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Abstract
We consider the complexity (in terms of the arithmetical hierarchy) of the various
quantifier levels of the diagram of a computably presented metric structure. As the
truth value of a sentence of continuous logic may be any real in [0, 1], we introduce
two kinds of diagrams at each level: the closed diagram, which encapsulates weak
inequalities of the form φM ≤ r , and the open diagram, which encapsulates strict
inequalities of the form φM < r . We show that the closed and open �N diagrams are
�0

N+1 and �0
N respectively, and that the closed and open �N diagrams are �0

N and
�0

N+1 respectively.We then introduce effective infinitary formulas of continuous logic
and extend our results to the hyperarithmetical hierarchy. Finally, we demonstrate that
our results are optimal.
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1 Introduction

Suppose A is a computably presented countable structure, that is, we have numbered
the elements of its domain so that the resulting operations and relations on the natural
numbers are computable. A longstanding and ongoing line of inquiry in computable
model theory is to study the complexity of the elementary (i.e. complete) diagram of
such models at the various quantifier levels. In particular, such a model is said to be
N-decidable if the set of the �N -sentences of its elementary diagram is computable.
A seminal result in this direction is the theorem of Moses and Chisholm that there
is a computable linear order that is n-decidable for all n yet not decidable [1]. More
recently, Fokina et. al. have investigated index sets of n-decidable models; i.e. the
complexity of classifying such models [2]. More results along these lines can be
found in the survey by Fokina, Harizanov, and Melnikov [3].

Here, we wish to initiate a similar program for metric structures in the context
of continuous logic as expounded in [4]. We use the framework for studying the
computability of metric structures that has evolved over approximately the past decade
(see e.g. [5], [6] ). There are two difficulties that must be confronted at the outset.
One difficulty is that for a sentence φ of continuous logic, the truth value of φ can
be any real in [0, 1], with 0 representing truth and 1 representing falsity. Another
difficulty is that the domain of a typical metric structure is uncountable, hence the
inclusion of parameters in our sentences would immediately pose complications for a
computability-theoretic analysis.Our solution to thefirst difficulty is to study twokinds
of diagrams: closed diagrams, corresponding to inequalities of the form φM ≤ r , and
open diagrams, corresponding to inequalities of the form φM < r .1 (Here φM is the
truth-value of φ in the model M.) We leave consideration of possible solutions of
the second obstacle for future work. Consequently, we only consider parameter-free
sentences.

In the classical case, the complexity of the levels of a diagram of a computably
presented model is very straightforward: the collection of true �N sentences is �0

N
and the collection of true �N sentences is �0

N . True arithmetic demonstrates that
these bound are optimal. We find, however, that in the context of continuous logic, the
relation is not so straightforward. For example, in our first main result (Theorem 7),
we show that the closed �N diagram is �0

N+1, so that we obtain neither the expected
quantifier nor the expected level of complexity. This result may seem surprising at first
due to its dissonance with the classical case. However, some reflection on the nature
of computation with real numbers will likely reveal it is the only answer possible.
Nevertheless, in our second main result (Theorem 9), we show that our upper bounds
in the finite case are indeed optimal.

We then extend our results to infinitary continuous logic. In this context, we use the
hyperarithmetical hierarchy to gauge complexity. The theory of infinitary continuous
logic has been previously studied in [7] and [8]. As might be expected, our results
for infinitary logic (Theorems 10 and 11), parallel our findings for finitary logic.
However, the availability of infinite disjunctions yields simpler demonstrations of the
lower bounds.

1 Here, the term ‘open’ is derived from topological consideration rather than the absence of quantifiers.
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The paper is organized as follows. Section2 covers relevant background from com-
putability theory, computable analysis, and continuous logic. Section3 lays out the
framework for effective infinitary continuous logic. In Sect. 4, we prove a novel and
surprising combinatorial result which supports our work on finitary logic. Upper and
lower bounds for the finitary case as presented in Sects. 5 and 6, respectively. The
upper and lower bounds for the infinitary case are then demonstrated in Sect. 7. Finally,
Sect. 8 mentions some applications, presents some avenues for further investigation,
and summarizes our findings.

2 Background

2.1 Background from continuous logic

We generally follow the framework of [4]. However, we limit our connectives to
¬, 1

2 , and
.−. The universal and existential quantifiers are replaced by ‘sup’ and ‘inf’

respectively. In the following, by language, wemean a signature for a metric structure.
A language in this sense includes a modulus of (uniform) continuity for each predicate
symbol and each function symbol. WhenM is an L-structure, we denote the domain
of M as |M|.

The �N and �N wff’s of a language L are defined as in the classical case. For
example, if φ is a quantifier-free wff of L , then inf x1 supx2 φ is a �2 wff of L .

The language Lω1ω is considered in the sense of Eagle in [8] as opposed to the
language given by Ben Yaacov and Iovino in [7]. The key distinction is that Lω1ω in
[8] does not require every infinitary formula to have a modulus of continuity, while the
language of [7] does. Adding this extra condition complicates the effective encoding
of the computable infinitary formulas. However, as we shall see later, our results will
hold in any reasonable effectivization of the framework of Ben Yaacov and Iovino.

A key terminological difference with classical infinitary logic is that
∨∨

is used for
infinite conjunction and

∧∧
for infinite disjunction. That is,

∨∨
n is interpreted as supn

and
∧∧

n is interpreted as infn . The reasons for this are clear when considering the
ordered set of real numbers as a lattice.

