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Unitary Representations of Locally Compact Groups as
Metric Structures
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Abstract  For a locally compact group G, we show that it is possible to present
the class of continuous unitary representations of G as an elementary class of
metric structures, in the sense of continuous logic. More precisely, we show
how nondegenerate *-representations of a general *-algebra 4 (with some mild
assumptions) can be viewed as an elementary class, in a many-sorted language,
and use the correspondence between continuous unitary representations of G and
nondegenerate #-representations of L!(G). We relate the notion of ultraproduct
of logical structures, under this presentation, with other notions of ultraproduct
of representations appearing in the literature, and we characterize property (T)
for G in terms of the definability of the sets of fixed points of L1 functions
onG.

Introduction

When suggesting a model-theoretic treatment of a mathematical object or of a class
of such objects, one must first present the said object(s) as logical structures. In other
words, to each of the objects in question we associate a logical structure, from which
the original object can be recovered.

In some cases, such as fields or groups, this step is so straightforward that it is
hardly noticed. In others, such as valued fields, there is some (very small) degree
of freedom, and one would say they can be viewed as structures in this language or
in that. When dealing with metric structures in the formalism of continuous logic, a
new difficulty arises, namely that one might wish to consider an unbounded metric
space, such as a Banach space, in a logic that can only consider bounded metric
spaces.
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We know of two potential remedies for this. First, one can sometimes extend the
logic to one that does allow unbounded structures, with some price to pay at the
level of technical complexity. Second, one can sometimes argue that the unbounded
structure can in fact be represented by a bounded structure (possibly many-sorted).
The second solution applies quite frequently in the case of Banach space structures.
Indeed, one can recover the entire Banach space from its unit ball equipped with the
structure of a convex space. This practice of restricting the domain of quantification
to the unit ball is quite standard in other contexts—for example, when defining the
operator norm.

Whether such a presentation is “correct’ is very context dependent, of course, but
usually there are two or three good indicators for that, especially when considering
a class of objects that arises naturally in some area of mathematics (below we con-
sider two such examples: Banach spaces and continuous unitary representations of a
topological group G). Either of the second or third conditions implies the first, and
all three are “usually” satisfied (or not) simultaneously.

(i) The class of (presentations of) objects should be closed under logical ultra-
products.
(ii) The class of (presentations of) objects should be elementary.
(iii) When there already exists a useful intrinsic notion of ultraproduct in the class,
it should agree with the logical one.

The unit ball of a Banach space is a good example of the positive case, where
the intrinsic ultraproduct of Banach spaces (see Dacunha-Castelle and Krivine [5])
coincides with the logical ultraproduct of their unit balls.

A failure of a logical presentation to satisfy these criteria often comes in one
of two flavors, which we refer to as missing points and extraneous points, respec-
tively. As an example, let us consider two natural yet misguided attempts to repre-
sent the class of continuous unitary representations of a fixed nondiscrete topological
group G.

1. A first naive approach would be to consider the structure consisting of the
unit ball of a Hilbert space, together with a function symbol for the action of
each g € G. While the map g + g§& is continuous (at 1 € G) for each £ in
the structure, the family of such maps is not necessarily equicontinuous, and
a logical ultrapower may well contain & such that g — g£ is not continuous
at all. This is an “extraneous point” (one kind of nonlogical ultraproduct of
continuous representations is defined exactly by excluding such points from
the Banach space ultraproduct).

2. A next attempt might be to consider, for each modulus of continuity at 1,
the sort of all £ in the unit ball such that g +— g£ satisfies that modulus
of continuity. In such a structure, associated to a continuous representation,
G acts continuously, and even equicontinuously, on each sort, and this is
preserved by ultraproducts.

