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We study a Z; Kitaev model on the honeycomb lattice with nearest neighbor interactions. Based on matrix
product state simulations and symmetry considerations, we find evidence that, with ferromagnetic isotropic
couplings, the model realizes a chiral spin liquid, characterized by a possible U(1);, chiral topological order.
This is supported by simulations on both cylinder and strip geometries. On infinitely long cylinders with various
widths, scaling analysis of entanglement entropy and maximal correlation length suggests that the model has a
gapped two-dimensional bulk. The topological entanglement entropy is extracted and found to be in agreement
with the U(1), topological order. On infinitely long strips with moderate widths, we find the model is critical
with a central charge consistent with the chiral edge theory of the U(1),, topological phase. We conclude by

discussing several open questions.
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I. INTRODUCTION

Quantum spin liquids are highly entangled phases of mat-
ter, characterized by fractionalized excitations and emergent
gauge fields [1-3]. The physics of spin liquids is exemplified
by the Kitaev honeycomb model, which is a remarkable ex-
ample of an exactly solvable model that exhibits both gapped
and gapless spin liquid phases [4]. Furthermore, when the
interactions are isotropic and the time-reversal symmetry is
broken (by either a small magnetic field or a three-spin in-
teraction), the model is in a chiral spin liquid (CSL) phase,
characterized by the Ising topological order. The CSL phase
supports non-Abelian Ising anyons in the bulk, which can be
utilized for topological quantum information processing [5].
Via the bulk-boundary correspondence, it also has gapless
edge states described by a chiral Ising conformal field theory
(CFT) [4], which can provide the smoking-gun evidence for
experimental realizations of the Kitaev model through thermal
Hall measurements [6].

Besides rapid progress towards realizing the Kitaev model
experimentally [7—11], generalizations of this model, includ-
ing relevant non-Kitaev-type interactions [12,13], higher spins
[14,15], and various lattices [16,17], have also been under in-
tensive investigation. These generalizations share the common
property that the fractionalized degrees of freedom contain
fermions. One notable exception is the generalized Kitaev
model on spin-1 degrees of freedom proposed in Ref. [18],
which we shall call the Z5 Kitaev model hereafter. In the 73
Kitaev model, the local spin degrees of freedom fractional-
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ize into Z3 parafermions. Using a coupled-wire construction,
Ref. [18] suggested that the Z3 Kitaev model could support a
73 parafermion topological order.

However, in contrast to the original Kitaev model, which
can be solved exactly using a Majorana fermion representation
[4,19], the Z;5 Kitaev model is not exactly solvable. This is due
to the fact that the Hamiltonian terms are quadratic in the Z3
parafermion operators, implying that the system is interacting
as opposed being a free theory. Although it has been shown
that a Z3 toric code topological phase exists in the highly
anisotropic parameter region of the Z; Kitaev model, much
less is known about the case of isotropic couplings, which
could provide a fertile ground for exotic spin liquids.

Remarkably, despite the Z3 Kitaev model not being exactly
solvable, it possesses certain generalized symmetries that en-
force the existence of a set of anyonic excitations under the
assumption of a spectral gap. These symmetries are sufficient
for predicting only a subset of the anyons present in the theory.
Thus, more systematic work is needed to clarify the nature of
the phase at the isotropic point.

In this work, we study the Z3 Kitaev model numerically
using matrix product states to complement the symmetry
considerations. Based on results on cylinder and strip geome-
tries, we found evidence that the model at the ferromagnetic
isotropic point is gapped and realizes a chiral spin liquid
phase. Our numerically measured topological entanglement
entropy and chiral central charge suggest an exotic U(1);,
chiral topological order in this phase, in contrast to the Z3
parafermion topological order suggested in Ref. [18].

II. Z3 KITAEV MODEL AND SYMMETRIES

The 73 Kitaev model of Ref. [18] is defined on a hexagonal
lattice with a three-dimensional Hilbert space at each vertex.

©2024 American Physical Society
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FIG. 1. Honeycomb lattice for the Z; Kitaev model, generated
by translations along the a; = (1,0)" and a, = (3, %)T directions
with a two-site unit cell. The A (B) sublattice is shown by green (blue)
dots. Three different classes of links are labeled by x, y, and z. The
length of the system in the a; (a,) direction is denoted as L, (L,).

Conserved quantities W,,, @, and &, are indicated.

