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The aims of this paper are to investigate and propose a numerical approximation for a 

quenching type diffusion problem associated with a two-sided Riemann-Liouville space- 

fractional derivative. The approach adopts weighted Grünwald formulas for suitable spatial 

discretization. An implicit Crank-Nicolson scheme combined with adaptive technology is 

then implemented for a temporal integration. Monotonicity, positivity preservation and lin- 

earized stability are proved under suitable constraints on spatial and temporal discretiza- 

tion parameters. Two specially designed simulation experiments are presented for illustrat- 

ing and outreaching properties of the numerical method constructed. Connections between 

the two-sided fractional differential operator and critical values including quenching time, 

critical length and quenching location are investigated. 
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1. Introduction 

Quenching phenomena can be observed in many scientific and industrial disciplines, such as cell multiplications, liq- 

uid and solid fuel combustion, pipeline decay preventions and infectious disease outbreak controls. The phenomena have 

attracted a tremendous amount of recent attentions due to their profound applications to nature and engineering technolo- 

gies [1–5] . 

In his pioneering study of quenching modelings, Kawarada noticed that for the reaction-diffusion equation u t = u xx + 

1 / (1 − u ) , 0 < x < a, t > 0 , there exists a critical domain size a � > 2 
√ 

2 such that for any a > a � , we have sup { lim t→ T −a 
u } =

1 , T a < ∞ [4,6] , no matter how small the initial and boundary values are. Acker and Walter later reconfirmed this observa-

tion and found that a � was approximately 1.5303 via numerical simulations [1] . 

It is crucial in quenching simulations to predict correlated key ingredients, such as critical domain size, location and 

quenching time of an anticipated quenching, and the impact of potential stochastic interferences in approximations of a 

quenching solution [7–9] . In addition, numerical methods must capture characteristical features of the quenching phenom- 

ena, such as the quenching domain sizes, and preservations of the solution monotonicity, positivity in certain situations (for 

instance, see [2,10–12] and references therein). 

Finite difference and boundary element methods have been used in the classical quenching numerical methods [8,10] . 

Results obtained have significantly extended the original work by Hale [4] , Kawarada [6] , Chan and Chen [10] , Walter [12] .
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Needless to mention that many existing algorithms become successively complicated when higher dimensional problems 

are considered. To this end, mesh adaptations are introduced to improve the computational efficiency and accuracy [13] . 

Simulation strategies are also benefitted from the theory and methods of domain decompositions and exponential split- 

ting formulations [2,14,15] . Semi-discretization and linear iterations are employed to reduce the complexity of the implicit 

schemes acquired [16,17] . However, bottleneck difficulties continue existing, such as that in linear and nonlinear numerical 

instabilities while simpler-structured and easier-to-use algorithms are in demands for realistic industrial and environmental 

applications [8,18,19] . 

Many integer order partial differential equation models can be extended to fractional order partial differential equa- 

tions (FPDEs) for possibly more natural approximations of real phenomena. FPDEs have been particularly widely utililzed in 

image processing, thermal engineering products, electrochemistry, generic memory designs, and medicine devices [20,21] . 

In particular, Meerschaert and Tadjeran introduced and analyzed two-side space-fractional partial differential equations and 

approximations [22] . Following their work, Zhu and Rui introduced the weighted Grünwald approximation for the two- 

sided space-fractional derivatives [23] . An effective maximum modulus principle is established for finite difference methods 

to solve fractional equations [24] . Based on it, the existence and regularities of the solutions are guaranteed [23] . However,

in the territory of singular FPDEs, especially those involving strong nonlinear quenching singularities, studies in regularities 

are still in its infancy while simulation approaches are booming [20,22,25,26] . Among the most recent publications, Padgett 

approximated singular solutions to a Kawarada equation with fractional derivative of the Caputo type in time [7] . Xu focused

at fractional diffusion operators and their quenching applications [9] . The many heuristic discussions on fractional ordered 

differential equations have quickly become an intensive research field attracting more and more attentions for in-depth 

theory and simulations [21,26] . 

In this paper, we are concerned with FPDEs where nonlocal α-fractional two-sided derivative, 1 < α ≤ 2 , is used to re-

place the conventional Laplacian operator in a Kawarada equation. Backgrounds of such fractional modeling structure can 

be found in several recent publications including [20,22,23,27,28] . 

Both theoretical and numerical explorations will be carried out for the stability, positivity and monotonicity of the semi- 

adaptive scheme proposed. The simulation strategies are more balanced and effective as compared to typical configurations 

used in traditional one-sided approaches by Zhu and Sheng [28] , and adaptations by Huang et al. [13] , Beauregard [29] .

Simulation results will be provided to illustrate adjustments between situations with conventional and fractional deriva- 

tives. Anticipated critical values including fractional quenching location, time and critical length will be given and discussed. 

The solution symmetry, which is an important geometric feature of the quenching solution [4,11,30] , is preserved in all

numerical experiments. Our results acquired agree satisfactorily with known results of compatible integer order problems 

[8,11] . 

The present discussion consists of six sections. A two-sided fractional order quenching model will be introduced in 

Section 2 . In Section 3 , a semi-adaptive finite difference approximation will be constructed. Numerical stability of the sim-

ulation method will be analyzed. Section 4 will focus on the quenching characteristics including the solution positivity, 

monotonicity, and quenching domains and times. Detailed analysis will be presented. In Section 5 , typical modeling frac- 

tional problems associated with a two-sided Riemann-Liouville space-fractional derivative will be simulated. Numerical solu- 

tions and correlated critical values will be obtained and explained. Brief concluding remarks and expectations of continuing 

work will be summarized in Section 6 . 

2. Semi-adaptive numerical method 

Consider the following two-sided space-fractional order diffusion equation 

∂w (x, t) 

∂t 
= c −(x, t) 

∂ αw (x, t) 

∂ −x α
+ c + (x, t) 

∂ αw (x, t) 

∂ + x α
+ s (w ) , (2.1) 

where α ∈ (1 , 2] , s (w ) = 1 / (1 − w ) , c + (x, t) ≥ 0 , c −(x, t) ≥ 0 , x ∈ (0 , a ) , 0 < t ≤ T < ∞ , and ∂ αw (x,t) 
∂ −x α

, 
∂ αw (x,t) 

∂ + x α are right-

and left-handed Riemann-Liouville fractional derivatives, respectively [22,27] . It is known that solutions of the semi-linear 

Eq. (2.1) exist and are unique if s satisfies the Lipschitz condition prior to quenching and well-posted initial-boundary con- 

ditions are used [20,23,31] . We also note that when 1 < α < 2 , (2.1) represents a super-diffusive case which implies that

particles diffuse faster than the classical case when α = 2 [32] . 

The differential equation can be viewed as an extension of the original and one-sided Kawarada equations [6,28] . It is

also a realization of the diamond derivative formula [33] . Similar to [4,11] , we adopt following homogeneous first boundary

conditions 

w (0 , t) = w (a, t) = 0 , 0 < t ≤ T < ∞ . (2.2)

A straightforward initial condition, 

w (x, 0) = φ(x ) , x ∈ [0 , a ] , (2.3) 

where 0 ≤ φ(x ) 	 1 is considered. 

Let K, M ∈ Z 
+ and set h = a/K, τ = T /M. We define that 

x = ih, i = 0 , 1 , . . . , K; t = kτ, k = 0 , 1 , . . . , M. 
i k 

2 
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While denoting a i = c −(x i , t) , b i = c + (x i , t) and s i = s (w i ) , we let w i be a numerical approximation of w (x i , t) , i = 0 , 1 , . . . , K.

