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Abstract—A long line of work in the past two decades or so
established close connections between several different pseudo-
random objects and applications, including seeded or seedless
non-malleable extractors, two source extractors, (bipartite) Ram-
sey graphs, privacy amplification protocols with an active adver-
sary, non-malleable codes and many more. These connections
essentially show that an asymptotically optimal construction of
one central object will lead to asymptotically optimal solutions
to all the others. However, despite considerable effort, previous
works can get close but still lack one final step to achieve truly
asymptotically optimal constructions.

In this paper we provide the last missing link, thus simulta-
neously achieving explicit, asymptotically optimal constructions
and solutions for various well studied extractors and applications,
that have been the subjects of long lines of research. Our results
include:

• Asymptotically optimal seeded non-malleable extractors,
which in turn give two source extractors for asymptotically
optimal min-entropy of O(log n), explicit constructions of

K-Ramsey graphs on N vertices with K = logO(1)
N , and

truly optimal privacy amplification protocols with an active
adversary.

• Two source non-malleable extractors and affine non-
malleable extractors for some linear min-entropy with
exponentially small error, which in turn give the first explicit
construction of non-malleable codes against 2-split state
tampering and affine tampering with constant rate and
exponentially small error.

• Explicit extractors for affine sources, sumset sources, inter-
leaved sources, and small space sources that achieve asymp-
totically optimal min-entropy of O(log n) or 2s+O(log n)
(for space s sources).

• An explicit function that requires strongly linear read once

branching programs of size 2n−O(logn), which is optimal up
to the constant in O(·). Previously, even for standard read
once branching programs, the best known size lower bound

for an explicit function is 2n−O(log2 n).

Index Terms—extractor, non-malleable, two-source, Ramsey
graph, affine

I. INTRODUCTION

This paper studies a wide range of pseudorandom objects

and applications. We first briefly survey each of them, and

then state our main results.

Supported by NSF CAREER Award CCF-1845349 and NSF Award CCF-
2127575.

a) Randomness Extractors.: Through decades of study,

randomness extractors have become fundamental objects in

the area of pseudorandomness, with intimate connections to

other areas such as cryptography, complexity theory, combi-

natorics and graph theory, and so on. The original motiva-

tion of randomness extractors comes from bridging the gap

between uniform random strings required in many applica-

tions, and poor quality random sources available in practice.

We use the following standard definition, where the min-

entropy of a random variable X is defined as H∞(X) =
minx∈supp(X) log2(1/Pr[X = x]). For X ∈ {0, 1}n, we call

X an (n,H∞(X))-source, or an H∞(X)-source when n is

clear from context, and we say X has entropy rate H∞(X)/n.

The goal is to extract almost uniform random bits from weak

random sources. Unfortunately, no deterministic extractor can

exist when the input is a single general weak random source

even with min-entropy k = n − 1. Hence, the study of

randomness extractors has been focusing on several relaxed

models. For example, Nisan and Zuckerman [83] introduced

the notion of seeded extractors, where the extractor has access

to an additional independent short uniform random seed.

Typically, we require the seeded extractor to be strong in the

sense that the output of the extractor is close to uniform even

conditioned on the seed. It can be shown that there exist strong

seeded extractors with excellent parameters, and we now have

almost optimal constructions (e.g., [47], [48], [59], [81]) after

a long line of research.

Although seeded extractors have proven to be quite useful,

in certain applications (e.g., cryptography) even the short

uniform random seed is undesirable, thus another relaxed

model is to put more restrictions on the weak source, and

construct deterministic or seedless extractors for a certain class

of weak sources. We have the following definition.

Definition I.1. Let X be a family of distribution over {0, 1}n.

A function Ext : {0, 1}n → {0, 1}m is a deterministic

extractor for X with error ϵ if for every distribution X ∈ X ,

we have

Ext(X) ≈ϵ Um,

where Um stands for the uniform distribution over {0, 1}m,

and ≈ϵ means ϵ close in statistical distance. We say Ext is

explicit if it is computable by a polynomial-time algorithm.



Historically, the most well studied class of sources is the

class of two (or more) independent sources. Here, a simple

probabilistic argument shows that there exist two source

extractors for (n, k) sources with k = log n + O(1), which

is optimal up to the constant O(1); and the first explicit

construction of two source extractors was given by Chor

and Goldreich [29] more than 35 years ago, which achieves

k > n/2. Due to their connections to explicit Ramsey graphs,

and applications in distributed computing and cryptography

with general weak random sources [62], [63], such extractors

have also been the subject of extensive study [7]–[10], [14],

[19], [26], [29], [32], [33], [36]–[38], [40], [69], [70], [73]–

[75], [77]–[80], [85], [87]. The ultimate goal is to construct

explicit two source extractors for k = log n + O(1), which

would also imply an (strongly) explicit Ramsey graph on N
vertices with no clique or independent set of size O(logN),
solving a long standing open problem proposed by Erdős

[51] in his seminal paper that inaugurated the probabilistic

method. Previously, the best explicit construction of two

source extractors in terms of entropy is that of [80], which

achieves k = O(log n · log logn
log log logn ) and gives an explicit

Ramsey graph on N vertices with no clique or independent

set of size (logN)O( log log log N

log log log log N
).

Deterministic extractors for many other classes of sources

have been studied. These include for example bit fixing

sources [30], [54], [65], [86], which are sources that are

obtained by fixing some unknown bits of a uniform random

string; affine sources [11], [15], [17], [53], [71], [78], [86],

[90], [96], which generalize bit-fixing sources and are the

uniform distributions over some unknown affine subspaces of a

vector space; samplable sources [93], [94], which are sources

that are generated by small circuits or efficient algorithms;

interleaved sources [25], [88], which are a generalization of

independent sources where the bits of the sources are mixed in

some arbitrary order; and small-space sources [64], where the

sources are generated by a small width branching program.

Deterministic extractors for these sources have applications

in areas such as exposure-resilient cryptography [30], [65],

Boolean circuit lower bounds [42], [52], and best-partition

communication complexity lower bound [88].

