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GENERIC ALGEBRAIC PROPERTIES IN SPACES OF

ENUMERATED GROUPS

ISAAC GOLDBRING, SRIVATSAV KUNNAWALKAM ELAYAVALLI, AND YASH LODHA

Abstract. We introduce and study Polish topologies on various spaces of
countable enumerated groups, where an enumerated group is simply a group
whose underlying set is the set of natural numbers. Using elementary tools
and well-known examples from combinatorial group theory, combined with the
Baire category theorem, we obtain a plethora of results demonstrating that
several phenomena in group theory are generic. In effect, we provide a new
topological framework for the analysis of various well known problems in group
theory. We also provide a connection between genericity in these spaces, the

word problem for finitely generated groups and model-theoretic forcing. Using
these connections, we investigate a natural question raised by Osin: when does
a certain space of enumerated groups contain a comeager isomorphism class?
We obtain a sufficient condition that allows us to answer Osin’s question in the
negative for the space of all enumerated groups and the space of left orderable
enumerated groups. We document several open questions in connection with
these considerations.

1. Introduction

This paper aims to contribute to the endeavour of studying the theory of count-
able groups from a topological lens. We are interested in the setting of enumerated
groups, where an enumerated group is simply a group structure on the set N of
natural numbers. (One may view this also as a countable group endowed with a
fixed bijection with N.) Equipped with a natural topology (constructed in Section
3), the set of all enumerated groups forms a Polish space. The space of enumerated
groups is very natural from the point of view of first-order logic in that it is simply
the space of countably infinite L-structures in the case that L is the usual first-order
language of groups. In group theoretic language, basic open sets in this topology
are exactly the sets of all enumerated groups satisfying a given finite system of
equations and inequations. It is imperative to caution the reader early on that
this space is notably different from the usual topology that group theorists consider
on the space of (finitely generated and marked) groups, namely, the Grigorchuk
space of marked groups.

Rather than embarking on a study of this space itself, we isolate and study a
large family of relevant subspaces. Given one among a specified list of properties
of countable groups, we show that the subspace topology endows the family of
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6246 I. GOLDBRING, S. KUNNAWALKAM ELAYAVALLI, AND Y. LODHA

enumerated groups satisfying this property with the structure of a Polish space. In
this paper, we consider the following properties:

• Amenability
• No F2 subgroups
• left orderability
• local indicability
• biorderability

• unique product property
• torsion-free
• soficity
• does not satisfy a law

In the sequel, we denote the set of these group theoretic properties by P. Given
a property P ∈ P, we let GP denote the subspace of G consisting of enumerated
groups which satisfy P . We will show that, for each P ∈ P, the space GP , endowed
with the subspace topology, is a Polish space.

Our main interest in Polish spaces is that the Baire category theorem applies
to such spaces. Recall that the Baire category theorem states that, in any Polish
space X, the intersection of countably many dense open subsets of X is once again
a dense subset of X. In the language of Baire category, an intersection of countably
many dense open sets is called comeager, and if a certain property holds for all
elements of a comeager subset of the space, it is natural to say that the property
is generic in this space.

This article is centered around the following question:

Question 1.0.1. Fix P ∈ P.

(1) What group-theoretic properties are generic in GP ?
(2) Is there a comeager set XP ⊂ GP such that all groups in XP are isomor-

phic?1

The second part of the above question turns out to be quite difficult, and much
of the work done in this article will illustrate why this is the case. We provide a
partial answer to this in Theorem 1.1.6. This settles the question in the negative
for the space of all enumerated groups, and also for the space of all left orderable
enumerated groups (see Corollary 1.1.7). In connection to the first part of the above
question, we indeed demonstrate that a plethora of group theoretic phenomena are
in fact generic in GP .

A rather elementary, yet important, feature of all the properties in P is that
they are closed under direct sums and directed unions. Moreover, all properties in
P (besides not satisfying a law) are inherited by subgroups. Our conceptual recipe
may have applications for various group theoretic properties not considered here
which also share these features.

To establish some of our results, an analogy is also drawn between the Polish
space of enumerated groups and the aforementioned Grigorchuk space of marked
groups; in this connection, various elementary tools from combinatorial group the-
ory are used. The Grigorchuk space of finitely generated marked groups is the
space

M =
⋃
n∈N

Mn,

1We would like to point out that after seeing an old version of this article, D. Osin asked us this
question specifically in the context of P being amenability. This is what inspired us to work on
this problem in this generality. Osin’s specific question on amenability however remains a difficult
open problem.
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GENERIC ALGEBRAIC PROPERTIES IN SPACES OF ENUMERATED GROUPS 6247

where Mn is the set of marked groups consisting of pairs (G,S), where G is a
group endowed with an ordered generating set S of cardinality n. (We will recall
the topology on M in Subsection 3.2.) A property P ∈ P is said to be an open
(respectively closed) property if the set of groups that satisfies P forms an open
(respectively closed) set in M.

A finitely generated group G is said to be an isolated group, if some (equiv-
alently, any) marking (G,S) of G is an isolated point in M. (Note that isolated
groups are finitely presentable.) Examples of isolated groups include finite groups
and finitely presented simple groups.

In this paper, we will need to work with a generalization of the notion of an
isolated group. A finitely generated group G is said to be P -near isolated (where
P ∈ P) if there is a finitely presented group H and a finite subset X ⊂ H such
that:

(1) There is a surjective homomorphism φ : H → K that is injective on X and
for which K has property P .

(2) For any surjective homomorphism φ : H → K that is injective on X and
for which K has P , we have that K contains a subgroup isomorphic to G.

Note that an isolated group G is P -near isolated for P being the tautologically
true property; simply take H = G and let the finite subset X be the open ball in
the Cayley graph that isolates G.

Remark 1.0.2. In this article, we will encounter several examples of P -near isolated
groups for various P ∈ P. These examples will play a key role in establishing the
genericity of various properties in the relevant spaces. The following are two natural
situations when G is P -near isolated:

(1) G embeds in a simple subgroup of a finitely presented group that satisfies
P .

(2) G embeds in an isolated group that satisfies P .

1.1. The subgroup structure of a “generic group”. Our first collection of re-
sults center around the subgroup structure of generic groups in the relevant spaces:

Theorem 1.1.1. Let P ∈ P be a property. Then the following hold:

(1) There is a comeager set XP ⊂ GP such that, for every enumerated group
G ∈ XP and every P -near isolated group H, G contains a subgroup isomor-
phic to H.

(2) Let Q be an open property of finitely generated groups for which there is a
finitely generated group that satisfies both Q and P . Then there is an open
dense set XP ⊂ GP such that every enumerated group G ∈ XP contains a
finitely generated subgroup satisfying Q.

In order to state our next result, we need a couple more definitions. We say that
a property P ∈ P is a Boone-Higman property if every group G that has solvable
word problem and satisfies P embeds in a simple subgroup of a finitely presented
group H that also satisfies P . (The reason for the terminology is the Boone-Higman
theorem, which states that the tautologically true property is a Boone-Higman
property.) Several of the properties that we consider in this article are Boone-
Higman properties, most notably left orderability (which was demonstrated in a
beautiful paper of Bludov and Glass [4]).
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6248 I. GOLDBRING, S. KUNNAWALKAM ELAYAVALLI, AND Y. LODHA

Given a property P ∈ P, we say that P is strongly undecidable if there exists
a finitely presented group G and a finite subset X ⊂ G such that:

(1) There is a group H satisfying P and a surjective homomorphism φ : G → H
whose restriction to X is injective.

(2) If H is a group satisfying P for which there exists a surjective homomor-
phism φ : G → H whose restriction to X is injective, then H has unsolvable
word problem.

We first note that the tautologically true property is strongly undecidable, that is,
there is indeed an example of a finitely presented group all of whose nonidentity
quotients have an unsolvable word problem. (This is the main theorem in [25].)

Theorem 1.1.2. Let P ∈ P be a Boone-Higman property (for instance, left or-
derability). Then there is a comeager set XP ⊂ GP such that every group in XP

contains an isomorphic copy of every finitely generated group satisfying P with
solvable word problem.

On the other hand, the problem of determining the finitely generated subgroup
structure of a generic group in Glo is reduced to the following:

Theorem 1.1.3. Let P ∈ P be a property that is inherited by subgroups. Then the
following holds:

(1) If P is a Boone-Higman property that is not strongly undecidable, there is a
comeager set XP ⊂ GP such that for each group G ∈ XP , the set of finitely
generated subgroups of G coincides with the set of finitely generated groups
satisfying P that also have solvable word problem.

(2) If P is strongly undecidable, there is a comeager set XP ⊂ GP such that, for
each group G ∈ XP , the set of finitely generated subgroups of G contains all
finitely generated groups satisfying P that also have solvable word problem,
but also contains a finitely generated subgroup with P that has unsolvable
word problem.

Remark 1.1.4. Since the tautologically true property is a strongly undecidable prop-
erty, part (2) of the previous theorem 1.1.3 provides a comeager set X ⊂ G such that
every isomorphism type in X contains a finitely generated subgroup with unsolvable
word problem.

Remark 1.1.5. Since a natural way of distinguishing isomorphism types of countable
groups is to distinguish the finitely generated subgroup structure, Theorem 1.1.3
illustrates the difficulty of answering the second part of Question 1.0.1.

Using Theorem 1.1.3 and techniques from model theory (see Hodges [20]), we
are able to prove Theorem 1.1.6, which provides a road map to answer to Question
1.0.1:(2) for some interesting subspaces:

Theorem 1.1.6. If P is a strongly undecidable, recursively axiomatizable, property
that is closed under subgroups, then there is no comeager isomorphism class in GP .

We verify the fact that left orderability is recursively axiomatizable in Proposi-
tion 5.2.14. Morever, we also present an argument of A. Darbinyan showing that
left orderability is a strongly undecidable property in Proposition 5.2.13. Hence,
we obtain:

Corollary 1.1.7. The space of left orderable enumerated groups does not contain
a co-meager isomorphism class.
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1.2. The algebraic structure and first-order theory of a “generic group”.
Our next result examines the algebraic structure of generic groups in some of the
relevant spaces. Recall that a group G is said to be verbally complete if, for each
freely reduced word W (x1, . . . , xn) in the letters x±1

1 , . . . , x±1
n (for an arbitrary

n ∈ N) and each element f ∈ G, there are elements g1, . . . , gn ∈ G such that

W (g1, . . . , gn) = f.

Verbally complete groups are in particular divisible: for each f ∈ G and n ∈
N \ {0}, there is a g ∈ G such that gn = f . We use elementary tools from
combinatorial group theory to deduce the following, which applies in particular in
the case when P ∈ {left orderable, locally indicable, torsion-free}.

Theorem 1.2.1. Let P ∈ P be a property of torsion-free groups that is closed under
amalgamation along infinite cyclic subgroups and HNN extensions with associated
subgroups that are infinite cyclic. Then there is a comeager set XP ⊂ GP such that
each G ∈ XP has only one nontrivial conjugacy class (in particular, it is simple)
and is verbally complete.

A fundamental notion from logic relevant to our considerations is that of ele-
mentary equivalence: two groups are elementary equivalent if they have the same
first-order theory. We next discuss the question of when an amenable group can
have the same first-order theory as a nonamenable group or a group with property
(T), and prove the following:

Theorem 1.2.2. There is a comeager set X ⊂ Gam such that, for each G ∈ X, the
following holds:

(1) There are continuum many pairwise nonisomorphic countable nonamenable
groups with the same first-order theory as G.

(2) G cannot have the same first-order theory as a group with property (T).

Another key concept we investigate is the notion of locally universal groups. Let
P ∈ P be a property and consider the Polish space GP as above. An enumerated
group H ∈ GP is locally universal for GP if any group in GP embeds into an
ultrapower of H. We denote the set of all locally universal groups in GP by Glu,P .

Theorem 1.2.3. For each P ∈ P, Glu,P is a comeager subset of GP .

Since comeager sets in a Polish space are closed under countable intersection, we
may assume that all the comeager sets defined in this introduction consist of locally
universal groups and thus satisfy the conclusions of all the relevant theorems.

1.3. Applications. The above theorems allow us to deduce a plethora of gener-
icity phenomena. A nice illustration of the consequences of Theorem 1.1.1 is an
application to the von Neumann-Day Problem, which refers to the conjunction
of two problems about the class of amenable groups. For a detailed survey on the
notion of amenability for countable, discrete groups, we refer the reader to [1].

Problem (The von Neumann-Day Problem). Must a group without nonabelian
free subgroups be amenable? Must an amenable group be elementary amenable?

