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A preservative scheme is presented and analyzed for the solution of a quenching type convective-diffusion 
problem modeled through one-sided Riemann-Liouville space-fractional derivatives. Properly weighted Grünwald 
formulas are employed for the discretization of the fractional derivative. A forward difference approximation is 
considered in the approximation of the convective term of the nonlinear equation. Temporal steps are optimized 
via an asymptotic arc-length monitoring mechanism till the quenching point. Under suitable constraints on 
spatial-temporal discretization steps, the monotonicity, positivity preservations of the numerical solution and 
numerical stability of the scheme are proved. Three numerical experiments are designed to demonstrate and 
simulate key characteristics of the semi-adaptive scheme constructed, including critical length, quenching 
time and quenching location of the fractional quenching phenomena formulated through the one-sided space-
fractional convective-diffusion initial-boundary value problem. Effects of the convective function to quenching 
are discussed. Numerical estimates of the order of convergence are obtained. Computational results obtained 
are carefully compared with those acquired from conventional integer order quenching convection-diffusion 
problems for validating anticipated accuracy. The experiments have demonstrated expected accuracy and 
feasibility of the new method.
1. Introduction

Let Ω𝑎 = (0, 𝑎), 𝑎 > 0. Consider the following one-dimensional (1D) 
𝛾-th order nonlinear convective-diffusion problem:

𝜕ℎ(𝑥, 𝑡)
𝜕𝑡

= 𝑑(𝑥, 𝑡) 𝜕
𝛾ℎ(𝑥, 𝑡)
𝜕𝑥𝛾

+ 𝑐(𝑥, 𝑡) 𝜕ℎ(𝑥, 𝑡)
𝜕𝑥

+ 𝑝(ℎ), 𝑥 ∈Ω𝑎, 𝑡 ∈ (0, 𝑇 ), (1.1)

ℎ(𝑥,0) = 𝜓(𝑥), 𝑥 ∈Ω𝑎, (1.2)

ℎ(0, 𝑡) = ℎ(𝑎, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ), (1.3)

where 𝑑(𝑥, 𝑡) > 0 and 1 < 𝛾 ≤ 2. The nonnegative source function 𝑝(ℎ) is 
singular as ℎ reaches certain thresholds. The fractional nonlinear model 
(1.1)-(1.3) delivers an accurate mathematical tool for describing many 
profound physical applications arising from nature and experimental 
sciences.

The above-mentioned one-sided convective-diffusion equation
(OCDE) can be further viewed as a basic equation of motion. It mod-
els fluid flow and heat transfer, combustion and explosion, or cooling 
reactions in the industry [1]. The quenching phenomena it intends to 
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interpret can also be found in biochemical reactions in drug produc-
tions, electrochemical cells [2], and temperature-dependent thermal 
coefficients [3] and so on. Therefore, the research of reliable numerical 
solutions of (1.1)-(1.3) carries high theoretical and practical values.

There have been multiple ways for solving quenching type singular 
equations. For example, a local projection stabilization virtual element 
method was applied for solving a similar convection-diffusion-reaction 
problem [4]. Super convergence of finite element method with singu-
larly perturbed system was observed in 1D modeling equation simula-
tions [5]. For the algorithmic simplicity and practical effectiveness, the 
most commonly used numerical procedures in the territory remain to 
be finite difference based [6–8].

Consider the nonlinear source function

𝑝(ℎ) = (𝐿− ℎ)−𝜃 , 0 ≤ ℎ < 𝐿, (1.4)

where 𝜃 > 0 is the physical combustion index [3,9]. Apparently, 𝑝(ℎ) is 
strictly increasing for 0 ≤ ℎ < 𝐿 with 𝑝(0) = 1∕𝐿𝜃 > 0, and 𝑝(ℎ) → +∞, as 
ℎ →𝐿−.
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In 1975, Kawarada first mentioned the quenching phenomenon due 
to (1.4) with 𝜃 = 1. A necessary condition for a quenching was also 
given in [10]. It was proved that for Kawarada’s original modeling 
equation, ℎ𝑡 = ℎ𝑥𝑥 + 1∕(1 − ℎ), 𝑥 ∈ (0, 𝑎), 𝑡 > 0, there must exist a criti-
cal size 𝑎⋆ ∈ (2

√
2, +∞) such that ∀ 𝑎 > 𝑎⋆, there exists a unique 𝑇𝑎 <∞, 

and sup
𝑥∈(0,𝑎)

lim
𝑡→𝑇−

𝑎

ℎ = 1 [10,11]. Walter and Acker later verified this result 

and discovered that 𝑎⋆ ≈ 1.5303 by means of simulation experiments 
[12]. The monotonicity, stability and positivity of a quenching solution 
are proposed and investigated in numerous publications either analyt-
ically or numerically later on, including substantial work implemented 
by Zhu, Sheng et al. for fractional order quenching type convective-
diffusion equations [13,14]. The simulation methods constructed are 
far more balanced and effective as compared to traditional unilateral 
and composite finite difference approaches [15].

In our present study, we are particularly interested in semi-adaptive 
computations of the numerical solution of quenching type fractional or-
der quenching problems. Although such solutions of fractional order 
quenching models can be found in numerous recent publications (see 
[7,13,14,16] and references therein), the numerical approach for OCDE 
problems such as (1.1)-(1.3) equipped with the one-sided Riemann-
Liouville (R-L) space-fractional diffusion term and convective term re-
main unsolved. This motivates the present study. Our paper successfully 
extends the work of [13], and accomplishes investigations of preser-
vative features such as the positivity, monotonicity and stability for 
numerical solutions acquired and quenching characteristics validations 

for 
√
17 − 1
2

≤ 𝛾 ≤ 2 [13,17].
The remaining structure of this study consists of the following five 

interactive parts. A semi-discretized fractional order quenching model 
approximation and a semi-adaptive scheme will be introduced and dis-
cussed in Section 2. In Section 3, the numerical stability of the semi-
adaptive scheme will be investigated and analyzed. Preservation fea-
tures and characteristics will be studied in Section 4. Emphases will be 
given to verifications of the solution positivity and monotonicity. Sec-
tion 5 is devoted to numerical experiments and simulations of quench-
ing phenomena associated with the modeling problem (1.1)-(1.3). Three 
sets of experiments will be given on critical lengths, quenching times 
and quenching location respectively. Numerical solutions will be com-
pared with existing results and simulations. Estimates of the order of 
convergence are calculated. Finally, straightforward conclusions and 
continuing endeavors will be presented in Section 6.

2. Semi-adaptive difference scheme

For problem (1.1)-(1.3), we stipulate the space-time interval [0, 𝑎] ×
[0, 𝑇 ] by a 𝑁 ×𝐾 grid, where 𝑁, 𝐾 ∈ℤ+ and are far greater than 1. Let 
𝜆 = 𝑎∕𝑁 , 𝜏 = 𝑇 ∕𝐾 . We define following mesh region,

Ω̄𝑎,𝜆 × 𝑇𝜏 =
{
(𝑥𝑖, 𝑡𝑘) ∶ 𝑥𝑖 = 𝑖𝜆, 𝑡𝑘 = 𝑘𝜏, 𝑖 = 0,1,2,… ,𝑁 ; 𝑘 = 0,1,… ,𝐾

}
.

Furthermore, we denote 𝑑𝑖 = 𝑑(𝑥𝑖, 𝑡), 𝑐𝑖 = 𝑐(𝑥𝑖, 𝑡) and ℎ𝑖 = ℎ(𝑥𝑖, 𝑡), 𝑖 =
0, 1, 2, … , 𝑁 . Let 𝑝𝑖 = 𝑝(ℎ𝑖). Then standard and shifted Grünwald for-
mulas [6] for (1.1) are defined respectively as

𝜕𝛾ℎ(𝑥, 𝑡)
𝜕𝑥𝛾

= lim
𝜆→0+

1
𝜆𝛾

𝑁∑
𝑚=0

𝑧𝑚ℎ(𝑥−𝑚𝜆, 𝑡) +(𝜆);

𝜕𝛾ℎ(𝑥, 𝑡)
𝜕𝑥𝛾

= lim
𝜆→0+

1
𝜆𝛾

𝑁∑
𝑚=0

𝑧𝑚ℎ(𝑥− (𝑚− 1)𝜆, 𝑡) +(𝜆), (2.1)

where

𝑧𝑚 = Γ(𝑚− 𝛾)
Γ(−𝛾)Γ(𝑚+ 1)

= (−1)𝑚 𝛾(𝛾 − 1)⋯ (𝛾 −𝑚+ 1)
𝑚!

, 𝑚 = 0,1,… ,𝑁.

It is readily to see from the 𝑧𝑚 formulas that

(𝑎) 𝑧0 = 1; (𝑏) − 𝑧1 = 𝛾 > 0; (𝑐) 0 ≤ 𝑧𝑚+1 ≤ 𝑧𝑚 ≤ 1, if 𝑚 ≥ 2;
(𝑑)

∑𝑁
𝑧 ≤ 0, 𝑁 ∈ℤ+; (𝑒)

∑∞
𝑧 = 0.