In [20], Chattopadhyay and Li introduced the model of

sumset sources, which is the sum of two (or more) independent

weak random sources. This model generalizes many of the

previously studied models, such as independent sources, bit

fixing sources, affine sources, interleaved sources, and small

space sources. For clarity we defer the formal definitions of

these sources to later chapters. Thus, improved constructions

of explicit extractors for sumset sources may also lead to

improved explicit extractors for many of the above sources.

While [20] only constructed explicit extractors for the sum of

a constant number of (n, k) sources with k = logO(1) n, a

recent improvement by Chattopadhyay and Liao [22] gives

explicit extractors for the sum of two independent (n, k)
sources with k = O(log n log log n log log log3 n). This in turn

implies explicit extractors for affine sources and interleaved

two sources with the same entropy. By an improved reduction

from small space sources to sumset sources in [22], this also

gives explicit extractors for space s-sources with min-entropy

k = 2s + O(log n log log n log log log3 n). These are the

previously best known constructions for each corresponding

class of sources in terms of entropy.1 We note that non-

explicitly, one can show that with high probability random

functions are extractors for affine sources and interleaved two

sources with entropy k = O(log n), and for space s-sources

with min-entropy k = 2s + O(log n). Interestingly, it is not

clear if a random function is an extractor for the sum of two

independent (n, k) sources. However, since sumset sources are

a generalization of two independent sources, the entropy lower

bound of log n+O(1) for two source extractors also implies

an entropy lower bound of log n/2+O(1) for the sum of two

independent sources.

b) Non-malleable extractors.: Motivated from crypto-

graphic applications, an important variant of seeded/seedless

extractors known as non-malleable extractors has been the fo-

cus of much study in the past 15 years or so. Here, one or more

inputs to the extractor are tampered with by an adversary, and

the goal is to guarantee that the output of the extractor on the

original inputs is still close to uniform even conditioned on the

output of the extractor on the tampered inputs. To discuss non-

malleable extractors, we start by defining tampering functions.

Definition I.2 (Tampering Function). For any function f :
S → S, We say f has no fixed points if f(s) ̸= s for all

s ∈ S. For any n > 0, let Fn denote the set of all functions f :
{0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering

functions.

It is clear that if the tampering function is the identity

function, then non-malleability is impossible. Thus, with-

out loss of generality, for non-malleable extractors we only

consider tampering functions with no fixed points (although

this can be extended to the more general setting, see for

example [28]). See for example [28]). Depending on what the

tampering function acts on, there are different models of non-

malleable extractors. If the tampering acts on the seed of a

seeded extractor, we get the notion of seeded non-malleable

extractors, introduced by Dodis and Wichs [45]:

Definition I.3 ( [45]). A function snmExt : {0, 1}n ×
{0, 1}d → {0, 1}m is a strong seeded non-malleable extractor

for min-entropy k and error ϵ if the following holds: For any

(n, k) source X and tampering function A : {0, 1}d → {0, 1}d

with no fixed points, we have

|snmExt(X,Ud) ◦ snmExt(X,A(Ud)) ◦ Ud

− Um ◦ snmExt(X,A(Ud)) ◦ Ud| < ϵ,

where Um is independent of Ud and X .

Alternatively, if the tampering function acts on the inputs

to a seedless extractor, then we get the notion of seedless

1We focus on affine sources over the field F2. For larger fields there are
constructions with better parameters.



non-malleable extractors. This was first introduced by Cher-

aghchi and Guruswami [28] for the model of two independent

sources:

Definition I.4 ( [28]). A function nmExt : ({0, 1}n)C →
{0, 1}m is a (k, ϵ)-seedless non-malleable extractor for C
independent sources, if it satisfies the following property:

Let X1, · · · , XC be C independent (n, k) sources, and

f1, · · · , fC : {0, 1}n → {0, 1}n be C arbitrary tampering

functions such that there exists an fi with no fixed points,

then

|nmExt(X1, · · · , XC) ◦ nmExt(f1(X1), · · · , fC(X2))

− Um ◦ nmExt(f1(X1), · · · , fC(X2))| < ϵ.

Chattopadhyay and Li [21] adapted the definition to affine

sources and affine tampering, thus leading to affine non-

malleable extractors:

Definition I.5 ( [21]). A function anmExt : {0, 1}n →
{0, 1}m is a (k, ϵ) affine non-malleable extractor if for any

affine source X with entropy at least k and any affine function

f : {0, 1}n → {0, 1}n with no fixed point, we have

|anmExt(X) ◦ anmExt(f(X))−Um ◦ anmExt(f(X))| ≤ ϵ.

Using the probabilistic method, one can prove the existence

of all these non-malleable extractors with excellent parameters.

For example, [45] showed that seeded non-malleable extractors

exist when k > 2m+2 log(1/ε) + log d+6 and d > log(n−
k + 1) + 2 log(1/ε) + 5. [28] showed that two source non-

malleable extractors exist for (n, k) sources when k ≥ m +
3
2 log(1/ε) + O(1) and k ≥ log n + O(1). Similarly, it can

be also shown that affine non-malleable extractors exist for

entropy k ≥ 2m+ 2 log(1/ε) + log n+O(1).

However, constructing explicit non-malleable extractors

turns out to be significantly harder than constructing standard

extractors, despite considerable effort [18], [19], [21], [33]–

[35], [37]–[39], [44], [72], [73], [79], [80]. Previously, the

best explicit seeded non-malleable extractors are due to Li

[79], [80], which achieve k ≥ C(log log n + a log(1/ϵ)),

d = O(log n) + log(1/ϵ)2O(a(log log(1/ϵ))
1
a ) and output length

Ω(k), for some constant C > 1 and any integer a ∈ N; or

k ≥ C(log log n + log log(1/ϵ) log(1/ϵ)) and d = O(log n +
log log(1/ϵ) log(1/ϵ)) for some constant C > 1. For two

source non-malleable extractors, the best explicit constructions

are due to Li [80] and Chung, Obremski, Aggarwal [31]. The

former achieves k ≥ (1− γ)n with error 2−Ω(n log logn/ logn)

and output length Ω(n), for some constant γ ∈ (0, 1); while

the latter achieves k1 ≥ ( 45 + γ)n for the first source,

k2 ≥ C log n for the second source, with some constants

C > 1, γ ∈ (0, 1), error 2−min(k1,k2)
Ω(1)

