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ARTICLE INFO ABSTRACT

Keywords: A preservative scheme is presented and analyzed for the solution of a quenching type convective-diffusion
Quenching problems problem modeled through one-sided Riemann-Liouville space-fractional derivatives. Properly weighted Griinwald
Singularity

formulas are employed for the discretization of the fractional derivative. A forward difference approximation is
considered in the approximation of the convective term of the nonlinear equation. Temporal steps are optimized
via an asymptotic arc-length monitoring mechanism till the quenching point. Under suitable constraints on
spatial-temporal discretization steps, the monotonicity, positivity preservations of the numerical solution and
numerical stability of the scheme are proved. Three numerical experiments are designed to demonstrate and
simulate key characteristics of the semi-adaptive scheme constructed, including critical length, quenching
time and quenching location of the fractional quenching phenomena formulated through the one-sided space-
fractional convective-diffusion initial-boundary value problem. Effects of the convective function to quenching
are discussed. Numerical estimates of the order of convergence are obtained. Computational results obtained
are carefully compared with those acquired from conventional integer order quenching convection-diffusion
problems for validating anticipated accuracy. The experiments have demonstrated expected accuracy and
feasibility of the new method.

Riemann-Liouville fractional derivatives
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1. Introduction interpret can also be found in biochemical reactions in drug produc-
tions, electrochemical cells [2], and temperature-dependent thermal
coefficients [3] and so on. Therefore, the research of reliable numerical
solutions of (1.1)-(1.3) carries high theoretical and practical values.

There have been multiple ways for solving quenching type singular

Let Q, =(0,a), a > 0. Consider the following one-dimensional (1D)
y-th order nonlinear convective-diffusion problem:

oh(x,t 0" h(x,t oh(x,t . . e .
f;; ) =d(x,1) a(t ) +c(x, t)% +ph),xeQ, te0,7), (1.1) equations. For example, a local projection stabilization virtual element
x * method was applied for solving a similar convection-diffusion-reaction
h(x,0)=y(x), x€Q, (1.2)

problem [4]. Super convergence of finite element method with singu-
larly perturbed system was observed in 1D modeling equation simula-
tions [5]. For the algorithmic simplicity and practical effectiveness, the
most commonly used numerical procedures in the territory remain to
be finite difference based [6-8].

Consider the nonlinear source function

h(0,t)=h(a,t) = 0, t€[0,7T), (1.3)

where d(x,7) >0 and 1 < y <2. The nonnegative source function p(h) is
singular as 4 reaches certain thresholds. The fractional nonlinear model
(1.1)-(1.3) delivers an accurate mathematical tool for describing many
profound physical applications arising from nature and experimental
sciences.

m=(L-n"? 0<h<L, 1.4
The above-mentioned one-sided convective-diffusion equation P =( ) - 1.4

(OCDE) can be further viewed as a basic equation of motion. It mod-
els fluid flow and heat transfer, combustion and explosion, or cooling
reactions in the industry [1]. The quenching phenomena it intends to

* Corresponding author.

where 6 > 0 is the physical combustion index [3,9]. Apparently, p(h) is
strictly increasing for 0 < h < L with p(0)=1/ L? >0, and p(h) > +co, as
h— L™,
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In 1975, Kawarada first mentioned the quenching phenomenon due
to (1.4) with @ = 1. A necessary condition for a quenching was also
given in [10]. It was proved that for Kawarada’s original modeling
equation, h, = h,, + 1/(1 — h), x € (0,a), t > 0, there must exist a criti-
cal size a* € (2\/5, +00) such that Va > a*, there exists a unique T, < co,

and sup lim A=1[10,11]. Walter and Acker later verified this result
xe(0,a)!=1a

and discovered that a* ~ 1.5303 by means of simulation experiments
[12]. The monotonicity, stability and positivity of a quenching solution
are proposed and investigated in numerous publications either analyt-
ically or numerically later on, including substantial work implemented
by Zhu, Sheng et al. for fractional order quenching type convective-
diffusion equations [13,14]. The simulation methods constructed are
far more balanced and effective as compared to traditional unilateral
and composite finite difference approaches [15].

In our present study, we are particularly interested in semi-adaptive
computations of the numerical solution of quenching type fractional or-
der quenching problems. Although such solutions of fractional order
quenching models can be found in numerous recent publications (see
[7,13,14,16] and references therein), the numerical approach for OCDE
problems such as (1.1)-(1.3) equipped with the one-sided Riemann-
Liouville (R-L) space-fractional diffusion term and convective term re-
main unsolved. This motivates the present study. Our paper successfully
extends the work of [13], and accomplishes investigations of preser-
vative features such as the positivity, monotonicity and stability for
numerical solutions acquired and quenching characteristics validations

—”72_1 <y<2[13,17].

The remaining structure of this study consists of the following five
interactive parts. A semi-discretized fractional order quenching model
approximation and a semi-adaptive scheme will be introduced and dis-
cussed in Section 2. In Section 3, the numerical stability of the semi-
adaptive scheme will be investigated and analyzed. Preservation fea-
tures and characteristics will be studied in Section 4. Emphases will be
given to verifications of the solution positivity and monotonicity. Sec-
tion 5 is devoted to numerical experiments and simulations of quench-
ing phenomena associated with the modeling problem (1.1)-(1.3). Three
sets of experiments will be given on critical lengths, quenching times
and quenching location respectively. Numerical solutions will be com-
pared with existing results and simulations. Estimates of the order of
convergence are calculated. Finally, straightforward conclusions and
continuing endeavors will be presented in Section 6.

for

2. Semi-adaptive difference scheme

For problem (1.1)-(1.3), we stipulate the space-time interval [0, a] X
[0,T] by a N x K grid, where N,K € Z* and are far greater than 1. Let
A=a/N, r=T/K. We define following mesh region,
QuxT,={(x;.t) 0 x;=idty=kr, i=0,1,2,...,

N; k=0,1,...,K}.