2.2 Background from computability theory

Familiarity with standard computability-theoretic concepts like computable enumer-
ability, oracle computability, the arithmetical hierarchy, and the relationship between
each of these is assumed. A thorough treatment of these subjects can be found in [9,
10]. For background on the hyperarithmetical hierarchy, see [11, 12].

LetO denoteKleene’s systemof notations for the computable ordinals. Ifα < ωCK
1 ,

then 〈α〉 denotes the set of all notations for α.
A real number r is computable if there is an effective procedure which, given k ∈ N,

produces a rational number q such that |r − q| < 2−k . A sequence (rn)n∈N of reals
is computable if it is computable uniformly in n. By an index of such a sequence we
mean an index of a Turing machine that computes it.
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1114 C. Camrud et al.

Suppose (M, d) and (M ′, d ′) are metric spaces, and let � : M → M ′. A map
� : N → N is called a modulus of continuity for � if d(a, b) < 2−�(k) implies
d ′(�(a), �(b)) ≤ 2−k . A map � : M → M ′ is called effectively uniformly continuous
if it has a computable modulus of continuity.

In the following, L denotes an effectively numbered language with uniformly com-
putablemoduli of continuity. That is, there is an algorithm that given a number assigned
to a predicate or function symbol φ computes the modulus function of φ. Moreover,
unless otherwise mentioned, every structure will be assumed to be an L-structure.

Our framework for the computability of metric structures is essentially that in [6].
Given a structure M and A ⊆ |M|, we define the algebra generated by A to be the
smallest subset of |M| containing A that is closed under every function ofM. A pair
(M, g) is called a presentation of M if g : N → |M| is a map such that the algebra
generated by ran(g) is dense. We use M	 to denote presentations of a structure M.
Given a presentation M	 = (M, g), every a ∈ ran(g) is called a distinguished point
ofM	, and each point in the algebra generated by the distinguished points is called a
rational point of M	. The set of all rational points of M	 is denoted Q(M	). By an
open rational ball of M	 we mean an open ball of M whose radius is rational and
whose center is a rational point of M	. By a rational cover of M	 we mean a finite
set of rational balls of M	 that covers |M|.

A presentationM	 is computable if the predicates ofM are uniformly computable
on the rational points ofM	. Since the metric is a binary predicate onM, this entails
that the distance between any two rational points is uniformly computable.We say that
a metric structure is computably presentable if it has a computable presentation. We
say that a presentation M	 is computably compact if the set of its rational covers is
computably enumerable. Lastly, we define an index of a computable presentationM	

to be a code of a Turing machine that computes the predicates of M on the rational
points of M	.

3 Preliminaries

3.1 Preliminaries from classical logic and computability

We begin with some relational notation which will facilitate the statements of many
of our results and their proofs.

Definition 1 Let N ∈ N, and suppose R ⊆ N
N+1.

1. ¬R = N
N+1 − R.

2. 	∃R = {n ∈ N ∃x1∀x2 . . . QxN R(n, x1, . . . , xN )}.
3. 	∀R = {n ∈ N ∀x1∃x2 . . . QxN R(n, x1, . . . , xN )}.

In Definition 1.2, Q denotes the quantifier ∀ if N is even and ∃ if N is odd. Similarly,
in Definition 1.3, Q denotes the quantifier ∀ if N is odd and ∃ if N is even. We will
follow these conventions in the sequel.
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Given R ⊆ N
N+1, we also set

R∗ = {(n, x1, . . . , xN ) ∈ N
N+1 :

∀x ′
1 ≤ x1∃x ′

2 ≤ x2 . . . Qx ′
N ≤ xN R(n, x ′

1, . . . , x
′
N )}.

Note that R ≡T R∗. Finally, let χR denote the characteristic (indicator) function of
R.

Wefix a uniformly computable family (RN )N∈N of relations so that for each N ∈ N,
R2N ∪ R2N+1 ⊆ N

N+2, 	∀R2N is �0
N+1-complete, and 	∃R2N+1 is �0

N+1-complete.

3.2 Preliminaries from continuous logic

We begin by formally defining the open and closed diagrams of a metric structure.

Definition 2 LetM be an L-structure. In the following, φ ranges over sentences of L
and q ranges over [0, 1] ∩ Q.

1. The closed (resp. open) quantifier-free diagram of M is the set of all pairs (φ, q)

so that φ is quantifier-free and φM ≤ q (resp. φM < q).
2. For every positive integer N , the closed (resp. open) �N diagram of M is the set

of all pairs (φ, q) so that φ is �N and φM ≤ q (resp. φM < q). The closed and
open �N diagrams are defined similarly.

We now define the computable wff’s of Lω1ω and their codes by effective transfinite
induction. We follow the development of the classical case in [11]. We presume an
effective enumeration of the quantifier-free wff’s of L . We also presume effective
codings of the following.

1. All pairs of the form ( j, z), where j ∈ N and z is a tuple of variables.
2. All quadruples of the form (X , a, x, e), where X ∈ {�,�}, a, e ∈ N, and x is a

tuple of variables.

When ξ is a tuple of either of the above types, we let ξ denote the code of ξ .
For every X ∈ {�,�} and a ∈ O, we first define the index set SX

a in such a way
that if a ∈ 〈α〉, then every formula with indices in SX

a will be Xα .
We begin by setting S�

1 and S�
1 to be the set of codes of all quantifier-free, finitary

formulas of L. (Recall that 1 denotes 0 in Kleene’s O.) For every a ∈ O − {1} and
X ∈ {�,�}, let SX

a be the set of codes of all quadruples of the form (X , a, x, e),
where x is a finite tuple of variable symbols, and e ∈ N.