, and output length

Ω(min(k1, k2)). The only known explicit affine non-malleable

extractor is given in [21], which achieves entropy k ≥ n−nδ

for some constant δ ∈ (0, 1), error 2−nΩ(1)

and output length

nΩ(1).

c) Privacy amplification with an active adversary.: The

basic problem of privacy amplification was introduced by

Bennett, Brassard, and Robert [12]. The situation arises where

two parties with local (non-shared) uniform random bits aim

to convert a shared secret weak random source X into shared

secret uniform random bits. This is achieved by a communica-

tion protocol, which is watched by an adversary with unlimited

computational power. Such protocols are important in various

applications such as quantum key distribution. While standard

strong seeded extractors provide optimal one-round protocols

for a passive adversary (i.e., an adversary who can only see

the communications but cannot change them), they fail badly

for an active adversary (i.e., an adversary who can arbitrarily

change, delete and reorder messages). The main goal for the

latter case is to design a protocol that uses as few number of

interactions and as few bits of communications as possible, and

achieves a shared uniform random string R which is as long as

possible. In this context, the difference between H∞(X) and

the length of the output is defined as the entropy loss, together

with a security parameter s, which ensures that the probability

that any active adversary can successfully cause the two parties

to output two different strings without being detected is at

most 2−s. On the other hand, the two parties should achieve

a shared secret string that is 2−s-close to uniform, if the

adversary remains passive. We refer the reader to [44] for a

formal definition.

A long line of work has been devoted to this problem [16],

[18], [19], [33]–[35], [37], [39], [43]–[45], [66], [72], [73],

[76], [79], [80], [82], [89]. In contrast to a passive adversary,

here one round protocol can only exist when the entropy rate

of X is bigger than 1/2, and the protocol has to incur a large

entropy loss. For a source X with entropy rate smaller than

1/2, [45] showed that any protocol needs at least two rounds

with entropy loss at least Ω(s), and communication complexity

at least Ω(log n + s). Achieving a two-round protocol that

asymptotically match these parameters for all possible security

parameters s is thus the ultimate goal (note that s can be at

most Ω(k) where k = H∞(X)). Previously, the best known

protocol is due to Li [80], which achieves two rounds with

entropy loss O(log log n+s), with communication complexity

O(log n)+s2O(a(log s)
1
a ) for any constant integer a ≥ 2 and s

up to Ω(k); or communication complexity O(log n+ s log2 s)
for s up to Ω(k/ log log k).

d) Non-malleable codes.: Non-malleable codes, intro-

duced by Dziembowski, Pietrzak and Wichs [50], are a

generalization of standard error correcting codes to handle

much larger classes of tampering. Informally, such a code is

defined with respect to a specific family of tampering functions

F . The code consists of a randomized encoding function E
and a deterministic decoding function D, such that on any

modified codeword f(E(x)) obtained from some function

f ∈ F and some message x, the decoded message x′ =
D(f(E(x))) is either the original message x, or ϵ-close to a

completely unrelated message. [50] shows that non-malleable

codes have applications in tamper-resilient cryptography, and



most notably, they can provide security guarantees even if the

adversary can completely overwrite the codeword.

Even with this relaxation, it can be seen that no non-

malleable codes can exist if F is completely unrestricted.

However, such codes do exist for many broad families of

tampering functions. By now the study of non-malleable codes

has grown into a large field with numerous publications, and

we only survey some of the most related previous works here.

One of the most natural and well studied families of tampering

functions is the so called split-state model, where a k-bit

message x is encoded into t parts of messages y1, · · · , yt, each

of length n, so the rate of the code is k/(tn). The adversary is

then allowed to arbitrarily tamper with each yi independently.

This model arises in many natural applications, for example

when the yi’s are stored in different parts of memory. Non-

malleable codes in this model are also used in various non-

malleable secret sharing schemes [56]. Obviously, the case of

t = 1 corresponds to unrestricted tampering functions, and

it is not possible to construct non-malleable codes. Thus the

case of t = 2 is the most general and interesting setting. [50]

first proved the existence of non-malleable codes in the split-

state model, while Cheraghchi and Guruswami [27] showed

that the optimal rate of non-malleable codes in the 2-split-

state model is 1/2. Following a long line of research [1]–[5],

[18], [24], [49], [58], [67], [79], [80], Li [80] gave the first

explicit construction in the 2-split-state model with constant

rate and constant error ϵ, while Aggarwal and Obremski [5]

improved the error to be negligible ϵ = 2−kΩ(1)

. The current

best construction is due to [4], which achieves rate 1/3 and

error ϵ = 2−k/ log3 k.

In [21], Chattopadhyay and Li studied the model where

the tampering function is any arbitrary affine function on the

entire codeword (instead of acting on 2 parts of the codeword

independently). They give an explicit non-malleable code with

rate k−Ω(1) and error 2−kΩ(1)

, which remains the best known

construction to date.

e) Hardness against read-once linear branching pro-

gram.: Branching programs are natural models to measure

the space complexity of computation. A standard branching

program is a directed acyclic graph with one source and two

sinks (labeled by 1 and 0), where each non-sink node is

marked with an index of an input bit and has out-degree 2. One

outgoing edge is labeled by 0 and the other is labeled by 1. For

any input, the computation of the branching program follows

the natural path from the source to one sink, by reading the

corresponding bits and going through the corresponding edges,

and the input is accepted if the path ends in the sink with label

1. The size of the branching program is defined as the number

of its nodes, which roughly corresponds to 2O(s) for space s
computation.

Unfortunately, proving non-trivial size lower bounds of

explicit functions for general branching programs (e.g., those

that can separate P from LOGSPACE) seems beyond the reach

of current techniques, hence essentially almost all research has

been focusing on restricted models. Among these, the most

well studied model is that of read once branching program,

or ROBP for short. In this model, in any computational path,

each bit of the input is read at most once. Non-explicitly,

an optimal lower bound of size Θ(2n−logn) is known [6].

Explicitly, several previous works gave exponential lower

bounds [6], [13], [46], [55], [60], [61], [68], [84], [92], [95],

[97]. However, the best known lower bound for an explicit

function, due to Andreev, Baskakov, Clementi and Rolim [6],

is only 2n−O(log2 n), and the bound of 2n−O(logn) is only

known for a function in DTIME(2O(log2 n)) ∩ P/poly.

