J. Math. Anal. Appl. 534 (2024) 128051

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

An endeavor from the Glowinski-Le Tallec splitting for
approximating the solution of Kawarada equation ™

Check for
Updates

Qin Sheng

Department of Mathematics and Center for Astrophysics, Space Physics and Engineering Research,
Baylor University, One Bear Place, Waco, TX 76798-7328, United States of America

ARTICLE INFO ABSTRACT
Article history: This paper studies an extended application of the Glowinski-Le Tallec splitting
Received 29 May 2023 for approximating solutions of linear and nonlinear partial differential equations.

Available online 19 December 2023

It is shown that the three-level, six-component operator decomposition, originally
Submitted by W. Layton

designed for Lagrangian optimizations, provides a stable second-order operator
splitting approximation for the solutions of evolutional partial differential equations.

}O(;Z;Uaotgsépmtmg It is also found that the Glowinski-Le Tallec formula not only provides an effective
Approximation order enhancement to conventional two-level, four-component ADI and LOD methods,
Kawarada equations but also introduces a flexible way for constructing multi-parameter operator
Quenching blow-up splitting strategies in respective spaces where broad spectrums of mathematical
Finite difference methods models may exist for important natural phenomena and applications. The extended
Stability operator splitting is utilized for solving a singular and nonlinear Kawarada problem

satisfactorily. Multiple simulation results are presented.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Splitting methods, with popular approaches such as alternating-direction implicit (ADI) and local one-
dimensional (LOD) configurations [27,30,35], have been playing an irreplaceable role for approximating
solutions of ordinary and partial differential equations in multiple physics applications. Their rich theoretical
foundation including profound mathematical analysis can be traced back to Baker-Campbell-Hausdorff,
Zassenhaus and Trotter formulas [4,10,22,32].

Needless to mention that classical splitting strategies have met an enormous amount of new challenges in
recent years, especially due to emerging singular, stochastic and high-dimensional modeling problems from
biomedical, engineering and deep neural network developments and simulations.
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This paper focuses at an alternative operator splitting approach based on the Glowinski-Le Tallec for-
mula which is traditionally used for approximating global solutions of equilibrium problems in Lagrangian
optimizations [15,34]. The splitting structure exhibits an excellent parameter flexibility which is favorable
in parallel computations and deep neural network designs for high dimensional problems. However, the
Glowinski-Le Tallec strategy and its variants have traveled less often to territories of numerical solutions
of differential equations. In this study, we shall analyze and show that the Glowinski-Le Tallec formula is
in fact a highly vibrant second order approximation for solutions of evolutional equations that are funda-
mental in multiphysics applications. This order is optimal when linear and nonlinear diffusion equations are
considered due to the Sheng-Suzuki accuracy barrier [8,29,31]. A two-dimensional singular and nonlinear
Kawarada partial differential equation, which models solid fuel thermal combustion processes [1,18,19,28],
will be used for experimenting with the Glowinski-Le Tallec splitting algorithm on anticipated stability that
is crucial in mathematical approximations [9].

To commence, we consider the evolutional operator

P(Ay, Ay, ... Ay, t) = e At At tAN) g s

where Al,AQ e ,AN € Rmxm’ m € N+, and [Ai,Aj] = AzAj — A]Az 7é O, ) ;é'], 1 S Z,j S N. We intend

to approximate P(Aj, As, ..., An,t) by a convex linear combination
K
Q(ElaE27aEKat) :nykEk, (11)
k=1

where 7, € R being constant weights and Ej, k = 1,2,..., K, are finite products of matrices (I +

o%gtAr(k}g))*l, (I = BretAriey), (k) € {1,2,..., N}, with ag g, Br,e being real constants. Interesting

preliminary investigations for connections between operators P,Q can be found in [21,29]. We need the

following.

Definition 1.1. [23,29] Assume that ¢ > 0 be sufficiently small, that is, 0 < ¢ <« 1. Then if the relation
HP(Alv AQ, cee ,ANvt) - Q(Ela E2a AR EK’t)” = O(tp+1) (12)

holds, we say that the approximation Q(E1, Es, ..., Ek,t) is accurate to the order p.

Definition 1.2. [16,29] An operator R(t), such as P, (), is stable in the norm || - || if there exists a uniform
constant C € R, such that for 0 <t < 1 and nt <T

[R" ()] <C
for all possible parameters used.
Lemma 1.3. [12] For any A € R™*™ and positive parameter o, we have
e—or4) < ||e*aA|| < e”‘“(’A),
where p(A) is the logarithmic norm of A.