Now for every a ∈ O, X ∈ {�,�}, and tuple of variable symbols x , we define
P(X , a, x) to be the set of all codes of pairs ( j, z), where j codes a quadruple
(X , b, y, e′) with b <O a and z is a finite sequence of variable symbols of y not
contained in x .

For each i ∈ S�
a ∪ S�

a , we define an infinitary wff φi as follows:

1. If a = 1, then φi is the quantifier-free finitary wff indexed by i .
2. Suppose a > 1 and i = (X , a, x, e).
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1116 C. Camrud et al.

(a) If X = �, then

φi =
∧∧

( j,z)∈We∩P(�,a,x)
inf
z

φ j .

(b) If X = �, then

φi =
∨∨

( j,z)∈We∩P(�,a,x)
sup
z

φ j .

For every computable ordinal α, we let �c
α denote the set of all formulas φi where

i ∈ ⋃
a∈〈α〉 S�

a . Similarly,�c
α denotes the set of all formulas φi where i ∈ ⋃

a∈〈α〉 S�
a .

If ψ = φi , then we say that i is a code of ψ . By a computable infinitary formula, we
mean an element of �c

α ∪ �c
α for some computable ordinal α.

It is fairly routine to verify that all logical operations can be performed effectively
via this coding system. For example, from an i that codes an infinitary wff φ, it is
possible to compute a code of supx φ.

4 Coding quantifiers via series inequalities

We introduce here some results that will support our demonstration of lower bounds.
Among these, ourmain combinatorial result (Theorem2) is a principle for representing
�0

N and �0
N sets as solutions of inequalities involving infinite series. We believe this

connection is sufficiently novel to merit consideration on its own.
We begin with the following lemmawhich is easily verified by simultaneous induc-

tion on N . Note that the suprema and infima range over N.

Lemma 1 For R ⊆ N
N+1 and n ∈ N, we have:

1. n ∈ 	∀R if and only if infx1 supx2 . . . QxN χR(n, x1, . . . , xN ) = 1.

2. n ∈ 	∃R if and only if supx1 inf x2 . . . QxN χR(n, x1, . . . , xN ) = 1.

To state our main theorem of this section, we need the following.

Definition 3 For K , N ∈ N and f : NN+1 → R a bounded function, set:

�K ( f ; x1, . . . , xN ) =
K∑

x0=0

2−(x0+1) f (x0, . . . , xN )

�( f ; x1, . . . , xN ) =
∞∑

x0=0

2−(x0+1) f (x0, . . . , xN ).

We define �( f ) : NN → R by setting �( f )(x1, . . . , xN ) = �( f ; x1, . . . , xN ). We
note that �( f ) is computable if f is computable and, in this case, an index of �( f )
can be computed from an index of f and a bound on f .

We are now ready to state and prove the key result of this section. In what follows,
we view elements of NN+2 as being of the form (x0, x1, . . . , xN , n).
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Theorem 2 Let R ⊆ N
N+2, and let n ∈ N.

1. n ∈ 	∀R if and only if

inf
x1

sup
x2

. . . QxN �

(

1 − 1

2
χR∗; x1, . . . , xN , n

)

≤ 1

2
.

2. n ∈ 	∃R if and only if

sup
x1

inf
x2

. . . QxN �

(
1

2
χ(¬R)∗; x1, . . . , xN , n

)

<
1

2
.

The proof of the previous theorem requires a few preparatory lemmas. For the first
lemma, note that if f : N → R is a bounded function, then �K ( f ) is simply a real
number (i.e. a constant).

Lemma 3 If f : N → { 12 , 1}, then for every K ∈ N, �K ( f ) ≤ 1
2 if and only if

f (m) = 1
2 for all m < K.

Proof sketch Fix K ∈ N. Consider the given sum in base 2. Any m < K for which
f (m) = 1 leads to a ‘carry’ operation so that the 1

2 -position becomes 1. Adding f (K )

would then force the value to be greater than 1
2 . ��

Lemma 4 Suppose R ⊆ N
N+1. Then 	∀(R∗) = 	∀R.

Proof sketch The proof that 	∀(R∗) ⊆ 	∀R is straightforward. The other inclusion is
demonstrated via Skolemization. ��
Lemma 5 Fix R ⊆ N

N+2 and 1 ≤ J ≤ N. Then for every x1, . . . , xJ−1, n ∈ N and
every K ∈ N, we have:

1. supxJ infxJ+1 . . . QxN �K (1 − 1
2χR∗; x1, . . . , xN , n) ≤ 1

2 if and only if

�K (supxJ inf xJ+1 . . . QxN (1 − 1
2χR∗); x1, . . . , xJ−1, n) ≤ 1

2 .

2. inf xJ supxJ+1
. . . QxN �K (1 − 1

2χR∗; x1, . . . , xN , n) ≤ 1
2 if and only if

�K (infxJ supxJ+1
. . . QxN (1 − 1

2χR∗; x1, . . . , xJ−1, n) ≤ 1
2 .

