 50. Starting
from t = 101, the lattice exhibits a global density oscillation,
and it becomes difficult to discern the original locations of the
wavefront sources.

The associated temporal auto- and static correlation func-
tions are displayed in Fig. 17. The autocorrelation functions
exhibit damped oscillations with a peak period 2Tk = 20,
twice the switching period of the carrying capacity. This

FIG. 17. Long-time correlation functions computed for a sys-
tem with the following parameters: L = 512, σ = μ = 0.5, λ = 0.1,
K− = 1, K+ = 10, and Tk = 10. (a) Temporal autocorrelations com-
puted for t0 = 1000, with t measured starting from t0. The inset
shows the Fourier transform of the autocorrelation time series. These
data were averaged over 10 000 ensembles and for 512 lattice sites,
giving an equivalent of a total of 5 120 000 independent ensembles.
(b) Static correlation functions taken at t0 = 1000. Distances x are
measured in units of the (dimensionsless) lattice spacing; data aver-
aged over 10 000 distinct ensembles.

is due to the fact that the two-point correlation function
contains a product of particle densities, and the square of
sinoidal functions may be decomposed into sine functions
with doubled period. Note that the autocorrelations decay to
zero after approximately 40 time steps. The on-site population
restrictions induce anticorrelations between individuals of the
same species; the cross-correlation functionCab becomes pos-
itive after some time has elapsed, indicating that surviving
predators follow the prey with some time delay. The static
correlation functions rapidly decay to zero, demonstrating that
the spatial correlation lengths are small, on the scale of a few
lattice spacings.

Figure 18 shows simulation snapshots for the system pa-
rameters, but with a larger switching period Tk = 30. In this
run, only one predator patch has survived by t = 39. Subse-
quently it serves as a source for a spreading population wave
that later interferes with itself owing to the periodic boundary
conditions of the lattice. At t = 56 the wave starts spreading
in both directions until at t = 72 the system returns to the
low carrying capacity regime, and the prey in the interior of
the front are not allowed to reproduce further. Even after a
long time period at t = 264, there is only a single density
oscillation center that is sourced by the sole predator patch
that had survived at t = 39.

In Fig. 19(a) we plot the corresponding autocorrelation
functions, which exhibit a much slower decay compared to
Fig. 17(a) for Tk = 10. This suggests that a carrying capacity
period of Tk = 30 causes a resonance effect, which indeed
becomes apparent in the simulation movies, as in this case
the switching happens approximately when the waves travel
back to the location of the source. The resonance sustains
the spatial and temporal correlations and thereby stabilizes
the traveling waves, leading to a sustained asynchrony that
promotes species coexistence. The Fourier transform again
confirms that the autocorrelation functions oscillate with a
period 2Tk . Since the carrying capacity switching period
is Tk = 30, and it is initialized with K (t = 0) = K−, the
behavior of the system at different t0 values can be de-
scribed as follows: For t0 = 990, the system has just
switched from K (t ) = K+ to K−; at t0 = 1000, it still
resides at carrying capacity K−; for t0 = 1005, the sys-
tem has just switched from K− back to K+; and at

064144-12



LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH … PHYSICAL REVIEW E 107, 064144 (2023)

FIG. 18. Snapshots of a single run for a system with parameters L = 256, σ = μ = 0.5, λ = 0.1, K− = 1, K+ = 10, and Tk = 30; time t is
measured in units of MCSs. The red and blue pixels indicate the presence of predators and prey, respectively, with the brightness representing
the local density, the pink pixels pertain to sites with both predator and prey present, and the black pixels represent empty sites. The system is
initialized with K (t = 0) = K− = 1. The full movie can be viewed at [76].

t0 = 1015, the carrying capacity is still K+. The static
correlation functions, shown in Figs. 19(b)–19(d), exhibit sim-
ilar behavior for t0 = 990 and t0 = 1015, and for t0 = 1000
and t0 = 1005, respectively, which suggests a common de-
lay time for the correlations. At t0 = 990, the system is in
the state with K (t ) = K−, while at t0 = 1015, K (t ) = K+,
about to switch to K−; and similarly at t0 = 1005 and t0 =
1000. Compared with the system with faster switching period
Tk = 10, the static correlations decay over a larger distance,
in agreement with the movies and snapshots which show
wider wavefronts. The predator-prey cross-correlation func-
tion Cab(x) displays maxima at positive values for t0 = 1000
and t0 = 1005, when the carrying capacity is low and few
individuals are present per site. Conversely at t0 = 990 and
t0 = 1015, when the population densities are large, the only
positive peak occurs at x = 0, due to the fact that predators
tend to be on the same site as prey for large K . For low
carrying capacities, the predators cannot reside on the same
locations as the prey, so instead they are most likely to be in
the close prey neighborhood.

