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Abstract—A long line of work in the past two decades or so
established close connections between several different pseudo-
random objects and applications, including seeded or seedless
non-malleable extractors, two source extractors, (bipartite) Ram-
sey graphs, privacy amplification protocols with an active adver-
sary, non-malleable codes and many more. These connections
essentially show that an asymptotically optimal construction of
one central object will lead to asymptotically optimal solutions
to all the others. However, despite considerable effort, previous
works can get close but still lack one final step to achieve truly
asymptotically optimal constructions.

In this paper we provide the last missing link, thus simulta-
neously achieving explicit, asymptotically optimal constructions
and solutions for various well studied extractors and applications,
that have been the subjects of long lines of research. Our results
include:

« Asymptotically optimal seeded non-malleable extractors,
which in turn give two source extractors for asymptotically
optimal min-entropy of O(logn), explicit constructions of
K-Ramsey graphs on N vertices with K = 1ogo(1) N, and
truly optimal privacy amplification protocols with an active
adversary.

o« Two source non-malleable extractors and affine non-
malleable extractors for some linear min-entropy with
exponentially small error, which in turn give the first explicit
construction of non-malleable codes against 2-split state
tampering and affine tampering with constant rate and
exponentially small error.

« Explicit extractors for affine sources, sumset sources, inter-
leaved sources, and small space sources that achieve asymp-
totically optimal min-entropy of O(logn) or 2s + O(logn)
(for space s sources).

o An explicit function that requires strongly linear read once
branching programs of size 2"~ °©(°8™) which is optimal up
to the constant in O(-). Previously, even for standard read
once branching programs, the best known size lower bound
for an explicit function is gn—0(log?n)_

Index Terms—extractor, non-malleable, two-source, Ramsey
graph, affine

I. INTRODUCTION

This paper studies a wide range of pseudorandom objects
and applications. We first briefly survey each of them, and
then state our main results.

Supported by NSF CAREER Award CCF-1845349 and NSF Award CCF-
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a) Randomness Extractors.: Through decades of study,
randomness extractors have become fundamental objects in
the area of pseudorandomness, with intimate connections to
other areas such as cryptography, complexity theory, combi-
natorics and graph theory, and so on. The original motiva-
tion of randomness extractors comes from bridging the gap
between uniform random strings required in many applica-
tions, and poor quality random sources available in practice.
We use the following standard definition, where the min-
entropy of a random variable X is defined as H(X) =
Mingesupp(x) 10go(1/ Pr[X = z]). For X € {0,1}", we call
X an (n, Hoo(X))-source, or an H.. (X )-source when n is
clear from context, and we say X has entropy rate Hoo(X)/n.

The goal is to extract almost uniform random bits from weak
random sources. Unfortunately, no deterministic extractor can
exist when the input is a single general weak random source
even with min-entropy & = n — 1. Hence, the study of
randomness extractors has been focusing on several relaxed
models. For example, Nisan and Zuckerman [83] introduced
the notion of seeded extractors, where the extractor has access
to an additional independent short uniform random seed.
Typically, we require the seeded extractor to be strong in the
sense that the output of the extractor is close to uniform even
conditioned on the seed. It can be shown that there exist strong
seeded extractors with excellent parameters, and we now have
almost optimal constructions (e.g., [47], [48], [59], [81]) after
a long line of research.

Although seeded extractors have proven to be quite useful,
in certain applications (e.g., cryptography) even the short
uniform random seed is undesirable, thus another relaxed
model is to put more restrictions on the weak source, and
construct deterministic or seedless extractors for a certain class
of weak sources. We have the following definition.

Definition I.1. Let X' be a family of distribution over {0, 1}".
A function Ext : {0,1}" — {0,1}™ is a deterministic
extractor for X with error € if for every distribution X € X,
we have

Ext(X) =~ Up,

where U, stands for the uniform distribution over {0,1}™,
and ~. means ¢ close in statistical distance. We say Ext is
explicit if it is computable by a polynomial-time algorithm.



Historically, the most well studied class of sources is the
class of two (or more) independent sources. Here, a simple
probabilistic argument shows that there exist two source
extractors for (n, k) sources with k& = logn + O(1), which
is optimal up to the constant O(1); and the first explicit
construction of two source extractors was given by Chor
and Goldreich [29] more than 35 years ago, which achieves
k > n/2. Due to their connections to explicit Ramsey graphs,
and applications in distributed computing and cryptography
with general weak random sources [62], [63], such extractors
have also been the subject of extensive study [7]-[10], [14],
(191, [26], [29], [32], [33], [36]-[38], [40], [69], [70], [73]-
[75], [77]1-[80], [85], [87]. The ultimate goal is to construct
explicit two source extractors for k& = logn + O(1), which
would also imply an (strongly) explicit Ramsey graph on N
vertices with no clique or independent set of size O(log N),
solving a long standing open problem proposed by Erdés
[51] in his seminal paper that inaugurated the probabilistic
method. Previously, the best explicit construction of two
source extractors in terms of entropy is that of [80], which
achieves k = O(logn - lolgoigol%) and gives an explicit
Ramsey graph on N vertices with no clique or independent
set of size (log N)O(%).

Deterministic extractors for many other classes of sources
have been studied. These include for example bit fixing
sources [30], [54], [65], [86], which are sources that are
obtained by fixing some unknown bits of a uniform random
string; affine sources [11], [15], [17], [53], [71], [78], [86],
[90], [96], which generalize bit-fixing sources and are the
uniform distributions over some unknown affine subspaces of a
vector space; samplable sources [93], [94], which are sources
that are generated by small circuits or efficient algorithms;
interleaved sources [25], [88], which are a generalization of
independent sources where the bits of the sources are mixed in
some arbitrary order; and small-space sources [64], where the
sources are generated by a small width branching program.
Deterministic extractors for these sources have applications
in areas such as exposure-resilient cryptography [30], [65],
Boolean circuit lower bounds [42], [52], and best-partition
communication complexity lower bound [88].