Furthermore, we denote d; = d(x;,1),¢; = c(x;,t) and h; = h(x;,1), i =
0,1,2,...,N. Let p, = p(h;). Then standard and shifted Griinwald for-
mulas [6] for (1.1) are defined respectively as

0 h(x,1) _ i
S = Jim Z Zyh(x — ma, 1)+ O(A);
O h(x,1) _
o = Jlim Z z,,h(x = (m— DA, 1) + O(A), (2.1)
where
- Tm—v) =(_1)m7(7— ) (r = m+1) —0.1.....N.
T'(=y)'(m+1) m!
It is readily to see from the z,, formulas that
(@zg=1; () —z;=y>0; (¢)0<z2,,,<z,<1,ifm>2; 2.2)

@ XN 2,20, NeZ*; (& X2z, =
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It is shown in [17] that

k+1
" h(xg,1) _ 1
TW[( )§w,+ 22ty | OG0, A= 0"

(2.3)

We discretize the convective term of (1.1) via the standard forward
differential formula, that is,
Oh(xi 1) My — Iy
ox A

An application of (2.3) and (2.4) to (1.1) yields the following semi-
discretized differential system,

=g [0-)

k=1,2,...,

+0(1), A-0%. 2.9

k+1
szhk_J + = szhk—m

N.

Ck
+ T(hk+l = h)+ pys

The above system can be compressed into a vector form:

W =Vh+ph), 0<t<T; h(0)=h, (2.5)
where h = (hy,hy,....,h\) €RY, p=(pp,ps,....py) € RN and V =
(v € RM*N for which
d; Y Y < o
?[(1—5>Zo+57~1]——', i=j;
v = ,T;[(l_%>z:—j+%zi—j+| , i>J;
dirzp S .
7 +4 /1, i=j—1;
0, otherwise.
A formal solution of the initial value problem (2.5) can be expressed
as

+7

h(t+1)=e"Y h(t) + / TV p(h(E)dE, 1,7 20.

t
In the circumstance when 7 — 0%, applying the trapezoidal rule for
the integral, we acquire the following fully discretized approximation
from the above exact solution:

ht+71)== p(h(t +1)) +3 Ze™ p(h(0) + ™ h(t) + O?), t€[0,T). (2.6)

Consider an A-stable [1/ 1] Padé formula for the matrix exponential
e’V that is,
e =(1— %V) 1(1+%V)+(9(12), 0" 2.7)
Combine (2.6) with (2.7) and drop the truncation error terms. We
obtain immediately the following second-order fully discretized semi-
adaptive scheme:

T -1 T, T
h,= (1- 7V) (1+ 31/) (h,, L+ 21)" 1) + 2py n=1.2.....K28)
hy = (11(0), hy(0), ..., hg (0)T, (2.9
where 0<7,=t,—1t,_; <1, n=1,2,...,K, can be determined via a

proper adaptation mechanism. The algorithm (2.8) is highly nonlinear
and implicit. In realistic simulations, a straightforward explicit approxi-
mation, such as the forward Euler method, can be employed to linearize
the procedure: p, = p(h,_, + 7,(Vh,_; + p,_1)) [8,9,18]. But the Euler
formula reduces the order in temporal direction to linear. Therefore the
best overall truncation error is of O(4 + 7,,) for (2.8) (2.9). This actually
coincides the Courant number requirement [19]. It has been demon-
strated by many authors that a linearization can be extremely valuable
even when strong quenching singularities are present [9,15,20]. In our
study, we are particularly interested in following arc-length monitor
function of the derivative function A’ [9,15].

I, =V1+ ("2,

t € [0, +00).
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Given values 7, and 7;. We use the following quadratic formula for
variable time steps when n=2,3, ..., K,

w2 =12 W) = (W) = [0y — () ey 1% i=0,1,...,N.

in in—1

(2.10)
| X

Set 7, = — ZTW Under the appropriate smoothness constraints [8,
i=0

21], we may proceed ahead for calculating required adaptive time steps
through the recursive relations (2.10).

3. Numerical stability

Theorem 3.1. If (\/17 - 1) /2 <7 <2 then the matrix I — (z,/2)V is in-
verse positive, strictly diagonally dominant and monotone.

Proof. Set A=1—(z,/2)V =(a;;) € RV*N It follows that

7,d 7,C,
ay=1-= k [(1—Z>zo+gzl]+ ﬂik

247 2 2
T,de (Y2 v T,Ck
=1+2E (42 nk  k=1,2,...,N,
o <2 *3 T
T [ diy Sk
ak’k+1=—2,:, [ﬁZOJFT . k=1,2,...,N—1,

Tndi Y 4 .
agy==2E [(1-2) 2+ Dacsn ] s <k k=230,

We consider the following constraints:

V17-1

— <y<2 @B
It may readily be seen that [17]

2 2
2
v
7 +3 1>0.

sz_/.+,+<1-l)zk_j>o, j<k k=23,...,N, 59

By definitions we also have properties

ag >0, k=1,2,...,N; @ <0, k=1,2,...,N—1;
ap; <0, j<k, k=23,..,N.

