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Abstract
We extend Leth’s notion of subsets of the integers satisfying the standard interval
measure (SIM) property to the class of virtually nilpotent groups and name the corre-
sponding property the standard ball measure property. In order to do this, we define a
natural measure on closed balls in asymptotic cones associated with such groups and
show that this measure satisfies the Lebesgue density theorem. We then prove analogs
of various properties known to hold for SIM sets in this broader context, occasionally
assuming extra properties of the group, such as the small spheres property and the
small gaps property.

Keywords Nonstandard analysis · Combinatorial number theory · Combinatorics ·
Number theory · Nilpotent groups

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

2.1 Some nonstandard analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
2.2 Growth rates for finitely generated groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
2.3 Asymptotic cones for finitely generated groups . . . . . . . . . . . . . . . . . . . . . . . . 842

3 A measure on the unit ball of asymptotic cones . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
3.1 Introducing the measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
3.2 The Lebesgue density property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
3.3 Consequences of the small sphere property . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

4 The BM property for internal sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
4.1 The ball measure property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
4.2 Properties of BM sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

B Ryan Burkhart
rburkha1@uci.edu
http://www.math.uci.edu

Isaac Goldbring
isaac@math.uci.edu

1 Department of Mathematics, University of California, Irvine, 340 Rowland Hall (Bldg.# 400), Irvine,
CA 92697-3875, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-023-01250-6&domain=pdf
http://orcid.org/0000-0001-6241-0054


838 Journal of Algebraic Combinatorics (2023) 58:837–866

5 The SBM property for standard sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
5.1 SBM sets and their properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
5.2 Supra-SBM sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858
5.3 Musings on dependence on generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

1 Introduction

In the 1980s, Steven Leth introduced a property of subsets of the natural numbers that
he called the SIM (short for standard interval measure) property [12]. The property
is motivated by ideas from nonstandard analysis and, roughly speaking, demands that
there be a connection between the internal notion of small gap sizes on hyperfinite
intervals and the external notion of the (normalized) standard part of the set having
large Lebesgue measure. More precisely, given an infinite, hyperfinite interval I =

[y, z] ⊆ ∗
N, one can consider the map stI : I → [0, 1] given by stI(x) := st

(
x−y
z−y

)
.

It can be shown that if an internal subset A of I is such that stI(A) has large Lebesgue
measure, then all gaps of A on I have small size (that is, small internal cardinality)
compared to the size of I. The SIM property is motivated by asking that the converse
relation hold, uniformly over all infinite, hyperfinite subintervals of I.

In the same paper, Leth showed that subsets of the natural numbers with the SIM
property satisfy the conclusion of a theorem of Steward and Tijdeman [19] known to
hold for sets with positive Banach density: if A1, . . . ,An ⊆ N have the SIM property,
thenD(A1)∩· · ·∩D(An) is syndetic, where, for any subsetA ⊆ N,D(A) is the set of
those n ∈ N which may be written as ai −aj for infinitely many pairs (ai,aj) ∈ A2.

In joint work of Leth and the second author, further properties of SIM sets were
established. For example, Leth had shown that being a SIM set is not simply a notion
of size and it became apparent that it would be sensible to consider the class of supra-
SIM sets, that is, the class of sets containing SIM sets. In [7], it was shown that the
class of supra-SIM sets is a partition regular class, whence is combinatorially natural.
Moreover, they were able to prove a version of Jin’s theorem for sumsets of SIM sets;
namely, the sum of any two SIM sets is piecewise syndetic [10] (Jin’s theorem had
the same conclusion but with A and B assumed to have positive Banach density), as
well as a version of Nathanson’s theorem from [14], namely if A is SIM, then for
any n ∈ N, there are B,C ⊆ N with B infinite and |C| = n for which B + C ⊆ A

(Nathanson’s result had the same conclusion under the assumption thatA had positive
Banach density). Nathanson’s theorem was partial progress on a sumset conjecture
of Erdos, which asked if A has positive lower density, must A contain the sum of
two infinite sets? This conjecture was recently resolved in the affirmative, under the
weaker assumption of positive Banach density, by Donaldson, Moreira, and Richter
[13]. Whether or not the theorem holds under the assumption that A is simply a SIM
set is an interesting open question.

It is relatively routine to generalize the definition of SIM set from subsets of N to
subsets of Z. By replacing intervals by cubes, one can easily generalize the definition
further to subsets of Z

n and thus to subsets of any finitely generated abelian group.
However, generalizing the definition beyond the finitely generated abelian case is not
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entirely clear as many of the arguments rely heavily on the “geometry” of intervals
and cubes.

One idea of how to expand the class of groups to which this concept is meaningful
is to replace cubes by balls in the Cayley graph (with respect to some given finite
set of generators). The natural quotient map from an infinite, hyperfinite ball to the
asymptotic cone of the group with respect to the given set of generators and some
infinite hypernatural number is then a suitable replacement for the map stI considered
above. However, many of the results mentioned above rely heavily on the Lebesgue
density theorem for Lebesgue measure on [0, 1]. Since the Lebesgue measure is the
pushforward of the Loeb measure associated with the hyperfinite counting measure
on I via stI, it is thus natural in our extended setting to ask that the Lebesgue density
theorem hold for the pushforward of the Loeb measure associated with the hyperfinite
counting measure on infinite, hyperfinite balls in the Cayley graph. We show that,
assuming that the group has polynomial growth, this pushforward measure does
indeed satisfy the Lebesgue density theorem. By Gromov’s celebrated theorem [8],
the assumption of polynomial growth is equivalent to the assumption that the group
is virtually nilpotent.

In this paper, we show how to extend the definition of SIM sets to the class of finitely
generated virtually nilpotent groups, obtaining a class of sets that we call SBM sets,
where SBMis short for the standardballmeasure property.However, to obtain results
that parallel the results discussed above, we sometimes need to assume that our groups
satisfy a property we call the small sphere property, a property known to hold in all
nilpotent groups of class 2 and conjectured to hold for all nilpotent groups. For some
of our results, a third property, which we call the small gap property, is also assumed.
With these assumptions in hand, we prove direct analogs of the aforementioned results
known to hold for SIM sets (with the SBM analog of Jin’s theorem being the only
exception).

While it is satisfying to extend the class of SIM sets to a fairly large class of non-
abelian groups, it would be desirable to extend the notion even further. In particular,
it would be interesting to see if this notion could be suitably extended to the class of
amenable groups, perhaps using well-behaved Folner sequences as replacements for
balls in the Cayley graph. Ideally one could even extend the notion past amenable
groups. For example, how to extend the notion to finitely generated free groups is also
not clear to us at present.

We assume the reader is familiar with the basics of nonstandard analysis. The
monograph [5] contains a complete introduction and is aimed at an audience interested
in combinatorial applications.Manyof the proofs appearing later in this paper are based
on the arguments given in Chapter 16 of that monograph. Nevertheless, some basic
notation and information on certain nonstandard constructions, such as hyperfinite
products in groups and the Loeb measure construction, are given in the next section.
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2 Preliminaries

2.1 Some nonstandard analysis

In this subsection, we only recall a few facts from nonstandard analysis that we use
throughout the paper.We first remind the reader that, for any setX, lettingP(X) denote
the powerset of X, we can naturally identify the nonstandard extension ∗P(X) of P(X)
with a subset of P(X∗); in this way, elements of ∗P(X)will be called internal subsets
of ∗X; subsets of ∗X that are not internal are called external. In a similar way, if
Pf(X) denotes the finite subsets of X, then elements of ∗Pf(X) are special internal
subsets of ∗X called hyperfinite subsets of ∗X. By transfer, for each hyperfinite subset
A of ∗X, there is a unique element N of ∗

N for which there is an internal bijection
f : A → [1,N] := {M ∈ ∗

N 1 � M � N}; we refer to this N as the internal
cardinality of A, denoted by |A|. Note also that, by transfer, an internal subset of a
hyperfinite set is once again hyperfinite.

Given any hyperfinite setA, there is a natural finitely-additive probabilitymeasureμ

on the algebra (but not σ-algebra!) of internal subsets ofA given by μ(B) := st
(

|B|
|A|

)
.

It is a standard fact that the hypotheses of the Carathéodory extension theorem hold
in this context, whence we get an extension of μ, denoted μL and called the Loeb
measure, defined on a canonical σ-algebra of subsets of A containing the internal
subsets, called the σ-algebra of Loeb measurable sets. An example to keep in mind
is the following: if N ∈ ∗

N\N and A = {0, 1
N , . . . , N−1

N , 1} and st : A → [0, 1] is the
usual standard part map, then the pushforward of the Loeb measure space on A via st
is the usual Lebesgue measure on [0, 1].

We also remind the reader of the notion of hyperfinite products in groups. Suppose
that G is an arbitrary group. Let Gfs denote the set of finite sequences from G and
let p : Gfs → G denote the product map p((g1, . . . ,gn)) := g1 · · ·gn. We can thus
consider the nonstandard extension of ∗Gfs, which is the set of hyperfinite sequences
from ∗G; we suggestively write elements of ∗Gfs as (g1, . . . ,gN) for some element
N ∈ ∗

N. Similarly, we consider the nonstandard extension p : ∗Gfs → ∗G of p and
suggestively write g1 · · ·gN instead of p((g1, . . . ,gN)).

2.2 Growth rates for finitely generated groups

From now on, throughout this paper, G will always denote a finitely generated group
with finite generating set S. For simplicity, we will always assume that our generating
set S is symmetric, that is, contains the identity and is closed under inverses.

The word metric on G with respect to S is the metric

dS(x,y) = min{n ∈ N : x−1y = s1s2 · · · sn for some s1, . . . , sn ∈ S}.

Note that dS is left-invariant, that is, for all x,y,g ∈ G, dS(x,y) = dS(gx,gy).
Also notice that, for Z with the standard symmetric generating set S = {1,−1}, we
have that dS is simply the usual notion of distance in Z.
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For g ∈ G, set the word length of g with respect to S to be |g|S = dS(g, e), where
e denotes the identity of the group. Whenever our generating set S is understood, we
will often write this simply as |g|. For any g ∈ G and any n ∈ N, define the closed
ball of radius n and center g to be B(g,n) = {h ∈ G : |g−1h| � n}, where we
also allow B(g, 0) = {g}. In what follows, we will often omit the word “closed” and
simply refer to this as a “ball.” The open ball of radius n with center g is then
defined as U(g,n) = {h ∈ G : |g−1h| < n} = B(g,n − 1), allowing us to define
the sphere of radius n with center g by S(g,n) = B(g,n)\B(g,n − 1). Note that
we can (and will) also allow real (instead of natural) number radii, noting that spheres
with non-integer radii are empty.

