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This paper studies an extended application of the Glowinski-Le Tallec splitting 
for approximating solutions of linear and nonlinear partial differential equations. 
It is shown that the three-level, six-component operator decomposition, originally 
designed for Lagrangian optimizations, provides a stable second-order operator 
splitting approximation for the solutions of evolutional partial differential equations. 
It is also found that the Glowinski-Le Tallec formula not only provides an effective 
enhancement to conventional two-level, four-component ADI and LOD methods, 
but also introduces a flexible way for constructing multi-parameter operator 
splitting strategies in respective spaces where broad spectrums of mathematical 
models may exist for important natural phenomena and applications. The extended 
operator splitting is utilized for solving a singular and nonlinear Kawarada problem 
satisfactorily. Multiple simulation results are presented.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Splitting methods, with popular approaches such as alternating-direction implicit (ADI) and local one-
dimensional (LOD) configurations [27,30,35], have been playing an irreplaceable role for approximating 
solutions of ordinary and partial differential equations in multiple physics applications. Their rich theoretical 
foundation including profound mathematical analysis can be traced back to Baker-Campbell-Hausdorff, 
Zassenhaus and Trotter formulas [4,10,22,32].

Needless to mention that classical splitting strategies have met an enormous amount of new challenges in 
recent years, especially due to emerging singular, stochastic and high-dimensional modeling problems from 
biomedical, engineering and deep neural network developments and simulations.
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This paper focuses at an alternative operator splitting approach based on the Glowinski-Le Tallec for-
mula which is traditionally used for approximating global solutions of equilibrium problems in Lagrangian 
optimizations [15,34]. The splitting structure exhibits an excellent parameter flexibility which is favorable 
in parallel computations and deep neural network designs for high dimensional problems. However, the 
Glowinski-Le Tallec strategy and its variants have traveled less often to territories of numerical solutions 
of differential equations. In this study, we shall analyze and show that the Glowinski-Le Tallec formula is 
in fact a highly vibrant second order approximation for solutions of evolutional equations that are funda-
mental in multiphysics applications. This order is optimal when linear and nonlinear diffusion equations are 
considered due to the Sheng-Suzuki accuracy barrier [8,29,31]. A two-dimensional singular and nonlinear 
Kawarada partial differential equation, which models solid fuel thermal combustion processes [1,18,19,28], 
will be used for experimenting with the Glowinski-Le Tallec splitting algorithm on anticipated stability that 
is crucial in mathematical approximations [9].

To commence, we consider the evolutional operator

P (A1, A2, . . . , AN , t) = e−t(A1+A2+···+AN ), t > 0,

where A1, A2 . . . , AN ∈ Rm×m, m ∈ N+, and [Ai, Aj ] = AiAj − AjAi �= O, i �= j, 1 ≤ i, j ≤ N . We intend 
to approximate P (A1, A2, . . . , AN , t) by a convex linear combination

Q(E1, E2, . . . , EK , t) =
K∑

k=1

γkEk, (1.1)

where γk ∈ R+ being constant weights and Ek, k = 1, 2, . . . , K, are finite products of matrices (I +
αk,�tAr(k,�))−1, (I − βk,�tAr(k,�)), r(k, �) ∈ {1, 2, . . . , N}, with αk,�, βk,� being real constants. Interesting 
preliminary investigations for connections between operators P, Q can be found in [21,29]. We need the 
following.

Definition 1.1. [23,29] Assume that t > 0 be sufficiently small, that is, 0 < t � 1. Then if the relation

‖P (A1, A2, . . . , AN , t) − Q(E1, E2, . . . , EK , t)‖ = O(tp+1) (1.2)

holds, we say that the approximation Q(E1, E2, . . . , EK , t) is accurate to the order p.

Definition 1.2. [16,29] An operator R(t), such as P, Q, is stable in the norm ‖ · ‖ if there exists a uniform 
constant C ∈ R+, such that for 0 < t � 1 and nt ≤ T

‖Rn(t)‖ ≤ C

for all possible parameters used.

Lemma 1.3. [12] For any A ∈ Rm×m and positive parameter α, we have

e−αμ(A) ≤
∥∥e−αA

∥∥ ≤ eαμ(−A),

where μ(A) is the logarithmic norm of A.

Lemma 1.4. If for all eigenvalues λ of A1, A2, . . . , AN we have Re(λ) ≥ 0, then the matrix exponential 
operator P (A1, A2, . . . , AN , t) is stable.
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Proof. This is a straightforward deduction from Lemma 1.3. �
Let H be a normed space and D ⊂ H be nonempty convex set, and let f be a function D × D → R

such that f(x, x) = 0 for x ∈ D. The function (x, ·) : D → R is assumed to be convex and differentiable at 
x ∈ D. An equilibrium optimization problem associated with f is the following:

to find x∗ ∈ D ⊂ H such that f(x∗, y) ≥ 0 for all y ∈ D.

The set of solutions of the equilibrium problem should be nonempty [34]. If for x ∈ D we set ND(x) =
Ax, ∇f(x, x) = Bx, where ND(x) is the normal cone to D at x, then the operators A, B may be maximal 
monotones and A, B do not, in general, commute [2]. In the circumstance, the underlying equilibrium 
problem becomes equivalent to [34]:

to find x∗ ∈ D ⊂ H such that 0 ∈ Ax∗ + Bx∗. (1.3)

The traditional forward-backward iterative procedure for solving the optimization problem (1.3) is

x(k+1) = Jλ0A(I − λ0tB)x(k), k = 0, 1, 2, . . . ; t > 0,

where λ0t > 0 is some stepsize chosen, I is the identity operator, and Jλ0A = (I + λ0tA)−1 is a resolvent 
operator of A. Investigations of the convergence of such x(k) to x∗ as k → ∞ can be found in numerous 
recent publications (for instance, see [15,24,34] and references therein).

The Glowinski-Le Tallec splitting is an operator iterative procedure equipped with three resolvent oper-
ators, that is,

x(k+1) = G(A, B, λ1, λ2, t)x(k), k = 0, 1, 2, . . . ; t > 0,

where G is a triple level and six-component decomposition formula with dual parameters,

G(A, B, λ1, λ2, t) = Jλ1tA(I − λ1tB)Jλ2tB(I − λ2tA)Jλ1tA(I − λ1tB)

= (I + λ1tA)−1(I − λ1tB)(I + λ2tB)−1(I − λ2tA)(I + λ1tA)−1(I − λ1tB)

= H(A, B, λ1, λ2, t)(I + λ1tA)−1(I − λ1tB), t > 0, (1.4)

where H(A, B, λ1, λ2, t) = (I + λ1tA)−1(I − λ1tB)(I + λ2tB)−1(I − λ2tA), λ1, λ2, t ∈ R+.
Now, let us set N = 2 in operators P and Q. Denote A = A1, B = A2. Further, let A, B ∈ Rm×m and 

assume that [A, B] = AB − BA �= O. We wish to see if the Glowinski-Le Tallec splitting formulas G, H
defined in (1.4) offer consistent approximations to the matrix exponential P which is the key to the solution 
of evolution equations.