The first problem was resolved by Olshanskii in 1980 [30] and the second problem
was resolved by Grigorchuk in 1984 [16]. In 1998, Grigorchuk [17] provided the first
finitely presented counterexample to the second problem. In [24], the third author
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6250 I. GOLDBRING, S. KUNNAWALKAM ELAYAVALLI, AND Y. LODHA

with Moore constructed the first torsion-free finitely presented counterexample to
the first problem. Since the examples of Lodha-Moore and Grigorchuk are easily
seen to be isolated groups, we obtain the following striking corollary to Theorem
1.1.1:

Corollary 1.3.1. The following holds:

(1) The generic enumerated group without F2 subgroups is nonamenable.
(2) The generic left orderable enumerated group without F2 subgroups is nona-

menable.
(3) The generic enumerated amenable group is not elementary amenable.

In fact, we can choose these comeager sets to be open dense sets.

The following was pointed out to us by Denis Osin and stands in contrast to the
previous corollary:

Proposition 1.3.2.

(1) The generic enumerated group without F2 subgroups is inner amenable.
(2) The generic left orderable enumerated group without F2 subgroups is inner

amenable.

Our next set of applications concerns the class of orderable groups. Endowing
groups with order structures has been an important theme in modern group theory.
There is a deep and striking interplay between notions of orderability and the
topology and dynamics of group actions. For instance, whether a countable group
admits a faithful action by orientation preserving homeomorphisms on the real line
admits a surprisingly elementary algebraic characterisation: such an action exists if
and only if the group is left orderable. Related notions of orderability include: local
indicability, biorderability, and the unique product property. (All of these notions
will be defined in Section 3.3.) One has the following inclusions:

bi-orderable groups � locally indicable groups � left orderable groups

� groups with the unique product property � torsion-free groups.

Note that in each case, only a handful examples of groups that witness that the
inclusions are proper are known. We deduce the following corollaries of Theorem
1.1.1:

Corollary 1.3.3. There is a comeager set Xlo ⊂ Glo such that each G ∈ Xlo

satisfies:

(1) It is not locally indicable.
(2) It does not have the Haagerup property.
(3) It does not admit nontrivial actions by C1-diffeomorphisms on the closed

interval or the circle.
(4) Contains an isomorphic copy of every finitely generated left orderable group

with solvable word problem.

Corollary 1.3.4. There is a comeager set Xli ⊂ Gli such that each G ∈ Xli satisfies:

(1) It is not biorderable.
(2) It does not admit nontrivial actions by C1-diffeomorphisms on the closed

interval, [0, 1) or the circle.
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A well known conjecture of Peter Linnel asserts that every left orderable group
is either locally indicable or else contains a nonabelian free subgroup. Corollary
1.3.3(4) suggests why it is difficult to find counterexamples to this conjecture as
the generic left orderable group contains a nonabelian free subgroup. Recall that
the Witte-Morris theorem states that every left orderable amenable group is lo-
cally indicable, and the Thurston stability theorem states that any group of C1-
diffeomorphisms of an inteval of the form [x, y) or (x, y] is locally indicable. Corol-
lary 1.3.3 also implies that the converses to both these statements fail generically.

Kaplansky made the following conjectures in the 1960’s. (See [13] for a brief
historical survey.)

Conjecture 1.3.5. Let G be a torsion-free group and let K be a field. Consider
the group ring K[G].

(1) (Kaplansky’s unit conjecture) Every unit in K[G] is of the form kg for
k ∈ K, g ∈ G.

(2) (Kaplansky’s zero divisor conjecture) K[G] has no nontrivial zero divisors.
(3) (Kaplansky’s idempotent conjecture) K[G] has no idempotents other than

0 and 1.

It is known that a positive solution to the unit conjecture implies a positive
solution to the zero divisor conjecture, which in turn implies a positive solution to
the idempotent conjecture. It is also known that groups with the unique product
property satisfy the unit conjecture, although this conjecture has a negative solution
in general. We note the following consequences of our results for the Kaplansky
conjectures as it relates to the unique product property. The first is the “generic”
version of Gardam’s recent breakthrough counterexample to the unit conjecture
([13]).

Corollary 1.3.6. The following holds:

(1) There is an open dense set X ⊂ Gtf such that each enumerated group G ∈ X

is a counterexample to the unit conjecture.
(2) The generic torsion-free enumerated group does not have the unique product

property.
(3) The generic group with the unique product property is not left orderable.
(4) Either the Kaplansky zero divisor conjecture holds or else the generic

torsion-free group does not satisfy the zero divisor conjecture.
(5) Either the Kaplansky idempotent conjecture holds or else the generic

torsion-free group does not satisfy the idempotent conjecture.

The notion of a sofic group was introduced by Gromov as a generalisation of both
amenable and residually finite groups. The property of soficity is of considerable
interest because it implies several important general conjectures of group theory.
(We direct the reader to [33] for a survey.) While it remains open whether there
is a nonsofic group, we note the following consequence for soficity in the context of
the spaces G and GP (for P ∈ P):

Corollary 1.3.7. For any P ∈ P, either all groups in GP are sofic or else the
generic group in GP is nonsofic.

Remark 1.3.8. The special case of the previous corollary when P is the tautologi-
cally true property was observed by Glebsky in [15].
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In the last section of the paper, we provide an analysis of Question 1.0.1 part (1),
and collect some partial answers. Moreover, we study certain natural questions that
emerge in the setting of Polish spaces consisting of enumerated groups satisfying
a given law, and provide some partial answers. We also document a connection of
these considerations with the von Neumann-Day problem for ultrapowers.

2. Preliminaries

Conventions and Notations. In this paper, we useN to denote the set of positive
natural numbers, that is, N = {1, 2, 3, . . .}.2 Given n ∈ N, we also set [n] =
{1, . . . , n}.

Given a (group-theoretic) word w(x1, . . . , xn), we call n the arity of the word
and denote it by nw. By a system we mean a finite system of equations and
inequations of the form w = e or w �= e, where w is a word. We use letters such as
Σ and Δ (sometimes with accents or subscripts) to denote systems. If each word in
the system has its variables amongst x1, . . . , xn, then we write Σ(x1, . . . , xn) and
extend the notion of arity to systems in the obvious way, using the notation nΣ. If
Σ(�x, �y) is a system, G is a group, and �a is a tuple from G with the same length as �x,
then we can consider the system Σ(�a, �y), which we call a system with coefficients.
Given a system Σ, an enumerated group G, and �a ∈ GnΣ , we write G |= Σ(�a) to
denote that the system is true in G when �a is plugged in for �x.

2.1. Ultraproducts of groups. Given a set I, an ultrafilter on I is a {0, 1}-
valued finitely additive probability measure U defined on all subsets of I. One
often conflates an ultrafilter U with its collection of measure 1 sets, thus writing
A ∈ U rather than U(A) = 1. An ultrafilter U on I is called nonprincipal if all
finite sets have measure 0. A straightforward Zorn’s lemma argument shows that
nonprincipal ultrafilters exist on any infinite set.

Now suppose that (Gi)i∈I is a family of groups and that U is an ultrafilter on I.
The ultraproduct of the family (Gi) with respect to U is the group∏

U

Gi := (
∏
i∈I

Gi)/N,

where N is the normal subgroup of
∏

i∈I Gi given by

N = {g ∈
∏
i∈I

Gi | for which {i ∈ I | g(i) = eGi
} ∈ U}.

Given g ∈
∏

i∈I Gi, we denote its coset in
∏

UGi by gU. Thus, gU = hU if and only
if {i ∈ I | g(i) = h(i)} ∈ U. Given any word w(�x) and �aU ∈ (

∏
UGi)

nw , note that
w(�aU) = (w(�a(i))U, whence ∏

U

Gi |= w(�aU) = e

if and only if
{i ∈ I | Gi |= w(�a(i)) = eGi

} ∈ U.

When each Gi = G, we speak of the ultrapower GU of G with respect to U. The
map which sends g ∈ G to the coset of the sequence constantly equal to g is called
the diagonal embedding of G into GU.

2Apologies to the logicians for this notation, but it makes a lot of our expressions cleaner to
read.
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2.2. Some model theory of groups. A quantifier-free formula is a finite
disjunction of systems.3 A formula ϕ(�x) is an expression of the form

Q1x1 · · ·Qmxmψ(�x, �y)

with ψ quantifier-free and each Qi ∈ {∀, ∃}.4 Given a formula ϕ(�x), a group G,
and a tuple �a ∈ Gnϕ , the definition of ϕ(�a) being true in G, denoted G |= ϕ(�a), is
defined in the obvious way. A formula without any free variables is called a sentence
and is either true or false in a given group. For example,

G |= ∀x∀y∃z(x = e ∨ y = e ∨ x2 �= e ∨ y2 �= e ∨ z−1xzy−1 = e)

if and only if any two elements of G of order 2 are conjugate.
The following fundamental fact is known as �Los’ theorem or the Fundamental

theorem of ultraproducts:

Fact 2.2.1. For any family (Gi)i∈I of groups, any ultrafilter U on I, any formula
ϕ(�x), and any �a ∈

∏
U Gi, we have∏

U

Gi |= ϕ(�a) ⇔ Gi |= ϕ(�a(i)) for U-almost all i ∈ I.

Groups G and H are called elementarily equivalent, denoted G ≡ H, if, given
any sentence σ, we have G |= σ if and only if H |= σ. It follows from �Lo’s theorem
that any group is elementarily equivalent to any of its ultrapowers. Although we
will not need it in this paper, the Keisler-Shelah theorem shows that elementary
equivalence can be given a completely group-theoretic reformulation, namely two
groups are elementarily equivalent if and only if they have isomorphic ultrapowers.

A set of sentences is called a theory. If T is a theory, we write G |= T to
indicate that G |= σ for all σ ∈ T . A class C of groups is called elementary (or
axiomatizable) if there is a theory T such that, for any group G, G ∈ C if and
only if G |= T ; in this case, we call the theory T a set of axioms for the class. For
example, the classes of abelian groups and nilpotent class 2 groups are elementary.

A sentence is called universal if, using the above notation, Qi = ∀ for all
i = 1, . . . ,m. A theory is called universal if it consists only of universal sentences.
An elementary class is called universally axiomatizable if it has a universal set
of axioms. The following is a special case of a more general test for axiomatizability
of a class of groups:

Fact 2.2.2. A class of groups is universally axiomatizable if and only if it is closed
under isomorphism, ultraproducts, and subgroups.

Occasionally we will need to leave the confines of first-order logic and speak of
infinitary formulae. The class of Lω1,ω formulae is the extension of the collection of
all formulae obtained by allowing countable conjunctions and disjunctions rather
than merely finite conjunctions and disjunctions.

3. The Polish space of enumerated countable groups

3.1. Introducing the space. By an enumerated group, we mean a group whose
underlying set is N. We let G denote the set of enumerated groups and we let G

denote the class of all isomorphism classes of countable groups. We let ρ : G → G

3This abuse of terminology is justified by the existence of disjunctive normal form.
4This abuse of terminology is justified by the existence of prenex normal form.
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6254 I. GOLDBRING, S. KUNNAWALKAM ELAYAVALLI, AND Y. LODHA

denote the obvious “reduction” with the convention that we write G instead of
ρ(G) (which is a bit abusive as we are conflating the difference between a group
and its isomorphism class). We adopt a similar convention with subsets of G: if C
is a subset of G, then we write C for the image of C under ρ. In particular, for any
property P , the set of isomorphism types of GP is denoted by GP . We call C ⊆ G

saturated if ρ−1(ρ(C)) = C; in other words, C is saturated if it is closed under
relabeling of elements. Note that all sets of the form GP are saturated.

For ease of notation, in most cases we shall denote an enumerated group and its
isomorphism type by the same symbol, as it is usually the case that which one is
being considered will be made clear from the context. However, in certain situa-
tions, we may denote the group by a letter such as G and its (chosen) enumeration
as G.

To each enumerated group G, we assign the associated multiplication function
μG : N ×N → N, inversion function ιG : N → N, and identity element eG ∈ N.
Consequently, we identify each element of G with a unique element of the zero-
dimensional Polish space X := NN×N ×NN ×N.

Proposition 3.1.1. G is a closed subspace of X. Consequently, with the induced
topology, G is a zero-dimensional Polish space.5

Proof. It suffices to observe that G is the intersection of the following closed subsets
of X:

(1)
⋂

m,n,p∈N{(f, g, a) ∈ X : f(f(m,n), p) = f(m, f(n, p))}
(2)

⋂
m∈N{(f, g, a) ∈ X : f(m, a) = f(a,m) = m}

(3)
⋂

m∈N{(f, g, a) ∈ X : f(m, g(m)) = f(g(m),m) = a}
(4)

⋂
m∈N,n∈N\{m}{(f, g, a) ∈ X : f(m, g(n)) �= a}

�
It will be convenient to recast the induced topology on G in more group-theoretic

terms. We let W denote the set of expressions of the form w(�a), where w(�x) is a
word and �a ∈ Nnw . Given an enumerated group G and w ∈ W, we let gw ∈ N
denote the corresponding element.

Lemma 3.1.2. The map Ψ : G → NW given by Ψ(G)(w) = gw is a continuous
map.