For n ∈ N, set

αn = αn,S = |{g ∈ G : |g|S � n}| = |B(g, e)|.

Note that we have the trivial upper bound αn � |S|n. However, in many groups, αn

will grow much more slowly than this exponential upper bound. For example, if G is
abelian, then it is readily verified that αn < (n+ 1)|S| for large enough n. This is an
example of the following phenomenon:

Definition 2.1 We say that G has polynomial growth if there is d ∈ N and C > 0
such that αn � Cnd for all n ∈ N. The degree of polynomial growth of a group is
defined to be the minimum degree d for which the above inequality holds for some
positive constant C.

Since any two word metrics on G are bi-Lipschitz equivalent, the notion of poly-
nomial growth is indeed independent of the choice of generating set.

In many cases, it will be useful to have both upper and lower bounds for αn.

Theorem 2.2 [1] IfG has polynomial growth with degreed, then there exists a nonzero
constant c ∈ N such that 1

cnd � αn � cnd for all n ∈ N.

It was shown by Wolf in [21] that all virtually nilpotent groups are of polynomial
growth. Thirteen years later, Gromov proved the converse in [8], thereby completely
characterizing groups with polynomial growth.

Theorem 2.3 (Gromov [8]) The finitely generated groups with polynomial growth are
precisely the finitely generated groups which are virtually nilpotent.

By Gromov’s theorem, in the sequel, we use the terms polynomial growth and
virtually nilpotent interchangeably.

We extend the above notions to the nonstandard setting as follows. ThemetricdS on
G extends to an internal metric, also denoted dS, on ∗G, which, by transfer, satisfies,
for all x,y ∈∗ G:

dS(x,y) = min{N ∈ ∗
N : x−1y = s1s2 · · · sN for some s1, . . . , sN ∈ S}.

Here, (s1, s2, . . . , sN) ranges over hyperfinite sequences from S and s1s2 · · · sN is the
corresponding hyperfinite product, as introduced in the previous subsection. Similarly,
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for any g ∈ ∗G and any R ∈ ∗
R

>0, we have notions of internally closed balls B(g,R),
internally open balls U(g,R), and internal spheres S(g,R).

Wenote for future referenceonenonstandard consequenceof the polynomial growth
assumption.

Lemma 2.4 Suppose that G has polynomial growth. Let M � N be infinite elements
of ∗

N. Then αM
αN

≈ 0 ⇐⇒ M
N ≈ 0.

Proof Let d be the degree of polynomial growth of G, as witnessed by the constant
c. First assume that M

N ≈ 0. Then since αM � cMd and αN � 1
cNd, we get that

αM
αN

� c2 Md

Nd = c2(M
N )d, which is infinitesimal.

For the other direction, assume αM
αN

≈ 0. Since αM � 1
cMd and αN � cNd, this

gives us that Md

c2Nd � αM
αN

≈ 0. Since 1
c2 is an element of R, this means (M

N )d ≈ 0

and thus M
N ≈ 0. 	


2.3 Asymptotic cones for finitely generated groups

In this section, we recall the asymptotic cone construction for finitely generated
groups, using the approach pioneered by van den Dries andWilkie [4] via nonstandard
analysis (while asymptotic cones can be defined for any metric space, we will only
need the construction for finitely generated groups equipped with their word metric).

Throughout this subsection, we fix a finitely generated group G with finite (sym-
metric) generating set S. GivenN ∈ ∗

N\N, we define the relation ∼N on ∗G by setting

x ∼N y if and only if dS(x,y)
N is infinitesimal. The following properties of ∼N are

routine to verify:

Lemma 2.5 Fix M,N ∈ ∗
N\N and x,y, z ∈ ∗G.

(1) ∼N is an equivalence relation on ∗G.
(2) Let S ′ be another finite generating set forG, with corresponding word metric dS ′

and equivalence relation ∼ ′
N. Then ∼N and ∼ ′

N are the same relation on ∗G.
(3) If M

N is neither infinite nor infinitesimal, than∼M and∼N are the sameequivalence
relation.

(4) If x ∼N y, then |dS(x,z)−dS(y,z)|
N is infinitesimal.

(5) We have x ∼N y ⇐⇒ y ∈ B(x,M) for some M ∈ ∗
N such that M

N ≈ 0.

For x ∈∗ G and N ∈ ∗
N\N, we let eqN(x) denote the equivalence class of x with

respect to ∼N. Items (2) and (3) in Lemma 2.5 imply that these equivalence classes
are independent of the choice of generating set for G and the choice of representative
for the Archimedean class of N. Given E ⊆ G, we set eqN(E) = {eqN(x) x ∈ E} for
the set of equivalence classes of elements of E.

In the sequel, to simplify notation, we often overline a variable name to indicate that
it is an equivalence class and similarly for sets of equivalence classes. Consequently,
for x ∈ eqN(∗G), we have that x = eq−1

N (x) = {g ∈ ∗G: eqN(g) = x}. Implicit
in this notation is that x itself is a representative of the equivalence class x, that is,
eqN(x) = x (one drawback of this notation is that we suppress mention of N; we thus
only use this notation when N has been fixed ahead of time).
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Definition 2.6 The asymptotic cone C(G,g,N) of G with base point g ∈ ∗G and
scaling factor N ∈ ∗

N\N is defined as

{
eqN(x) : x ∈ ∗G and

dS(x,g)
N

is finite

}
.

The asymptotic cone can be equipped with the metric dN given by

dN (eqN(x), eqN(y)) = st

(
dS(x,y)

N

)
.

Note that this standard part is indeed defined as dS(x,y)
N � dS(x,g)

N +
dS(y,g)

N and both
terms on the right hand side of this inequality are finite by assumption. Furthermore,
Lemma 2.5(4) implies that these definitions are indeed independent of the choice of
representatives for equivalence classes.

An easy saturation argument shows that C(G,g,N) is a complete metric space.
Moreover, the asymptotic cone is also a geodesic metric space (see [6] for proofs of
both of these facts).

We have obscured mention of the generating set S in the above notation. The reason
for that is the fact that any two word metrics for G are bi-Lipschitz equivalent remains
true for the asymptotic cones with respect to these generating sets (using the same
base point and scaling factor N), whence the construction is essentially independent
of the choice of generator. The map

eqN(x) �→ eqN(gx) : C(G, e,N) → C(G,g,N)

is an isometry, whence the asymptotic cone (with respect to a given N) is also essen-
tially independent of base point. That being said, the homeomorphism type of the
asymptotic cone can very much depend on the choice of N; see, for example, [11].
However, for the groups we will be interested in, the choice of N will be irrelevant.

Example 2.7 All asymptotic cones of Z with respect to the generating set {1,−1} are
isometric to R with its usual distance. Indeed, working for simplicity with the base
point 0, we see that the map

eqN(x) �→ st
( x

N

)
: C(Z, 0,N) → R

is an isometry.

The result in the previous example is a special case of amore general result of Pansu
[15], namely that when G is virtually nilpotent, the isometry type of the asymptotic
cones of G (with respect to a given generating set) is independent of the choice of
N ∈ ∗

N \ N.
The following theorem will be of great use to us going forward:

Theorem 2.8 If X is the metric space of an asymptotic cone defined via a finitely
generated group G, then the following are equivalent:
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(1) X is proper (that is, closed balls are compact).
(2) X is separable.
(3) G is virtually nilpotent.

In particular, some asymptotic cone of G is proper (resp. separable) if and only if they
all are.

Proof sketch (1) implies (2) holds for any metric space; the converse was shown by
Sisto in [18].

(1) implies (3) was shown by Sapir [16], building on work by Hrushovski [9].
Conversely, if G is nilpotent, then some asymptotic cone of G is proper by the work
of van den Dries and Wilkie [4]; that all such cones must be proper follows from the
aforementioned result of Pansu [15]. 	


3 Ameasure on the unit ball of asymptotic cones

3.1 Introducing themeasure

Throughout this section, G is a finitely generated group with finite (symmetric) gen-
erating set S.

ForN ∈ ∗
N\N andg ∈ ∗G, we letμg,N denote the Loebmeasure on the hyperfinite

set B(g,N) and let Lg,N denote the μg,N-measurable subsets of B(g,N). Let Ag,N

denote the set of subsets A of eqN

(
B(g,N)

)
such that A ∈ Ag,N if and only if

eq−1
N (A) ∩ B(g,N) ∈ Lg,N. For A ∈ Ag,N, set

λg,N(A) = μg,N
(
eq−1

N (A) ∩ B(g,N)
)
.

In other words, Ag,N and λg,N are the pushforwards of Lg,N and μg,N by eqN.
Suitably adapting the example from Sect. 2.1, letting G = Z, g = 0, and N be any

element of ∗
N\N, λg,N is the Lebesguemeasure on [−1, 1] andAg,N is the collection

of Lebesgue measurable subsets of [−1, 1].
Note that, in themetric space (C(G,g,N),dN), eqN

(
B(g,N)

)
is the closed ball of

radius 1 centered at the equivalence class g = eqN(g). In what follows, we will write
BN(g, r) to refer to eqN

(
B(g, rN)

)
, which is the closed ball of radius r ∈ R with

center g in the asymptotic coneC(G,g,N). Note that this is independent of the choice
of representative of g. We also consider the open ball of radius r and center g, denoted
UN(g, r), and note thatUN(g, r) =

⋃
n∈N

eqN

(
B
(
g, r(1− 1

n )N
))
. Finally, we also

consider the sphere SN(g, r) = BN(g, r)\UN(g, r).

Proposition 3.1 For any g ∈ ∗G and any N ∈ ∗
N \ N, if A ⊆ ∗G is internal, then

eqN

(
A ∩ B(g,N)

)
is λg,N-measurable.