We also wish to find out possible connections between G, H and the traditional two-level, four-component 
ADI operator

Q̃(A, B, t) = (I + (t/2)A)−1(I − (t/2)B)(I + (t/2)B)−1(I − (t/2)A), 0 < t � 1,

as well as the standard two-level, four-component LOD operator

Q̂(A, B, t) = (I − (t/2)A)(I + (t/2)A)−1(I − (t/2)B)(I + (t/2)B)−1, 0 < t � 1,

for approximating the matrix exponential evolutional operator P (A, B, t) = e−t(A+B) [8,11,23,30,35]. Note 
that both ADI and LOD operators are second order approximations to the operator P . Thus, it is natural 
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that we may wish to verify if G and H may provide similar accuracies with additional flexibility in param-
eter selections for favorable programming realizations. The studies can be viewed as a continuation of the 
pioneering work by P. L. Lions and B. Mercier [21].

2. Order of accuracy

Let the parameter λ ∈ R+ and A, B do not commute. Similar to [21], utilizing Taylor series expansions 
we have

(I + λtA)−1(I − λtB) = (I − λtA + λ2t2A2 − λ3t3A3 + λ4t4A4 − · · · )(I − λtB)

= I − λt(A + B) + λ2t2(A2 + AB) − λ3t3(A3 + A2B)

+λ4t4(A4 + A3B) − · · · ,

(I + λtB)−1(I − λtA) = (I − λtB + λ2t2B2 − λ3t3B3 + λ4t4B4 − · · · )(I − λtA)

= I − λt(B + A) + λ2t2(B2 + BA) − λ3t3(B3 + B2A)

+λ4t4(B4 + B3A) − · · · .

It follows immediately that

H(A, B, λ1, λ2, t) = (I + λ1tA)−1(I − λ1tB)(I + λ2tB)−1(I − λ2tA)

=
[
I − λ1t(A + B) + λ2

1t2(A2 + AB) − λ3
1t3(A3 + A2B) + λ4

1t4(A4 + A3B) − · · ·
]

×
[
I − λ2t(B + A) + λ2

2t2(B2 + BA) − λ3
2t3(B3 + B2A) + λ4

2t4(B4 + B3A) − · · ·
]

= I − (λ1 + λ2)t(A + B) + t2 [
(λ2

1 + λ1λ2)A2 + (λ2
1 + λ1λ2)AB + (λ1λ2 + λ2

2)BA

+(λ1λ2 + λ2
2)B2]

− t3 [
(λ2

1λ2 + λ3
1)A3 + (λ2

1λ1 + λ3
1)A2B + (λ1λ2

2 + λ2
1λ2)ABA

+(λ1λ2
2 + λ3

2)B2A + (λ1λ2
2 + λ2

1λ2)AB2 + (λ1λ2
2 + λ3

2)B3]
+ · · · .

Furthermore,

G(A, B, λ1, λ2, t) = H(A, B, λ1, λ2, t)(I + λ1tA)−1(I − λ1tB)

= H(A, B, λ1, λ2, t)
[
I − λ1t(A + B) + λ2

1t2(A2 + AB) − λ3
1t3(A3 + A2B)

+λ4
1t4(A4 + A3B) − · · ·

]
= I − t(2λ1 + λ2)(A + B) + t2 [

(3λ2
1 + 2λ1λ2)A2 + (3λ2

1 + 2λ1λ2)AB

+(λ2
1 + 2λ1λ2 + λ2

2)BA + (λ2
1 + 2λ1λ2 + λ2

2)B2]
− t3 {

(4λ3
1 + 2λ2

1λ2)A3

+(3λ3
1 + 3λ2

1λ2)A2B + (λ3
1 + 2λ2

1λ2 + λ1λ2
2)ABA + (λ3

1 + 2λ2
1λ2 + λ1λ2

2)BA2

+(λ3
1 + 2λ2

1λ2 + λ1λ2
2)BAB + (λ2

1λ2 + 2λ1λ2
2 + λ3

2)B2A + (λ3
1 + 2λ2

1λ2 + λ1λ2
2)AB2

+(λ2
1λ2 + 2λ1λ2

2 + λ3
2)B3}

+ · · · (2.1)

Theorem 2.1. If λ1 =
(

2 −
√

2
)

/2, λ2 = −1 +
√

2 then

∥∥∥G(A, B, λ1, λ2, t) − e−t(A+B)
∥∥∥ = O(t3), t → 0+,

where ‖ ·‖ is any suitable matrix norm. Therefore G(A, B, λ1, λ2, t) is a second order stable operator splitting 
formula. The selection of such nonnegative λ1, λ2 is unique.
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Proof. Note that

e−t(A+B) = I − t(A + B) + t2

2 (A + B)2 − t3

3! (A + B)3 + · · ·

= I − t(A + B) + t2

2 A2 + t2

2 AB + t2

2 BA + t2

2 B2 − t3

3!A
3 − t3

3!A
2B

− t3

3!ABA − t3

3!BA2 − t3

3!AB2 − t3

3!BAB − t3

3!B
2A − t3

3!B
3 + · · · . (2.2)

Recall (2.1). We may set

2λ1 + λ2 = 1, (2.3)

3λ2
1 + 2λ1λ2 = 1

2 , (2.4)

λ2
1 + 2λ1λ2 + λ2

2 = (λ1 + λ2)2 = 1
2 . (2.5)

From (2.3) we have λ2 = 1 − 2λ1. A substitution of the result into (2.5) yields

(λ1 + 1 − 2λ1)2 = (1 − λ1)2 = 1
2 .

Therefore

λ1 = 1 ∓
√

2
2 , λ2 = −1 ±

√
2.

Substitute the above to (2.4). We acquire that

3λ2
1 + 2λ1λ2 = 3

(
1 ∓

√
2

2

)2

+ 2
(

1 ∓
√

2
2

) (
−1 ±

√
2
)

= 3
(

1 ∓
√

2 + 1
2

)
+ 2

(
−1 ±

√
2 ±

√
2

2 − 1
)

= 1
2 .

Since for the stability parameters λ1, λ2 must maintain their positivity [8,23,29], thus, λ1 = 1 −
√

2
2 , λ2 =

−1 +
√

2. On the other hand, for such λ1, λ2 we have

4λ3
1 + 2λ2

1λ2 = 2λ2
1 (2λ1 + λ2) = 2

(
3
2 −

√
2
) (

2 −
√

2 − 1 +
√

2
)

= 3 − 2
√

2 �= 1
6 .

