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We introduce the notion of a Tsirelson pair of C∗-algebras, which is a pair of C∗-algebras
for which the space of quantum strategies obtained by using states on the minimal tensor
product of the pair is dense in the space of quantum strategies obtained by using states
on the maximal tensor product. We exhibit a number of examples of such pairs that
are “nontrivial” in the sense that the minimal tensor product and the maximal tensor
product of the pair are not isomorphic. For example, we prove that any pair containing

a C∗-algebra with Kirchberg’s QWEP property is a Tsirelson pair. We then introduce
the notion of a C∗-algebra with the Tsirelson property (TP) and establish a number of

closure properties for this class. We also show that the class of C∗-algebras with the TP
forms an elementary class (in the sense of model theory), but that this class does not
admit an effective axiomatization.
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1. Introduction

Tsirelson’s problem in quantum information theory (see [16, 17]) asks whether

or not, for any given pair of natural numbers k, n ∈ N with k, n ≥ 2, the set

Cqc(k, n) of quantum commuting correlations coincides with the set Cqa(k, n) of

quantum asymptotic correlations. The former set consists of correlation matrices

p(a, b |x, y) ∈ [0, 1]k
2n2

(suggestively written as conditional probabilities for their
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connections with nonlocal games) for which there exists a Hilbert space H, POVMs

Ax = (Ax
1 , . . . , A

x
n) and By = (By

1 , . . . , B
y
n) on H for all x, y ∈ [k] := {1, . . . , k}

satisfying [Ax
a, B

y
b ] := Ax

aB
y
b − By

bA
x
a = 0 for all x, y ∈ [k] and a, b ∈ [n], and

a unit vector ξ ∈ H for which p(a, b |x, y) = 〈Ax
aB

y
b ξ, ξ〉. (Precise definitions of

POVMs and any other undefined notions will be given later in the paper.) The

latter set consists of the subset of those quantum commuting strategies that can be

approximated by quantum commuting strategies for which the Hilbert space H can

be decomposed as HA ⊗HB and for which the POVMs Ax (respectively, By) act

only on HA (respectively, only on HB). It is a consequence of the landmark result

MIP∗ = RE [9] that there are pairs (k, n) for which Cqa(k, n) is a proper subset of

Cqc(k, n), thus providing a negative answer to Tsirelson’s problem in general.

Work of Fritz [4] and independently Junge et al. [10] allow one to recast

Tsirelson’s problem in terms of states on tensor products of certain C∗-algebras.

(It is this connection that allows one to conclude a negative solution to Kirch-

berg’s QWEP problem — and thus, ultimately, a negative solution to the Connes

Embedding Problem — from a negative solution to Tsirelson’s problem.) Indeed,

set F(k, n) to be the group freely generated by k elements of order n and let

C∗(F(k, n)) denote its universal group C∗-algebra. It was established that, for any

p(a, b |x, y) ∈ [0, 1]k
2n2

, one has:

• p ∈ Cqa(k, n) if and only if there are POVMs Ax and By in C∗(F(k, n)) and a

state φ on C∗(F(k, n)) ⊗ C∗(F(k, n)) such that

p(a, b |x, y) = φ(Ax
a ⊗By

b );

• p ∈ Cqc(k, n) if and only if there are POVMs Ax and By in C∗(F(k, n)) and a

state φ on C∗(F(k, n)) ⊗max C
∗(F(k, n)) such that

p(a, b |x, y) = φ(Ax
a ⊗By

b ).

Throughout this paper, ⊗ always denotes the minimal tensor product of C∗-

algebras.

The preceding fact suggests looking at correlations of the form φ(Ax
a ⊗ By

b ),

where Ax and By are POVMs from some fixed pair (C,D) of C∗-algebras and φ

is a state either on C ⊗ D or C ⊗max D; in fact, we will consider the closures

of these two sets of correlations, which we will denote by Cmin(C,D, k, n) and

Cmax(C,D, k, n), respectively. (In general, we see no reason why these sets of cor-

relations should be closed, although they do happen to be so for the case that

C = D = C∗(F(k, n)).) It is standard fare that Cmin(C,D, k, n) ⊆ Cmax(C,D, k, n),

Cmin(C,D, k, n) ⊆ Cqa(k, n), and Cmax(C,D, k, n) ⊆ Cqc(k, n); for the convenience

of the reader, proofs of these facts will be given in Sec. 3.