On the other hand, summing up absolute values of off-diagonal ele-
ments of A yields the following,

N i—1
_ _ TyCi Tnd[y Tﬂdi Y 14
’f—j_lz}#i|“u‘— 22 T aw Pt an ;[EZ"*’“Jr(l_E)Z"*’]

i i—1
_Tnci Tndi 14 Y
=5t [zj > 5+(1-3), ]

=0,j#1 j=1
L [Z x(-z)+<1—1)x(—z )]
=21 2w 12 ! 2 0
1,6 Tdp (yE vy .
— + —+==-1), i=2,73,...,N.
20 2a < 22 ) '
Therefore,

N 2

_ TyCi Tndi 14 Y _ .

r,-—.lz;|aij‘< 27 +_2N <7+5—1>+1—aﬁ, i=2,3,...,N.
J=Lj#i

A particular case is for i = 1, we have |a|,| < a;; due to (3.1). These
imply that A is strictly diagonally dominant and it is therefore invert-
ible.

Now, according to (2.2), we observe that

i-1 i i
¥ z;<0,i=23,..,N; 2 z,<0, ¥ z;<-1, i=1.2,...,N.
j=0 j=0 j=1
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Hence,

N o.d v i—1 v i
n*i .
Z‘Ia,.j=1— = [(1—5);zj+5§)zj] >0, i=12,...

j=

,N —1.

In the case if i = N, then we have

N rd ¥ N-1 y N
_ n™i
3, =1 2 [(1_5)%zj+5_§;zj]>o.
J=! =

J=1

Consequently, the matrix A meets all conditions of the weak-row
sum criterions [22], therefore it is strictly monotone and inversely pos-
itive. This completes our proof. []

Theorem 3.2. Denote d,,,, =  max dy, ¢
<

k<N
! Y-, 3.3)
2 (dmax + Cmax) 2

Tn
= max ¢, f,, =max —o. If

M 1<k<N

Byu <

T,
then I + 7"V is positive and nonsingular.

T
Proof. Set B=1+ ?"V =(b;) € RNV where

7,d; T,Ci

— _r Y, | _In
bi=1+75 [(1 2)Z°+27'1] 22

d. 2 .
- Db <L+Z-1>—T"C' i=1,2,...,N,

2r \2 2 24"
7, | d ¢
biis1 = %zo+7’], i=1,2,....,N-1,

7pd; Y Y o
by =2 [(1—§)zi,j+§zi,j+l], j<ii=2.3.....N.

Firstly, similar to the proof of last theorem, the positivity of diagonal
elements of B can be readily shown through (3.2) and (3.3). Secondly,

we may study the infinite norm of 7" V. To this end,

T, T, o
2], - me{ 2 ZMI)

i-1
_ ud; Y Y Y Y Y TaCi
_m’jax{ o [;(EZHH] +( =Dz )+ 520-(Gr+( - E)zo)] + }

Tud; gy 4 v v v €
=2 max{Z{(Ezi,,ﬂ+(1—§)z,.,j)+§z0—(5z,+(1—§)z0) +max ==

i

maxn(Tn)dmax }’2 Y
S \ztz7 1"

max,,(7,,)Crmax
A '

1
Furthermore, when g, , < we may see that
’ w z(dmax + cmax) ’

Thus, B must be nonsingular according to [22]. []

TI1
—V| <l
2 ”oo

Definition 3.1. [23] Let /", A" denote the perturbed and true solutions
of a numerical method, respectively. Set E" = h" — h", 0 <n < K. We
say that the numerical method is stable if there is a suitable Euclidean
norm || - || such that ||E"|| <¢ HEOH, 0 <n <K hold, where ¢ >0 is a
constant. We say that the numerical method is conditionally stable if
the inequalities hold only when some constraints are satisfied.

Theorem 3.3. Suppose the source function p be frozen. If (3.3) holds, then
the semi-adaptive method (2.8),(2.9) is conditionally stable.

Proof. Suppose function p(h) be frozen, that is, 4 be fixed. Denote
& =5 d,/QN), o =7ic, /2h), x=1,2,...,N, k=0,1,...,K. We may
obtain the following identities:

(I— %"V) EF = (I+ %"V)Ek, k=0,1,...,K—1,
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following (2.8) and Definition 3.1.

On account of the above remark, we use a mathematical induction
to prove that || E"| < HEOH 0 <n<K. First of all, when n=1, on the
basis of (3.2) we acquire that

x—1
[, = e, |l = |2 < |2 =4, (1-3) Z 2|25
_al 3 2|l + ol |-} ||
m=0
5[1—5‘[ 1—%)% ela+o HE'|—[§ Yo+ @ ]|E1+1|

_§> Zm- ‘+_Z HEI m+1|
3)

5 [(1-5) o B 2

zo+5 Zl_ 9} HE0|+[§?{—ZO+ w “E1+1|

m=2
[”(1--)‘5"22 TR }lzna’;l |
< max [£7] = [[£°] -
Particularly if ”E' HOO = ‘Ezlv s (2.1) that

o R AR HN(I--) x|

_glNgizm|E;V)+wHE;V(
[1—§N<1——>z0 gN 2+ ol HEI‘
N
—fké[(l—%)zwl"‘ z HEN m+])
=[1+§°N

N
V2
m=2

(-2 et o] 23

oo 2 [(1=5) 2o+ 5] (B

N-1 N

< [1 + (1 - %)5?\1 ; zZ,+ %fg{mzzozm] 1rin/_agg< ‘EQ‘

< max |£7] = 2] (3.4
Furthermore, suppose that ||E"|, < ”EOHoo for n=1,2,...,k — 1.