(2.2)

𝑚=0 𝑚 𝑚=0 𝑚

289
It is shown in [17] that

𝜕𝛾ℎ(𝑥𝑘, 𝑡)
𝜕𝑥𝛾

= 1
𝜆𝛾

[(
1 − 𝛾

2

) 𝑘∑
𝑗=0

𝑧𝑗ℎ𝑘−𝑗 +
𝛾

2

𝑘+1∑
𝑗=0

𝑧𝑗ℎ𝑘−𝑗+1

]
+(𝜆2), 𝜆→ 0+.

(2.3)

We discretize the convective term of (1.1) via the standard forward 
differential formula, that is,
𝜕ℎ(𝑥𝑘, 𝑡)

𝜕𝑥
=

ℎ𝑘+1 − ℎ𝑘

𝜆
+(𝜆), 𝜆→ 0+. (2.4)

An application of (2.3) and (2.4) to (1.1) yields the following semi-
discretized differential system,

(ℎ′)𝑘 =
𝑑𝑘

𝜆𝛾

[(
1 − 𝛾

2

) 𝑘∑
𝑗=0

𝑧𝑗ℎ𝑘−𝑗 +
𝛾

2

𝑘+1∑
𝑗=0

𝑧𝑗ℎ𝑘−𝑗+1

]
+

𝑐𝑘

𝜆
(ℎ𝑘+1 − ℎ𝑘) + 𝑝𝑘,

𝑘 = 1,2,… ,𝑁.

The above system can be compressed into a vector form:

ℎ′ = 𝑉 ℎ+ 𝑝(ℎ), 0 < 𝑡 < 𝑇 ; ℎ(0) = ℎ0, (2.5)

where ℎ = (ℎ1, ℎ2, … , ℎ𝑁 )⊺ ∈ ℝ𝑁, 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑁 )⊺ ∈ ℝ𝑁 and 𝑉 =
(𝑣𝑖𝑗 ) ∈ℝ𝑁×𝑁 for which

𝑣𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩

𝑑𝑖

𝜆𝛾

[(
1 − 𝛾

2

)
𝑧0 +

𝛾

2
𝑧1

]
−

𝑐𝑖

𝜆
, 𝑖 = 𝑗;

𝑑𝑖

𝜆𝛾

[(
1 − 𝛾

2

)
𝑧𝑖−𝑗 +

𝛾

2 𝑧𝑖−𝑗+1

]
, 𝑖 > 𝑗;

𝑑𝑖𝛾𝑧0
2𝜆𝛾 + 𝑐𝑖

𝜆
, 𝑖 = 𝑗 − 1;

0, otherwise.

A formal solution of the initial value problem (2.5) can be expressed 
as

ℎ(𝑡+ 𝜏) = 𝑒𝜏𝑉 ℎ(𝑡) +

𝑡+𝜏

∫
𝑡

𝑒(𝑡+𝜏−𝜉)𝑉 𝑝(ℎ(𝜉))𝑑𝜉, 𝑡, 𝜏 ≥ 0.

In the circumstance when 𝜏 → 0+, applying the trapezoidal rule for 
the integral, we acquire the following fully discretized approximation 
from the above exact solution:

ℎ(𝑡+ 𝜏) = 𝜏

2
𝑝(ℎ(𝑡+ 𝜏)) + 𝜏

2
𝑒𝜏𝑉 𝑝(ℎ(𝑡)) + 𝑒𝜏𝑉 ℎ(𝑡) +(𝜏2), 𝑡 ∈ [0, 𝑇 ). (2.6)

Consider an 𝐴-stable [1/1] Padé formula for the matrix exponential 
𝑒𝜏𝑉 , that is,

𝑒𝜏𝑉 =
(
𝐼 − 𝜏

2
𝑉

)−1 (
𝐼 + 𝜏

2
𝑉

)
+(𝜏2), 𝜏 → 0+. (2.7)

Combine (2.6) with (2.7) and drop the truncation error terms. We 
obtain immediately the following second-order fully discretized semi-
adaptive scheme:

ℎ𝑛 =
(
𝐼 −

𝜏𝑛

2
𝑉

)−1 (
𝐼 +

𝜏𝑛

2
𝑉

)(
ℎ𝑛−1 +

𝜏𝑛

2
𝑝𝑛−1

)
+

𝜏𝑛

2
𝑝𝑛, 𝑛 = 1,2,… ,𝐾,(2.8)

ℎ0 = (ℎ1(0), ℎ2(0),… , ℎ𝐾 (0))⊺, (2.9)

where 0 < 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1 ≪ 1, 𝑛 = 1, 2, … , 𝐾 , can be determined via a 
proper adaptation mechanism. The algorithm (2.8) is highly nonlinear 
and implicit. In realistic simulations, a straightforward explicit approxi-
mation, such as the forward Euler method, can be employed to linearize 
the procedure: 𝑝𝑛 ≈ 𝑝(ℎ𝑛−1 + 𝜏𝑛(𝑉 ℎ𝑛−1 + 𝑝𝑛−1)) [8,9,18]. But the Euler 
formula reduces the order in temporal direction to linear. Therefore the 
best overall truncation error is of (𝜆 + 𝜏𝑛) for (2.8) (2.9). This actually 
coincides the Courant number requirement [19]. It has been demon-
strated by many authors that a linearization can be extremely valuable 
even when strong quenching singularities are present [9,15,20]. In our 
study, we are particularly interested in following arc-length monitor 
function of the derivative function ℎ′ [9,15].

𝑙(ℎ′, 𝑡) =
√
1 + (ℎ′′)2, 𝑡 ∈ [0,+∞).
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Given values 𝜏0 and 𝜏1. We use the following quadratic formula for 
variable time steps when 𝑛 = 2, 3, … , 𝐾 ,

𝜏2
𝑖,𝑛

= 𝜏2
𝑖,𝑛−1 + [(ℎ′)𝑖,𝑛−1 − (ℎ′)𝑖,𝑛−2]2 − [(ℎ′)𝑖,𝑛 − (ℎ′)𝑖,𝑛−1]2, 𝑖 = 0,1,… ,𝑁.

(2.10)

Set 𝜏𝑛 = 1
𝑁

𝑁∑
𝑖=0

𝜏𝑖,𝑛. Under the appropriate smoothness constraints [8,

21], we may proceed ahead for calculating required adaptive time steps 
through the recursive relations (2.10).

3. Numerical stability

Theorem 3.1. If 
(√

17 − 1
)
∕2 ≤ 𝛾 ≤ 2 then the matrix 𝐼 − (𝜏𝑛∕2)𝑉 is in-

verse positive, strictly diagonally dominant and monotone.

Proof. Set 𝐴 = 𝐼 − (𝜏𝑛∕2)𝑉 = (𝑎𝑖𝑗 ) ∈ℝ𝑁×𝑁 . It follows that

𝑎𝑘𝑘 = 1 −
𝜏𝑛𝑑𝑘

2𝜆𝛾
[(

1 − 𝛾

2

)
𝑧0 +

𝛾

2
𝑧1

]
+

𝜏𝑛𝑐𝑘

2𝜆

= 1 +
𝜏𝑛𝑑𝑘

2𝜆𝛾

(
𝛾2

2
+ 𝛾

2
− 1

)
+

𝜏𝑛𝑐𝑘

2𝜆
, 𝑘 = 1,2,… ,𝑁,

𝑎𝑘,𝑘+1 = −
𝜏𝑛

2

[
𝑑𝑘𝛾

2𝜆𝛾
𝑧0 +

𝑐𝑘

𝜆

]
, 𝑘 = 1,2,… ,𝑁 − 1,

𝑎𝑘,𝑗 = −
𝜏𝑛𝑑𝑘

2𝜆𝛾
[(

1 − 𝛾

2

)
𝑧𝑘−𝑗 +

𝛾

2
𝑧𝑘−𝑗+1

]
, 𝑗 < 𝑘, 𝑘 = 2,3,… ,𝑁.

We consider the following constraints:√
17 − 1
2

≤ 𝛾 ≤ 2. (3.1)

It may readily be seen that [17]

𝛾

2 𝑧𝑘−𝑗+1 +
(
1 − 𝛾

2

)
𝑧𝑘−𝑗 > 0, 𝑗 < 𝑘, 𝑘 = 2,3,… ,𝑁,

𝛾2

2 + 𝛾

2 − 1 > 0.
(3.2)

By definitions we also have properties

𝑎𝑘𝑘 > 0, 𝑘 = 1,2,… ,𝑁 ; 𝑎𝑘,𝑘+1 < 0, 𝑘 = 1,2,… ,𝑁 − 1;

𝑎𝑘,𝑗 < 0, 𝑗 < 𝑘, 𝑘 = 2,3,… ,𝑁.