However, such a structure must also satisfy a subtler condition. Say A and
B are two moduli of continuity, with B stronger than A. Then the associated
sorts must satisfy an inclusion relation Sp € S 4. Moreover, any point of S 4
that happens to satisfy the modulus B must belong to Sp—and this property
need not be preserved under ultraproducts. If this fails, then we may say that
the sort Sp is missing some points.
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In the case of a locally compact G we propose a solution, by splitting the rep-
resentation into sorts not by moduli of continuity, but as images of the action of
L'(G). The resulting structure may be presented most elegantly as a nondegenerate
representation of the *-algebra L!(G). We therefore begin with a general discussion
of the presentation of nondegenerate representations of x-algebras as logical struc-
tures in Section 1. How this specializes to representations of a locally compact G
is discussed in Section 2 (this is fairly standard and mostly included for the sake of
completeness). In Section 3 we put the notion of ultraproduct associated with our
logical structures in the context of notions of ultraproduct of unitary representations
existing in the literature. Finally, in Section 4 we give a model-theoretic characteri-
zation of Kazhdan’s property (T) in G in terms of definability of the set(s) of fixed
points in the associated structure.

1 Nondegenerate *-Representations

Throughout, by an algebra we mean a complex algebra, that is, a ring A4, not neces-
sarily commutative or unital, that is also a complex vector space, satisfying a(ab) =
(xa)b = a(ab) foralla,b € A and o € C. An algebra equipped with a conjugate-
linear involution * satisfying (ab)* = b*a™ is a x-algebra. An algebra equipped
with a norm satisfying ||ab|| < |a||||p]| is a normed algebra, and a Banach alge-
bra if it is complete. If it is both a normed (Banach) algebra and a x-algebra, and
lla*|l = |la||, then it is a normed (Banach) *-algebra. A C*-algebra is a Banach
x-algebra in which |laa*|| = ||a||?.

A morphism of normed algebras is a bounded linear map that respects multipli-
cation, and a *-morphism of normed *-algebras is a normed algebra morphism that
respects the involution. A x-representation of a x-algebra A in a Hilbert space E is
a x-morphism 7: A — B(E).

Fact 1.1 Let A be a Banach x-algebra, and let B be a C*-algebra. Then any *-
morphism ¢: A — B is contractive. In particular, any *-representation of a Banach
x-algebra is contractive.

Proof In the case where B is a unital C*-algebra, this is proved in Folland [6,
Proposition 1.24(b)]. In order to reduce from the general case to the unital case, one
may always add a unit (see Folland [6, Proposition 1.27]). O

Given a Banach x-algebra A, a x-representation of A can be naturally viewed as a
single-sorted metric structure. Indeed, all we need to do is take the unit ball of a
Hilbert space E, and for each a € A of norm at most 1, name the operator 7 (a)
in the language. The class of all such structures is elementary, defined by universal
axioms (modulo the axioms for a unit ball of a Banach space), and if A is separable,
then by choosing a dense subfamily of A the language can be made countable.

This is a little too easy and falls short of what we want to achieve: in view of
Fact 2.3, we want to consider *-representations that are also nondegenerate. Nonde-
generacy may be thought of as an analogue of the condition 77 (1) = id for nonunital
x-algebras (see, e.g., Cherix, Cowling, and Straub [4, Section 4]).

Definition 1.2 Let A be a Banach x-algebra, and let 7: A — B(E) be a *-
representation. The nondegenerate part of the representation, let us call it E”, is
the closed subspace generated by all w(a)é fora € Aand & € E. If ET = E, then
7 is nondegenerate.
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Fact 1.3 Let m: A — B(E) be a x-representation of a Banach x-algebra A, and
let& € E.
(i) We have & 1. E™ if and only if w(a)§é = O for every a € A. In particular, the
x-representation restricts to a nondegenerate one on E™.
(ii) Assume that (ey) is a left approximate unit for A. Then § € E™ if and only if
7(eq)é — &. Equivalently (given the first item), for any £ € E, the sequence
7 (eq)€ converges to the orthogonal projection of € to E™.

Proof  The first item follows from the identity (&, 7(a)¢) = (m(a*)E, ). For the
second, if w(eq )€ — &, then £ € E™ by definition. For the converse, we may assume
that £ is of the form 7 (a){. Then, by Fact 1.1:

|7 (ea)é —&| = |m(eaa)? — m(@)t] < lleaa —allig]l — O. O

If A does not have a unit, then the class of nondegenerate *-representations of A,
presented naively as above, need not be elementary, so something better needs to be
done. The problem is that we cannot express an infinite disjunction such as “there
exists @ € A such that £ is close to the image of m(a).” We solve this by using a
many-sorted language: for each a € A we shall have a sort S,, consisting of the
closure of the image of the unit ball under 77 (a), and all that is left is to express the
interactions between these sorts.