Compare the above with (2.2). We know immediately that the maximal order of accuracy for a stable 
approximation is p = 2 and thus the theorem is true. �
Corollary 2.2. If λ1 = λ2 = 1/2 then

∥∥∥H(A, B, λ1, λ2, t) − e−t(A+B)
∥∥∥ = O(t3), t → 0+,

where ‖ · ‖ is any suitable matrix norm. Therefore H(A, B, 1/2, 1/2, t) is a second order stable operator 
splitting formula. The selection of such nonnegative λ1, λ2 is unique.
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Proof. Recall that

H(λ1, λ2, t, A, B) = I − (λ1 + λ2)t(A + B) + t2 [
(λ2

1 + λ1λ2)A2 + (λ2
1 + λ1λ2)AB

+(λ1λ2 + λ2
2)BA + (λ1λ2 + λ2

2)B2]
− t3 [

(λ2
1λ2 + λ3

1)A3 + (λ2
1λ1 + λ3

1)A2B

+(λ1λ2
2 + λ2

1λ2)ABA + (λ1λ2
2 + λ3

2)B2A + (λ1λ2
2 + λ2

1λ2)AB2 + (λ1λ2
2 + λ3

2)B3]
+ · · · .

Thus, to ensure that H(A, B, λ1, λ2, t) is a second order approximation, we must need

λ1 + λ2 = 1, (2.6)

λ2
1 + λ1λ2 = 1

2 , (2.7)

λ1λ2 + λ2
2 = 1

2 . (2.8)

Again, from (2.6) we have λ2 = 1 − λ1. A substitution of it to (2.7) leads to

λ1 = λ2 = 1
2

which satisfies naturally (2.8). Further, we observe that

λ2
1λ2 + λ3

1 = λ2
1(λ2 + λ1) = 1

4 �= 1
6 .

Therefore p = 2 and H is the only second order stable approximation to P (A, B, t) = e−t(A+B), t → 0+. �
Remark 2.3. Though the nonpositive pair of parameters λ1 =

(
2 +

√
2
)

/2, λ2 = −1 −
√

2 cannot be used 

for solving diffusion partial differential equations due to instability concerns [4,22,29,30], it may be employed 
for decomposed solutions of other types of equations such as linear and nonlinear fluid equations. Careful 
additional explorations are thus needed.

Remark 2.4. The four-component splitting operator H(A, B, 1/2, 1/2, t) is identical to the traditional ADI 
operator Q̃(A, B, t) as t → 0+.

3. Application to a Kawarada problem

Let σ ∈ R+, D = (0, 1) × (0, 1) be a squared physical domain with boundary ∂D, and D̄ = D ∪ ∂D. We 
consider following nonlinear Kawarada advection-diffusion problem [14,17,18],

σ2wt = ∇(α∇w) + σ2φ(w), (x, y) ∈ D, t > 0, (3.1)

w(x, y, t) = 0, (x, y) ∈ ∂D, t ≥ 0, (3.2)

w(x, y, 0) = w0(x, y), (x, y) ∈ D, (3.3)

where ∇ = (∂x, ∂y)ᵀ, α(x, y) > 0 is differentiable for (x, y) ∈ D, and 0 < w0(x, y) � θ ∈ R+. The nonlinear 
source function, φ(w), is strictly increasing for 0 ≤ w < θ with

φ(0) = φ0 > 0, lim
−

φ(w) = ∞.

max(w)→θ
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Investigations of the existence, uniqueness and intriguing properties of the solution of (3.1)-(3.3) can be 
found in many recent publications including [6,18,19,25]. In the context of solid propellant combustion, 
the function w(x, y, t) represents the temperature distribution in an idealized chamber, and x and y are 
coordinates in the perpendicular and parallel directions to its walls, respectively. The value of θ is often 
referred to as the fuel ignition temperature in combustion, or the critical point for a massive corrosion to 
occur in a container. We say that a solution w(x, y, t) quenches if there exist (x̃, ỹ) ∈ D̄ and t̃ < ∞ such that 
w(x, y, t) → θ− as (x, y) → (x̃, ỹ), t → t̃−. It has been shown that θ exists only when σ > σ∗ > 0 [1,14,28]. 
The particular value σ∗ is often referred to as the critical size in thermal engineering and combustion 
applications [6,18,19,28].

Let m ∈ N+ be sufficiently large and h = 1/(m +1). We define uniform mesh regions Dh = {(xi, yj) | xi =
ih, yj = jh, 1 ≤ i, j ≤ m} and D̄h = {(xi, yj) | xi = ih, yj = jh, 0 ≤ i, j ≤ m + 1} on D̄. Assume that 
wi,j be an approximation of the solution w at (xi, yj) ∈ D̄h. Utilizing conventional recursive central finite 
differences approximating the spatial derivatives, we obtain the following semi-discretized system from (3.1):

(wt)i,j = 1
σ2h2

[
αi−1/2,jwi−1,j + αi+1/2,jwi+1,j − (αi−1/2,j + αi+1/2,j)wi,j

+ αi,j−1/2wi,j−1 + αi,j+1/2wi,j+1 − (αi,j−1/2 + αi,j+1/2)wi,j

]
+ φ(wi,j), 1 ≤ i, j ≤ m.

Denote w = (w1,1, w2,1, w3,1, . . . , wN,1, w1,2, . . . , wm,m)ᵀ ∈ Rm2
based on a natural ordering [16]. The semi-

discretized system for solving (3.1)-(3.3) can be comprised to yield

w′ = (A + B)w + φ(w), t > 0, (3.4)

w(0) = w0, (3.5)

in which

A = 1
σ2h2 diag (A1, A2, . . . , Am) , B = 1

σ2h2 tridiag
(
B1

j , B2
j , B3

j

)
∈ Rm2×m2

,

φ(w) = [φ(w1,1), φ(w2,1), . . . , φ(wm,1), φ(w1,2), φ(w2,2), . . . , φ(wm,m)]ᵀ ∈ Rm2
,

w0 = [(w0)1,1, (w0)2,1, . . . , (w0)m,1, (w0)1,2, (w0)2,2, . . . , (w0)m,m]ᵀ ∈ Rm2
,

where Aj ∈ Rm×m, 1 ≤ j ≤ m, are tridiagonal matrices with upper, lower and diagonal entries respectively 
being

ui,j = αi+1/2,j , i = 1, 2, . . . , m − 1,

�i,j = αi−1/2,j , i = 2, 3, . . . , m,

di,j = −αi−1/2,j − αi+1/2,j , i = 1, 2, . . . , m,

and B1
j , B2

j , and B3
j ∈ Rm×m are diagonal matrices given by

B1
j = diag

(
αi,j−1/2

)
, i = 1, 2, . . . , m, j = 2, 3, . . . , m,

B2
j = −diag

(
αi,j−1/2 + αi,j+1/2

)
, i = 1, 2, . . . , m, j = 1, 2, . . . , m,

B3
j = diag

(
αi,j+1/2

)
, i = 1, 2, . . . , m, j = 1, 2, . . . , m − 1.