Motivated by the above discussion, we will call a pair of C∗-algebras (C,D) a

Tsirelson pair if Cmin(C,D, k, n) = Cmax(C,D, k, n) for all (k, n). Denoting by F∞

the free group on a countably infinite set of generators and using the fact that the

canonical projection C∗(F∞) → C∗(F(k, n)) admits a u.c.p lift for each (k, n), the
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fact that Tsierelson’s problem has a negative answer implies that (C∗(F∞), C∗(F∞))

is not a Tsirelson pair.

Following Pisier, a pair of C∗-algebras (C,D) is called a nuclear pair if C⊗D =

C⊗maxD. Clearly, any nuclear pair is a Tsirelson pair. We show, however, that the

class of Tsirelson pairs is much larger than the class of nuclear pairs. For example,

we show that if one element of the pair has Kirchberg’s QWEP property, then the

pair is a Tsirelson pair. This follows from a more general fact, namely that the class

of Tsirelson pairs is closed under “quotients.”

We then move on to studying C∗-algebras with the Tsirelson property (TP),

which we define to be those C∗-algebras which form a Tsirelson pair with any other

C∗-algebra. Continuing with our analogy with nuclear pairs, C∗-algebras with the

TP are the analog of nuclear C∗-algebras in this context. By the previous paragraph,

the class of C∗-algebras with the TP includes the class of C∗-algebras with the

QWEP; we leave open the question of whether or not these classes coincide. We

establish a variety of closure properties of the class of C∗-algebras with the TP and

show that they form an elementary class (in the sense of model theory) but that

this class does not admit any “effective” set of axioms. As a consequence, we show

that the class of C∗-algebras without the TP is not closed under ultraproducts.

We are grateful to Micha l Banacki, Narutaka Ozawa, Vern Paulsen, Christo-

pher Schafhauser, David Sherman, and Aaron Tikuisis for useful discussions and

comments about this work. We would also like to thank the anonymous referee for

pointing out several typos and small errors in the original version of the paper.

2. Preliminaries

2.1. WEP, QWEP, and LP

Recall that if C ⊆ D are C∗-algebras, a weak conditional expectation from D onto

C is a u.c.p map D → C∗∗ restricting to the canonical inclusion C ↪→ C∗∗. If there

is a weak conditional expectation from D onto C, then we say that C is relatively

weakly injective (r.w.i.) in D. It is known that C is r.w.i. in D if and only if: for

any C∗-algebra E, we have that C ⊗max E ⊆ D⊗max E, that is, the canonical map

C ⊗max E → D⊗max E is isometric. C has the weak expectation property (WEP) if

it is r.w.i. in any C∗-algebra containing it.

Recalling the notion of a nuclear pair from the introduction, Kirchberg’s funda-

mental result from [11] on C∗-algebras with WEP reads as follows:

Fact 2.1. C has the WEP if and only if (C,C∗(F∞)) is a nuclear pair.

Recall also that a C∗-algebra C has the QWEP if it is a quotient of a C∗-algebra

with the WEP.

The C∗-algebra C has the lifting property (LP) if: given any u.c.p map Φ : C →

D/J , where J is an ideal of some C∗-algebra D, there is a u.c.p map Ψ : C → D

such that Φ = π ◦ Ψ, where π : D → D/J is the canonical quotient map.
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We will need the following recent characterization of the LP due to Pisier [14,

Theorem 6.1]:

Fact 2.2. D has the LP if and only if: for any family (Ci)i∈I of C∗-algebras and

any ultrafilter U on I, the canonical map (
∏

U
Ci) ⊗max D →

∏

U
(Ci ⊗max D) is

isometric.