On the other hand, summing up absolute values of off-diagonal ele-
ments of 𝐴 yields the following,

𝑟𝑖 =
𝑁∑

𝑗=1,𝑗≠𝑖
|||𝑎𝑖𝑗 ||| = 𝜏𝑛𝑐𝑖

2𝜆
+

𝜏𝑛𝑑𝑖𝛾

4𝜆𝛾
𝑧0 +

𝜏𝑛𝑑𝑖

2𝜆𝛾

{
𝑖−1∑
𝑙=1

[
𝛾

2
𝑧𝑖−𝑙+1 +

(
1 − 𝛾

2

)
𝑧𝑖−𝑙

]}

=
𝜏𝑛𝑐𝑖

2𝜆
+

𝜏𝑛𝑑𝑖

2𝜆𝛾

[
𝛾

2

𝑖∑
𝑗=0,𝑗≠1

𝑧𝑗 +
(
1 − 𝛾

2

) 𝑖−1∑
𝑗=1

𝑧𝑗

]

≤ 𝜏𝑛𝑐𝑖

2𝜆
+

𝜏𝑛𝑑𝑖

2𝜆𝛾
[
𝛾

2
× (−𝑧1) +

(
1 − 𝛾

2

)
× (−𝑧0)

]
=

𝜏𝑛𝑐𝑖

2𝜆
+

𝜏𝑛𝑑𝑖

2𝜆𝛾

(
𝛾2

2
+ 𝛾

2
− 1

)
, 𝑖 = 2,3,… ,𝑁.

Therefore,

𝑟𝑖 =
𝑁∑

𝑗=1,𝑗≠𝑖
|||𝑎𝑖𝑗 ||| < 𝜏𝑛𝑐𝑖

2𝜆
+

𝜏𝑛𝑑𝑖

2𝜆𝛾

(
𝛾2

2
+ 𝛾

2
− 1

)
+ 1 = 𝑎𝑖𝑖, 𝑖 = 2,3,… ,𝑁.

A particular case is for 𝑖 = 1, we have |𝑎12| ≤ 𝑎11 due to (3.1). These 
imply that 𝐴 is strictly diagonally dominant and it is therefore invert-
ible.

Now, according to (2.2), we observe that

𝑖−1∑
𝑧𝑗 ≤ 0, 𝑖 = 2,3,… ,𝑁 ;

𝑖∑
𝑧𝑗 ≤ 0,

𝑖∑
𝑧𝑗 ≤ −1, 𝑖 = 1,2,… ,𝑁.
𝑗=0 𝑗=0 𝑗=1
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Hence,

𝑁∑
𝑗=1

𝑎𝑖𝑗 = 1 −
𝜏𝑛𝑑𝑖

2𝜆𝛾

[(
1 − 𝛾

2

) 𝑖−1∑
𝑗=0

𝑧𝑗 +
𝛾

2

𝑖∑
𝑗=0

𝑧𝑗

]
> 0, 𝑖 = 1,2,… ,𝑁 − 1.

In the case if 𝑖 =𝑁 , then we have
𝑁∑
𝑗=1

𝑎𝑁𝑗 = 1 −
𝜏𝑛𝑑𝑖

2𝜆𝛾

[(
1 − 𝛾

2

)𝑁−1∑
𝑗=0

𝑧𝑗 +
𝛾

2

𝑁∑
𝑗=1

𝑧𝑗

]
> 0.

Consequently, the matrix 𝐴 meets all conditions of the weak-row 
sum criterions [22], therefore it is strictly monotone and inversely pos-
itive. This completes our proof. □

Theorem 3.2. Denote 𝑑max = max
1≤𝑘≤𝑁 𝑑𝑘, 𝑐max = max

1≤𝑘≤𝑁 𝑐𝑘, 𝛽𝛾,𝑛 =max
𝑛

𝜏𝑛

𝜆𝛾
. If

𝛽𝛾,𝑛 ≤ 1
2
(
𝑑max + 𝑐max

) , √
17 − 1
2

≤ 𝛾 ≤ 2 (3.3)

then 𝐼 +
𝜏𝑛

2
𝑉 is positive and nonsingular.

Proof. Set 𝐵 = 𝐼 +
𝜏𝑛

2
𝑉 = (𝑏𝑖𝑗 ) ∈ℝ𝑁×𝑁 , where

𝑏𝑖𝑖 = 1 +
𝜏𝑛𝑑𝑖

2𝜆𝛾
[(

1 − 𝛾

2

)
𝑧0 +

𝛾

2
𝑧1

]
−

𝜏𝑛𝑐𝑖

2𝜆

= 1 −
𝜏𝑛𝑑𝑖

2𝜆𝛾

(
𝛾2

2
+ 𝛾

2
− 1

)
−

𝜏𝑛𝑐𝑖

2𝜆
, 𝑖 = 1,2,… ,𝑁,

𝑏𝑖,𝑖+1 =
𝜏𝑛

2

[
𝑑𝑘𝛾

2𝜆𝛾
𝑧0 +

𝑐𝑖

𝜆

]
, 𝑖 = 1,2,… ,𝑁 − 1,

𝑏𝑖,𝑗 =
𝜏𝑛𝑑𝑖

2𝜆𝛾
[(

1 − 𝛾

2

)
𝑧𝑖−𝑗 +

𝛾

2
𝑧𝑖−𝑗+1

]
, 𝑗 < 𝑖, 𝑖 = 2,3,… ,𝑁.

Firstly, similar to the proof of last theorem, the positivity of diagonal 
elements of 𝐵 can be readily shown through (3.2) and (3.3). Secondly, 
we may study the infinite norm of 

𝜏𝑛

2
𝑉 . To this end,

‖‖‖‖ 𝜏𝑛2 𝑉
‖‖‖‖∞ = max

𝑖

{
𝜏𝑛

2

𝑁∑
𝑗=1

|||𝑉𝑖𝑗
|||
}

= max
𝑖

{
𝜏𝑛𝑑𝑖

2𝜆𝛾

[
𝑖−1∑
𝑗=1

( 𝛾
2
𝑧𝑖−𝑗+1 + (1 − 𝛾

2
)𝑧𝑖−𝑗 ) +

𝛾

2
𝑧0 − ( 𝛾

2
𝑧1 + (1 − 𝛾

2
)𝑧0)

]
+

𝜏𝑛𝑐𝑖

𝜆

}

= 𝜏𝑛𝑑𝑖

2𝜆𝛾
max

𝑖

{
𝑖−1∑
𝑗=1

( 𝛾
2
𝑧𝑖−𝑗+1 + (1 − 𝛾

2
)𝑧𝑖−𝑗 ) +

𝛾

2
𝑧0 − ( 𝛾

2
𝑧1 + (1 − 𝛾

2
)𝑧0)

}
+max

𝑖

𝜏𝑛𝑐𝑖

𝜆

≤ max𝑛(𝜏𝑛)𝑑max
𝜆𝛾

(
𝛾2

2
+ 𝛾

2
− 1

)
+

max𝑛(𝜏𝑛)𝑐max
𝜆𝛾

.

Furthermore, when 𝛽𝛾,𝑛 ≤ 1
2(𝑑𝑚𝑎𝑥 + 𝑐𝑚𝑎𝑥)

, we may see that 
‖‖‖‖ 𝜏𝑛2 𝑉

‖‖‖‖∞ < 1. 

Thus, 𝐵 must be nonsingular according to [22]. □

Definition 3.1. [23] Let ℎ̃𝑛, ℎ𝑛 denote the perturbed and true solutions 
of a numerical method, respectively. Set 𝐸𝑛 = ℎ𝑛 − ℎ̃𝑛, 0 ≤ 𝑛 ≤ 𝐾 . We 
say that the numerical method is stable if there is a suitable Euclidean 
norm ‖ ⋅ ‖ such that ‖𝐸𝑛‖ ≤ 𝑐

‖‖‖𝐸0‖‖‖ , 0 ≤ 𝑛 ≤ 𝐾 hold, where 𝑐 > 0 is a 
constant. We say that the numerical method is conditionally stable if 
the inequalities hold only when some constraints are satisfied.

Theorem 3.3. Suppose the source function 𝑝 be frozen. If (3.3) holds, then 
the semi-adaptive method (2.8),(2.9) is conditionally stable.