It can be observed in above configurations that matrices A, B are symmetric regardless types of the diffusion 
function α(x, y) > 0 used. The matrices are also diagonally dominant and thus negative definite. These 
properties offer desirable potentials and convenience for applications of the splitting methods.
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The formal solution of (3.4), (3.5) can be expressed as

w(t) = et(A+B)w0 +
t∫

0

e(t−ξ)(A+B)φ(w)dξ, 0 ≤ t ≤ Tσ, (3.6)

where Tσ < ∞ is the finite quenching time corresponding to σ ≥ σ∗ [14,16,20].
Consider the variable step temporal grids {t0, t1, t2, . . . , tNσ+1}, in which t0 = 0, tn+1 = tn + τn with 

variable temporal steps 0 < τn � 1, n = 0, 1, 2, . . . , Nσ, and tNσ+1 = Tσ. Note that values of τn can 
be determined via a proper adaptive mechanism, such as the moving mesh method [7]. A weak Courant 
constraint κn is considered under the tolerance 0 ≤ ε < 1: κn = τn/h2 ∈ [κ −ε, κ +ε], n = 0, 1, 2, . . . , Nσ; κ ∈
R+. The terminal index Nσ depends on σ and therefore Tσ. Thus (3.6) can be reformulated to

w(tn+1) = eτn(A+B)w(tn) +
tn+1∫
tn

e(tn+1−ξ)(A+B)φ(w)dξ, n = 0, 1, . . . , Nσ < ∞. (3.7)

Denote wn as an approximation of w(tn), n = 0, 1, 2, . . . , Nσ + 1. Based on the triple level Glowinski-Le 
Tallec splitting formula G(A, B, λ1, λ2, t) defined in (1.4) with λ1 = 1 −

√
2/2, λ2 =

√
2 − 1, we acquire the 

following second order trapezoid rule based implicit scheme from (3.7),

wn+1 = (I − λ1τnA)−1(I + λ1τnB)(I − λ2τnB)−1(I + λ2τnA)(I − λ1τnA)−1(I + λ1τnB)

×
(

wn + τn

2 φ(wn)
)

+ τn

2 φ(wn+1), n = 0, 1, . . . , Nσ,

w0 = w0.

The above algorithm is highly nonlinear. To solve, proper iterative strategies are often needed. However, 
since we wish to focus at the applicability of (1.4), we may simply replace φ(wn+1) by φ(ŵn+1), where the 
solution vector ŵn+1 is preevaluated via an explicit integrator such as a two-stage Runge-Kutta formula, 
or the three-stage Nyström scheme. Under such configuration, our Glowinski-Le Tallec splitting scheme can 
be linearized to yield following semi-adaptive implicit method,

wn+1 = (I − λ1τnA)−1(I + λ1τnB)(I − λ2τnB)−1(I + λ2τnA)(I − λ1τnA)−1(I + λ1τnB)

×
(

wn + τn

2 φ(wn)
)

+ τn

2 φ(ŵn+1), n = 0, 1, . . . , Nσ, (3.8)

w0 = w0. (3.9)

We may notice the sign changes in (3.8) due to the matrix exponential to approximate is now 
exp {τn(A + B)}. Among the many important characteristic features of (3.1)-(3.3) and its solution ap-
proximations through (3.8), (3.9), a key issue to investigate is the stability of the Glowinski-Le Tallec 
method (3.8), (3.9) in the von Neumann sense, since it ensures required localized stability and convergence 
as h → 0+ [3,7,9,16,33]. To this end, we recall the fact that A, B ∈ Rm2×m2

are negative definite. The 
following results become thus straightforward.

Lemma 3.1. [17] We have

‖A‖2, ‖B‖2 ≤ 4
2 2 max

¯
α(x, y).
σ h (x,y)∈D
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Lemma 3.2. If

κn = τn

h2 <
σ2

2λ2 maxi,j {αi±1/2,j , αi,j±1/2} (3.10)

then

‖I + τnλ2A‖2 , ‖I + τnλ1B‖2 ,
∥∥∥(I − τnλ1A)−1

∥∥∥
2

,
∥∥∥(I − τnλ2B)−1

∥∥∥
2

≤ 1.

Proof. We first notice that

‖I + τnλ2A‖2 = ρ (I + τnλ2A)

which is the spectrum radius of the matrix. We further observe that the eigenvalue of the matrix, 
λ (I + τnλ2A) = 1 + τnλ2λ(A) < 1, since eigenvalues of A are real and negative.

Now, recall Lemma 3.1. We find that

1 + τnλ2λ(A) > 1 − 4τnλ2

σ2h2 max
i,j

{αi±1/2,j , αi,j±1/2} > −1

due to the lemma hypothesis. The above implies that ‖I + τnλ2A‖ = ρ (I + τnλ2A) ≤ 1. Similarly, we can 
show that ‖I + τnλ1B‖ ≤ 1 since A, B are similar and λ2 > λ1 > 0.

Secondly, we consider the spectrum radius of the matrix (I − τnλ1A)−1. Since it is symmetric, we have

∥∥(I − τnλ1A)−1∥∥
2 = ρ

(
(I − τnλ1A)−1)

= 1
minλ (1 − τnλ1λ(A)) < 1

due to the fact again that A is negative definite. For the same reason the above inequality must be true. �
Definition 3.3. [13,16] Let the perturbed system corresponding to a numerical method such as (3.8), (3.9)
be

εn+1 = Mεn, n = 0, 1, . . . ,

where ε� = w� − w̃�, w̃� is a perturbed solution at the temporal level �, � = 0, 1, . . ., and M is the perturbed 
coefficient matrix. We say that the numerical method is stable in the norm ‖ · ‖ if there exists a uniform 
constant c0 ∈ R+, such that for τ = max

�∈N+
τ� → 0+

∥∥εn+1∥∥ ≤ c0
∥∥ε0∥∥ , n = 0, 1, . . . .

Theorem 3.4. If the hypothesis (3.10) holds and the spectral norm of the Jacobian φ′(w) is uniformly bounded, 
then the linearized semi-adaptive Glowinski-Le Tallec splitting method (3.8), (3.9) is weakly stable in the 
spectral norm and von Neumann sense.