We approximate the two-sided fractional order derivatives by weighted averaging approximations via shifted Grünwald 

formulas with second-order accuracy [24,25] . In particularly, 

∂ αw (x p , t) 

∂ + x α
= 

1 

h α

[ (
1 − α

2 

) p ∑ 

i =0 

g i w p−i + 

α

2 

p+1 ∑ 

i =0 

g i w p−i +1 

] 

+ O(h 2 ) ;

∂ αw (x p , t) 

∂ −x α
= 

1 

h α

[ (
1 − α

2 

) K−p ∑ 

i =0 

g i w p+ i + 

α

2 

K−p+1 ∑ 

i =0 

g i w i + p−1 

] 

+ O(h 2 ) , 

(2.4) 

where h → 0 + and 

g i = 

�(i − α) 

�(−α)�(i + 1) 
= (−1) i 

(
α

i 

)
= (−1) i 

(α)(α − 1) . . . (α − i + 1) 

i ! 
, 

i = 0 , 1 , . . . , K, 

and the set { g i } satisfies following properties: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

g 0 = 1 , 
g 1 = −α < 0 , 
1 ≥ g 2 ≥ g 3 ≥ . . . ≥ 0 , 
M ∑ 

i =0 

g i ≤ 0 , M ∈ Z 
+ , 

∞ ∑ 

i =0 

g i = 0 . 

(2.5) 

A substitution of (2.4) into (2.1) yields 

(w t ) p = 

a p 

h α

[ (
1 − α

2 

) p ∑ 

i =0 

g i w p−i + 

α

2 

p+1 ∑ 

i =0 

g i w p−i +1 

] 

+ 

b p 

h α

[ (
1 − α

2 

) K−p ∑ 

i =0 

g i w i + p + 

α

2 

K−p+1 ∑ 

i =0 

g i w i + p−1 

] 

+ s p + O(h 2 ) , (2.6) 

for p = 1 , 2 , . . . , K. Drop the truncation error. Together with (2.2) and (2.3) , the above can be reformulated to yield the

following initial value problem 

w t = Hw + s (w ) , 0 < t < T , w (0) = w 0 , (2.7)

where w = (w 1 , w 2 , . . . , w K ) T
 , s = (s 1 , s 2 , . . . , s K ) T

 ∈ R 
K and H = (h i j ) ∈ R 

K×K . For the coefficient matrix we have 

h i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a i + b i 
h α

[(
1 − α

2 

)
g 0 + 

α
2 
g 1 

]
, i = j, 

b i α
2 h α

g 0 + 
a i 
h α

[(
1 − α

2 

)
g 1 + 

α
2 
g 2 

]
, i = j + 1 , 

a i α
2 h α

g 0 + 
b i 
h α

[(
1 − α

2 

)
g 1 + 

α
2 
g 2 

]
, i = j − 1 , 

b i 
h α

[(
1 − α

2 

)
g j−i + 

α
2 
g j−i +1 

]
, i < j − 1 , 

a i 
h α

[(
1 − α

2 

)
g i − j + 

α
2 
g i − j+1 

]
, i > j + 1 . 

(2.8) 

The formal solution of (2.7) has the following form Iserles [34] , LeVeque [35] 

w (t) = e Ht w 0 + 

∫ t 
0 

e H(t−φ) s (w ) dφ, t ≥ 0 . (2.9) 

The Eq. (2.9) can approximated through a trapezoidal rule, that is, 

w (t) = e Ht w 0 + 

t 

2 

[
s (w (t)) + e Ht s (w 0 ) 

]
+ O(t 2 ) , t ≥ 0 . 

Using an A [1/1] Padé approximant to evaluate the matrix exponential e Ht as following, 

e Ht = 

(
I − t 

2 
H 

)−1 (
I + 

t 

2 
H 

)
+ O(t 2 ) , t → 0 + . (2.10) 

A second-order difference scheme is consequently determined as 

w k = 

(
I − τk 

2 
H 

)−1 (
I + 

τk 
2 
H 

)(
w k −1 + 

τk 
2 
s k −1 

)
+ 

τk 
2 
s k , k = 1 , 2 , . . . , M, (2.11) 
3 
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for which w 0 = (w 1 (0) , w 2 (0) , . . . , w K (0)) T , and 0 < τk = t k − t k −1 	 1 , k ∈ { 1 , 2 , . . . , M} . Owing to a Taylor expansion based

linearization of the nonlinear source term, s k ≈ s (w k −1 + τk (Hw k −1 + s k −1 )) , the overall truncation error of (2.11) may be

reduced to O(h 2 + τk ) [8,14] . Similar to those discussed in [2,3,30,36] , we adopt a w t -based arc-length monitor function for

temporal adaptations: 

p(w t , t) = max 
0 ≤x ≤a 

√ 

1 + w 
2 
tt , t ≥ t 0 . 

The following quadratic formulation is desirable for calculating variable adaptive time increments τk +1 : 

τ 2 
k +1 = 

1 + max 0 ≤x ≤a 

(
w tt (t k −1 / 2 ) 

)2 
1 + max 0 ≤x ≤a 

(
w tt (t k +1 / 2 ) 

)2 τ 2 
k , k = 0 , 1 , 2 , . . . , M − 1 . (2.12) 

If τ0 > 0 is identified, subsequent adaptive time increments can be evaluated via (2.12) recursively. Appropriate constraints 

for a smooth adaptation must be observed [8,13,29] . The time increments are expected to be small throughout the final

stage of simulations since that 0 	 max 0 ≤x ≤a w (x, t) < 1 . 

3. Stability 

Theorem 3.1. If 
√ 

17 −1 
2 ≤ α ≤ 2 then I − τk 

2 H is strictly diagonally dominant, inverse positive and monotone [23] , 24 , 28 . 

Proof. Note that for 1 < α ≤ 2 , we have 

α2 

2 
+ 

α

2 
− 1 > 0 . 

Denote D = I − τk 
2 H. We consider diagonal and off-diagonal elements of D : 

d ii = 1 + 

τk (a i + b i ) 

2 h α

(
α2 

2 
+ 

α

2 
− 1 

)
, 

d i,i −1 = −τk b i α

4 h α
− τk a i α

2 h α

(
α2 + α − 4 

4 

)
, 

d i,i +1 = −τk a i α

4 h α
− τk b i α

2 h α

(
α2 + α − 4 

4 

)
, 

d i,p = −τk b i 
2 h α

[ (
1 − α

2 

)
g p−i + 

α

2 
g p−i +1 

] 
, if p > i + 1 ;

d i,p = −τk a i 
2 h α

[ (
1 − α

2 

)
g i −p + 

α

2 
g i −p+1 

] 
, if p < i − 1 , 

where i, p ∈ { 1 , 2 , . . . , K} for all meaningful indexes. 

Similar to the case in [28] , for 
√ 

17 −1 
2 ≤ α ≤ 2 we have α2 

2 + 
α
2 − 1 > 0 , α2 + α−4 

4 ≥ 0 due to (2.5) . Therefore d i,i > 0 , d i,i +1 < 0 ,

d i,i −1 < 0 . 

By the same token, we observe that 

α

2 
g i −p+1 + 

(
1 − α

2 

)
g i −p > 0 , if p < i − 1 , 

α

2 
g p−i +1 + 

(
1 − α

2 

)
g p−i > 0 , if p > i + 1 . 

Hence, d i,p < 0 for all p > i + 1 or p < i − 1 within the range of indexes. 

Furthermore, we compute the absolute sums of off-diagonal elements of the matrix D : 

r i = 

K ∑ 

j =1 , j � = i 

∣∣d i j ∣∣ = 

τk a i 
2 h α

{ 

i −1 ∑ 

p=1 

[ 
α

2 
g i −p+1 + 

(
1 − α

2 

)
g i −p 

] 
+ 

α

2 
g 0 

} 

+ 

τk b i 
2 h α

{ 

K ∑ 

p= i +1 

[ 
α

2 
g p−i +1 + 

(
1 − α

2 

)
g p−i 

] 
+ 

α

2 
g 0 

} 

≤ τk (a i + b i ) 

2 h α

(
α2 

2 
+ 

α

2 
− 1 

)
, i = 1 , 2 , . . . , K. 