Lemma 1.4. If for all eigenvalues A of Ay, As, ..., An we have Re(\) > 0, then the matriz exponential
operator P(Ay, Ag, ..., AN, 1) is stable.
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Proof. This is a straightforward deduction from Lemma 1.3. O

Let H be a normed space and D C H be nonempty convex set, and let f be a function D x D — R
such that f(x,z) =0 for z € D. The function (z,-) : D — R is assumed to be convex and differentiable at
x € D. An equilibrium optimization problem associated with f is the following:

to find 2 € D C H such that f(x*,y) >0 forall y e D.

The set of solutions of the equilibrium problem should be nonempty [34]. If for x € D we set Np(z) =
Az, Vf(x,z) = Bx, where Np(z) is the normal cone to D at x, then the operators A, B may be maximal
monotones and A, B do not, in general, commute [2]. In the circumstance, the underlying equilibrium
problem becomes equivalent to [34]:

to find 2 € D C H such that 0 € Az™ 4+ Bz, (1.3)
The traditional forward-backward iterative procedure for solving the optimization problem (1.3) is
2D = oA = MtB)z® k=0,1,2,...; t >0,

where Aot > 0 is some stepsize chosen, I is the identity operator, and Jy,4 = (I + )\otA)_l is a resolvent
operator of A. Investigations of the convergence of such ) to 2* as k — oo can be found in numerous
recent publications (for instance, see [15,24,34] and references therein).

The Glowinski-Le Tallec splitting is an operator iterative procedure equipped with three resolvent oper-
ators, that is,

2D = G(A, B, A\, Mo, t)z™ . k=0,1,2,...; t>0,
where G is a triple level and six-component decomposition formula with dual parameters,
G(A, B, A\, /\Q,t) = J)\ltA(I — /\ﬂB)JAztB(I — /\QtA)J)\ltA(I — /\1tB)
= (I +MtA) NI — MtB)(I 4+ Mot B) (I — Mot A)(I + M\t A) " (I — \tB)
= H(A, B\, Ao, t)(I + M\t A) (I — \tB), t>0, (1.4)

where H(A, B, A1, Ao, t) = (I + MNtA) NI — MtB)(I 4+ Mot B) *(I — Mot A), A, Ao, t € RT.

Now, let us set N = 2 in operators P and Q. Denote A = A;, B = A,. Further, let A, B € R™*™ and
assume that [A, B] = AB — BA # O. We wish to see if the Glowinski-Le Tallec splitting formulas G, H
defined in (1.4) offer consistent approximations to the matrix exponential P which is the key to the solution
of evolution equations.

We also wish to find out possible connections between GG, H and the traditional two-level, four-component
ADI operator

Q(A,B,t) = (I+ (t/2)A) (I — (t/2)B)(I + (t/2)B) "' (I — (t/2)4), 0<t< 1,
as well as the standard two-level, four-component LOD operator
Q(A, B, t) = (I — (t/2)A) (I + (t/2)A) " (I — (t/2)B)(I + (t/2)B)™*, 0<t<1,

for approximating the matrix exponential evolutional operator P(A, B,t) = e HA+E) [8,11,23,30,35]. Note
that both ADI and LOD operators are second order approximations to the operator P. Thus, it is natural
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that we may wish to verify if G and H may provide similar accuracies with additional flexibility in param-
eter selections for favorable programming realizations. The studies can be viewed as a continuation of the
pioneering work by P. L. Lions and B. Mercier [21].

2. Order of accuracy

Let the parameter A € R™ and A, B do not commute. Similar to [21], utilizing Taylor series expansions
we have

(I +XA)™HT = MB) = (I — MA+ N22A% - \3343 4 \41At — .. ) (T — AtB)
=1—A(A+ B)+ Nt?(A? + AB) — X33(A% + A’B)
A (AT + APB) — -
(I +XB) M I = XA) = (I = MB+ Xt*B% - \33B3 + \#*B* — ... )(I — MtA)
=1—M(B+ A) + N**(B* + BA) — \*t*(B* + B*A)
AN (BT + B*A) — - -

It follows immediately that

H(A, B, A\, \a,t) = (I + \tA) "I = M\tB)(I 4+ MtB) " (I — M\ytA)
= [I = Mt(A+ B) + ATt?(A® + AB) — \jt?(A® + A’B) + \{t'(A' + A°B) — - -]
x [I = Xaot(B + A) + M\3t*(B? + BA) — \3t3(B* + B*A) + M\jt*(B* + B3A) — -]
=1— A1+ M)t(A+ B)+* [(A] + MA2)A? + (AT + MA2)AB + (M2 + A3)BA
+(A A2 + M) B2 — 2 [(AT A2 + M) A% + (AIA + AD)A°B + (M A3 + AA2)ABA
(AN + A)B2A + (MA + ATA)AB? + (MA3 + A3)B?] + - -

Furthermore,

G(A, B, M\, Mo, t) = H(A, B, A\, Ao, t)(I + M\tA) "1 (I — \tB)