Thus, due to (2.1) and (3.3), for n=k (k > 1) we arrive consequently
at

X
n _ n| _ | pn n| _ gn _r n
IE ||oo—li<rlji)§v|Ej|— Erl<|En 51(1 2)2‘6zm E
frar
y X
_genl n nlgpn|_ n|gn
512 ) zm‘E}( + o |Er| -t | En
n _r eV n n| _[en? n n
[ -& (1 )zo glz+ wl] ‘EI [512z0+ a)x] EIH|
n Y Y n
_51212[(1—§>zm_1+§zm] E)_ m+1|
fres
y = ¥ &
n—1 n—1 n—1
| (=5) 8" o 58 X man ||
< max ‘E'."ll = ”E”_IH .
1<j<k 1/ )
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In particularly if ||E"||, = ”E;’V

then HE"” < |E0N| is true. This is the
(o]
same as in the proof of (3.4). Recalling our assumption, we deduce that
IE"|, < ”EOH forall n e {1,2,---,K}, which completes the proof. []
5

4. Preservation analysis

Nonlinear quenching problems of the type (1.1)-(1.3) have been
known for their abundant features relevant to multiple physics appli-
cations, particularly in cell biological simulations and solid fuel com-
bustion [8,12,24]. It is expected that the numerical solution sequence
{h"} 0 produced by (2.8), (2.9) must be positive and strictly monoton-
1cally increasing [9,15,21].

Lemma 4.1. Suppose h, =0 and 7, > 0 being an initial time step. Further,
assume that 7, < o~ and (3.3) hold, where ¢ = max(p(r, py)). Then hy > hy
and ||y, < 1.

Proof. From (2.8), we may observe that

hy = (1— ﬂV)fl (1+ a )(h0+ po) + 2,
2 2 2 2
=2 [(1 - —V) (1+3V)n +p(r1p0)] .
2 2 2
Therefore, h; > hy =0 owing to Theorems 3.1 and 3.2. We further
demonstrate that ||h,||, <1. Let X be a column vector and each of its
components is one. We consider the difference

hy —X=(I— %‘V)_l [%‘ <I+ %V>p0+%] (I—%‘V)p(rlpo)—(l—%lV)X].

Set

G =7 (1+ ZV)pO+E(1—7 )p(‘rlpo), G, = —(1—T—21V)X.

Recall (2.2). It is readily to see that VX <0. So, apparently that G, <
—X. Now,

G <

- % [(I B T_ZIV) + (I+ %V)] p(z1pg) = 71 p(71 Pp)-

Hence,
-1 -1
hl—X=(l—%V> (G, +Gy) < (1—%1/) (7 p(r1p0) = X))

-1 -1
<(I—%1V) (v, max(p(z, po)) — 1) = (I—%V) (0 - 1).

Recall Theorem 3.1. For 7; < 0~', we find immediately that A, < X.
Furthermore, ||h;]|, < 1. Our proof is thus completed. [

Lemma 4.2. Suppose (3.3) be true. Then for any considerably small time
step 7, >0and 0 < h,_, < 1, satisfying V h,_, +p,_, > 0, the solution vectors
generated by (2.8) are strictly monotonically increasing with V h,, + p, >0
ensured.

Proof. Recall Lemma 4.1. Property h, > h is secured. Considering an
Euler formula for p,, that is,

Pu=Pu +T,MVh,_  +p,_)+0OG2), nx1, (4.1)

where M is the diagonal Jacobian matrix of p(h) that is positive. Utiliz-
ing (2.8), we get

T, -1 T,
h=ty = (1= 3V ) [(143V) (s + o)
T T, T,

43 (1=3V )= (1= ) by
.\~ 7,
=(l—7"V) [r1/h“+2p“+2

T, \~!
20, (1=2V)  [Vhey +00 -

2

V(Pn 1= :|

T,
2V (@, —pn_l)], n> 1.
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Owing to (4.1), we observe that

M’[;,
4 V(th—l +pn—l) ,n>1.

-1
hy=hyy 25, (1-2V) [(th_l + i) =
Recall Theorem 3.1. If 7, is sufficiently small then A, > h,_; must hold.
Furthermore, we may see that
th +Dy=Pp— Pyt th—l +Pp1 t+ V(hn - hn—])

=Py~ Pp-1 t Vh,,,] + Pt

In

[ ) e ) 2o

T T, T, T,
3V ) (s F0a )+ (1= 3V )V (G20

)

2 Ty Tr% 2
+ TnV th—l + ?V(pn—l +P,,) + IV (pn—l - pn)

T, \~! T,
2p=ppr+ (1=2V) [(1=2V) (Vhyy 1)

1.2
+ TnV(th—l +pn—1) + Zan(pn—l _pn) = Pn~ Pu-1

Tp -1 Ty Tr%
+ (1-2v) [(I+ 2V ) (Vhyr +041) + 2V 00 —pn):| :

On the other hand, since p, ~ p(h,,_; +7,(V h,_, +p,_)) and p, > p,_,,
we acquire the following using a Taylor expansion,
3
z V2>

T, \~! 7, Mr;
th+pn2pn_pn—l+<1_7v) (I_?V> I+7,V— n

><(th—] + Pn-1 )
3

M‘rﬂ )
=P, —Pp_1+ I+T,,V—TV Vh,_i +p,_1).