Proof Set E = A ∩ B(g,N). It suffices to establish that

eq−1
N (eqN(E)) =

∞⋂
n=1

{
x ∈ B(g,N) : x ∈ B

(
y,

N

n

)
for some y ∈ E

}
.
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Toward this end, first assume x ∈ eq−1
N

(
eqN(E)

)
. Then there is y ∈ E such that

x ∈ B(y,M) for some M ∈∗
N with M

N ≈ 0. Thus x ∈ B(y, N
n ) for all n ∈ N, as

desired.
Conversely, assume that x is in the intersection on the right side of the above

display. Then for any n ∈ N, there is an ∈ E such that x ∈ B(an, N
n ). Note that

{M ∈ ∗
N : x ∈ B(a,M) for some a ∈ E} is internal since E is internal, and thus

has a minimum M ′. By the above observation, M ′ < N
n for all n ∈ N, meaning

M ′
N ≈ 0. Taking a ∈ E such that x ∈ B(a,M ′), we see that eqN(x) = eqN(a) and
thus x ∈ eq−1

N

(
eqN(E)

)
. 	


Corollary 3.2 If BN(g, 1) is separable (that is, if G is virtually nilpotent), then the
Borel subsets of BN(g, 1) are λg,N-measurable.

Proof First note that, since BN(g, 1) is separable, the Borel subsets form the
smallest σ-algebra containing all open balls, whence it suffices to show that open
balls are λg,N-measurable. By Proposition 3.1, the closed ball BN(h, r) is λg,N-
measurable asBN(h, r) = eqN(B(h, rN)∩B(g,N)). Using the fact thatUN(h, r) =⋃

n∈N
BN

(
h, (1 − 1

n )r
)
, we see that all open balls are λg,N-measurable as

well. 	

From now on, we will restrict ourselves to the virtually nilpotent case and will

only be concerned with the behavior of λg,N on the Borel subsets of BN(g, 1); we
consequently restrict our attention to that a priori smaller σ-algebra.

3.2 The Lebesgue density property

One property thatwill come up frequently in our later proofs iswhether or notλg,N sat-
isfies a version of the Lebesgue density theorem, which we formulate in the following
way.

Definition 3.3 Let μ be an outer measure on the metric space X. We say that (X,μ)
satisfies the Lebesgue Density Theorem (LDT) if, for all μ-measurable A ⊆ X, we
have that

lim
r→0+

μ
(
A ∩ B(x, r)

)

μ
(
B(x, r)

) = 1

for μ-almost all x in A.

In order to put ourselves in the context of the previous definition, we define the
outer measure λ0g,N on BN(g, 1) by

λ0g,N(A) = inf{λg,N(B) : A ⊆ B,B a Borel set}.

This is an outer measure which agrees with λg,N on Borel sets and whose measurable
sets include the Borel sets.

The goal of this subsection will be to establish the following theorem:
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Theorem 3.4 Let G be a finitely generated virtually nilpotent group. Then for all
infinite N ∈ ∗

N and all g ∈ ∗G, we have that λ0g,N satisfies the Lebesgue Density
Theorem.

If we let G = Z with the standard generating set, we have already discussed the
fact that, for any g ∈ ∗

Z, λg,N is the Lebesgue measure on BN(g, 1) ∼= [−1, 1]. Thus,
the previous theorem generalizes the basic fact that the Lebesgue measure on [−1, 1]
satisfies the conclusion of the Lebesgue Density Theorem.

Our proof of Theorem 3.4 will use a more general result about the validity of the
LDT for outer measures satisfying a certain list of properties.

Definition 3.5 Suppose that μ is an outer measure on the metric space X. We say that
μ:

(1) is Borel regular if all Borel sets are μ-measurable and, for all A ⊆ X, we have
that μ(A) = μ(B) for some Borel set B;

(2) is openσ-finite ifX can be covered by countablymany open sets of finitemeasure;
(3) has the symmetric Vitali property (SVP) if, for any E ⊆ X with μ(E) < ∞ and

any collection B of closed balls with centers in E satisfying

inf{r ∈ R
+ : B(x, r) ∈ B} = 0

for every x ∈ E, there is a countable, pairwise disjoint subcollection B ′ = {Bn :
n ∈ N} ⊆ B of balls such that μ(E\

⋃
n∈N

Bn) = 0;
(4) has the doubling property if there exists a constant C with μ

(
B(x, r)

)
�

Cμ
(
B(x, r

2 )
)
for all x ∈ X and r ∈ R

+.

The following lemma appears as [17, Remark 3.11].

Lemma 3.6 If X is separable and μ is a Borel regular outer measure on X with the
doubling property, then μ has the Symmetric Vitali Property.

The following is [17, Theorem 3.16]:

Theorem 3.7 Let μ be an outer measure on the metric space X that is Borel regular,
openσ-finite, and has the symmetric Vitali property. Then, (X,μ) satisfies the Lebesgue
Density Theorem.

We are now ready for the proof of the main result of this subsection:

Proof of Theorem 3.4 The fact that λ0g,N is Borel regular and open σ-finite is clear. It
remains to verify the symmetric Vitali property. Using Lemma 3.6 and the fact that
BN(g, 1) is separable (by the assumption that G is virtually nilpotent), it suffices to
establish that λ0g,N has the doubling property.

First recall that, by transfer, there is c > 0 and d ∈ N such that

Nd

c
� |B(g,N)| � cNd.
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Claim: For x ∈ BN(g, 1) and r ∈ (0, 2), we have:

λg,N

(
BN

(
x,

r

2

))
�

1
c (

r
16N)d

|B(g,N)|
.

Proof of claim:
There are four cases to consider:

Case 1: Assume BN(x, r
2 ) ⊆ BN(g, 1). Then

λg,N

(
BN

(
x,

r

2

))
�

∣∣B(x, r
4N)

∣∣
|B(g,N)|

�
1
c (

r
4N)d

|B(g,N)|
�

1
c (

r
16N)d

|B(g,N)|
.

In the remaining three cases, we assume BN(x, r
2 ) is not a subset of BN(g, 1) and

set a := dN(x,g) > 1− r
2 .

Case 2: Assume r � 1. Then, using the fact that the asymptotic cone is a geodesic
metric space, we can take a z such that dN(x, z) = r

4 and dN(z,g) = a − r
4 > 0,

whence BN(z, r
4 ) ⊆ BN(g, 1) ∩ BN(x, r

2 ). Thus, we can use the inequality from the
first case, replacing r with r

2 , giving us

λg,N

(
BN

(
x,

r

2

))
� λg,N

(
BN

(
z,

r

4

))
�

∣∣B(z, r
8N)

∣∣
|B(g,N)|

�
1
c (

r
16N)d

|B(g,N)|
.

In the last two cases, we assume r > 1.
Case 3: Assume a � 1

2 . Then, we can take z with dN(x, z) = 1
4 and dN(z,g) =

a− 1
4 > 0, whenceBN(z, 14 ) ⊆ BN(x, r

2 )∩BN(g, 1). Thus, we can use the inequality
from the first case with r = 1

2 , giving us

λg,N

(
BN

(
x,

r

2

))
� λg,N

(
BN

(
z,

1
4

))
�

∣∣B(z, 18N)
∣∣

|B(g,N)|
�

1
c (

1
8N)d

|B(g,N)|
�

1
c (

r
16N)d

|B(g,N)|
.

Case 4: a < 1
2 . Then there exists z with dN(x, z) = 1

4 , so that dN(z,g) < 3
4 . Thus

BN(z, 14 ) is again contained in both of our balls, and so we can use the same inequality
from case three. The claim is now proven.

Next note that, for any r > 0, we have

λg,N
(
BN(x, r)

)
� |B(x, 2rN)|

|B(g,N)|
� c(2rN)d

|B(g,N)|
.

Combining this observation with the claim gives, for all r ∈ (0, 2),

λg,N
(
BN(x, r)

)
� c(2rN)d

|B(g,N)|
=

c2(32)d 1
c (

r
16N)d

|B(g,N)|
� c2(32)dλg,N

(
BN

(
x,

r

2

))
,

and so the doubling property holds with C = c2(32)d (as λ0g,N agrees with λg,N on
Borel sets). 	
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Remark 3.8 Besides showing that there is a well-defined isometry type of asymptotic
cones for a given virtually nilpotent group, Pansu [15] also showed that this asymptotic
cone can be equipped with a natural Lie group structure (see [2] for a nice description
of this construction). In particular, these asymptotic cones possess an (essentially)
unique Haar measure; we leave it for future work to compare the restriction of this
Haar measure to the unit ball of the asymptotic cone and the measure on the unit ball
we have been considering in this paper (We thank Alessandro Sisto for pointing us to
this fact).

3.3 Consequences of the small sphere property

While the assumption of polynomial growth will prove useful going forward (as has
already been evidenced by the validity of the LDT for the measure we have considered
on closed balls in asymptotic cones established in the previous subsection), it does
not seem to be quite powerful enough to prove all of our results below. Indeed, we
will want spheres in asymptotic cones to behave much as they do in Euclidean space,
namely that a sphere of radius r of dimension (that is, degree of polynomial growth)
d has size on the order of rd−1. We formalize this desire into the following definition:

Definition 3.9 A finitely generated group G with symmetric generating set S and
polynomial growth of degree d has the Small Sphere (SS) Property if there exists
some constant c ′ such that, for any n ∈ N and g ∈ G, we have that |S(g,n)| �
c ′nd−1.

As defined, the SS property is a property that may or may not hold for a given group
with respect to a given generating set; it is unclear to us if this property is independent
of generating set.

The SS property has been shown to hold in nilpotent groups of nilpotency class 2
(such as the discrete Heisenberg group), regardless of the generating set, by Stoll in
[20]. Indeed, Stoll was able to show that this growth rate of spheres is sharp in this
case, that is, there exist nilpotent groups of nilpotency class 2 where the size of spheres
of radius n is precisely on the order of nd−1.

In [2], Breuillard and Le Donne made progress on finding a growth rate for spheres
in arbitrary virtually nilpotent groups. They proved that for a nilpotent group of nilpo-
tency class r, the size of the spheres of radius n is bounded by a growth function on
the order of nd−βr , where βr = 2

3r . However, they mention that this growth rate
is unlikely to be sharp. Indeed, it has been conjectured that spheres in all virtually
nilpotent groups satisfy the SS property. Breuillard and Le Donne refer to this as a
“folklore conjecture” and no further progress on this conjecture seems to have been
made at this time.