In [20], Chattopadhyay and Li introduced the model of
sumset sources, which is the sum of two (or more) independent
weak random sources. This model generalizes many of the
previously studied models, such as independent sources, bit
fixing sources, affine sources, interleaved sources, and small
space sources. For clarity we defer the formal definitions of
these sources to later chapters. Thus, improved constructions
of explicit extractors for sumset sources may also lead to
improved explicit extractors for many of the above sources.
While [20] only constructed explicit extractors for the sum of
a constant number of (n, k) sources with k& = log®M n, a
recent improvement by Chattopadhyay and Liao [22] gives
explicit extractors for the sum of two independent (n,k)
sources with & = O(log n log log nlog log log® n). This in turn
implies explicit extractors for affine sources and interleaved

two sources with the same entropy. By an improved reduction
from small space sources to sumset sources in [22], this also
gives explicit extractors for space s-sources with min-entropy
k = 2s + O(lognloglognlogloglog®n). These are the
previously best known constructions for each corresponding
class of sources in terms of entropy.! We note that non-
explicitly, one can show that with high probability random
functions are extractors for affine sources and interleaved two
sources with entropy & = O(logn), and for space s-sources
with min-entropy & = 2s + O(logn). Interestingly, it is not
clear if a random function is an extractor for the sum of two
independent (n, k) sources. However, since sumset sources are
a generalization of two independent sources, the entropy lower
bound of logn + O(1) for two source extractors also implies
an entropy lower bound of logn/2+ O(1) for the sum of two
independent sources.

b) Non-malleable extractors.: Motivated from crypto-
graphic applications, an important variant of seeded/seedless
extractors known as non-malleable extractors has been the fo-
cus of much study in the past 15 years or so. Here, one or more
inputs to the extractor are tampered with by an adversary, and
the goal is to guarantee that the output of the extractor on the
original inputs is still close to uniform even conditioned on the
output of the extractor on the tampered inputs. To discuss non-
malleable extractors, we start by defining tampering functions.

Definition 1.2 (Tampering Function). For any function f :
S — S, We say f has no fixed points if f(s) # s for all
s € S. For any n > 0, let F,, denote the set of all functions f :
{0,1}™ — {0,1}™. Any subset of F,, is a family of tampering
functions.

It is clear that if the tampering function is the identity
function, then non-malleability is impossible. Thus, with-
out loss of generality, for non-malleable extractors we only
consider tampering functions with no fixed points (although
this can be extended to the more general setting, see for
example [28]). See for example [28]). Depending on what the
tampering function acts on, there are different models of non-
malleable extractors. If the tampering acts on the seed of a
seeded extractor, we get the notion of seeded non-malleable
extractors, introduced by Dodis and Wichs [45]:

Definition 1.3 ( [45]). A function snmExt {0,1}™ x
{0,134 — {0,1}™ is a strong seeded non-malleable extractor
for min-entropy k and error € if the following holds: For any
(n, k) source X and tampering function A : {0,1}¢ — {0, 1}4
with no fixed points, we have

|[snmExt(X,Uy) o snmExt(X, A(Uy)) o Uy

— U, o snmExt(X, A(Uy)) o Uyl <,

where U, is independent of Uy and X.

Alternatively, if the tampering function acts on the inputs
to a seedless extractor, then we get the notion of seedless

'We focus on affine sources over the field Fo. For larger fields there are
constructions with better parameters.



non-malleable extractors. This was first introduced by Cher-
aghchi and Guruswami [28] for the model of two independent
sources:

Definition 1.4 ( [28]). A function nmExt : ({0,1}™)¢ —
{0,1}™ is a (k,e)-seedless non-malleable extractor for C
independent sources, if it satisfies the following property:
Let X1,---,Xc be C independent (m,k) sources, and
fisoofe + {0,1}™ — {0,1}™ be C arbitrary tampering
functions such that there exists an f; with no fixed points,
then

[nmExt(X1, -, X¢) o nmExt(f1(X1), -
— U o nmExt(f1(X1), -, fo(X2))| <e

7fC(X2))

Chattopadhyay and Li [21] adapted the definition to affine
sources and affine tampering, thus leading to affine non-
malleable extractors:

Definition 1.5 ( [21]). A function anmExt : {0,1}" —
{0,1}™ is a (k,¢€) affine non-malleable extractor if for any
affine source X with entropy at least k£ and any affine function
f:{0,1}" — {0,1}"™ with no fixed point, we have

|anmExt(X) o anmExt(f(X)) — U,, o anmExt(f(X))| <e.

Using the probabilistic method, one can prove the existence
of all these non-malleable extractors with excellent parameters.
For example, [45] showed that seeded non-malleable extractors
exist when k > 2m + 2log(1/¢) +logd + 6 and d > log(n —
k+ 1) 4 2log(1/e) + 5. [28] showed that two source non-
malleable extractors exist for (n, k) sources when k > m +
3log(1/e) + O(1) and k > logn + O(1). Similarly, it can
be also shown that affine non-malleable extractors exist for
entropy k > 2m + 2log(1/e) +logn + O(1).