2.2. Ultraproduct states

Throughout this paper, U denotes a nonprincipal ultrafilter on some index set I.

Given a family of C∗-algebras (Ci)i∈I , we define their ultraproduct with respect to U

to be the quotient of the C∗-algebra
∏

i∈I Ci of all uniformly bounded sequences by

the ideal of elements (Ai)i∈I for which limU ‖Ai‖ = 0. It is well known that
∏

U
Ci

is a C∗-algebra once again. Given (Ai)i∈I ∈
∏

i∈I Ci, we denote its coset in
∏

U
Ci

by (Ai)U. When Ci = C for all i ∈ I, we refer to the ultraproduct as the ultrapower

of C with respect to U and denote it by CU. There is a canonical embedding of C

into CU, called the diagonal embedding, given by mapping c ∈ C to the coset of the

sequence indexed by I with constant value c.

If φi ∈ S(Ci) is a state on Ci for each i ∈ I, we let the ultraproduct state (also

known in the literature as the limit state) φ := (φi)U on
∏

U
Ci be defined by

φ((Ai)U) := limU φi(Ai).

We will need the following lemma later in this paper:

Lemma 2.3. For any ultraproduct
∏

U
Ci of C∗-algebras, the set of ultraproduct

states is weak*-dense in the set of all states on
∏

U
Ci.

Proof. Suppose, towards a contradiction, that this is not the case. LetX denote the

weak*-closure of the set of ultraproduct states in S(
∏

U
Ci). If X 6= S(

∏

U
Ci), then

by the Hahn–Banach Separation Theorem, there is a self-adjoint element A ∈
∏

U
Ci

with ‖A‖ = 1 such that ψ(A) = 0 for all ψ ∈ X. Write A = (Ai)U with each Ai

a self-adjoint element of Ci. For each i ∈ I, take ψi ∈ S(Ci) such that ψi(Ai) =

‖Ai‖. Setting ψ := (ψi)U ∈ X, we have that 1 = ‖A‖ = limU ‖Ai‖ = ψ(A), a

contradiction.

2.3. POVMs in C∗-algebras

Given a C∗-algebra C, a positive operator-valued measure or POVM of length n in C

is a finite collection A1, . . . , An of positive elements in C such that A1+· · ·+An = I.

It is well known that there is a one-to-one correspondence between POVMs in

A of length n and u.c.p maps Φ : Cn → A, where A1, . . . , An as above corresponds

to the u.c.p map Φ given by Φ(ei) = Ai for i = 1, . . . , n, where e1, . . . , en is the

standard basis for C
n.

Lemma 2.4. Suppose that A1, . . . , An is a POVM in the C∗-algebra C and π :

D → C is a surjective *-homomorphism. Then there is a POVM B1, . . . , Bn in D

such that π(Bi) = Ai for i = 1, . . . , n.

2350016-4



2nd Reading

June 11, 2023 8:2 WSPC/S0129-055X 148-RMP J070-2350016

On Tsirelson pairs of C∗-algebras

Proof. Let Φ : Cn → C be the u.c.p map given by Φ(ei) = Ai for i = 1, . . . , n.

Since C
n has the LP, there is a u.c.p map Ψ : Cn → D such that Φ = π ◦Ψ. Setting

Bi := Ψ(ei), we have that B1, . . . , Bn is the desired POVM in D.

A special case of the previous lemma is the following:

Proposition 2.5. Suppose that (Ci)i∈I is a family of C∗-algebras and U is an

ultrafilter on I. Let C :=
∏

U
Ci. Then for any POVM A1, . . . , An of length n

from C, there are POVMs A1,i, . . . , An,i of length n in Ci for each i ∈ I such that

Aa = (Aa,i)U for all a ∈ [n].

In model theoretic terms, the previous proposition says that the set of POVMs of

length n is definable in the theory of C∗-algebras. The previous proposition together

with a standard “compactness and contradiction” argument yield the following

corollary. However, for our purposes in the last section, it behooves us to give a

more direct and explicit proof.