Proof. It is enough to show, for any w ∈ W and m ∈ N, that the set

Gw,m := {G ∈ G : gw = m}
is open in G, which we prove by recursion on the length of w. This is obvious when
w is a variable. When w is the inverse of a variable, say x−1, then Gw,m = {G :
ιG(a) = m}, which is clearly open. Now suppose that w = w1 · xi. Then

Gw,m =
⋃
n∈N

{G ∈ G : wG
1 = n and μG(n, ai) = m}

which is open by the induction hypothesis. Similarly, if w = w1 · x−1
i , then

Gw,m =
⋃
n,p

{G ∈ G : wG
1 = n and ιG(ai) = p and μG(n, p) = m}

which is again open. �
5Although all of the information about G is contained in the multiplication map μG, if we

identified G with μG, the resulting subspace of NN×N would not be Polish but rather Σ0
3.
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For any system Σ(�x) and �a ∈ NnΣ , set [Σ(�a)] = {G ∈ G : G |= Σ(�a)}.
Corollary 3.1.3. The sets [Σ(�a)], as Σ ranges over all systems and �a ranges over
NnΣ , form a basis for G consisting of clopen sets.

Proof. For any word w(�x) and any �a ∈ N, we see that

[w(�a) = e] =
⋃
n∈N

{G ∈ G : eG = n and Ψ(G)(w) = n},

which is open by the continuity of Ψ. On the other hand,

[w(�a) = e] =
⋂
n∈N

{G ∈ G : eG �= n or Ψ(G)(w) = n},

which is closed by the continuity of Ψ as well. It follows that [w(�a) = e] is a
clopen subset of G. It follows immediately that every set of the form [Σ(�a)] is also
clopen. The union of these sets clearly cover G: given G ∈ G, if ιG(1) = n, then
G ∈ [1 ·n = e]. It is easy to see that these sets are closed under finite intersections.
Moreover, for each open set in G, one can find a family of sets of the form [Σ(�a)]
(using the multiplication table) whose union is the given open set. Therefore, these
clopen sets form a basis. �

The following is obvious but worth recording:

Proposition 3.1.4. Any permutation σ of N induces a homeomorphism σ# of G
for which σ#[Σ(�a)] = [Σ(σ(�a))].

Given �a = (a1, . . . , an) ⊂ Nn for some n ∈ N and an enumerated group G ∈ G,
we denote by 〈�a〉G as the subgroup generated by the elements a1, . . . , an in G.

Let P be a property of countable groups that is closed under direct sums for
which GP is Polish. Consider a system of equations and inequations Σ(�x). Note
that [Σ(�a)]∩GP is nonempty for some �a ∈ NnΣ if and only if it is nonempty for all
�a ∈ NnΣ . If this is the case, we call Σ(�x) a P -system. For Σ(�x) a P -system, we
define the sets

[Σ(�a)]P = [Σ(�a)] ∩ GP

and
XΣ,P :=

⋃
�a∈NnΣ

[Σ(�a)]P .

The proof of the following is similar to that of Corollary 3.1.3.

Lemma 3.1.5. The sets [Σ(�a)]P , where Σ is a P -system and �a ∈ NnΣ , form a
basis of clopen sets for the induced subspace topology on GP .

The following is a fundamental observation concerning the sets XΣ,P .

Lemma 3.1.6. If Σ(�x) is a P -system then the set XΣ,P is an open dense subset of
GP .

Proof. The set XΣ,P is an open subset of GP by definition. To see that it is dense,
fix a nonempty basic open set [Δ(�a)]P , for a P -system Δ(�x) and �a ∈ NnΔ . Choose

G ∈ [Δ(�a)]P . Take �b ∈ NnΣ disjoint from �a and fix H ∈ [Σ(�b)]P . Let K denote an
enumeration of the isomorphism type of G⊕H such that

K |= Σ(�b) K |= Δ(�a).

Since the property P is closed under direct sums, it follows that K ∈ [Δ(�a)]P ∩
XΣ,P . �

Licensed to Univ of Calif, Irvine. Prepared on Wed May  8 16:25:43 EDT 2024 for download from IP 128.195.73.213.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6256 I. GOLDBRING, S. KUNNAWALKAM ELAYAVALLI, AND Y. LODHA

Given a first-order theory T of groups, we let CT denote the class of countable
models of T and we let CT := ρ−1(CT ).

Proposition 3.1.7. Suppose that C is a saturated subclass of G such that C is
closed under subgroups. Then the following are equivalent:

(1) C is closed in G.
(2) C = CT for some universal theory T extending the theory of groups.

Proof. First suppose that C is a closed subset of G and set

T = {σ : G |= σ for all G ∈ C}.
Suppose that G is a countable group satisfying G |= T . We show that G ∈ C.
Towards this end, fix an enumeration G of G with eG = 1. For each n ∈ N, let
Σn(�x) be the system of equations that determines the products μG(i, j) and inverses
ιG(i) for 1 ≤ i, j ≤ n. Since Σn has a solution in G, it must have a solution in some
group Gn ∈ G, for otherwise ∀�x

∨
ϕ(�x)∈Σ(�x) ¬ϕ(�x) belongs to T , contradicting that

G |= T .
Let Gn be an enumeration of Gn so that eGn

= 1 and so that, for every 1 ≤
i, j ≤ n, we have

Gn ∈ [i · j = μG(i, j)] ∩ [i−1 = ιG(i)].

It follows that limn→∞ Gn = G. Since G is closed, we have that G ∈ C, whence
G ∈ C, as desired. Consequently, G = GT . Since G is closed under subgroups, it
follows that T is universal.

Now suppose that G = GT with T a universal theory. Suppose also that Gn is
a sequence from C with limn→∞ Gn = G. We must show that G ∈ C. To see this,
fix a universal axiom σ of T ; it suffices to show that G |= σ. Write σ = ∀�xϕ(�x),
where ϕ(�x) = Σ1(�x)∨ · · · ∨Σm(�x), a finite disjuntion of systems. Suppose, towards
a contradiction, that there is �a ∈ Nnϕ so that G �|= ϕ(�a). As a result, for each
i = 1, . . . ,m, there is an equation wi(�x) = e and εi ∈ {0, 1} such that

(wi(�x) = e)εi ∈ Σi(�x) but G |= (wi(�a) = e)1−εi .

(Here by (wi(�x) = e)εi we denote wi(�x) = e if εi = 1 and wi(�x) �= e if εi = 0.)
Let

Σ(�x) = {(wi(�x) = 1)1−εi : i = 1, . . . ,m}.
Since G ∈ [Σ(�a)] and Gn → G, there is n ∈ N such that Gn ∈ [Σ(�a)]. Since
Gn |= ϕ(�a), this is a contradiction. �

3.2. The Grigorchuk space of marked groups. In geometric group theory,
a different topological space is often used when studying the space of all finitely
generated groups, namely the Grigorchuk space of marked groups M. This
space was first systematically studied by Grigorchuk in [18], considered by Gromov
in [19] in his celebrated work on groups of polynomial growth, and has an antecedent
in the Chabauty topology (see [6]). Recall that a marked group is a pair (G,S),
where G is a group and S = {s1, . . . , sn} is a finite, ordered generating set for G.
Such pairs are considered up to equivalence by marked isomorphisms, that is,
(G1, S1), (G2, S2) are equivalent if S1 and S2 have the same length and the unique
order-preserving bijection between S1 and S2 extends to an isomorphism between
G1 and G2.

The collection of all marked groups whose marking has size n is denoted by
Mn and is endowed with the topology induced by the following pseudometric: two
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marked groups (G1, S1) and (G2, S2) are distance e−n apart if n is the largest
number such that the n-balls around the identity in the respective Cayley graphs
admit graph isomorphisms that preserve the order of the markings (emerging as
edge labels). Note that two marked groups are at distance 0 from either other
precisely when they are equivalent in the sense of the previous paragraph, whence
this pseudometric on the collection of all marked groups descends to an actual
metric on the set of equivalence classes.

Another way to provide the same topology on Mn is as follows. Consider a
marked group (G,S), where S = {s1, . . . , sn}. Let Fn be the free group of rank n
which is freely generated by f1, . . . , fn. We identify (G,S) with Ker(φ) ∈ {0, 1}Fn ,
where φ : Fn → G is the homomorphism determined by mapping fi �→ si for all
1 ≤ i ≤ n. In this way, we may view Mn as a subset of {0, 1}Fn . It is easy
to see that, after this identification, Mn is a closed subspace of {0, 1}Fn and the
aforementioned topology on Mn is the same as the subspace topology inherited
from {0, 1}Fn . This perspective makes it clear that Mn is a totally disconnected,
compact, Haursdorff topological space.

The map

(G, {x1, . . . , xm}) ↪−→ (G, {x1, . . . , xm, idG})
induces a natural inclusion

Mn ↪−→ Mn+1.

The directed union

M =
⋃

i∈N\{0}
Mn

is called the space of marked groups.
A related space of marked groups, which also accommodates infinitely generated

groups, is the following. Let F∞ denote the free group on the generators {xi :
i ∈ N}. Then the set of all normal subgroups of F∞ is a closed subset of P(F∞)
when this latter space is identified with the compact space 2F∞. To each normal
subgroup N of F∞, one obtains the countable marked group F∞/N . Clearly
every countable group can be marked in this way and consequently the compact
space M∞ of marked groups serves as another topological space for dealing with all
countable groups. Notice that this method also allows for one to deal with finite
groups.6 Note that G is not compact, whence G and M∞ are not homeomorphic;
in other words, these topological models for dealing with countable groups are
genuinely different. Nevertheless, we do have:

Proposition 3.2.1. The map τ : G → M∞ given by

τ (G) := {w(x1, . . . , xn) ∈ F∞ : w(1, . . . , n)G = e}
is a continuous surjection.

Proof. It is clear that τ is continuous. To see that it is open, it suffices to see
that the preimages of the subbasic open sets {N ∈ M : w(x1, . . . , xn) ∈ N} and
{N ∈ M : w(x1, . . . , xn) �∈ N} are open in G. However, these preimages are simply
[w(1, . . . , n) = e] and [w(1, . . . , n) �= e] respectively, which are both open in G. �

6The space of enumerated groups could be adapted to accommodate finite groups as well, but
since finite groups are uninteresting for our purposes, we chose to deal with the simpler set-up
above.
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Remark 3.2.2. As pointed out to us by Alekos Kechris, although the space of
enumerated groups and M∞ are not homeomorphic, they induce the same Borel
structure on the set of isomorphism classes of countable groups. More precisely,
one can equip G with the largest σ-algebra Bρ for which the map ρ is measurable
(where G is equipped with its Borel σ-algebra). If one lets ρ′ : M → G denote
the analogous reduction map, then the corresponding σ-algebra Bρ′ coincides with
Bρ. In other words, one can, in a Borel manner, recover an enumeration of a given
countable group from a marking of that group and vice-versa.

We can recover the spaces Mn from the space M∞ by noting that, for each
n ∈ N, we have that Mn can be identified (as a topological space) with {N ∈
M∞ : i ∈ N for all i > n} (endowed with the subspace topology). The proof of
Proposition 3.2.3 is analogous to the proof of Proposition 3.2.1 above:

Proposition 3.2.3. For each m, the map τm : G → Mm given by τm(G) :=
〈1, . . . ,m〉 (viewed as a marked group) is a continuous surjection.

3.3. Notions of orderability of countable groups. Now we recall the notions
of orderability that we study in this article. We often state various well-known facts
and definitions and refer the reader to [11] for a comprehensive survey on the topic,
including the proofs of many of these facts.

Definition 3.3.1. A group G is left orderable (resp. bi-orderable) if there
exists a total order on the group that is invariant under left translation (resp. left
and right translation), that is, given any f, g, h ∈ G, if f < g then hf < hg
(resp. hf < hg and fh < gh). A left-orderable group equipped with a particular
left-invariant order will be called a left-ordered group.

Let G and H be left-ordered groups. A homomorphism f : G → H is monotone
increasing if, for every g, h ∈ G, we have g < h =⇒ f(g) ≤ f(h).

The following fact is well-known:

Lemma 3.3.2. Consider the short exact sequence of groups

1 → N
i−→ G

p−→ Q → 1.

If N and Q are left-ordered groups, then there exists a unique left-invariant total
order on G for which i and p become monotone increasing.

The following are striking results of Bludov and Glass (see [3] and [4] respec-
tively.)

Theorem 3.3.3. Let G1 and G2 be left-ordered groups with subgroups H1 and H2,
respectively. If φ : H1 → H2 is an order-preserving isomorphism, then the free
product of G1 and G2 with H1 and H2 amalgamated via φ admits a left-invariant
order extending the orders on G1 and G2.

Theorem 3.3.4. The following holds:

(1) Every recursively presented left orderable group embeds in a finitely pre-
sented left orderable group.