Nevertheless, wewill concern ourselves primarily with groups with the SS property
(with respect to some generating set), as this will allow us to prove many of the
nice properties of SIM subsets of Z in our more general context. One of the main
consequences this assumption gives us is the following:
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Lemma 3.10 Suppose that G is a finitely generated virtually nilpotent group with the
SS property. Fix N ∈ ∗

N\N and g ∈ ∗G. Then λg,N
(
SN(x, r) ∩ BN(g, 1)

)
= 0 for

all r ∈ R
+ and all x ∈ ∗G.

Proof For δ ∈ (0, 1), let Bδ =
⋃

n∈Iδ
S(x,n), where Iδ ⊆ ∗

N is the infinite,
hyperfinite interval

[�(1 − δ)rN
 + 1, �(1 + δ)rN
]. Note that Bδ is internal and

SN(x, r) ⊆ Bδ, whence λg,N
(
SN(x, r) ∩ BN(g, 1)

)
� |Bδ∩B(g,N)|

|B(x,N)| � |Bδ|
|B(x,N)| .

Assume that c is the constant witnessing the polynomial growth of G with degree
d, and c ′ is the corresponding constant for the SS property. Then, we have that

|Iδ| � 2δrN, and |S(x,M)| � c ′((1 + δ)rN
)d−1 for all M ∈ Iδ. Thus, |Bδ| �

(2δrN)
(
c ′ ((1+ δ)rN)d−1 )

and |B(x,N)| � 1
cNd. Therefore,

λg,N
(
SN(x, r) ∩ BN(g, 1)

)
� 2c ′(1+ δ)d−1δrdNd

1
cNd

= 2cc ′(1+ δ)d−1δrd

for all δ ∈ (0, 1). Letting δ tend to 0, we see that λg,N
(
SN(x, r)∩ BN(g, 1)

)
= 0, as

desired. 	

One nice consequence of Lemma 3.10 is that the measure of balls becomes exactly

what we would expect them to be, as long as they are of reasonable size.

Corollary 3.11 Suppose that G is a finitely generated virtually nilpotent group with
the SS property. Then, for any N ∈ ∗N\N, r ∈ R

+
, and g,h ∈ ∗G, we have that

λg,N

(
eqN

(
B(h, rN) ∩ B(g,N)

))
= st

(∣∣B(h, rN) ∩ B(g,N)
∣∣

|B(g,N)|

)
.

Proof By Lemma 3.10, we know that λg,N
(
eqN

(
S(h, rN)

) ∩ BN(g, 1)
)
= 0 and

λg,N
(
eqN

(
S(g,N)

))
= 0 (as eqN

(
S(h, rN)

) ⊆ SN(h, r) and eqN

(
S(g,N)

) ⊆
SN(g, 1)). Therefore, the left hand side of the display appearing in the corollary equals

λg,N

(
eqN

(
B(h,rN) ∩ B(g,N)

)
\
(
eqN

(
S(h,rN)

) ∪ eqN

(
S(g,N)

)))
.

Notice that eq−1
N

(
eqN

(
B(h, rN)∩B(g,N)

)
\

(
eqN

(
S(h,rN)

) ∪ eqN

(
S(g,N)

)) )
is a sub-

set of both B(h,rN) and B(g,N), since the only equivalence classes left would be those that were some
appreciable distance from S(h,rN) and S(g,N). Consequently, we have

λg,N

(
eqN

(
B(h, rN) ∩ B(g,N)

)) � μg,N
(
B(h,rN) ∩ B(g,N)

)
.

On the other hand,B(h,rN)∩B(g,N) is a subset of eq−1
N

(
eqN

(
B(h,rN) ∩ B(g,N)

))
, mean-

ing λg,N
(
eqN

(
B(h,rN) ∩ B(g,N)

)) � μg,N
(
B(h,rN)∩B(g,N)

)
. Combining these bounds,

we see that the left-hand side of the display in the corollary equals

μN
(
B(h, rN) ∩ B(g,N)

)
= st

(∣∣B(h,rN) ∩ B(g,N)
∣∣

|B(g,N)|

)
,

as desired. �	
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Using the same techniques, we prove the following lemmas hold in virtually nilpo-
tent groups with the SS property. The first lemma tells us that we can restrict internal
sets to our given ball before or after moving to the equivalence classes without chang-
ing the measure.

Lemma 3.12 Suppose that G is a finitely generated virtually nilpotent group with the
SS property. Then, for any g ∈ ∗G, any N ∈ ∗

N\N, and any internal A ⊆ ∗G, we
have

λg,N
(
eqN(A) ∩ eqN(B(g,N))

)
= λg,N

(
eqN

(
A ∩ B(g,N)

))
.

Proof Since eqN

(
A ∩ B(g,N)

) ⊆ eqN(A) ∩ eqN(B(g,N)), the left-hand side is at
least the right-hand side. To show equality, note that

(
eqN(A) ∩ eqN(B(g,N))

)
\ eqN

(
A ∩ B(g,N)

) ⊆ SN(g, 1),

as any equivalence class in eqN(A) and eqN(B(g,N)) that is not represented by an
element of A ∩ B(g,N) must contain elements outside of B(g,N). Thus, by Lemma
3.10,

λg,N
(
eqN(A) ∩ eqN(B(g,N))

)
= λg,N

((
eqN(A) ∩ eqN(B(g,N))

)
\SN(g, 1)

)

= λg,N
(
eqN

(
A ∩ B(g,N)

))
.

	

This next lemma gives us an easy way to convert the measure from one ball to a

superball or subball.

Lemma 3.13 Suppose that G is a finitely generated virtually nilpotent group with the
SS property. Then for any g,g ′ ∈ ∗G, any N ∈ ∗

N\N, any r ∈ (0, 2) such that
B(g ′, rN) ⊆ B(g,N), and any internal A ⊆ ∗G, we have

λg,N

(
eqN

(
A ∩ B(g ′, rN)

))
= st

(
|B(g ′, rN)|

|B(g,N)|

)
λg ′,rN

(
eqN

(
A ∩ B(g ′, rN)

))
.

Proof By definition, whenever B ⊆ eqN(∗G) = eqrN(∗G) is λg,N or λg ′,rN

measurable, respectively, we have λg,N(B) = μg,N
(
eq−1

N (B) ∩ B(g,N)
)
and

λg ′,rN(B) = μg ′,rN

(
eq−1

N (B) ∩ B(g ′, rN)
)
. Next observe that

(
eq−1

N

(
eqN

(
B(g ′, rN)

)) ∩ B(g,N)
)∖(

eq−1
N

(
eqN

(
B(g ′, rN)

)) ∩ B(g ′, rN)
)

is contained in eq−1
N (SN(g ′, r)), which has μg,N-measure 0 by Lemma 3.10, and

whence the restriction to B(g ′, rN) does not affect the measure. The lemma follows
from noting that the following four quantities are equal, where the infima in the second
and third bullets are over internal subsets C of ∗G:
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• μg,N

(
eq−1

N

(
eqN

(
A ∩ B(g ′, rN)

)) ∩ B(g,N)
)

• inf
{
st

(
|C|

|B(g,N)|

)
: eq−1

N

(
eqN

(
A ∩ B(g ′, rN)

)) ∩ B(g,N) ⊆ C
}

• inf
{
st

(
|C|

|B(g ′,rN)|
· |B(g ′,rN)|

|B(g,N)|

)
: eq−1

N

(
eqN

(
A ∩ B(g ′, rN)

))∩B(g ′, rN)⊆C
}

• st
(
|B(g ′,rN)|
|B(g,N)|

)
μg ′,rN

(
eq−1

N

(
eqN

(
A ∩ B(g ′, rN)

)) ∩ B(g ′, rN)
)
.

	


4 The BM property for internal sets

4.1 The ball measure property

Throughout this section,we fix a finitely generated groupGwith symmetric generating
set S.

Definition 4.1 Given a ball I = B(g,N), with g ∈ ∗G and N ∈ ∗
N\N, and internal

A ⊆ ∗G, we define the following two quantities:

• λI(A) = λg,N
(
eqN(A ∩ I)

)
.

• gA(I) = max
{

|B(x,M)|
|I|

: B(x,M) ⊆ I, B(x,M) ∩ A = ∅,M ∈ ∗
N

}
.

Using the notation from the previous definition, note that λI(A) can equivalently
be expressed as λe,N

(
eqN

(
g−1A ∩ B(e,N)

))
. We will sometimes refer to λI(A)

as the ”measure” of A in I. The quantity gA(I) is a measure of the size of gaps of A

in I and notice that the maximum appearing in the definition indeed exists as
{
M ∈

∗
N : B(x,M) ⊆ I, B(x,M)∩A = ∅ for some x ∈ I

}
is an internal subset of [1, 2N].

Just like the corresponding properties in the original definition of the IM property,
λI(A) is an external property of A whereas gA(I) is an internal property. As in the
case of the integers, without any further assumptions, there is always one relationship
between these two quantities, assuming the group is virtually nilpotent and satisfies
the SS property:

Lemma 4.2 Suppose that G is a virtually nilpotent group satisfying the SS property.
Let I = B(g,N) be an infinite, hyperfinite ball and A an internal subset of I. For any
ε > 0, if λI(A) � 1− ε, then gA(I) � ε.

Proof Assume that gA(I) > ε. Then, there is some infinite hyperfinite ball J ⊆ I such

that st( |J||I| ) > ε and A ∩ J = ∅. Let ∂J be the sphere that makes up the boundary of

J. Observe that eqN(A) ∩ (
eqN(J)\ eqN(∂J)

)
= ∅. Thus, using Lemma 3.10 and

Corollary 3.11, we have that the following quantities coincide:

• λI(A)
• λg,N

(
eqN(A)

)
• 1− λg,N

(
eqN(J)\ eqN(∂J)

)
• 1− λg,N

(
eqN(J)

)
+ λg,N

(
eqN(∂J)

)
• 1− λg,N

(
eqN(J)

)
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• 1− st
(
|J|
|I|

)
.

Since the last quantity is strictly less than 1− ε, the lemma is proven. 	


