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Abstract

We apply a perturbative Doi—Peliti field-theoretical analysis to the stochastic
spatially extended symmetric Rock-paper-Scissors (RPS) and May—Leonard
(ML) models, in which three species compete cyclically. Compared to the two-
species Lotka—Volterra predator-prey (LV) model, according to numerical sim-
ulations, these cyclical models appear to be less affected by intrinsic stochastic
fluctuations. Indeed, we demonstrate that the qualitative features of the ML
model are insensitive to intrinsic reaction noise. In contrast, and although not
yet observed in numerical simulations, we find that the RPS model acquires
significant fluctuation-induced renormalizations in the perturbative regime,
similar to the LV model. We also study the formation of spatio-temporal struc-
tures in the framework of stability analysis and provide a clearcut explanation
for the absence of spatial patterns in the RPS system, whereas the spontaneous
emergence of spatio-temporal structures features prominently in the LV and
the ML models.
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1. Introduction

Population dynamics has been and continues to be an extremely active field of research since
about 40 years [1-7]. Steady progress in the development of mathematical and computational
tools as well as the application of methods from statistical physics have allowed qualitative
and quantitative insight into the behavior of interacting species. Various simplified models
have been invoked to address prototypical situations in real ecosystems: The paradigmatic
two-species Lotka—Volterra (LV) predator-prey model [8, 9] was originally introduced to study
fish population oscillations in the Adriatic sea, as well as to explain auto-catalytic chemical
reaction cycles. The Rock-paper-Scissors (RPS) model

References [4, 10-14] addresses the case of three cyclically interacting species with a
conserved total number of individuals, whereas the May—Leonard (ML) model [1, 15-20]
describes a more general, non-conserved situation. These models are obviously and neces-
sarily rather simplified and lack many of the details of ecological neighborhoods. However,
recent efforts aim at the realization and experimental implementation of such systems [21-26].
Furthermore, it is reasonable to assume that simplified constructs such as the LV, ML, and
RPS systems should be useful as elementary motifs and building blocks of models for more
extended ecosystems. It is therefore imperative to investigate which of their features are qual-
itatively and/or quantitatively robust and remain important when multiple interacting species
are coupled to environments with richer structures.

Traditionally, species dynamics in ecosystems are modeled via coupled non-linear ordin-
ary differential equations. In the case of spatially extended systems, this approach is gener-
alized by using partial differential equations that represent species dispersion through simple
diffusion, i.e. coupled reaction-diffusion equations. However, this mean-field or mass action
approach fails to take into account the inherent randomness and stochastic nature of the under-
lying processes stemming from fluctuations in the discrete number of individuals, and neglects
spatio-temporal correlations. Yet fluctuations and correlations can lead to dramatically differ-
ent behavior than predicted by mean-field theory [27]. For example, the classical LV mean-
field rate equations predict neutral cycles and hence non-linear oscillations around a marginal
fixed point, while stochastic computer simulations of this system yield decaying oscillations
toward a (quasi-)stable state [28-30]. This stationary state exhibits large and erratic excur-
sions triggered by fluctuations in the species concentrations in zero-dimensional [31] as well
as spatially extended systems [32]. Spatially extended stochastic LV model variants also show
intriguing spatial patterns and moving activity fronts [29, 33, 34]. Crucially, stochastic variants
of the LV model exhibit a large susceptibility to randomness in the predator-prey interaction
rates [35, 36].

Spatially extended cyclic models such as the RPS or ML systems are influenced by internal
reaction noise and exhibit differences in species extinction times and resulting spiral pattern
wavelengths compared to the mean-field approximation [13, 18, 37]. In one dimension, ‘super-
domains’ may form in these cyclic models [38]. Although both models are cyclic in nature,
they exhibit different sensitivity to stochastic fluctuations. The RPS model, a generalization
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of the LV model to three cyclically competing species, displays comparatively weak fluctu-
ation renormalizations in the quasi-stable coexistence state and minimal modifications due to
randomized reaction rates [14]. In contrast, the ML model features a stronger renormalization
of the oscillation frequency in the unstable region where spiral structures form spontaneously,
but appears to have an insignificant response to randomized reaction rates [17]. These obser-
vations from Monte Carlo simulations raise the intriguing question: Under what conditions
will fluctuations significantly alter the system’s properties and cause marked deviations from
simple mean-field predictions?