Corollary 2.6. For any n ≥ 1, ε > 0, and sequence A1, . . . , An of positive elements

from a C∗-algebra C for which ‖
∑n

i=1Ai − I‖ < ε
2 , there is a POVM B1, . . . , Bn

in C with ‖Ai −Bi‖ < ε for all i = 1, . . . , n.

Proof. First suppose that
∑n

i=1Ai ≤ I. In this case, the desired POVM can be

obtained by letting Bi = Ai for i < n and Bn = An + (I −
∑n

i=1Ai).

Suppose, on the other hand, that
∑n

i=1Ai ≥ I and set Ci = 1
1+ ε

2

Ai. We then

have that ‖Ai−Ci‖ ≤ ε
2 and, by functional calculus, that

∑n

i=1 Ci ≤ I. By the first

case, there is a POVM B1, . . . , Bn such that ‖Bi − Ci‖ <
ε
2 for each i = 1, . . . , n,

whence ‖Ai −Bi‖ < ε, as desired.

3. Tsirelson Pairs of C∗-Algebras

We now precisely define the correlation sets mentioned in the introduction.

Definition 3.1. Given C∗-algebras C and D, we let Cmin(C,D, k, n) (respectively,

Cmax(C,D, k, n)) denote the closure of the set of correlations of the form φ(Ax
a⊗B

y
b ),

where A1, . . . , Ak are POVMs of length n from C, B1, . . . , Bk are POVMs of length

n from D, and φ is a state on C ⊗D (respectively, a state on C ⊗max D).

Remark 3.2. In the preceding definition, we took closures as in many of the

arguments to follow, having closed sets of correlations is preferable. It is not clear to

us if taking the closure is necessary for the results appearing in this paper concerning

Cmin and Cmax to hold (although we suspect that it is in general).

The following is well known, but we include a proof for the sake of the reader.

For the proof, we recall that the sets Cqa(k, n) and Cqc(k, n) are closed, convex

subsets of [0, 1]k
2n2

for all (k, n).
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Lemma 3.3. For any pair of C∗-algebras C and D and any (k, n), we have

(1) Cmin(C,D, k, n) ⊆ Cmax(C,D, k, n).

(2) Cmin(C,D, k, n) ⊆ Cqa(k, n).

(3) Cmax(k, n) ⊆ Cqc(k, n).

(4) If C ′ and D′ are C∗-algebras for which C ⊆ C ′ and D ⊆ D′, then

Cmin(C,D, k, n) ⊆ Cmin(C ′, D′, k, n).

Proof. (1) follows from the fact that any state on C ⊗ D induces a state on

C ⊗max D via the canonical surjection C ⊗max D → C ⊗ D. To see (2), fix faith-

ful representations C ⊆ B(H) and D ⊆ B(K), whence C ⊗ D ⊆ B(H ⊗ K) is a

faithful representation. Now given any state φ on C ⊗D, POVMs Ax and By from

C and D, respectively, and ε > 0, there are positive real numbers λ1, . . . , λm with
∑m

j=1 λj = 1 and unit vectors ψ1, . . . , ψm ∈ H ⊗K for which

|φ(Ax
a ⊗By

b ) −

m
∑

j=1

λj〈(A
x
a ⊗By

b )ψj , ψj〉| < ε

for all x, y ∈ [k] and a, b ∈ [n] (see, for example [4, Proposition B.5]). It remains to

use the fact that Cqa is a closed, convex set.

(3) is an immediate consequence of the GNS construction while (4) follows from

the fact that C ⊗ D ⊆ C ′ ⊗ D′ and any state on C ⊗ D extends to a state on

C ′ ⊗D′.

Definition 3.4. We say that a pair (C,D) of C∗-algebras is a Tsirelson pair if

Cmin(C,D, k, n) = Cmax(C,D, k, n) for all (k, n).

Note that every nuclear pair is a Tsirelson pair. Our next goal is to give a useful

reformulation of the notion of Tsirelson pair. We first need a preliminary lemma.