Thus, 

r i = 

K ∑ 

j =1 , j � = i 

∣∣d i j ∣∣ < 

τk (a i + b i ) 

2 h α

(
α2 

2 
+ 

α

2 
− 1 

)
+ 1 = d ii , i = 1 , 2 , . . . , K. 
4 
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The above indicate that D is strictly diagonally dominant and invertible. 

In above analysis, we may notice that elements of the matrix D possess desirable properties, such as all its diagonal

elements are positive and the rest must be negative. In addition, 

K ∑ 

j=1 

d r j = 1 − τk a r 
2 h α

[ 
α

2 
(g 0 + g 1 + · · · + g r ) + 

(
1 − α

2 

)
(g 0 + g 1 + · · · + g r−1 ) 

] 

− τk b r 
2 h α

[ 
α

2 
(g 0 + g 1 + · · · + g r ) + 

(
1 − α

2 

)
(g 0 + g 1 + · · · + g r−1 ) 

] 

= 1 − τk ( a r + b r ) 

2 h α

[ (
1 − α

2 

) r−1 ∑ 

p=0 

g p + 

α

2 

r ∑ 

p=0 

g p 

] 

, 

where r = 1 , 2 , . . . , K − 1 . Through (2.5) . 
∑ K 

j=1 d r j > 0 , r = 1 , 2 , . . . , K − 1 . In the particular case when r = K, this result can

still be drawn by 
∑ r 

i =1 g i ≤ −1 . This implies that D is monotone and inversely positive since matrix D satisfies the weak-row

sum criterion [35] . Thus our proof is completed. �

Theorem 3.2. Let 
√ 

17 −1 
2 ≤ α ≤ 2 and ηα,k = max 

k 

τk 
h α

. If 

ηα,k < 

1 

2 max 
1 ≤i ≤K 

(a i + b i ) 
= 

1 

2(a max + b max ) 
(3.1) 

then I + 

τk 
2 H is nonsingular and positive. 

Proof. Set E = I + 

τk 
2 H = (e i j ) K×K . According to the proof of Theorem 3.1 , it can be seen that all h i j > 0 , i � = j, i, j =

1 , 2 , . . . , K due to (2.5) and (3.1) . Subsequently e i j > 0 whenever i � = j, i, j = 1 , 2 , . . . , K. Therefore we only need to ana-

lyze diagonal elements of the matrix E. To this end, 

e ii = 1 + 

τk (a i + b i ) 

2 h α

[ (
1 − α

2 

)
g 0 + 

α

2 
g 1 

] 
= 1 − τk (a i + b i ) 

2 h α

(
α2 

2 
+ 

α

2 
− 1 

)

≥ 1 − τk (a i + b i ) 

h α
, i = 1 , 2 , . . . , K. 

Thus, we have e ii > 0 based on (3.1) . Therefore E is positive. Furthermore, the infinity-norm of 
τk 
2 H can be estimated as

follows: ∥∥∥τk 
2 
H 

∥∥∥
∞ 

= 

τk 
2 

max 
i 

{ 

K ∑ 

j=1 

∣∣h i j ∣∣
} 

= 

τk 
2 

max 
i 

a i 
h α

{ 

i −1 ∑ 

j=1 

[ 
α

2 
g i − j+1 + 

(
1 − α

2 

)
g i − j 

] 
+ 

α

2 
g 0 −

[ 
α

2 
g 1 + (1 − α

2 
) g 0 

] } 

+ 

τk 
2 

max 
i 

b i 
h α

{ 

K ∑ 

j= i +1 

[ 
α

2 
g −i + j+1 + 

(
1 − α

2 

)
g j−i 

] 
+ 

α

2 
g 0 −

[ 
α

2 
g 1 + (1 − α

2 
) g 0 

] } 

≤ ηα,k (a max + b max ) 

(
α2 

2 
+ 

α

2 
− 1 

)

Therefore 
∥∥ τk 

2 H 

∥∥
∞ 

< 1 due to (3.1) . This indicates that E is nonsingular. �

Our next goal is to proceed for completing the linear stability proof under constraint (3.1) . For this, we need 

Definition 3.1. [34,35] Let w 
k 
i 
be the exact solution of the presented finite difference method and ˜ w 

k 
i 
be the perturbed

solutions of it, where 1 ≤ i ≤ K, 0 ≤ k ≤ M, K, M ∈ Z 
+ . Set e k = (e k 

1 
, e k 

2 
, . . . , e k 

K 
) T , where e k 

i 
= w 

k 
i 

− ˜ w 
k 
i 
, 1 ≤ i ≤ K. If there is

a positive integer C that for a suitable Euclidean norm 

∥∥e k ∥∥ ≤ C 
∥∥e 0 ∥∥, 0 ≤ k ≤ M, subject to certain constraints, then we say

that the underlying method is conditionally stable under the norm. 

Theorem 3.3. Suppose (3 . 1) hold for all k ≥ γ ≥ 0 . If s is frozen, the proposed semi-adaptive method (2 . 11) and (2 . 3) is condi-

tionally stable. 

Proof. Denote ξ k 
i 

= τk a i / (2 h 
α) , λk 

i 
= τk b i / (2 h 

α) , i = 1 , 2 , . . . , K, k = 0 , 1 , . . . , M. Because of (3.1) and (2.5) , we observe that(
1 − α

2 

)
g 0 + 

α

2 
g 1 < 0 , 

(
1 − α

2 

)
g i −1 + 

α

2 
g i > 0 , i = 2 , 3 , . . . , K, 
5 
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1 + ξ k 
i 

(
1 − α

2 

)
g 0 + ξ k 

i 

α

2 
g 1 > 0 , i = 1 , 2 , . . . , K, k = 0 , 1 , . . . , M, 

1 + λk 
i 

(
1 − α

2 

)
g 0 + λk 

i 

α

2 
g 1 > 0 , i = 1 , 2 , . . . , K, k = 0 , 1 , . . . , M. 

Recall Definition 3.1 and formula (2.11) . if s is frozen, a straightforward computation utilizing the above leads to following

identities, (
I − τk 

2 
H 

)
e k +1 = 

(
I + 

τk 
2 
H 

)
e k , k = 0 , 1 , . . . , M − 1 , 

where H is defined in (2.7) . Now we may use a mathematical induction to prove 
∥∥e k ∥∥∞ 

≤ (1 + C 1 τk ) 
k 
∥∥e 0 ∥∥∞ 

, 0 ≤ k ≤ M, C 1 ∈
Z 

+ . To begin, in the case of k = 1 , according to (2.5) we first obtain that 

∥∥e 1 ∥∥∞ 

= max 
1 ≤ j≤K 

∣∣e 1 j ∣∣ = 

∣∣e 1 γ ∣∣ ≤
∣∣e 1 γ ∣∣ − ξ 1 

γ

(
1 − α

2 

) γ −1 ∑ 

m =0 

g m 

∣∣e 1 γ ∣∣ − ξ 1 
γ

α

2 

γ∑ 

m =0 

g m 

∣∣e 1 γ ∣∣
− λ1 

γ

(
1 − α

2 

) K−γ∑ 

m =0 

g m 

∣∣e 1 γ ∣∣ − λ1 
γ

α

2 

K−γ +1 ∑ 

m =0 

g m 

∣∣e 1 γ ∣∣
≤

[ 
1 − (ξ 1 

γ + λ1 
γ ) 

(
1 − α

2 

)
g 0 − (ξ 1 

γ + λ1 
γ ) 