Proof Set G = 1 − 1
2χR∗ and note that ran(G) ⊆ { 12 , 1}. Thus, in what follows, all

suprema are maxima and all infima are minima. Also, we may assume K > 0.
We proceed by induction on N − J . We begin with the base case for (1),

that is, J = N − 1. Without loss of generality, we may assume that one of the
two quantities in (1) is no larger than 1

2 . Since �K (supxN G; x1, . . . , xN−1, n) ≥
supxN �K (G; x1, . . . , xN , n), we may assume supxN �K (G; x1, . . . , xN , n) ≤ 1

2 . By
Lemma 3, we have that G(x0, x1, . . . , xN , n) = 1

2 for all xN ∈ N and all x0 < K .
By Lemma 3 again, �K (supxN G; x1, . . . , xN−1, n) ≤ 1

2 .
We now consider the base case for (2). Again, we may assume one of the

two quantities in (2) is no larger than 1
2 . Since �K (infxN G; x1, . . . , xN−1, n) ≤

infxN �K (G; x1, . . . , xN , n), we assume �K (infxN G; x1, . . . , xN−1, n) ≤ 1
2 . By
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Lemma 3, infxN G(x0, . . . , xN , n) = 1
2 for all x0 < K . Consequently, for each

x0 < K , there exists ξx0 ∈ N so that G(x0, . . . , xN−1, ξx0 , n) = 1
2 . Let

ξ =
{
maxx0<K ξx0 if N odd

0 otherwise.

By the definition of R∗, it follows that G(x0, . . . , xN−1, ξ, n) = 1
2 for all x0 < K . By

Lemma 3 again, inf xN �K (G; x1, . . . , xN , n) ≤ 1
2 .

We now perform the inductive step for (1). Suppose that N − J > 1 and
set H = inf xJ+1 . . . QxN G. By the inductive hypothesis, it suffices to show that
supxJ �K (H ; x1, . . . , xJ , n) ≤ 1

2 if and only if �K (supxJ H ; x1, . . . , xJ−1, n) ≤ 1
2 .

Without loss of generality, we assume supxJ �K (H ; x1, . . . , xJ , n) ≤ 1
2 By Lemma

3, for all xJ ∈ N and all x0 < K , H(x0, x1, . . . , xJ , n) = 1
2 . By Lemma 3 again,

�K (supxJ H ; x1, . . . , xJ−1, n) ≤ 1
2 .

We now carry out the inductive step for (2). In this case, we consider the function
H = supxJ+1

. . . QxN G(x0, . . . , xN , n). It suffices to show that

infxJ �K (H ; x1, . . . , xJ , n) ≤ 1
2 if and only if �K (inf xJ H ; x1, . . . , xJ−1, n) ≤ 1

2 .
Without loss of generality, we assume�K (infxJ H ; x1, . . . , xJ−1, n) ≤ 1

2 . By Lemma
3, for every x0 < K , infxJ H(x0, . . . , xJ , n) = 1

2 , whence, for every x0 < K , there
exists ξx0 ∈ N so that H(x0, . . . , xJ−1, ξx0 , n) = 1

2 . Let

ξ =
{
maxx0<K ξx0 J odd

0 otherwise.

By the definition of R∗, H(x0, x1, . . . , xJ−1, ξ, n) = 1
2 for all x0 < K . By Lemma 3,

�K (infxJ H ; x0, . . . , xJ−1, n) = 1
2 . ��

We note that while Lemma 5 is hardly the key result of this section, it is neverthe-
less somewhat surprising. In general, one does not expect to be able to interchange
summation with sup or inf. It is here that the use of R∗ comes in to consideration and
provides a path to a weaker conclusion but one that is just strong enough to effect the
rest of the proof.

Proof of Theorem 2 It suffices to prove (1); part (2) follows by considering comple-
ments. Once again, set G = 1 − 1

2χR∗ .
Suppose n ∈ 	∀R. It follows from Lemmas 1 and 4 that

sup
x0

inf
x1

. . . QxN G(x0, . . . , xN , n) = 1

2
.

Thus, by Lemma 3, �K (infx1 . . . QxN G; n) ≤ 1
2 . By Lemma 5, we have that

inf
x1

. . . QxN �K (G; x1, . . . , xN , n) ≤ 1

2
.
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Since G ≤ 1, it follows that

inf
x1

. . . QxN �(G; x1, . . . , xN , n) ≤ 1

2
+ 2−(K+1)

for all K ∈ N. Hence, inf x1 . . . QxN �(G; x1, . . . , xN , n) ≤ 1
2 .

Conversely, suppose infx1 supx2 . . . QxN �(G; x1, . . . , xN , n) ≤ 1
2 . Since G > 0,

for every K ∈ N, infx1 supx2 . . . QxN �K (G; x1, . . . , xN , n) ≤ 1
2 . By Lemmas

3 and 5, for every x0 < K , inf x1 supx2 . . . QxN G(x0, . . . , xN , n) = 1
2 . Thus,

supx0 inf x1 supx2 . . . QxN G(x0, . . . , xN , n) = 1
2 . It follows from Lemma 1 that

n ∈ 	∀R∗. Thus, by Lemma 4, n ∈ 	∀R. ��

5 Finitary diagram results—upper bounds

We begin by considering the quantifier-free diagrams.

Proposition 6 If M is a computably presentable L-structure, then the closed
quantifier-free diagram of M is �0

1 and the open quantifier-free diagram of M is
�0

1 .