Notice that even this proof of such a basic relationship (seemingly) requires the
use of the SS property. The definition of the BM property seeks to find a connection
between these quantities in the other direction:

Definition 4.3 Given an internal set A ⊆ ∗G and infinite hyperfinite ball I, we say
that A has the ball measure property (or BM property for short) on I if: for every
ε > 0, there is δ > 0 such that, for all infinite hyperfinite balls J ⊆ I with gA(J) � δ,
we have λJ(A) � 1− ε.

For simplicity, we often just say A is BM on I. Note that if G = Z with generating
set S = {−1, 1}, then the notion of the BM property reduces to the definition of the
IM property on intervals of odd length which, since a single element has no effect
on either gA(I) or λI(A), can be easily extended to include all intervals. Thus, the
previous definition truly is a generalization of the IM property.

While we have defined this concept for all finitely generated groups, given that
Lemma 4.2 used the assumptions of being virtually nilpotent and having the SS
property, it seems that to establish a nice theory of sets with the BM property, these
assumptionswill need to be present throughout. Consequently,wehenceforth assume
that G is of polynomial growth and has the SS property.

4.2 Properties of BM sets

Suppose that A has the BM property on I. Let δ(A, I, ε) be the supremum of the δ’s
that witness A being BM on I for the given ε. As in the IM case, we want to avoid the
situation where A is BM on I simply because there is some δ > 0 with gA(J) > δ for
all infinite balls J ⊆ I. In this spirit, we establish the following proposition.

Proposition 4.4 Let A ⊆ ∗G be an internal set and let I be an infinite hyperfinite ball
such that A is BM on I. Then, the following statements are equivalent:

(i) For every δ > 0, there is an infinite subball Jδ of I such that gA(Jδ) < δ.
(ii) There is an infinite subball J of I such that λJ(A) > 0.

Proof First assume that (i) holds. Then, there is a subball J of I such that gA(J) <

δ(A, I, 12 ). By definition, this means that λJ(A) � 1− 1
2 = 1

2 > 0.
For the other direction, assume that J = B(g,N) is an infinite subball of I such that

λJ(A) > 0, meaning λg,N
(
eqN(A ∩ J)

)
> 0. By the LDT and Corollary 3.11, for

any δ > 0, we can find a subball J ′ = B(g ′,N ′) ⊆ J such that

1− δ <
λg,N

(
eqN(A ∩ J) ∩ eqN(J ′)

)
λg,N(eqN(J ′))

= st

(
|J|

|J ′|

)
λg,N

(
eqN(A ∩ J) ∩ eqN(J ′)

)
.

123



Journal of Algebraic Combinatorics (2023) 58:837–866 853

By Lemma 3.12 and Lemma 3.13, we have that the right-hand side of the previous
display equals

st

(
|J|

|J ′|

)
λg,N

(
eqN(A ∩ J ′)

)
= λg ′,N ′

(
eqN(A ∩ J ′)

)
.

Thus, by Lemma 4.2, we see that gA(J ′) < δ. Letting Jδ = J ′, we have that
(i) holds. 	


Using the same terminology as in [5], we say thatA has the enhancedBMproperty
on I if A is BM on I and λI(A) > 0.

We can now establish the “internal partition regularity” of the BM property:

Theorem 4.5 Let A be an internal subset of ∗G with the enhanced BM property on an
infinite hyperfinite ball I. Assume that A ∩ I = B1 ∪ · · · ∪ Bn with each Bi internal.
Then, there is an i ∈ {1, . . . ,n} and an infinite subball J ⊆ I such that Bi has the
enhanced BM property on J.

Proof We prove this theorem by induction, the base case n = 1 being trivial. Now
assume that n > 1 and the result is true for partitions of size n − 1. Let A ∩ I =
B1 ∪ · · · ∪ Bn be an internal partition. If there is an i ∈ {1, . . . ,n} and an infinite
subball J ⊆ I such that Bi ∩ J = ∅ and λJ(A) > 0, then we can use the assumption on
J and the n− 1 remaining Bj’s to obtain j and J ′ ⊆ J ⊆ I that satisfies the conclusion
of the theorem. Thus, we may assume going forward that this is not the case, that is,
whenever λJ(A) > 0, we have that Bi ∩ J �= ∅ for all i = 1, . . . ,n. We will show
that this implies that each Bi is BM on I. Since λI(Bi) must be positive for some
i ∈ {1, . . . ,n}, this Bi will be as desired.

Fix i and set B = Bi. Fix ε > 0 and let J = B(g,N) be an infinite subball of I

with gB(J) � δ(A, I, ε) (If no such J exists, then B has the BM property on I and we
are done). Since B ⊆ A, we know that gA(J) � gB(J) � δ(A, I, ε). By definition,
this gives us that λJ(A) � 1 − ε. Now take BN(x, r) ⊆ BN(g, 1)\ eqN(B), so that
B(x, rN) ∩ B = ∅. Our assumption then gives us that λB(x,rN)(A) = 0, and so
λJ

(
A ∩ B(x, rN)

)
= 0. Thus, λJ(B) = λJ(A) � 1 − ε, meaning B has the BM

property on I. 	

We next proceed to establish a result about “difference sets” for which we will need

the following notion:

Definition 4.6 Let A1, . . . ,An be internal subsets of ∗G and let I1, . . . , In be hyper-
finite balls.

• A δ-configuration with respect to these sets is a sequence of subballs J1, . . . , Jn

of I1, . . . , In, respectively, such that all Ji have the same radius and such that
gAi

(Ji) � δ for all i = 1, . . . ,n. We will refer to the shared radius of J1, . . . , Jn

as the radius of the configuration.
• If J1, . . . , Jn is a δ-configuration with respect toA1, . . . ,An and I1, . . . , In, then a

δ-subconfiguration of J1, . . . , Jn is a δ-configuration with respect to A1, . . . ,An

and J1, . . . , Jn.
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• A strong δ-subconfiguration is a δ-subconfiguration K1, . . . ,Kn of J1, . . . , Jn

for which there exists a c ∈ ∗G such that, writing Ji = B(ai,N), we have that
Ki = B(aic,M).

Theorem 4.7 Let A1, . . . ,An be internal subsets of ∗G which are BM on the balls
I1, . . . , In, respectively. Take ε > 0 such that ε < 1

n+1 , and δ > 0 such that δ <

mini=1,...,n δ(Ai, Ii, ε). Then, there is a w ∈ N such that any δ-configuration has a
strong δ-subconfiguration of radius at most w.

Proof Let A1, . . . ,An, I1, . . . , In, ε, and δ be as above. Take Ji = B(ai,R) to be a
δ-configuration, with R ∈ ∗

N\N. Then, by our choice of δ, we have that λJi
(Ai) �

1− 1
n+1 , meaning λa−1

i Ji
(a−1

i Ai) � 1− 1
n+1 . Note thata

−1
i Ji = B(e,R). Therefore,

each a−1
i Ai has measure at least 1− 1

n+1 on B(e,R), whence

λe,R

(
n⋂

i=1

eqR

(
a−1

i Ai ∩ B(e,R)
)
)

> 0.

By the Lebesgue density theorem,
⋂n

i=1 eqR

(
a−1

i Ai∩B(e,R)
)
has a point of density

b. Thus, there must be an r ∈ (0, 1) such that

λe,R

(( ⋂n
i=1 eqR

(
a−1

i Ai ∩ B(e,R)
)) ∩ BR(b, r)

)

λe,R
(
BR(b, r)

) � 1− δ.

Let Ki = B
(
aib, �rR
). By the previous display, we have that gAi

(Ki) � δ for
all i = 1, . . . ,n. Thus, the Ki form a strong δ-subconfiguration with radius rR < R.

The import of the previous discussion is that every δ-configuration with infinite
radius has a proper strong δ-subconfiguration. Let C denote the (internal) set of δ-
configurations of A1, . . . ,An, I1, . . . , In and let f : C → ∗

N be the internal function
defined by sending any δ-configuration J1, . . . , Jn to the minimal radius of a strong
δ-subconfiguration of J1, . . . Jn (which exists by transfer). We have thus shown that
f(C) ⊆ N whence, by overflow, f(C) ⊆ [0,w] for some w ∈ N. Thus, this w satisfies
the conditions of the theorem. 	


The previous lemma has consequences for difference sets. To state these conse-
quences, we establish some terminology and remind the reader about syndetic sets in
arbitrary groups.

Definition 4.8 For any A ⊆ ∗G, we define

D(A) = {g ∈ G : g = a−1b for infinitely many pairs a,b ∈ A}.

For any group G, recall that a subset A of G is called syndetic if there is a finite
subset F ⊆ G such that AF = G. Equivalently, A is syndetic if there exists n ∈ N

such that B(g,n) ∩ A �= ∅ for all g ∈ G. Note that if H � G is a subgroup, then H

is syndetic if and only if H has finite index in G.
We can now state the following lemma, which we will use in the next section.
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Lemma 4.9 Suppose thatA has the enhancedBMproperty on some infinite, hyperfinite
ball I. Then, there is some r ∈ N such that, for every g ∈ G, there is z ∈ B(e, r) with
x−1y ∈ {h−1ghz : h ∈ ∗G} for infinitely many pairs x,y ∈ A.

Proof LetA1 = A2 = A and I1 = I2 = I = B(v,N). By Theorem 4.7, there isw ∈ N

such that everyδ-configurationB(ai,R)has somec ∈ ∗Gwith the sequenceB(aic,w)
containing a strong δ-subconfiguration of B(ai,R). In particular, this implies that
B(aic,w) ∩ A �= ∅. We will show that r = 2w will satisfy our conditions.

Fix g ∈ G. Since λv,N
(
eqN(A ∩ I)

)
> 0, we can find countably many dis-

tinct points of density of eqN(A ∩ I), thereby giving us pairwise disjoint balls
BN(ai,ε,bε) ⊆ eqN(A ∩ I) with λai,ε,bεN

(
eqN(A ∩ I) ∩ BN(ai,ε,bε)

)
� 1 − ε

for all i ∈ N. Thus gA

(
B(ai,ε,bεN)

)
� ε. Since the gap function is internal and

we can find such balls for any ε > 0, there must be countably many pairwise dis-
joint balls Ji = B(ai,R) with gA(Ji) ≈ 0 for all i ∈ N. Since g ∈ G, it is also
true that gA

(
B(aig,R)

) ≈ 0, as the elements of B(aig,R) that are not in Ji are all
contained in one of S(ai,R + 1), . . . ,S(ai,R + |g|), all of which have infinitesimal
size when compared to Ji by the SS property. Consequently, the Ji,B(aig,R) forms
a δ-configuration of A1,A2, I1, I2 for any δ and any i. Thus, by our choice of w, for
every i ∈ N, there is a ci ∈ ∗G such that

A ∩ B(aici,w) �= ∅ and A ∩ B(aigci,w) �= ∅.