α

2 
g 1 

] ∣∣e 1 γ ∣∣ − ξ 1 
γ

α

2 
g 0 

∣∣e 1 γ +1 

∣∣
− ξ 1 

γ

γ∑ 

m =2 

[ (
1 − α

2 

)
g m −1 + 

α

2 
g m 

] ∣∣e 1 γ −m +1 

∣∣
− λ1 

γ

α

2 
g 0 

∣∣e 1 γ −1 

∣∣ − λ1 
γ

(
1 − α

2 

) K−γ∑ 

m =1 

g m 

∣∣e 1 γ + m 

∣∣ − λ1 
γ

α

2 

K−γ +1 ∑ 

m =2 

g m 

∣∣e 1 γ + m −1 

∣∣
≤

[ 

1 + ξ 0 
γ

(
1 − α

2 

) γ −1 ∑ 

m =0 

g m + 

α

2 
ξ 0 
γ

γ∑ 

m =0 

g m + λ0 
γ (1 − α

2 
) 

K−γ∑ 

m =0 

g m + λ0 
γ

α

2 

K−γ +1 ∑ 

m =0 

g m 

] 

× max 
1 ≤ j≤K 

∣∣e 0 j ∣∣ ≤ max 
1 ≤ j≤K 

∣∣e 0 j ∣∣ = 

∥∥e 0 ∥∥∞ 

. (3.2) 

The conclusion is established naturally. In a particular case when 
∥∥e 1 ∥∥∞ 

= 

∣∣e 1 
K 

∣∣, utilizing (2.5) we observe that 

∥∥e 1 ∥∥∞ 

= 

∣∣e 1 K ∣∣ ≤
∣∣e 1 K ∣∣ − ξ 1 

K 

(
1 − α

2 

) K−1 ∑ 

m =0 

g m 

∣∣e 1 K ∣∣ − ξ 1 
K 

α

2 

K ∑ 

m =0 

g m 

∣∣e 1 K ∣∣
− λ1 

K 

α

2 
g 0 

∣∣e 1 K ∣∣ − λ1 
K 

[ (
1 − α

2 

)
g 0 + 

α

2 
g 1 

] ∣∣e 1 K ∣∣
≤

[ 
1 − ξ 1 

K 

(
1 − α

2 

)
g 0 − ξ 1 

K 

α

2 
g 1 

] ∣∣e 1 K ∣∣
− ξ 1 

K 

K ∑ 

m =2 

[ (
1 − α

2 

)
g m −1 + 

α

2 
g m 

] ∣∣e 1 K−m +1 

∣∣
−λ1 

K 

α

2 
g 0 

∣∣e 1 K−1 

∣∣ − λ1 
K 

[ (
1 − α

2 

)
g 0 + 

α

2 
g 1 

] ∣∣e 1 K ∣∣
≤

{ 

1 + ξ 0 
K 

(
1 − α

2 

) K−1 ∑ 

m =0 

g m + 

α

2 
ξ 0 
K 

K ∑ 

m =1 

g m + λ0 
K 

α

2 
g 0 

+ λ0 
K 

[ (
1 − α

2 

)
g 0 + 

α

2 
g 1 

] } 

max 
1 ≤ j≤K 

∣∣e 0 j ∣∣ ≤ (1 + λ0 
K 

α

2 
g 0 ) max 

1 ≤ j≤K 

∣∣e 0 j ∣∣
≤ (1 + C 1 τk ) 

∥∥e 0 ∥∥∞ 

. (3.3) 

Next, assume that 
∥∥e j ∥∥∞ 

≤ (1 + C 1 τ j ) 
j 
∥∥e 0 ∥∥∞ 

for j ∈ { 1 , 2 , . . . , k − 1 } . Based on (2.5) and (3.1) for k > 1 we must have 

∥∥e k ∥∥∞ 

= max 
1 ≤ j≤K 

∣∣e k j ∣∣ = 

∣∣e k γ ∣∣ ≤
∣∣e k γ ∣∣ − ξ k 

γ

(
1 − α

2 

) γ −1 ∑ 

m =0 

g m 

∣∣e k γ ∣∣ − ξ k 
γ

α

2 

γ∑ 

m =0 

g m 

∣∣e k γ ∣∣
− λk 

γ

(
1 − α

2 

) K−γ∑ 

m =0 

g m 

∣∣e k γ ∣∣ − λk 
γ

α

2 

K−γ +1 ∑ 

m =0 

g m 

∣∣e k γ ∣∣
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≤
[ 
1 − (ξ k 

γ + λk 
γ ) 

(
1 − α

2 

)
g 0 − (ξ k 

γ + λk 
γ ) 

α

2 
g 1 

] ∣∣e k γ ∣∣ − ξ k 
γ

α

2 
g 0 

∣∣e k γ +1 

∣∣
− ξ k 

γ

γ∑ 

m =2 

[ (
1 − α

2 

)
g m −1 + 

α

2 
g m 

] ∣∣e k γ −m +1 

∣∣
− λk 

γ

α

2 
g 0 

∣∣e k γ −1 

∣∣ − λk 
γ

(
1 − α

2 

) K−γ∑ 

m =1 

g m 

∣∣e k γ + m 

∣∣ − λk 
γ

α

2 

K−γ +1 ∑ 

m =2 

g m 

∣∣e k γ −1+ m 

∣∣
≤

[ 

1 + ξ k −1 
γ

(
1 − α

2 

) γ −1 ∑ 

m =0 

g m + 

α

2 
ξ k −1 
γ

γ∑ 

m =0 

g m + λk −1 
γ

(
1 − α

2 

) K−γ∑ 

m =0 

g m 

+ λk −1 
γ

α

2 

K−γ +1 ∑ 

m =0 

g m 

] 

max 
1 ≤ j≤K 

∣∣e k −1 
j 

∣∣ ≤ max 
1 ≤ j≤K 

∣∣e k −1 
j 

∣∣ = 

∥∥e k −1 
∥∥

∞ 

≤ (1 + C 1 τk ) 
∥∥e k −1 

∥∥
∞ 

. (3.4) 

Use above inequality repeatedly. It becomes evident that ∥∥e k ∥∥∞ 

≤ (1 + C 1 τk ) 
k 
∥∥e 0 ∥∥∞ 

for all possible k ∈ { 1 , 2 , · · · , M} . In a similar way, when 
∥∥e k ∥∥∞ 

= 

∣∣e k 
K 

∣∣, k = 0 , 1 , . . . , M − 1 , we can secure relations ∥∥e k ∥∥∞ 

≤ (1 + C 1 τk ) 
∣∣e k −1 

K 

∣∣. 
Therefore 

∥∥e k ∥∥∞ 

≤ (1 + C 1 τk ) 
k 
∣∣e 0 

K 

∣∣ ≤ e C 1 τk k 
∣∣e 0 

K 

∣∣ must hold. Further, since τk k ≤ T , there exists a positive integer Csuch that∥∥e k ∥∥∞ 

≤ C 
∥∥e k ∥∥∞ 

, k = 0 , 1 , · · · , M. Since proofs for (3.2) –(3.4) are similar, above arguments have accomplished our task. �

4. Preservations of the positivity, monotonicity 

We wish to prove that the numerical solution sequence { w 
k } M 

k =0 
generated by (2.11) and (2.3) preserves required positiv-

ity and monotonicity [2,4,9,29] . To this end, we claim the following. 

Lemma 4.1. Suppose that (3 . 1) hold. If τ1 < σ−1 then w 1 > w 0 and ‖ w 1 ‖ ∞ 
< 1 , where σ = max (s (τ1 s 0 )) , w 0 = 0 and τ1 > 0

is an initial temporal step. 

Proof. Please see Appendix A . �

Lemma 4.2. Let (3 . 1) hold. If for all sufficiently small temporal step τk > 0 and 0 ≤ w k −1 < 1 such that Hw k −1 + s k −1 > 0 , then

{ w k } ∞ 

k =0 , the sequence of solution vectors generated by (2 . 11) and (2 . 3) 

(i) forms a monotonically increasing sequence; 

ii) ensures that Hw k + s k > 0 . 

Proof. Please see Appendix B . �

Now, based on Lemmas 3.1 and 3.2, we are able to show the preservations of the solution monotonicity and positivity in

following theorem. 