Proof. Suppose function 𝑝(ℎ) be frozen, that is, ℎ be fixed. Denote 
𝜉𝑘
𝜒
= 𝜏𝑘𝑑𝜒∕(2𝜆𝛾 ), 𝜔𝑘

𝜒
= 𝜏𝑘𝑐𝜒∕(2𝜆), 𝜒 = 1, 2, … , 𝑁, 𝑘 = 0, 1, … , 𝐾 . We may 

obtain the following identities:(
𝐼 −

𝜏𝑘
𝑉

)
𝐸𝑘+1 =

(
𝐼 +

𝜏𝑘
𝑉

)
𝐸𝑘, 𝑘 = 0,1,… ,𝐾 − 1,
2 2
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following (2.8) and Definition 3.1.
On account of the above remark, we use a mathematical induction 

to prove that ‖𝐸𝑛‖ ≤ ‖‖‖𝐸0‖‖‖ , 0 ≤ 𝑛 ≤ 𝐾 . First of all, when 𝑛 = 1, on the 
basis of (3.2) we acquire that

‖‖‖𝐸1‖‖‖∞ = max
1≤𝑗≤𝑁

|||𝐸1
𝑗

||| = |||𝐸1
𝜒

||| ≤ |||𝐸1
𝜒

|||− 𝜉1
𝜒

(
1 − 𝛾

2

) 𝜒−1∑
𝑚=0

𝑧𝑚
|||𝐸1

𝜒

|||
− 𝜉1

𝜒

𝛾

2

𝜒∑
𝑚=0

𝑧𝑚
|||𝐸1

𝜒

|||+ 𝜔1
𝜒

|||𝐸1
𝜒

|||−𝜔1
𝜒

|||𝐸1
𝜒

|||
≤ [

1 − 𝜉1
𝜒

(
1 − 𝛾

2

)
𝑧0 − 𝜉1

𝜒

𝛾

2
𝑧1 + 𝜔1

𝜒

] |||𝐸1
𝜒

|||− [
𝜉1
𝜒

𝛾

2
𝑧0 + 𝜔1

𝜒

] |||𝐸1
𝜒+1

|||
−𝜉1

𝜒

𝜒∑
𝑚=2

[(
1 − 𝛾

2

)
𝑧𝑚−1 +

𝛾

2
𝑧𝑚

] |||𝐸1
𝜒−𝑚+1

|||
=
[
1 + 𝜉0

𝜒

(
1 − 𝛾

2

)
𝑧0 + 𝜉0

𝜒

𝛾

2
𝑧1 − 𝜔0

𝜒

] |||𝐸0
𝜒

|||+ [
𝜉0
𝜒

𝛾

2
𝑧0 + 𝜔0

𝜒

] |||𝐸0
𝜒+1

|||
+𝜉0

𝜒

𝜒∑
𝑚=2

[(
1 − 𝛾

2

)
𝑧𝑚−1 +

𝛾

2
𝑧𝑚

] |||𝐸0
𝜒−𝑚+1

|||
≤
[
1 +

(
1 − 𝛾

2

)
𝜉0
𝜒

𝜒−1∑
𝑚=0

𝑧𝑚 + 𝛾

2
𝜉0
𝜒

𝜒∑
𝑚=0

𝑧𝑚

]
max
1≤𝑗≤𝐾

|||𝐸0
𝑗

|||
≤ max

1≤𝑗≤𝐾
|||𝐸0

𝑗

||| = ‖‖‖𝐸0‖‖‖∞ .

Particularly if ‖‖‖𝐸1‖‖‖∞ = |||𝐸1
𝑁

|||, we have in (2.1) that
‖‖‖𝐸1‖‖‖∞ = |||𝐸1

𝑁

||| ≤ |||𝐸1
𝑁

|||− 𝜉1
𝑁

(
1 − 𝛾

2

)𝑁−1∑
𝑚=0

𝑧𝑚
|||𝐸1

𝑁

|||
− 𝜉1

𝑁

𝛾

2

𝑁∑
𝑚=0

𝑧𝑚
|||𝐸1

𝑁

|||+ 𝜔1
𝑁

|||𝐸1
𝑁

|||
≤ [

1 − 𝜉1
𝑁

(
1 − 𝛾

2

)
𝑧0 − 𝜉1

𝑁

𝛾

2
𝑧1 + 𝜔1

𝑁

] |||𝐸1
𝑁

|||
−𝜉1

𝑁

𝑁∑
𝑚=2

[(
1 − 𝛾

2

)
𝑧𝑚−1 +

𝛾

2
𝑧𝑚

] |||𝐸1
𝑁−𝑚+1

|||
=
[
1 + 𝜉0

𝑁

(
1 − 𝛾

2

)
𝑧0 + 𝜉0

𝑁

𝛾

2
𝑧1 − 𝜔0

𝑁

] |||𝐸0
𝑁

|||
+𝜉0

𝑁

𝑁∑
𝑚=2

[(
1 − 𝛾

2

)
𝑧𝑚−1 +

𝛾

2
𝑧𝑚

] |||𝐸0
𝑁−𝑚+1

|||
≤
[
1 +

(
1 − 𝛾

2

)
𝜉0
𝑁

𝑁−1∑
𝑚=0

𝑧𝑚 + 𝛾

2
𝜉0
𝑁

𝑁∑
𝑚=0

𝑧𝑚

]
max
1≤𝑗≤𝐾

|||𝐸0
𝑗

|||
≤ max

1≤𝑗≤𝐾
|||𝐸0

𝑗

||| = ‖‖‖𝐸0‖‖‖∞ . (3.4)

Furthermore, suppose that ‖𝐸𝑛‖∞ ≤ ‖‖‖𝐸0‖‖‖∞ for 𝑛 = 1, 2, … , 𝑘 − 1. 
Thus, due to (2.1) and (3.3), for 𝑛 = 𝑘 (𝑘 > 1) we arrive consequently 
at

‖𝐸𝑛‖∞ = max
1≤𝑗≤𝑁

|||𝐸𝑛
𝑗

||| = |||𝐸𝑛
𝜒

||| ≤ |||𝐸𝑛
𝜒

|||− 𝜉𝑛
𝜒

(
1 − 𝛾

2

) 𝜒−1∑
𝑚=0

𝑧𝑚
|||𝐸𝑛

𝜒

|||
− 𝜉𝑛

𝜒

𝛾

2

𝜒∑
𝑚=0

𝑧𝑚
|||𝐸𝑛

𝜒

|||+ 𝜔𝑛
𝜒

|||𝐸𝑛
𝜒

|||−𝜔𝑛
𝜒

|||𝐸𝑛
𝜒

|||
≤ [

1 − 𝜉𝑛
𝜒

(
1 − 𝛾

2

)
𝑧0 − 𝜉𝑛

𝜒

𝛾

2
𝑧1 + 𝜔𝑛

𝜒

] |||𝐸𝑛
𝜒

|||− [
𝜉𝑛
𝜒

𝛾

2
𝑧0 + 𝜔𝑛

𝜒

] |||𝐸𝑛
𝜒+1

|||
−𝜉𝑛

𝜒

𝜒∑
𝑚=2

[(
1 − 𝛾

2

)
𝑧𝑚−1 +

𝛾

2
𝑧𝑚

] |||𝐸𝑛
𝜒−𝑚+1

|||
≤
[
1 +

(
1 − 𝛾

2

)
𝜉𝑛−1
𝜒

𝜒−1∑
𝑚=0

𝑧𝑚 + 𝛾

2
𝜉𝑛−1
𝜒

𝜒∑
𝑚=0

𝑧𝑚

]
max
1≤𝑗≤𝐾

|||𝐸𝑛−1
𝑗

|||
≤ max |||𝐸𝑛−1

𝑗

||| = ‖‖‖𝐸𝑛−1‖‖‖∞ .

1≤𝑗≤𝐾
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In particularly if ‖𝐸𝑛‖∞ = ‖‖‖𝐸𝑛
𝑁

‖‖‖ then ‖‖‖𝐸𝑘‖‖‖∞ ≤ |||𝐸0
𝑁

||| is true. This is the 
same as in the proof of (3.4). Recalling our assumption, we deduce that ‖𝐸𝑛‖∞ ≤ ‖‖‖𝐸0‖‖‖∞ for all 𝑛 ∈ {1, 2, ⋯ , 𝐾}, which completes the proof. □

4. Preservation analysis

Nonlinear quenching problems of the type (1.1)-(1.3) have been 
known for their abundant features relevant to multiple physics appli-
cations, particularly in cell biological simulations and solid fuel com-
bustion [8,12,24]. It is expected that the numerical solution sequence 
{ℎ𝑛}𝐾

𝑛=0 produced by (2.8), (2.9) must be positive and strictly monoton-
ically increasing [9,15,21].

Lemma 4.1. Suppose ℎ0 = 0 and 𝜏1 > 0 being an initial time step. Further, 
assume that 𝜏1 < 𝜎−1 and (3.3) hold, where 𝜎 =max(𝑝(𝜏1𝑝0)). Then ℎ1 > ℎ0
and ‖‖ℎ1‖‖∞ < 1.

Proof. From (2.8), we may observe that

ℎ1 =
(
𝐼 −

𝜏1
2
𝑉

)−1 (
𝐼 +

𝜏1
2
𝑉

)(
ℎ0 +

𝜏1
2
𝑝0

)
+

𝜏1
2
𝑝1

=
𝜏1
2

[(
𝐼 −

𝜏1
2
𝑉

)−1 (
𝐼 +

𝜏1
2
𝑉

)
𝑝0 + 𝑝(𝜏1𝑝0)

]
.