If xi ∈ A ∩ B(aici,w) and yi ∈ A ∩ B(aigci,w), then xi = aicix and yi =
aigciy with |x|, |y| � w. Since

x−1
i yi = x−1c−1

i a−1
i aigciy = x−1c−1

i gcix(x
−1y),

we see that x−1
i yi ∈ B(h−1gh, 2w) for some h ∈ ∗G, meaning there must be a

z ∈ B(e, 2w) such that infinitely many i satisfy x−1
i yi ∈ {h−1ghz : h ∈ ∗G}. 	


As a corollary, we get the following results.

Corollary 4.10 If A has the enhanced BM property on some infinite, hyperfinite ball
I, then there is some r ∈ N such that B(g, r) ∩ D(A) �= ∅ for any g ∈ Z(G).

Proof Let r be as in Lemma 4.9. Fix g ∈ Z(G). By Lemma 4.9, there is z ∈ B(e, r)
such that there are infinitely many x,y ∈ A with x−1y ∈ {h−1ghz : h ∈ ∗G} = {gz}.
In other words, gz ∈ D(A). Since z ∈ B(e, r), gz ∈ B(g, r), finishing the proof. 	


Thus, we see that sets with the enhanced BM property are, in some sense, ”syndetic
on the center of G.”

Corollary 4.11 If A has the enhanced BM property on some infinite, hyperfinite ball I
and Z(G) has finite index in G, then D(A) is syndetic in G.
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5 The SBM property for standard sets

5.1 SBM sets and their properties

We nowmove to the setting of standard sets,maintaining our standing assumptions
that G is a finitely generated virtually nilpotent group with the SS property.

Definition 5.1 We say that a set A ⊆ G has the standard BM property (or SBM
property for short) if:

(1) ∗A is BM on every infinite, hyperfinite subball of ∗G, and
(2) ∗A has the enhanced BM property on some infinite hyperfinite subball of ∗G.

Note that for G = Z with the standard generating set S = {1,−1}, we recover the
definition of SIM set.

Since the SBM property is a property of standard sets, it is possible to give an
equivalent definition using only standard notions (as Leth did for subsets of the integers
with the SIM property in [12]). We merely establish the notation for stating this
equivalent reformulation, leaving the proof of the theorem to the reader. Since this
standard reformulation is not terribly enlightening, the reader choosing to skip the
verification will lose nothing in what follows.

Following the notation in [5], for A ⊆ G and 0 < δ < ε < 1, let the function
Fδ,ε,A : N → N ∪ {∞} be defined as follows. First, if gA(I) > δ for every subball of
G with radius � n, set Fδ,ε,A(n) = 0. Otherwise, let Fδ,ε,A(n) be the minimum k

such that there is a subball I of G with radius � n and gA(I) � δ for which there are
disjoint subballs I1, . . . , Ik ⊆ Iwith Ii ∩A = ∅ for all i and

∑k
i=1 |Ii| � ε|I|. Finally,

if no such k exists, we let Fδ,ε,A(n) = ∞. Note that either there exists an n ∈ N such
that Fδ,ε,A(m) = 0 for all m � n or else Fδ,ε,A is an increasing function.

Theorem 5.2 A has the SBM property if and only if: for all ε > 0, there is δ > 0 such
that limn→∞ Fδ,ε,A(n) = ∞.

We now turn to a discussion of examples and non-examples of sets with the SBM
property. First, an easy example:

Example 5.3 If A ⊆ G is syndetic, then A has the SBM property.

Proof Assume A ⊆ G is syndetic. Then, there is n ∈ N such that B(g,n) ∩ A �= ∅

for all g ∈ G. By transfer, this will also be true of ∗A for all g ∈ ∗G. Thus, gA(I) ≈ 0
and λI(A) = 1 for all infinite, hyperfinite balls I ⊆ ∗G, whence A is SBM. 	


In order to proceed further and to see that the SBM property behaves in a way that
mimics the SIM property, we will ask that our groups satisfy one further property.

Definition 5.4 We say that the finitely generated group G has the small gap prop-
erty (or SG property for short) if, for any r ∈ (0, 1), there is δ > 0, such that
limn→∞ ηn(G, δ) > r, where

ηn(G, δ) = min{ρ(A,B) gB(A) < δ,A,B subballs of G, |A| > n}
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and

ρ(A,B) =

{
|C|

|A|
: C ⊆ A ∩ B is a subball

}
.

In other words, if G has the SG property and we know that the gap size between
two balls A and B is small, then as long as A is large enough, this also tells us that
there is a ball in the intersection that is close in size to A.

It is unclear at this time what groups satisfy this property and whether or not this
property is dependent on the generating set. Certainly, Zd will have this property with
its standard generators, but we have yet to verify any non-abelian examples. That being
said, it seems possible that the following holds.

Conjecture 5.5 Let G be a finitely generated, virtually nilpotent group with the SS
property. Then, G has the SG property.

From this point forward, besides assuming that our groups are virtually nilpotent
and have the SS property, we also assume that our groups have the SG property,
and will make clear when this is used. One consequence of the SG property is that an
infinite ball will always have the BM property on any other infinite ball, formalized
in the following lemma.

Lemma 5.6 IfA andB are infinite, hyperfinite balls in ∗G, thenB has the BM property
on A.

Proof Fix ε ∈ (0, 1) and let δ > 0 be as in the definition of the SG property for
r = 1−ε. Assume that the infinite hyperfinite subballA ′ ⊆ A is such thatgB(A

′) < δ.
Then, the SG property and transfer tell us that there is a ball C ⊆ A ′ ∩ B with
st

( |C|
|A ′|

)
� 1− ε. By Corollary 3.11,

λA ′(B) � λA ′(C) = st

(
|C|

|A ′|

)
> 1− ε.

Thus, B has the SBM property on A. 	

The following lemma is another consequence of the SG property. First, we need

to recall the generalization of piecewise syndeticity to arbitrary groups: B ⊆ G is
piecewise syndetic if there is a finite set F ⊆ G such that, for all finite T ⊆ G,
gT ⊆ BF for some g ∈ G.

Theorem 5.7 If B is piecewise syndetic, then there is A ⊆ B with the SBM property.

We defer the proof of Theorem 5.7 for later, as it will follow immediately from
Theorem 5.11. Theorem 5.7 implies that many sets contain SBM sets. However, con-
taining an SBM set is not enough to say that a set is SBM. In fact, the following
holds.

Lemma 5.8 Let A ⊆ G be a non-syndetic set. Then, there is B ⊇ A such that B is not
SBM.
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Proof For every n ∈ N, let xn ∈ G be such that B(xn,n2) ∩ A = ∅. Then set

B = A ∪
⋃

n∈N

⋃
0�k�n

S(xn,kn).

Assume that c is a constant witnessing the polynomial growth ofG of degree d. Fix
an infiniteN ∈ ∗

N. Fix δ > 0 and takem ∈ N such thatmd > c2

δ . Let I = B(xN,N2),
and consider J = B(xN,mN). By the definition of B, we have

g∗B(J) � |B(xN,N)|

|B(xN,mN)|
� cNd

1
cmdNd

=
c2

md
< δ.

On the other hand, ∗B∩J =
⋃

0�k�m S(xN,kN) is a finite union ofλxN,mN-measure
0 sets by the SS property. Thus, for every δ > 0, we can find a J ⊆ I with g∗B(J) < δ

and λJ(
∗B) = 0. Therefore ∗B is not BM on I and thus B is not SBM. 	


Note that this lemma only made use of the SS property, and did not require the
SG property. However, assuming we do have the SG property, we can combine the
previous lemmawith Theorem 5.7 to conclude that every set that is piecewise syndetic
but not syndetic contains an SBM set, but is also contained in a set that is not SBM.

We end this subsection with one other fact about SBM sets.

Corollary 5.9 If A has the SBM property, then there is an r ∈ N such that for all
x ∈ Z(G), B(x, r) ∩ D(A) �= ∅.

Proof This follows immediately from Corollary 4.10 and the fact that D(A) = D(
∗A). 	


5.2 Supra-SBM sets

We stated in the previous section that all piecewise syndetic sets contain an SBM set,
and that SBM sets are not closed under supersets. The following definition is thus
natural:

Definition 5.10 A set A ⊆ G is supra-SBM if there is a B ⊆ A such that B has the
SBM property.

With this definition (and making use of the SG property), we prove the following,
generalizing a result of Goldbring and Leth [7, Theorem 3.4].

Theorem 5.11 Let A ⊆ G be such that ∗A has the enhanced BM property on some
ball I. Then, A is supra-SBM.

Proof Let d be the degree of polynomial growth ofG and let c be the constant witness-
ing this growth. Fix k ∈ N. Let δ(k) be as in the definition of the small gap property
for r = min

{ 1
5dc2 , (1 −

1
k )

}
. Fix δk < min

(
δ( ∗A, I, 1

k ), δ(k)
)
. For any k,n ∈ N,

if we take J ⊆ I an infinite subball such that g∗A(J) < δk, then λJ(
∗A) � 1− 1

k by
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the definition of δk. Therefore, if we take n disjoint subballs J1, . . . , Jn of J with Ji ∩
∗A = ∅ for each i, we have

∑n
i=1

|Ji|
|J| < 1

k . In other words, the sum of n disjoint

gaps of ∗A in J have sizes adding to less than |J|
k . This statement is internal and is true

for all infinite J, so by underflow, there must be some Mn,k ∈ N such that whenever

|J| > Mn,k, then n disjoint gaps of ∗A on J add up to less than |J|
k . Also, since λI(

∗A) > 0, for every n ∈ N there exists an infinite subball J of I with g∗A(J) < 1
n .