Recently, motivated by strengthening tree-like resolution

refutation lower bounds and average case lower bounds for

parity decision trees, Gryaznov, Pudlák, and Talebanfard [57]

introduced the model of read once linear branching programs

(ROLBP for short), where the queries on each computational

path are generalized to be linear functions. To enforce the read

once property, [57] defined two kinds of ROLBPs: a strongly

ROLBP requires that at any node, the span of the linear queries

on all paths leading to this node has no non-trivial intersection

with the span of the linear queries on all paths starting from

this node, while a weakly ROLBP only requires that the linear

query at any node is not in the span of the linear queries on

all paths leading to this node. It can be seen that both kinds

of ROLBPs are generalizations of standard ROBPs.

[57] gave an explicit function which requires strong

ROLBPs of size Ω(2n/3), which was subsequently improved

by Chattopadhyay and Liao [23] to 2n−logO(1) n.2

A. Our Results

We improve all of the above results, achieving asymptoti-

cally optimal constructions in almost all cases (except seedless

non-malleable extractors, and the error and output length of

seedless extractors). We list our main results according to the

order of the areas that appear in the introduction.

a) Seedless extractors.: Our results for seedless extrac-

tors can be summarized as follows.

Theorem I.6. For every constant ϵ > 0 there exists a constant

c > 1 and an explicit extractor TExt : {0, 1}2n → {0, 1} with

error ϵ, for the interleaving of two independent (n, k) sources

such that k ≥ c log n.

Theorem I.7. For every constant ϵ > 0 there exists a constant

c > 1 and an explicit extractor SumsetExt : {0, 1}n → {0, 1}
with error ϵ, for the sum of two independent (n, k) sources

such that k ≥ c log n, or an affine source on n bits with

entropy k ≥ c log n.

Theorem I.8. For every constant ϵ > 0 there exists a constant

c > 1 such that for every s > 0 there exits an explicit extractor

SpExt : {0, 1}n → {0, 1} with error ϵ, for space-s sources on

n bits with min-entropy k ≥ 2s+ c log n.

All of the above theorems achieve asymptotically optimal

entropy in the corresponding models. In addition, Theorem I.6

immediately gives the following corollary about explicit Ram-

sey graphs.

2In fact, these results also give average-case hardness for strongly ROLBPs.



Corollary I.9. There is a constant c > 1 such that for every

integer N there exists a (strongly) explicit Ramsey graph on N
vertices with no clique or independent set of size K = logc N .

b) Non-malleable extractors.: Our results for non-

malleable extractors are summarized as follows.

Theorem I.10. For any constant γ > 0 there is a constant

C > 0 such that for any 0 < ϵ < 1 with k ≥ C log(d/ϵ)
and d = C log(n/ϵ), there is an explicit strong seeded non-

malleable extractor for (n, k) sources with seed length d, error

ϵ and output length
(1−γ)k

2 .

This theorem achieves asymptotically optimal parameters in

all aspects. In fact, we can also extend it to the stronger notion

of t-non-malleable seeded extractors. Next we have seedless

non-malleable extractors.

Theorem I.11. There exists a constant C > 1 such that for

any constant 0 < γ < 1 and k ≥ C log n, there exists an

explicit construction of a (( 23 + γ)n, k, 2−Ω(k)) two-source

non-malleable extractor with output length Ω(k).

This theorem improves both constructions in [80] and [31].

Specifically, like in [31], we can also handle the case where

the second source only has logarithmic min-entropy, while we

improve the entropy rate of the first source from 4/5 + γ
in [31] and 1 − γ in [80] to 2/3 + γ. Simultaneously, the

error is also improved to an optimal 2−Ω(k), from 2−kΩ(1)

in [31] and 2−Ω(k log log k/ log k) in [80]. We note that for

applications in non-malleable codes, we don’t really need

such small entropy (any linear entropy suffices), but such two

source non-malleable extractors have applications in privacy

amplification with tamperable memory, see [31] for details.

Theorem I.12. There exists a constant 0 < γ < 1 such that

for any n ∈ N, there exists an explicit construction of a ((1−
γ)n, 2−Ω(n)) affine non-malleable extractor with output length

Ω(n).

c) Privacy amplification.: Combining our optimal seeded

non-malleable extractor with the protocol in [45], we get the

following theorem.

Theorem I.13. There exists a constant 0 < α < 1 such

that for any n, k ∈ N, there is an explicit two-round privacy

amplification protocol in the presence of an active adversary,

that achieves any security parameter s ≤ αk, entropy loss

O(log log n+s), and communication complexity O(log n+s).

Our two-round protocol achieves asymptotically optimal pa-

rameters in all aspects, for security parameter up to s = Ω(k).
The O(log log n) term is the best possible if using the two-

round protocol in [45]. This follows from the use of a message

authentication code (MAC) that authenticates the seed of a

strong seeded extractor with security parameter s, which has

at least Ω(log n) bits. Thus the MAC requires a key of length

at least log log n+ s. See [45] for more details.

d) Non-malleable codes.: Using our seedless non-

malleable extractors, we also get new constructions of non-

malleable codes.

Theorem I.14. For any n ∈ N there exists a non-malleable

code with efficient encoding and decoding against 2-split-state

tampering, which has message length k, block length 2n, rate

k/(2n) = Ω(1) and error 2−Ω(k).

Theorem I.15. For any n ∈ N there exists a non-malleable

code with efficient encoding and decoding against affine

tampering, which has message length k, block length n, rate

k/n = Ω(1) and error 2−Ω(k).

Both theorems are asymptotically optimal. Theorem I.14

achieves a smaller constant rate than the rate 1/3 construction

in [4], but improves the error from 2−k/ log3 k to 2−Ω(k).

Theorem I.15 significantly improves the construction in [21],

with rate only k−Ω(1) and error 2−kΩ(1)

.

e) Hardness against read once linear branching pro-

gram.: Our sumset extractor directly gives a hard function

for strongly ROLBPs (in fact with any constant average-case

hardness). We have

Theorem I.16. There is an explicit function SumsetExt :
{0, 1}n → {0, 1} that requires strongly read once linear

branching program of size 2n−O(logn).