We label the links of the lattice by « = x, y, z, according to
Fig. 1. The Hamiltonian is given by

H=- Y J, Y TIT!+Hc. 1)

o=x,y,2 (ij)ea-links

Here, T*, T/, and T} are unitary operators supported at ver-
tex i, defined by the following relations: (7;*)* = (77')* =
(TF)* =1, TP =(I'T})', and T'T; = T’ T, where w =
e, Explicit expressions of 7%"% are given in Appendix A.
Note that the Hamiltonian in Eq. (1) is complex instead of
being real, suggesting the time reversal symmetry is broken.
This is in stark contrast to the original Kitaev model.

Similar to the original Kitaev model, the Hamiltonian in
Eqg. (1) has an extensive number of conserved quantities. For
each hexagon p, the conserved quantity W, is defined as
W, = (0T T, T{T{ T, T)", where the operators are labeled
by the vertices of p, as shown in Fig. 1. It can be checked that
these W,,’s are mutually commuting. More generally, for any
contractible path y, one can define a closed string operator
along y by multiplying the W,’s over the plaquettes in the
region enclosed by y.

The 73 Kitaev model also has conserved quantities sup-
ported along noncontractible paths. For example, the string
operator @, supported along path y; in the a; direction
(Fig. 1), is defined as ®; = ]_[ieyl(If)Sf, where s; = 1(—1)
for the i € A(B) sublattice. Similarly, the string operator @,
is given by ®; =[], (T;")", where y, is the path along
the a, direction. These conserved quantities satisfy the rela-
tion &P, = wd, P, implying that every energy level of the
Hamiltonian has a threefold degeneracy. We note that the set
of conserved quantities generated by W, ®, and ®, form a
generalized Z3 symmetry, known as a Z3 one-form symmetry
[20]. See Refs. [21-23] for more details.

The conserved quantities described above in fact imply that
every gapped phase captured by the Hamiltonian in Eq. (1)
must host anyons of the so-called Z(32) anyon theory [23,24].
To make this explicit, we consider truncations of the con-
served string operators. If the string operator is truncated to

an open path y, then the truncated string operator W (y ) fails
to commute with A only at the two end points of y. This
suggests that, if the system is in a gapped phase, the open
string operator W (y) creates anyonic excitations at its end
points (see Ref. [23] for a more precise statement). Motivated
by this, we can assign an Abelian anyon theory to the algebra
of string operators. The properties of the associated anyons
(i.e., fusion rules, exchange statistics, and braiding) are en-
tirely determined by the algebra of string operators.

In particular, since the closed string operators satisfy the
relation W(y)® = 1, the anyons obey Z3 fusion rules. The
exchange statistics € can be computed from segments of string
operators using the methods of Refs. [25,26]. We find that
the anyons created by the open string operator W(y) have
exchange statistics 68 = ¢'3. The 73 fusion rules and 6 =
et exchange statistics uniquely determine that the Abelian
anyon theory is Z(32). The total quantum dimension of the

Zgz) anyon theory is D = +/3, and the chiral central charge
is c. = —2mod 8.

In general, the anyon theories of the gapped phases of
the 75 Kitaev model factorize as C X Zgz), where X denotes

that anyon theories C and Zgz) are independent [27]. The
total quantum dimension of the product anyon theory C X Zgz)

factorizes as D = D¢+/3, where D¢ is the total quantum
dimension of C. The chiral central charges are additive, so
the total chiral central charge is c. = ¢/ — 2 mod 8, with ¢’
being the chiral central charge of C.

As a concrete example, in the anisotropic limit J; > Jx, J,,
the model can be maPped to a Z3 toric code [18], which
corresponds to C = Z(3 ) In this case, D¢ = \/5, and ¢’ =2
mod 8. Therefore, the total quantum dimension of Zgl) X

2(32) is D = 3, and the total chiral central charge is c— =0
mod 8.

The Hamiltonian also has a global Z3 symmetry, generated
by U = [T;ca T7 [1;e5(T7)", with A and B denoting the two
sublattices. The symmetry U can be naturally understood in
terms of the Z; one-form symmetry, as it is the product of &,
operators over all of the paths along the a; direction.

Before presenting the numerical results, we comment on
the interplay between the conserved quantities and the global
symmetries of the system on a cylindrical geometry. In partic-
ular, we consider a cylinder that is periodic in the a, direction
and has a circumference of L, # 0 mod 3. We also assume, in
agreement with the numerical results below, that the ground
states are eigenstates of the W,’s with an eigenvalue of W, =
", where n # 0 mod 3. From this, we draw the following two
conclusions: (1) the global Z3 symmetry is spontaneously bro-
ken, so if the symmetry is enforced on the ground state, then
it will be a Schrodinger’s cat state, and (2) if the symmetry is
not enforced and we consider a ground state that breaks the
symmetry, then the translation symmetry in the a; direction
must also be broken.