Proof The proposition follows from the observation that if M is computably pre-
sentable, then the map φ �→ φM is computable on the set of quantifier-free sentences
of L . ��

We note that the proof of Proposition 6 is uniform; that is, from an index of a
presentation of M, it is possible to compute a �0

1 index of the closed quantifier-free
diagram of M and a �0

1 index of the open quantifier-free diagram of M.
We now consider the higher-level diagrams.

Theorem 7 Let M be a computably presentable L-structure, and let N be a positive
integer.

1. The closed �N diagram of M is �0
N , and the open �N diagram of M is �0

N+1.
2. The closed �N diagram ofM is �0

N+1, and the open �N diagram of M is �0
N .

Moreover, the results of (1) and (2) hold uniformly in the sense that from N and an
index for a computable presentation for M, one can compute an index for any of the
above diagrams.

Proof Throughout this proof, we fix a computable presentationM	 ofM.We proceed
by induction on N , the base case being true by Proposition 6. We now fix a positive
integer N and assume that (1) and (2) hold uniformly for every M < N .

Fix a �N sentence φ and a rational number q. Note that φ has the form supx ψ ,
where ψ is a �N−1 wff of L and x is a tuple of variables. Since the rational points of
M	 are dense, supa∈Q(M	) ψM(a) = supa∈|M| ψM(a). Thus,

φM ≤ q ⇐⇒ (∀k ∈ N) (∀a ∈ Q(M	)) ψM(a) ≤ q + 2−k .
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If N = 1, then by the uniformity of Proposition 6, the statementψM(a) ≤ q+2−k

is a �0
1 condition on φ, a, k. If N > 1, then this statement is a �0

N condition since (2)
is assumed to hold uniformly for M < N . In either case it then follows that φM ≤ q
is a �0

N condition on φ, q.
Furthermore,

φM < q ⇐⇒ (∃k ∈ N) (∀a ∈ Q(M	)) ψM(a) ≤ q − 2−k .

As before, if N = 1, then the statement ψM(a) ≤ q − 2−k is a �0
1 condition on

φ, a, k. If N > 1, then this statement is a �0
N condition since (2) is assumed to hold

uniformly for M < N . In either case, it follows that φM < q is a �0
N+1 condition on

φ, q.
Now fix a �N sentence φ and a rational number q. Then φ has the form infx ψ ,

where ψ is a �N−1 wff of L and x is a tuple of variables. Again, since the rational
points of M	 are dense, infa∈Q(M	) ψM(a) = infa∈|M| ψM(a). Thus,

φM ≤ q ⇐⇒ (∀k ∈ N) (∃a ∈ Q(M	)) ψM(a) < q + 2−k .

If N = 1, then the statement ψM(a) < q + 2−k is a �0
1 condition on φ, a, k. If

N > 1, then this statement is a �0
N condition since (1) is assumed to hold uniformly

for M < N . In either case, it then follows that φM ≤ q is a �0
N+1 condition on φ, q.

Finally,

φM < q ⇐⇒ (∃k ∈ N) (∃a ∈ Q(M	)) ψM(a) < q − 2−k .

If N = 1, then the statement ψM(a) < q − 2−k is a �0
1 condition on φ, a, k. If

N > 1, then this statement is a �0
N condition since (1) is assumed to hold uniformly

for M < N . In either case, it then follows that φM < q is a �0
N condition on φ, q.

Finally, we note that these arguments are uniform in the sense described above. ��

6 Finitary diagram results—lower bounds

Wewill now show that the results in Sect. 5 are the best possible, which is not as trivial
as intuition may grant. Since structures in continuous logic must be bounded, it might
seem that the unit interval is a natural setting in which to construct these lower bounds.
The following, however, prevents this from being the case.

Proposition 8 Let M	 be a computably compact computable presentation of an L-
structure M. Then the open diagram of M is �0

1 and the closed diagram of M is
�0

1.

Proof Since M is computably presentable, the map (a0, ..., aN ) �→ θM(a0, ..., aN )

is computable, uniformly in a predicate θ . It now follows from a standard result in
computable analysis (see [13] andCorollary 6.2.5 of [14]) that sinceM	 is computably

compact, the map θ �→ (
Qx0 ...QxN θ

)M is also computable. The result follows. ��
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On the other hand, one may notice that true arithmetic, translated into continuous
logic via the discrete metric, would provide some lower bounds. While this is the case,
it fails to capture the lower bounds on the open�N diagrams and closed�N diagrams.
We thus attain our optimal bounds by constructing a nontrivial structure which extends
the natural numbers under the discrete metric, applying our combinatorial results.

Theorem 9 There is a language L ′ and a computably presentable L ′-structure M
with the following properties:

1. The closed quantifier-free diagram ofM is�0
1-complete, and the open quantifier-

free diagram of M is �0
1 -complete.

2. For every positive integer N, the closed �N diagram of M is �0
N -complete, and

the open �N diagram of M is �0
N+1-complete.

3. For every positive integer N, the closed �N diagram of M is �0
N+1-complete,

and the open �N diagram of M is �0
N -complete.

Proof Let L ′ be the metric language that consists of the following.

1. A constant symbol 0.
2. A family of unary predicate symbols (Cn)n∈N.
3. A family of predicate symbols (PN ,n)N ,n∈N, where P2N ,n and P2N+1,n are (N+1)-

ary.

Here, each predicate symbol is assumed to have modulus of continuity equal to the
constant function 1.