Our result improves the results of Ω(2n/3) in [57] and

2n−logO(1) n in [23]. Clearly, it also gives the first explicit

function that requires standard ROBPs of size 2n−O(logn),

improving the previously best known result of 2n−O(log2 n)

in [6]. By the Θ(2n−logn) bound for standard ROBPs [6], our

result is optimal up to the constant in O(.). We remark that our

affine extractor also directly gives an asymptotically optimal

2n−O(logn) size lower bound for DNF circuits with a bottom

layer of parity gates, by the result in [41].

B. Overview of the Techniques

Before explaining our new ideas, we first recall the con-

nections and reductions established in previous works. This

allows us to reduce all the problems to a couple of central

pseudorandom objects.

a) Connections between different pseudorandom objects

and applications.: Non-malleable extractors have direct mo-

tivations and applications in cryptography. For example, [45]

shows that an optimal seeded non-malleable extractor gives

an optimal two-round privacy amplification protocol with an

active adversary. Similarly, [27] and [21] show that good two-

source and affine non-malleable extractors give non-malleable

codes against 2-split state tampering and affine tampering. The

idea is simple: the encoding function is to uniformly sample a

pre-image of the message under the extractor function, and the

decoding function is the extractor itself. Reducing the average

case error of the extractor to the worst case guarantee of the

code blows up the error ϵ to 2mϵ where m is the output length

of the extractor. Thus, to achieve a constant rate it is crucial

to have an exponentially small error ϵ = 2−Ω(n), while it

is enough to work for any linear entropy k = Ω(n). For

hardness against strongly ROLBPs, [23] observed that, just



like a standard ROBP, if one conditions on an internal node,

then the programs before and after this node correspond to

two independent sources. Hence this reduces the question of

finding a hard function to the question of constructing a good

extractor for the sum of two independent sources.

Yet, previous works also established more surprising, and

unexpected connections between non-malleable extractors and

standard seedless extractors, which have been the underlying

source of most of the recent progress on extractor theory.

Specifically, the first such connection was established be-

tween seeded non-malleable extractors and two-source (and

more generally independent source) extractors by Li [72],

[74], [75], where he showed sufficiently good seeded non-

malleable extractors imply improved two source extractors.

Using techniques from non-malleable extractors, this has led

to Li’s construction of the first explicit extractor for three

independent (n, k) sources with k ≥ logO(1) n, output length

Ω(k) and error 2−kΩ(1)

[74]. The construction uses two sources

to produce a somewhere random source with nO(1) rows,

such that there exist a large fraction of (almost) uniform

rows, and these rows are almost t-wise independent for some

t = logO(1) n. The third source is then used to extract random

bits from this somewhere random source.

Chattopadhyay and Zuckerman [26] further formalized this

connection, and brought in another key improvement by

applying a resilient function directly to the somewhere ran-

dom source, thus giving the first two source extractor for

k ≥ logO(1) n with error n−Ω(1). Afterwards, a series of

works [10], [19], [33], [40], [78] improved the reduction

and eventually, [10] establishes that an optimal seeded non-

malleable extractor3 would give a two source extractor for en-

tropy O(log n). Later, Li [79] further established a connection

between two source non-malleable extractors and seeded non-

malleable extractors, which roughly says the following: a two

source non-malleable extractor for any constant (less than 1)

entropy rate with error 2−Ω(n) would give an optimal seeded

non-malleable extractor. Again, it is crucial here to have an

exponentially small error of 2−Ω(n), while the entropy rate

can be any constant less than 1. Finally, these connections

have been roughly extended to extractors for the sum of two

independent sources in [23].4 In summary, by the established

connections, all the problems can be reduced to constructing

explicit two-source and affine non-malleable extractors for any

constant (less than 1) entropy rate with error 2−Ω(n).

b) Our new ideas.: Most of the above connections have

been known for a while, yet the goal of constructing two-

source non-malleable extractors with error 2−Ω(n) has been

elusive so far. Indeed, more and more sophisticated techniques

were developed in [19], [33], [37], [38], [40], [79], [80],

only resulting in the construction in [80] which achieves error

2−Ω(n log logn/ logn). The bottleneck comes from the fact that

3More accurately, a seeded non-malleable extractor against multiple tam-
pering.

4 [23] actually reduces extractors for sumset sources to good correlation

breakers, which are building blocks in two-source non-malleable extractors.
We ignore these technical details here.

all these constructions are based on some kind of alternating

extraction using an advice string. To get error ϵ the length

of the advice string is provably at least log(1/ϵ), while the

alternating extraction appears to need at least some growing

function f(log(1/ϵ)) number of steps, where each step needs

at least log(1/ϵ) entropy. This result in a total entropy of

f(log(1/ϵ)) log(1/ϵ). Since the total entropy is < n and f is

a growing function, this falls short of achieving error 2−Ω(n).

Luckily, there is one previous work by Chattopadhyay and

Zuckerman [24] which does achieve error 2−Ω(n). Their const-

sruction relies on techinques from additive combinatorics, and

does not use alternating extraction. However, their construction

(CZExt for short) only gives a non-malleable extractor that

requires 10 independent (n, k) sources with k ≥ (1 − γ)n
for some constant γ > 0. In addition, the tampering function

has to act independently on each of the 10 sources, thus it is

not a prior clear that this can give us anything for two source

non-malleable extractors. Nevertheless, this construction is our

starting point to provide the last missing link in the complete

picture.

Essentially, we show how to get some kind of independence

from just one weak source and an arbitrary function tampering

with this source. To illustrate the basic idea, it helps to start

with the example where X is a uniform random string over

{0, 1}n, while f : {0, 1}n → {0, 1}n is any linear tampering

function. Let us divide X evenly into ℓ blocks X = X1 ◦
· · · ◦ Xℓ, where each Xi has m = n/ℓ bits. Consider the

tampered input X ′ = f(X) = X ′

1 ◦ · · · ◦ X ′

ℓ. It is easy to

see that there are linear functions {f ij}i,j∈[ℓ] such that for

any i ∈ [ℓ], X ′

i =
∑

j∈[ℓ] f
ij(Xj). If for some i ∈ [ℓ] there

exists a j ∈ [ℓ], j ̸= i such that H(f ij(Xj)) ≥ δm for any

constant δ > 0, then since Xi and Xj are independent, we

have H(Xi ◦X
′

i) ≥ H(Xi) +H(f ij(Xj)) ≥ (1 + δ)m. This

implies that the conditional entropy H(Xi|X
′

i) is at least (1+
δ)m−m = δm. In this case, we can apply an affine extractor

for any linear entropy in [15], [71], [96], so that the output on

Xi is close to uniform conditioned on the output on X ′

i . This

already achieves some kind of non-malleable extractor.