Recall that, for n ∈ N, a C∗-algebra C is called n-subhomogeneous if all irreducible

representations of C have dimension at most n. C is called subhomogeneous if it is

n-subhomogeneous for some n ∈ N. Recall also that subhomogeneous C∗-algebras

are nuclear.

Lemma 3.5. If C is not subhomogeneous, then for every m ∈ N, there is a u.c.p

embedding of Mm(C) in C.

Proof. Fix m ∈ N. By assumption, there is an irreducible representation of C

on some Hilbert space H with dim(H) > m. Consider an orthogonal projection

p ∈ B(H) of rank m and consider the u.c.p map T : C → Mm(C) given by

T (c) = pcp. Then T restricts to a surjective *-homomorphism on the multiplicative

domain for T by the Kadison Transitivity theorem. Since Mm(C) has the lifting

property, we can find a u.c.p left inverse of T , establishing the lemma.

Proposition 3.6. The pair (C,D) is a Tsirelson pair if and only if

Cmax(C,D, k, n) ⊆ Cqa(k, n) for all (k, n).

2350016-6
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Proof. The forward direction is immediate from Lemma 3.3(2). For the converse

direction, fix (k, n) and suppose that Cmax(C,D, k, n) ⊆ Cqa(k, n). If either C or

D are subhomogeneous, then (C,D) is a nuclear pair and hence a Tsirelson pair.

Thus, we may assume that neither C nor D are subhomogeneous. In this case, by

Lemma 3.5, for each m ∈ N, there is a u.c.p. embedding Φ : Mm(C) ⊗Mm(C) →

C ⊗D. Consequently, Cqa(k, n) ⊆ Cmin(C,D, k, n) for all (k, n). By Lemma 3.3(1)

and the assumption, we see that Cmin(C,D, k, n) = Cmax(C,D, k, n) = Cqa(k, n),

and thus (C,D) is a Tsirelson pair.

The proof of the previous proposition motivates the following definition:

Definition 3.7. The pair (C,D) is said to be a strong Tsirelson pair if

Cmin(C,D, k, n) = Cmax(C,D, k, n) = Cqa(k, n)

for all (k, n).

Corollary 3.8. Given a pair (C,D) of C∗-algebras, exactly one of the following

occurs:

• (C,D) is not a Tsirelson pair.

• One of C or D is subhomogeneous, in which case (C,D) is a nuclear pair (and

thus a Tsirelson pair), but not a strong Tsirelson pair.

• (C,D) is a strong Tsirelson pair.

Proof. Given the proof of Proposition 3.6, the only assertion that needs to be

established is that if one of C or D is subhomogeneous, then (C,D) is not a strong

Tsirelson pair. While there is perhaps a more elementary proof of this statement,

we use Theorem 5.2 and thus defer the proof until after that theorem.

Remark 3.9. One might wonder about the condition that Cmax(C,D, k, n) =

Cqc(k, n) for all (k, n). This happens, for example, when C = D = C∗(F∞). (This

follows from the fact that the canonical map C∗(F∞) → C∗(F(k, n)) has a u.c.p lift

together with the characterizations of Cqa(k, n) and Cqc(k, n) in terms of states on

the minimal and maximal tensors products of C∗(F(k, n)) with itself.) However, by

the negative solution to Tsirelson’s problem, we have that no such pair can be a

Tsirelson pair.

We end this section with a useful closure property of the class of Tsirelson pairs.

To state this, we call a pair (C ′, D′) a quotient of the pair (C,D) if C ′ is a quotient

of C and D′ is a quotient of D.

Proposition 3.10. The set of Tsirelson pairs is closed under taking quotients.

Proof. This follows immediately from Lemma 2.4.

2350016-7
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4. C∗-Algebras with the Tsirelson Property

Definition 4.1. We say that a C∗-algebra C has the TP if (C,D) is a Tsirelson

pair for any C∗-algebra D.

Recall that a C∗-algebra C has WEP if and only if (C,C∗(F∞)) is a nuclear

pair. The following lemma is the analog for the TP and Tsirelson pairs.