E. Asymmetric switching intervals

Finally, we further investigate the properties of our system
by applying an asymmetric square signal for the switching
carrying capacity, such that K = K− for T− time steps, and

then K = K+ for the subsequent time interval of length T+,
where T− �= T+. The total switching period of the carrying
capacity then is Tk = T− + T+. Simulating such a stochastic
lattice system reveals a period-doubling effect for an interme-
diate range of T+/T− ratios, as shown in Fig, 20. For either
too small or too large time interval ratios, no period-doubling
effect could be observed. The origin of this intriguing period-
doubling effect appears to be that prey particles are not able
to reproduce quickly enough while the system has attained
the high carrying capacity K+. Hence, it takes the system two
cycles of the oscillating environment for the prey density to
reach its peak value.

IV. CONCLUSION AND OUTLOOK

In this paper we have investigated the paradigmatic
Lotka-Volterra predator-prey model with a periodically vary-
ing carrying capacity K (t ) that represents seasonally changing
food resource availability for the prey population. The model
was studied both by a mean-field analysis based on the deter-
ministic rate equations and through detailed individual-based
stochastic Monte Carlo simulations on a two-dimensional lat-
tice with periodic boundary conditions. Both the mean-field
and the stochastic lattice model exhibit characteristic peri-
odic behavior induced by the changing environment. The rate
equation solutions display a region in parameter space with

FIG. 19. Long-time correlation functions computed for a system with the following parameters: L = 512, σ = μ = 0.5, λ = 0.1, K− = 1,
K+ = 10, and Tk = 30. (a) Temporal autocorrelations computed for t0 = 990, with t measured starting from t0. The inset shows the Fourier
transform of the autocorrelation time series. (b) Static predator-predator, (c) predator-prey, and (d) prey-prey correlation functions for different
values of t0, normalized by |Ci j (x = 0)|; distances x are measured in units of the lattice spacing. Data averaged over 10 000 distinct ensembles.
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FIG. 20. (a) Predator and prey densities averaged over 50 real-
izations for a system with asymmetric switching intervals: L = 256,
σ = μ = λ = 0.1, K− = 1, K+ = 10, T− = 100, T+ = 10 = 0.1 T−;
the shaded gray areas are excluded by the switching carrying ca-
pacity K (t ). (b) Fourier transforms of the population density time
evolution in (a).

period-doubling and period-quadrupling features; such effects
are naturally expected in driven nonlinear dynamical systems.
However, the period-doubling region in parameter space is not
observed in the stochastic lattice model: The internal stochas-
tic noise evidently dominates and eliminates these nonlinear
effects. Yet we were able to induce period-doubling dynamics
in the lattice model by utilizing an external periodic drive
signal with asymmetric switching intervals.

The phase space analysis demonstrated that, for parame-
ters that lead to an ecologically stable system (which does
not evolve into an absorbing population exctintion state), the
phase space orbits are closed loops, whose sizes decrease with
growing predation rate λ, indicating that the population oscil-
lation amplitudes become reduced with enhanced predation
efficiency. A periodically varying environment allows the sys-
tem to remain stable even for lower values of λ, as compared
to the corresponding system with fixed carrying capacity. We
find that the periodically varying environment induces oscil-
lations with greater amplitudes, without hitting the predator
extinction absorbing state. We argue that this phenomenon is
due to the density oscillations extending beyond their maxi-
mum static values when periodically switching between low
and high carrying capacity environments. Hence scarcity of
food resources in one season induces a higher species density
(relative to a constant environment) in later seasons when
food resources become more abundant again. Furthermore,
we observe that even for the same value of λ, the periodically
varying systems display larger oscillation amplitudes than the
static system. The finite system size extinction threshold at
high predation rates is shifted to higher values of λ as well.
Thus, a periodically changing, externally driven environment
leads to a richer ecology and promotes species diversity.