Theorem 4.1. Let k ≥ γ ≥ 0 and w 0 ≥ 0 . We have 

(i) Hw 0 + s 0 > 0 ;
ii) the solution sequence { w k } k ≥γ generated by the proposed implicit scheme (2 . 11) and (2 . 3) is monotonous and increasing. 

Proof. The theorem can be obtained from Lemmas 4.1 and 4.2 directly. �

5. Simulation experiments 

Two consecutive simulation examples are targeted and investigated to determine anticipated critical values in addition 

to the numerical solution and its temporal derivative for the two-sided space-fractional quenching problem (2.1) –(2.3) . C ++ ,
Fortran 90 and Matlab programming platforms are employed. Double precision arithmetic workstations and data storages 

are utilized. Quenching locations, quenching times, critical domains and relationship between order of the fractional deriva- 

tives, α, of the FPDE problem are explored and analyzed. 

To commence, we consider a non-degenerate case where c + (x, t) ≡ 0 . 5 , c −(x, t) ≡ 0 . 5 . For an essential assessment com-

pared with its classical counterparts possessing integer orders, we set α = 2 . The results acquired offer a straightforward,

yet fundamental, examination of the accuracy and reliability of the fractional order numerical solution in a conventional 

manner [2,8,9,28,37] . 
7 
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Table 1 

Selected solution values w (a/ 2 , t) , w Z (a/ 2 , t) and predicted values ˆ w (a/ 2 , t) immediately before 

quenching ( a = 2 , φ(x ) ≡ 0 and T ∗a = 0 . 78 [3] are used). 

t w (1 . 0 , t) w Z (1 . 0 , t) ˆ w (1 . 0 , t) t w (1 . 0 , t) w Z (1 . 0 , t) ˆ w (1 . 0 , t) 

0.7772 0.94041 0.94261 0.9279 0.7774 0.94261 0.94491 0.9307 

0.7776 0.94491 0.94732 0.9337 0.7778 0.94732 0.94986 0.9368 

0.7780 0.94986 0.95254 0.9400 0.7782 0.95254 0.95539 0.9434 

0.7784 0.95539 0.95845 0.9471 0.7786 0.95845 0.96176 0.9510 

0.7788 0.96176 0.96539 0.9553 0.7790 0.96539 0.96944 0.9600 

0.7792 0.96944 0.97408 0.9654 0.7794 0.97408 0.97962 0.9717 

0.7796 0.97962 0.98677 0.9800 

Fig. 1. LEFT: Relative difference between w (a/ 2 , t) and w Z (a/ 2 , t) immediately before quenching; RIGHT: Trajectory of the quenching time T a as a increases. 

Value points marked with � are recorded in [8,15] . The blue curve is for T a values obtained in presented experiments.. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Comparisons of T a with known results T (1) 
a [28] and T (3) 

a [8,15] . It is observed 

that, as the interval size a increases, the quenching times decreases. It may be 

predictable that lim a →∞ T a = 0 . 5 . 

a T a T (1) 
a T (3) 

a a T a T (1) 
a T (3) 

a 

1.55 3.9660 3.9660 3.961 3.00 0.5474 0.5472 0.5460 

1.60 2.0116 2.0103 2.007 π 0.5384 0.5382 0.5371 

1.70 1.2574 1.2572 1.257 4.00 0.5110 0.5110 0.5110 

1.80 0.9998 0.9996 0.999 5.00 0.5028 0.5026 0.5030 

1.90 0.8642 0.8642 0.871 10.00 0.5006 0.5004 0.5000 

2.00 0.7800 0.7798 0.779 50.00 0.5006 0.5004 0.5000 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment 1. Set α = 2 in (2.1) –(2.3) and (2.11), (2.3) . For the purpose of comparisons, we let φ(x ) ≡ 0 in (2.3) [4,28] . 

In our experiments, the initial temporal step is chosen as τ1 = 2 / 10 4 and the spatial step is fixed at h = a/ 10 2 . They

ensure an initial CFL ratio λ1 = 1 / (2 a 2 ) [7,35] . The adaptation kicks in naturally as the maximum of the numerical so-

lution exceeds a controlling parameter σ = 1 − ε, where 0 < ε 	 1 [29] . Our execution indicates that the critical length

a � ≈ 1 . 530277 . As compared with our one-sided fractional model result ˜ a � ≈ 1 . 53125 [28] , the new result is apparently

more closer to the standard figure, ā � ≈ 1 . 530300 , which has been used for accuracy verifications in the literature [1,6,8,11] .

In the particular circumstance of φ(x ) ≡ 0 , a = 2 , it is known that the maximal solution values w (a/ 2 , t) of (2.1) –(2.3)

should follow the following estimate [3,15,28] : 

max 
0 ≤x ≤a 

w (x, t) = w (a/ 2 , t) ≈ ˆ w (a/ 2 , t) = 1 −
√ 

2 ( T ∗a − t ) , as t → (T ∗a ) 
−, (5.1)

where T ∗a is the theoretical quenching time prediction [3] . In Table 1 , we present values of the solutions w (a/ 2 , t) of the

two-sided fractional Kawarada problem (2.1) –(2.3) via scheme (2.11), (2.3) , w Z (a/ 2 , t) of the one-sided fractional modeling

problem [28] , and the theoretical expectation ˆ w (a/ 2 , t) shown in (5.1) . It is found that the double sided numerical results

are more accurate and more favorable than those via one-sided algorithm. We further plot the relative difference between 

two-sided and one-sided numerical solutions at x = a/ 2 = 1 in Fig. 1 (left frame). 

As the spatial interval length a increases, the quenching time T a decreases to approximately 0.50. More details of such 

monotonic decay of quenching time are given in Table 2 , where T a is for our experimentally observed quenching times;

T (1) 
a is for those obtained via one-sided fraction model [28] and T (3) 

a is for classical results given in [8,15] . The monotone
8 
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Table 3 

Additional comparisons between newly observed 

quenching time T a and existing numerical results 

in [8,15,17,28,30] with α = 2 . 

a T a T (1) 
a T (2) 

a T (3) 
a 

1.55 3.9660 3.9660 3.963 3.9610 

2 0.7800 0.7798 0.779 0.7790 

π 0.5384 0.5382 0.538 0.5371 

10 0.5006 0.5004 0.500 0.5000 

Fig. 2. Relative errors between T a and T 
(1) 
a [28] , T (2) 

a [17,30] and T (3) 
a [8,15] , respectively. Three interpolated error curves are marked with � , • and � , 

respectively. 

Table 4 

Numerical values of the solution w and the derivative w t before quenching 

( φ(x ) = sin ( πx/ 2 ) / 10 , 0 ≤ x ≤ a, and a = 2 are incorporated). 

x w (x, T a ) w t (x, T a ) w (x, T (1) 
a ) w t (x, T 

(1) 
a ) 

0.94 0.970127081 25.073091489 0.97012708 25.07309149 

0.96 0.980947416 32.410913404 0.98094741 32.41091340 

0.98 0.989067195 40.332916334 0.98906719 40.33291633 

1.00 0.992266827 44.281269591 0.99226683 44.28126959 

1.02 0.989067219 40.332944493 0.98906722 40.33294449 

1.04 0.980947455 32.410945929 0.98094746 32.41094593 

1.06 0.970127128 25.073117560 0.97012713 25.07311756 

 

 

 

 

 

 

 

 

 

 

 

convergence of T a from our two-sided fractional quenching model is also shown in Fig. 1 (right frame). This result coincides

well with those presented in [8,15] and indicates a satisfactory consistency. 

Additional comparisons are given in Table 3 for selected a = 1 . 55 , 2 , π and 10, where T (2) 
a values are particularly offered

in [17,30] . It is evident that new values from our two-sided modeling equation are highly consistent with existing predic-

tions. Figure 2 is devoted to the relative errors between our two-sided quenching time T a and T 
(1) 
a [28] , T (2) 

a [17,30] and T (3) 
a 

[8,15] , respectively. These errors are satisfactorily small hence the accuracy of T a is clearly ensured. 