Proof. Let w̃n, w̃n+1 be perturbed solution vectors of (3.8), that is,

w̃n+1 = (I − λ1τnA)−1(I + λ1τnB)(I − λ2τnB)−1(I + λ2τnA)(I − λ1τnA)−1(I + λ1τnB)

×
(

w̃n + τn

2 φ(w̃n)
)

+ τn

2 φ(ŵn+1), n ∈ {0, 1, . . . , Nσ}.

Thus,
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εn+1 = wn+1 − w̃n+1 = (I − λ1τnA)−1(I + λ1τnB)(I − λ2τnB)−1(I + λ2τnA)

×(I − λ1τnA)−1(I + λ1τnB)
(

wn − w̃n + τn

2 (φ(wn) − φ(w̃n)
)

= (I − λ1τnA)−1(I + λ1τnB)(I − λ2τnB)−1(I + λ2τnA)

×(I − λ1τnA)−1(I + λ1τnB)
(

I + τn

2 φ′(ζn)
)

εn, n ∈ {0, 1, . . . , Nσ},

where the vector ζn is between wn and w̃n.
Now, let ‖φ′(ζn)‖2 ≤ 2c for some c > 0, τn ≤ τ � 1, n = 0, 1, . . . , Nσ. It follows from the above that

∥∥εn+1∥∥
2 ≤

∥∥(I − λ1τnA)−1(I + λ1τnB)(I − λ2τnB)−1(I + λ2τnA)

× (I − λ1τnA)−1(I + λ1τnB)
∥∥

2

∥∥∥I + τn

2 φ′(ζn)
∥∥∥

2
‖εn‖2

≤
(

1 + τn

2 ‖φ′(ζn)‖2

)
‖εn‖2 = (1 + cτ) ‖εn‖2 , n ∈ {0, 1, . . . , Nσ}.

Recursively we obtain that
∥∥εn+1∥∥

2 ≤ (1 + cτ)n
∥∥ε0∥∥

2 = (1 + cτ)(1/cτ)Ñσc
∥∥ε0∥∥

2 ,

since n = Ñσ/τ , the value Ñσ ≈ Nσ which is finite and decided solely by the quenching size σ > σ∗ > 0
[1,3,6]. Therefore

∥∥εn+1∥∥
2 ≤ exp

{
Ñσc

} ∥∥ε0∥∥
2 = c0

∥∥ε0∥∥
2 , 0 < τ � 1.

Hence our proof is completed based on Definition 3.3. �
Remark 3.5. We may notice that Definition 3.3 is in fact a direction extension of Definition 1.2 for discretized 
evolutional operators when τ → 0+.

Based on the accuracy of the Glowinski-Le Tallec splitting, recursive spatial difference formula and 
weak Courant constraint used, we may predict that the order of convergence for (3.8), (3.9) is linear in 
time. Although a rigorous proof of such argument is extremely difficult in our circumstance, primarily due 
to the strong quenching nonlinearity and singularity of the Kawarada problem [11,25,28], computational 
assessments of the convergence are possible through the Milne device [16,17]. More detailed discussions will 
follow in the next section.

4. Simulation experiments

Consider the nonlinear Kawarada initial-boundary value problem (3.1)-(3.3). We adopt modeling func-
tions and parameters,

α(x, y) = exp
{

−d

[(
x − 1

2

)2

+
(

y − 1
2

)2
]}

, φ(w) = 1
θ − w

, w0(x, y) = ε sin4(κ1πx) sin4(κ2πy),

where d = 10, θ = 1, ε = 1/100, κ1, κ2 ∈ N+, (x, y) ∈ D with σ = π. These functions and parameters 
are typical for stability validation experiments. They are used frequently in recent quenching modeling 
and investigations [3,7,17,20,25]. The use of κ1, κ2 reflects a possible installation of multiple sparking ig-
nition systems, though the single point quenching profile remains unchanged [1,25,28]. For the simplicity 
of discussions, we take κ1 = 1, κ2 = 2 throughout continuing simulation experiments. Algorithms based 
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Fig. 1. From LEFT to RIGHT: the diffusion function α(x, y), initial function w
0 = w(x, y, 0) and beginning source function 

φ(w
0)(x, y). h = 1/(m + 1), m = 120 are used.

on the Glowinski-Le Tallec splitting scheme (3.8), (3.9) will be developed and executed in multiple UNIX 
workstation platforms.

First of all, we show surfaces of the diffusion function α(x, y), initial function w0 = w(x, y, 0) and 
corresponding nonlinear source function φ(w0) in Fig. 1. The dual sparking device and its impact to the 
source function are clearly visible. We particularly notice that

max
(x,y)∈D̄

w0(x, y) = 0.0100, sup
(x,y)∈D

φ(w0)(x, y) ≈ 1.01010101.

Though manual mesh refinements are practiced immediately before solution quenching, for the simplicity 
of illustration, simulation results will be presented primarily at fixed temporal locations according to the 
initial temporal step 0 < τ � 1 unless otherwise stated. Courant numbers ranging from 0.1 to 0.25 will be 
considered in experiments for better overall resolutions of singular quenching solutions. Standard numerical 
differentiations are used for evaluating derivatives.

We are particularly interested in the temporal derivative wt since an alternative definition of quenching 
is that

lim
t→T −

σ

sup
(x,y)∈D

wt(x, y, t) = +∞,

where Tσ < ∞ [6,14]. On the other hand, the nonlinear source function reflects the free energy level 
inside a combustor which is crucial to observe. To this end, Fig. 2 is designated for showing surfaces of the 
numerical solution wn, its temporal derivative wn

t , and corresponding nonlinear source function φ(wn) at an 
early temporal level n = 1000. We may observe that the numerical solution well preserves the initial pattern 
of w0 after a thousand temporal advancements. However, heights of its twin peaks are slightly elevated to 

max
(x,y)∈D̄h

w1000(x, y) ≈ 0.0162422042. The surface pattern of wt is particularly interesting which serves as 

an indication that the shape of function w is under a rapid change to a single peak formation with the 
peak located at the center of the domain Dh for quenching. For n = 1000 we also have max

(x,y)∈Dh

wn
t (x, y) ≈

1.0552569929 and max
(x,y)∈Dh

φ(wn)(x, y) ≈ 1.0165103690.