Therefore, ℎ1 > ℎ0 = 0 owing to Theorems 3.1 and 3.2. We further 
demonstrate that ‖‖ℎ1‖‖∞ < 1. Let 𝑋 be a column vector and each of its 
components is one. We consider the difference

ℎ1 −𝑋 =
(
𝐼 − 𝜏1

2 𝑉
)−1 [

𝜏1
2

(
𝐼 + 𝜏1

2 𝑉
)
𝑝0 +

𝜏1
2

(
𝐼 − 𝜏1

2 𝑉
)
𝑝(𝜏1𝑝0) −

(
𝐼 − 𝜏1

2 𝑉
)
𝑋

]
.

Set

𝐺1 =
𝜏1
2

(
𝐼 +

𝜏1
2
𝑉

)
𝑝0 +

𝜏1
2

(
𝐼 −

𝜏1
2
𝑉

)
𝑝(𝜏1𝑝0), 𝐺2 = −

(
𝐼 −

𝜏1
2
𝑉

)
𝑋.

Recall (2.2). It is readily to see that 𝑉 𝑋 ≤ 0. So, apparently that 𝐺2 ≤
−𝑋. Now,

𝐺1 ≤ 𝜏1
2

[(
𝐼 −

𝜏1
2
𝑉

)
+
(
𝐼 +

𝜏1
2
𝑉

)]
𝑝(𝜏1𝑝0) = 𝜏1𝑝(𝜏1𝑝0).

Hence,

ℎ1 −𝑋 =
(
𝐼 −

𝜏1
2
𝑉

)−1
(𝐺1 +𝐺2) ≤ (

𝐼 −
𝜏1
2
𝑉

)−1 (
𝜏1𝑝(𝜏1𝑝0) −𝑋

)
<

(
𝐼 −

𝜏1
2
𝑉

)−1
(𝜏1 max(𝑝(𝜏1𝑝0)) − 1) =

(
𝐼 −

𝜏1
2
𝑉

)−1
(𝜏1𝜎 − 1).

Recall Theorem 3.1. For 𝜏1 < 𝜎−1, we find immediately that ℎ1 < 𝑋. 
Furthermore, ‖‖ℎ1‖‖∞ < 1. Our proof is thus completed. □

Lemma 4.2. Suppose (3.3) be true. Then for any considerably small time 
step 𝜏𝑛 > 0 and 0 ≤ ℎ𝑛−1 < 1, satisfying 𝑉 ℎ𝑛−1+𝑝𝑛−1 > 0, the solution vectors 
generated by (2.8) are strictly monotonically increasing with 𝑉 ℎ𝑛 + 𝑝𝑛 > 0
ensured.

Proof. Recall Lemma 4.1. Property ℎ1 > ℎ0 is secured. Considering an 
Euler formula for 𝑝𝑛, that is,

𝑝𝑛 = 𝑝𝑛−1 + 𝜏𝑛𝑀(𝑉 ℎ𝑛−1 + 𝑝𝑛−1) +(𝜏2
𝑛
), 𝑛 ≥ 1, (4.1)

where 𝑀 is the diagonal Jacobian matrix of 𝑝(ℎ) that is positive. Utiliz-
ing (2.8), we get

ℎ𝑛 − ℎ𝑛−1 =
(
𝐼 −

𝜏𝑛

2
𝑉

)−1 [(
𝐼 +

𝜏𝑛

2
𝑉

)(
ℎ𝑛−1 +

𝜏𝑛

2
𝑝𝑛−1

)
+
𝜏𝑛

2

(
𝐼 −

𝜏𝑛

2
𝑉

)
𝑝𝑛 −

(
𝐼 −

𝜏𝑛

2
𝐻

)
ℎ𝑛−1

]
=
(
𝐼 −

𝜏𝑛

2
𝑉

)−1
[
𝜏𝑛𝑉 ℎ𝑛−1 +

𝜏𝑛

2
𝑝𝑛−1 +

𝜏𝑛

2
𝑝𝑛 +

𝜏2
𝑛

4
𝑉 (𝑝𝑛−1 − 𝑝𝑛)

]
≥ 𝜏𝑛

(
𝐼 −

𝜏𝑛
𝑉

)−1 [
𝑉 ℎ𝑛−1 + 𝑝𝑛−1 −

𝜏𝑛
𝑉 (𝑝𝑛 − 𝑝𝑛−1)

]
, 𝑛 > 1.
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Owing to (4.1), we observe that

ℎ𝑛 − ℎ𝑛−1 ≥ 𝜏𝑛

(
𝐼 − 𝜏𝑛

2 𝑉
)−1

[
(𝑉 ℎ𝑛−1 + 𝑝𝑛−1) −

𝑀𝜏2𝑛
4 𝑉 (𝑉 ℎ𝑛−1 + 𝑝𝑛−1)

]
, 𝑛 > 1.

Recall Theorem 3.1. If 𝜏𝑛 is sufficiently small then ℎ𝑛 > ℎ𝑛−1 must hold.
Furthermore, we may see that

𝑉 ℎ𝑛 + 𝑝𝑛 = 𝑝𝑛 − 𝑝𝑛−1 + 𝑉 ℎ𝑛−1 + 𝑝𝑛−1 + 𝑉 (ℎ𝑛 − ℎ𝑛−1)

= 𝑝𝑛 − 𝑝𝑛−1 + 𝑉 ℎ𝑛−1 + 𝑝𝑛−1

+ 𝑉

[(
𝐼 −

𝜏𝑛

2
𝑉

)−1 (
𝐼 +

𝜏𝑛

2
𝑉

)(
ℎ𝑛−1 +

𝜏𝑛

2
𝑝𝑛−1

)
+

𝜏𝑛

2
𝑝𝑛 − ℎ𝑛−1

]
= 𝑝𝑛 − 𝑝𝑛−1 +

(
𝐼 −

𝜏𝑛

2
𝑉

)−1 [(
𝐼 −

𝜏𝑛

2
𝑉

)(
𝑉 ℎ𝑛−1 + 𝑝𝑛−1

)
+ 𝑉

(
𝐼 +

𝜏𝑛

2
𝑉

)(
ℎ𝑛−1 +

𝜏𝑛

2
𝑝𝑛−1

)
+
(
𝐼 −

𝜏𝑛

2
𝑉

)
𝑉

( 𝜏𝑛

2
𝑝𝑛 − ℎ𝑛−1

)]
= 𝑝𝑛 − 𝑝𝑛−1 +

(
𝐼 −

𝜏𝑛

2
𝑉

)−1 [(
𝐼 −

𝜏𝑛

2
𝑉

)(
𝑉 ℎ𝑛−1 + 𝑝𝑛−1

)
+ 𝜏𝑛𝑉

2ℎ𝑛−1 +
𝜏𝑛

2
𝑉 (𝑝𝑛−1 + 𝑝𝑛) +

𝜏2
𝑛

4
𝑉 2(𝑝𝑛−1 − 𝑝𝑛)

]

≥ 𝑝𝑛 − 𝑝𝑛−1 +
(
𝐼 −

𝜏𝑛

2
𝑉

)−1 [(
𝐼 −

𝜏𝑛

2
𝑉

)(
𝑉 ℎ𝑛−1 + 𝑝𝑛−1

)
+ 𝜏𝑛𝑉 (𝑉 ℎ𝑛−1 + 𝑝𝑛−1) +

𝜏2
𝑛

4
𝑉 2(𝑝𝑛−1 − 𝑝𝑛)

]
= 𝑝𝑛 − 𝑝𝑛−1

+
(
𝐼 −

𝜏𝑛

2
𝑉

)−1
[(

𝐼 +
𝜏𝑛

2
𝑉

)(
𝑉 ℎ𝑛−1 + 𝑝𝑛−1

)
+

𝜏2
𝑛

4
𝑉 2(𝑝𝑛−1 − 𝑝𝑛)

]
.

On the other hand, since 𝑝𝑛 ≈ 𝑝(ℎ𝑛−1+𝜏𝑛(𝑉 ℎ𝑛−1+𝑝𝑛−1)) and 𝑝𝑛 > 𝑝𝑛−1, 
we acquire the following using a Taylor expansion,

𝑉 ℎ𝑛 + 𝑝𝑛 ≥ 𝑝𝑛 − 𝑝𝑛−1 +
(
𝐼 −

𝜏𝑛

2
𝑉

)−1 (
𝐼 −

𝜏𝑛

2
𝑉

)(
𝐼 + 𝜏𝑛𝑉 −

𝑀𝜏3
𝑛

4
𝑉 2

)
×(𝑉 ℎ𝑛−1 + 𝑝𝑛−1)

= 𝑝𝑛 − 𝑝𝑛−1 +

(
𝐼 + 𝜏𝑛𝑉 −

𝑀𝜏3
𝑛

4
𝑉 2

)
(𝑉 ℎ𝑛−1 + 𝑝𝑛−1).

Similarly, for any sufficiently small 𝜏𝑛, the matrix 𝐼 + 𝜏𝑛𝑉 −
𝑀𝜏3

𝑛

4
𝑉 2

must be positive. Hence the proof is completed. □

Based on Lemmas 4.1 and 4.2, we may state the following theorem 
for solutions generated by (2.8), (2.9).