Furthermore, in Fig. 3 , in addition to trajectories of values of the numerical solution max 0 ≤x ≤a w (x, t) and rate of change

function max 0 ≤x ≤a w t (x, t) as t → T a , we also show solution cross sections in space immediately before reaching quenching

( a = 2 and φ(x ) = 0 . 1 sin ( πx/ 2 ) , 0 < x < a, are used). Our semi-adaptive method (2.11), (2.3) is used and a particular T a ≈
0 . 6966 is observed. Table 4 lists values of functions w, w t near the center point x = a/ 2 immediately prior to quenching.

Quenching times T a is based on our two-sided quenching model and T (1) 
a is based on the one-sided model [28] . We may

notice that the two sets of solution values are remarkably similar. Both demonstrate satisfactory geometric symmetry. 

In Fig. 4 , we present three-dimensional surface plots of w and w t in last 20 temporal steps immediately before the

blow-up of w t . From Figs. 2–4 , Tables 2–4 and careful comparisons with existing results we may conclude that (i) the

numerical solution and associated temporal derivative function are highly accurate. They are also symmetrical in space 

about x = a/ 2 ; (ii) the terminal maximum of the numerical solution is max 0 ≤x ≤a w (x, t) = w (a/ 2 , T a − τk ) ≈ 0 . 992266827

which is very close to the unity; (iii) we observe that sup 0 <x<a w t (x, t) = w t (a/ 2 , T a − τk ) ≈ 44 . 281269591 as t → T a . The

computation is throughout smooth. The phenomenon is typical in quenching simulations. These coincide precisely with 

existing theoretical and computational predictions given in numerous recent publications, for instance, in [6,8,15,28,30] . 

Therefore our two-sided model and algorithm (2.11), (2.3) are effective and reliable. 

Experiment 2. 
9 
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Fig. 3. TOP: trajectories of max 0 ≤x ≤a w and sup 0 <x<a w t as the time t increasing to T a . BOTTOM: Functions w and w t at t = T a − τk immediately before 

quenching. ( w is colored blue and w t is colored red. Parameters a = 2 , α = 2 , T a ≈ 0 . 6966 are used/observed). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Three-dimensional surface plots of the quenching solutions w and derivative w t on the final 20 solution vectors prior to quenching. The terminal 

supremum of w t is approximately 44.281269591. A typical quenching case is evident ( 0 ≤ x ≤ a, 0 . 6926 ≤ t ≤ 0 . 6966 , a = 2) . 

 

 

 

 

 

 

 

 

 

 

In this experiment, we consider multiple values of α ∈ 

[
( 
√ 

17 − 1) / 2 , 2 
)
for the two-sided space-fractional order diffusion 

problem (2.1) –(2.3) . We note that this represents a fast diffusive physical procedure, where particles may move more rapidly

than those in classical cases of Experiment 1 [32] . The new solution to obtain can be highly vibrated in multi-physics and

hydrology [20,22,31] . Again, we adopt the semi-adaptive simulation method (2.11), (2.3) . 

Take a = 2 . We begin with an initial function φ(x ) = 0 . 1 sin ( πx/ 2 ) , 0 ≤ x ≤ a, with the fractional order α = 1 . 7 , 1 . 8 , 1 . 9 ,

respectively. In Fig. 5 , we again demonstrate trajectories of max 0 ≤x ≤a w and sup 0 <x<a w t as time t approaches the numerical 

quenching time found, that is, T a . Order α = 1 . 8 is used. Furthermore, we can notice that, while max 0 ≤x ≤a w approaches

the unity smoothly, the supremum of w t climbs to a peak, probably faster than exponentially [6] , at heights approximately

44 . 7816 , 51 . 6743 , 38 . 5741 , respectively in cases of α = 1 . 7 , 1 . 8 , 1 . 9 . To view more details, we plot profiles of the numerical

solution w and its rate of change function w t , corresponding to cases of various α values in Fig. 6 . We observe again

that quenching all locations are precisely at the center of spatial interval, that is, at x a = 1 , probably due to lacking of

non-symmetric degeneracy [29,30] . We remark that peak values w (a/ 2 , t) immediately before quenching are pretty close

to the unity. For example, for the cases when α = 1 . 7 , 1 . 8 , 1 . 9 , we have w (a/ 2 , T a − τk ) ≈ 0 . 9897628 , 0 . 994 4 49 , 0 . 987745 ,

respectively. 
10 
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Fig. 5. Trajectories of max 0 ≤x ≤a w (LEFT) and sup 0 <x<a w t as t → T a (RIGHT). Parameters used: α = 1 . 8 , T a ≈ 0 . 5858 and a = 2 . 

Fig. 6. TOP: solutions w (x, T a − τk ) immediately before quenching (LEFT for α = 1 . 1 , 1 . 3 , 1 . 5 , 1 . 558 , 1 . 560 ; RIGHT for α = 1 . 7 , 1 . 8 , 1 . 9 ); Bottom: derivative 

functions w t (x, T a − τk ) (LEFT for α = 1 . 1 , 1 . 3 , 1 . 5 , 1 . 558 , 1 . 560 ; RIGHT for α = 1 . 7 , 1 . 8 , 1 . 9 ). Although geometric patterns of w seem to be different between 

cases of α < ( 
√ 

17 − 1) / 2 ≈ 1 . 561552 and α > ( 
√ 

17 − 1) / 2 ≈ 1 . 561552 , the excellent symmetry can always be observed. 

 

 

 

 

 

 

To further illustrate interesting characteristics of a quenching solution, in Fig. 7 we present three-dimensional surface 

plots based on the final 20 time steps prior to quenching. It is evident that both w and w t are not only monotonically

increasing but also symmetric with respect to the space center at x = a/ 2 . 

Throughout Experiment 2, we notice that anticipated quenching phenomena do occur for the various fractional derivative 

orders α ∈ (1 , 2] used, as far as the interval size a ≥ a ∗ which is a critical value depending on the particular value of α.

The positivity, monotonicity and symmetry of the numerical solution w and its temporal derivative w t are well preserved 

whenever the initial value is symmetric. In the circumstance, locations of max 0 ≤x ≤a w (x, t) , sup 0 <x<a w t (x, t) appear to be at

the geometric center of the spacial interval. The semi-adaptive simulation procedure (2.11), (2.3) remain to be numerically 

stable for solving the two-sided nonlinear fractional quenching model problem (2.1) –(2.3) . 

Let T a and ˆ T a be quenching times derived via our two-sided and one-sided fractional models and corresponding numer- 

ical methods, respectively [28] . As an illustration, in Table 5 , we list and compare quenching times with different spatial

interval lengths and α ∈ [1 . 6 , 2] . It is not difficult to see that T a decreases monotonically just like ˆ T a does as α decreases.

The magnitudes of T a seem to be slightly less than its peers’, though we may not be able to conclude a common limit

0.5 as in Experiment 1. Figure 8 illustrates connections of quenching times, critical domain sizes and the fractional order 

α ∈ [1 . 6 , 2] , respectively. The phenomena observed are highly in agreement with existing simulations [5,28,29] . 
11
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Fig. 7. 3D surface plots of the quenching solutions w and associated derivative w t on the final 20 solution vectors prior to a blow-up of w t . ( 0 ≤ x ≤
a, 0 . 5818 ≤ t ≤ 0 . 5858 , a = 2 ). The height of w t peak is approximately 51.674333376. A typical quenching phenomenon is thus observed. 

Table 5 

Comparisons between T a , ̂  T a and their connections with the fractional order α. Spatial interval sizes a = 1 . 55 , 2 , π

and 10 are utilized. 