Lemma 4.2. For a C∗-algebra C, the following are equivalent :

(1) C has the TP.

(2) (C,D) is a Tsirelson pair for every separable C∗-algebra D.

(3) (C,C∗(F∞)) is a Tsirelson pair.

Proof. It is clear that (1) implies (2). To prove that (2) implies (1), fix (k, n), an

arbitrary C∗-algebra D, POVMs Ax and By in C and D, respectively, of length n,

and a state φ on C ⊗max D. Let D′ be the subalgebra of D generated by the By
b ’s.

We have a canonical map C ⊗max D
′ → C ⊗max D, which induces a state φ′ on

C ⊗max D
′. Thus, φ(Ax

a ⊗By
b ) = φ′(Ax

a ⊗By
b ) and the latter correlation belongs to

Cqa(k, n) by assumption.

(2) clearly implies (3). The implication (3) implies (2) follows from Proposi-

tion 3.10.

We note the following closure properties of the class of C∗-algebras with the TP:

Proposition 4.3. The class of C∗-algebras with the TP is closed under quotients,

r.w.i. subalgebras, and ultraproducts.

Proof. Closure under quotients follows from Proposition 3.10. Closure under r.w.i.

subalgebras follows from the definitions. We now prove closure under ultraproducts.

Suppose that (Ci)i∈I is a family of C∗-algebras with the TP and U is an ultrafilter

on I. Set C :=
∏

U
Ci. By Lemma 4.2, it suffices to show that (C,C∗(F∞)) is a

Tsirelson pair. Fix k and n and for each x, y ∈ [k], consider a POVM Ax in C of

length n. By Proposition 2.5, for each x ∈ [k], there is a POVM Ax
1,i, . . . , A

x
n,i in Ci

such that Ax
a = (Ax

a,i)U for all a ∈ [n]. Fix also POVMs By in C∗(F∞) and a state

φ ∈ S(C ⊗max C
∗(F∞)). Set p(a, b |x, y) := φ(Ax

a ⊗By
b ). By Fact 2.2, the canonical

map C⊗maxC
∗(F∞) →

∏

U
(Ci⊗maxC

∗(F∞)) is isometric, whence we can consider

φ as a state on the latter algebra by extension. By Lemma 2.3, given ε > 0, there are

states φi ∈ S(Ci ⊗max C
∗(F∞)) such that |limU φi(A

x
a,i ⊗ By

b )) − p(a, b |x, y)| < ε.

By assumption, the correlations pi(a, b |x, y) := φi(A
x
a,i ⊗By

b ) belong to Cqa(k, n),

whence so does p by the previous sentence, letting ε tend to 0.

The following corollary yields a large class of C∗-algebras with the TP:

Corollary 4.4. If C has the QWEP property, then C has the TP.
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Proof. This follows from the closure of the class of C∗-algebras with the TP under

quotients together with the fact that every C∗-algebra with the WEP has the TP.

To see this latter statement, suppose that C has the WEP; it suffices to show that

(C,C∗(F∞)) has the TP, which is indeed the case since this pair is a nuclear pair

by Fact 2.1(1).

Question 4.5. Is there an example of a C∗-algebra with the TP but not the QWEP

property?

Given that the class of C∗-algebras with the QWEP is closed under direct prod-

ucts, one potential approach to Question 4.5 would be to establish a negative answer

to the next question:

Question 4.6. Is the class of C∗-algebras with the TP closed under direct

products?

Since the class of C∗-algebras with the TP is closed under quotients, if it were

closed under direct products, then it would in fact be closed under arbitrary reduced

products, that is, quotients of direct products by arbitrary filters.

Just like the QWEP property, the TP is closed under inductive limits:

Proposition 4.7. If (Ci)i∈I is a directed family of C∗-algebras with the TP, then

so is the direct limit lim
−→

Ci.