Theorem 4.1. Let (3.3) hold for 0 ≤ 𝓁 ≤ 𝑛, where 𝓁 = 0, 1, ⋯ , 𝑁 , and ℎ0 ≥
0, 𝑉 ℎ0 + 𝑝0 > 0. Then the solution sequence 

{
ℎ𝑛

}
𝑛≥𝓁 generated by the semi-

adaptive scheme (2.8), (2.9) is strictly monotonically increasing.

Proof. This result can be viewed as a direct deduction from Lem-
mas 4.1 and 4.2. □

5. Simulation experiments

Several carefully designed simulation experiments will be presented 
in the section. Corresponding critical lengths, quenching times, loca-
tions will be validated and illustrated for fractional-order reaction-
diffusion problem (1.1)-(1.3). Coefficient functions 𝑐(𝑥, 𝑡) = 𝑏∕𝑥, 𝑑(𝑥, 𝑡) ≡
1 will be used. The semi-adaptive method (2.8), (2.9) will be employed. 
The experiments consist of three correlated episodes including the crit-
ical lengths, time, and locations of quenches. Numerical results will be 
carefully compared with existing simulations.
292
5.1. Critical lengths for quenching

Firstly, we wish to reattain known critical length with 𝛾 = 2, 𝜓0 ≡ 0
via new semi-adaptive method (2.8), (2.9). To this end, we denote 𝑎∗
as critical length obtained via the present method, and 𝑎∗𝑀, 𝑎∗𝑆 as its 
counterparts obtained via traditional integer order convection-diffusion 
model equation and analysis in [15,25], respectively. Different values 
of 𝜃 in the source function (1.1) are selected for the purpose of more 
precise comparisons with known data. The experiments provide a vital 
initial validation of our scheme.

Table 1 is devoted to selected critical length 𝑎∗, as 𝑏 and 𝜃 change. 
Further, in Fig. 1, we see computed critical lengths 𝑎∗ when an integer 
order 𝛾 = 2 is used. It is again found that the value of 𝑎∗ decreases as 
𝜃 increases. Fig. 1 provides relative errors of 𝑎∗, which is defined as |||𝑎∗ − 𝑎∗𝑆

|||∕𝑎∗. The results calculated are consistent with those obtained 
from the traditional integer order models [15,25].

Table 2 is designed for experiments on correlations between 𝑎∗, 𝑏

and 𝛾 . It is found that the critical interval size decreases as 𝑏 increases 
from a negative value to zero obviously; while 𝑏 > 0, the relationships 
between 𝛾 and 𝑎∗ are shown more clearly in Fig. 2 (left frame). It is 
also valuable to notice the relationship between 𝑎∗ and 𝛾 at a fixed 
coefficient 𝑏. From the right frame of Fig. 2, we may notice that 𝑎∗
increases monotonically as 𝛾 increases for 𝑏 < 0.7 probably; Conversely, 
when 𝑏 ≥ 0.7, 𝑎∗ decreases monotonically as 𝛾 increases.

5.2. Times for quenching

Set the initial temporal step 𝜏1 = (1∕2) ×10−4 and spatial step 𝜆 = 𝑎 ×
10−2. Our continuing experimental results are shown in Tables 3, 4, and 
compared with those obtained by Mooney and Sheng et al. [15,25,26]. 
Denote 𝑇𝑀

𝑎
as the quenching time shown by [25,26], and 𝑇 𝑆

𝑎
as the 

quenching time given in [15]. It is clear that our data obtained are well 
consistent with existing results. Relative errors between 𝑇𝑎 and 𝑇𝑀

𝑎
and 

𝑇 𝑆
𝑎
are shown precisely in Fig. 3. It is again found that the accuracy of 

our numerical estimates is highly favorable.
We are particularly interested in the dynamical behavior of 𝑇𝑎 as the 

interval length 𝑎 tends to the infinity. In our experiments, we observe 
that the quenching time monotonically decreases in the situation. Some 
key observation data are shown in Table 5. Apparently the quenching 
time converges to 0.5 regardless the initial value used. The phenomenon 
agrees with existing mathematical proofs contained in [15,13]. The 
monotonicity in convergence is further illustrated through Fig. 4.

The interconnections between 𝑇𝑎 and the connection coefficient 𝑏
are shown in Table 6. Further, in Fig. 5 (left frame), we may see 𝑇𝑎
decreases while 𝑏 increasing when 𝑎 = 2, and 𝛾 = 2 or 1.8 is used. If 
𝑏 = −0.4, 𝜃 = 1.0 are fixed, then we can show relations between 𝑇𝑎 and 
𝛾 in Table 7. Noticeably, as 𝛾 decreases, 𝑇𝑎 decays strictly monotonically 
in most case. Correlation curves between 𝑇𝑎 and 𝛾 are plotted in Fig. 5. 
As 𝑎 ≥ 2, 𝑇𝑎 increases monotonically as 𝛾 increases with a range of 𝛾 ∈[
(
√
17 − 1)∕2, 2

]
.

5.3. Location for quenching

For the purpose of comparisons with existing results, we are partic-
ularly interested in cases with 𝛾 = 2, 𝑎 = 𝜋, 𝜃 = 1.0 and 𝜓0 = 0. Fig. 6
shows not only profiles of the numerical solutions ℎ, ℎ𝑡 immediately 
prior to quenching, but also trajectories of maximum or supremum of 
ℎ, ℎ𝑡, 0 ≤ 𝑡 ≤ 𝑇𝑎, respectively. Simulation method (2.8), (2.9) is again 
used. Quenching times 𝑇𝑎 ≈ 0.5468 and 0.5304, are detected, respec-
tively. Quenching locations are found approximately at 𝑥∗ = 1.6965 and 
𝑥∗ = 1.4137 for cases with 𝑏 = −0.4 and 0.4, respectively. Therefore the 
solutions ℎ, ℎ𝑡 are not symmetrical. The phenomenon is probably due 
to the effectiveness of the convective term 𝑏∕𝑥, however more rigorous 
proofs in mathematics are still remain open. We may also observe in 
Fig. 6 that maximum values of the solutions increase strictly monoton-
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Table 1

Comparisons between 𝑎∗ and 𝑎∗𝑀, 𝑎∗𝑆 over different values of 𝑏, 𝜃. 𝛾 = 2 are used.
𝑏 −2.0 −1.2 −0.9 −0.4 0 0.4 0.9 0.95

𝑎∗ , 𝜃 = 1 2.072582 1.874861 1.794899 1.652212 1.530275 1.414929 1.332568 1.330363

𝑎∗𝑀,𝜃 = 1 2.0755 1.8770 1.7968 1.6544 − 1.3935 1.1923 1.1689

𝑎∗𝑆 , 𝜃 = 1 2.0124 1.8280 1.7315 1.6097 − 1.4788 1.4487 1.4479

𝑎∗ , 𝜃 = 2 1.612341 1.454764 1.391366 1.278776 1.183198 1.093596 1.031212 1.029735

𝑎∗𝑆 , 𝜃 = 2 1.5657 1.4167 1.3576 1.2590 − 1.1283 1.1218 1.1218

𝑎∗ , 𝜃 = 0.5 2.532675 2.298910 2.203756 2.032898 1.885585 1.744499 1.640060 1.636794

𝑎∗𝑆 , 𝜃 = 0.5 2.5000 2.2389 2.1521 2.0037 − 1.8004 1.7800 1.7800

Fig. 1. LEFT: Relations of the critical length 𝑎∗ vs. 𝑏 and 𝜃. (𝛾 = 2 is used). RIGHT: Relative error of 𝑎∗ with 𝑎∗𝑆 . The existing data are from [15,25].

Table 2

To study relations between the fractional order 𝛾 , critical length 𝑎∗ and 𝑏, we show the respective values in this 
table. 𝜃 = 1 is employed.