M3
n V2
4

Similarly, for any sufficiently small z,, the matrix I + 7,V —
must be positive. Hence the proof is completed. []

Based on Lemmas 4.1 and 4.2, we may state the following theorem
for solutions generated by (2.8), (2.9).

Theorem 4.1. Let (3.3) hold for 0 < ¢ < n, where £ =0,1,---,N, and h, >
0, V'hy + py > 0. Then the solution sequence {h,,}n> . generated by the semi-
adaptive scheme (2.8), (2.9) is strictly monotonically increasing.

Proof. This result can be viewed as a direct deduction from Lem-
mas 4.1 and 4.2. []

5. Simulation experiments

Several carefully designed simulation experiments will be presented
in the section. Corresponding critical lengths, quenching times, loca-
tions will be validated and illustrated for fractional-order reaction-
diffusion problem (1.1)-(1.3). Coefficient functions c¢(x,t) = b/x, d(x,t) =
1 will be used. The semi-adaptive method (2.8), (2.9) will be employed.
The experiments consist of three correlated episodes including the crit-
ical lengths, time, and locations of quenches. Numerical results will be
carefully compared with existing simulations.
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5.1. Critical lengths for quenching

Firstly, we wish to reattain known critical length with y =2, y;, =0
via new semi-adaptive method (2.8), (2.9). To this end, we denote a*
as critical length obtained via the present method, and a*™, ¢*S as its
counterparts obtained via traditional integer order convection-diffusion
model equation and analysis in [15,25], respectively. Different values
of 6 in the source function (1.1) are selected for the purpose of more
precise comparisons with known data. The experiments provide a vital
initial validation of our scheme.

Table 1 is devoted to selected critical length a*, as b and 6 change.
Further, in Fig. 1, we see computed critical lengths ¢* when an integer
order y =2 is used. It is again found that the value of a* decreases as
0 increases. Fig. 1 provides relative errors of a*, which is defined as

a* —a*S| /a*. The results calculated are consistent with those obtained
from the traditional integer order models [15,25].

Table 2 is designed for experiments on correlations between a*, b
and y. It is found that the critical interval size decreases as b increases
from a negative value to zero obviously; while b > 0, the relationships
between y and a* are shown more clearly in Fig. 2 (left frame). It is
also valuable to notice the relationship between a* and y at a fixed
coefficient b. From the right frame of Fig. 2, we may notice that a*
increases monotonically as y increases for b < 0.7 probably; Conversely,
when b > 0.7, a* decreases monotonically as y increases.

5.2. Times for quenching

Set the initial temporal step 7; = (1/2) x 10~ and spatial step 4= a x
1072, Our continuing experimental results are shown in Tables 3, 4, and
compared with those obtained by Mooney and Sheng et al. [15,25,26].
Denote TM as the quenching time shown by [25,26], and T* as the
quenching time given in [15]. It is clear that our data obtained are well
consistent with existing results. Relative errors between T, and TaM and
THS are shown precisely in Fig. 3. It is again found that the accuracy of
our numerical estimates is highly favorable.

We are particularly interested in the dynamical behavior of 7, as the
interval length a tends to the infinity. In our experiments, we observe
that the quenching time monotonically decreases in the situation. Some
key observation data are shown in Table 5. Apparently the quenching
time converges to 0.5 regardless the initial value used. The phenomenon
agrees with existing mathematical proofs contained in [15,13]. The
monotonicity in convergence is further illustrated through Fig. 4.

The interconnections between 7, and the connection coefficient »
are shown in Table 6. Further, in Fig. 5 (left frame), we may see T,
decreases while b increasing when a =2, and y =2 or 1.8 is used. If
b=-0.4, 6 =1.0 are fixed, then we can show relations between T, and
y in Table 7. Noticeably, as y decreases, T, decays strictly monotonically
in most case. Correlation curves between 7, and y are plotted in Fig. 5.
As a > 2, T, increases monotonically as y increases with a range of y €

[V17-172,2].

5.3. Location for quenching

For the purpose of comparisons with existing results, we are partic-
ularly interested in cases with y =2, a=x, 6 =1.0 and y, =0. Fig. 6
shows not only profiles of the numerical solutions 4, A, immediately
prior to quenching, but also trajectories of maximum or supremum of
h, h,, 0<t<T,, respectively. Simulation method (2.8), (2.9) is again
used. Quenching times T, ~ 0.5468 and 0.5304, are detected, respec-
tively. Quenching locations are found approximately at x* = 1.6965 and
x* =1.4137 for cases with b = —0.4 and 0.4, respectively. Therefore the
solutions h, h, are not symmetrical. The phenomenon is probably due
to the effectiveness of the convective term b/x, however more rigorous
proofs in mathematics are still remain open. We may also observe in
Fig. 6 that maximum values of the solutions increase strictly monoton-
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Table 1

Comparisons between a* and a*™, a*5 over different values of b, 6. y =2 are used.
b -2.0 -12 -0.9 -0.4 0 0.4 0.9 0.95
a*,0=1 2.072582 1.874861 1.794899 1.652212 1.530275 1.414929 1.332568 1.330363
aM =1 2.0755 1.8770 1.7968 1.6544 - 1.3935 1.1923 1.1689
as,0=1 2.0124 1.8280 1.7315 1.6097 - 1.4788 1.4487 1.4479
a*,0=2 1.612341 1.454764 1.391366 1.278776 1.183198 1.093596 1.031212 1.029735
as,0=2 1.5657 1.4167 1.3576 1.2590 - 1.1283 1.1218 1.1218
a*,0=0.5 2.532675 2.298910 2.203756 2.032898 1.885585 1.744499 1.640060 1.636794
a$,0=0.5 2.5000 2.2389 2.1521 2.0037 - 1.8004 1.7800 1.7800

2.6 0.09
2.2 *, 007
Gy
4 o
—
o
*o 1.8 5 005
(o)
] 2
=
1.4 {4 £oo03
1.0 1 1 0.01 4
T T T T T T T T T T T T T T
20 -15 -10 -05 00 05 1.0 20 -15 -10 05 00 05 1.0
b b

Fig. 1. LEFT: Relations of the critical length «* vs. b and 6. (y =2 is used). RIGHT: Relative error of a* with a*S. The existing data are from [15,25].