In what follows, by a symmetric convex space, we mean a closed convex subset of
a Banach space closed under opposite. Following [2], a (bounded) symmetric convex

space will be considered as a metric structure in the language {0, —, %}, where —

is the unary opposite operation and % is the binary average operation. If E is
a real Banach space and C C E is a symmetric convex set that generates a dense
subset of E, then E can be recovered from C. Linear maps can be recovered using

the following easy result.

Lemma 1.4 Let E and F be real normed spaces, and let C C E be a symmetric
convex generating subset. Assume that f:C — F is bounded in the sense that
| f ()| < a|lx]|| for some o € R. Then the following are equivalent.
: +
(1) The map f respects the convex structure: f(0) = 0 and f (%) =
S+
> .
(ii) The map f is additive: f(x+y) = f(x)+ f(y) whenever x,y,x+y € C.
(iii) The map f extends to a linear bounded map E — F.

Proof (i) = (ii). For x € C, we have f(x/2) = f(xT“LO) = w = f(x)/2.
Therefore, if x, y,x + y € C, then

Fotyy =27 (FED) 2 T IID 4y,

(ii) = (iii). If f is additive on C, then it extends to an additive map £ — F.
Such a map is necessarily Q-linear and bounded with the same constant «, so it is
R-linear.

(iii) = (i). This is immediate. O]

Definition 1.5 Let A be a Banach x-algebra, and let 7: A — B(E) be a nonde-
generate x-representation. We associate to it a multisorted structure M = M(E, )
constructed as follows.
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— For each a € A, M admits a sort S, = w(a)E<;, where E<; denotes the
unit ball of E.

— Each sort is equipped with the structure of a symmetric convex space, as well
as with a symbol for multiplication by i.

— For any a,b € A, we name the restriction to S; x Sp of the real part of the
inner product: [§, ] = N(&, ). Since one such predicate exists for each pair
of sorts, we may sometimes write [-, -] 5.

— For any a,b € A, the map w(a): S, — Sgp is named by a function symbol
TTg.

All the symbols are bounded and uniformly continuous in a manner that does not
depend on the choice of (E, ), so these can all be viewed as structures in a common
language, call it £4. Of course, the same construction applies even if (E, ) has
a degenerate part, but this degenerate part will not be reflected in any way in the
structure M (E, i).

We define T4 to be the theory consisting of the following axiom schemes that we
explain shortly. All the axioms are either stated in continuous logic or can easily be.
Axioms Definition Conv to Definition Complex are universal, with implicit universal
quantifiers.

Each S, is a symmetric convex space of radius at most ||a||, (Conv)
[£.¢]1 = [¢.€]. (Sym)
§+87 _EL+IET] .
€, ) ] = ) ) (Linl)
[§,0] =0, (Lin2)
€. €] = d(£.0)*, (Norm)
Y [&.51=0. (Pos)

i,j=1

From here on, let || ) &; || be short for /) [, &;].

|2t < el Y- (Pil)
a+— m, isa*-morphism, (Pi2)
i:S, — S, respects all other symbols, i 2§ = —¢, (Complex)
sup inf | Y mati —¢| < || X8| =1/l (Balllmg)
£€Sp; £€Sa
sup inf ||m,¢ —§&| =0, (Denselmg)
geSay $€Sh
sup inf || —&| < |la —b]. (HausDist)
£eS, €Sy

(According to our notational convention, in the last axiom, || — £||> =
[£,€] — 2[£.C] + [¢,¢], while ||la — b| is the norm in A, and similarly for the
other axioms.)

Clearly, every structure of the form M (E, ) is a model of T4. Now let M be any
model of T4, or, at a first time, merely of Definition Conv to Definition Complex.
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(i) Axiom Definition Conv requires that each sort S, be a symmetric convex
space of radius at most |la||. This is indeed expressible in continuous logic
and the generated real normed space can be recovered, call it E, (see, e.g.,
[2D).

(ii) For each pair a,b € A, axioms Definition Sym to Definition Lin2 require
[,] on S; x Sp, to be symmetric and R-bilinear—that is to say that it extends
(uniquely) to an R-bilinear form on E, x E}, as per Lemma 1.4. By axiom
Definition Norm, it defines the norm on E,.