= H(A, B, A1, A2, t) [I = Mt(A+ B) + A\{t?(A* + AB) — X{t*(A® + A’B)
+ATtH (AT + A*B) — -]

=1 —t(2\1 + A2)(A+ B) + % [(3A] +2X1A2) A% + (3A] + 2\ \2) AB
+(A + 20 A2 + A3)BA + (AT + 201 A2 + A3)B?] — 3 {(4A3 + 2A1A,) A3
+(3XA3 43020 AZB + (A3 + 20300 + MAZABA + (A3 + 202\ + A\ \3)BA?
(A3 4+ 20\ + M A3)BAB + (M2 + 2003 + A3) B2 A + (A} + 203\ + M A\3)AB?
(A A2 + 2003 + 3B+ (2.1)

Theorem 2.1. If \; = (2 — \/5) /2, Ay = —1+ /2 then
|G(A, B A A2 ) — e A — 0%, £ 0",

where ||-|| is any suitable matriz norm. Therefore G(A, B, A1, A2,t) is a second order stable operator splitting
formula. The selection of such nonnegative A1, \s is unique.
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Proof. Note that

2 t3
(A+ B)? (A+ B> +---

e7tATB) — T _t(A+ B) + ! -3

2

2, 12 t? 2 5 ot .t
=1—-t(A+B)+ -A°+ -AB+ —BA+ —B*— —-A°— —-A“B
(A+ )+2 ToARTgRATS 3! 3!

&3 t3 t3 t3 t3 t3
——ABA— —~BA? - —AB> - —BAB— —B?A—- -B*+.... (2.2)
3! 3! 3! 3! 3! 3!
Recall (2.1). We may set
2A1 + Ag = 1, (2.3)
1
3)\% +2A1 )\ = 5, (24)
1
/\% + 21\ + A2 = ()\1 + /\2)2 = 5 (25)
From (2.3) we have Ay = 1 — 2A;. A substitution of the result into (2.5) yields
2 o 1
M+1=2)\)"=(1-X\) =5
Therefore
2
A1=1¢§, ho =142,
Substitute the above to (2.4). We acquire that
2
2 2
3>\f+2/\1/\2:3(1:p%> +2(1¢%> (—u[\/i)
1 2 1
—3(1:F\/§+§) +2<—1i\/§i§—1) = 5
Since for the stability parameters A1, Ao must maintain their positivity [8,23,29], thus, \y =1 — ER Ao =

—1 4+ v/2. On the other hand, for such A, A2 we have

1
4X§’+2A§A2=2A§(2A1+A2):2<g—\/§) (2—\/5—1+\/§)=3—2\/§ # =

Compare the above with (2.2). We know immediately that the maximal order of accuracy for a stable
approximation is p = 2 and thus the theorem is true. O

Corollary 2.2. If \y = Xy = 1/2 then
HH(A,B,)\l,AQ,t) - e—t(A+B>H = 0%, t— 0,

where || - || is any suitable matriz norm. Therefore H(A, B,1/2,1/2,t) is a second order stable operator

splitting formula. The selection of such nonnegative A1, Ay is unique.
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Proof. Recall that

H(Ai,A2,t,A,B) =1 — (A1 + X)t(A + B) + 2 [(AT + M A2) A% + (A + A\ X2)AB
+()\1)\2 + )\%)BA + (/\1)\2 + )\%)32] —¢3 [(/\%/\2 + )\?)Ag + (/\?/\1 + /\?)AzB
+(AIAS + AA)ABA + (MA3 4+ A3)BA+ (MA3 + A A)AB? + (MM + A3)B%] + -+ - .

Thus, to ensure that H(A, B, A1, A2, t) is a second order approximation, we must need

A+ A =1, (26)
1

AT+ A = 37 (2.7)
1

Mo+ A2 = 3 (2.8)

Again, from (2.6) we have A2 =1 — A\;. A substitution of it to (2.7) leads to

1
)\1:)\225

which satisfies naturally (2.8). Further, we observe that

Mo+ XA =X\ +\) = - #

=
=

Therefore p = 2 and H is the only second order stable approximation to P(A, B,t) = e_t(A+B), t—0". O

Remark 2.3. Though the nonpositive pair of parameters A\; = (2 + \/5) /2, Ao =—-1— V2 cannot be used

for solving diffusion partial differential equations due to instability concerns [4,22,29,30], it may be employed
for decomposed solutions of other types of equations such as linear and nonlinear fluid equations. Careful
additional explorations are thus needed.

Remark 2.4. The four-component splitting operator H(A, B,1/2,1/2,t) is identical to the traditional ADI
operator Q(A, B,t) as t — 0.