Since there is an infinite ball I with all of these internal properties on ∗A, by
transfer, we can define a sequence of pairwise disjoint balls In inGwith the following
properties:

• Letting B(e, rn) be the smallest ball around the identity which contains
I1, . . . , In−1, we have that In ∩ B(e,nrn) = ∅.

• In has a subball J with radius at least n such that gA(J) < 1
n .

• For all k � n and all J ⊆ In, if m < n, |J| > Mm,k, and gA(J) < δk, then at
least m+ 1 disjoint gaps of A on J are necessary for the size of the gaps to add up
to |J|

k .

Let B =
⋃

n∈N
(A ∩ In). We show that B has the SBM property.

LetH be an infinite, hyperfinite subball of ∗G.We show that ∗B has theBMproperty
on H as witnessed by the function δH(ε) = 1

5dc2 δk for any k > 2
ε . To see this, take

J ⊆ H such that g∗B(J) < 1
5dc2 δk, and assume that IM is the ball with largest

index which intersects J. Note that every IK with K < M satisfies IK ⊆ B(e, rK),
whereas every element of IM is outside of B(e,KrK). Therefore, the radius of J is at

least (K−1)rK
2 , and so |B(e,rK)|

|J|
is infinitesimal as 2rK

(K−1)rK
is infinitesimal. Thus, all

elements of IK with K < M are in the equivalence class of the identity modulo ∼M.
As constructed, ∗B∩H ⊆ B(e, rM)∪ IM. We know that |B(e,rM)|

|J|
is infinitesimal

and that gB(e,rM)∪IM
(J) � g∗B(J) � 1

5dc2 δk. Assume, toward a contradiction,
that gIM

(J) > δk. Then there is a closed ball C ⊆ J such that C ∩ IM = ∅ and
|C| > δk|J|. Let rC be the radius of C and x be the center of C. Take y ∈ C such
that d(x,y) = rC. Let x ′ and y ′ be such that d(x, x ′) = d(y,y ′) = �rC

4 
 and
d(x,y ′) = d(y, x ′) = rC − �rC

4 
. In other words, let x ′ and y ′ be points along
some path of length rC from x to y where x ′ is approximately 1

4 of the way from x

to y and y ′ is approximately 3
4 of the way from x to y. Since d(x,y) = rC, we must

have that d(x ′,y ′) � rC
2 . This tells us that the balls B(x ′, rC

5 ) and B(y ′, rC
5 ) are

disjoint and contained in C. Indeed, if a is in the ball around x ′ and b is in the ball
around y ′, then d(a,b) � rC

10 . Finally, note that if B(e, rM) ∩ B(x ′, rC
5 ) �= ∅, then

B(e, rM) ∩ B(y ′, rC
5 ) = ∅. Thus

gB(e,rM)∪IM
(J) � 1

c|J|

(rC

5

)d
� |C|

|J|c25d
>

δk

c25d
,

contradicting our original inequality. Thus, we must have that gIM
(J) � δk.
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Using the SG property and our definition of δk, we know that there is a ball J ′ ⊆
IM ∩ J such that |J ′|

|J| > 1
5dc2 . This gives us that

g∗B(J
′) � g∗B(J)

(
|J|

|J ′|

)
�

(
1

5dc2
δk

)
(5dc2) = δk.

So g∗A(J ′) = g∗B(J
′) � δk. Since |J ′| is infinite, it is larger than Mm,k for all

m ∈ N. Therefore, the cardinalities of m disjoint gaps of ∗A (and therefore ∗B) on J ′

cannot add to |J ′|
k for any m ∈ N.

Assume now, toward a contradiction, that λJ ′(∗B) < 1 − 1
k . Let J ′ = B(g ′,N ′),

so that λJ ′(∗B) = λg ′,N ′
(
eqN ′(∗B ∩ J ′)

)
. We know that eqN ′(∗B ∩ J ′) is a closed

set, so that Jc = eqN ′(J ′)\ eqN ′(∗B ∩ J ′) is an open set with λg ′,N ′(Jc) > 1
k . Since

Jc is open, for every x ∈ Jc, we can find an nx ∈ N such that BN ′(x, 1
nx

) ⊆ Jc.

Let B =
⋃

x∈Jc
{BN ′(x, 1

n ) : n � nx}. By the symmetric Vitali property, there is

a countable pairwise disjoint subcollection B ′ =
{
Bn : n ∈ N

}
of B such that

λg ′,N ′
(
Jc\

⋃
n∈N

Bn

)
= 0, whence λg ′,N ′

( ⋃
n∈N

Bn

)
= λg ′,N ′(Jc) > 1

k . By
countable additivity, we have that

∑∞
n=1 λg ′,N ′(Bn) > 1

k . Thus, there must be some
m ∈ N such that

∑m
n=1 λg ′,N ′(Bn) > 1

k . Because the Bn are closed subballs of
the open set Jc and Jc ∩ eqN ′( ∗B) = ∅, we know that eq−1

N ′(Bn)∩ ∗B = ∅.
Consequently, by overflow, for each n � m we can find a closed ball Cn ⊆ J ′ such
that eq−1

N ′(Bn) ⊆ Cn and Cn ∩ ∗B = ∅. This gives us m gaps of ∗B in J ′ such that

|
⋃

n�m Cn|

|J ′|
�

∑
n�m

λg ′,N ′(Bn) >
1
k
.

This contradicts the fact that no finite number of gaps of ∗B can add up to |J ′|
k .

Thus, λJ ′( ∗B) � 1− 1
k .

Finally, λJ(
∗B) � λJ(

∗B ∩ J ′) = st
(
|J ′|
|J|

)
λJ ′( ∗B) � (1 − 1

k )
2. We conclude

that λJ(
∗B) > 1− 2

k , as desired.
It remains to show that ∗B has the enhanced BM property on some infinite ball. To

see this, note that, for any N ∈ ∗
N\N, our construction yields that IN has a subball

J with radius at least N and g∗A(J) � δN < 1
N ≈ 0. Since g∗B(J) = g∗A(J), λJ(∗B) = 1, and so ∗B has the enhanced BM property on J. 	


Using this theorem and the definition of SBM set, we are able to reformulate the
definition of supra-SBM sets in the following way.

Corollary 5.12 A ⊆ G is supra-SBM if and only if there is a B ⊆ A and an infinite,
hyperfinite ball I ⊆ ∗G such that ∗B has the enhanced BM property on I.

Proof First, assumeA is supra-SBM. By definition, there is B ⊆ Awith B SBM. This
B is as desired by the definition of the SBM property. For the other direction, if B ⊆ A

and ∗B has the enhanced BM property on I, then by Theorem 5.11 B is supra-SBM,
and thus so is A. 	
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With Theorem 5.11, the proof that all piecewise syndetic sets are supra-SBM
becomes apparent:

Proof of Theorem 5.7 Assume A ⊆ G is piecewise syndetic. Then there is a d ∈ N

such that, for every n ∈ N, there exists a g ∈ G with A having gaps of size at most
d on B(g,n). Thus, by transfer, there is an infinite, hyperfinite ball I ⊆ ∗G such that
∗A has gaps of size at most d on I. Therefore, for every J ⊆ I, g∗A(J) ≈ 0 and
λJ(

∗A) = 1. By Theorem 5.11, ∗A has the enhanced BM property on this I and thus
A is supra-SBM. 	


Theorem 5.11 also has the following nice Ramsey-theoretic consequence:

Corollary 5.13 Being supra-SBM is a partition regular property of subsets of G.

Proof Let A ⊆ G be a supra-SBM set and suppose A = B1 ∪ · · · ∪ Bn. Then, there
is a subset B of A that is SBM and B = (B ∩ B1) ∪ · · · ∪ (B ∩ Bn). Thus ∗B =
∗(B ∩ B1)∪ · · · ∪ ∗(B ∩ Bn), and ∗B has the enhanced BM property on some infinite
hyperfinite ball I. By Theorem 4.5, there is an i ∈ {1, . . . ,n} and an infinite subball
J ⊆ I such that ∗(B ∩ Bi) ∩ J has the enhanced BM property on J. Theorem 5.11
implies that B ∩ Bi is supra-SBM, whence so is Bi. 	


The last result about supra-SBM sets which we will generalize from the theory of
supra-SIM sets is Nathanson’s theorem, as discussed in the introduction. Proving this
is achieved through repeated use of the following lemma.

Lemma 5.14 Suppose that B ⊆ G is supra-SBM. Then there is an r ∈ N such that,
for every t ∈ Z(G), there is an element t ′ ∈ B(t, r) for which B ∩ Bt ′ is supra-SBM.

Proof Assume that A ⊆ B is SBM and ∗A has the enhanced BM property on the
infinite, hyperfinite ball I. Let w ∈ N be as in Theorem 4.7 for A1 = A2 = ∗A and
I1 = I2 = I (for some ε > 0 and the corresponding δ). As a reminder, this implies
that whenever Ji = B(ai,N) ⊆ I, i = 1, 2, are such that g∗A(Ji) � δ, there is some
c ∈ G such that ∗A ∩ B(aic,w) �= ∅.

Now, fix t ∈ Z(G) and set

Bt =
⋃

k∈B(e,2w)

t∗Ak.

Claim: If J is an infinite, hyperfinite subball of I such that λJ(
∗A) > 0, then

∗A ∩ Bt ∩ J �= ∅.

Proof of the Claim: By the Lebesgue density theorem, there is a1 ∈ J and R ∈
∗
N such that λB(a1,R)(

∗A) > 1 − δ. By Lemma 4.2, g∗A(B(a1,R)) < δ. Note that
because d(a1,a1t

−1) = |t−1|, the symmetric difference B(a1,R)�B(a1t
−1,R) is

contained in a union of spheres:

B(a1,R)�B(a1t
−1,R) ⊆

|t−1|⋃
i=0

S(a1,R − i) ∪ S(a1t
−1,R − i).

123



862 Journal of Algebraic Combinatorics (2023) 58:837–866

Since t−1 ∈ G, by the SS property, this is a finite union of measure 0 sets. Thus, we
can restrict ∗A to B(a1,R) ∩ B(a1t

−1,R) without changing our measure. In other
words,

λB(a1,R)(
∗A) = λB(a1,R)(

∗A ∩ B(a1,R) ∩ B(a1t
−1R)) =

= λB(a1t−1,R)(
∗A ∩ B(a1,R) ∩ B(a1t

−1R)) = λB(a1t−1,R)(
∗A).