However, constructing explicit non-malleable extractors
turns out to be significantly harder than constructing standard
extractors, despite considerable effort [18], [19], [21], [33]-
[351, [37]-[39], [44]1, [72], [73], [79], [80]. Previously, the
best explicit seeded non-malleable extractors are due to Li
[79], [80], which achieve k > C’(log}ogn + alog(1/e)),
d = O(logn) + log(1/¢)2C((loglog(1/€))=) and output length
Q(k), for some constant C' > 1 and any integer a € N; or
k > C(loglogn + loglog(1/€)log(1/€)) and d = O(logn +
loglog(1/e)log(1/e)) for some constant C' > 1. For two
source non-malleable extractors, the best explicit constructions
are due to Li [80] and Chung, Obremski, Aggarwal [31]. The
former achieves k > (1 — v)n with error 2-(nloglogn/logn)
and output length €2(n), for some constant v € (0, 1); while
the latter achieves k; > (% + 7)n for the first source,
ko > Clogn for the second source, with some constants
C > 1,7 € (0,1), error 2~ min(k,k2) 2V and output length
Q(min(kq, k2)). The only known explicit affine non-malleable
extractor is given in [21], which achieves entropy k > n — n®

for some constant 0 € (0, 1), error 27" and output length
Q(1)
n*t),

c) Privacy amplification with an active adversary.: The
basic problem of privacy amplification was introduced by
Bennett, Brassard, and Robert [12]. The situation arises where
two parties with local (non-shared) uniform random bits aim
to convert a shared secret weak random source X into shared
secret uniform random bits. This is achieved by a communica-
tion protocol, which is watched by an adversary with unlimited
computational power. Such protocols are important in various
applications such as quantum key distribution. While standard
strong seeded extractors provide optimal one-round protocols
for a passive adversary (i.e., an adversary who can only see
the communications but cannot change them), they fail badly
for an active adversary (i.e., an adversary who can arbitrarily
change, delete and reorder messages). The main goal for the
latter case is to design a protocol that uses as few number of
interactions and as few bits of communications as possible, and
achieves a shared uniform random string R which is as long as
possible. In this context, the difference between H,(X) and
the length of the output is defined as the entropy loss, together
with a security parameter s, which ensures that the probability
that any active adversary can successfully cause the two parties
to output two different strings without being detected is at
most 27°. On the other hand, the two parties should achieve
a shared secret string that is 27°-close to uniform, if the
adversary remains passive. We refer the reader to [44] for a
formal definition.

A long line of work has been devoted to this problem [16],
(18], [19], [33]-[35], [37], [39], [43]-{45], [66], [72]. [73],
[76], [79], [80], [82], [89]. In contrast to a passive adversary,
here one round protocol can only exist when the entropy rate
of X is bigger than 1/2, and the protocol has to incur a large
entropy loss. For a source X with entropy rate smaller than
1/2, [45] showed that any protocol needs at least two rounds
with entropy loss at least 2(s), and communication complexity
at least Q(logn + s). Achieving a two-round protocol that
asymptotically match these parameters for all possible security
parameters s is thus the ultimate goal (note that s can be at
most Q(k) where k = H,,(X)). Previously, the best known
protocol is due to Li [80], which achieves two rounds with
entropy loss O(log log ?—ks), with communication complexity
O(logn) +s20(@(loe5)=) for any constant integer a > 2 and s
up to Q(k); or communication complexity O(logn + slog® s)
for s up to Q(k/loglogk).

d) Non-malleable codes.: Non-malleable codes, intro-
duced by Dziembowski, Pietrzak and Wichs [50], are a
generalization of standard error correcting codes to handle
much larger classes of tampering. Informally, such a code is
defined with respect to a specific family of tampering functions
F. The code consists of a randomized encoding function E
and a deterministic decoding function D, such that on any
modified codeword f(F(x)) obtained from some function
f € F and some message z, the decoded message ' =
D(f(E(x))) is either the original message x, or e-close to a
completely unrelated message. [50] shows that non-malleable
codes have applications in tamper-resilient cryptography, and



most notably, they can provide security guarantees even if the
adversary can completely overwrite the codeword.

Even with this relaxation, it can be seen that no non-
malleable codes can exist if J is completely unrestricted.
However, such codes do exist for many broad families of
tampering functions. By now the study of non-malleable codes
has grown into a large field with numerous publications, and
we only survey some of the most related previous works here.
One of the most natural and well studied families of tampering
functions is the so called split-state model, where a k-bit
message x is encoded into ¢ parts of messages y1, - - - , Yy, €ach
of length n, so the rate of the code is k/(tn). The adversary is
then allowed to arbitrarily tamper with each y; independently.

This model arises in many natural applications, for example
when the y;’s are stored in different parts of memory. Non-
malleable codes in this model are also used in various non-
malleable secret sharing schemes [56]. Obviously, the case of
t = 1 corresponds to unrestricted tampering functions, and
it is not possible to construct non-malleable codes. Thus the
case of t = 2 is the most general and interesting setting. [50]
first proved the existence of non-malleable codes in the split-
state model, while Cheraghchi and Guruswami [27] showed
that the optimal rate of non-malleable codes in the 2-split-
state model is 1/2. Following a long line of research [1]-[5],
[18], [24], [49], [58], [67], [79], [80], Li [80] gave the first
explicit construction in the 2-split-state model with constant
rate and constant error €, while Aggarwal and Obremski [5]
improved the error to be negligible € = 2=+ The current
best construction is due to [4], which achieves rate 1/3 and
error € = 2~ k/ 108k,

In [21], Chattopadhyay and Li studied the model where
the tampering function is any arbitrary affine function on the
entire codeword (instead of acting on 2 parts of the codeword
independently). They give an explicit non-malleable code with
rate =21 and error 2-5"" | which remains the best known
construction to date.

e) Hardness against read-once linear branching pro-
gram.: Branching programs are natural models to measure
the space complexity of computation. A standard branching
program is a directed acyclic graph with one source and two
sinks (labeled by 1 and 0), where each non-sink node is
marked with an index of an input bit and has out-degree 2. One
outgoing edge is labeled by 0 and the other is labeled by 1. For
any input, the computation of the branching program follows
the natural path from the source to one sink, by reading the
corresponding bits and going through the corresponding edges,
and the input is accepted if the path ends in the sink with label
1. The size of the branching program is defined as the number
of its nodes, which roughly corresponds to 29(*) for space s
computation.