(2) Left-orderability is a Boone-Higman property, that is, a finitely generated
left orderable group has solvable word problem if and only if it can be em-
bedded in a simple left orderable group which can be embedded in a finitely
presented left orderable group.
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Our next notion of orderability is presented in the following fact:

Fact 3.3.5. For any group G, the following are equivalent:

• G is locally indicable, that is, every nontrivial finitely generated subgroup
of G has an infinite cyclic quotient.

• G isC-orderable, that is, there is a total order < on G that is left invariant
and moreover, for each pair f, g ∈ G, f, g > idG, it holds that fg

2 > g.

In the sequel, we prefer to use the terminology “locally indicable” rather than
“C-orderable.”

Definition 3.3.6. A group G is said to satisfy the unique product property
(UPP) if, for all pairs of finite subsets X and Y of G, there exists an element
g ∈ G such that:

• g = xy for some x ∈ X and y ∈ Y , but
• g �= x′y′ for all x′ ∈ X \ {x} and y′ ∈ Y \ {y}.

Fact 3.3.7. Every left orderable group satisfies the UPP.

Proof. Let G be a left-ordered group and consider a pair of finite subsets X and Y
of G. Set y0 ∈ Y to be the largest element in Y . Then, clearly, xy0 > xy′ for all
y′ ∈ Y \ {y0}. Now let x0 ∈ X be such that x0y0 is the largest element of the set
{xy0}x∈X . It is easy to see that x0y0 satisfies the definition above. �

Fact 3.3.8 provides characterizations of the aforementioned orderability condi-
tions on a group (see [12] for a proof):

Fact 3.3.8. Given a group G, we have (see [12]):

(1) G is left orderable if and only if, for any finite subset F = {f1, . . . , fn} of
G, there exists E = (ε1, . . . , εn) ∈ {1,−1}n such that idG does not belong
to the semigroup generated by FE = {f ε1

1 , . . . , f εn
n }.

(2) G is locally indicable if and only if, for every finite subset F = {f1, . . . fn}
of G\{idG}, there exists E = (ε1, . . . , εn) ∈ {1,−1}n such that the identity
is not contained in 〈〈FE〉〉, which is the smallest semigroup that satisfies
the following conditions:

• {f ε1
1 , . . . f εn

n } ⊆ S
• for all g1, g2 ∈ S, the element g−1

1 g2g
2
1 lies in S.

(3) G is biorderable iff, for every finite subset F = {f1, . . . fn} of G \ {idG},
there exists ε1, . . . , εn ∈ {1,−1} such that the identity is not contained in
the smallest semigroup S that satisfies the following conditions:

• {f ε1
1 , . . . f εn

n } ⊆ S
• for all g1, g2 ∈ S, the elements g1g2g

−1
1 and g−1

1 g2g1 also lie in S.

Lemma 3.3.9. The properties of being left orderable, locally indicable, biorderable
, being torsion-free, and having unique products are all closed properties.

Proof. It is clear that containing torsion is an open property. It follows from Fact
3.3.8 that the negation of left orderability, local indicability and biorderability are
open properties. It follows from Definition 3.3.6 that the negation of the unique
product property is open. �
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3.4. The relevant subspaces. We now introduce the various saturated subspaces
of G which will be the focus of this paper. First, we consider the following:

• Gsm := {G ∈ G : G does not contain F2 subgroups}
• Gam := {G ∈ G : G is amenable}
• Gll := {G ∈ G : G is lawless}
• Gsm,ll := Gsm ∩ Gll

• Gam,ll := Gam ∩ Gll

• Gw := {G : G obeys the law w = e}
• Gam,w := Gam ∩ Gw

In the first item above, the subscript sm stands for “small” as groups not con-
taining a nonabelian free subgroup are often given this name.

Theorem 3.4.1. All seven subspaces from the previous list are Gδ subspaces of the
space G, whence Polish. Moreover, Gw is actually closed.

Proof. To see that Gsm is Gδ, it suffices to notice that

Gsm =
⋂

a,b∈N

⋃
w(a,b)

[w(a, b) = e],

where the union ranges over all nontrivial words w.
In order to show that Gam is Gδ, we remind the reader that a group G is amenable

if and only if it satisfies the Folner condition. More precisely, given a finite set
F ⊆ G and ε > 0, a nonempty finite set K ⊆ G is called a (F, ε)-Folner set if, for
each g ∈ F , we have |gK�K| < ε|K|. We then have that G is amenable if and
only if, for every finite F ⊆ G and ε > 0, there is a finite (F, ε)-Folner subset of G.

For any �a ∈ Nm, �b ∈ Nn, and ε > 0, we let U�a,�b,ε denote the open set

⋂
1≤j<k≤n

[bi �= bj ] ∩
m⋂
i=1

⋃
I⊆ε[n]

⋂
j∈I

n⋃
k=1

[aibj = bk],

where the notation I ⊆ε [n] indicates that |I| > (1− ε)n. We then have that

Gam =
⋂

�a∈N<N

⋂
ε∈Q>0

⋃
�b∈N<N

U�a,�b,ε.

To see that Gll is Gδ, it suffices to show that

Gll =
⋂
w

⋃
�a∈Nnw

[w(�a) �= e].

Finally, we note that

Gw =
⋂

�a∈Nnw

[w(�a) = e].

�

Before moving on to our second collection of properties, we first recall the defi-
nition of sofic groups in the context of graph approximations. Let G be a finitely
generated group with symmetric generating set S. Let Γ be a finite directed graph
such that each directed edge of Γ is labeled by an element of S. We say that Γ is
an n-approximation (for n ≥ 1) of the Cayley graph Cay(G,S) of G with
respect to S if there exists a subset W ⊆ V (Γ) such that the following holds:

(1) |W | >
(
1− 1

n

)
|V (Γ)| and,
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(2) if p ∈ W , then the n-neighborhood of p is rooted isomorphic to the n-
neighborhood of a vertex of Cay(G,S) as edge-labeled graphs.

Definition 3.4.2. A finitely generated group G is sofic if there is some (equiv.
any) finite generating set S of G for which, given any n ∈ N, n > 1, there exists
an n-approximation of Cay(G,S) by a finite graph. More generally, an arbitrary
group is sofic if every finitely generated subgroup is sofic (in the sense of the first
part of the definition).

Next, we consider the following saturated spaces of G:

• Glo: the space of left orderable enumerated groups.
• Gbo: the space of biorderable enumerated groups.
• Gli: the space of locally indicable enumerated groups.
• Gupp: the space of enumerated groups with the unique product property.
• Gsofic: the space of sofic enumerated groups.
• Gtf : the space of torsion-free enumerated groups.

Let P1 denote the set of properties appearing in the previous list. The next
general result will allow us to conclude that GP is a closed subspace of G for each
P ∈ P1:

Proposition 3.4.3. Let P be a closed property in M which is closed under sub-
groups and direct unions. Then GP is a closed subspace of G.

Proof. Let G be an enumerated group which does not satisfy P . Since G is an
increasing union of the subgroups {〈1, . . . , n〉G : n ∈ N}, it follows that there is
an n ∈ N such that H = 〈1, . . . , n〉G does not satisfy P . Since the negation of
P is an open property, there is an m ∈ N such that the m-ball centered around
the identity of the Cayley graph of the marked group (H, {1, . . . , n}) determines
an open subset of Mn which consists entirely of groups that do not satisfy P .
This m-ball determines a finite system of equations and inequations Σ(�x) of ar-
ity n such that G |= Σ(1, . . . , n) and such that, for each K ∈ [Σ(1, . . . , n)], the
marked group (〈1, . . . , n〉K , {1, . . . , n}) lies in the aforementioned open subset of
Mn. Consequently, 〈1, . . . , n〉K does not have property P ; since the negation of P
is closed under taking overgroups, we have that K does not have P . It follows that
G ∈ [Σ(1, . . . , n)] ⊂ G \ GP , establishing the desired conclusion. �

Proposition 3.4.4. GP is a closed subspace of G, for each P ∈ P1, and hence
inherits a Polish topology.

Proof. Lemma 3.3.9 asserts that each of these properties is closed in M. Further-
more, it is easy to see that they are closed under subgroups and direction unions.
Therefore the result follows from a direct application of Proposition 3.4.3. �

The following result, pointed out to us by Denis Osin, will also be relevant:

Proposition 3.4.5. The set {G ∈ G : G is simple} is a Gδ subspace of G.

Proof. It was shown in [26] that simplicity can be expressed by a countable con-
junction of ∀∃-sentences, essentially expressing that, given any two elements in the
group, one is in the normal closure of the subgroup generated by the other. The
result follows by arguing as previously. �
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Remark 3.4.6. One can show that when C is saturated and every group in C can be
embedded in a simple group in C, we have that {G ∈ C : G is simple} is comeager
in C. For the class of amenable groups, this was proven in [34]. As pointed out to
us by Osin, the same can be shown for the class of groups without F2 subgroups
using small cancellation theory. We do not include the proof here, but we can point
out to the reader that the proof uses techniques from [32], adapted to this setting.

4. The proofs

The goal of this section is to prove the main theorems and the corollaries pre-
sented in the introduction. For the convenience of the reader, we restate the results
here.

Theorem 1.1.1. Let P ∈ P be a property. Then the following hold:

(1) There is a comeager set XP ⊂ GP such that, for every enumerated group
G ∈ XP and every P -near isolated group H, G contains a subgroup isomor-
phic to H.

(2) Let Q be an open property of finitely generated groups for which there is a
finitely generated group that satisfies both Q and P . Then there is an open
dense set XP ⊂ GP such that every enumerated group G ∈ XP contains a
finitely generated subgroup satisfying Q.

Proof. For (1), let G be a P -near isolated group. Let (H,S) ∈ Mn be a finitely
presented marked group and letX ⊂ H be the finite set that witnesses the definition
of P -near isolated for G. Let H = 〈S | R〉 be a finite presentation for H and let
ΓS(H) be the corresponding Cayley graph. There is an m ∈ N such that the
following holds: Let Bm be the ball of radius m centred at the identity in ΓS(H)
which contains the set X as a subset as well as a set of loops that represent all
the relations in R. We denote the open set in M defined by this open ball also as
Bm. Note that by definition, any marked group in Bm that satisfies P contains
an isomorphic copy of G as a subgroup. Moreover, there is at least one nontrivial
group in Bm satisfying P , (a certain quotient of H). The m-ball determines a finite
system of equations and inequations ΣG(�x) such that for any enumerated group K,
and any �a ∈ NnΣG such that K ∈ [ΣG(�a)]P , the marked group (〈�a〉K ,�a) belongs to
Bm, whence the group 〈�a〉K contains a subgroup isomorphic to G.

Since there is at least one such K satisfying P , we have that ΣG(�x) is a P -system.
Consequently, Lemma 3.1.6 implies that the set

XΣG,P =
⋃

�a∈NnΣ

[ΣG(�a)]P

is an open dense set in GP , and each enumerated group in it contains a subgroup
isomorphic to G. Since the set YP of P -near isolated groups is countable (as P -
near isolated groups are finitely generated subgroups of finitely presented groups),
it follows that

X =
⋂

G∈YP

XPΣG,P

is the required comeager set.
For (2), let G be a finitely generated group that satisfies both P and Q. Consider

a marking (G,S) of G such that (G,S) admits an open neighbourhood in M con-
sisting entirely of marked groups that satisfy Q. In particular, there is an m ∈ N
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such that the open set Bn ⊂ M determined by the m-ball of the Cayley graph of
ΓS(G) satisfies that each marked group in Bn satisfies Q. This determines a finite
system of equations and inequations Σ(�x) such that for any enumerated group H,
and any �a ∈ NnΣ such that H ∈ [Σ(�a)], it follows that (〈�a〉,�a) ∈ Bn. Note that
Σ is a P -system, since for any �a ∈ NnΣ , there is an enumeration of G such that
G ∈ [Σ(�a)]P . So by Lemma 3.1.6, the desired open dense set is XΣ,P . �

Theorem 1.1.2. Let P ∈ P be a Boone-Higman property. Then there is a comeager
set XP ⊂ GP such that every group in XP contains an isomorphic copy of every
finitely generated group satisfying P with solvable word problem.

Proof. Let G be a finitely generated group that satisfies P and has solvable word
problem. Since P is a Boone-Higman property, G embeds in a simple subgroup
H1 of a finitely presented group H2 = 〈S | R〉 satisfying property P . It suffices to
show that there is an open dense set X ⊂ GP such that, for each H ∈ X, G embeds
in H. Since the class of finitely generated groups with solvable word problem is
countable, we can conclude the statement of the theorem by taking an intersection
of all such open dense sets.