Proof. Set C := lim
−→

Ci. Fix k and n and a C∗-algebra D. For each x, y ∈ [k],

consider POVMs Ax and By of length n in C and D, respectively, and a state

φ ∈ S(C ⊗max D). By Corollary 2.6, given ε > 0, there is i ∈ I and POVMs Āx in

Ci of length n such that the image of Āx
a in C under the canonical map is within

ε of Ax
a for each x ∈ [k] and a ∈ [n]. Moreover, the canonical map of Ci into C

induces a map Ci ⊗max D → C ⊗max D, inducing a state φ′ on Ci ⊗max D. It

follows that the correlation p′(a, b |x, y) := φ′(Āx
a⊗B

y
b ) is within ε of the correlation

p(a, b |x, y) := φ(Āx
a⊗B

y
b ). Since Ci has the TP, p′ ∈ Cqa(k, n). Since ε is arbitrary,

it follows that p ∈ Cqa(k, n), whence (C,D) is a Tsirelson pair.

We list one further closure property of the class of C∗-algebras with the TP (see

[2, Exercise 2.3.11] for the analogous property of the class of nuclear C∗-algebras):

Proposition 4.8. Suppose that C is a C∗-algebra with the property that, for any

finite subset F of C and any ε > 0, there is a C∗-algebra C ′ with the TP and u.c.p.

maps ψ1 : C → C ′ and ψ2 : C ′ → C such that ‖(ψ2 ◦ ψ1)(c) − c‖ < ε for all c ∈ F .

Then C also has the TP.

Proof. Fix a C∗-algebra D. Fix also k and n and, for each x, y ∈ [k], POVMs Ax

and By in C and D, respectively, of length n. Fix also a state φ ∈ S(C⊗maxD); we

wish to show that p(a, b |x, y) := φ(Ax
a ⊗ By

b ) belongs to Cqa(k, n). Fix ε > 0 and

take a C∗-algebra C ′ with the TP and u.c.p. maps ψ1 : C → C ′ and ψ2 : C ′ → C
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with respect to the finite set F := {Ax
a : x ∈ [k], a ∈ [n]} and the given ε. Let

Āx
a := ψ1(Ax

a) and note that each Āx is a POVM in C ′. Let φ′ := φ ◦ (ψ2 ⊗ idD), a

state on C ′⊗maxD. Let p′(a, b |x, y) := φ′(Āx
a⊗B

y
b ). By assumption, p′ ∈ Cqa(k, n).

Since ‖p− p′‖ < ε and ε was arbitrary, it follows that p ∈ Cqa(k, n), as desired.

Remark 4.9. It appears to be an open question as to whether the conclusion of

Proposition 4.8 holds if one replaces “TP” by “QWEP.” This might perhaps lead

to a way to separate these two classes as asked in Question 4.5.

Definition 4.10. A C∗-algebra C has the strong Tsirelson property (STP) if it has

the TP and is not subhomogeneous.

Lemma 4.11. A C∗-algebra C has the STP if and only if (C,D) is a strong

Tsirelson pair for every non-subhomogeneous C∗-algebra D.

Lemma 4.12. The C∗-algebras with STP are closed under ultraproducts.

Proof. This follows from the fact that the class of C∗-algebras that are not sub-

homogeneous is closed under ultraproducts [3, Subsec. 2.5.5].

5. Model-Theoretic Connections

Theorem 5.1. Both the class of C∗-algebras with the TP and the class of

C∗-algebras with the STP are elementary.

Proof. We first deal with the case of C∗-algebras with the TP. We must show

that this class is closed under ultraproducts and ultraroots. The first item was

established in Proposition 4.3. Since any C∗-algebra is r.w.i. in its ultrapower (see

[5, Proposition 2(2)]), closure under ultraroots also follows from Proposition 4.3.

Since the class of C∗-algebras that are not subhomogeneous is axiomatizable

(see [3, Subsec. 2.5.5]), the second statement of the theorem follows from the first.

By Proposition 4.7, both of the aforementioned classes are inductive.

While one might wish for an “explicit” axiomatization of the class of C∗-algebras

with the TP or STP, the next result will show that this cannot be the case.