Unfortunately, proving non-trivial size lower bounds of
explicit functions for general branching programs (e.g., those
that can separate P from LOGSPACE) seems beyond the reach
of current techniques, hence essentially almost all research has
been focusing on restricted models. Among these, the most
well studied model is that of read once branching program,

or ROBP for short. In this model, in any computational path,
each bit of the input is read at most once. Non-explicitly,
an optimal lower bound of size ©(2"71°8") is known [6].
Explicitly, several previous works gave exponential lower
bounds [6], [13], [46], [55], [60], [61], [68], [84], [92], [95],
[97]. However, the best known lower bound for an explicit
function, due to Andreev, Baskakov, Clementi and Rolim [6],
is only 2n=0(cg"n) and the bound of 27~°O0en) is only
known for a function in DTIME(200es" ™)) A P /poly.

Recently, motivated by strengthening tree-like resolution
refutation lower bounds and average case lower bounds for
parity decision trees, Gryaznov, Pudldk, and Talebanfard [57]
introduced the model of read once linear branching programs
(ROLBP for short), where the queries on each computational
path are generalized to be linear functions. To enforce the read
once property, [57] defined two kinds of ROLBPs: a strongly
ROLBP requires that at any node, the span of the linear queries
on all paths leading to this node has no non-trivial intersection
with the span of the linear queries on all paths starting from
this node, while a weakly ROLBP only requires that the linear
query at any node is not in the span of the linear queries on
all paths leading to this node. It can be seen that both kinds
of ROLBPs are generalizations of standard ROBPs.

[57] gave an explicit function which requires strong

ROLBPs of size 2(2"/3), which was subsequently improved
by Chattopadhyay and Liao [23] to gn—log?®n 2

A. Our Results

We improve all of the above results, achieving asymptoti-
cally optimal constructions in almost all cases (except seedless
non-malleable extractors, and the error and output length of
seedless extractors). We list our main results according to the
order of the areas that appear in the introduction.

a) Seedless extractors.: Our results for seedless extrac-
tors can be summarized as follows.

Theorem 1.6. For every constant € > 0 there exists a constant
¢ > 1 and an explicit extractor TExt : {0,1}*" — {0, 1} with
error €, for the interleaving of two independent (n, k) sources
such that k > clogn.

Theorem L.7. For every constant € > O there exists a constant
¢ > 1 and an explicit extractor SumsetExt : {0,1}" — {0,1}
with error €, for the sum of two independent (n,k) sources
such that k > clogn, or an affine source on n bits with
entropy k > clogn.

Theorem L.8. For every constant € > 0 there exists a constant
¢ > 1 such that for every s > 0 there exits an explicit extractor
SpExt : {0,1}™ — {0, 1} with error €, for space-s sources on
n bits with min-entropy k > 2s + clogn.

All of the above theorems achieve asymptotically optimal
entropy in the corresponding models. In addition, Theorem 1.6
immediately gives the following corollary about explicit Ram-
sey graphs.

2In fact, these results also give average-case hardness for strongly ROLBPs.



Corollary 1.9. There is a constant ¢ > 1 such that for every
integer N there exists a (strongly) explicit Ramsey graph on N
vertices with no clique or independent set of size K = log® N.

b) Non-malleable extractors.: Our results for non-
malleable extractors are summarized as follows.

Theorem 1.10. For any constant v > 0 there is a constant
C > 0 such that for any 0 < ¢ < 1 with k > C'log(d/e)
and d = Clog(n/e), there is an explicit strong seeded non-
malleable extractor for (n, k) sources with seed length d, error
€ and output length W

This theorem achieves asymptotically optimal parameters in
all aspects. In fact, we can also extend it to the stronger notion
of t-non-malleable seeded extractors. Next we have seedless
non-malleable extractors.

Theorem L.11. There exists a constant C > 1 such that for
any constant 0 < v < 1 and k > Clogn, there exists an
explicit construction of a (3 + v)n, k,27%®) 1wo-source
non-malleable extractor with output length Q(k).

This theorem improves both constructions in [80] and [31].
Specifically, like in [31], we can also handle the case where
the second source only has logarithmic min-entropy, while we
improve the entropy rate of the first source from 4/5 4 ~
in [31] and 1 — + in [80] to 2/3 + . Simultaneously, the
error is also improved to an optimal 2-%(*)  from PRI
in [31] and 2~ (klogloghk/logk) in [80]. We note that for
applications in non-malleable codes, we don’t really need
such small entropy (any linear entropy suffices), but such two
source non-malleable extractors have applications in privacy
amplification with tamperable memory, see [31] for details.

Theorem 1.12. There exists a constant 0 < v < 1 such that
Sor any n € N, there exists an explicit construction of a ((1 —
Y)n, 279(”)) affine non-malleable extractor with output length

c) Privacy amplification.: Combining our optimal seeded
non-malleable extractor with the protocol in [45], we get the
following theorem.

Theorem 1.13. There exists a constant 0 < o < 1 such
that for any n,k € N, there is an explicit two-round privacy
amplification protocol in the presence of an active adversary,
that achieves any security parameter s < ak, entropy loss
O(loglogn+s), and communication complexity O(logn—+ s).

Our two-round protocol achieves asymptotically optimal pa-
rameters in all aspects, for security parameter up to s = Q(k).
The O(loglogn) term is the best possible if using the two-
round protocol in [45]. This follows from the use of a message
authentication code (MAC) that authenticates the seed of a
strong seeded extractor with security parameter s, which has
at least Q(log n) bits. Thus the MAC requires a key of length
at least loglogn + s. See [45] for more details.

d) Non-malleable codes.: Using our seedless non-
malleable extractors, we also get new constructions of non-

malleable codes.