𝑏 −2.0 −1.2 −0.9 −0.4 0 0.4 0.9 0.95

𝑎∗(𝑏), 𝛾 = 1.9 1.962000 1.767995 1.690375 1.552549 1.436666 1.346320 1.336895 1.342391

𝑎∗(𝑏), 𝛾 = 1.8 1.844652 1.654821 1.580026 1.450289 1.343134 1.291261 1.351645 1.362430

𝑎∗(𝑏), 𝛾 = 1.7 1.719696 1.534827 1.462873 1.345548 1.249630 1.248942 1.367042 1.381425

𝑎∗(𝑏), 𝛾 = 1.6 1.586415 1.405574 1.337626 1.230786 1.156019 1.215783 1.379723 1.396771

𝑎∗(𝑏), 𝛾 = 1.55 1.543900 1.343476 1.271266 1.176771 1.109075 1.201368 1.384595 1.402747

Fig. 2. LEFT: Relations between 𝑎∗ and 𝑏 as 𝜃 is chosen to be 1, 𝛾 is chosen to be 1.9, 1.8, 1.7, 1.6, 1.55. RIGHT: relations between 𝑎∗ and 𝛾 as 𝑏 =
−0.4, 0.4, 0.7, 0.8, 0.95, 𝜃 = 1. The figures are based on Table 2. They intend to throw further lights on relationships between the fractional order 𝛾 , critical length 𝑎∗, 
and 𝑏.
293
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Fig. 3. LEFT: Relative errors between 𝑇𝑎, 𝑇 𝑆
𝑎
, and 𝑇𝑎, 𝑇𝑀

𝑎
, respectively. Values of 𝑏 are from -2 to 1 with 𝛾 = 2, 𝑎 = 𝜋, and 𝜃 = 1. RIGHT: The same type relative 

errors when 𝛾 = 2, 𝑎 = 2, and 𝜃 = 1 are used. The semi-adaptive scheme (2.8), (2.9) is used.
Table 3

Relations between 𝑇𝑎, 𝑇 𝑆
𝑎
[15], 𝑇𝑀

𝑎
[25,26] and 𝑏. Value 𝜃 = 1 in 

(1.1) and the interval length 𝑎 = 𝜋 are used.
𝑏 −2.0 −0.9 −0.4 0.4 0.9 0.95

𝑇𝑎 0.5850 0.5580 0.5468 0.5304 0.5220 0.5212

𝑇 𝑆
𝑎

0.568 0.549 0.542 0.542 0.532 0.532

𝑇𝑀
𝑎

0.588 0.559 0.547 0.528 0.511 0.508

Fig. 4. The monotone convergence of 𝑇𝑎 as 𝑎 →∞. Circled locations are for data 
computed earlier in [13,15]. A logarithmic scale is adopted in the 𝑦-direction 
for showing more details.

ically until 𝑇𝑎. Such increments can be dramatical as 𝑡 approaches to 
𝑇𝑎.

A quenching is defined when max
0≤𝑥≤𝜋 ℎ(𝑥, 𝑇𝜋) ≈ 0.9964919 in our ex-

periments (for 𝑏 = 0.4). We note that for 𝑎 = 2, 𝑏 = 0, 𝛾 = 2 and 
𝜓(𝑥) = (1∕10) sin (𝜋 ∗ 𝑥∕2), the integer order quenching model problems 
offer the value 𝑇𝑎 ≈ 0.6964 [13].

For a more precise description of our numerical solutions, three-
dimensional surface plots of ℎ and ℎ𝑡 are given in Fig. 7. The last 20 
time levels before quenching are used. Parameters 𝑏 = 0.4, 𝜃 = 1.0, 𝛾 = 2
are considered. While max

𝑥
ℎ approaches to the unity at the quench-

ing location 𝑥∗ = 1.4137 steadily, the supremum of the derivative ℎ∗
𝑡
≈

58.5998446 exponentially as 𝑡 is near 𝑇𝑎. The aim to use an integer or-
der 𝛾 = 2 in our first round simulation experiments is to compare our 
results with existing data stated in [10,15,26,25]. The strong agreement 
as being seen in Figs. 6, 7 validates remarkably the reliability and effec-
tiveness of the new method (2.8), (2.9).

As for experiments with fractional orders, without loss of general-
ity, we take 𝜓0(𝑥) = 0 and 𝑎 = 2, 𝑏 = −0.4. We again present profiles of 
quenching solutions ℎ, ℎ𝑡 in Fig. 8, together with trajectories of the so-
lution and its time derivative. It can be noticed that in Fig. 8, locations 
of quenching are shifted to the right as 𝛾 increases from 1.7 to 1.9.
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In fact, the location of quenching is at 𝑥∗ ≈ 1 which is the mid-
dle point of the spatial interval when 𝛾 = 1.8. When 𝛾 < 1.8, we take 
𝛾 = 1.7, 1.75 in the experiment, and found that the quenching loca-
tion shifts leftward from the interval center. For 𝛾 > 1.8, on the other 
hand, the quenching position shifts from the center point to the right 
(𝛾 = 1.85, 1.9 are used). This phenomenon can also be seen though 
Table 8, which gives the maximum, or supremum, values of ℎ, ℎ𝑡, re-
spectively, and quenching locations.

To further illustrate the solutions computed, we simulate three-
dimensional surfaces of ℎ and ℎ𝑡 in Fig. 9. The last 20 time levels imme-
diately before quenching are used. We observe that max

0≤𝑥≤𝑎ℎ approaches 
to the unity steadily, and sup

0<𝑥<𝑎
ℎ∗
𝑡
≈ 47.16637862 as 𝑡 → 𝑇𝑎 ≈ 0.7302

for 𝛾 = 1.8, 𝜃 = 1, 𝑏 = −0.4. Our simulations are again consistent with 
known records in the literature for spatial fractional order quenching 
problem when 𝛾 = 1.8 [13].

It has been evident in our simulation experiments that the numeri-
cal solutions ℎ, ℎ𝑡 do not seem to be symmetric in space for fractional 
problem such as (1.1)-(1.3). Furthermore, locations of max

0≤𝑥≤𝑎ℎ(𝑥, 𝑡) or 
sup

0<𝑥<𝑎
ℎ𝑡(𝑥, 𝑡) do not reappear at the center of the spatial interval con-

sidered. This implies that highly reliable and accurate numerical meth-
ods are necessary for exploring singular fractional problems such as 
(1.1)-(1.3).

Fig. 10 shows more profiles of quenching solutions ℎ, ℎ𝑡 immedi-

ately before quenching. Semi-adaptive algorithm (2.8)-(2.9) associated 
with different 𝑏 values is again utilized. It is visible that as 𝑏 increases, 
the quenching location 𝑥∗ moves to the left. More details of such solu-
tions are given in Table 9.

Finally, recalling truncation errors given by (2.3), (2.4), we may 
anticipate that the order of convergence for (2.8), (2.9) is approxi-
mately linear. However, a rigorous proof of such a conjecture can be 
challenging due to strong quenching nonlinearity and singularities in-
volved. Fortunately, computational order of convergence estimations 
via generalized Milne devices have been proved to be extremely ef-
fective [23,27]. Adopt the spectral norm. In our experiments, spatial 
orders of convergences 𝑞, 𝑟 of discrete functions ℎ, ℎ𝑡 are calculated via 
following formulas, respectively:

𝑞𝜏
𝜆
(𝑡) = 1

ln2
ln

‖‖‖ℎ𝜏
𝜆
− ℎ𝜏

𝜆∕2
‖‖‖2‖‖‖ℎ𝜏

𝜆∕2 − ℎ𝜏
𝜆∕4

‖‖‖2 , 𝑟𝜏
𝜆
(𝑡) = 1

ln2
ln

‖‖‖(ℎ𝑡)𝜏𝜆 − (ℎ𝑡)𝜏𝜆∕2
‖‖‖2‖‖‖(ℎ𝑡)𝜏𝜆∕2 − (ℎ𝑡)𝜏𝜆∕4
‖‖‖2 ,

where ℎ𝜏
𝜆∕𝑘, (ℎ𝑡)𝜏𝜆∕𝑘 are the solution of (2.8), (2.9) and its temporal 

derivative based on 𝜏, 𝜆∕𝓁, 𝓁 = 1, 2, 4, respectively, and 0 < 𝑇1 ≤ 𝑡 ≤ 𝑇2 <

𝑇 . The convergence in time can be evaluated in a similar way, though 
additional difficulties do occur due to the mesh adaptation, or deter-
mined through a Courant number requirement [19]. Now, mark the 
temporal level of quenching as zero. In Fig. 11, we show computational 
orders of the convergence of ℎ in final 20 temporal levels, and that 
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Table 4

A comparison of the relationship between 𝑇𝑎 and advection coefficient 𝑏, and relationships between 𝑇 𝑆
𝑎
(given by 

[15]), 𝑇𝑀
𝑎
(given by [25,26]) and 𝑏, respectively. 𝜃 = 1, 𝑎 = 2 are used.

𝑏 −2.0 −0.9 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 0.9

𝑇𝑎 - 1.1522 1.0840 0.9770 0.8962 0.8320 0.7370 0.7018 0.6732 0.6510 0.6420

𝑇 𝑆
𝑎

1.214 1.087 0.987 0.916 0.860 0.815 0.750 0.730 0.713 0.706 0.706

𝑇𝑀
𝑎

- 1.160 1.090 0.981 0.899 0.834 0.732 0.688 0.647 0.603 0.576

Fig. 5. LEFT: The relation between 𝑇𝑎 and the convection coefficient 𝑏. RIGHT: The relation between 𝑇𝑎 and the fractional order 𝛾 . Values of 𝑎 = 1.8, 2, 𝜋 and 10 are 
used, respectively.

Fig. 6. TOP: Profiles of ℎ and ℎ𝑡 immediately prior to quenching. BOTTOM: Trajectories of max
0≤𝑥≤𝑎 ℎ and sup0<𝑥<𝑎

ℎ𝑡 as 𝑡 increases. The quenching occurs at 𝑇𝑎 ≈ 0.5304

when 𝛾 = 2, 𝑎 = 𝜋, 𝑏 = 0.4, 𝜃 = 1.0.
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Fig. 7. Three-dimensional surfaces of ℎ and ℎ𝑡 before quenching. Last 20 temporal levels (0.5264 ≤ 𝑡 ≤ 0.5304) are used. Parameters 𝑎 = 𝜋, 𝛾 = 2, 𝑏 = 0.4, 𝜃 = 1.0 are 
employed. The peak value of ℎ𝑡(𝑇𝑎) ≈ 58.59984459.