α 2.0 1.95 1.90 1.85 1.80 

T 1 . 55 / ̂ T 1 . 55 3.8724/3.966 1.9228/2.0544 1.3830/1.5364 1.1080/1.2716 0.9370/1.104 

T 2 / ̂ T 2 0.6966/ 0.7798 0.6658/0.7494 0.6368/0.7224 0.6102/0.6978 0.5858/0.6752 

T π / ̂ T π 0.5016/0.5382 0.4998/0.5368 0.4974/0.5352 0.4948/0.5334 0.4916/0.5316 

T 10 / ̂ T 10 0.4682/0.5004 0.4672/ 0.5006 0.4662/0.5008 0.4668/0.5008 0.4632/0.501 

α 1.75 1.70 1.65 1.60 

T 1 . 55 / ̂ T 1 . 55 0.8194/0.9856 0.7332/0.8956 0.6676/0.8236 0.6164/0.7644 - 

T 2 / ̂ T 2 0.5636/0.6546 0.5436/0.6354 0.5258/0.6174 0.5100/0.6008 - 

T π / ̂ T π 0.4882/0.5294 0.4842/0.5274 0.4798/0.5252 0.5100/0.5230 - 

T 10 / ̂ T 10 0.4614/0.5012 0.4594/ 0.5012 0.4570/ 0.5014 0.4542/ 0.5014 - 

Fig. 8. LEFT: Critical sizes corresponding to the two-sided and one-sided model problems vs. the fractional order α; RIGHT: Quenching times T a corre- 

sponding to the two-sided model problem vs. the fractional order α. 

Table 6 

Computed relations between quenching times T a and fractional order α. 

α 1.57 1.568 1.566 1.564 1.562 1.560 1.558 1.50 1.30 1.10 

T 1 . 55 0.5910 0.5894 0.5878 0.5862 0.5846 0.5832 0.5816 0.5432 0.4636 0.4214 

T 2 0.5014 0.5010 0.5004 0.4998 0.4992 0.4988 0.4982 0.4838 0.4466 0.4180 

T π 0.4720 0.4718 0.4716 0.4714 0.4712 0.4710 0.4708 0.4646 0.4410 0.4170 

T 10 0.4526 0.4524 0.4522 0.4522 0.4520 0.4520 0.4518 0.4480 0.4326 0.4148 

 

 

It is known that quenching solutions of classical problems are symmetric with respect to x = a/ 2 if initial and bound-

ary data used are symmetric [1,4,6,10] . Preservations of such geometric feature have been extremely challenging issues in 

simulations. Our intensive simulation experiments indicate that our two-sided model and method are more capable of such 

preservation as compared with one-sided model and method. To see this, we show quenching locations x α, ( 
√ 

17 − 1) / 2 ≤
α < 2 , with respect to different interval lengths a in Table 7 . As a comparison, we also list computed quenching locations

ˆ x , ̂  x obtained via the one-sided model and method [28] . Data are taken immediately before quenching. 
1 . 6 1 . 8 
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Table 7 

Quenching locations associated with different domain sizes and different fractional orders. 

Locations x α, α ∈ 
[
( 
√ 

17 − 1) / 2 , 2 
)
, are from new two-sided model and method, while 

ˆ x 1 . 6 , ̂  x 1 . 8 are due to one-sided model and method [28] . 

x α\ a 1.55 2 π 4 5 8 10 50 

x α 0.775 1.00 1.57079625 2.00 2.50 4.00 5.00 25.00 

ˆ x 1 . 8 0.63549998 0.84 1.50796795 2.04 2.75 5.2 7.0 45 

ˆ x 1 . 6 0.51149998 0.76 1.53938395 2.2 3.0 6.68 7.5 45.5 

Table 8 

A correlation of critical values a � (due to to the two-sided model and method), a � Z (due to one-sided model and method) and 

the fractional order α. Here �a � and �a � Z are differences between two consecutive critical values calculated via respective 

methods, respectively. 

α 2 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 

a � 1.53027 1.481027 1.426962 1.368171 1.30471 1.236725 1.164345 1.087762 1.007221 

�a � – 0.049243 0.054065 0.058791 0.06346 0.067985 0.072380 0.076583 0.080541 

a � Z 1.53125 1.48437 1.43755 1.39076 1.34398 1.29718 1.25038 1.20355 1.15666 

�a � Z – 0.04688 0.04682 0.04679 0.04678 0.04680 0.04680 0.04683 0.04689 

Fig. 9. LEFT: Difference between predicted critical domains via one-sided and two-sided models and methods; RIGHT: Difference between predicted 

quenching times via one-sided and two-sided models and methods. 

 

 

 

 

 

 

 

There is no surprise to see that while x α, ( 
√ 

17 − 1) / 2 ≤ α < 2 , offers clearly an anticipated symmetry with respect to

underlying spatial geometric centers, ˆ x 1 . 6 , ̂  x 1 . 8 depart away from the preservation, though the error margins are small. The 

superiority of x α indicates not only a better preservative feature, but also a more balanced approximation of the physical

phenomena [11,33] . To conclude, simulations based on the two-sided model and method can be more accurate and reliable

as compared with existing one-sided fractional formulations. 

Let a � , a � 
Z 
be computed critical domain sizes via the two-sided fractional model and numerical method, and one-sided 

fractional model and corresponding numerical method [2,28] , respectively. Table 8 is tailored for showing probable inter- 

connections between the fractional order α and aforementioned sizes. We find that the critical interval sizes decrease as 

α decreases. It is observed that differences between consecutive values calculated are between 0.049243 and 0.080541 as 

the value of α increases from ( 
√ 

17 − 1) / 2 to 2. The limit of a � is well-anticipated [28] . We may conclude numerically that

smaller critical domain sizes should be expected for lower fractional orders in both two-sided and one-sided cases. Further- 

more, critical domain sizes corresponding to two-sided models are less than that in their one-sided counterparts. In Fig. 9 ,

differences in predicted critical domain between the two-sided and one-sided strategies are shown on the left, while differ- 

ences between predicted quenching times are shown on the right. The results are in good agreement with existing theory 

and computations [6–8,15,28–30] . 

Now, recall Fig. 6 and Table 6 . Computational results and quenching times for different interval size a are given even

for cases where order α < ( 
√ 

17 − 1) / 2 ≈ 1 . 561552 . Although our simulations utilizing (2.11), (2.3) are accurate, stable and

highly successful for α ∈ 

(
1 , ( 

√ 

17 − 1) / 2 
)
, corresponding theoretical proofs are extremely difficult to fulfill due to limitations 

of the maximal principal used [23,24] . This no doubt remains as a continuing challenge to our endeavors. 

6. Conclusions 

An efficient numerical method for a quenching type diffusion equation associated with a two-sided Riemann-Liouville 

spatially fractional derivative is studied. Discretization of the two-sided fractional derivative is implemented via weighted 

and averaged standard and shifted Grünwald formulas. Resulted semi-discretized system of ordinary equations is then ap- 

proximated via a trapezoidal rule and at the same time, matrix exponential operators involved are handled through proper 
13 
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Padé approximants. These result a second-order Crank-Nicolson type method, equipped with a temporal arc-length adap- 

tation strategy ensuring additional accuracy and reliability for precisely capturing the singular solution of the fractional 

Kawarada modeling Eq. (2.1) . 

Preservations of the discrete solution stability, monotonicity and positivity are analyzed, proved, and validated through 

sequences of simulation experiments. Stability conditions of the temporally adaptive finite difference method are established 

for α ∈ 

(
( 
√ 

17 − 1) / 2 , 2 
]
targetting super-diffusive applications where particles diffuse faster than usual cases. 