Table 2

To study relations between the fractional order y, critical length a* and b, we show the respective values in this
table. # =1 is employed.

b -2.0 -12 -0.9 -0.4 0 0.4 0.9 0.95

a*(b),y=19 1.962000 1.767995 1.690375 1.552549 1.436666 1.346320 1.336895 1.342391
a*(b),y =18 1.844652 1.654821 1.580026 1.450289 1.343134 1.291261 1.351645 1.362430
a*(b),y =17 1.719696 1.534827 1.462873 1.345548 1.249630 1.248942 1.367042 1.381425
a*(b),y =1.6 1.586415 1.405574 1.337626 1.230786 1.156019 1.215783 1.379723 1.396771
a*(b),y =1.55 1.543900 1.343476 1.271266 1.176771 1.109075 1.201368 1.384595 1.402747

J 1.65-

— 1.557

— 1.454

a*

. ] 1.35

b 1.257

1.0 4 ] 1.159 ]
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.6 1.7 1.8 1.9 2.0

Fig. 2. LEFT: Relations between a* and b as 6 is chosen to be 1, y is chosen to be 1.9,1.8,1.7,1.6,1.55. RIGHT: relations between a* and y as b =

—0.4,0.4,0.7,0.8,0.95, 6 = 1. The figures are based on Table 2. They intend to throw further lights on relationships between the fractional order y, critical length a*,
and b.
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Fig. 3. LEFT: Relative errors between 7,, T5, and T,, T, respectively. Values of b are from -2 to 1 with y =2, a =7, and ¢ = 1. RIGHT: The same type relative
errors when y =2, a=2, and 6 = 1 are used. The semi-adaptive scheme (2.8), (2.9) is used.

Table 3
Relations between T, Tf [15], THM [25,26] and b. Value § =1 in
(1.1) and the interval length a = r are used.

b -2.0 -0.9 -0.4 0.4 0.9 0.95
T, 0.5850 0.5580 0.5468 0.5304 0.5220 0.5212
T‘f 0.568 0.549 0.542 0.542 0.532 0.532
THM 0.588 0.559 0.547 0.528 0.511 0.508
2.5 " ‘ x ‘ —
2r: 1
= 151 1
s :
@ (=]
o
= :
R 1
2 °
8 o075}° ]
°
0.5 [ Q0 @b @
1255 10 20 30 40 50

a

Fig. 4. The monotone convergence of T, as a — oo. Circled locations are for data
computed earlier in [13,15]. A logarithmic scale is adopted in the y-direction
for showing more details.

ically until 7,. Such increments can be dramatical as r approaches to
T,.

A quenching is defined when max h(x,T,) ~ 0.9964919 in our ex-

0<x<rm

periments (for b = 0.4). We note that for a =2, =0, y =2 and
w(x)=(1/10)sin (x * x/2), the integer order quenching model problems
offer the value T, ~ 0.6964 [13].

For a more precise description of our numerical solutions, three-
dimensional surface plots of 4 and &, are given in Fig. 7. The last 20
time levels before quenching are used. Parameters b=0.4, 6 =1.0, y =2
are considered. While m;lxh approaches to the unity at the quench-

ing location x* = 1.4137 steadily, the supremum of the derivative h} ~
58.5998446 exponentially as ¢ is near T,. The aim to use an integer or-
der y =2 in our first round simulation experiments is to compare our
results with existing data stated in [10,15,26,25]. The strong agreement
as being seen in Figs. 6, 7 validates remarkably the reliability and effec-
tiveness of the new method (2.8), (2.9).

As for experiments with fractional orders, without loss of general-
ity, we take y,(x) =0 and a =2, b= —-0.4. We again present profiles of
quenching solutions A, h, in Fig. 8, together with trajectories of the so-
lution and its time derivative. It can be noticed that in Fig. 8, locations
of quenching are shifted to the right as y increases from 1.7 to 1.9.
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In fact, the location of quenching is at x* ~ 1 which is the mid-
dle point of the spatial interval when y = 1.8. When y < 1.8, we take
y = 1.7, 1.75 in the experiment, and found that the quenching loca-
tion shifts leftward from the interval center. For y > 1.8, on the other
hand, the quenching position shifts from the center point to the right
(y = 1.85, 1.9 are used). This phenomenon can also be seen though
Table 8, which gives the maximum, or supremum, values of &, h,, re-
spectively, and quenching locations.

To further illustrate the solutions computed, we simulate three-
dimensional surfaces of h and h, in Fig. 9. The last 20 time levels imme-
diately before quenching are used. We observe that Orgggah approaches
to the unity steadily, and sup h; ~ 47.16637862 as t - T, ~ 0.7302

0<x<a
for y =18, 6 =1, b=-0.4. Our simulations are again consistent with

known records in the literature for spatial fractional order quenching
problem when y = 1.8 [13].