3. Application to a Kawarada problem

Let 0 € RT, D= (0,1) x (0,1) be a squared physical domain with boundary D, and D = D U dD. We
consider following nonlinear Kawarada advection-diffusion problem [14,17,18],

o*wy = V(aVw) + o?p(w), (z,y) €D, t >0, (3.1)
w(z,y,t) =0, (z,y)€dD, t>0, (3.2)
w(xvya 0) = on(l',y), (I,y) € D7 (33)

where V = (9,,0,)7, a(z,y) > 0 is differentiable for (z,y) € D, and 0 < wo(x,y) < 6 € RT. The nonlinear
source function, ¢(w), is strictly increasing for 0 < w < 6 with

$(0)=¢o >0, lim  ¢(w)=ooc.

max(w)—0—
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Investigations of the existence, uniqueness and intriguing properties of the solution of (3.1)-(3.3) can be
found in many recent publications including [6,18,19,25]. In the context of solid propellant combustion,
the function w(x,y,t) represents the temperature distribution in an idealized chamber, and z and y are
coordinates in the perpendicular and parallel directions to its walls, respectively. The value of 6 is often
referred to as the fuel ignition temperature in combustion, or the critical point for a massive corrosion to
occur in a container. We say that a solution w(z, y,t) quenches if there exist (Z,7) € D and f < oo such that
w(z,y,t) — 0 as (x,y) — (%,9),t — t . It has been shown that 6 exists only when o > o* > 0 [1,14,28].
The particular value o* is often referred to as the critical size in thermal engineering and combustion
applications [6,18,19,28].

Let m € NT be sufficiently large and h = 1/(m+1). We define uniform mesh regions Dy, = {(z4,y;) | x; =
ih,y; = jh, 1 <i,j < m} and Dy, = {(x;,v;) | #i = ih,y; = jh, 0 < 4,5 < m+ 1} on D. Assume that
w; ; be an approximation of the solution w at (z;,y;) € Dj. Utilizing conventional recursive central finite
differences approximating the spatial derivatives, we obtain the following semi-discretized system from (3.1):

1
(wi)i; = Py [Qiz1/2,jWim1,j + Qit1/2,jWit1j — (Qi—1/2,5 + Q1)) Wi

Q1 /aWi g1+ Qg1 aWijen — (@12 + Qi gyrp)wig] + d(wiy), 1<, <m.

Denote w = (w11, W21, W31, -, WN1,W1,25- - Winm) ' € R™ based on a natural ordering [16]. The semi-
discretized system for solving (3.1)-(3.3) can be comprised to yield

w' =(A+ Bw+ ¢(w), t>0, (3.4)
w(0) = wo, (3.5)

in which

1 1
A= ——diag (A1, As,...,Ay), B= —tridiag (B}, B},B}) € R xm?
o

212 o2h2
d(w) = [p(wi1), wan), - - - Gwm 1), d(wi2), (W), - -, Gwm m)]T € R™
wo = [(wo)1,1, (W0)2.1, - - - (W0)m1, (Wo)1.25 (W0)2,2, - - -, (W) m]T € R™

where A; € R™*™ 1 < j < m, are tridiagonal matrices with upper, lower and diagonal entries respectively

being
U, 5 :ai-l-l/?,ja 1= 1,2,...,m71,
Ei,j = 05—-1/2,5, 1= 273a sy MM,
di7j = _aifl/Q,j - ai+1/2,j7 1= 1727 ceey, My,

and B}, BJZ, and B;-’ € R™*™ are diagonal matrices given by

B_]l = dlag (ai,j—l/Q) y 1= 172,...,77’2,, _] = 2,3,...,771,
B]2 = —diag (ai’j,1/2 +ai,j+1/2) s 1= 1,2,...,m, j = 1,2,...,m,
B} =diag (o j41/2), i=1,2,...,m, j=1,2,...,m—1.
It can be observed in above configurations that matrices A, B are symmetric regardless types of the diffusion

function a(z,y) > 0 used. The matrices are also diagonally dominant and thus negative definite. These
properties offer desirable potentials and convenience for applications of the splitting methods.
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The formal solution of (3.4), (3.5) can be expressed as
t
w(t) = A By, + / e=OMUB) g)de, 0 <t <T,, (3.6)
0

where T, < oo is the finite quenching time corresponding to o > o* [14,16,20].