To see conclusion 1, we first note that, since L, # 0 mod 3,
the string operator ®,, which wraps around the cylinder, is
charged under the global Z3 symmetry. To show that the Z3
symmetry is spontaneously broken, it is sufficient to show
that @, has long-range correlations. Letting @, , be the string
operator &, supported on sites sharing the same coordinate
of the a; axis (denoted as x), we compute the correlator
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FIG. 2. Correlation length and half-cylinder entanglement entropy for infinitely long cylinders with YCL, geometries and L, between 2
and 6. To compare results for all computed cylinders, we have rescaled the bond dimension x by a(L,) = exp(L,/1.5). In (a), solid lines are a
linear fit using the last few points with large x. We note that the y intercept is nonzero, implying that for large bond dimensions, the correlation
length saturates to a finite value. In (b), dashed lines are a guide to the eyes.

(d>2.xd>;x,). This is nonvanishing in the limit of a large sep-
aration between x and x’ because Qz.xd);x, is equivalent to
a product of W, operators over the region between x and x’.
Thus, using the fact that the ground states are eigenstates of
the W,’s, we have (<I>2,XCI>EX,) = "Iy A consequence is
that, if the global Z; symmetry is enforced, the system is in a
Schrodinger’s cat state.

To see conclusion 2, we notice that (P,,) =
(<I>2,x<1>;x+1 @) ,41). Since CIDQ,XCD;’H_I is equivalent to a
product of W,’s in the column between x and x + 1, we have
(®y,) = " (P, 4 1). This implies that, if the global Z;
symmetry is not enforced and (®; ) # 0, then the translation
symmetry in the a; direction is spontaneously broken.

III. RESULTS ON CYLINDER GEOMETRY

Let us start with the cylinder geometry, i.e., periodic
boundary condition along the a, direction and varying cir-
cumference L,. Following Ref. [28], we denote this class
of clusters as YCL,. Hereafter, we focus on the parameters
Jy=Jy,=J;=1 and use the matrix product state (MPS)
based infinite density matrix renormalization group iDMRG)
algorithm to probe bulk properties [29-32]. The main phys-
ical observables to consider include the maximal correlation
length £ (extracted from the transfer matrix of the MPS)
and entanglement entropy S = —tr(p4 In p4), where py4 is the
reduced density matrix for the left half of infinitely long
cylinders. The results are shown in Fig. 2.

For a gapped system, we expect that the maximal corre-
lation length & and entanglement entropy S for a width-L,
cylinder saturate to a finite value in the infinite bond di-
mension limit. This is clearly observed for YC2 and YC3
cylinders, as shown in Fig. 2. In these two cases, the truncation
errors with the largest bond dimensions considered ()Xmax =
500, 3000 for YC2, YC3, respectively) are less than 10719 in
agreement with the rapid saturation behavior. For YC4, 5, 6

geometry, since the required MPS bond dimension y for
a given accuracy grows exponentially with L,, it becomes
challenging to achieve full saturation of &£. Nevertheless, the
entanglement entropy clearly saturates with increasing y, and
the truncation error is around 3x10~7 (3x1073, 6x1079),
with xmax = 2400(2200, 6000) for YC4(5, 6), respectively. A
linear in 1/ fit indicates that the true correlation length in
the infinite- x limit is less than 3 lattice spacing, which indeed
agrees with the existence of a spectral gap in these geometries.

Some remarks are in order. First, for all the data shown
in Fig. 2, the ground states are simultaneous eigenstates of
W, and ®;. And on all considered cylinders, the ground state
has a uniform Z3 flux with (W,) = «? on each plaquette, in
contrast to the flux-free ground state in the original Kitaev
model [4]. This was further confirmed on a small torus using
exact diagonalization and on finite cylinders (L, = 3, L, = 6,
12 and L, = 4, L, = 12) using the density matrix renormal-
ization group (DMRG). As mentioned above, the nontrival
flux means that the unit cell of the MPS in iDMRG simulation
is at least three columns for L, # 0 mod 3. For YC3 and
YC6 geometries, we have checked that MPS ansatzes with
unit cells of one column and three columns give the same
result.