Fig. 8. TOP:Profiles of ℎ and ℎ𝑡 immediately prior to quenching (𝛾 = 1.7, 1.75, 1.8, 1.85, 1.9 are used). BOTTOM: Trajectories of max
0≤𝑥≤𝑎 ℎ and sup0<𝑥<𝑎

ℎ𝑡 as 𝑡 increases. The 
quenching occurs at 𝑇2 ≈ 0.7302 when 𝑏 = −0.4, 𝛾 = 1.8, 𝑎 = 2.

Fig. 9. Three-dimensional surfaces of ℎ and ℎ𝑡 before quenching. Last 20 temporal levels (0.7262 ≤ 𝑡 ≤ 0.7302) are used. Parameters 𝑎 = 2 and 𝛾 = 1.8 are employed. 
The peak value of ℎ𝑡(𝑇𝑎) ≈ 47.16637862.
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Fig. 10. Quenching location and the advection coefficient 𝑏 when 𝑎 = 2, 𝛾 = 1.8, 𝜃 = 1.0 are used. Simulations results are from the semi-adaptive method (2.8), (2.9).

Fig. 11. Computational orders of the convergence of ℎ (LEFT) and ℎ𝑡 (RIGHT). While the mean value of the former is 1.0771, mean value of the latter is 2.1918. The 
slightly upward trajectories of both estimates may due to the smoothness of the solution ℎ and derivative ℎ𝑡 prior to quenching except in the blow-up area. They 
may also indicate an acceptable reliability of the finite difference method (2.8), (2.9) as quenching is rapidly approached [15,25,27].
Table 5

The monotone convergence of 𝑇𝑎 as 𝑎 →∞. 𝑏 = −0.4 and 𝜃 = 1 are 
employed.

𝑎 𝑇𝑎 𝑎 𝑇𝑎 𝑎 𝑇𝑎 𝑎 𝑇𝑎

1.7 2.4904 2.0 0.8962 4.0 0.5134 10.0 0.5006

1.8 1.3646 3.0 0.5582 5.0 0.5032 30.0 0.5006

1.9 1.0516 𝜋 0.5468 8.0 0.5006 50.0 0.5006

of ℎ𝑡 in final 19 temporal levels immediately before quenching. It is 
found that the mean value of 𝑞𝜏

𝜆
is approximately 1.0771 which coin-

cides precisely with our linear convergence expectation. Furthermore, 
the mean value of 𝑟𝜏

𝜆
reaches 2.1918 which is slightly elevated, proba-

bly due to the strong but relatively localized singularity of ℎ𝑡 shown in 
Figs. 6–10 in this particular application. Monotonically increasing or-
der trajectories can also be observed in Fig. 11. The phenomenon may 
imply a satisfactory reliability of the algorithm (2.8), (2.9) in realistic 
applications as quenching, or fuel combustion, is approached.

6. Conclusions and forthcoming studies

This paper proposes and analyses an accurate numerical method 
for solving a fractional one-sided quenching type convective-diffusion 
problem. The constructed method preserves important quenching fea-
tures. Three key characteristics of the nonlinear quenching model, that 
is, critical length, time and location for quench, are studied. Com-
puter simulations are provided to illustrate and validate the numerical 
method accomplished. Numerical solutions obtained are carefully com-
pared with known results [13,15,25]. It is evident that our new scheme 
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is feasible and effective. In particular, our results have revealed the fol-
lowing:

1. Dynamic correlations between the critical length and 𝑏. Discus-
sion and simulations are fulfilled for 𝛾 = 1.55, 1.6, 1.7, 1.8, 1.9. When 
𝑏 < 0, we find that the critical length decreases monotonically as 
𝑏 increases. On the other hand, when 𝑏 = 0.75, interestingly, the 
critical length remains the same value 𝑎∗ ≈ 1.3254 no matter what 
fractional order being used within the range.

2. Dynamic correlations between the quenching time 𝑇𝑎 and coef-
ficient 𝑏. We find the quenching time decreases slightly when 𝑏
increases. In addition, the value of 𝑇𝑎 decreases if 𝑎 increases. A 
unique limit of 𝑇𝑎 = 0.5 is observed as 𝑎 →∞. The simulation agrees 
well with theoretical predictions.

3. All simulation results generated via (2.8)-(2.9) exhibit that the 
quenching location moves to the right if the fractional order 𝛾 in-
creases. The quenching location for the case of 𝛾 = 1.8 is observed 
at the center point of the spatial interval. For a fixed 𝛾 = 1.8, it 
seems that the quenching location shifts to left or right whenever 𝑏
increases or decreases.

4. The mean value of the computational order of convergence is 
approximately 1.0771 in final 20 temporal advancements before 
quenching. This can be an indication of a linear convergence of 
the method (2.8), (2.9) in space. Similar estimates can be made in 
time. We prefer to leave further simulations to forthcoming papers 
together with theoretical proofs of the convergence.

Our study reveals more challenges than discoveries in the territory. 
We have been continuing the endeavor, particularly with multidimen-
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Table 6

Relationships among the time of quenching 𝑇𝑎 with the coefficient 𝑏 (−1.0 ≤ 𝑏 ≤ 2.0, 𝜃 = 1, 𝜓(𝑥) = 0).

𝑏 -1.0 -0.6 -0.4 0 0.4 0.6 1.0 1.4 1.8 2.0

𝑇𝜋 , 𝛾 = 2 0.5604 0.5514 0.5468 0.5384 0.5304 0.5268 0.5204 0.5158 0.5126 0.5116

𝑇2 , 𝛾 = 2 1.2352 0.9770 0.8962 0.7800 0.7018 0.6732 0.6346 0.6180 0.6214 0.6304

𝑇𝜋 , 𝛾 = 1.8 0.5460 0.5404 0.5374 0.5316 0.5274 0.5258 0.5238 0.5228 0.5226 0.5226

𝑇2 , 𝛾 = 1.8 0.8370 0.7622 0.7302 0.6754 0.6408 0.6320 0.6278 0.6396 0.6684 0.6912

Table 7

An illustration of the connection between 𝑇𝑎 and fractional derivative order 𝛾 (𝑏 = −0.4, 𝜃 = 1.0, 
and 𝜓(𝑥) = 0 are used).

𝛾 1.65 1.7 1.75 1.80 1.85 1.9 1.95 1.97 2.0

𝑇1.8 - 0.7740 0.8222 0.8814 0.9544 1.0484 1.1762 1.2420 1.3646

𝑇2 - 0.6756 0.7012 0.7302 0.7630 0.8006 0.8442 0.8638 0.8962

𝑇𝜋 0.5306 0.5322 0.5348 0.5374 0.5400 0.5424 0.5448 0.5456 0.5468

𝑇10 0.5016 0.5014 0.5012 0.5012 0.5010 0.5008 0.5008 0.5006 0.5006

Table 8

Values of max
0≤𝑥≤𝑎 ℎ and sup0<𝑥<𝑎

ℎ𝑡 at the quenching locations 𝑥∗ . Parameters 𝑎 = 2, 𝑏 = −0.4

and 𝜃 = 1.0 are used.
𝛾 1.7 1.75 1.8 1.85 1.9

ℎ∗ 0.99519015 0.99812138 0.99242962 0.99013998 0.99609597

ℎ∗
𝑡

53.90493537 59.66890569 47.16637862 41.92559580 52.34520913

𝑥∗ 0.96 0.98 1.00 1.04 1.06

Table 9

Peak values of functions ℎ(𝑥, 𝑇𝑎) and ℎ𝑡(𝑥, 𝑇𝑎) for different 𝑏 values. Quenching locations are given. Parameters 
𝑎 = 2, 𝛾 = 1.8 and 𝜃 = 1.0 are used.

𝑏 -1.0 -0.6 -0.2 0 0.2 0.6 1.0

ℎ∗ 0.99286124 0.99208711 0.98813508 0.98955723 0.98795306 0.99368668 0.98649343

ℎ∗
𝑡

46.93866893 46.08254310 40.05075059 42.97667669 40.97465890 51.62370180 39.55954883

𝑥∗ 1.16 1.06 0.94 0.86 0.78 0.62 0.5
sional fractional partial differential equation models. Numerical studies 
of effects of fractional convections have been kicked off. Preliminary re-
sults suggest that the use of fractional order advection-convection may 
introduce a much richer dynamics to a combustion environment. These 
observations need to be further analyzed, evaluated and then verified 
precisely through laboratory experiments. More details will be given in 
our forthcoming reports. In addition to continuing endeavors to the-
oretical proofs of orders of the convergence, more sophisticated and 
industrially oriented source and degeneracy functions will also be ex-
plored [1,8,9,27].
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