It has been evident in our simulation experiments that the numeri-
cal solutions &, h, do not seem to be symmetric in space for fractional
problem such as (1.1)-(1.3). Furthermore, locations of orgf?a h(x,t) or

sup h,(x,1) do not reappear at the center of the spatial interval con-
O<x<a

sidered. This implies that highly reliable and accurate numerical meth-
ods are necessary for exploring singular fractional problems such as
(1.1)-(1.3).

Fig. 10 shows more profiles of quenching solutions %, h, immedi-
ately before quenching. Semi-adaptive algorithm (2.8)-(2.9) associated
with different b values is again utilized. It is visible that as b increases,
the quenching location x* moves to the left. More details of such solu-
tions are given in Table 9.

Finally, recalling truncation errors given by (2.3), (2.4), we may
anticipate that the order of convergence for (2.8), (2.9) is approxi-
mately linear. However, a rigorous proof of such a conjecture can be
challenging due to strong quenching nonlinearity and singularities in-
volved. Fortunately, computational order of convergence estimations
via generalized Milne devices have been proved to be extremely ef-
fective [23,27]. Adopt the spectral norm. In our experiments, spatial
orders of convergences ¢, r of discrete functions A, h, are calculated via
following formulas, respectively:

_ 1 Hh; - hjlﬂ“z _ 1 H(h,)j B (h’);/Zuz
BT S T - mpl,

where h} sk (hy)}, s are the solution of (2.8), (2.9) and its temporal
derivative based on 7,4/¢, £ =1,2,4, respectively, and 0< T, <t <T, <
T. The convergence in time can be evaluated in a similar way, though
additional difficulties do occur due to the mesh adaptation, or deter-
mined through a Courant number requirement [19]. Now, mark the
temporal level of quenching as zero. In Fig. 11, we show computational
orders of the convergence of / in final 20 temporal levels, and that
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Table 4

A comparison of the relationship between 7, and advection coefficient b, and relationships between T (given by
[15D), THM (given by [25,26]) and b, respectively. § =1, a =2 are used.

b -2.0 -0.9 -0.8 -0.6 -0.4 =02 0.2 0.4 0.6 0.8 0.9

T, - 1.1522 1.0840 0.9770 0.8962 0.8320 0.7370 0.7018 0.6732 0.6510 0.6420
THS 1.214 1.087 0.987 0.916 0.860 0.815 0.750 0.730 0.713 0.706 0.706

™ 1.160 1.090 0.981 0.899 0.834 0.732 0.688 0.647 0.603 0.576

13 g7 T T T T T T T T T T T L=
a=n(y=2)
—— a=2(y=2)
1.1 4 —— a=n(y=1.8) _|
a=2(y=1.8)
3 0.9 —
0.7 1 —
—— . 0.6 1 T
] . . N
0.5 1 7 0.4 =
T T T T T T T T T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 1.7 1.8 1.9 2.0
b 4

Fig. 5. LEFT: The relation between T, and the convection coefficient 5. RIGHT: The relation between T, and the fractional order y. Values of a = 1.8,2,x and 10 are
used, respectively.
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Fig. 6. TOP: Profiles of i and h, immediately prior to quenching. BOTTOM: Trajectories of [max h and sup h, as t increases. The quenching occurs at T, ~ 0.5304
<xsa O<x<a
wheny=2, a=n, b=0.4, 6=1.0.
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h(x.)

31416 , -
' 23562 05268 5274 % :
' “o.7854 708 0-5288 294 0.7854 %8
0.5304 0 ) 05304 0 '
t X t X

- 3.1416
2.3562

Fig. 7. Three-dimensional surfaces of 4 and 5, before quenching. Last 20 temporal levels (0.5264 < <0.5304) are used. Parameters a= 7, y =2, b=04, 6 =1.0 are
employed. The peak value of h,(T,) ~ 58.59984459.
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Fig. 8. TOP:Profiles of » and h, immediately prior to quenching (y =1.7,1.75,1.8,1.85,1.9 are used). BOTTOM: Trajectories of [max h and sup h, as t increases. The

O<x<a

quenching occurs at 7, ~ 0.7302 when b=—-04, y=1.8, a=2.

Fig. 9. Three-dimensional surfaces of 4 and 5, before quenching. Last 20 temporal levels (0.7262 < < 0.7302) are used. Parameters a =2 and y = 1.8 are employed.
The peak value of h,(T,) ~ 47.16637862.
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Fig. 10. Quenching location and the advection coefficient » when a =2, y = 1.8, § = 1.0 are used. Simulations results are from the semi-adaptive method (2.8), (2.9).
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Fig. 11. Computational orders of the convergence of 4 (LEFT) and 4, (RIGHT). While the mean value of the former is 1.0771, mean value of the latter is 2.1918. The
slightly upward trajectories of both estimates may due to the smoothness of the solution 4 and derivative 4, prior to quenching except in the blow-up area. They
may also indicate an acceptable reliability of the finite difference method (2.8), (2.9) as quenching is rapidly approached [15,25,27].