Second, as discussed above, when L, is not a multiple of
3, if the Z3 symmetry is imposed on the MPS, the ground
state found using the iDMRG is a Schrodinger cat state with
diverging correlation length. Thus, we do not impose the
Z3 symmetry for YC2,4, 5 cylinders. For YC3, 6, we have
checked that the results obtained using Z3; symmetry with
total charge Q = 0 are identical to those without using this
good quantum number for relatively small bond dimensions
[33]. This allows us to use the Z3; symmetry for YC3, 6 to
reach a larger bond dimension. The Z3 symmetry operator in
Eqg. (1) is not uniform on every site, and one can apply a charge
conjugation transformation on one sublattice to make it easy
to exploit for MPS calculations; see Appendix A for further
details about the transformation.
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—fit: § = 0.9233L, — 1.28

entanglement entropy

FIG. 3. Entanglement entropy versus L, on infinitely long cylin-
ders. For each L,, we take the value with the largest x. A linear fit
reveals a finite TEE S, = 1.28 4 0.34.

While it is difficult to make definite conclusions, our results
are consistent with a gapped state in the two-dimensional
(2D) bulk. If this is indeed the case, then the bulk must be
topologically ordered due to the Z3 one-form symmetry. In
the following we study possible signatures of the topological
order.

A defining feature of intrinsic topological order is long-
range entanglement in the ground state [34,35]. Given any
region A in a gapped state, the entanglement entropy generally
takes the form S4 = const x [dA| — Syp + - -+, where |0A]
denotes the length of the boundary of A, Sy, is a univer-
sal constant known as the topological entanglement entropy
(TEE), and --- includes terms vanishing for large A. For
a planar system, S, = InD, where D is the total quantum
dimension of the underlying topological order. If we choose
the entanglement cut along the cylinder circumference [36],
Siop depends on which ground state the system is in. If the
ground state has a definite anyon flux a through the cylinder
[equivalently, as a quasi-one-dimensional system the state is
short-range correlated], then S, = In d2, with d, being the
quantum dimension of anglon type a. (Note that for Abelian
anyon theories, such as Zg ), we can take d, = 1 for all a.)

In Fig. 3, we show the entanglement entropy versus
cylinder width L, (for L, between 2 and 6), from which
a nonzero TEE S, = 1.28 2 0.34 is extracted. Assuming
that the ground states are in the identity sector of the
topological order [37], we have S, =InD, which gives
D =~ 3.6.

Besides entanglement entropy, chiral topological order
could also be revealed by the entanglement spectrum (ES) of
bipartitioning the cylinder into two halves [38]. Indeed, the
Li-Haldane conjecture states that the low-energy content of
the ES is described by the CFT governing the physical edge
properties, which has also been extensively used in character-
izing the chiral topological phase [39,40]. Here, the conserved
quantities W, lead to extensive degeneracy in the ES [41,42],
making it hard to identify further structures numerically (such
as the chiral CFT tower). Some examples of ES are shown in

Appendix B. Nevertheless, we can probe edge properties by
studying the system on a strip geometry.

IV. RESULTS ON STRIP GEOMETRY

The above study on a cylindrical geometry reveals bulk
properties of the Z; Kitaev model, such as the existence
of a spectral gap and the total quantum dimension. Using
the bulk-edge correspondence, the edge theory of this model
would be given by a 1 + 1D chiral CFT with central charge
equal to the chiral central charge of the topological order. This
can be revealed by putting the system on a strip geometry,
where the chiral and antichiral gapless modes at the two edges
are weakly coupled by tunneling through the bulk, with the
coupling strength being exponentially suppressed by the bulk
gap. Thus, for a sufficiently wide strip, one would expect to
see a 1 + 1D CFT (at least within a relatively large length
scale), which could be tested via finite entanglement scaling.

Besides the criticality, we show in Appendix C that there
is an additional 3%-fold degeneracy on the strip geometry
due to noncommuting stringlike conserved quantities that ex-
tend between the bottom and top of the strip. In the strip
geometry, there are also conserved quantities W), poundary COI-
responding to the plaquettes that would connect the top and
bottom boundaries if the system were made periodic in the a;
direction. Numerically, we find that the expectation value of
W), boundary 18 @ or o’ with the same energy (exact or in the
infinite-x limit) for all the strip widths we have considered,
L,=2,3,4,5.

In our numerical simulations in the strip geometry, it is
also important to ensure that the obtained ground states are
eigenstates of ®; to avoid long-range correlations from spon-
taneous symmetry breaking. In practice, we find that this can
be achieved by starting the simulation with a small penalty
term, —®; Py 1Py 4o + H.c. [which commutes with the
Hamiltonian (1)], and the associated ground state serves as
the initial state for further optimization. Alternatively, we
can add —®, , with additional phase factor 1, w, @* and its
Hermitian conjugate to the Hamiltonian to enforce a specific
(®,) configuration. In addition, we can also pin the conserved
quantity W), poundary to @ by adding a suitable pinning term.