Consider the variable step temporal grids {to,1,t2,...,tn,+1}, in which tg = 0, t,41 = ¢, + 7, with
variable temporal steps 0 < 7, < 1, n = 0,1,2,...,N,, and tny,4+1 = T,. Note that values of 7, can
be determined via a proper adaptive mechanism, such as the moving mesh method [7]. A weak Courant
constraint x,, is considered under the tolerance 0 < e < 1: K, = 7'n/h2 €[k—e ktel, n=0,1,2,...,Ny; K €
RT. The terminal index N, depends on o and therefore T,,. Thus (3.6) can be reformulated to

tn+1
W(tnsr) = AT Bu(t,) + / e =OUB) g \de 1 =0,1,..., N, < oo (3.7)
tn
Denote w™ as an approximation of w(t,), n =0,1,2,..., N, + 1. Based on the triple level Glowinski-Le

Tallec splitting formula G(A, B, A1, Ao, t) defined in (1.4) with A\; = 1 —v/2/2, Ay = V/2 — 1, we acquire the
following second order trapezoid rule based implicit scheme from (3.7),

Wt = (I = M7 A) " I+ M7 B)(I = Ao B) NI + A A) (1 — M A) (I + M7, B)
n T_TL n T_" n+1 —
< (w4 o) + Fo@™), n=0.1,....N,,

wo = wWy.

The above algorithm is highly nonlinear. To solve, proper iterative strategies are often needed. However,
since we wish to focus at the applicability of (1.4), we may simply replace ¢(w™ ™) by ¢(@™ ), where the
solution vector ™! is preevaluated via an explicit integrator such as a two-stage Runge-Kutta formula,
or the three-stage Nystrom scheme. Under such configuration, our Glowinski-Le Tallec splitting scheme can

be linearized to yield following semi-adaptive implicit method,

Wt = (I = M7 A) 7 I+ M7 B)(I = Ao B) M I + A A)(1 — M7 A) (I + M7, B)
n 7_777« n 7—7" ~An+1 —
x (' + Tro™) + To@™), n=0,1,... Ny, (3.8)

w® = wy. (3.9)

We may notice the sign changes in (3.8) due to the matrix exponential to approximate is now
exp {7,(A + B)}. Among the many important characteristic features of (3.1)-(3.3) and its solution ap-
proximations through (3.8), (3.9), a key issue to investigate is the stability of the Glowinski-Le Tallec
method (3.8), (3.9) in the von Neumann sense, since it ensures required localized stability and convergence
as h — 07 [3,7,9,16,33]. To this end, we recall the fact that A, B € R™ *™* are negative definite. The
following results become thus straightforward.

Lemma 3.1. [17] We have

4
A , |IBlle € —= max_a(x,y).
1412, I1Bll2 < 757 max_a(z,y)
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Lemma 3.2. If

T, 0'2

n
==L <
h? " 2Xymax; j{i+1/2,5, Qi jr1/2}

Rn

(3.10)

then

I+ madedllys I+ 7Bl (7= mdia)™|

: H(IanAQB)*lH <1.
2 2
Proof. We first notice that
I + ThX2Ally = p (I + ThA2A)
which is the spectrum radius of the matrix. We further observe that the eigenvalue of the matrix,

A+ 1 AA) =14+ 1AM (A) < 1, since eigenvalues of A are real and negative.
Now, recall Lemma 3.1. We find that

4T, A
1+ Tn)\Q)\(A) >1— 0-2h22 HIH;'X {aiil/g,j,awil/g} > —1

due to the lemma hypothesis. The above implies that ||[I + 7, A2 Al = p (I + 7, A2A) < 1. Similarly, we can
show that || + 7, A1 B|| < 1 since A, B are similar and Ay > Ay > 0.
Secondly, we consider the spectrum radius of the matrix (I — 7,,A; A)~'. Since it is symmetric, we have

B B 1
I =mad )]y = 2 (=7 ) ™) = o=y <1

due to the fact again that A is negative definite. For the same reason the above inequality must be true. O

Definition 3.3. [13,16] Let the perturbed system corresponding to a numerical method such as (3.8), (3.9)
be

Tl =Me", n=0,1,...,

L l

where ¢/ = w? — @’

, w' is a perturbed solution at the temporal level ¢, £ = 0,1, ..., and M is the perturbed

coefficient matrix. We say that the numerical method is stable in the norm || - || if there exists a uniform

constant ¢ € R, such that for 7 = mgé 70— 0T
Le

He"HH < ¢ Heol , n=0,1,....

Theorem 3.4. If the hypothesis (3.10) holds and the spectral norm of the Jacobian ¢'(w) is uniformly bounded,
then the linearized semi-adaptive Glowinski-Le Tallec splitting method (3.8), (3.9) is weakly stable in the
spectral norm and von Neumann sense.

Proof. Let @™, w" ™! be perturbed solution vectors of (3.8), that is,

D" = (I = M7 A) T+ M7 BYT = Aoy B) (I + Aoy AT — M7 A) NI + M7, B)
ma T_” e T_n ~n—+1
X (w + 2cz’>(w ))+ 2¢(w ), nef{0,1,...,N,}.