We investigated the long-time behavior of the population
densities by studying their averages over multiple cycles of
the periodic environment as a function of switching period
Tk . For the mean-field model, the prey density average does
not depend on Tk , and is equal to its K-independent stationary
value. In contrast, the mean predator density turns out equal
to the stationary value of a static equivalent K∗ value given
by Eq. (9) that for small periods simply reduces to the har-
monic average K̄ of K− and K+. Interestingly, for intermediate

periods Tk one encounters a nonmonotonic crossover regime
between these two averages for intermediate values of the
period with characteristic resonant features when Tk is close
to the intrinsic Lotka-Volterra population oscillation period.
The stochastic lattice model reveals more complex behavior
owing to renormalization of the equivalent stationary carry-
ing capacity values as well as the reaction rates. The mean
stationary prey density value is no longer K-independent, and
it shows nonmonotonic behavior as a function of Tk . Never-
theless, quantitatively these effects are small, implying that
the harmonically averaged equivalent stationary value K̄ gives
a good approximation for the long-time average of the prey
density. The predator density average matches the stationary
equivalent K̄ only for high values of K− and K+, as well as
large switching periods Tk .

We evaluated the autocorrelation and static correlation
functions for the stochastic lattice model specifically for two
different periods, Tk = 10 and Tk = 30. The Fourier trans-
formed autocorrelations exhibit peaks at 2Tk . Due to the local
on-site restrictions, the cross-correlation functions are nega-
tive at short distances. For the smaller period Tk = 10, the
autocorrelations decay to zero already after about a single
oscillation period, and the static correlations rapidly decay
to zero as well, indicating a small spatial correlation length.
When the period is increased to Tk = 30, we observe a reso-
nance effect causing the autocorrelations to decay at a much
slower rate. As the simulations movies show, this resonant
behavior is caused by the spherical traveling activity waves
pulsing back to the location of their sources. For low Tk , the
interference of population waves with each other seems to
average out local structures, and instead lead to a global tem-
poral oscillation with the external frequency prescribed by the
carrying capacity switches. Consequently, prolonged spatial
correlations are not observed for Tk = 10, in contrast with
the data for longer Tk = 30. The static correlation functions
for Tk = 30 exhibit a much slower decay as well, indicating
markedly longer-ranged correlations. Plotting the static cor-
relation functions at different times, we detect a time-delay
effect, where the stationary correlations require some time to
respond to the changing environment. This is in contrast to
the population densities (one-point functions) which respond
almost instantaneously to the switching environment.

Using our observations pertaining to the long-time be-
havior of the population densities in the mean-field model,
we obtained a closed-form solution that approximates the
quasistationary state of the system for a fast-switching
carrying capacity; more precisely, this solution holds if
Tk

√
λ|db/dt | � 1. We were able to explicitly demonstrate the

regime of applicability for this approximation; cf. Fig. 7. It
should be possible to utilize this asymptotic technique to study
generalizations to other periodically varying variables, e.g.,
varying reaction rates, to shed light on the response of such
systems to sudden parametric variations.

The importance of the environment on the balance of
animal populations has been understood at least since the
work of Nicholson [63]. Spatial models offer rich behav-
ior due to an enhancement in species coexistence [31–34],
and seasonally varying environments are known to promote
species coexistence even further [77–79]. In this numer-
ical and analytical study of the effects of a periodically
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varying carrying capacity, we determined the shift in pop-
ulation balance in both fast- and slow-switching limits by
showing that the system can then be described via oscillations
around a quasifixed point. In the crossover regime, the species
balance depends on the environmental modulation period. We
utilized a stochastic lattice model to investigate how resonance
affects the pursuit and evasion waves, which are known to
enhance species coexistence through the asynchrony effect
described in Refs. [32,34,36]. Our results show that seasonal
changes at resonance stabilize the intrinsic dynamic correla-
tions of the system that in turn support asynchronous states,
thus enabling predators to survive even if they are at a severe
disadvantage during one of the seasons. The sustainability of
predators could also be attributed to the growth rate at low
density described in Ref. [24]: As the environment switches
from low to high carrying capacity, this growth rate suddenly
jumps to a high value, which is responsible for maintaining
the predator population.

The description of reaction-diffusion systems in terms
mean-field rate equations is of course useful, and often pro-
vides an accurate qualitative description of real systems for
some region in parameter space. However, this paper demon-
strates that when an ecological system is subjected to periodic
variations in the environment, a proper stochastic model may

behave differently than its mean-field representation. Fluctu-
ations can lead to dramatic changes in the behavior of the
system as the present results indicate. One method of steering
ecological communities towards a certain desirable behavior
is to alter the environment. Therefore, developing successful
control schemes for such systems requires taking the effects
of fluctuations into proper consideration. A full understanding
of the fundamental problem of species diversity, and beyond,
constructing a quantitative theory of biological evolution,
hinges on unraveling the impact of environmental dynamics
on ecological systems.
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