It turns out that, for a strip of width L, = 2, both the corre-
lation length and the half-strip entanglement entropy saturate
with increasing bond dimension yx, as shown in Fig. 4(a),
suggesting a small finite gap. The relatively large value of
the correlation length, however, indicates that the system
may potentially become more critical with increasing L,. For
L, = 3, 4, we observe that the system indeed becomes gapless
(within the correlation length set by the bond dimension), as
evidenced by the increasing correlation length and half-strip
entanglement entropy with y showing no sign of saturation.
From a fit of the half-strip entanglement entropy and corre-
lation length [43] [shown in Fig. 4(b)], we extract a central
charge ¢ = 1.019(1.033) for L, = 3(4). We thus conclude that
L, =3 and 4 strips have ¢ = 1, which we interpret as the
chiral central charge of the bulk topological order.

In addition, as a consistency check, we also performed
DMRG studies on finite-size strips, where both the width and
length (denoted as L, and L,, respectively) are finite. In this
case, to fix the spectrum degeneracy, we also added &, (and
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its Hermitian conjugate) to the Hamiltonian while taking care
of the relation between ®, and W,. Typical results (among
results with various bond dimensions and strip lengths) are
shown in Fig. 5. It turns out that, on a sufficiently long strip
with width L, = 2, the entanglement entropy clearly saturates
with increasing subsystem length (denoted as /), as shown in
Fig. 5(a). On the contrary, on a width L, = 3 strip with length
L, = 48, a finite central charge ¢ ~ 1.2 can be extracted using
the Calabrese-Cardy formula [see Fig. 5(b)] [44], which is
slightly larger than the central charge on infinitely long strip
possibly due to finite-size effect.

Further increasing L,, it becomes numerically expensive to
measure the central charge. Nevertheless, on L, = 5 we ob-
serve that the entanglement entropy and maximal correlation
length do not show any sign of saturation with increasing x
(data shown in Appendix D), consistent with the strip being
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gapless. Since the models are fully gapped on the cylinders,
the most natural explanation of the critical properties is that
they all come from the gapless edge states described by the
same ¢ = 1 CFT, as one would expect in a strip of a chiral
topological state.

V. DISCUSSION AND CONCLUSION

In summary, we have studied the ferromagnetic isotropic
point of the Z3 Kitaev model proposed by Barkeshli et al. [18].
Through a detailed study of both cylinder and strip geometries
of various widths, we identified the signatures of a chiral spin
liquid.

We now discuss possible topological order based on the
numerical results. From the cylinder and strip calculations we
have observed the following:
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FIG. 5. Entanglement entropy of a length / subsystem on the left of a finite-size strip with total length L, and width L,. (a) L, = 2, L, = 72.
The bond dimension is x = 1000, and truncation error is 5.4x 107!, With increasing /, the entanglement entropy clearly saturates. (b) For
L, =3, L, =48, the bond dimension is x = 2000, and truncation error is 4.4 x 1077, Using the Calabrese-Cardy formula, a central charge

¢ ~ 1.2 is extracted.
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(1) All cylinders up to L, =6 have finite correlation
lengths, which show no sign of diverging as L, increases.

(2) The L, = 3 and 4 strips appear to be critical with ¢ ~ 1.

(3) From the entanglement entropy results for cylinders we
find the TEE is Sy, = 1.28 & 0.34.

The simplest explanation of these results is that the ground
state is gapped in the bulk and has gapless edge modes.
Suppose the 2D topological phase has a CFT edge theory
with both left- and right-moving modes and the corresponding
central charges are ¢, and cg. The chiral central charge of
the 2D phase is given by c_ = ¢, — cg, and assuming the top
and bottom edges are decoupled, the strip has central charge
¢ = ¢t + cg. Notice that here ¢; and cg are both non-negative.
If both are positive, for a unitary CFT it is known that ¢,
and cg are at least 1/2 (the Ising CFT). So we have found
essentially three options:

(cr,cp) = (1,0),(0, 1), (1/2,1/2). 2

The last case means c_ = 0 and the edge is just a (nonchiral)
Ising CFT. While this scenario cannot be excluded, we find it
unlikely since there is no obvious mechanism to prevent the
edge modes from opening a gap. Thus, we focus on the other
two cases, where the edge modes are fully chiral.