Theorem 1.14. For any n € N there exists a non-malleable
code with efficient encoding and decoding against 2-split-state
tampering, which has message length k, block length 2n, rate
k/(2n) = Q(1) and error 2-2%),

Theorem L.15. For any n € N there exists a non-malleable
code with efficient encoding and decoding against affine
tampering, which has message length k, block length n, rate
k/n = Q(1) and error 2~ k),

Both theorems are asymptotically optimal. Theorem I.14
achieves a smaller constant rate than the rate 1/3 construction
in [4], but improves the error from 2-#/108°k o 2-Q(k),
Theorem 1.15 significantly improves the construction in [21],
with rate only &—*1) and error 2-*""".

e) Hardness against read once linear branching pro-
gram.: Our sumset extractor directly gives a hard function
for strongly ROLBPs (in fact with any constant average-case
hardness). We have

Theorem 1.16. There is an explicit function SumsetExt :
{0,1} — {0,1} that requires strongly read once linear
branching program of size 2"~9Uogn),

Our result improves the results of ©(2"/%) in [57] and
gn—log®Mn i [23]. Clearly, it also gives the first explicit
function that requires standard ROBPs of size 27— OUogn)
improving the previously best known result of gn—0O(log” n)
in [6]. By the ©(2"~1°2™) bound for standard ROBPs [6], our
result is optimal up to the constant in O(.). We remark that our
affine extractor also directly gives an asymptotically optimal
2n=0(logn) gjze Jower bound for DNF circuits with a bottom
layer of parity gates, by the result in [41].

B. Overview of the Techniques

Before explaining our new ideas, we first recall the con-
nections and reductions established in previous works. This
allows us to reduce all the problems to a couple of central
pseudorandom objects.

a) Connections between different pseudorandom objects
and applications.: Non-malleable extractors have direct mo-
tivations and applications in cryptography. For example, [45]
shows that an optimal seeded non-malleable extractor gives
an optimal two-round privacy amplification protocol with an
active adversary. Similarly, [27] and [21] show that good two-
source and affine non-malleable extractors give non-malleable
codes against 2-split state tampering and affine tampering. The
idea is simple: the encoding function is to uniformly sample a
pre-image of the message under the extractor function, and the
decoding function is the extractor itself. Reducing the average
case error of the extractor to the worst case guarantee of the
code blows up the error € to 2™e where m is the output length
of the extractor. Thus, to achieve a constant rate it is crucial
to have an exponentially small error ¢ = 2~2(") while it
is enough to work for any linear entropy k& = (n). For
hardness against strongly ROLBPs, [23] observed that, just



like a standard ROBP, if one conditions on an internal node,
then the programs before and after this node correspond to
two independent sources. Hence this reduces the question of
finding a hard function to the question of constructing a good
extractor for the sum of two independent sources.

Yet, previous works also established more surprising, and
unexpected connections between non-malleable extractors and
standard seedless extractors, which have been the underlying
source of most of the recent progress on extractor theory.
Specifically, the first such connection was established be-
tween seeded non-malleable extractors and two-source (and
more generally independent source) extractors by Li [72],
[74], [75], where he showed sufficiently good seeded non-
malleable extractors imply improved two source extractors.
Using techniques from non-malleable extractors, this has led
to Li’s construction of the first explicit extractor for three
independent (n, k) sources with k > logo(l) n, output length
Q(k) and error 9=k [74]. The construction uses two sources
to produce a somewhere random source with n°1) rows,
such that there exist a large fraction of (almost) uniform
rows, and these rows are almost ¢-wise independent for some
t= logo(l) n. The third source is then used to extract random
bits from this somewhere random source.

Chattopadhyay and Zuckerman [26] further formalized this
connection, and brought in another key improvement by
applying a resilient function directly to the somewhere ran-
dom source, thus giving the first two source extractor for
k > logo(l)n with error n=%(1), Afterwards, a series of
works [10], [19], [33], [40], [78] improved the reduction
and eventually, [10] establishes that an optimal seeded non-
malleable extractor® would give a two source extractor for en-
tropy O(logn). Later, Li [79] further established a connection
between two source non-malleable extractors and seeded non-
malleable extractors, which roughly says the following: a two
source non-malleable extractor for any constant (less than 1)
entropy rate with error 2~ would give an optimal seeded
non-malleable extractor. Again, it is crucial here to have an
exponentially small error of 2~(") while the entropy rate
can be any constant less than 1. Finally, these connections
have been roughly extended to extractors for the sum of two
independent sources in [23].* In summary, by the established
connections, all the problems can be reduced to constructing
explicit two-source and affine non-malleable extractors for any
constant (less than 1) entropy rate with error 27",

b) Our new ideas.: Most of the above connections have
been known for a while, yet the goal of constructing two-
source non-malleable extractors with error 2~*(") has been
elusive so far. Indeed, more and more sophisticated techniques
were developed in [19], [33], [37], [38], [40], [79], [80],
only resulting in the construction in [80] which achieves error
2~ nloglogn/logn) The bottleneck comes from the fact that

3More accurately, a seeded non-malleable extractor against multiple tam-
pering.

4 [23] actually reduces extractors for sumset sources to good correlation
breakers, which are building blocks in two-source non-malleable extractors.
We ignore these technical details here.

all these constructions are based on some kind of alternating
extraction using an advice string. To get error € the length
of the advice string is provably at least log(1/¢), while the
alternating extraction appears to need at least some growing
function f(log(1/¢)) number of steps, where each step needs
at least log(1/¢) entropy. This result in a total entropy of
f(log(1/€))log(1/€). Since the total entropy is < n and f is
a growing function, this falls short of achieving error 2~ ("),

Luckily, there is one previous work by Chattopadhyay and
Zuckerman [24] which does achieve error 2~2(") Their const-
sruction relies on techinques from additive combinatorics, and
does not use alternating extraction. However, their construction
(CZExt for short) only gives a non-malleable extractor that
requires 10 independent (n,k) sources with k > (1 — y)n
for some constant v > 0. In addition, the tampering function
has to act independently on each of the 10 sources, thus it is
not a prior clear that this can give us anything for two source
non-malleable extractors. Nevertheless, this construction is our
starting point to provide the last missing link in the complete
picture.