Thus,
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et = "t "t = (T = M7, A) YT 4+ M7, B) (I — Mo, B) NI 4 Mo7, A)
X(1 = X A) T+ M B) (" = 07 + 2 (o(w") — o(a"))
(I =M1 A YT 4+ M7 B)Y(I — Mo, B) 2T + Ma7, A)

(I = M A)~ NI + M\7B) (1 n %qﬁ’(ﬁ”)) & ne{0,1,...,N,},

where the vector (™ is between w™ and @".
Now, let [|¢'(¢"™)|ly < 2¢ for some ¢ >0, 7, <7< 1, n=0,1,...,N,. It follows from the above that

e, < 1= MmnA) NI+ M7 BT = A7 B) (I + Ao A)

< (I = MmA)~ I+ M7 B)|, HI + %”W(C”)

51’L
el
T n n n
< (L Z18€L) e, = (A +enlely, ne {01, N,
Recursively we obtain that

e R

27

since n = NO—/T, the value N, ~ N, which is finite and decided solely by the quenching size o > o* > 0
[1,3,6]. Therefore

1", < exp {Noe} (|, = o [[°l], 0 <7 <1
Hence our proof is completed based on Definition 3.3. O

Remark 3.5. We may notice that Definition 3.3 is in fact a direction extension of Definition 1.2 for discretized
evolutional operators when 7 — 07.

Based on the accuracy of the Glowinski-Le Tallec splitting, recursive spatial difference formula and
weak Courant constraint used, we may predict that the order of convergence for (3.8), (3.9) is linear in
time. Although a rigorous proof of such argument is extremely difficult in our circumstance, primarily due
to the strong quenching nonlinearity and singularity of the Kawarada problem [11,25,28], computational
assessments of the convergence are possible through the Milne device [16,17]. More detailed discussions will
follow in the next section.

4. Simulation experiments

Consider the nonlinear Kawarada initial-boundary value problem (3.1)-(3.3). We adopt modeling func-
tions and parameters,

a(z,y) = exp {—d l(:f (- %)] } 0w) = 5y wn(a,y) = esin(ryma)sin (),

where d = 10, § = 1, ¢ = 1/100, x1,k2 € N1, (2,9) € D with 0 = 7. These functions and parameters
are typical for stability validation experiments. They are used frequently in recent quenching modeling
and investigations [3,7,17,20,25]. The use of k1, ko reflects a possible installation of multiple sparking ig-
nition systems, though the single point quenching profile remains unchanged [1,25,28]. For the simplicity
of discussions, we take k1 = 1,k = 2 throughout continuing simulation experiments. Algorithms based
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Fig. 1. From LEFT to RIGHT: the diffusion function a(z,y), initial function w’ = w(x,y,0) and beginning source function
d(w®)(z,y). h=1/(m+ 1), m = 120 are used.

on the Glowinski-Le Tallec splitting scheme (3.8), (3.9) will be developed and executed in multiple UNIX
workstation platforms.

First of all, we show surfaces of the diffusion function a(z,y), initial function w® = w(z,y,0) and
corresponding nonlinear source function (;S(wo) in Fig. 1. The dual sparking device and its impact to the

source function are clearly visible. We particularly notice that

max_wo(z,y) = 0.0100, sup ¢(wp)(z,y)~ 1.01010101.
(z,y)€D (z,y)€D

Though manual mesh refinements are practiced immediately before solution quenching, for the simplicity
of illustration, simulation results will be presented primarily at fixed temporal locations according to the
initial temporal step 0 < 7 < 1 unless otherwise stated. Courant numbers ranging from 0.1 to 0.25 will be
considered in experiments for better overall resolutions of singular quenching solutions. Standard numerical
differentiations are used for evaluating derivatives.

We are particularly interested in the temporal derivative w; since an alternative definition of quenching
is that

lim  sup w(x,y,t) = +oo,
t=T5 (z,y)€D

where T, < oo [6,14]. On the other hand, the nonlinear source function reflects the free energy level
inside a combustor which is crucial to observe. To this end, Fig. 2 is designated for showing surfaces of the
numerical solution w", its temporal derivative wy', and corresponding nonlinear source function ¢(w™) at an
early temporal level n = 1000. We may observe that the numerical solution well preserves the initial pattern
of wq after a thousand temporal advancements. However, heights of its twin peaks are slightly elevated to

1000(

max_ w x,y) ~ 0.0162422042. The surface pattern of w; is particularly interesting which serves as

(z,y)€Dn
an indication that the shape of function w is under a rapid change to a single peak formation with the

peak located at the center of the domain Dy, for quenching. For n = 1000 we also have max w;i' (z,y) =~

(I,y)G'Dh
1.0552569929 and max d(w™)(x,y) ~ 1.0165103690.