According to the classification of chiral ¢ = 1 CFTs [45],
these theories come in two types: (1) U(1),, theories with n a
nonzero integer, often referred to as the “circle branch,” and
(2) orbifolds of the circle branch, including Z, orbifolds of
U(1),, and three exceptional cases [orbifolding non-Abelian
groups in SU(2);]. We will focus on the circle branch, which
turns out to be more relevant for this system. The U(1),, CFT
can be described by a chiral compact boson. It can arise as the
edge theory of a (2 + 1)-dimensional chiral topological phase,
the bulk of which is described by the U(1),, anyon theory.
An example is the v = % bosonic Laughlin state (also known
as the Kalmeyer-Laughlin state) with the U(1), chiral edge
CFT. Let us enumerate the anyon content of the U(1),, theory.
The different anyon types can be labeled by an integer defined
mod 2n, denoted as [a], where a € Z, with [0] representing

the trivial excitations. [a] has exchange statistics e%. The
fusion rule of anyons is given by addition, so [a] x [b] = [a +
b]. The anyon types form a Z,, group under fusion, with [1]
being the generator. Using the notations in [24], the theory is
denoted as Z(ZL/ 2,

However, we have also established through the exact one-
form symmetry of the lattice model that the bulk anyon theory
must contain the Z(32) as a subtheory, which places a strong
constraint on the value of n. First, to have Z(32) as a subtheory,
73 must be a subgroup of Z,,, meaning that n must be a
multiple of 3, so we write n = 3m. The unique Z3 subgroup
in Zg,, is {[0], [2m], [4m]}. The self-statistics of the generator
[2m] is eon @™* = ¢5'™: therefore, to match Zéz), m must be 2
mod 3, and n must take the form n = 3(3k + 2) fork € Z. We
note that a similar analysis can exclude the orbifold branch.

To further constrain the possible values of k, we consider
the TEE. It is known that the TEE for the U(1)¢3¢4-2) theory

is In/ 6|3k 4+ 2|. We find that compared with the fitted TEE
Siop = 1.28 £0.34, k = 0 [the U(1), theory] has the closet

TEE, In +/12 ~ 1.24. We note that k = —2 [the U(1)_»4 the-

ory with TEE In +/24 2 1.58] is also compatible due to the
relatively large error bar on the numerically computed TEE.
While U(1)_,4 cannot be excluded based on our data so far,
we believe the fact that U(1)_p4 has many more anyons and
the TEE is close to the upper bound set by the error bar makes
it less likely to be the actual ground state topological order.
Based on this analysis, we identify U(1);, as being the most
likely candidate topological order.

Let us discuss the properties of the U(1);, = Zgz) X Zf/ D
anyon theory. The anyon content was discussed above. It is
easy to check that [4] generates Zgz) and [3] generates the

Zf/ o part. This theory has 12 degenerate ground states on the
torus. Starting from one of them, the others can be obtained by
apglying the corresponding Wilson loop operators. Since the
Zg ) Wilson loops commute with the Hamiltonian, the ground
states (as well as all the excited states) are at least threefold de-
generate. The degeneracy associated with Zf/ 2 is, however,
not expected to be exact and is generally split by quasipar-
ticle tunneling. Indeed, we managed to find a topologically
quasidegenerate ground state on a width-3 cylinder (discussed
in Appendix E). Nevertheless, due to the high topological
degeneracy, finding all the topologically degenerate ground
states seems to be a daunting task.

Before closing, let us also mention the open questions
regarding this model. First, we should caution readers that the
conclusion of a U(1);, chiral spin liquid relies on the value of
the TEE, which still shows a large error bar (see the caption of
Fig. 3). Second, it is worthwhile to better understand the mi-
croscopic mechanism that can stabilize the U(1),, topological
phase in this type of model, for example, using a coupled-wire
analysis. Last, currently, only the central charge is obtained
from a strip geometry. It would be of great interest to extract
the low-energy excitations in the same geometry, which, in
principle, would allow a more complete characterization of
the CFT. Given the rapid advancement of tensor network
methodology [46,47], this is indeed a promising avenue to
further pin down the nature of this chiral topological phase.
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APPENDIX A: LOCAL OPERATORS
AND CHARGE CONJUGATION

For completeness, here we first show the explicit expres-
sions of the 7** operators:

0 0 1 0 «* 0
T"=\|1 0 0}, T°=10 0 w],
0 1 0 1 0 O
0O 0
T° =10 o 0], (A1)
0 0 o?