Two interconnected sets of simulation experiments are designed and conducted. They demonstrate remarkably the ca- 

pability and accuracy of the two-sided fractional differential equation based method constructed. The integer order α = 2 

is considered in our first experiment. In the circumstance, numerical solution and data generated can be directly com- 

pared to the best known solutions of integer order problems for accuracy and credibility. It is noticed that the critical

size a � ≈ 1 . 530277 and corresponding quenching time T a � ≈ 0 . 7800 in our study are precisely in agreement with known

results in the literature [1,6,11,15,28] . Our second round of experiments is then progressed to cases with non-integer or- 

ders α ∈ 

[
( 
√ 

17 − 1) / 2 , 2 
)
. In the situations, numerical solutions obtained are compared with those from similar, but less 

mature, one-sided fractional quenching model and methods. Our computations are focused on vital characteristics of the 

quenching solutions of the singular modeling differential equation equipped with two-sided fractional derivative. Proper- 

ties of the numerical solution, its analysis and connections with the fractional order α are investigated. In addition, we 

find that the two-sided fractional derivative based model and simulation method are superior as compared with their one- 

sided counterparts. We also find that the size of critical intervals decreases monotonically as the order α decreases. Both 

sets of experiments show that the two-sided space-fractional model and method may provide more balanced and accurate 

approximations of quenching phenomena as compared with conventional fractional strategies. 

Based on optimistic simulation results, we intend to extend our rigorous analysis to cases where α ∈ 

(
1 , ( 

√ 

17 − 1) / 2 
]
in 

our forthcoming paper. Further explorations will be extended to multidimensional and multiple-sided space-fractional mod- 

eling equations. Though such considerations can be extremely meaningful especially in realistic applications, the challenges 

involved can be enormous. First of them can be in theoretical analysis and dynamic property studies. Then, due to the

non-local features of fractional-order derivatives, large and dense matrices may be resulted from discretization, even under 

hybrid settings [33] . This may require more sensitive quenching algorithmic strategies, such as the fast multipole and Krylov 

subspace implementations, and operator splitting techniques into our research agendas. Free energy conservation analysis 

may also be approached for potential biomedical and microbiology applications [18,27,32] . 
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Appendix A. Proof of Lemma 4.1 

Proof. Based on (2.11) , we have 

w k = 

(
I − τk 

2 
H 

)−1 (
I + 

τk 
2 
H 

)(
w k −1 + 

τk 
2 
s k −1 

)
+ 

τk 
2 
s k . 

Firstly, recall Theorems 3.1 and 3.2 . We must have 

w 1 = 

(
I − τ1 

2 
H 

)−1 (
I + 

τ1 
2 
H 

)(
w 0 + 

τ1 
2 
s 0 

)
+ 

τ1 
2 
s 1 

= 

τ1 
2 

[(
I − τ1 

2 
H 

)−1 (
I + 

τ1 
2 
H 

)
s 0 + s (τ1 s 0 ) 

]
> w 0 = 0 . 

Define Y = (1 , 1 , . . . , 1) T ∈ R 
K and consider the difference between w 1 and Y. To show ‖ w 1 ‖ ∞ 

< 1 we consider 

w 1 − Y = 

τ1 
2 

[(
I − τ1 

2 
H 

)−1 (
I + 

τ1 
2 
H 

)
s 0 + s (τ1 s 0 ) 

]
− Y 

= 

(
I − τ1 

2 
H 

)−1 [ τ1 
2 

(
I + 

τ1 
2 
H 

)
s 0 + 

τ1 
2 

(
I − τ1 

2 
H 

)
s (τ1 s 0 ) 

− (I − τ1 
2 
H) Y 

] 
. 

Secondly, we denote 

Z 1 = 

τ1 
2 

(
I + 

τ1 
2 
H 

)
s 0 + 

τ1 
2 

(
I − τ1 

2 
H 

)
s (τ1 s 0 ) , 
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Z 2 = −
(
I − τ1 

2 
H 

)
Y, 

Z 0 = Z 1 + Z 2 . 

It follows immediately that 

Z 1 = 

τ1 
2 

(
I + 

τ1 
2 
H 

)
s 0 + 

τ1 
2 

(
I − τ1 

2 
H 

)
s (τ1 s 0 ) 

≤ τ1 
2 

[ (
I + 

τ1 
2 
H 

)
+ 

(
I − τ1 

2 
H 

)] 
s (τ1 s 0 ) = τ1 s (τ1 s 0 ) . (A.1) 

Recall (2.5) and the fact that 
∑ i 

j=0 g j ≤
∑ ∞ 

j=0 g j = 0 . We acquire that HY ≤ 0 . Hence, 

Z 2 = −Y + 

τ1 
2 
HY ≤ −Y. 

Thirdly, based on the above result and (A.1) , we observe that Z 0 ≤ τ1 s (τ1 s 0 ) − Y < τ1 max (s (τ1 s 0 )) − 1 = τ1 σ − 1 . Now, for

τ1 < σ−1 , we obtain that Z 0 < 0 . It follows subsequently that w 1 − Y = 

(
I − τ1 

2 H 

)−1 
Z 0 . Recall that the matrix I − τ1 

2 H is in-

verse positive due to Theorem 3.1 . Thus ‖ w 1 ‖ ∞ < 1 is true. This completes our proof. �

Appendix B. Proof of Lemma 4.2 

Proof. Note that w 1 > w 0 due to Lemma 4.1 . Next, by an Euler formula, we may approximate s k in (2.11) through s k =
s k −1 + τk C 2 (Hw k −1 + s k −1 ) + O(τ 2 

k 
) , k ≥ 1 . Furthermore, according to (2.11) , we must have 

w k − w k −1 = 

(
I − τk 

2 
H 

)−1 [ (
I + 

τk 
2 
H 

)(
w k −1 + 

τk 
2 
s k −1 

)
+ 

τk 
2 

(
I − τk 

2 
H 

)
s k −

(
I − τk 

2 
H 

)
w k −1 

] 
≥ τk 

(
I − τk 

2 
H 

)−1 [ 
Hw k −1 + s k −1 −

τk 
4 
H(s k − s k −1 ) 

] 
, k > 1 . (B.1) 

Since s k > s k −1 , by means of Taylor’s theorem [16] , we acquire following inequality for k > 1 , 

w k − w k −1 ≥ τk 

(
I − τk 

2 
H 

)−1 
[
(Hw k −1 + s k −1 ) −

C 2 τ
2 
k 

4 
H(Hw k −1 + s k −1 ) 

]
, 

where C 2 is the positive diagonal Jacobian matrix of s (w ) after at some mean value point was evaluated. Subsequently

w k > w k −1 if τk > 0 is sufficiently small. Likewise, it is readily to see that 

Hw k + s k = H w k + H w k −1 − H w k −1 + s k + s k −1 − s k −1 

= s k − s k −1 + Hw k −1 + s k −1 

+ H 

[(
I − τk 

2 
H 

)−1 (
I + 

τk 
2 
H 

)(
w k −1 + 

τk 
2 
s k −1 

)
+ 

τk 
2 
s k − w k −1 

]

= s k − s k −1 + 

(
I − τk 

2 
H 

)−1 [ (
I − τk 

2 
H 

)
( Hw k −1 + s k −1 ) 

+ τk H 
2 w k −1 + 

τk 
2 
H(s k −1 + s k ) + 

τ 2 
k 

4 
H 

2 (s k −1 − s k ) 

]

≥ s k − s k −1 + 

(
I − τk 

2 
H 

)−1 [ (
I + 

τk 
2 
H 

)
( Hw k −1 + s k −1 ) 

+ 

τ 2 
k 

4 
H 

2 (s k −1 − s k ) 

]
. (B.2) 

Since s k ≈ s (w k −1 + τk (Hw k −1 + s k −1 )) and s k > s k −1 , again by Taylor’s theorem, we find that 

Hw k + s k ≥ s k − s k −1 + 

(
I − τk 

2 
H 

)−1 (
I − τk 

2 
H 

)(
I + τk H − C 2 τ

3 
k 

4 
H 

2 

)
× (Hw k −1 + s k −1 ) 

= s k − s k −1 + 

(
I + τk H − C 2 τ

3 
k 

4 
H 

2 

)
(Hw k −1 + s k −1 ) . 

Therefore the matrix I + τk H − τ3 
k 
4 C 2 H 

2 must be positive for sufficiently small τk > 0 . Our lemma is thus clear. �

. 
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