Essentially, we show how to get some kind of independence
from just one weak source and an arbitrary function tampering
with this source. To illustrate the basic idea, it helps to start
with the example where X is a uniform random string over
{0,1}™, while f: {0,1}" — {0,1}" is any linear tampering
function. Let us divide X evenly into ¢ blocks X = X; o

- o Xy, where each X; has m = n/{ bits. Consider the
tampered input X’ = f(X) = X{o---0 X/ It is easy to
see that there are linear functions {f%}; je(q such that for
any i € [0], X = 3.y f7(X;). If for some i € [(] there
exists a j € [f],j # ¢ such that H(f%(X;)) > dm for any
constant ¢ > 0, then since X; and X; are independent, we
have H(X; o X/) > H(X;) + H(f"(X;)) > (1 + &)m. This
implies that the conditional entropy H (X;|X/) is at least (1+
d)m —m = om. In this case, we can apply an affine extractor
for any linear entropy in [15], [71], [96], so that the output on
X; is close to uniform conditioned on the output on X]. This
already achieves some kind of non-malleable extractor.

On the other hand, if for any ¢ € [¢] and any j € [{],j # i,
we have H(f%(X;)) < dm, then we can fix all f%/(X;) where
i # j. Note that conditioned on this fixing, the X;’s are still
independent, and furthermore the fixing does not cause any X;
to lose much entropy. Specifically, each X; still has entropy
at least (1 — ¢6)m. Most importantly, with this fixing, each
X! is now a deterministic function of X;! Thus, as long as ¢6
is small, we have obtained ¢ independent weak sources {X;}
with ¢ tampering functions acting on each X; independently.
Taking ¢ = 10 for example, at this point we can apply the
function CZExt to the X;’s, and the output will again be
close to uniform even conditioned on the output on the X/’s.
Thus, if we combine the outputs in both cases, we get a
somewhere random source with £+ 1 rows such that one row
is close to uniform conditioned on the corresponding row in
the tampered output. We call this a non-malleable somewhere
random source. With this object, it is now relatively easy to
finish our construction using existing techniques.



In summary, the high level key new idea of our constructions
can be roughly stated as the following result of dichotomy,
which leads to a “win-win” situation: divide a weak source X
with sufficiently high entropy into ¢ blocks X = Xj0---0Xy,
and consider the tampered version X’ = f(X) = X{o---0X].
Then either (1) (in the case where f “mixes” the X;’s well)
there exists an ¢ € [¢] such that X;| X/ has large entropy, or (2)
(in the case where f doesn’t mix the X;’s well) Xjo0---0 X}
can be viewed as independent sources and f can be viewed
as ¢ functions f = ¢y o --- o gy where each g; acts on X
independently.

However, making this idea formally work requires non-
trivial techniques in both the constructions and the analysis.
We now explain more technical details below.

c) Affine non-malleable extractors.: The previous anal-
ysis about a uniform random string X can be relatively
easily adapted to a high entropy affine source with slight
modifications. Specifically, given an affine source on n bits
with entropy k = (1 —~)n for some small constant v > 0, we
now divide it into say ¢+ 1 blocks X = Xj0---0Xp0Xpy1,
where each X; for ¢ € [{] has 3yn bits and X,;q has
(1 — 3v¢)n bits. Since £ = 10 is a constant, we can choose a
small constant 7 and make sure the size of X,; is much
larger than the X;’s. The plan is to use Xj o --- 0 Xy to
generate the non-malleable somewhere random source, and
then use Xyi; to extract random bits. However, one issue
here is that X; o --- o X, may be the same as X] o--- o X/,
in which case it is impossible to generate the non-malleable
somewhere random source. To fix this, as in previous works,
we need to first generate a small advice string o from X such
that o # o' with probability 1 —22(™) where o is the advice
string generated from X’. We also need to keep the entropy
of X and the structure of an affine source conditioned on the
generation of the advice strings. This turns out to be even
trickier than the case of two-source non-malleable extractors,
and we end up using two more blocks from X and an improved
advice generator for affine tampering based on that in [21]. To
explain our main ideas we ignore these technical issues here,
and refer the reader to the full version for details.

Now assume that we have already generated the advice
string «, and X still has entropy (1 — v)n. The blocks of
X are no longer independent in general, but we show it is a
convex combination of independent sources. Specifically, we
view X as the uniform random string subject to yn affine
constraints. Conditioned on the fixing of the corresponding
part of each constraint in each block, all blocks become
independent. We can now do the same analysis as before. If
for some ¢ € [{] there exists a j € [¢ 4+ 1],j # i such that
H(f%(X,)) is large, then H(X;|X]) is also large. Otherwise,
we can fix all the fY(X;)’s with i € [{],j € [+ 1] and
i # j. Conditioned on this fixing, the X;’s are still independent
with high entropy, and now all the X/’s with i € [{] are
deterministic functions of the X;’s. Thus we can apply an
affine extractor to each X; with ¢ € [£] and apply CZExt to
{Xioa},cjq (the concatenation with av ensures no fixed points
with high probability). Combining all the outputs, we get a

non-malleable somewhere random source R with a constant
num})e;r of rows, where each row has Q(n) bits with error
2—(2 n)