where w = exp(i2m /3).
As mentioned in the main text, the model has a global Z;
symmetry, generated by

v=T17T1@)"
i€A jeB

For the purpose of using symmetries to lower the compu-
tational cost, it is useful to perform a charge conjugation
transformation on one of the sublattices, say, the B sublattice,
to transform the generator U into a uniform form. This trans-
formation is given by

CT*C" = (T,
CTC" = *(T7)T,
cT:ct = (TZ)T,

0
).
0

14,

(A2)

(=)

1
where C = <0
0

12’ [e o)

10 o

Entanglement Spectrum
8
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index

Under this transformation, the Hamiltonian is transformed
into

H=— Y JL1N1) = Y 5’1(1))

(ij)ex-links (ij)ey-links
T
z(Tz2
- Y LI(T}) +Hec.,
(i j)€z-links

and the plaquette operator W, becomes
Ty (2 T N
W, = (1) T(T5) T(T) 5.

The string operators ®; and &, are transformed accordingly.

As noted in the main text, the Z3 symmetry generator com-
mutes with the string operator ®, only when L, is a multiple
of 3. Thus, one can use this Z3 symmetry in MPS-based
calculations only for mod(Ly, 3) = 0. For other widths with
Z3 symmetry exploited, a Schrodinger cat state is typically
observed.

APPENDIX B: ENTANGLEMENT
SPECTRUM ON CYLINDERS

It is known that for chiral topological phases, the entan-
glement spectrum (ES) provides a valuable diagnosis [38]
which is also accessible from the MPS. However, as shown
in Fig. 6, the ES for the Z; Kitaev model on infinitely long
cylinders is heavily degenerate, with no sign of conformal
towers. As noted by Ref. [42] in the context of the original
Kitaev model, the degeneracy in the ES can be understood
from the conserved quantities W,. Since the logic basically
follows from Ref. [42], we will not elaborate on the derivation
of the degeneracy in ES and refer to Ref. [42] for further
details.

APPENDIX C: DEGENERACY ON THE STRIP GEOMETRY

Here, we argue that there is at least a 3-fold degeneracy
of the Z3 Kitaev model on a striplike geometry with length
L, in the a; direction and width L, in the a, direction. To see

4 -
g
=
23}
(]
<)
¥
U) [criiiiia]
"E 2 Jeiniiiiniiniig
D]
g
<
2
o1
=
=
(b)
O L L L
0 20 40 60 80
index

FIG. 6. Entanglement spectrum on finite-width cylinders. (a) L, = 3, x = 800. (b) L, = 6, x = 6000.
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1—1 7

T?J

FIG. 7. The conserved quantities of the Z; Kitaev model on a
strip geometry are generated by the operators W; and W, where i
indexes the bivalent vertices at the top of the strip. The operator W,
shown in red, is a product of T and (T”)" operators, while W;, shown
in blue, is a product of 7%, T¥, and T*. If L, is even, then each pair
of W; and W,, for even i, generates the same operator algebra as a
pair of T* and T operators. This implies that each pair enforces
a threefold degeneracy of the ground state. Note that W; and W,_,
are noncommuting, so to ensure that the pairs are independent, we
consider only those at even sites. The subsystem code calculation
suggests that it is possible to find L, independent noncommuting
pairs.

this, we view the Z3 Kitaev model as a subsystem code whose
gauge group is generated by products of the Hamiltonian
terms. For an introduction to subsystem codes and a more
careful description of the code associated with the Z3 Kitaev
model, we refer to Ref. [23].

More specifically, we show that the subsystem code has a
logical subsystem of dimension 3%:. This implies that there
are L, noncommuting pairs of conserved quantities of the Z3
Kitaev model that satisfy the same commutation relations as
T~ and T*. Consequently, the model must have a 3%-fold de-

-o-L, =5, cylinder

2 -4-L, =5, strip
<
015
201
=
=
8
E 1
)
b
o
Q
© 05

(a)
0 L L
0 500 1000 1500 2000
X

generacy. To support the calculation that follows, we identify
L, /2 explicit pairs of noncommuting conserved quantities in
Fig. 7 for a strip of even length L,. This suffices to show that
there is at least a 3%+/2-fold degeneracy.

We now compute the dimension of the logical subsystem
of the subsystem code by comparing the number of physi-
cal qutrits (i.e., three-level local degrees of freedom) to the
number of stabilized qutrits and gauge qutrits. There are two
qutrits for every plaquette. Due to the open boundary con-
ditions, there are an additional 2L, qutrits associated with
the edges of the strip. In total, the number of qutrits Ny is
No =2L,L,.