(iii) Let F! = @ ey Ea- 16 € Flisayé = > & and & = )¢ where
£i.8i € Eq;, let [§,8] = 3, ;[ ¢;]. This defines a symmetric R-bilinear
form on F!, and axiom Definition Pos requires it to be positive semidefinite.

It follows that || Y& = /> [&.&;] is a seminorm. Let F® C F! be its
kernel. Then F = F1/F9 with the induced norm is a real Hilbert space.

(iv) Axiom Definition Pil implies, first of all, that 7;: Sp — Sz € Egp C F is
bounded:

Iwaéll < llall&]l. (M

The axiom also implies that 7,:S, — F is additive, in the sense of
Lemma 1.4. Indeed, if £ € S, then ||§ + (—&)|| = 0, and therefore
170§ + 7a(=6)| = 0, 50 ma(—§) = —ma§. If €, ¢, and y = § 4 L all
belong to Sp, then ||€ + ¢ — y|| = 0, and therefore ||7,& + 7,8 — || =0
as well. Therefore, 7, extends uniquely to an R-linear map n,: Ep — F.
These maps combine to a single R-linear map m,: F! — F, and axiom
Definition Pil implies that this combined map also satisfies (1). Therefore, it
induces an operator o (a) € B(F) of norm at most ||a||.

(v) Now that we have a map 0: A — B(F), we require it to be a *-morphism
(with respect to the real inner product [-,-]). This consists of a long list of
identities, which we chose to omit (axiom Definition Pi2).

(vi) Axiom Definition Complex means that multiplication by i is isometric and
linear (Lemma 1.4 again), putting a complex structure on F. Since i com-
mutes with each 7, each o(a) is C-linear. Following the convention that a
sesquilinear form is linear in the first argument and semilinear in the second,
we may recover a complex inner product by (¢,¢) = [£,¢] +i[,iC].

If (E, ) is a nondegenerate *-representation and M = M(E, &), then the iso-
metric embeddings S, = m(a)E<; < F! — F glue (by nondegeneracy) to a
canonical isometric linear bijection £ — F, which is the desired isomorphism of
x-representations (E, w) = (F, o) (if (E, m) is degenerate, then we recover its non-
degenerate part).

If M is an arbitrary model of Definition Conv to Definition Complex, then we
recover a x-representation (F, o). However, M (F, o) need not be isomorphic to M,
since we still need to say that S, C F is exactly o(a) F<;. This will follow from the
three last axioms, provided that we make one additional hypothesis regarding A4: that
for every a € A there exists b € A of norm 1, such that ab is arbitrarily close to a.
This holds, in particular, if A admits a right approximate identity (e,) of norm 1 (in
which case (e}) is a left approximate identity, and (e, + e — eqey) is a two-sided
approximate identity, albeit not necessarily of norm 1).
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(i) The inclusion S; 2 o(a)F<; is exactly axiom Definition Balllmg.

(ii) For the opposite inclusion, let ¢ € A and ¢ > 0, and choose b € A of
norm 1 such that ||a — ab|| < e. By axioms Definition Denselmg and Defi-
nition HausDist, for any £ € S, there exists { € Sp, such that | 7,¢ — & < e,
and [[C] < [Ib] = 1.

Putting this all together, we have proved the following.

Theorem 1.6 Let A be a Banach x-algebra. Assume that A admits an approx-
imate one-sided identity of norm 1, or merely that every a € A belongs to aA<;.
Then the class of nondegenerate x-representations of A can be identified with the
class of models of T* and therefore may be considered to be an elementary class.

In particular, if A satisfies the hypotheses of Theorem 1.6, then the class of nondegen-
erate x-representations of A is closed under the ultraproduct/ultrapower construction
applied to £4-structures. This coincides with the nondegenerate ultraproduct/ultra-
power, as proposed in [4, Section 4], obtained by taking the Banach space ultraprod-
uct/ultrapower of E (see Section 3), which is naturally a *-representation, and taking
its nondegenerate part.