Note that R and the tampered version R’ are deterministic
functions of {X;};cq and {X[}ic[g. As long as X,y has
large enough entropy compared to the total size of {X;}cy
and {X/},cjq, a standard argument shows that there is an
affine source A contained in Xyy; which is independent
of {X;}icq and {X]}ic[q, and one can use linear seeded
extractors to do alternating extraction between R and X, to
break the correlations. Indeed we apply an affine correlation
breaker, such as those developed in [22], [78] to Xyy; and
each row of R, using the index of the corresponding row as
the advice string, and finally take the XOR of all outputs. We
argue that the output is non-malleable as follows. Without loss
of generality assume that the first row of R (denoted by R;) is
close to uniform conditioned on the first row of R’ (denoted by
R}). We first fix R} and all the outputs produced in the affine
correlation breaker with X7, and Rj. By using linear seeded
extractors appropriately and keeping the output length to be
small, we can ensure that (1) the affine structure of the sources
is preserved, (2) A still has high entropy and is independent of
{Xi}iepg and {X[}icpq, and (3) Ry is still close to uniform.
Now the affine correlation breaker guarantees that the output
from (X4 1, R1) is close to uniform given all the other outputs
from (Xy11, R) and (X}, R’). Therefore once we take the
XOR of the outputs, the string produced from X is close to
uniform conditioned on the string produced from X’. The key
point is that R only has a constant number of rows, thus the
index of each row only has a constant number of bits, and
Ry and X, y; has Q(n) entropy. Hence, we can achieve error
2~ with output length Q(n).

d) Two-source non-malleable extractors.: The case of
two-source non-malleable extractors is more complicated, as
here we don’t have the nice structure of affine sources. Again,
we ignore the issue of generating advice strings, and assume
that we are given an advice string a € {0,1}%(™ such that
o # o with probability 1 — 2%(") where o is the advice
string generated from the tampered inputs.

We show how to use a single source and the advice string
to generate a non-malleable somewhere high entropy source,
which is a source R with a constant number of rows, each
row with Q(n) bits, and there exists a row ¢ such that
Ho(R;|R;) > Q(n) (again R’ is the tampered version). We
call this function a non-malleable somewhere condenser with
advice. This is similar in spirit to, and can be viewed as the
non-malleable analogue of the reduction given in [8], which
shows how to turn an independent source extractor into a
somewhere condenser, that converts any weak random source
with any linear entropy into a constant number of rows such
that one row has entropy rate 0.9.

Specifically, given an (n, k) source X with k > (1 — 8)n
for some small constant § > 0, let us again divide X evenly
into £ = 10 blocks X = X; 0---0X, where each X; has m =
n/¢ bits. The non-malleable somewhere condenser produces
a random variable R with ¢ + 1 rows, where for each i € [{],



R, = X, and R@+1 = CZEXt(Xl oa, -+ ,0Xp0 a).

The analysis is more subtle and relies on carefully dividing
X into a convex combination of subsources. Let X' = X] o

-0 X, be the tampered input. Without loss of generality
assume X is the uniform distribution on a set S C {0,1}"
with size 2=8)7_ Similar to [8], for each i € [4], we define
H; to be the set which contains heavy elements in the support
of (X;,X]), e.g., Hi = {(y,y') € {0,1}*™ : Pr[(X;, X]) =
(y,y)] > 2-(+38)m1 We divide S into two subsets: S’ =
{r €8 :3i(x;,z}) ¢ H;} and S” = {x € S : Vi, (x,2}) €
H;} = S\ S If either S’ or S” is small, e.g., has size at
most 2(1=8)7=8m then we can safely ignore it since it only
has probability mass at most 27#™ . Otherwise we consider S’
and S” separately, since X is just a convex combination of
the uniform distributions over S’ and S”.

S’ is relatively easy to handle. Given that [S'| >
2(=B)n=Fm " if we divide S’ into disjoint subsets by group-
ing all x € S’ with the same smallest index i such that
(x;,2}) ¢ H; together, then on average each subset has size
roughly 2(1*m"*ﬁm/€. Since all elements in the subset are
light elements, the uniform distribution over the subset has
min-entropy at least (1 + 38)m — fm —log? > (1 + B)m.
This means that if we consider the subsource corresponding
to the uniform distribution over each subset, then roughly
Heo (Xi|X]) > fm = Q(n).

Taking care of S” is much trickier. In this case, we
want to argue that somehow, X, .-, X, can be viewed as
independent sources and the tampering function f can be
viewed as f = ¢; o --- o g, where each g; acts on X;
independently. Note that in this case, for any x € S” and any
i € [(], we have (x;,2;) € H;. Our first step is to remove
those elements = € S” such that there exists an ¢ € [/]
and too many y € {0,1}™ (say > 267+68m guch 5s)
where (z;,vy’) € H;. Intuitively, these are the strings where
the tampering function f mixes too much entropy from the
blocks {X;,j # i} into X/, and thus are bad for our purpose.
By definition of H;, for any ¢ we have |H;| < 2(1+38)m,
Hence the number of such x’s cannot be too large, and is
at most E2(1+3[3)m/2[3’n+66m . 2((—1)m < 2(1—,8)n—2,8m. Thus,
removing these strings only cause X to lose probability mass
at most 2728m,

Let S* be the subset of S after removing the bad strings.
It is clear that S* still has a large size, ie., |S*| > (1 —
2= fAm)g(I=Fn=Fm ~ on=2t6m We now consider X*, the
uniform distribution over S*, and X™* = f(X*). Let S;
be the support of X. The large size of S* guarantees that
each S; also has large size, in fact |S;| > 2(1=2t6)m e
now consider the sources (Y7,Ya,---,Yy) where each Y; is
the independent uniform distribution over S;. To construct
the functions g1,--- , gy, for any y € S; we define the set
wY = {y € {0,1}™ : yoy € H;}. Since we have
removed the bad z’s, we now have |W/| < 28n+68m for
any ¢ and any y € S;. We now consider a random function
g=(g',9% - ,g") where for any i € [¢] and any y € S;, let
g'(y) be a random element independently uniformly chosen
from W7. For all other y € {0,1}™ let g'(y) = 0™.