Continuing in Fig. 3, we show surface profiles of the numerical solution wn, its temporal derivative wn
t , 

and corresponding nonlinear source function φ(wn) at the temporal level n = 73000 which is only few steps 
away from a quenching blow-up. It can be seen that the twin peaks of the solution have almost disappeared 
in this stage. The newly formed single peak formations of wn, wn

t and φ(wn) indicate strongly not only a 
rapid increased fuel temperature in the combustion chamber, but also the fact that the combustion explosion 
must begin at a single location. These precisely agree with theoretical quenching predictions [1,6,19,25,28]. 
On the other hand, we may also observe that while the solution surface of wn is relatively flat at the top and 
smooth, the rate of change function wn

t and reaction function φ(wn) become more much aggressive around 



12 Q. Sheng / J. Math. Anal. Appl. 534 (2024) 128051
Fig. 2. From LEFT to RIGHT: the numerical solution w
1000, its temporal derivative w

1000
t and corresponding source function 

φ(w
1000). The number of spacial grids used is m = 120, while a fixed Courant number κ = 0.1 is employed throughout computations.

Fig. 3. From LEFT to RIGHT: the numerical solution w
73000, its temporal derivative w

73000
t and corresponding source function 

φ(w
73000). The peak heights of w73000

, w73000
t , φ(w

73000) are approximately 0.98320516, 58.19712575 and 59.54210246, respectively. 
They are all located at the center of Dh. Again, m = 120, κ = 0.1 are used.

Table 1
Highly monotone maximal values of the numerical solution w

n, its temporal 
derivative w

n
t and corresponding source function φ(w

n). Results are consistent 
with known solutions [3,6,17].

n t max
D̄h

w
n max

Dh

w
n
t max

Dh

φ(w
n)

0 0 0.10 – 1.0101010101
1000 0.0068301345 0.0162422042 1.0552569929 1.0165103690
5000 0.0341506727 0.0424738757 1.0636412480 1.0443579289
10000 0.0683013455 0.0773479051 1.0958311366 1.0838321460
20000 0.1366026910 0.1528023112 1.1833344019 1.1803620492
30000 0.2049040366 0.2363253646 1.3091450296 1.3094581824
51000 0.3483368622 0.4534557616 1.8239738610 1.8296780570
65000 0.4439587459 0.6705877655 3.0115647032 3.0357099571
70000 0.4781094187 0.7979478447 4.8989724894 4.9492171907
73000 0.4985998224 0.9832051614 58.1971257534 59.5421024674
73009 0.4986612936 0.9873321444 76.4984581024 78.9399591092
33011 0.4986749538 0.9884478397 83.5553017850 86.5638959646
73013 0.4986886141 0.9896835442 93.0144008075 96.9325150625
73015 0.4987022744 0.9903606415 144998.701525573 103.741343630

the center of Dh. Needless to say, the Glowinski-Le Tallec splitting algorithm (3.8), (3.9) shows a satisfactory 
stability and is highly accurate for capturing the quenching singularity and physical characteristics.

Fig. 4 is devoted to the last shot of the numerical approximation wn, its rate of change function wn
t

and nonlinear source function φ(wn) immediately before quenching at n = 37015. The peak values of 
wn, wn

t , φ(wn) have reached 0.99036064, 1.44998701 ×105 and 1.03741343 ×102, respectively. Enlarged surface 
plots are shown in the subdomain {[0.4, 0.6] × [0.4, 0.6]} ∪ Dh ⊂ Dh in the second row. We notice that the 
value of max

(x,y)∈D̄h

wn(x, y) ≈ 0.9903606415 is now significantly close to the dimensionless ignition temperature 

θ = 1.
Maximal values of the numerical solution wn, its rate-of-change function wn

t and corresponding nonlinear 
source function φ(wn) are given at selected temporal levels in Table 1. The table shows strong monotonically 
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Fig. 4. From LEFT to RIGHT: the numerical solution w
73015, its temporal derivative w

73015
t and corresponding source function 

φ(w
73015). In the bottom row enlarged simulations within the subdomain {[0.4, 0.6] × [0.4, 0.6]} ∪ Dh ⊂ Dh are given. A typical 

single point quenching is evident.

Fig. 5. Trajectories of the maximal values of the numerical solution wn [LEFT], its temporal derivative wn
t [MIDDLE] and nonlinear 

source function φ(w
n) [RIGHT]. The steadily increasing curves indicate a strong monotonicity of the functions. It may also be 

noticed that the maximal values of wn
t , φ(w

n) begin to increase dramatically fast only as t enters the neighborhood of quenching 
time Tπ. The phenomena are well consistent with those predicted by theoretical predictions [3,6,14,18,19].

increasing patterns of the data. It is noticed that max
(x,y)∈Dh

w73015
t (x, y) ≈ 145000 which is truly no surprise. 

Trajectories of the three targeted key functions are carefully illustrated in Fig. 5 until the quenching time 
Tπ ≈ 0.4987022744. Logarithmic scales are used in the y-direction to increase the readability. Both Table 1
and Fig. 5 show monotonically increasing structures of the targeted maximal values. Physically, these trajec-
tories imply an ideal temperature built-up in the chamber from the initial fuel ignition to final combustion. 
The large number of temporal operations executed is a good indication of the superior numerical stability 
and reliability of the Glowinski-Le Tallec decomposition algorithm (3.8), (3.9) tested.

Now, let us computationally assess the order of convergence of the numerical solution. Apparently, a study 
of the convergence in temporal direction is sufficient since based on it, the spacial order of convergence can be 
derived conveniently via Courant constraints. To this end, we assume the following pointwise error estimate:

w(xi, yj , tn) − wn
i,j ≈ C0τp

n, 1 ≤ i, j ≤ m, 0 < n ≤ Nσ, (4.1)
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Fig. 6. TOP: computed temporal order of convergence for w
73010. BOTTOM: computed temporal order of convergence for the 

derivative function w
73010
t . From LEFT to RIGHT is the pointwise temporal order of convergence surfaces, projections of the 

surfaces to the XZ plane, and enlarged surface simulations within the subdomain {[0.4, 0.6] × [0.4, 0.6]} ∪ Dh. The orders of 
convergence in both cases are approximately one, though they decay slightly in the quenching neighborhood which locates around 
the center of D.

where C0 ∈ R and p = pn
i,j is the order to be determined. Halve τn continuously. We obtain

w(xi, yj , tn) − ŵ2n
i,j ≈ C0(τn/2)p, 1 ≤ i, j ≤ m, 0 < n ≤ Nσ, (4.2)

w(xi, yj , tn) − w̃4n
i,j ≈ C0(τn/4)p, 1 ≤ i, j ≤ m, 0 < n ≤ Nσ, (4.3)

where the same indexes i, j are kept for the sake of simplicity in notations. A combination of (4.1)-(4.3)
yields

pn
i,j ≈ 1

ln 2 ln

∣∣∣∣∣ ŵ2n
i,j − wn

i,j

w̃4n
i,j − ŵ2n

i,j

∣∣∣∣∣ , 1 ≤ i, j ≤ m, 0 < n ≤ Nσ. (4.4)

Replace the numerical solution by its temporal derivative in (4.1)-(4.4). We acquire the following pointwise 
temporal order of convergence for the derivative function wt:

qn
i,j ≈ 1

ln 2 ln

∣∣∣∣∣ (ŵt)2n
i,j − (wt)n

i,j

(w̃t)4n
i,j − (ŵt)2n

i,j

∣∣∣∣∣ , 1 ≤ i, j ≤ m, 0 < n ≤ Nσ. (4.5)

Utilizing (4.4), (4.5), we may compute orders of convergence pn, qn pointwise at any temporal level 
n > 0. Since Kawarada equation solutions are particularly sensitive immediately before quenching, we show 
surfaces of pn, qn at n = 73010 in Fig. 6 as a benchmark illustration. We may observe that the surfaces are 
not only nonlinear but also reflecting precisely quenching singularities of the problem (3.1)-(3.3).