We now define our L ′-structure M. The underlying metric space of M is the set
N of natural numbers equipped with its discrete metric. We also set 0M = 0. In order
to define the interpretations of the other symbols, we first set

fN =
{

�(1 − 1
2χR∗

N
) N even

�( 12χ(¬RN )∗) otherwise.

Also, for every a ∈ N, set

CM
n (a) =

{
f0(n/2) n even

f1((n − 1)/2) otherwise.

That is, for every n ∈ N, CM
n is a constant unary predicate of the given

truth value. Finally, set PM
2N ,n(a0, . . . , aN ) = f2N+2(a0, . . . , aN , n), and let

PM
2N+1,n(a0, . . . , aN ) = f2N+3(a0, . . . , aN , n).
It is clear that M has a computable presentation. In fact, one may simply take the

n-th distinguished point to be n.
We first note that the closed atomic diagram ofM is �0

1-complete. To see this, let
φn be the sentence C2n(0). Then, by Theorem 2, φM

n ≤ 1
2 if and only if n ∈ 	∀R0.

Similarly, the open atomic diagram ofM is �0
1-complete. This time, let φn be the

sentence C2n+1(0). Then, by Theorem 2, φM
n < 1

2 if and only if n ∈ 	∃R0.
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Next fix a positive integer N . For each n ∈ N, let φn be the sentence

inf
x1

. . . QxN P2N ,n(x1, . . . , xN ),

and let ψn be the sentence

sup
x1

. . . QxN P2N+1,n(x1, . . . , xN ).

By Theorem 2, φM
n ≤ 1

2 if and only if n ∈ 	∀R2N . Thus, the closed �N diagram ofM
is �0

N+1-complete. Also by Theorem 2, ψM
n < 1

2 if and only if n ∈ 	∃R2N+1. Thus,
the open �N diagram of M is �0

N+1-complete.
Since the open �N−1 diagram of M is �0

N -complete, it follows that the open �N

diagram ofM is�0
N -complete. It similarly follows that the closed �N diagram ofM

is �0
N -complete. ��

7 Infinitary results

When formulating our diagramcomplexity results for infinitary logic,we actuallymust
eschew the terminology of diagrams. The reason for this is that, because of the coding
of the computable infinitary formulae, these diagrams are capable of computing O,
which itself is �1

1-complete. In order to avoid this pitfall, we focus on the complexity
of the right Dedekind cuts of reals of the form φM where φ is infinitary. To this end,
for x ∈ R, we let D>(x) denote the right Dedekind cut of x , that is,

D>(x) = {q ∈ Q : q > x}.

We also set

D≥(x) = {q ∈ Q : q ≥ x}.

Of course, if x is irrational, then D>(x) = D≥(x). In terms of evaluating complexity,
differences only arise when considering uniformity.

We first prove our infinitary upper bound result which generalizes our bounds in
the finitary case.

Theorem 10 Let M be a computably presentable L-structure and let φ be a com-
putable infinitary sentence of L.

1. If φ is �c
α , then D>(φM) is �0

α+1 uniformly in a code of φ, and D≥(φM) is �0
α

uniformly in a code of φ.
2. If φ is �c

α , then D>(φM) is �0
α uniformly in a code of φ, and D≥(φM) is �0

α+1
uniformly in a code of φ.
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Proof Fix a computable presentation M	 of M. Let φ be a computable infinitary
sentence of L .

Suppose φ ∈ �c
α ∪ �c

α . A code for φ yields a notation a for α. In the following,
all other ordinals considered are less than α. For ease of exposition, we identify each
β ≤ α with its unique notation in {b b ≤O a}.

We proceed by effective transfinite recursion. Thus, we assume the following hold
uniformly in an index of M#.

1. From a β < α and a code of a �c
β sentence ψ , it is possible to compute a �0

β

index of D≥(ψM) and a �0
β+1 index of D>(ψM).

2. From a β < α and a code of a �c
β sentence ψ , it is possible to compute a �0

β+1

index of D≥(ψ) and a �0
β index of D>(ψi ).

First suppose that φ is a �c
α sentence. Thus, φ has the form

∨∨
i∈I supxi φi where

I is c.e. and φi is �c
βi

for some βi < α. Furthermore, we may assume (βi )i∈I is
computable. For q ∈ Q, we have

q ∈ D≥(φM) ⇔ (∀k ∈ N)(∀i ∈ I )(∀r ∈ Q(M#)) q + 2−k ∈ D>(φM
i (r)).

As ∅(α) computes D>(�M
i (r)) uniformly in i , D≥(φM) is co-c.e. in ∅(α), that is,

D≥(φM) is �0
α . At the same time,

q ∈ D>(φM) ⇐⇒ (∃k ∈ N)(∀i ∈ I )(∀r ∈ Q(M#)) q − 2−k /∈ D>(φM
i (r).

Thus, D>(φM) is �0
2(∅(α)) = �0

α+1.
Now suppose φ is a �c

α sentence. Thus, φ has the form
∧∧

i∈I infxi φi where I is
c.e. and φi is �c

βi
for some βi < α uniformly in i . Let q ∈ Q. Then,

q ∈ D≥(φM) ⇐⇒ (∀k ∈ N)(∃i ∈ I )(∃r ∈ Q(M#))q + 2−k ∈ D>(φM
i (r)).

Thus, D≥(φM) is �0
2(∅(α)) = �0

α+1. In addition,

q ∈ D>(φM
i0 ) ⇐⇒ (∃k ∈ N)(∃i ∈ I )(∃r ∈ Q(M#)) q − 2−k /∈ D>(φM

i (r)).