2 Continuous Unitary Representations of Locally Compact Groups

Let G be a topological group, and let M(G) denote the space of regular complex
Borel measures on G. For every u € M(G), there exists a unique finite positive
measure || such that du = ad|u|, where @: G — C is a Borel function into the
unit circle. We set the total variation of u to be ||| = |u|(G). For u,v € M(G),
we may define an involution and a convolution by

W=, pxv =me(L®v),
where m: G2 — G is the group law and i: G — G is inversion. It is easy to check
that u* and p * v belong to M(G), and that equipped with these two operations and
with the norm ||t]|, M(G) is a Banach x-algebra.

For every g € G we have a Dirac measure 6 € M(G), and §, is the unit of
M(G). The map g > d, is injective and respects the algebraic structure: §; = §,-1,
8¢ %8 = 841, (However, the norm topology on M (G) induces the discrete topology
on G under this identification.) In particular, G acts isometrically on M (G) on either
side by convolution with the Dirac measure:

fuh =87 wxsn | fuhl = lul.

A continuous (always unitary) representation of G consists of a Hilbert space E
equipped with a continuous unitary action G ~, E, or equivalently, with a continu-
ous morphism 7: G — U(FE), where U(E) is equipped with the strong (equivalently,
weak) operator topology. This means in particular that we may write g€ and 7 (g)£
interchangeably when g € G and & € E. For a unitary action G ~, E to be (jointly)
continuous it suffices that for each £ € E (separately), the map g — g€ is continuous
at the identity.

Any continuous representation of G in E can be extended naturally to a *-
representation of M(G) by

MM=LMQW®.
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By this we mean that 7 ()& € E is the unique vector such that

(. t) = /G (8€.2) dyu(g). @)

We have ||z(w)|| < |||l by Cauchy—Schwarz, giving rise to a map n: M(G) —
B(E). 1t is easy to check that w(u*) = 7(u)* and w(u * v) = 7 (u)mw(v), so & is
indeed a *-representation. In addition, 7(8g) = m(g), so this representation extends
the original one via our identification G € M(G).

Lemma 2.1 Let§ € E, and let u € M(G) be a probability measure concentrated
ontheset{g € G:|g&—E&|| <r}. Then ||m(n)é —&| <r.

Proof Forall € E, we have |(m(n)é — &,¢)| < r||¢| by a direct application of
(2) and the hypotheses. O

Let us add the hypothesis that G is locally compact, and choose a left Haar mea-
sure H. Then H(fAh) = A(h)H(A), where A:G — (R>°,.) is the modular
function on G, a group morphism that depends only on G. We shall write dg for
dH(g).

We may identify ¢ € L1(G) (with respect to H) with u, € M(G) defined by
dity, = ¢dH. The map ¢ > i, is a linear isometry, so L' (G) € M(G) is a Banach
subspace. If ¢, ¥ € L!(G), then (under the identification of ¢ with 1)

9*(g) = Alg He(g™)

and
W * 9)(g) = [ Vg g) dh = / Ay (sh™)p(h) dh.
G G
More generally, for any ¢ € L1(G) and u € M(G),
(1% @)(g) = / o(h™g) dpu(h).
G

(0 % w)(g) = [G AGp(gh™) du(h).
SO
6y %0 %68 = AU (/" gh™).

In particular, L'(G) € M(G) is a x-subalgebra, so to every continuous represen-
tation (E, ) of G corresponds a canonical x-representation of L!(G) through the
restriction of the *-representation of M(G):

n(p) = /G o()(g) dg.

The usefulness of this representation is due to the following classical fact.

Fact 2.2 Let ¢ € L'(G). Then 8 x ¢ %8, — ¢ in L'(G) as f,h — e.
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Proof = When ¢ is bounded, this follows from dominated convergence, and the gen-
eral case follows by a density argument. O

Let (Uy) be a basis of compact neighborhoods of 1, and let « < 8 when U, 2
Ug. Lete, € C.(G) C L'(G) be continuous, positive, of norm 1, supported in
U,. Then as a net, (ey) is an approximate identity of L!(G), that is to say that
lew * @ —@|| — 0 and |@ * e — @|| — 0 for every ¢ € LY (G). If (E,n)
is a continuous representation of G, then w(ey)é — & for every £ € E (e.g,
by Lemma 2.1). In particular, E* = E and n: L'(G) — B(E) is nondegener-
ate.