Take n ∈ N such that the n-ball Bn of the Cayley graph of ΓS(H2) determines
an open set, also denoted as Bn, in M|S| satisfying the following:

(1) For any K ∈ Bn, K is a quotient of H2.
(2) H1 ∩Bn �= {id}.
Since H1 is simple and contains G as a subgroup, it follows that any nontrivial

quotient of H2 whose restriction to Bn is injective contains G as a subgroup. This
determines a finite system of equations and inequations Σ(�x) such that, for any
�a ∈ NnΣ and H ∈ [Σ(�a)], it holds that (〈�a〉H ,�a) ∈ Bn and thus G ≤ 〈�a〉H ≤ H.
Note that, by our hypothesis, Σ is a P -system, since for any �a ∈ NnΣ , there is an
enumeration of H which lies in [Σ(�a)]P . By Lemma 3.1.6, the desired open dense
set is once again

XΣ,P =
⋃

�a∈NnΣ

[Σ(�a)]P .

�

We remark that for the special case when P is the tautological property, this
result follows from a result of Neumann (see [29], [28]), namely that every existen-
tially closed group contains a copy of every finitely generated group with solvable
word problem. (The notion of existentially closed groups is introduced in Definition
5.2.4, and it is shown in Lemma 5.2.7 that the set of existentially closed groups form
a comeager set in G).

Theorem 1.1.3. Let P ∈ P be a property that is inherited by subgroups. Then the
following holds:

(1) If P is a Boone-Higman property that is not strongly undecidable, there is a
comeager set XP ⊂ GP such that for each group G ∈ XP , the set of finitely
generated subgroups of G coincides with the set of finitely generated groups
satisfying P that also have a solvable word problem.

(2) If P is strongly undecidable, there is a comeager set XP ⊂ GP such that, for
each group G ∈ XP , the set of finitely generated subgroups of G contains
all finitely generated groups satisfying P that also have a solvable word
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problem, but also contains a finitely generated subgroup with P that has an
unsolvable word problem.

Proof. We first handle the case when P is not strongly undecidable.

Claim. For each m ∈ N, there is a comeager subset Zm of GP satisfying

Zm ⊆ {G ∈ GP | 〈1, . . . ,m〉G has a solvable word problem}.

Note that once the claim is proved, we can finish the proof of part (1) by setting
XP =

⋂
m∈N Zm.

Proof of Claim:
For a fixed m ∈ N, we consider an enumeration of all triples

(Gn, 〈Sn | Rn〉, {W (n)
1 , . . . ,W

(n)
m+1})n∈N,

where:

(1) Gn is a finitely presented group endowed with a finite presentation 〈Sn | Rn〉
with ordered generating set Sn = (s1,n, . . . , skn,n).

(2) {W (n)
1 , . . . ,W

(n)
m+1} is a set of words in the generating set S with the prop-

erty that there is a subgroupHn ≤ Gn that is simple and {W (n)
1 , . . . ,W

(n)
m+1}

⊂ Hn \ {id}.
Given �x = (x1, . . . , xkn

) and a relation R ∈ Rn, we let R(�x) denote the word ob-

tained by replacing every occurrence of s±1
i,n by x±1

i . We defineW
(n)
1 (�x), . . . ,W

(n)
m (�x)

in a similar fashion.
For each n ∈ N, let Σn(�x) (where �x = (x1, . . . , xkn

)) be a finite system compris-
ing of the following equations and inequations:

R(�x) = 1 for all R ∈ Rn

W
(n)
1 (�x) = 1 W

(n)
2 (�x) = 2 . . . W (n)

m (�x) = m

W
(n)
m+1(�x) �= e.

We define the set

Zm =
⋃
n∈N

XΣn,P .

The set Zm is clearly open. Recalling that finitely generated subgroups of simple
subgroups of finitely presented groups have solvable word problem, we claim that
our construction ensures that

Zm ⊆ {G ∈ GP | 〈1, . . . ,m〉G has solvable word problem}.

To see this, consider G ∈ Zm such that G |= Σn(�a) for some n ∈ N and �a ∈ Nkn .
It follows from the definition of the system that there is a finitely presented group
H1, a simple subgroup K ≤ H1, a finite subset X ⊂ K \ {id}, and a surjective
homomorphism φ : H1 → H2 such that:

(1) φ is injective on K. (In particular, φ � 〈X〉 is injective.)
(2) There is an isomorphism λ : H2 → 〈�a〉G whose restriction induces isomor-

phisms

φ(K) → λ(φ(K)) and φ(〈X〉) → 〈1, . . . ,m〉G.
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It follows that 〈1, . . . ,m〉G embeds in a simple subgroup of a finitely presented
group, whence our conclusion follows.

It remains to show that Zm is dense in GP . Let Δ(�x) be a P -system and let
�a ∈ NnΔ . We would like to show that [Δ(�a)]P ∩ Zm �= ∅.

Towards that end, fix an arbitrary order on the set S = {�a} ∪ {1, . . . ,m}. We
consider the finitely presented group H with presentation 〈S | R〉, where S is as
above and R is determined by the set of equations satisfied by �a in Δ(�a). Let X
be the finite subset of H that is determined by the set of inequations satisfied by �a
in Δ(�a).

Note that while it may be the case that no enumeration ofH is in [Δ(�a)]P , there is
at least one quotient φ : H → H1, injective on X, such that there is an enumeration
of H1 in [Δ(�a)]P . (This enumeration of H1 will satisfy that the ordered image φ(S)
is in an order-preserving bijection with the order we fixed on {�a} ∪ {1, . . . ,m}.)
Since P is not strongly undecidable, we may choose an appropriate such quotient
(and enumeration) so that H1 has solvable word problem. Since H1 has solvable
word problem and since P is a Boone-Higman property, it embeds in a simple
subgroup of a finitely presented group H2 satisfying P . Using this, it is easy to see
that there is an n ∈ N and an enumeration of H2 such that H2 ∈ XΣn,P ∩ [Δ(�a)]P .

Now we treat the case when P is strongly undecidable. By definition, there is a
finitely presented group G = 〈S | R〉 and a finite subset X ⊂ G such that:

(1) There is at least one group H satisfying P for which there is a surjective
homomorphism φ : G → H whose restriction to X in injective.

(2) Every surjective homomorphism φ : G → H whose restriction to X in
injective and for which H satisfies P also satisfies that H has unsolvable
word problem.

Let n ∈ N be such that the ball of radius n centred at the identity of the Cayley
graph of ΓS(G) contains the set X as a subset and also loops that witness the finite
set of relations R. We denote the open set in M|S| defined by this open ball by Bn.

This n-ball determines a finite system of equations and inequations ΣG(�x) such
that, for any enumerated group K and any �a ∈ NnΣG such that K ∈ [ΣG(�a)]P , the
marked group (〈�a〉K ,�a) belongs to Bn. By our assumption, it follows that [ΣG(�a)]P
is nonempty for any distinct �a ∈ NnΣG , whence ΣG(�x) is a P -system. Moreover,
for each H ∈ [ΣG(�a)]P , 〈�a〉H has unsolvable word problem. By Lemma 3.1.6, the
set

XΣG,P =
⋃

�a∈NnΣ

[ΣG(�a)]P

is an open dense set in GP , and each enumerated group in it contains a subgroup
with unsolvable word problem, yielding the desired conclusion. �

The proof of Theorem 1.1.6 will appear in Section 5 below. We continue with
Theorem 1.2.1 from the introduction:

Theorem 1.2.1. Let P ∈ P be a property of torsion-free groups that is closed under
amalgamation along infinite cyclic subgroups and HNN extensions with associated
subgroups that are infinite cyclic. Then there is a comeager set XP ⊂ GP such that
each G ∈ XP has only one nontrivial conjugacy class (in particular, it is simple)
and is verbally complete.

Proof. First we shall construct a comeager set X ⊂ GP such that each G ∈ X has
only one nontrivial conjugacy class. Consider the system Δ1(�x) for �x = (x1, x2, x3)
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defined by x−1
1 x2x1 = x3 and Δ2(y) defined by y = e. We claim that for each pair

i, j ∈ N, i �= j,

Xi,j = (
⋃
k∈N

[Δ1(i, j, k)]P ) ∪ [Δ2(i)]P ∪ [Δ2(j)]P

is an open dense set.

Fix a basic clopen set in the topology on GP given by [Ω(�b)]P for some fixed
�b ∈ NnΩ , where Ω(�z) is a P -system. Let H ∈ [Ω(�b)]P . If either i = e or j = e holds

in H, then H ∈ Xi,j ∩ [Ω(�b)]P , and we are done. Assume that this is not the case.

Let �c = (i, j,�b). Since H is torsion-free (groups satisfying the property P in the
hypothesis of the theorem are always torsion-free), we construct an HNN extension
K = 〈H, t | t−1gt = h〉 where g, h are the elements in H that correspond to the
elements i, j in the given enumeration. By our assumption, K satisfies property
P , wence we can find an enumeration of K in GP such that 〈�c〉K = 〈�c〉H . Note in

particular that K |= Ω(�b) and hence it follows that K ∈ Xi,j ∩ [Ω(�b)]P . This proves
the claim. The required comeager set is then

X =
⋂

i,j∈N,i �=j

Xi,j .

We finish the proof of the theorem by proving that every group in a certain comeager
subset of GP is verbally complete. Let W (x1, . . . , xn) be a nontrivial reduced word
in the letters x±

1 , . . . , x
±
n . For �x = (x1, . . . , xn, xn+1), consider the system Σ(�x)

defined by
W (x1, . . . , xn) = xn+1.

Let
XW,i =

⋃
�a∈Nn

{G ∈ GP | G |= Σ(�b) for �b = (�a, i)} =
⋃

�a∈Nn

[Σ(�a, i)]P .

Clearly, this is an open set. We claim that it is dense in GP . Consider a P -system
Ω(�z) and the corresponding nonempty open set [Ω(�c)]P for some fixed �c ∈ NnΩ .
Fix G ∈ [Ω(�c)]P . If i = e in G, then

G ∈ [Ω(�c)]P ∩ XW,i

for trivial reasons and we are done. We may thus assume otherwise. Since G is
torsion free, we can construct the amalgamated free product

H = G ∗i=W Fn,

where W = W (x1, . . . , xn) ∈ Fn, with Fn being the free group of rank n freely
generated by x1, . . . , xn. We conclude by finding an enumeration of H for which
〈�c〉H = 〈�c〉G and hence H ∈ [Ω(�c)]P ∩ XW,i, as desired. �

Before proving Theorem 1.2.3, we need Lemma 4.0.1:

Lemma 4.0.1. For any H ∈ GP , the following are equivalent:

(1) The isomorphism type of H is locally universal for GP .
(2) For any P -system Σ(�x), H ∈ XΣ,P .

Proof. We begin the proof with a

Claim. Suppose G,H are countable groups and U is a nonprincipal ultrafilter on
N. Then G embeds into HU if and only if any system with a solution in G also has
a solution in H.
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Proof of claim: First suppose that α : G ↪→ HU is an embedding and Σ(�x) is a

system with a solution �a ∈ G. Since �h = α(�a) ∈ HU is a solution of Σ in HU, it

follows that �h(i) ∈ H is a solution to Σ for U-almost all i ∈ N.
We now prove the converse. Enumerate G = {gn : n ∈ N} and for each m ∈ N,

let Σm(�x) denote the system

{xj · xk = xl : 1 ≤ j, k ≤ m, gj · gk = gl}.

By assumption, Σm(�x) has a solution (h
(m)
1 , . . . , h

(m)
m ) ∈ Nm in H. It follows that

the map G → HU given by gn �→ fn, where fn is defined by

fn(i) =

{
eH for 0 ≤ i < n

h
(i)
n , for n ≥ i

}

is an injective group homomorphism. This finishes the proof of the claim.
Now we show that the claim implies the conclusion of the lemma. If the isomor-

phism type of H is locally universal for GP , then by definition, any G ∈ GP embeds
in HU. Since this holds for any G ∈ GP , part (2) follows from the claim. Similarly,
if part (2) holds for some H ∈ GP , then (1) follows from the claim since it implies
that any group G ∈ GP embeds in an ultrapower of H. �

Theorem 1.2.3. For each P ∈ P, Glu,P is a comeager subset of GP .

Proof. Using part (2) of the characterisation of locally universal groups in GP given
by Lemma 4.0.1 together with Lemma 3.1.6, it follows that

Glu,P =
⋂

Σ(�x) a P -system

XΣ,P

is a comeager set. �

The following is a special case of the Downward Löwenheim-Skolem theo-
rem and will be used in the proof of Theorem 1.2.2.

Fact 4.0.2. Given any group G and an infinite subset X ⊆ G, there is a subgroup
H of G such that X ⊆ H, |H| = |X|, and so that G and H are elementarily
equivalent.

The proof of Theorem 1.2.2 will also require the following lemma and proposition.

Lemma 4.0.3. Suppose that H is finitely presented and embeds into an ultrapower
of G. Then H is fully residually G.