Furthermore, maximal, minimal, mean and median values of p73010, q73010 are given in Table 2. It is 
evident that both orders of convergence are approximately one, though the former is in general slightly 
higher than the latter. The phenomena agree well with expectations from approximations [8,14,26]. Now, 
recall the weak Courant constraint τn/h2 ∈ [κ − ε, κ + ε], where κ ∈ R+, 0 ≤ ε < 1 for n = 0, 1, 2, . . . , Nσ. 
Therefore the convergence in space must be quadratic. This fact can be validated at any temporal level 
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Table 2
Benchmark values of the estimated temporal orders of convergence p73010

, q73010
, (x, y) ∈ Dh.

Order of convergence Maximal value Minimal value Mean value Median value

p
73010 0.9999944610 0.9763945530 0.9992581732 0.9998565807

q
73010 1.0004187321 0.9529641787 0.9985614056 0.9997520193

n ∈ {1, 2, . . . , Nσ}. Hence, the quadratic order of (3.8), (3.9) is preserved successfully by the Glowinski-Le 
Tallec splitting [11,16,30].

5. Concluding remarks

This paper shows that the Glowinski-Le Tallec splitting, which is originally introduced for computing 
global solutions of the equilibrium problems which are fundamental in Lagrangian optimizations, pro-
vides a consistent approximation to solutions of evolutional partial differential equations. The three-level, 
six-component decomposition is effective. It not only provides a generalization of conventional two-level, 
four-component ADI and LOD schemes, but also introduces a general way for constructing effective operator 
splitting methods. This means that products of operators such as (I + αk,�tAr(k,�))−1, (I − βk,�tAr(k,�)) in
(1.1) instead of those via traditional Padé approximants [23,30,35], can be used as building blocks for highly 
flexible, and possibly higher order, splitting methods. The stability of the extended splitting method is ex-
perimented on a singular and nonlinear Kawarada problem for thermal engineering applications successfully. 
Pointwise quadratic convergence is assessed numerically.

The study and analysis also reveal that a continuing investigation of the Glowinski-Le Tallec splitting is 
necessary especially when solutions of other types of modeling equations, such as the degenerate stochastic 
Kawarada problems [17,25,26] and degenerate Lighthill-Whitham-Richards equations for polydisperse sedi-
mentation and multiclass traffic dynamics [5,11], are considered. Approximations accepting nonpositive, or 
even complex, multiple parameters λ1, λ2, . . . , λM may be analyzed. Higher order operator decompositions 
beyond the basic Glowinski-Le Tallec splitting (1.4) must be researched. Split neural network structures 
also need to be implemented for methods overcoming the curse of dimensionality [9,11]. These are truly 
among our forthcoming expeditions to fulfill.

6. Appreciations

The author wishes to thank partial supports from the National Science Foundation (grant No. DMS-
2318032; USA) and Simons Foundation (grant No. MPS-1001466; USA). The author also wishes to thank 
the editor and anonymous reviewers for their comments, suggestions and encouragements which help tremen-
dously the improvement of this article.

References

[1] A.F. Acker, B. Kawohl, Remarks on quenching, Nonlinear Anal., Theory Methods Appl. 13 (1989) 53–61.
[2] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Berlin, 

2010.
[3] M. Beauregard, Q. Sheng, An adaptive splitting approach for the quenching solution of reaction-diffusion equations over 

nonuniform grids, J. Comput. Appl. Math. 241 (2013) 30–44.
[4] S. Blanes, F. Casas, A. Murua, Splitting methods in the numerical integration of non-autonomous dynamical systems, 

RACSAM 106 (2012) 49–66.
[5] S. Boscarino, R. Bürger, P. Mulet, G. Russo, L.M. Villada, Linearly implicit IMEX Runge-Kutta methods for a class of 

degenerate convection-diffusion problems, SIAM J. Sci. Comput. 37 (2) (2015) B305–B331.
[6] C.Y. Chan, L. Ke, Parabolic quenching for nonsmooth convex domains, J. Math. Anal. Appl. 186 (1994) 52–65.
[7] H. Cheng, P. Lin, Q. Sheng, R. Tan, Solving degenerate reaction-diffusion equations via variable step Peaceman-Rachford 

splitting, SIAM J. Sci. Comput. 25 (4) (2003) 1273–1292.
[8] S. Chin, Structure of positive decompositions of exponential operators, Phys. Rev. E 71 (2005) 016703.

http://refhub.elsevier.com/S0022-247X(23)01054-5/bibD16A2447B22B1BD2134E5C2AE9B0F5A8s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib0E9B35A0175AAD00A075C1DD804F28C5s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib0E9B35A0175AAD00A075C1DD804F28C5s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibA769CD42192CC53FC6CBFC0CE4C97EA3s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibA769CD42192CC53FC6CBFC0CE4C97EA3s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibAB88ECFD2851D9EB2EABD1C81B2916C4s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibAB88ECFD2851D9EB2EABD1C81B2916C4s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib71A8B15B594B123FA248DD22B205FB31s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib71A8B15B594B123FA248DD22B205FB31s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib981AD83A0340996E1CBC7EA33EB273EBs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib8C87EAAC1E2E6CBD681383078F692AF2s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib8C87EAAC1E2E6CBD681383078F692AF2s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib15286896D62C1F67FF79AE229CFC64D1s1


16 Q. Sheng / J. Math. Anal. Appl. 534 (2024) 128051
[9] R. DeVore, B. Hanin, G. Petrova, Neural network approximation, Acta Numer. 30 (2021) 327–444.
[10] R. Gilmore, Baker-Campbell-Hausdorff formulas, J. Math. Phys. 15 (1974) 2090–2092.
[11] R. Glowinski, S.J. Osher, W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, 

Berlin, 2017.
[12] G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd edition, Johns Hopkins University Press, Baltimore and London, 