Conversely, let 7: L1(G) — B(E) be any nondegenerate *-representation. For
any g € G, the map ¢ > §g * ¢ is isometric. If £ € E, then w(eq)é — £ by
nondegeneracy, so m(8g * ey)E must converge as well; call its limit 7(g)& or g§.
This defines a group morphism 7: G — U(E). A combination of Fact 2.2 with the
rate of convergence of m(ey)& to £ yields that g > g& is continuous at e for any
fixed § € E, so n: G — U(FE) is a continuous representation.

Fact 2.3 These operations are one the inverse of the other, yielding a bijective
correspondence between continuous representations of G on E and nondegenerate
x-representations of L'(G) on E.

Proof See Folland [6, Theorem 3.11]. ]

Since L' (G) admits an approximate identity of norm 1, we have the following corol-
lary to Theorem 1.6.

Corollary 2.4 Let us identify a continuous representation w: G — U(E) with the
corresponding nondegenerate *-representation w: L' (G) — B(E), as per Fact 2.3.
As in the previous section, let us identify the latter with the £* 'O structure
M(E, ).

With these identifications, the class of continuous representations of G is elemen-
tary, axiomatized by the theory TL'(G),

If G is discrete, a unitary representation of G can also be considered as a single-
sorted structure, consisting of the unit ball of a Hilbert space with each unitary oper-
ator 7(g) (restricted to the unit ball) named in the language (see, e.g., Berenstein
[3D. In this case, the Haar measure is (a multiple of) the counting measure, and
A = 1. Identifying g € G with §4, we have G C L!(G). Viewing a representation
of G as an SELI(G)-structure, the sort associated to §, is the entire unit ball for any
g € G, and 7(8) acts on it as (k) for all 7 € G. In other words, we may recover
the single-sorted structure alluded to above as a reduct of the £L' @ gtructure. Con-
versely, we can interpret the multisorted £L'O) gructure in the single-sorted one.
The full details would involve more definitions than interesting results, so we shall
omit them.

3 Ultraproduct Constructions

Let us discuss possible ultraproduct constructions for unitary actions. Throughout
this discussion, / is a set and U is an ultrafilter on /. Let ]_[Bu E; denote the
Banach space ultraproduct of a family of Banach spaces, possibly with additional
structure.
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In particular, if £ = ]_[Bu E; and C = ]_[Bu B(E;), then C is again a C*-
algebra, and there is a natural isometric embedding of C *-algebras:

B
[ [B(E) < B(E),
U

where [7;] € 1%, B(E;) acts on E by [T;][&] = [Ti&].

If each (E;, ) is a unitary representation (not necessarily continuous) of G,
then (]_[Bu E;, mq) is again such a representation, where my(g) = [mi(g)] €
]_[Bu B(E;) € B(E). We call this the naive ultraproduct. Even if each E; is a
continuous representation, the naive ultraproduct need not be so. In the literature
one finds two main ideas for remedying this deficiency.

First, any unitary representation admits a continuous part.

Definition 3.1 Let E be a Hilbert space, and let G — U(E) be a unitary rep-
resentation, not necessarily continuous. We define E° to consist of all § € E for
which the map g +— g§& is continuous. We call it the continuous part of the unitary
representation E.

In particular, if (E;) are unitary representations (say, continuous, but this is not
required for this definition), we define the continuous ultraproduct as

c B ¢
[T = (]_[ Ei) .
U Uu
The following is easy.

Fact 3.2 With the hypotheses of Definition 3.1, E€ is a Hilbert subspace of E. It is
moreover G-invariant, and the restricted representation G — U(E€) is continuous.

In particular, the continuous ultraproduct of (continuous) unitary representations
of G is a continuous unitary representation.

For a slightly different, a priori stronger, approach, recall that a seminorm on G is
a function p: G — R satisfying p(1) = 0 and p(g~' f) < p(g) + p(f). Itisa
norm if p(g) = 0 implies g = 1. Let us write {p < ¢} for{g € G : p(g) < &}. A
seminorm is continuous if and only if {p < &} is a neighborhood of 1 for all & > 0.
In particular, if p’ < p are seminorms and p is continuous, then so is p’.

Whenever a group G acts on a metric space X by isometry, every x € X gives rise
to a seminorm pyx(g) = d(x, gx). We encounter seminorms of this form regularly.
For example, we can restate Fact 2.2 as the following.