Thus, D>(φM) is �0
1(∅(α)) = �0

α .
As these arguments are all uniform in an index ofM# and a code for φ, the theorem

is proven. ��
We now demonstrate the optimality of Theorem 10 by means of the following.

Theorem 11 There is a language L ′′ and an L ′′-structure M so that the following
hold for every computable ordinal α.

1. There is a computable sequence (ψi )i∈N of �c
α sentences of L ′′ so that {i 1

2 ∈
D≥(ψM

i )} is �0
α-complete.
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2. There is a computable sequence (ψi )i∈N of �c
α sentences of L ′′ so that {i 1

2 ∈
D>(ψM

i )} is �0
α-complete.

3. There is a computable sequence (ψi )i∈N of �c
α sentences of L ′′ so that {i 1

2 ∈
D>(ψM

i )} is �0
α+1-complete.

4. There is a computable sequence (ψi )i∈N of �c
α sentences of L ′′ so that {i 1

2 ∈
D≥(ψM

i )} is �0
α+1-complete.

The remainder of this section is dedicated to the proof of Theorem 11. We begin
with the construction of L ′′ and M ′′.

Let L0 be a language consisting of one constant symbol q for every q ∈ Q∩ [0, 1]
and letM0 be the L0-structure whose underlying metric space is [0, 1] with its usual
metric and which interprets each q as q. Let L ′′ be the expansion of L0 obtained by
adding a family (cN ,n,x1,...,xN+1)N ,n,x1,...,xN+1∈N of constant symbols.

Let M be the expansion of M0 obtained by setting cMN ,n,x1,...,xN+1
= 1

2 (1 −
χR2N+1(n, x1, . . . , xN+1)). Since (RN )N∈N is computable, it follows that M is com-
putably presentable.

We now verify that L ′′ andM satisfy the conclusions of Theorem 11. We will need
a little additional terminology and two lemmas.

Suppose (ψi )i∈N is a sequence of�c
α sentences of L

′′.We say that a set S is encoded
by (ψi )i∈N if ψM

i = 1 − 1
2χS(i) for all i .

Similarly, if (ψi )i∈N is a sequence of �c
α sentences of L ′′, we say that a set S is

encoded by (ψi )i∈N if ψM
i = 1

2 (1 − χS(i)) for all i .

Lemma 12 Let α be a computable ordinal.

1. Every �0
α set is encoded by a computable sequence of �c

α sentences.
2. Every �0

α set is encoded by a computable sequence of �c
α sentences.

Proof We prove (1). Part (2) then follows by considering complements. Suppose S is
�0

α .
If α = 0, then we let

ψi =
{
d(0, 0) i ∈ S
d(0, 1

2 ) otherwise.

Next suppose α = N + 1 where N ∈ N. Let

ψn =
∧∧

x1

∨∨

x2
. . . CxN+1d(cN ,n,x1,...,xN+1 , 0).

Here, C is
∧∧

if N is even and
∨∨

if N is odd.
It follows from Lemma 1 that (ψn)n∈N encodes 	∃R2N+1. Since 	∃R2N+1 is �0

N+1-
complete, it follows that every�0

N+1 set is encoded by a sequence of computable�c
N+1

sentences. Furthermore, the construction of such a sequence from a �0
N+1 index is

uniform.
Suppose α ≥ ω. Similar to the proof of Theorem 7.9 of [11], we construct a

sequence (φn)n∈N of �0
α sentences so that φM

n = 1−χS(n). In particular, we replace
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� and ⊥ with d(0, 0) and d(0, 1) respectively. Setting ψn = 1
2φn yields the desired

formulae. ��
Lemma 13 If (ψn)n∈N is a computable sequence of �c

α sentences of L ′′, then there is
a computable �c

α sentence φ of L ′′ so that

φM =
∞∑

n=0

2−(n+1)ψM
n .

Furthermore, a code of φ can be computed from an index of (ψn)n∈N.

Proof For a, b ∈ [0, 1], let avg(a, b) = 1
2 (a + b). By inspection,

avg(a, b) = max

{

a .−1

2
(a .−b), b .−1

2
(b .−a)

}

.

Thus, we may regard avg as a connective. If φ,ψ are quantifier-free, then so is
avg(φ,ψ).

Since avg is increasing in each variable and continuous, it follows that
avg(sup j a j , supk bk) = sup j,k avg(a j , bk) and avg(inf j a j , infk bk)
= inf j,k avg(a j , bk). From this it follows that avg(φ,ψ) is equivalent to a �c

α (resp.
�c

α) sentence if φ and ψ are �c
α (resp. �c

α) sentences.
When a0, . . . , aK+1 ∈ [0, 1], note that

K+1∑

n=0

2−(n+1)an = avg(φ0,

K∑

n=0

2−(n+1)φn+1).

Thus, we may regard inner product with (2−(n+1))Kn=0 as a connective. Furthermore,

a code of
∑K

n=0 2
−(n+1)φn can be computed from codes of φ0, . . . , φK .

Finally, when an ∈ [0, 1], we have
∞∑

n=0

an = sup
K

K∑

n=0

an .

The conclusion of the lemma follows. ��
Proof of Theorem 11 Parts (1) and (2) follow directly from Lemma 12.