(z,y)€Dhn
Continuing in Fig. 3, we show surface profiles of the numerical solution w", its temporal derivative w;’,

and corresponding nonlinear source function ¢(w™) at the temporal level n = 73000 which is only few steps
away from a quenching blow-up. It can be seen that the twin peaks of the solution have almost disappeared
in this stage. The newly formed single peak formations of w”, w;* and ¢(w™) indicate strongly not only a
rapid increased fuel temperature in the combustion chamber, but also the fact that the combustion explosion
must begin at a single location. These precisely agree with theoretical quenching predictions [1,6,19,25,28].
On the other hand, we may also observe that while the solution surface of w™ is relatively flat at the top and
smooth, the rate of change function w;* and reaction function ¢(w™) become more much aggressive around
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Fig. 2. From LEFT to RIGHT: the numerical solution w O, its temporal derivative wz and corresponding source function

¢>(w1000). The number of spacial grids used is m = 120, while a fixed Courant number x = 0.1 is employed throughout computations.
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Fig. 3. From LEFT to RIGHT: the numerical solution w , its temporal derivative wt73000

#(w ). The peak heights of w”°%°, wZSOOO, H(w™°°%) are approximately 0.98320516, 58.19712575 and 59.54210246, respectively.
They are all located at the center of Dj,. Again, m = 120, x = 0.1 are used.

73000

and corresponding source function

Table 1

Highly monotone maximal values of the numerical solution w'™, its temporal
derivative w;" and corresponding source function ¢(w™). Results are consistent
with known solutions [3,6,17].

n t r%a:x w™ max wy' max P(w™)

0 0 0.10 - 1.0101010101
1000 0.0068301345 0.0162422042 1.0552569929 1.0165103690
5000 0.0341506727  0.0424738757 1.0636412480 1.0443579289
10000  0.0683013455  0.0773479051 1.0958311366 1.0838321460
20000  0.1366026910  0.1528023112  1.1833344019 1.1803620492
30000 0.2049040366 0.2363253646 1.3091450296 1.3094581824
51000  0.3483368622  0.4534557616  1.8239738610 1.8296780570
65000  0.4439587459  0.6705877655  3.0115647032 3.0357099571
70000 0.4781094187 0.7979478447  4.8989724894 4.9492171907
73000  0.4985998224  0.9832051614  58.1971257534 59.5421024674
73009  0.4986612936  0.9873321444  76.4984581024 78.9399591092
33011 0.4986749538 0.9884478397 83.5553017850 86.5638959646
73013  0.4986886141  0.9896835442  93.0144008075 96.9325150625

73015  0.4987022744  0.9903606415  144998.701525573  103.741343630

the center of Dj,. Needless to say, the Glowinski-Le Tallec splitting algorithm (3.8), (3.9) shows a satisfactory
stability and is highly accurate for capturing the quenching singularity and physical characteristics.

Fig. 4 is devoted to the last shot of the numerical approximation w", its rate of change function wy
and nonlinear source function ¢(w™) immediately before quenching at n = 37015. The peak values of
w™, wi, ¢(w™) have reached 0.99036064, 1.44998701x 10° and 1.03741343 x 10?, respectively. Enlarged surface
plots are shown in the subdomain {[0.4,0.6] x [0.4,0.6]} U Dy, C Dy, in the second row. We notice that the

value of max w"(z,y) ~ 0.9903606415 is now significantly close to the dimensionless ignition temperature
(z,y)€Dn
0=1.
Maximal values of the numerical solution w", its rate-of-change function wj;' and corresponding nonlinear

source function ¢(w™) are given at selected temporal levels in Table 1. The table shows strong monotonically
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Fig. 4. From LEFT to RIGHT: the numerical solution w , its temporal derivative w, and corresponding source function

#(w™°'®). In the bottom row enlarged simulations within the subdomain {[0.4,0.6] x [0.4,0.6]} U D), C D}, are given. A typical
single point quenching is evident.

0’

max, , Gw)(y.H

Fig. 5. Trajectories of the maximal values of the numerical solution w™ [LEFT], its temporal derivative w;" [MIDDLE] and nonlinear
source function ¢(w™) [RIGHT]. The steadily increasing curves indicate a strong monotonicity of the functions. It may also be
noticed that the maximal values of w;', ¢(w™) begin to increase dramatically fast only as t enters the neighborhood of quenching
time Tx. The phenomena are well consistent with those predicted by theoretical predictions [3,6,14,18,19].

increasing patterns of the data. It is noticed that ( m)a}% w30 (2, y) ~ 145000 which is truly no surprise.
z,Yy)EDh

Trajectories of the three targeted key functions are carefully illustrated in Fig. 5 until the quenching time
T ~ 0.4987022744. Logarithmic scales are used in the y-direction to increase the readability. Both Table 1
and Fig. 5 show monotonically increasing structures of the targeted maximal values. Physically, these trajec-
tories imply an ideal temperature built-up in the chamber from the initial fuel ignition to final combustion.
The large number of temporal operations executed is a good indication of the superior numerical stability
and reliability of the Glowinski-Le Tallec decomposition algorithm (3.8), (3.9) tested.