Furthermore, since t−1 ∈ Z(G), we have that

λB(t−1a1,R)(
∗A) = λB(a1t−1,R)(

∗A) = λB(a1,R)(
∗A) > 1− δ.

Thus, g∗A(B(t−1a1,R)) < δ. Therefore, we can apply Theorem 4.7 to J1 = B(a1,R)
and J2 = B(t−1a1,R), yielding c ∈ G such that ∗A ∩ B(a1c,w) �= ∅ and ∗A ∩
B(t−1a1c,w) �= ∅. Note that

∗A ∩ B(t−1a1c,w) �= ∅ ⇐⇒ (t ∗A) ∩ B(a1c,w) �= ∅.

Letd ∈ ∗A∩B(a1c,w) ⊆ ∗A∩J. Then, note thatB(a1c,w) ⊆ B(d, 2w) and therefore
B(d, 2w) = dB(e, 2w) contains an element x of t ∗A. Thus, there is k−1 ∈ B(e, 2w)
such that dk−1 = x. This k is also contained in B(e, 2w), and so d ∈ t ∗Ak ⊆ Bt,
finishing the proof of the claim.

The claim implies that, for any infinite hyperfinite subball J ⊆ I, we have

λJ(
∗A ∩ Bt) = λJ(

∗A),

as every infinite subball J of I either satisfies λJ(
∗A) = 0 or contains an element of

∗A∩Bt. Thus, ∗A∩Bt has the enhanced BM property on I. Since Bt is a finite union
of internal sets, Theorem 4.5 implies that there is k ∈ B(e, 2w) such that ∗A ∩ t ∗Ak

has the enhanced BM property on some infinite subball of I. It follows that A ∩ tAk

is supra-SBM, whence, so is B ∩ tBk. Since t ∈ Z(G), B ∩ tBk = B ∩ Btk. Thus,
for any t ∈ Z(G), there is t ′ = tk ∈ B(t, 2w) such that B ∩ Bt ′ is supra-SBM. 	


With this result in place, we prove Nathanson’s theorem for supra-SBM sets under
the additional assumption that the group has infinite center.

Theorem 5.15 If Z(G) is infinite and A ⊆ G is supra-SBM, then for every n ∈ N,
there are B,C ⊆ G such that B is infinite, |C| = n, and BC ⊆ A.

Proof First, note that since Z(G) is infinite, for any supra-SBM set X, Lemma 5.14
implies there must be infinitely many t such that X ∩ Xt is supra-SBM. For n = 1,
apply Lemma 5.14 to A, yielding t1 ∈ G such that B1 = A ∩ At1 is supra-SBM,
and, in particular, is infinite. Letting C1 = {t−1

1 }, we have our result. Now, arguing
inductively, fix m ∈ N and assume we have constructed Bm,Cm ⊆ G such that
Bm ⊆ A is supra-SBM, Cm = {t−1

1 , . . . , t−1
m }, and BmCm ⊆ A. Then, applying

Lemma 5.14 to Bm, we find tm+1 ∈ G such that Bm+1 = Bm ∩ Bmtm+1 is supra-
SBM and t−1

m+1 /∈ Cm. Letting Cm+1 = Cm ∪ {t−1
m+1}, we see that this Bm+1 and

Cm+1 are as desired. 	
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It is shown in [3] that all finitely generated infinite nilpotent groups have infinite
center. In particular, since Theorem 5.15 uses the SS property but not the SG prop-
erty, it applies to finitely generated groups of nilpotency class 2, such as the discrete
Heisenberg group.

5.3 Musings on dependence on generators

As a closing remark, it behooves us to make at least some mention of the role of
generating set for the concepts defined in this paper. At the present time, we have been
unable to verify whether or not these concepts are independent of generating set. One
naïve way around this would be to redefine our properties in the following way.

Definition 5.16 We say that a set A ⊆ G has the weak SBM (WSBM) property if
there exists a finite, symmetric generating set S of G such that G has the SS and SG
properties with respect to this generating set andA is SBMwith respect to S. Similarly,
we say that a set A ⊆ G has the supra-WSBM property if there is B ⊆ A such that
B has the WSBM property.

While these definitions are not very illuminating, they do provide uswith a generator
independent class of sets that satisfy all of the important properties of SBM and
supra-SBM sets, respectively, in virtually nilpotent groups satisfying the SS and SG
properties with respect to some generating set.

It is natural to ask: what sets are or are not WSBM or supra-WSBM? In order to
partially answer this question, we need the following:

Lemma 5.17 Fix an internal set A ⊆ ∗G. Let S and S ′ be finite generating sets for
the virtually nilpotent group G, with corresponding word metrics dS and dS ′ , which
in turn induce measures λg,N and λ ′

g,N on the corresponding dS and dS ′ balls,
respectively. Assume G has the SS property with respect to S ′. Then, the existence of
an infinite hyperfinite dS ball I such that λI(A) > 0 implies the existence of an infinite
hyperfinite dS ′ ball I ′ such that λ ′

I ′(A) > 0.

Proof Let K ∈ N be such that the identity map on G is a K-bi-Lipschitz map between
(G,dS) and (G,dS ′). Let d be the degree of polynomial growth ofG. Assume that I is
an infinite, hyperfinite dS subball of G such that λI(A) > 0. By the Lebesgue density
theorem, for any ε > 0, we can find an infinite dS subball J = B(g,N) ⊆ I with
λJ(A) > 1− ε. We know that J contains the dS ′ ball I ′ = B ′(g, �N

K 
). Furthermore,

there exist constants c and c ′ such that |J| � cNd and |I ′| � c ′
Kd Nd. Thus, we see

that λJ(I
′) � c ′

cK .

Let ε = c ′
2cK . Then, since λJ(A) > 1 − ε and λJ(I

′) > ε, we must have that
λJ(A ∩ I ′) > 0. To conclude the proof, we show that λ ′

I ′(A) > 0. Assume, toward a
contradiction, that λ ′

I ′(A) = 0. In other words,

λ ′
g,
 N

K �
(
eqN(A ∩ I ′)

)
= μ ′

g,
 N
K �

(
eq−1

N

(
eqN(A ∩ I ′)

) ∩ I ′) = 0.
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Using the SS property for G with respect to S ′, we have that

μ ′
g,
 N

K �
(
eq−1

N

(
eqN(A ∩ I ′)

))
= μ ′

g,
 N
K �

(
eq−1

N

(
eqN(A ∩ I ′)

) ∩ I ′) = 0.

Thus, for any δ > 0, theremust be an internal setB such that eq−1
N

(
eqN(A∩I ′)

) ⊆ B

and st
( |B|
|I ′|

)
< δ. SinceBwill also contain eq−1

N

(
eqN(A∩I ′)

)∩J,B serves towitness

λJ(A ∩ I ′) = μg,N
(
eq−1

N

(
eqN(A ∩ I ′)

) ∩ J
))

� st
( |B|

|J|

)
� st

( |B|

|I ′|

)
< δ.

Letting δ → 0, we see that λJ(A ∩ I ′) = 0, a contradiction. 	

Lemma 5.17 shows that many sets in groups with the SS property with respect to

some generating set S are not supra-WSBM.

Corollary 5.18 Let G be a virtually nilpotent group and let S be a finite generating
set for G such that G has the SS property with respect to S. Let A ⊆ G be such that
λI(

∗A) = 0 for all infinite hyperfinite dS balls I ⊆ ∗G. Then, A is not supra-WSBM.

Proof Fix a finite generating set S ′ for G with corresponding measure λ ′
I, and let A

be as in the statement of the corollary. The contrapositive of Lemma 5.17 gives us
that λ ′

I(
∗A) = 0 for all infinite hyperfinite dS ′ balls I. Therefore, given B ⊆ A, we

have that λ ′
I(

∗B) = 0 for all infinite hyperfinite dS ′ balls I. Thus ∗B does not have the
enhanced SBM property on any infinite hyperfinite dS ′ ball. Since S ′ is an arbitrary
finite generating set for G, this yields the desired conclusion. 	

Example 5.19 Let G be a finitely generated virtually nilpotent group, and let S be a
finite generating set for G such that G has the SS property with respect to S. Let
A = {an}n∈N ⊆ G be such that a1 �= e and |an+1| � n|an|. Then, A is not
supra-SSBM.

Proof Let I = B(g,R) ⊆ ∗G be an infinite hyperfinite ball. By Corollary 5.18, it
suffices to show that λI(

∗A) = 0. By transfer, |aN+1| � N|aN| for all N ∈ ∗
N.

Consequently, for all M � N, we have that

dS(aN+1,aM) � |aN+1| − |aM| � |aN+1| − |aN| � (N − 1)|aN|.

This also implies that {a1, . . . ,aN} ⊆ B(e, |aN|). Let aM1 , . . . ,aMK
be all the ele-

ments of ∗A contained in I, with M1 < · · · < MK. If there are no such elements,
then clearly λI(

∗A) = 0. Indeed, we may assume that K is infinite, as otherwise
λI(

∗A) = 0 as the λg,N-measure of finitely many equivalence classes is always 0.

If eqR(aMK
) = eqR(aMK−1

), then
(Mk − 2)|aMK−1|

R
≈ 0, and thus

eqR(aM1) = · · · = eqR(aMK
). This again gives us that λI(

∗A) = 0.
Finally, assume that eqR(aMK

) �= eqR(aMK−1
). Since MK−1 � MK − 1, we

know that

dS(aMK
,aMK−1

) � ((MK − 1) − 1)|aMK−1| � (MK − 2)|aMK−1
|.

123



Journal of Algebraic Combinatorics (2023) 58:837–866 865

Thus, in order for aMK
and aMK−1

to both be in B(g,R), we must have that

2R � dS(aMK
,g) + dS(aMK−1

,g) � dS(aMK
,aMK−1

) � (MK − 2)|aMK−1
|.

Rearranging this inequality, we find

|aMK−1
|

R
� 2

MK − 2
≈ 0.

Thus, eqR(B(e, |aMK−1 |)) is a single equivalence class, meaning once again that
λI(

∗A) = 0 as the measure of two equivalence classes. 	
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