Next, we count the number of stabilized qutrits and the
number of gauge qutrits. The only stabilizers are the con-
served quantities W, for every plaquette, each of which
stabilizes a single qutrit. There are L,(L, — 1) plaquettes, so
the number of stabilized qutrits Ng is Ng = L,(L, — 1). There
are three gauge generators for every plaquette. There are an
additional two for every plaquette on an edge of the strip.
Therefore, the number of gauge qutrits Ng is

Ng ={[BL:(Ly — 1) +2L] — Ns}/2 = L.L,. (ChH
Here, we have subtracted Ng since the stabilizers are gener-
ated by the gauge generators, and we have divided by 2 to
account for the fact that the operator algebra of a qutrit has
two generators, 7* and T~.

The number of logical qutrits N, is then given by the
formula

N, =Np —Ns—Ng =L, (C2)
Thus, there are L, logical qutrits, which means that there
are 2L, generators of the logical group, each of which is a
conserved quantity of the Z3 Kitaev model. Therefore, we
conclude that there is a 3%-fold degeneracy on a strip geome-
try.

We note that this degeneracy can be lifted by including a
single site term in the Hamiltonian for each bivalent vertex at
the boundary.

-o-L, =5, cylinder
4-L, =5, strip

>

S 3.6

Qo

e

+

=

L 34+

+

=)

Q

g

<L 3.2

20
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=

g 3

(b)
2.8 ‘ : :
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FIG. 8. Comparison of (a) the maximal correlation length and (b) entanglement entropy for an L, = 5 cylinder and strip. On the strip’s

boundary, we have (W,) = o for all data shown here.
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Moreover, for the ground states on strips, under the as-
sumption that the flux on each column is the same, which we
verified numerically, we have

_ T il
Dy Do i1 P2 w2 = P @y 1Py Povt

nly a)fnLy =1,

=w (C3)
where we have used the fact that product of W, operators in

i
one column equals @, <I>2,X -

APPENDIX D: ADDITIONAL DATA FOR AN L, = 5 STRIP

Here, we show additional evidence that the critical behav-
ior can also be observed on a L, =5 strip. In Fig. 8, we
compare the maximal correlation length and entanglement en-
tropy of an L, = 5 strip and cylinder. Both correlation length
and entanglement entropy grow much quicker (and have larger
values) on the strip geometry, without any sign of saturation.
This scenario is consistent with the data for L, = 3, 4 shown
in the main text.

APPENDIX E: QUASIDEGENERACY ON L, = 3 CYLINDER

Topological order implies (quasi)degenerate ground states
on infinitely long cylinders, which can be found by running
iDMRG simulations with suitable initial states [39,40]. Here,
on a YC3 cylinder, by randomizing the initial state, we found
that the iDMRG simulation has a nonzero probability of find-
ing a distinct (excited) state, denoted as |W.), while the actual
ground state is |Wy). |W,) is also a simultaneous eigenstate of
W, and ®,, with (W,) = »?. The overlap per column between
|W) and |W) is 4.2 x 1073, with bond dimension y = 500,
suggesting that the two states are orthogonal.

1.9¢
B = = = = a
S 1.8—/
%‘ _ 148 =3
= z Ne soooo 2
- z g
£ -1.49 -
17 g2
= § " oec0000 21
216 : 1
GEJ ° 1000 2000 3000 1000 2000 3000
o X x
=]
& 1.5¢ o
=] ©
3
141 -&-[¥r)
-=|0,)

500 1000 1500 2000 2500 3000
X

FIG. 9. Comparison of ground state properties in different topo-
logical sectors versus x on a YC3 cylinder. Here, | V) and W) are
ground states in distinct topological sectors. The main panel shows
entanglement entropy in the two sectors, with energy density and
maximal correlation length shown in the insets.

A comparison of |W) and W) is shown in Fig. 9. We
identify |\W¢) as an approximately degenerate ground state on
the finite-circumference cylinder. Because of the finite width,
the topological degeneracy will be split by virtual quasipar-
ticle tunneling effects, which explains the energy difference
shown in the left inset of Fig. 9. Moreover, on the YC3
cylinder, the maximal correlation length of |\W.) converges
with increasing bond dimension x (shown in the right inset
in Fig. 9), implying that |W.) is also gapped, although the
value is larger than that of |Wy). On the other hand, |W,) has a
higher half-cylinder entanglement entropy than |Wy), with the
difference approaching 0.36 with increasing .
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