On the other hand, if for any i ∈ [ℓ] and any j ∈ [ℓ], j ̸= i,
we have H(f ij(Xj)) < δm, then we can fix all f ij(Xj) where

i ̸= j. Note that conditioned on this fixing, the Xi’s are still

independent, and furthermore the fixing does not cause any Xi

to lose much entropy. Specifically, each Xi still has entropy

at least (1 − ℓδ)m. Most importantly, with this fixing, each

X ′

i is now a deterministic function of Xi! Thus, as long as ℓδ
is small, we have obtained ℓ independent weak sources {Xi}
with ℓ tampering functions acting on each Xi independently.

Taking ℓ = 10 for example, at this point we can apply the

function CZExt to the Xi’s, and the output will again be

close to uniform even conditioned on the output on the X ′

i’s.

Thus, if we combine the outputs in both cases, we get a

somewhere random source with ℓ+1 rows such that one row

is close to uniform conditioned on the corresponding row in

the tampered output. We call this a non-malleable somewhere

random source. With this object, it is now relatively easy to

finish our construction using existing techniques.



In summary, the high level key new idea of our constructions

can be roughly stated as the following result of dichotomy,

which leads to a “win-win” situation: divide a weak source X
with sufficiently high entropy into ℓ blocks X = X1 ◦· · ·◦Xℓ,

and consider the tampered version X ′ = f(X) = X ′

1◦· · ·◦X
′

ℓ.

Then either (1) (in the case where f “mixes” the Xi’s well)

there exists an i ∈ [ℓ] such that Xi|X
′

i has large entropy, or (2)

(in the case where f doesn’t mix the Xi’s well) X1 ◦ · · · ◦Xℓ

can be viewed as independent sources and f can be viewed

as ℓ functions f = g1 ◦ · · · ◦ gℓ where each gi acts on Xi

independently.

However, making this idea formally work requires non-

trivial techniques in both the constructions and the analysis.

We now explain more technical details below.

c) Affine non-malleable extractors.: The previous anal-

ysis about a uniform random string X can be relatively

easily adapted to a high entropy affine source with slight

modifications. Specifically, given an affine source on n bits

with entropy k = (1−γ)n for some small constant γ > 0, we

now divide it into say ℓ+1 blocks X = X1 ◦ · · · ◦Xℓ ◦Xℓ+1,

where each Xi for i ∈ [ℓ] has 3γn bits and Xℓ+1 has

(1− 3γℓ)n bits. Since ℓ = 10 is a constant, we can choose a

small constant γ and make sure the size of Xℓ+1 is much

larger than the Xi’s. The plan is to use X1 ◦ · · · ◦ Xℓ to

generate the non-malleable somewhere random source, and

then use Xℓ+1 to extract random bits. However, one issue

here is that X1 ◦ · · · ◦Xℓ may be the same as X ′

1 ◦ · · · ◦X
′

ℓ,

in which case it is impossible to generate the non-malleable

somewhere random source. To fix this, as in previous works,

we need to first generate a small advice string α from X such

that α ̸= α′ with probability 1−2Ω(n), where α′ is the advice

string generated from X ′. We also need to keep the entropy

of X and the structure of an affine source conditioned on the

generation of the advice strings. This turns out to be even

trickier than the case of two-source non-malleable extractors,

and we end up using two more blocks from X and an improved

advice generator for affine tampering based on that in [21]. To

explain our main ideas we ignore these technical issues here,

and refer the reader to the full version for details.

Now assume that we have already generated the advice

string α, and X still has entropy (1 − γ)n. The blocks of

X are no longer independent in general, but we show it is a

convex combination of independent sources. Specifically, we

view X as the uniform random string subject to γn affine

constraints. Conditioned on the fixing of the corresponding

part of each constraint in each block, all blocks become

independent. We can now do the same analysis as before. If

for some i ∈ [ℓ] there exists a j ∈ [ℓ + 1], j ̸= i such that

H(f ij(Xj)) is large, then H(Xi|X
′

i) is also large. Otherwise,

we can fix all the f ij(Xj)’s with i ∈ [ℓ], j ∈ [ℓ + 1] and

i ̸= j. Conditioned on this fixing, the Xi’s are still independent

with high entropy, and now all the X ′

i’s with i ∈ [ℓ] are

deterministic functions of the Xi’s. Thus we can apply an

affine extractor to each Xi with i ∈ [ℓ] and apply CZExt to

{Xi◦α}i∈[ℓ] (the concatenation with α ensures no fixed points

with high probability). Combining all the outputs, we get a

non-malleable somewhere random source R with a constant

number of rows, where each row has Ω(n) bits with error

2−Ω(n).

Note that R and the tampered version R′ are deterministic

functions of {Xi}i∈[ℓ] and {X ′

i}i∈[ℓ]. As long as Xℓ+1 has

large enough entropy compared to the total size of {Xi}i∈[ℓ]

and {X ′

i}i∈[ℓ], a standard argument shows that there is an

affine source A contained in Xℓ+1 which is independent

of {Xi}i∈[ℓ] and {X ′

i}i∈[ℓ], and one can use linear seeded

extractors to do alternating extraction between R and Xℓ+1 to

break the correlations. Indeed we apply an affine correlation

breaker, such as those developed in [22], [78] to Xℓ+1 and

each row of R, using the index of the corresponding row as

the advice string, and finally take the XOR of all outputs. We

argue that the output is non-malleable as follows. Without loss

of generality assume that the first row of R (denoted by R1) is

close to uniform conditioned on the first row of R′ (denoted by

R′

1). We first fix R′

1 and all the outputs produced in the affine

correlation breaker with X ′

ℓ+1 and R′

1. By using linear seeded

extractors appropriately and keeping the output length to be

small, we can ensure that (1) the affine structure of the sources

is preserved, (2) A still has high entropy and is independent of

{Xi}i∈[ℓ] and {X ′

i}i∈[ℓ], and (3) R1 is still close to uniform.