Proof. Suppose H = 〈a1, . . . , am | w1, . . . , wn〉 and take words w′
1, . . . , w

′
p such that

w′
i(�a) �= id for all i = 1, . . . , p. Then the system

Σ(�x) :=

n∧
i=1

wi(�x) = id ∧
p∧

j=1

w′
j(�x) �= id

has a solution in H, whence it also has a solution in G, say �b = b1, . . . , bn. It
follows that the map ai �→ bi yields a group homormorphism f : H → G for which
f(w′

i(�a)) �= id for i = 1, . . . , p, as desired. �

Proposition 4.0.4. Suppose that G is residually amenable, H is a finitely pre-
sented group with property (T), and G ≡ H. Then G and H are both residually
finite.
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Proof. Since H embeds into an ultrapower of G, by Lemma 4.0.3 it follows that H
is fully residually G, so residually amenable, and thus residually finite since H has
property (T). Since G embeds into an ultrapower of H, G is residually H, and thus
also residually finite. �

Remark 4.0.5. The proof of the previous proposition shows that one does not need
the full strength of the assumption that G ≡ H but rather that each embeds into
the ultrapower of the other, or rather, that they have the same universal theory.

Theorem 1.2.2. There is a comeager set X ⊂ Gam such that, for each G ∈ X, the
following holds:

(1) There are continuum many pairwise nonisomorphic countable nonamenable
groups with the same first-order theory as G.

(2) G cannot have the same first-order theory as a finitely presented group with
property (T).

Proof. (1) By [21], for each r ∈ R, there is a group Kr such that the set {Kr :
r ∈ R} contains continuum many nonisomorphic finitely generated, infinite, simple,
amenable groups. In particular, the set of groups {F2 × Kr : r ∈ R} contains
continuum many pairwise nonisomorphic finitely generated nonamenable groups.

Fix a nonprincipal ultrafilter U on N. For any locally universal amenable group
G, since G is lawless, we have that F2 ×Kr embeds into GU ×GU (see Fact 5.3.5
below), which in turn embeds into (G×G)U. Since G is a locally universal element
of Gam, (G × G)U in turn embeds into GU. In summary: each F2 × Kr embeds
into GU. Using fact 4.0.2, for each r ∈ R, let Hr � GU be a countable subgroup
containing F2 × Kr which is elementarily equivalent to GU (and hence to G). It
follows that the class {Hr : r ∈ R} has continuum many isomorphism types and
each group in it has the same first order theory as G.

(2) By Theorem 1.2.3 and Proposition 4.0.4, it suffices to show that no group
locally universal for Gam can be residually finite. Recall that Grigorchuk’s con-
struction GGR (of a finitely presented amenable group which is not elementary
amenable), is in fact not residually elementary amenable. It was shown in [17]
that every proper quotient of GGR is metabelian. It follows that GGR is an iso-
lated group. Combining this with Theorem 1.1.1, we conclude it embeds in every
group in a comeager subset of Gam. Using the Baire category theorem, we can
assume that every group in this comeager set is locally universal for Gam. This is
a contradiction. �

4.1. Proofs of the applications. We now provide the proofs of the applications
of our main results, as outlined in the introduction.

Corollary 1.3.1. The following holds:

(1) The generic enumerated group without F2 subgroups is nonamenable.
(2) The generic left orderable enumerated group without F2 subgroups is nona-

menable.
(3) The generic enumerated amenable group is not elementary amenable.

In fact, we can choose these comeager sets to be open dense sets.

Proof. First, we observe the following fact: if G is a finitely presented nonsolvable
group for which there is an n ∈ N such that every proper quotient of G is solvable
of length n, then G is isolated. This follows from the observation that for a fixed
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finite presentation 〈S | R〉 of G and a sufficiently large m ∈ N, the m-ball centered
at the identity of the corresponding Cayley graph ΓS(G) satisfies the following:

(1) It contains loops that represent all the relations in R.
(2) It contains a nontrivial element of the n’th derived subgroup of G.

This m-ball provides an open subset in M|S| that witnesses that G is an isolated
point.

In [24], the third author with Moore constructed a finitely presented nona-
menable, left orderable group without free subgroups, denoted G0. It was shown
in [8] that G′

0 is simple and that every proper quotient of G0 is abelian. It follows
that G0 is an isolated group. Combining this with Theorem 1.1.1, we conclude the
first two parts of the corollary.

As mentioned above, in [17], Grigorchuk constructed the first example of a
finitely presented amenable group GGR which is not elementary amenable. It was
shown in [17] that every proper quotient of GGR is metabelian, whence it follows
that GGR is an isolated group. Combining this with Theorem 1.1.1, we conclude
the last part of the corollary. �

Before moving on, let us mention that Proposition 1.3.2 will be proven in the
next section.

For the next set of proofs, we recall the following well known examples. Thomp-
son’s group T is the group of piecewise linear orientation-preserving homeomor-
phisms of the circle S1 = R/Z such that:

(1) Each linear part is of the form 2n + d, where n ∈ Z and d ∈ Z[ 12 ]/Z.
(2) There are only finitely many points where the slopes do not exist and these

points lie in Z[ 12 ].

The group T < Homeo+(R) is the “lift” of this action to the real line. In
particular, there is a short exact sequence

1 → Z → T → T → 1

where the group Z is the group of integer translations of the real line and coincides
with the center of T . Since T is finitely presented, it follows that T is also finitely
presented. The group T was first studied by Ghys and Sergiescu in [14] and it has
several remarkable features. This group shall play an important role in the next
proof.

Next, we recall that, for a free subgroup F2 of SL(2,Z), acting linearly on Z2,
the resulting semidirect product F2 �Z2 is locally indicable (and therefore also left
orderable) and the pair (F2 � Z2,Z2) has relative property (T ). (We refer to [27]
for details, and to [2] for the definition of relative property (T )). It follows that
F2 � Z2 does not have the Haagerup property (see [2]). Note that this group is
finitely presented.

Corollary 1.3.3. There is a comeager set Xlo ⊂ Glo such that each G ∈ Xlo

satisfies:

(1) It is not locally indicable.
(2) It does not have the Haagerup property.
(3) It does not admit nontrivial actions by C1-diffeomorphisms on the closed

interval or the circle.
(4) Contains an isomorphic copy of every finitely generated left orderable group

with a solvable word problem.
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Corollary 1.3.4. There is a comeager set Xli ⊂ Gli such that each G ∈ Xli satisfies:

(1) It is not biorderable.
(2) It does not admit nontrivial actions by C1-diffeomorphisms on the closed

interval, [0, 1) or the circle.

Proofs of Corollaries 1.3.3 and 1.3.4. The group T is finitely presented, perfect
(that is, T = [T , T ]), and left orderable. It is easy to show that the set of nor-
mal subgroups of T coincides with subgroups that lie in the infinite cyclic center.
It follows that the only nontrivial left orderable quotient of T is T itself, whence
T is lo-near isolated. We conclude from Theorem 1.1.1 that there is a comeager
subset X ⊂ Glo such that each group G ∈ X contains T as a subgroup. It follows
that such G is not locally indicable, finishing the proof of Corollary 1.3.3(1).

Set H = F2 � Z2. Since H has a solvable word problem and is left orderable, it
embeds in a simple subgroup of a finitely presented left orderable group. Therefore,
H is lo-near isolated and hence embeds in every enumerated group belonging to a
certain comeager subset of Glo by Theorem 1.1.1. It follows that no group in this
comeager subset has the Haagerup property, proving Corollary 1.3.3(2).

The group G0 is locally indicable (as it is a subgroup of the group of piecewise
projective homeomorphisms of the real line). In [5], it was shown that G0 does
non admit a nonabelian action by C1-diffeomorphisms on the closed interval or the
circle. As mentioned above, G0 is an isolated group; the conclusions of Corollary
1.3.3(3) and Corollary 1.3.4(2) follow from Theorem 1.1.1, arguing as before.

The group BS(1,−1) = 〈f, g | fg = f−1〉 is an example of a locally indicable
group which is not biorderable. Recall that biorderability is a closed property.
Therefore, Corollary 1.3.4(1) follows from Theorem 1.1.1(2).

Theorem 3.3.4 asserts that left orderability is a Boone-Higman property. There-
fore, part (4) of Corollary 1.3.3 follows from Theorem 1.1.2. �

Corollary 1.3.6. The following holds:

(1) There is an open dense set X ⊂ Gtf such that each enumerated group G ∈ X

is a counterexample to the unit conjecture.
(2) The generic torsion-free enumerated group does not have the unique product

property.
(3) The generic group with the unique product property is not left orderable.
(4) Either the Kaplansky zero divisor conjecture holds or else the generic

torsion-free group does not satisfy the zero divisor conjecture.
(5) Either the Kaplansky idempotent conjecture holds or else the generic

torsion-free group does not satisfy the idempotent conjecture.

Proof. Gardam in [13] proved that the Promislaw group is a counterexample to
the Kaplansky unit conjecture. Since the group is finitely presented and has a
solvable word problem, by Theorem 1.1.3, it embeds in every group belonging to
a comeager subset of Gtf . (We use here the fact that torsion freeness is a Boone
Higman property.) Part (1) of the corollary follows.

Recall that a construction of Rips and Sageev provides finitely generated torsion-
free groups without the unique product property (see [7]). Also, Dunfield discovered
examples of finitely generated groups with the unique product property that are
not left orderable (see the appendix in [23]). Finally, recall that the failure of the
unique product property, as well as the failure of left orderability, are both open
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properties. It follows from Theorem 1.1.1(2) that there are comeager sets

X1 ⊂ Gtf X2 ⊂ Gupp

such that no group in X1 has the unique product property and no group in X2 is
left orderable. This proves parts (2) and (3) of the corollary. Parts (4) and (5)
follow from a very similar argument using Theorem 1.1.1(2). �
Corollary 1.3.7. For any P ∈ P, either all groups in GP are sofic or else the
generic group in GP is nonsofic.

Proof. The proof follows from the fact that soficity is an open property and a direct
application of Theorem 1.1.1(2). �

5. More about genericity

In this section, we reiterate the use the following convention to make the dis-
tinction between an isomorphism type and its enumeration more precise. We shall
denote an isomorphism type with letters such as G and H and chosen enumerations
for the respective groups as G and H respectively.

5.1. Applications of the Baire alternative. Recall that a subset of a topolog-
ical space is said to be Baire measurable if it belongs to the smallest σ-algebra
containing the open sets and the meager sets. The Baire alternative states that
a Baire measurable subset of a topological space is either meager or there is a
nonempty open set where it is comeager; if the topological space is a Baire space
(that is, a topological space for which the conclusion of the Baire category theo-
rem holds, e.g. Polish spaces), then exactly one of the two alternatives hold. We
investigate consequences of this fact in our context.

Proposition 5.1.1. Suppose that C is a saturated subspace of G such that the set
of isomorphism types C of C is closed under direct sums. Further suppose that D
is a saturated, Baire measurable subset of D. Then either D is meager in C or
comeager in C.

Proof. Suppose that D is not meager in C, whence D is comeager in a nonempty

open set [Σ(�a)]C. Since D is saturated, D is comeager in
⋃

�b∈NnΣ
[Σ(�b)]C, which

is itself comeager in C since C is closed under direct sums. It follows that D is
comeager in C, as desired. �
Proposition 5.1.2. If ϕ(�x) is an Lω1,ω-formula and �a ∈ Nnϕ , then

{G ∈ G : G |= ϕ(�a)}
is a Borel subset of G.

Proof. A straightforward induction on the complexity of formulae. �
Corollary 5.1.3. Suppose that C is a saturated, Baire subspace of G such that its
set of isomorphism types C is closed under direct sums and ϕ is an Lω1,ω-sentence.
Then exactly one of {G ∈ C : G |= ϕ} or {G ∈ C : G |= ¬ϕ} is comeager in C.

In the rest of this subsection, we give some examples of the utility of the previous
ideas. Recall that a group G is inner amenable if it admits a conjugation-invariant
finitely additive probability measure not concentrating on the identity.

We can apply the above the conclude the proof of Proposition 1.3.2. We remind
the reader of the statement:
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Proposition 1.3.2.

(1) The generic enumerated group without F2 subgroups is inner amenable.
(2) The generic left orderable enumerated group without F2 subgroups is inner

amenable.

Proof. For each n, let σn be the sentence

∀x1 · · · ∀xn∃y(
n∧

i=1

xiy = yxi ∧ y �= e).

By Corollary 5.1.3, {G ∈ Gsm : G |=
∧

n σn} is either meager or comeager in
Gsm. However, this set is clearly dense in Gsm, whence it must be comeager. It
remains to note that all elements G of this set are inner amenable. Indeed, write
G as an increasing union of finite subsets Fn and let gi ∈ G \ {e} be an element
that commutes with each element in Fi. Now consider hi = δgi ∈ �1(G), the
characteristic function of gi. Any weak* limit of the hi is a conjugation invariant
mean. �

Let Gfg denote the saturated subspace of G consisting of finitely generated enu-
merated groups.

Proposition 5.1.4. Gfg is a meager Borel (in fact, Σ0
3) subset of G.