Fact3.3  Let g € L'(G). Then p,(g) = |lg@ — ¢|l1 is a continuous seminorm.

Similarly, if E is a unitary representation and £ € FE, then £ € E° if and only if
pe(g) = |lg& —&|| is continuous.

Definition 3.4 Let (E; : i € I) be continuous unitary representations of G. We
define their equicontinuous ultraproduct, denoted ]_[ecu E;, to consist of all £ =

i € B E; such that for some continuous seminorm p, we have pg. < p for all
u o £;
(or equivalently, U-many) i, as well as the limits of such:

ec B
l_[ E; = {[g,»] € l_[ E; : pg; < p for some common continuous seminorm p}.
U u
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It is clear that [[*q, E; is a G-invariant Hilbert space, and if ps, < p for some
continuous p and all i, then pg < p as well. Therefore,

ec c B
HEi El_[Ei EHEi.
u Uu U

Proposition 3.5 Assume that G is locally compact. Let (E;, ;) be continuous
representations fori € I, and let E = ]_[Bu E;. Each r; extends to a *-morphism
7i: M(G) — B(E;), giving rise to w: M(G) — ]_[Bu B(E;) € B(E). In addition,
since ch E; = E€ is a continuous representation, it gives rise to a *-morphism
0: M(G) — B(E®). Then the following are equivalent for § € E:

() £ € ESand ()€ = o(p)§ forall p € L'(G);

(ii) £ belongs to the nondegenerate part of the *-representation mw: L'(G) —

B(E) (i.e., to the nondegenerate ultraproduct in the sense of [4]);

(iii) & € [1"y E:-

Proof (i) = (ii). Let (ey) be any approximate identity of norm 1in L'(G). Since
0:G — U(E®) is continuous, the *-representation o: L1(G) — B(E®) is nonde-
generate. Therefore w(eq)E = 0(eq)é — &, so & is in the nondegenerate part of
7: LY (G) = B(E).

(ii) = (iii). Assume that § = m(¢)¢ for ¢ € L1(G) and ¢ = [¢;] in E. We
may assume that ||{; || < ||¢|| for all i, and that § = [&;], where & = m;(¢)C;. Then
pg; < lCillpe < lI¢llpg, and & € []q Ei. Since [[*y, E; is complete, this is
enough.

(iii) = (). Finally, let & € [[*y Ei € [[°y Ei, and let ¢ € L'(G). We need
to show that 7 (p)é = o(p)&. The latter is a closed condition in both £ and ¢. We
may therefore assume that § = [£;], p is a continuous seminorm, pg, < p for all
i (and therefore p¢ < p), and ¢ has compact support. Let ¢ > 0. By a partition
of unity argument, we can express ¢ as a finite sum ) ., _, ¢, where the ¢y, are
supported on disjoint sets, each contained in a single translate g,,{p < ¢}. Then, by
Lemma 2.1, we have

lo@E =3 |onligntll = Y [o@mt—]enlignt]

m<n m<n

<Y elloml = elg]l-

m<n

By the same argument, for all i we have
|7 @6 = 3 |omligmsill < eligll

m<n
and therefore, in the ultraproduct,

|76 = 3" |emligmtll < eligll

It follows that |lo (@) — w(@)E|| < 2¢|¢|, and since & was arbitrary, o(p)é =
n(p)§. O

This means in particular that the nondegenerate ultraproduct of *x-representations of
L'(G) and the equicontinuous ultraproduct of representations of G are, in essence,
the same construction.
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Question 3.6  Find an example where [[*q, E;  []°q Ei (or show that this can
never happen).

4 Property (T)

Suppose that G is a topological group, Q@ € G, and ¢ > 0. Let E be a unitary
representation of G.

Avector§ € E is (Q, e)-invariant if supgc ¢ [|g€ —§|| < e[|§]|. Note in particular
that a (Q, &)-invariant vector must be nonzero. We say that £ € E is G-invariant if
g& = Eforall g € G. We say that (Q, ¢) is a Kazhdan pair for G if, whenever E
is a unitary representation of G with a (Q, ¢)-invariant vector, then E has a nonzero
G-invariant vector. If there is ¢ > 0 such that (Q, ¢) is a Kazhdan pair for G, then
we say that Q is a Kazhdan set for G. Finally, G is said to have property (T) if it has
a compact Kazhdan set.