With the random functions, for any =z € S* we have
Prl(,a') = (x,9(x))] > (2710n09m) > 2=T6n by the
independence of the ¢g*’s. Now by linearity of expectation,
there exists a subset V' C S* with |[V| > 277n|5*| >
270U, 0] S| such that for any = € V, (2,2/) =
(x,g(x)). We can now remove the set V' from S* and repeat
the above process. As long as there are at least 2757 S%|
strings left, the same argument will give us a new set V C S*
with |[V| > 2’0(55”)Hi6[g]|5i| and a new function g =
(g%, 9%, - ,g") such that for any z € V, (z,2) = (z, g(x)).
Repeat this process until there are less than 2757 |S*| strings
left, and we have divided S* into large disjoint subsets
{V, € {0,1}",q € Q} with (-split state tampering functions
{9, : ({0,1}™)¢ — ({0,1}™)%,q € Q}, and a small subset
left with less than 27°7|S*| strings.

Observe that X* is 27 #"-close to a convex combination of
the uniform distributions on {V,,q € Q}, while each subset
V, has large density in the set II;c[4S;. Since each S; itself
is large, with an appropriate choice of parameters, we can
ensure that for any g € Q, CZExt(Yi0a,Ys0q, -+ ,Y,0a) is
close to uniform conditioned on CZExt(g,(Y1) o o/, g4(¥Y2) o
o, -+ ,9q(Ye) o o). We then show that conditioned on the
event (Y7,Ys,---,Yy) € V,, CZExt(Y1 o, Yo 00r,--- , Yy 0
«) is close to having min-entropy (n) conditioned on
CZExt(gq(Y1) 0 @/, g4(Y2) 0 &/, -+, gq(Y2) o ). This takes
care of S”.

Ignoring the error (which is 22(")) and the issue of convex
combination of subsources, we have now obtained a non-
malleable somewhere condenser. The rest of the construction
and analysis is relatively straightforward. In the actual con-
struction, we will divide X into more blocks, for example
X = X;0---0Xy0 Xppq where each X; has Q(n) bits,
but X,i; has much larger size compared to the previous
blocks. We use (Xi,---,X/) to obtain the non-malleable
somewhere high entropy source with a constant number of
rows. Then, using sum-product theorem based condensers in
[8], [87], [98], we can boost the conditional min-entropy
rate from €2(1) to 0.9, while only increasing the number
of rows by a constant factor. At this point we apply an
extractor by Raz [87] to each row and the second source
Y, which effectively converts the non-malleable somewhere
high entropy source into a non-malleable somewhere random
source. Fix (X1, --,X,) and (X7, ---, X}), we argue that X
and Y are still independent, and X, has enough entropy left.
We can now use the non-malleable somewhere random source
and a standard correlation breaker to extract uniform random
bits from X, ;, thus achieving a two-source non-malleable
extractor by a similar argument as that of the affine non-
malleable extractor. Again, the key point is that the somewhere
random source only has a constant number of rows, and each
row and X, has Q(n) entropy. Hence, we can achieve error
2-%") with output length Q(n).

The above gives a two-source non-malleable extractor for
entropy rate 1 — 5 with some small constant 3 > 0. We can
decrease the entropy of the first source to k1 > (2/3 + v)n
and the entropy of the second source to ks > O(logn) by first



taking a slice of the first source with size n/3, then applying
the sum-product theorem based condensers in [8], [87], [98],
Raz’s extractor [87] to the second source, and a strong seeded
extractor (e.g., those in [59]) to the first source to boost the
entropy rate. This will result in a constant number of rows
in both sources such that there exists one row where both
sources have very high entropy rate. We can then apply the
advice generator, our new two-source non-malleable extractor
for entropy rate 1 — /3, and finally the correlation breaker and
taking the XOR of the outputs.

e) Efficiently sampling the pre-image.: For applications
in non-malleable codes, we need to design efficient algorithms
to sample uniformly from the pre-image of any output of
our seedless non-malleable extractors. Thus we appropriately
modify our extractors, roughly following the same approach
as in [79]. However, to achieve error 2*9(”), we can no
longer use a Reed-Solomon code in the advice generator,
since this only achieves error 2~("/198™) Instead, we use
an asymptotically good linear binary code whose dual code is
also asymptotically good. This implies that for some constant
n > 0, any 7 fraction of columns in the generator matrix are
linearly independent.

II. CONCLUSION AND OPEN PROBLEMS

Our results partially finish several long lines of research
projects, which are contributed by numerous researchers and
publications. The connections discovered in these projects are
amazingly broad. Indeed the techniques that culminated in
our main results span areas like pseudorandomness, additive
combinatorics, Fourier analysis, cryptography, coding theory
and so on.

There are still interesting and important open problems left.
For example, one natural open question is to improve the
output length and error of the seedless extractors. Currently
for asymptotically optimal entropy, our constructions can only
output 1 bit (or a constant number of bits by the techniques
in [78]) with constant error, while it is desirable to achieve
negligible, or exponentially small error in cryptographic ap-
plications. Interestingly, improving the error may also lead to
an improvement in output length by the techniques in [78].
As observed in previous works, one possible approach is to
design t-non-malleable extractors with better dependence on ¢,
which appears to be a challenging problem. One could also ask
if we can construct explicit two-source extractors with entropy
logn + O(1), which would give optimal Ramsey graphs. For
non-malleable codes it would be interesting to improve the
rates of our codes to optimal. Finally, it is always interesting
to find other applications of the pseudorandom objects studied
in this paper.
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