Now suppose S is�0
α+1-complete. Take a�0

α binary relation R so that S = 	∃R. By
Lemma 12, there is a computable family (ψn,x1)n,x1∈N of �c

α sentences so that for all
n, x1 ∈ N, ψM

n,x1 = 1 − 1
2χR(n, x1). By Lemma 13, there is a computable sequence

(φn)n∈N of �c
α sentences so that

φM
n =

∞∑

x1=0

2−(x1+2)ψM
n,x1 .
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It then follows that n ∈ S if and only if 1
2 ∈ D>(φM

n ), establishing (3). Part (4)
follows by considering complements. ��

Returning to an earlier point, we note that the closed and open quantifier-free
diagrams of M are �0

1-complete and �0
1-complete respectively. To see this, fix a �0

1
complete set C , and let (cs)∞s=0 be an effective enumeration of C . Since C is infinite,
we may assume this enumeration is one-to-one. Let

pn =
{

1
2 − 2−s if n = cs
1
2 otherwise.

It is fairly straightforward to show that (pn)n∈N is computable as a sequence of reals.
Furthermore, pn < 1

2 if and only if n ∈ C . Since L ′′ contains a constant symbol
for each rational number, it follows that the open quantifier-free diagram of M is
�0

1-complete. The �0
1-completeness of the closed quantifier-free diagram follows by

considering complements.
We also note that while computably compact domains are insufficient for demon-

strating lower bounds in the finitary case, [0, 1] works swimmingly in the infinitary
case. This is because we can build up all the required infinitary sentences without
variables, so the computability of extrema plays no role.

On a related note, the infinitary sentences in the above proof are built up from
quantifier-free sentences. Thus, they do not require moduli of continuity. Therefore,
although we have framed our work in an effectivization of the infinitary continuous
logic of Eagle, our results will hold in any reasonable effectivization of the infinitary
continuous logic of Ben Yaacov and Iovino.

8 Applications and further research

We provide a few examples of applications of our main results. We first note that the
theory of a metric structure is not a set (as is it in the discrete setting), but a function.
Namely, the theory of an L-structureM is the function that maps each L-sentence φ

to φM.

Corollary 14 Let M be an L-structure with a computably compact computable pre-
sentation. Then the theory of M is �0

2.

Corollary 15 LetM be an L-structure with a hyperarithmetic presentation. Then the
theory of M is also hyperarithmetic.

Corollary 14 follows directly from Proposition 8 and Corollary 15 from Theorem
7. An application of the former may be made to computable Stone spaces. Notably,
in [15], it was shown that any computable Stone space has a computably compact
presentation. We thus attain the following.

Corollary 16 Let X be a computable Stone space. Then the (continuous) theory of X
is �0

2.
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Meanwhile, Corollary 15 has already been applied in [16] in the proof of the fol-
lowing.

Theorem 17 (Theorem 1.1, [16]) The following operator algebras have hyperarith-
metic theory.

1. The hyperfinite I I1 factor R.
2. L(�) for � a finitely generated group with solvable word problem.
3. C∗(�) for � a finitely presented group.
4. C∗

λ(�) for � a finitely generated group with solvable word problem.

In their manuscript, Goldbring and Hart show, via the results of [17], that each
of the above have hyperarithmetic presentations. They then apply Corollary 15 to
conclude that each of the above have hyperarithmetic theory. By carefully analyzing
the complexity of model-theoretic forcing in continuous logic, they also show that the
Cuntz algebra has an arithmetic presentation and hence a hyperarithmetic presentation.
In fact, their work shows that 0(ω) computes the theory of each of these algebras

An area for future research is that of relatively intrisically computably enumerable
(r.i.c.e.) relations and the possibility of their definability in Lω1ω. It is a well-known
result, due to [18] and [19], that in classical computable structure theory a relation is
r.i.c.e. in a structureA if and only if it is �c

1 definable inA with parameters. Whether
such a syntactic characterization of similar relations (predicates) exists in this setting
of continuous logic is currently unknown. There have been in recent years, however,
some related results which may be applicable to this future study.

In Theorem 11 of [20], Moody proved that in the particular continuous first-order
language Lc

�(σ, ν), the �c
1 relations over a given computable continuous structure

are precisely the 1-Lipschitz uniformly r.i.c.e. relations. Moreover, in Theorem 20
of that dissertation, Moody showed that a computable σ -structure is effectively �c

1-
atomic if and only if it is uniformly relatively computably categorical, extending the
classical result of Ventsov [21]. Closely related to this is Theorem 1.1 of [22], in
which Greenberg et al. proved that a computable Polish metric space is relatively
computably categorical if and only if it possesses a c.e. approximate Scott family with
stable parameters. While the former results work in a continuous language slightly
removed from the one presented here, and the latter eschews a continuous language in
preference for a classical one, the techniques used may prove promising to extending
many of the results given in [18] and [19] to the continuous setting.

9 Conclusion

We have introduced a framework for examining the complexity of the quantifier levels
of the finitary and infintary theory of a computably presented metric structure, and we
have pinned down the complexity at each level in terms of the hyperarithmetical hier-
archy. Our demonstration of the lower bounds in the finitary case introduces a uniform
process for encoding existential and universal quantifiers via series inequalities. Our
demonstration of the lower bounds in the infinitary case is mostly straightforward,
but introduces the novel fact that computable infinitary logic can represent the inner
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product with (2−(n+1))∞n=0 from the connectives ¬, .−, 1
2 . Notably, there are many

other connectives based on series available in the computable infintary logic which
can be constructed similarly.
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