Theorem 5.2. There can be no effectively axiomatizable theory T in the language

of pairs of C∗-algebras such that all models of T are Tsirelson pairs and at least

one model of T is a strong Tsirelson pair.

Proof. Suppose, towards a contradiction, that such a theory T exists. Work now

in the language of pairs of C∗-algebras expanded by a new unary predicate symbol.

One can then consider the effectively axiomatizable theory T ′ whose models are of

the form (C,D, P ), where (C,D) is a model of T and P (c, d) = φ(c ⊗ d) for some
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state φ on C ⊗maxD. That this class of structures is axiomatizable (and effectively

so) is due to the fact that states on the maximal tensor product are just extensions

of unital linear functionals on the algebraic tensor product that are positive on the

algebraic tensor product.

One can now reach a contradiction to the main result of [9] as follows. We

assume familiarity with nonlocal games and their quantum and commuting values

as defined in [9]. Given a nonlocal game G with k questions, n answers, probability

distribution π, and decision predicate D, one can consider the first-order sentence

σG in the language of T ′ given by

sup
A

sup
B

∑

(x,y)∈[k]

π(x, y)
∑

(a,b)∈[n]

D(x, y, a, b)P (Ax
a, B

y
b ).

Here, it is understood that A ranges over k-tuples of POVMs of length n from

the first C∗-algebra in the pair while B ranges over k-tuples of POVMs of length

n from the second C∗-algebra in the pair. That these quantifications are allowed,

that is, that the sets in question are definable, follows from Proposition 2.5. Since

the modulus of definability of these sets is explicit (in fact, by Corollary 2.6, it is

ε 7→ ε
2 ), σG is effectively describable from the description of G. (See [6, Sec. 2] for

more on these matters.)

The assumptions on the theory T imply that

sup
{

σ
(C,D,P )
G

: (C,D, P ) |= T ′
}

= val∗(G),

where val∗(G) is the quantum entangled value of G. Since T ′ is effectively axiomatiz-

able, the Completeness Theorem for continuous logic implies that one can effectively

enumerate upper bounds for the left-hand side of the above display, whence also

for val∗(G). Since effective lower bounds for val∗(G) always exist, this allows one to

effectively approximate val∗(G), which, by the main result of [9], would allow one

to decide the halting problem, yielding a contradiction.

Remark 5.3. The assumption of at least one model that is a strong Tsirelson

pair is necessary as the class of pairs of abelian C∗-algebras is clearly effectively

axiomatizable and consists entirely of nuclear (and thus Tsirelson) pairs.

Remark 5.4. We can now finish the proof of Corollary 3.8. Recall that we claimed

that if one of C or D is subhomogeneous, then (C,D) is not a strong Tsirelson

pair. Suppose, towards, a contradiction that C is n-subhomogeneous and (C,D) is

a strong Tsirelson pair. Then letting T denote the theory of pairs of C∗-algebras for

which the first element of the pair is n-subhomogeneous, we see that T is effectively

axiomatizable (this follows from the effective axiomatization of n-subhomogeneous

C∗-algebras given in [3, Subsec. 2.5.4]), all models of T are nuclear pairs (and thus

Tsirelson pairs), and has at least one model that is a strong Tsirelson pair (by our

contradiction assumption). This contradicts the statement of Theorem 5.2.

Corollary 5.5. There can be no effectively axiomatizable theory T of C∗-algebras,

all of whose models have the TP, and which has at least one model that has the
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STP. In particular, neither the elementary class of C∗-algebras with the TP nor the

elementary class of C∗-algebras with the STP are effectively axiomatizable.

The following consequence of the previous corollary improves upon

[1, Theorem 2.2].

Corollary 5.6. There can be no effectively axiomatizable theory T of C∗-algebras,

all of whose models have the QWEP property, and which has at least one model

that is not subhomogeneous.

Proof. This follows immediately from Corollaries 4.4 and 5.5.

Using Corollary 5.5, an argument identical to that establishing [1, Corollary 2.4]

establishes the following:

Corollary 5.7. The class of C∗-algebras without the (S)TP is not closed under

ultraproducts.
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