Proof. First note that

Gfg =
⋃

�a∈N<N

⋂
b∈N

⋃
w(�x)

[w(�a) = b]

which is a Σ0
3 subset of G. Let σn be the sentence

∀x1 · · · ∀xn∃y(
n∧

i=1

xiy = yxi ∧ y �= e).

We have already seen in the proof above that {G ∈ G : G |=
∧

n σn} is a comeager
set in G, and from Remark 3.4.6 we know that {G ∈ G : G is simple} is also a
comeager set in G. It remains to notice that the comeager set

{G ∈ G : G |=
∧
n

σn} ∩ {G ∈ G : G is simple}

consists of groups that are not finitely generated. �
5.2. Generic sets and model-theoretic forcing. In this section, we provide
a connection between Question 1.0.1(2), and model theoretic forcing. First, we
observe the following remark:

Remark 5.2.1. By Corollary 5.1.3, letting ϕ be a Scott sentence,7 we see that the
set in the previous question is either meager or comeager.

We now explain why the answer to 1.0.1(2) is negative when we consider the
space G itself. In order to do so, it will help us to rephrase this in the language of
model-theoretic forcing via the presentation in [20].

The connection we now describe is in fact hinted at in [20] (see Exercises 4–6
from Section 2.2).

7Given a countable group G, a Scott sentence for G is a Lω1,ω-sentence σG such that, for any

countable group H, H |= σG if and only if G ∼= H.
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For the rest of this section, we fix a saturated subspace C of G. We consider a
two-player game where the players take turns playing C-systems with the require-
ment that each system played extends the previous players turn. The players play
countably many rounds. When the game is over, the players have constructed an
infinite system of equations and inequations. We call a play of the game definitive
if, for all m,n ∈ N, there is k ∈ N such that the equation xm · xn = xk appears
in the final system. In what follows, we always assume that the play of the game
is definitive.8 In this case, at the end of the game, the players have described an
enumerated group, called the compiled group.9

We call a property P of enumerated groups C-enforceable if there is a strategy
for player II that ensures that the compiled group always has property P . A useful
fact is the Conjunction Lemma (see [20, Lemma 2.3.3(e)], which states that a
countable conjunction of C-enforceable properties is C-enforceable.

Proposition 5.2.2. Suppose that C is a saturated Polish subspace of G. Then the
property of being in C is a C-enforceable property.

Proof. Since C is a Polish subspace of G, there are open subsets Un of G such that
C =

⋂
n Un. By the Conjunction Lemma, it suffices to show, for each n, that the

property of belonging to Un is C-enforceable. Suppose player I opens with the C-
system Σ. Fix G ∈ [Σ]C. Since G ∈ Un and Un is open, there is a C-system Δ such
that G ∈ [Δ]C ⊆ Un. Then player II responds with the C-system Σ ∪Δ. It follows
that the compiled group belongs to [Δ]C and thus to Un, as desired. �

Given a property P of enumerated groups and C ⊆ G a saturated, Baire measur-
able subset, we define

CP = {G ∈ C | G has the property P},

we say that P is invariant if CP is saturated and we say that P is Baire measur-
able if CP is a Baire measurable subset of C. Note that any property of countable
groups will be invariant (since it is a property of an isomorphism type, not a specific
enumeration.)

Here is the connection between Baire category and enforceability:

Theorem 5.2.3. Suppose that C is a saturated, Baire subspace of G and that P is
an invariant Baire measurable property. Then CP is a comeager subset of C if and
only if P is a C-enforceable property.

Proof. First suppose that CP is a comeager subset of C. Since C is a Baire space,
there is a countable collection of dense open sets Un ⊆ G such that

⋂
n Un ⊆ CP .

In order to show that P is C-enforceable, it suffices, for every n, to show that the
property “H ∈ Un” is a C-enforceable property. Towards this end, suppose that
player I opens with the system Σ. Since Un is dense, there is a group H ∈ [Σ]C∩Un.
Since Un is open, there is a system Δ such that H ∈ [Δ]C ⊆ Un. Let player II
respond with Σ ∪Δ. Then the compiled group will belong to Un, as desired.

8In [20], the definitiveness requirement is not present. However, in the terminology used there,
being definitive is an enforceable property and thus, for our purposes, there is no loss of generality
in assuming that the plays are definitive.

9Without the definitive requirement, the compiled group would merely be the group generated
by N subject to the relations given by the equations of the final system.
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Now suppose that P is a C-enforceable property. If CP were meager, then C\CP

is comeager; since P is invariant, it follows that the negation of property P is
C-enforceable, which is a contradiction. �

We shall need the following notion.

Definition 5.2.4. If G is a subgroup of H, we say that G is existentially closed
(or, e.c., for short) in H if, for any finite system Σ(�x, �y) and any �a ∈ G, if there
is a solution to Σ(�a, �y) in H, then there is a solution to Σ(�a, �y) in G. If C is the set
of isomorphism types of a class C ⊆ G, we say that G ∈ C is existentially closed
for C if G is e.c. in H for every H ∈ C containing G as a subgroup.

We now present some elementary facts about this notion.

Proposition 5.2.5. Let C be a class of isomorphism types. Then the following
holds.

(1) If C is closed under direct limits, then any element of C is a subgroup of a
group that is e.c. for C.

(2) Suppose that any two elements of C can be embedded into a common element
of C (e.g. when C is closed under direct products). Then any e.c. element
of C is locally universal for C.

More generally, if G is a subgroup of H, then G is e.c. in H if and only if H
embeds into an ultrapower of G in such a way that the restriction to G is the
diagonal embedding of G into its ultrapower.

Let C ⊆ G be a saturated subset and let C be its underlying class of isomorphism
types. We let Cec denote the collection of e.c. objects in C and we set Cec ⊆ C

denote the set of enumerations of groups in C.

Lemma 5.2.6. Suppose that C is closed under direct limits. Then Cec is dense in
C.

Proof. Suppose that [Σ(�a)]C is a nonempty basic open subset of C and G ∈ [Σ(�a)]C.
By Proposition 5.2.5, we can find a group H ⊇ G which is an e.c. element of C.
Fix an enumeration of H that agrees with G on �a. Then H ∈ [Σ(�a)]C ∩ Cec. �

Unlike the case of locally universal groups, we do not know if the set of e.c.
elements of a given class is comeager. However, we do have such a result in the
following context:

Lemma 5.2.7. For any universal theory T extending the theory of groups, if we
set C := CT , then Cec is comeager in C.

Proof. By an application of Proposition 3.1.7, since C is closed, we can deduce that
C is closed under direct limits. Hence by Lemma 5.2.6, Cec is dense in C. So we
only need to show that Cec is Gδ in C. Fix a system Σ(�x, �y) and �a ∈ N. Set

Y := YΣ,�a,C := {G ∈ C : G |= ∃�yΣ(�a, �y)}

and note that Y =
⋃

�b∈N[ϕ(�a,�b)]C, whence is open. We claim that

Z := ZΣ,�a,C = {G ∈ C : for all H ⊇ G with H ∈ C, H |= ∀�y¬Σ(�a, �y)}
is also an open subset of C.
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Indeed, suppose that G ∈ Z and let {[Σn(�bn)]C}n∈N denote a countable neigh-
borhood base of G. Suppose, towards, a contradiction, that for each n, there is

Hn ∈ [Σn(�bn)]C ∩
⋃
�c∈N

[Σ(�a,�c)]C.

Fixing a nonprincipal ultrafilter U on N, an argument similar to (but slightly more
elaborate than) that occurring in the proof of Lemma 4.0.1 shows that G embeds
into

∏
U Hn. Since ∏

U

Hn |= T ∪ {∃�yΣ(�a, �y)}

this contradicts the fact that G ∈ Z. Consequently, for some n, we have that

[Σn(�bn)]C ⊆
⋂
�c∈N

[¬Σ(�a,�c)]C.

Finally, we note that

[Σn(�bn)]C ⊆ Z.

Indeed, if H ∈ [Σn(�bn)]C and K ⊇ H belongs to C, then by fixing an enumeration

K of K for which K ∈ [Σn(�bn)]C, we have that K |= ∀�y¬Σ(�a, �y).
It remains to note that

Cec =
⋂
Σ,�a

(YΣ,�a,C ∪ ZΣ,�a,C) .

�
The following corollary of Lemma 5.2.7 is an immediate generalization of an

argument originally due to Macintyre in the case that T is the theory of groups
itself (see, for example, [20, Theorem 3.4.6]):

Corollary 5.2.8. Suppose that T is a recursively enumerable universal theory ex-
tending the theory of groups and H is a finitely generated group without solvable
word problem. Then there is an e.c. model G of T into which H does not embed.

Proof. Let �h denote a finite generating set for H and let Φ+(�x) and Φ−(�x) denote

the set of equations and inequations satisfied by �h in H. Set Φ(�x) = Φ+(�x)∪Φ−(�x).

Letting n denote the length of �h, by Lemma 5.2.7 and the Baire category theorem,
it suffices to show that, for any �a ∈ Nn, the set

⋃
ϕ∈Φ[¬ϕ(�a)]CT

is dense, for then

any G belonging to the comeager set Cec ∩
⋂

�a∈Nn

⋃
ϕ∈Φ[¬ϕ(�a)]CT

is as desired.

Suppose, towards a contradiction, that
⋃

ϕ∈Φ[¬ϕ(�a)]CT
is not dense, whence there

is some CT -system Σ(�x) for which [Σ(�a)]CT
⊆

⋂
ϕ∈Φ[ϕ(�a)]CT

. In other words,

for all equations ϕ, we have ϕ ∈ Φ+(�x) if and only if T |= ∀�x(Σ(�x) → ϕ(�x)),

implying that the set of all equations true of �h in H is recursively enumerable. The

same argument shows that the set of inequations true of �h in H is also recursively
enumerable, whence H has solvable word problem, leading to a contradiction. �

The following is [20, Corollary 3.4.3]:

Proposition 5.2.9. Suppose that C is a closed saturated subset of G. Then the
property of being e.c. for C is C-enforceable.

Proposition 5.2.10. Suppose that C and D are saturated Polish subspaces of G
with D ⊆ C. Further suppose that there is G ∈ D such that G is locally universal
for C. Then the property of belonging to D is C-enforceable.
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Proof. Let Un be open subsets of G such that D =
⋂

n Un. It suffices to show, for
each n, that belonging to Un is C-enforceable. Suppose that player I opens with
the the C-system Σ. Since G is locally universal for C, we have that G |= Σ. Since
G ∈ Un and Un is open, there is a D-system Δ such that G ∈ [Δ]C ⊆ Un. If player
II responds with the C-system Σ ∪Δ, we have that the compiled group belongs to
Un, as desired. �

Corollary 5.2.11. Suppose that C is a saturated Baire measurable subspace of G.
Given G ∈ C, the set {H ∈ C : H ∼= G} is comeager in C if and only if the property
of being isomorphic to G is C-enforceable.

When the equivalent conditions of the following corollary are satisfied, we call
G the C-enforceable group.

Fact 5.2.12 follows from [20, Theorem 4.2.6 and Exericse 4.2.2(a)]:

Fact 5.2.12. Suppose that P is an axiomatizable property of groups that is closed
under direct limits. Further suppose that the GP -enforceable group G exists. Then
G embeds into every GP -e.c. group.

We are now ready to prove:

Theorem 1.1.6. If P is a strongly undecidable, recursively axiomatizable property
that is closed under subgroups, then there is no comeager isomorphism class in GP .

Proof. Suppose, towards a contradiction, that there is a comeager isomorphism
class in GP , that is, the GP -enforceable group G exists. Since P is a strongly
undecidable property closed under subgroups, Theorem 1.1.3 and the Baire category
theorem imply that G contains a finitely generated subgroup H with property P
that has an unsolvable word problem. By Corollary 5.2.8, there is an e.c. element
of GP into which H does not embed. On the other hand, G embeds into all e.c.
elements of GP by Fact 5.2.12, leading to a contradiction. �

We document here A. Darbinyan’s proof that left orderability is strongly unde-
cidable.

Proposition 5.2.13. Left orderability is strongly undecidable.

Proof. Fix recursively inseparable recursively enumerable subsets M,N ⊆ N. (Re-
call that this means that there is no recursive set K such that M ⊂ K and
N ∩ K = ∅; see [35, Section 7.7].) Let A0 be the free abelian group on count-
ably many generators ai. Consider the following abelian quotient A of A0:

A = 〈a1, a2, . . . |a1 = ai if i ∈ M and a2 = aj if j ∈ N〉.
Let π0 be the quotient map from A0 to A. It was shown in [9, Theorem 3 (a), (c),
(f)] that A can be embedded into a 2-generated, left orderable, recursively presented
group G0 by an embedding Φ such that the map i �→ Φ(ai) is computable. (By
computability, we mean the existence of an algorithm that takes as an input i ∈ N,
and produces as an output a word in the finite generating set of G0 that represents
the image of ai in G0.)