Table 5
The monotone convergence of T, as a > c0. b=—0.4 and 6 =1 are
employed.
a T, a T, a T, a T,
1.7 24904 2.0 0.8962 4.0 0.5134 10.0  0.5006
1.8 1.3646 3.0 0.5582 5.0 0.5032 30.0  0.5006
1.9 1.0516 k4 0.5468 8.0 0.5006 50.0 0.5006

of A, in final 19 temporal levels immediately before quenching. It is
found that the mean value of ¢ is approximately 1.0771 which coin-
cides precisely with our linear convergence expectation. Furthermore,
the mean value of r} reaches 2.1918 which is slightly elevated, proba-
bly due to the strong but relatively localized singularity of 4, shown in
Figs. 6-10 in this particular application. Monotonically increasing or-
der trajectories can also be observed in Fig. 11. The phenomenon may
imply a satisfactory reliability of the algorithm (2.8), (2.9) in realistic
applications as quenching, or fuel combustion, is approached.

6. Conclusions and forthcoming studies

This paper proposes and analyses an accurate numerical method
for solving a fractional one-sided quenching type convective-diffusion
problem. The constructed method preserves important quenching fea-
tures. Three key characteristics of the nonlinear quenching model, that
is, critical length, time and location for quench, are studied. Com-
puter simulations are provided to illustrate and validate the numerical
method accomplished. Numerical solutions obtained are carefully com-
pared with known results [13,15,25]. It is evident that our new scheme

is feasible and effective. In particular, our results have revealed the fol-
lowing:

1. Dynamic correlations between the critical length and b. Discus-
sion and simulations are fulfilled for y = 1.55,1.6,1.7,1.8,1.9. When
b <0, we find that the critical length decreases monotonically as
b increases. On the other hand, when b = 0.75, interestingly, the
critical length remains the same value a* ~ 1.3254 no matter what
fractional order being used within the range.

. Dynamic correlations between the quenching time T, and coef-
ficient b. We find the quenching time decreases slightly when b
increases. In addition, the value of T, decreases if a increases. A
unique limit of T, = 0.5 is observed as a - oo. The simulation agrees
well with theoretical predictions.

. All simulation results generated via (2.8)-(2.9) exhibit that the
quenching location moves to the right if the fractional order y in-
creases. The quenching location for the case of y = 1.8 is observed
at the center point of the spatial interval. For a fixed y = 1.8, it
seems that the quenching location shifts to left or right whenever b
increases or decreases.

. The mean value of the computational order of convergence is
approximately 1.0771 in final 20 temporal advancements before
quenching. This can be an indication of a linear convergence of
the method (2.8), (2.9) in space. Similar estimates can be made in
time. We prefer to leave further simulations to forthcoming papers
together with theoretical proofs of the convergence.

Our study reveals more challenges than discoveries in the territory.
We have been continuing the endeavor, particularly with multidimen-
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Table 6
Relationships among the time of quenching T, with the coefficient b (—1.0 <5 <2.0,6 = 1,y (x) =0).
b -1.0 -0.6 -0.4 0 0.4 0.6 1.0 1.4 1.8 2.0
T, y=2 0.5604 0.5514 0.5468 0.5384 0.5304 0.5268 0.5204 0.5158 0.5126 0.5116
T,, y=2 1.2352 0.9770 0.8962 0.7800 0.7018 0.6732 0.6346 0.6180 0.6214 0.6304
T, y=18 0.5460 0.5404 0.5374 0.5316 0.5274 0.5258 0.5238 0.5228 0.5226 0.5226
T,,y=138 0.8370 0.7622 0.7302 0.6754 0.6408 0.6320 0.6278 0.6396 0.6684 0.6912
Table 7
An illustration of the connection between 7T, and fractional derivative order y (b=-0.4, 6 = 1.0,
and y(x) =0 are used).
v 1.65 1.7 1.75 1.80 1.85 1.9 1.95 1.97 2.0
Tg - 0.7740 0.8222 0.8814 0.9544 1.0484 1.1762 1.2420 1.3646
T, - 0.6756 0.7012 0.7302 0.7630 0.8006 0.8442 0.8638 0.8962
T, 0.5306 0.5322 0.5348 0.5374 0.5400 0.5424 0.5448 0.5456 0.5468
Ty 0.5016 0.5014 0.5012 0.5012 0.5010 0.5008 0.5008 0.5006 0.5006
Table 8
Values of max h and sup h, at the quenching locations x*. Parameters a =2, b=—-0.4
O<x<a O<x<a
and 6 = 1.0 are used.
¥ 1.7 1.75 1.8 1.85 1.9
h* 0.99519015 0.99812138 0.99242962 0.99013998 0.99609597
ht 53.90493537 59.66890569 47.16637862 41.92559580 52.34520913
x* 0.96 0.98 1.00 1.04 1.06
Table 9

Peak values of functions h(x,T,) and
a=2, y=1.8and 0 = 1.0 are used.

h,(x,T,) for different b values. Quenching locations are given. Parameters

b -1.0 0.6 0.2 0 0.2 0.6 1.0
099286124  0.99208711 0.98813508  0.98955723  0.98795306  0.99368668  0.98649343
R 46.93866893  46.08254310  40.05075059  42.97667669  40.97465890  51.62370180  39.55954883
x* 116 1.06 0.94 0.86 0.78 0.62 0.5

sional fractional partial differential equation models. Numerical studies References

of effects of fractional convections have been kicked off. Preliminary re-
sults suggest that the use of fractional order advection-convection may
introduce a much richer dynamics to a combustion environment. These
observations need to be further analyzed, evaluated and then verified
precisely through laboratory experiments. More details will be given in
our forthcoming reports. In addition to continuing endeavors to the-
oretical proofs of orders of the convergence, more sophisticated and
industrially oriented source and degeneracy functions will also be ex-
plored [1,8,9,27].
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