Now the affine correlation breaker guarantees that the output

from (Xℓ+1, R1) is close to uniform given all the other outputs

from (Xℓ+1, R) and (X ′

ℓ+1, R
′). Therefore once we take the

XOR of the outputs, the string produced from X is close to

uniform conditioned on the string produced from X ′. The key

point is that R only has a constant number of rows, thus the

index of each row only has a constant number of bits, and

R1 and Xℓ+1 has Ω(n) entropy. Hence, we can achieve error

2−Ω(n) with output length Ω(n).
d) Two-source non-malleable extractors.: The case of

two-source non-malleable extractors is more complicated, as

here we don’t have the nice structure of affine sources. Again,

we ignore the issue of generating advice strings, and assume

that we are given an advice string α ∈ {0, 1}Ω(n) such that

α ̸= α′ with probability 1 − 2Ω(n), where α′ is the advice

string generated from the tampered inputs.

We show how to use a single source and the advice string

to generate a non-malleable somewhere high entropy source,

which is a source R with a constant number of rows, each

row with Ω(n) bits, and there exists a row i such that

H∞(Ri|R
′

i) ≥ Ω(n) (again R′ is the tampered version). We

call this function a non-malleable somewhere condenser with

advice. This is similar in spirit to, and can be viewed as the

non-malleable analogue of the reduction given in [8], which

shows how to turn an independent source extractor into a

somewhere condenser, that converts any weak random source

with any linear entropy into a constant number of rows such

that one row has entropy rate 0.9.

Specifically, given an (n, k) source X with k ≥ (1 − β)n
for some small constant β > 0, let us again divide X evenly

into ℓ = 10 blocks X = X1 ◦· · ·◦Xℓ where each Xi has m =
n/ℓ bits. The non-malleable somewhere condenser produces

a random variable R with ℓ+ 1 rows, where for each i ∈ [ℓ],



Ri = Xi, and Rℓ+1 = CZExt(X1 ◦ α, · · · , ◦Xℓ ◦ α).
The analysis is more subtle and relies on carefully dividing

X into a convex combination of subsources. Let X ′ = X ′

1 ◦
· · · ◦ X ′

ℓ be the tampered input. Without loss of generality

assume X is the uniform distribution on a set S ⊆ {0, 1}n

with size 2(1−β)n. Similar to [8], for each i ∈ [ℓ], we define

Hi to be the set which contains heavy elements in the support

of (Xi, X
′

i), e.g., Hi = {(y, y′) ∈ {0, 1}2m : Pr[(Xi, X
′

i) =
(y, y′)] ≥ 2−(1+3β)m}. We divide S into two subsets: S′ =
{x ∈ S : ∃i, (xi, x

′

i) /∈ Hi} and S′′ = {x ∈ S : ∀i, (xi, x
′

i) ∈
Hi} = S \ S′. If either S′ or S′′ is small, e.g., has size at

most 2(1−β)n−βm, then we can safely ignore it since it only

has probability mass at most 2−βm. Otherwise we consider S′

and S′′ separately, since X is just a convex combination of

the uniform distributions over S′ and S′′.

S′ is relatively easy to handle. Given that |S′| ≥
2(1−β)n−βm, if we divide S′ into disjoint subsets by group-

ing all x ∈ S′ with the same smallest index i such that

(xi, x
′

i) /∈ Hi together, then on average each subset has size

roughly 2(1−β)n−βm/ℓ. Since all elements in the subset are

light elements, the uniform distribution over the subset has

min-entropy at least (1 + 3β)m − βm − log ℓ > (1 + β)m.

This means that if we consider the subsource corresponding

to the uniform distribution over each subset, then roughly

H∞(Xi|X
′

i) ≥ βm = Ω(n).
Taking care of S′′ is much trickier. In this case, we

want to argue that somehow, X1, · · · , Xℓ can be viewed as

independent sources and the tampering function f can be

viewed as f = g1 ◦ · · · ◦ gℓ where each gi acts on Xi

independently. Note that in this case, for any x ∈ S′′ and any

i ∈ [ℓ], we have (xi, x
′

i) ∈ Hi. Our first step is to remove

those elements x ∈ S′′ such that there exists an i ∈ [ℓ]
and too many y′ ∈ {0, 1}m (say > 2βn+6βm such y′’s)

where (xi, y
′) ∈ Hi. Intuitively, these are the strings where

the tampering function f mixes too much entropy from the

blocks {Xj , j ̸= i} into X ′

i , and thus are bad for our purpose.

By definition of Hi, for any i we have |Hi| ≤ 2(1+3β)m.

Hence the number of such x’s cannot be too large, and is

at most ℓ2(1+3β)m/2βn+6βm · 2(ℓ−1)m < 2(1−β)n−2βm. Thus,

removing these strings only cause X to lose probability mass

at most 2−2βm.

Let S∗ be the subset of S′′ after removing the bad strings.

It is clear that S∗ still has a large size, i.e., |S∗| ≥ (1 −
2−βm)2(1−β)n−βm > 2n−2ℓβm. We now consider X∗, the

uniform distribution over S∗, and X ′∗ = f(X∗). Let Si

be the support of X∗

i . The large size of S∗ guarantees that

each Si also has large size, in fact |Si| ≥ 2(1−2ℓβ)m. We

now consider the sources (Y1, Y2, · · · , Yℓ) where each Yi is

the independent uniform distribution over Si. To construct

the functions g1, · · · , gℓ, for any y ∈ Si we define the set

W y
i = {y′ ∈ {0, 1}m : y ◦ y′ ∈ Hi}. Since we have

removed the bad x’s, we now have |W y
i | ≤ 2βn+6βm for

any i and any y ∈ Si. We now consider a random function

g = (g1, g2, · · · , gℓ) where for any i ∈ [ℓ] and any y ∈ Si, let

gi(y) be a random element independently uniformly chosen

from W y
i . For all other y ∈ {0, 1}m let gi(y) = 0m.