Since every recursively enumerable left orderable group embeds in a finitely pre-
sented left orderable group (by Theorem 3.3.3), we can fix a finitely presented left-
orderable group G that contains a copy of G0. Moreover, the inclusion G0 ↪→ G is
computable as G is finitely presented. Set F = {Φ(a1),Φ(a2)} ⊆ G. Then, for the

Licensed to Univ of Calif, Irvine. Prepared on Wed May  8 16:25:43 EDT 2024 for download from IP 128.195.73.213.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERIC ALGEBRAIC PROPERTIES IN SPACES OF ENUMERATED GROUPS 6277

canonical surjection idG on G is injective when restricted to F . It remains to verify
that, for any surjection π from G to a group H that is injective when restricted to
F , we have that H has unsolvable word problem. Indeed, if the word problem of H
were solvable, then the set K := {i ∈ N : (π◦Φ◦π0)(ai) = (π◦Φ◦π0)(a1)} is recur-
sive, contains M , and is disjoint from N , contradicting the recursive inseparability
of M and N . �

Proposition 5.2.14. There is a recursively axiomatizable theory Tlo whose models
are precisely the left orderable groups.

Proof. The proof hinges on a simple reformulation of the algebraic criteria for left
orderability given in Fact 3.3.8, namely the group G is left orderable if and only
if, given finitely many g1, . . . , gn ∈ G \ {e}, there is E = (ε1, . . . , εn) ∈ {1,−1}n so
that the semigroup generated by gε11 , . . . , gεnn does not contain the identity. Given
m ∈ N, set S(g1, . . . , gn, E,m) to be the set of words in gε11 , . . . , gεnn of length at
most m. The Pigeonhole Principle then implies that a group G is left orderable if
and only if, given any finitely many g1 . . . , gn ∈ G \ {e} and any m ∈ N, there is
E = (ε1, . . . , εn) ∈ {1,−1}n such that e /∈ S(g1, . . . , gn, E,m). Consequently, we
can simply let Tlo consist of the sentences σm,n for m,n ∈ N, where σm,n is the
sentence

∀x1 · · · ∀xn

⎛
⎝ n∧

i=1

xi �= e →
∨

E∈{1,−1}n

∧
w∈S(x1,...,xn,E,m)

w(x1, . . . , xn) �= e

⎞
⎠ .

�

With regard to Question 1.0.1(2) in general, we point out the following di-
chotomy, which is immediate from the Baire category theorem:

Proposition 5.2.15. For any property P closed under direct sums, in GP , either
there exists a comeager isomorphism class, or every comeager set contains uncount-
ably many isomorphism classes.

Proof. We know from Remark 5.2.1 that every isomorphism class is either meager
or comeager. Suppose there exists no comeager isomorphism class, i.e, every iso-
morphism class is meager. Then by the Baire category theorem, no comeager set
can be written as a union of countably many isomorphism classes (as they are all
meager). �

5.3. Amenable groups satisfying a law. We end this section by investigating
questions emerging in the context of groups satisfying a law. Let w(�x) be a freely
reduced word in the letters {x±

1 , . . . , x
±
n } and �x = (x1, . . . , xn). Recall that we

defined the Polish space of enumerated groups satisfying the law w, or Gw, as the
set

Gw =
⋂

�a∈Nn

[w(�a) = e].

We denote the set of isomorphism types in Gw as Gw. Moreover, we recall that
Gam,w = Gam ∩ Gw and Gam,w = Gam ∩Gw.

Some laws imply amenability, e.g. groups satisfying the law [x, y] = e are abelian
and hence amenable. We call a nontrival word w amenable if Gw consists only of
amenable groups. Otherwise, the word w is called nonamenable. The following
question is a key consideration.
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Question 5.3.1. Suppose w is a nonamenable law. Is the generic group satisfying
the law w = e nonamenable?

The following is clear:

Lemma 5.3.2. For any word w, Gw is closed under direct products.

Since satisfying the law w = e is clearly expressible by a single universal sentence,
Lemma 5.2.7 immediately implies:

Lemma 5.3.3. For any word w, (Gw)ec is comeager in Gw.

Recall that a group G is uniformly amenable if there is a function f : N → N
such that, for any finite F ⊆ N and any n ≥ |F |, there is K ⊆ G with |K| ≤ f(n)
such that K is a (F, 1

n )-Folner set for F . The following straightforward fact was
observed by Keller in [22]:

Fact 5.3.4. G is uniformly amenable if and only some (equiv. every) ultrapower
of G is amenable.

The following fact is also straightforward:

Fact 5.3.5. G is lawless if and only if F2 embeds into some (equiv. every) non-
principal ultrapower of G.

In other words, GU is small if and only if G satisfies some nontrivial word. It
is unknown whether or not von Neumann’s problem has a positive solution for
ultrapowers, that is, Question 5.3.6 is open:

Question 5.3.6. If G is an amenable group such that GU is small, must GU be
amenable? In other words, if G is an amenable group that satisfies a nontrivial law,
must G be uniformly amenable?

The following lemma is clear:

Lemma 5.3.7. If w is an amenable word, then every element of Gw is uniformly
amenable.

Consequently, Question 5.3.6 is really only interesting when G satisfies a nona-
menable law.

Following typical model-theoretic nomenclature, we call a group pseudoamenable
if it is elementarily equivalent to an ultraproduct of amenable groups.

Proposition 5.3.8. For a given word w, the following are equivalent:

(1) If G ∈ Gam,w, then GU is amenable.
(2) Gam,w is an elementary class.
(3) Gam,w is closed in Gw.
(4) If G ∈ Gw is pseudoamenable, then G is amenable.

Proof. For (1) implies (2), fix a family (Gi)i∈I from Gam,w and an ultrafilter U on
I. We must show that

∏
UGi is also amenable. However, setting G :=

⊕
i∈I Gi,

we have that G ∈ Gam,w, whence G
U is amenable by (1). Since

∏
U Gi embeds into

GU, we have that
∏

UGi is amenable, as desired.
(2) implies (1) is clear. Since Gam,w is closed under subgroups, the equivalence

of (2) and (3) follows from Corollary 3.1.7.
(4) implies (1) follows from the fact that GU is a pseudoamenable member of Gw

whenever G is an amenable member of Gw. Now suppose that (1) holds and that
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G ∈ Gw is pseudoamenable. By assumption, there is a family (Gi)i∈I of amenable
groups and an ultrafilter U on I such that G ≡

∏
U Gi. Since G satisfies the law

w = e, we have Gi also satisfies the law w = e for U-almost all i ∈ I. By replacing,
for each i ∈ N \ I, Gi with an amenable group satisfying w, we may as well assume
that each Gi satisfies w. Let H =

⊕
i∈N Gi, an amenable group satisfying w. Since

G ≡
∏

U Gi, we have that every system with a solution in G has a solution in H.
Thus, by Lemma 4.0.1, we have that G embeds into an ultrapower of H. By (1),
this ultrapower of H is amenable, whence so is G. �

Motivated by item (3) in the previous proposition, we call a word for which the
items in the previous proposition hold a closed word. Thus, Question 5.3.6 asks
whether or not all words are closed.

5.4. The generic element of Gam,w. Since groups satisfying a nontrivial law are
automatically small, the results in the previous section motivate us to ask the
following:

Question 5.4.1. Suppose w is a nonamenable law. Is the generic group satisfying
the law w = e nonamenable?

We will need the following fact.

Fact 5.4.2. Let C be a set of isomorphism types of countable groups. Suppose that
any two elements of C can be embedded into a common element of C (e.g. when C

is closed under direct products). Then any e.c. element of C is locally universal for
C.

Theorem 5.4.3 shows us that all possible ways of making the word generic precise
in the previous question lead to the same conclusion:

Theorem 5.4.3. The following are equivalent:

(1) Every locally universal element of Gw is nonamenable.
(2) Every e.c. element of Gw is nonamenable.
(3) Gw \ Gam,w is comeager in Gw.
(4) Being nonamenable is a Gw-enforceable property.

Proof. (1) implies (2) follows from Fact 5.4.2. (2) implies (3) follows from Lemma
5.2.7. The equivalence of (3) and (4) follows from Theorem 5.2.3. Finally, (4)
implies (1) follows from Proposition 5.2.10 and the fact that the amenable groups
form a Polish space. �

The connection between Question 5.3.6 and the amenability of the generic ele-
ment of Gw is the following:

Corollary 5.4.4. If w is a closed nonamenable word, then Gw \Gam,w is comeager
in Gw.

Proof. Suppose that w is a closed word and that H is an amenable group that is
locally universal for Gw. Since w is closed, every ultrapower of H is also amenable,
whence so is every element of Gw since H is locally universal for Gw. Consequently,
w is an amenable word. �

Question 5.4.5. Does the converse to the previous corollary hold?
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5.5. A test case. We now consider one case where we might be able to establish
that the generic element of Gw is nonamenable.

For sufficiently large odd n, we let GOSn denote the group constructed by Ol-
shanskii and Sapir in [31]. We note that GOSn is a finitely presented, small, non-
amenable group. Moreover, GOSn satisfies the law wn := [x, y]n = e and contains
the free Burnside group B(2, n) of exponent n.10

We believe that Question 5.5.1 is still open.

Question 5.5.1. For sufficiently large odd n, is B(2, n) residually amenable?

The connection with the above discussion is the following:

Theorem 5.5.2. Either B(2, n) is residually amenable or else Gwn
\ Gam,wn

is
comeager in Gwn

.

Proof. If there is an amenable group that is locally universal for Gwn
, then GOSn

is residually amenable, whence so is B(2, n). �

In [36], Weiss asked if the free Burnside groups B(m,n) are sofic. Since this still
remains an open question,11 we believe that either Question 5.5.1 is still open or
else it has a negative answer, for residually amenable groups are sofic.
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350–359. Ergodic theory and harmonic analysis (Mumbai, 1999). MR1803462

Licensed to Univ of Calif, Irvine. Prepared on Wed May  8 16:25:43 EDT 2024 for download from IP 128.195.73.213.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=4334981
https://www.ams.org/mathscinet-getitem?mr=896095
https://www.ams.org/mathscinet-getitem?mr=3614147
https://www.ams.org/mathscinet-getitem?mr=764305
https://www.ams.org/mathscinet-getitem?mr=1616436
https://www.ams.org/mathscinet-getitem?mr=764305
https://www.ams.org/mathscinet-getitem?mr=812274
https://www.ams.org/mathscinet-getitem?mr=3071509
https://www.ams.org/mathscinet-getitem?mr=296141
https://www.ams.org/mathscinet-getitem?mr=3548136
https://www.ams.org/mathscinet-getitem?mr=3460335
https://www.ams.org/mathscinet-getitem?mr=629262
https://www.ams.org/mathscinet-getitem?mr=4286046
https://www.ams.org/mathscinet-getitem?mr=2602845
https://www.ams.org/mathscinet-getitem?mr=46363
https://www.ams.org/mathscinet-getitem?mr=0414671
https://www.ams.org/mathscinet-getitem?mr=586204
https://www.ams.org/mathscinet-getitem?mr=1985031
https://www.ams.org/mathscinet-getitem?mr=2680416
https://www.ams.org/mathscinet-getitem?mr=2460675
https://www.ams.org/mathscinet-getitem?mr=3539841
https://www.ams.org/mathscinet-getitem?mr=0224462
https://www.ams.org/mathscinet-getitem?mr=1803462


6282 I. GOLDBRING, S. KUNNAWALKAM ELAYAVALLI, AND Y. LODHA

Department of Mathematics, University of California, Irvine, 340 Rowland Hall

(Bldg.# 400), Irvine, California 92697-3875

Email address: isaac@math.uci.edu
URL: http://www.math.uci.edu/~isaac

Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Station

B 407807, Nashville, Tennessee 37240

Email address: srivatsav.kunnawalkam.elayavalli@vanderbilt.edu
URL: https://sites.google.com/view/srivatsavke

Faculty of mathematics, University of Vienna

Email address: yashlodha763@gmail.com
URL: https://yl7639.wixsite.com/website

Licensed to Univ of Calif, Irvine. Prepared on Wed May  8 16:25:43 EDT 2024 for download from IP 128.195.73.213.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	1. Introduction
	1.1. The subgroup structure of a “generic group”.
	1.2. The algebraic structure and first-order theory of a “generic group”.
	1.3. Applications

	2. Preliminaries
	Conventions and Notations
	2.1. Ultraproducts of groups
	2.2. Some model theory of groups

	3. The Polish space of enumerated countable groups
	3.1. Introducing the space
	3.2. The Grigorchuk space of marked groups
	3.3. Notions of orderability of countable groups
	3.4. The relevant subspaces

	4. The proofs
	4.1. Proofs of the applications

	5. More about genericity
	5.1. Applications of the Baire alternative
	5.2. Generic sets and model-theoretic forcing
	5.3. Amenable groups satisfying a law
	5.4. The generic element of 𝒢_{𝒶𝓂,𝓌}
	5.5. A test case

	References