Now, let us computationally assess the order of convergence of the numerical solution. Apparently, a study
of the convergence in temporal direction is sufficient since based on it, the spacial order of convergence can be
derived conveniently via Courant constraints. To this end, we assume the following pointwise error estimate:

w(wi, yj,tn) —wi; = Coth, 1<id,5<m, 0<n< N, (4.1)
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Fig. 6. TOP: computed temporal order of convergence for w9 BOTTOM: computed temporal order of convergence for the
derivative function ’LUZ3010.

From LEFT to RIGHT is the pointwise temporal order of convergence surfaces, projections of the

surfaces to the X Z plane, and enlarged surface simulations within the subdomain {[0.4,0.6]

4,0.6] x [0.4,0.6]} U Dj,. The orders of
convergence in both cases are approximately one, though they decay slightly in the quenching neighborhood which locates around
the center of D.

where Cp € R and p = p}’; is the order to be determined. Halve 7, continuously. We obtain

(w5, tn) — 077 ~ Co(Tn/2)P,

i 1<i,j<m, 0<n< N, (4.2)
w(xhijtn) - wi? ~ CO(Tn/4)pﬂ 1 S Za.] S m, 0<n S No’7 (43)

where the same indexes i, j are kept for the sake of simplicity in notations. A combination of (4.1)-(4.3)
yields

~2n

n Wiy — Wiy »
pm%mlnm, 1SZ,]Sm,0<nSNa— (44)
0. 0.
Replace the numerical solution by its temporal derivative in (4.1)-(4.4). We acquire the following pointwise
temporal order of convergence for the derivative function w;
(@075 — (we)7
N S n |l R < i<, 0<n < N 45
4q; j In2 (wt);{? (i, 223 L= m, S Neo (4.5)

Utilizing (4.4), (4.5), we may compute orders of convergence p",q" pointwise at any temporal level

n > 0. Since Kawarada equation solutions are particularly sensitive immediately before quenching, we show
surfaces of p™, ¢ at n = 73010 in Fig. 6 as a benchmark illustration. We may observe that the surfaces are
not only nonlinear but also reflecting precisely quenching singularities of the problem (3.1)-(3.3)
Furthermore, maximal, minimal, mean and median values of p™°19 ¢7%10 are given in Table 2. It is
evident that both orders of convergence are approximately one, though the former is in general slightly

higher than the latter. The phenomena agree well with expectations from approximations [8,14,26]. Now
recall the weak Courant constraint 7,,/h? € [k — €,k + €], where k € RT, 0 < e < 1 forn =0,1,2 N,

= bl Pl PIRIEIEEY .
Therefore the convergence in space must be quadratic. This fact can be validated at any temporal level
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Table 2
Benchmark values of the estimated temporal orders of convergence ;7730107 q730107 (z,y) € Dp.
Order of convergence  Maximal value  Minimal value = Mean value Median value
73010 0.9999944610 0.9763945530  0.9992581732  0.9998565807
g 3ot 1.0004187321 0.9529641787  0.9985614056  0.9997520193

n € {1,2,...,N,}. Hence, the quadratic order of (3.8), (3.9) is preserved successfully by the Glowinski-Le
Tallec splitting [11,16,30].

5. Concluding remarks

This paper shows that the Glowinski-Le Tallec splitting, which is originally introduced for computing
global solutions of the equilibrium problems which are fundamental in Lagrangian optimizations, pro-
vides a consistent approximation to solutions of evolutional partial differential equations. The three-level,
six-component decomposition is effective. It not only provides a generalization of conventional two-level,
four-component ADI and LLOD schemes, but also introduces a general way for constructing effective operator
splitting methods. This means that products of operators such as (I + aMtAT(k’g))’l, (I = BretAp(ey) in
(1.1) instead of those via traditional Padé approximants [23,30,35], can be used as building blocks for highly
flexible, and possibly higher order, splitting methods. The stability of the extended splitting method is ex-
perimented on a singular and nonlinear Kawarada problem for thermal engineering applications successfully.
Pointwise quadratic convergence is assessed numerically.

The study and analysis also reveal that a continuing investigation of the Glowinski-Le Tallec splitting is
necessary especially when solutions of other types of modeling equations, such as the degenerate stochastic
Kawarada problems [17,25,26] and degenerate Lighthill-Whitham-Richards equations for polydisperse sedi-
mentation and multiclass traffic dynamics [5,11], are considered. Approximations accepting nonpositive, or
even complex, multiple parameters A1, Ao, ..., Apy may be analyzed. Higher order operator decompositions
beyond the basic Glowinski-Le Tallec splitting (1.4) must be researched. Split neural network structures
also need to be implemented for methods overcoming the curse of dimensionality [9,11]. These are truly
among our forthcoming expeditions to fulfill.
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