Fact 4.1 A locally compact group G with property (T) is compactly generated.
Moreover, if Q € G has nonempty interior, then it is generating if and only if it is a
Kazhdan set.

Proof  See Bekka, de la Harpe, and Valette [1, Theorem 1.3.1, Proposition 1.3.2].
O

For ¢ € L'(G) and m € N, define an open neighborhood of the identity by
Upm =g € G : o —gpl1 <27}
For K € G compact, choose K, € K finite so that K € K, ,Up .

Let us consider a continuous unitary representation of G as a model of TL! @),
in the language iLl(G), as described in Section 1. Let ¢ € L'(G), and recall that
Sy C E is the closed image of the unit ball under 7. Define

Fix, ={£ € S, : gt =& forall g € G}.
For § € Sy, define
aK.g.m(§) = Jmax 1§ — gé&ll.

Pk (§) = sup 2_mOlK,w,m ).

Since K, 1, is finite, @k 4 m is definable on S, by a formula. Consequently, ® , is
a definable predicate on Sy, as a uniform limit of such.

If E is such a representation and § € Fix,, then ®g ,(§) = 0. Conversely, if
£ €S, and Pgy(§) = 0, then g§ = & for all g € K. In particular, if K is a
compact generating set, then

¢ eFix, <<= Dg,) =0
Theorem 4.2 Suppose that G is a compactly generated locally compact group.
Then G has property (T) if and only if, for each ¢ € L'(G), we have that Fix, is a
definable subset of S, in the sense of the theory TL'(G),
Proof  First, suppose that G has property (T). Let K be a compact generating set

for G, and let ¢ € L'(G) be arbitrary. Since the result is trivial for ¢ = 0, we
assume that ¢ # 0. By Fact 4.1, K is a Kazhdan set for G.
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Let & > 0 be such that (K, ¢) is a Kazhdan pair for G. We already know that Fix,
is the zero-set of ®g ,,, and we need to show that if ®x ,,(£) is small, then & is close
to Fix,. Indeed, assume that ®g ,(§) < 27272, Then ak g m+1(§) < 271 Let
f € K. Then f = gh, where g € Ky »t1 and i € Uy 1. The former implies
that ||§ — g&|| < 271, and the latter that ||§ — h&|| < 271, Since the action of g
is isometric,

1€ = FEI < 11§ — &Il + llgé — ghéll < 11§ — &Il + 1§ — héll <27

In other words, £ is (K, 27)-invariant. By [1, Proposition 1.1.9], there exists a G-
invariant vector { € E such that ||§ — | < % and ||| < |I€]l < |l¢ll1- The latter,
together with the fact that  is fixed, implies that { € S, so { € Fix,. Thus indeed,
if ®g ,(§) is sufficiently small, then £ is as close as desired to Fix,,.

For the converse implication, let us fix a compact generating K for G, with
nonempty interior. Set ¢ = #’;() € L'(G). We shall prove that (K,¢) is a
Kazhdan pair for G for ¢ > 0 small enough. By hypothesis, Fix, is definable in
Sy in all continuous unitary representations of G, viewed as models of TL'(G),
Since Fix,, is the zero-set of @ ,, there is § > 0 such that, if g ,(§) < &, then
d(§,Fixy) < %: this holds uniformly in every model of TL'©G) we may now
choose ¢ > 0 such that in any such representation, if § € S, is (K, 3¢)-invariant,
then ®g (&) < 6.

Fix a continuous unitary representation of G, and suppose that £ is a (K, ¢)-
invariant unit vector. Leté = n(p)§ € S,. By Lemma 2.1, applied to du = ¢dH,
we have ||§ —&|| < e, 50 é is a (K, 3¢)-invariant vector. Since é € S,, it follows

that D ,(§) < &, whence d(£, Fix,) < 1. If ¢ € Fix, is such that dE,0) < 1

then d(£,0) < ¢ + % We may assume that ¢ < %, so { # 0. We have thus

found a nonzero G-invariant vector, which shows that (K, ¢) is a Kazhdan pair

for G. O
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