With the random functions, for any x ∈ S∗ we have

Pr[(x, x′) = (x, g(x))] ≥ (2−ℓ(βn+6βm)) ≥ 2−7ℓβn by the

independence of the gi’s. Now by linearity of expectation,

there exists a subset V ⊆ S∗ with |V | ≥ 2−7ℓβn|S∗| ≥
2−O(ℓβn)Πi∈[ℓ]|Si| such that for any x ∈ V , (x, x′) =
(x, g(x)). We can now remove the set V from S∗ and repeat

the above process. As long as there are at least 2−βn|S∗|
strings left, the same argument will give us a new set V ⊆ S∗

with |V | ≥ 2−O(ℓβn)Πi∈[ℓ]|Si| and a new function g =
(g1, g2, · · · , gℓ) such that for any x ∈ V , (x, x′) = (x, g(x)).
Repeat this process until there are less than 2−βn|S∗| strings

left, and we have divided S∗ into large disjoint subsets

{Vq ⊆ {0, 1}n, q ∈ Q} with ℓ-split state tampering functions

{gq : ({0, 1}m)ℓ → ({0, 1}m)ℓ, q ∈ Q}, and a small subset

left with less than 2−βn|S∗| strings.

Observe that X∗ is 2−βn-close to a convex combination of

the uniform distributions on {Vq, q ∈ Q}, while each subset

Vq has large density in the set Πi∈[ℓ]Si. Since each Si itself

is large, with an appropriate choice of parameters, we can

ensure that for any q ∈ Q, CZExt(Y1 ◦α, Y2 ◦α, · · · , Yℓ ◦α) is

close to uniform conditioned on CZExt(gq(Y1) ◦ α
′, gq(Y2) ◦

α′, · · · , gq(Yℓ) ◦ α′). We then show that conditioned on the

event (Y1, Y2, · · · , Yℓ) ∈ Vq , CZExt(Y1 ◦ α, Y2 ◦ α, · · · , Yℓ ◦
α) is close to having min-entropy Ω(n) conditioned on

CZExt(gq(Y1) ◦ α′, gq(Y2) ◦ α′, · · · , gq(Yℓ) ◦ α′). This takes

care of S′′.

Ignoring the error (which is 2−Ω(n)) and the issue of convex

combination of subsources, we have now obtained a non-

malleable somewhere condenser. The rest of the construction

and analysis is relatively straightforward. In the actual con-

struction, we will divide X into more blocks, for example

X = X1 ◦ · · · ◦ Xℓ ◦ Xℓ+1 where each Xi has Ω(n) bits,

but Xℓ+1 has much larger size compared to the previous

blocks. We use (X1, · · · , Xℓ) to obtain the non-malleable

somewhere high entropy source with a constant number of

rows. Then, using sum-product theorem based condensers in

[8], [87], [98], we can boost the conditional min-entropy

rate from Ω(1) to 0.9, while only increasing the number

of rows by a constant factor. At this point we apply an

extractor by Raz [87] to each row and the second source

Y , which effectively converts the non-malleable somewhere

high entropy source into a non-malleable somewhere random

source. Fix (X1, · · · , Xℓ) and (X ′

1, · · · , X
′

ℓ), we argue that X
and Y are still independent, and Xℓ+1 has enough entropy left.

We can now use the non-malleable somewhere random source

and a standard correlation breaker to extract uniform random

bits from Xℓ+1, thus achieving a two-source non-malleable

extractor by a similar argument as that of the affine non-

malleable extractor. Again, the key point is that the somewhere

random source only has a constant number of rows, and each

row and Xℓ+1 has Ω(n) entropy. Hence, we can achieve error

2−Ω(n) with output length Ω(n).
The above gives a two-source non-malleable extractor for

entropy rate 1 − β with some small constant β > 0. We can

decrease the entropy of the first source to k1 ≥ (2/3 + γ)n
and the entropy of the second source to k2 ≥ O(log n) by first



taking a slice of the first source with size n/3, then applying

the sum-product theorem based condensers in [8], [87], [98],

Raz’s extractor [87] to the second source, and a strong seeded

extractor (e.g., those in [59]) to the first source to boost the

entropy rate. This will result in a constant number of rows

in both sources such that there exists one row where both

sources have very high entropy rate. We can then apply the

advice generator, our new two-source non-malleable extractor

for entropy rate 1− β, and finally the correlation breaker and

taking the XOR of the outputs.

e) Efficiently sampling the pre-image.: For applications

in non-malleable codes, we need to design efficient algorithms

to sample uniformly from the pre-image of any output of

our seedless non-malleable extractors. Thus we appropriately

modify our extractors, roughly following the same approach

as in [79]. However, to achieve error 2−Ω(n), we can no

longer use a Reed-Solomon code in the advice generator,

since this only achieves error 2−Ω(n/ logn). Instead, we use

an asymptotically good linear binary code whose dual code is

also asymptotically good. This implies that for some constant

η > 0, any η fraction of columns in the generator matrix are

linearly independent.

II. CONCLUSION AND OPEN PROBLEMS

Our results partially finish several long lines of research

projects, which are contributed by numerous researchers and

publications. The connections discovered in these projects are

amazingly broad. Indeed the techniques that culminated in

our main results span areas like pseudorandomness, additive

combinatorics, Fourier analysis, cryptography, coding theory

and so on.

There are still interesting and important open problems left.

For example, one natural open question is to improve the

output length and error of the seedless extractors. Currently

for asymptotically optimal entropy, our constructions can only

output 1 bit (or a constant number of bits by the techniques

in [78]) with constant error, while it is desirable to achieve

negligible, or exponentially small error in cryptographic ap-

plications. Interestingly, improving the error may also lead to

an improvement in output length by the techniques in [78].

As observed in previous works, one possible approach is to

design t-non-malleable extractors with better dependence on t,
which appears to be a challenging problem. One could also ask

if we can construct explicit two-source extractors with entropy

log n+O(1), which would give optimal Ramsey graphs. For

non-malleable codes it would be interesting to improve the

rates of our codes to optimal. Finally, it is always interesting

to find other applications of the pseudorandom objects studied

in this paper.
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