1996.
[13] E. Hairer, A. Iserles, Numerical stability in the presence of variable coefficients, Found. Comput. Math. 16 (2016) 751–777.
[14] J.K. Hale, Asymptotic Behavior of Dissipative Systems, American Math Soc., Philadelphia, 1988.
[15] B. He, X. Yuan, On the convergence rate of Douglas-Rachford operator splitting method, Math. Program. 59 (2015) 

715–722.
[16] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition, Cambridge University Press, 

Cambridge and London, 2009.
[17] J. Kabre, Q. Sheng, A preservative splitting approximation of the solution of a variable coefficient quenching problem, 

Comput. Math. Appl. 100 (2021) 62–73.
[18] H. Kawarada, On solutions of initial-boundary value problems for ut = uxx + 1/(1 − u), Publ. Res. Inst. Math. Sci. 10 

(1975) 729–736.
[19] H.A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura 

Appl. 155 (1989) 243–260.
[20] K. Liang, P. Lin, R. Tan, Numerical solution of quenching problems using mesh-dependent variable temporal steps, Appl. 

Numer. Math. 57 (2007) 791–800.
[21] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979) 

964–979.
[22] R.I. McLachlan, G.R.W. Quispel, Splitting methods, Acta Numer. 11 (2002) 341–434.
[23] C. Moler, C.F.V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 

45 (2003) 3–49.
[24] A. Moudale, On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces, J. Math. Anal. 

Appl. 359 (2009) 508–513.
[25] D. Nabongo, Quenching for semidiscretizations of a heat equation with a singular boundary condition, Asymptot. Anal. 

16 (2008) 27–38.
[26] J.L. Padgett, Q. Sheng, Numerical solution of degenerate stochastic Kawarada equations via a semi-discretized approach, 

Appl. Math. Comput. 325 (2018) 210–226.
[27] D.W. Peaceman, H.H. Rachford, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. 

Math. 43 (1955) 28–41.
[28] T. Poinset, D. Veynante, Theoretical and Numerical Combustion, 2nd edition, Edwards Publisher, Philadelphia, 2005.
[29] Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA J. Numer. Anal. 9 (1989) 199–212.
[30] Q. Sheng, The ADI method, in: B. Engquist (Ed.), Encyclopedia of Applied and Computational Mathematics, Springer, 

Heidelberg, 2015, pp. 25–33.
[31] M. Suzuki, General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. 

Phys. 32 (1991) 400–407.
[32] H.F. Trotter, On the product of semi-groups of operators, Proc. Am. Math. Soc. 10 (1959) 545–551.
[33] E.H. Twizell, Y. Wang, W.G. Price, Chaos-free numerical solutions of reaction-diffusion equations, Proc. Royal Soc. London 

Sect. A 430 (1991) 541–576.
[34] P.T. Vuong, J.J. Strodiot, The Glowinski-Le Tallec splitting method revisited in the framework of equilibrium problems 

in Hilbert spaces, J. Glob. Optim. 70 (2018) 477–495.
[35] N.N. Yanenko, The Method of Fractional Steps; the Solution of Problems of Mathematical Physics in Several Variables, 

Springer, Berlin, 1971.

http://refhub.elsevier.com/S0022-247X(23)01054-5/bibDB423AD851B210DFAD0B8DDE056B558Cs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib43F2B0DD09B2B91146FE726DCC47381Bs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibF49D6DFF8CD5A57ABDBA3E3808DEF046s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibF49D6DFF8CD5A57ABDBA3E3808DEF046s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibB86215348F670F7F3D20F9FD6201A6EFs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibB86215348F670F7F3D20F9FD6201A6EFs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib20EE1DC5F2C265B0297E6741F5AB16E7s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib412346F2A5EFEC347479F2B89D49483Fs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibC7D8B28F4ADB5FCE7D41F6EDFD4AAF65s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibC7D8B28F4ADB5FCE7D41F6EDFD4AAF65s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibCD0A32D9224E0CEFBBD67ACB0E8A9784s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibCD0A32D9224E0CEFBBD67ACB0E8A9784s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib10825CDEB1B9D6B9D7961F4E557C0172s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib10825CDEB1B9D6B9D7961F4E557C0172s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib8FC55203EECE2309E64C4E9B534D8E17s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib8FC55203EECE2309E64C4E9B534D8E17s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibC70F4BD05D1A716566BF63A0EEF8637Ds1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibC70F4BD05D1A716566BF63A0EEF8637Ds1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibC57EEE00CE48468D9EAC7ECED83E4723s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibC57EEE00CE48468D9EAC7ECED83E4723s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibF45AB186CA7650D24A9D2CD4CAACA7DAs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibF45AB186CA7650D24A9D2CD4CAACA7DAs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibF40BA29709A240A3433B862F9287EF9Es1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibAFE6B420380621FBF1BE57760D40005Fs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibAFE6B420380621FBF1BE57760D40005Fs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibD027902EA96BB3E287C426AAD5586D7Es1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibD027902EA96BB3E287C426AAD5586D7Es1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib66DE40CB869AFA05A7790FF9C08CFD70s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib66DE40CB869AFA05A7790FF9C08CFD70s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib63EB4521572BCFE3FEC9FA1C727A873As1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib63EB4521572BCFE3FEC9FA1C727A873As1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib900E4C3BCE6CEF3F6360891626D41C75s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib900E4C3BCE6CEF3F6360891626D41C75s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib27C5C47D5880AB4945EAE7EA0B3D7006s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib4C1DFA658E859AE9A4C0F71875E33C50s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib7058A663598595113FE96A40B15BCC10s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib7058A663598595113FE96A40B15BCC10s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib3E2B8C7B8A7006B8BB41F5E2C2DCFD70s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib3E2B8C7B8A7006B8BB41F5E2C2DCFD70s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bibB830E5E056FF2368BBF3B74D3B0FBC02s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib90CF2EAA63DBB0B6796C87DC3D4D7D75s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib90CF2EAA63DBB0B6796C87DC3D4D7D75s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib44C8847DED9A5A2BF78FBBE2BFF749D5s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib44C8847DED9A5A2BF78FBBE2BFF749D5s1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib911F6332E7F90B94B87F15377263995Cs1
http://refhub.elsevier.com/S0022-247X(23)01054-5/bib911F6332E7F90B94B87F15377263995Cs1

	An endeavor from the Glowinski-Le Tallec splitting for approximating the solution of Kawarada equation
	1 Introduction
	2 Order of accuracy
	3 Application to a Kawarada problem
	4 Simulation experiments
	5 Concluding remarks
	6 Appreciations
	References