To at least partially answer this question, a field-theoretical perturbation analysis was
applied to the stochastic spatially extended LV model in [39]. To one-loop order, this semi-
quantitative analysis confirms that (i) the fluctuation-induced damping renders the system
unstable against spatio-temporal structures, and (ii) fluctuations significantly renormalize the
oscillation frequency in the two-species co-existence phases, especially below three dimen-
sions. Aiming to better understand the fluctuations in spatially extended RPS (figures 1(a) and
(b)) and ML models (figures 1(c) and (d)), we utilize a similar Doi—Peliti field theory repres-
entation for their associated stochastic reaction processes. To study the impact of intrinsic fluc-
tuations on system parameters, a one-loop calculation is carried out in the perturbative regime,
where the reaction rates are small as compared with the diffusivity, and a thorough compar-
ison between the RPS, ML, and LV systems is conducted. In contrast to earlier observations in
numerical simulations, the RPS model exhibits noticeable fluctuation-induced corrections in
the perturbative regime, similar to the LV model. We believe that, as the dissipation becomes
non-negligible in the non-perturbative regime, the associated infra-red (IR) divergence is reg-
ularized, and thus substantial renormalizations become effectively suppressed. We note that in
all investigated systems, the field-theoretic loop expansion technically only applies to the stable
regions with spatially homogeneous ground states. Our results demonstrate that, at least in the
stable region, the dynamical features of the ML model conversely do not receive significant
modifications from fluctuations. Based on these explicit calculation results, we also provide
pertinent arguments that explain the absence of spontaneous spatio-temporal patterns in the
RPS model with conserved total population number, as opposed to the ML model, which for
sufficiently large system sizes develops spiral oscillatory patterns, as depicted in figures 1(c)
and (d).

The paper is organized as follows: Detailed perturbative field-theoretical analyses for the
cyclic and symmetric RPS and ML models are performed in sections 2 and 3, respectively,
where we establish the Doi—Peliti functionals for both models and state their corresponding
generalized Langevin equations. Renormalized damping coefficients, oscillation frequencies,
as well as diffusivities are calculated up to one-loop order in the perturbative fluctuation expan-
sion. In section 4, a comprehensive comparison between the LV, RPS, and ML models is
provided, and pertinent distinctions between these paradigmatic systems are highlighted. Spe-
cifically, we discuss the influence of fluctuations and the stability of spatio-temporal structures,
and also briefly address the effect of quenched disorder in the reaction rates. We conclude
with a brief summary and outlook. Finally, appendix A presents a succinct review of the Doi—
Peliti field theory approach and also provides a brief analysis of the asymmetric RPS model,
demonstrating its effective two-species limit for strong asymmetry at the mean-field level. The
remaining appendices list additional technical and computational details for the symmetric ML
model.
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Figure 1. Snapshots of the spatial particle distribution in cyclic three-species RPS and
ML models for single stochastic simulation runs (system size 100 x 100 lattice sites):
each lattice pixel is assigned an RGB value such that each color value is proportional to
the number of individuals of a specific species. A color value 0 represents the absence of
the species corresponding to that assigned color; therefore, black pixels indicate empty
sites. Top: RPS model with reaction rate parameter A’ = 0.5 at (a) = 300 Monte Carlo
Steps (MCS) and (b) # = 400 MCS; bottom: ML model with predation rate ¢’ = 0.5 and
reproduction rate = 0.5 at (c) t =300 MCS and (d) r =400 MCS, respectively. The red
species predates on the blue species, the blue species on the green species, and the green
species on the red species in both models.
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2. Stochastic RPS model

2.1. RPS model and mean-field rate equations

The RPS model consists of three particle species, subject to the cyclically coupled stochastic
competition reactions

A/
AL +A;y 2504,
Ay +As 2504,
)\/
As+A; 22524, (1

In this paper, we consider the cyclic-symmetric case, such that \{ = A] = A = A’. In this
limit, the system displays a discrete S3 symmetry among the three species. A brief analysis of
the general asymmetric case is presented in appendix A. We note that every species interacts
via a standard non-linear LV predation reaction with the subsequent species in the cycle, con-
suming a ‘prey’ particle and reproducing at the same instant. The total number of individuals
is unchanged by all reactions, hence particle number conservation holds globally and locally
(except for hops to neighboring lattice sites, see below).

We consider a model wherein particles from all three species perform random walks on a
d-dimensional hyper-cubic lattice with L sites and lattice constant c. We do not restrict the
number of particles per lattice site, hence we do not consider finite local carrying capacities
here (the total number of particles is fixed). The rate at which particles hop between sites is
given by D/c?, where D denotes a macroscopic diffusion constant. The reactions (1) occur
on-site, and only if two particles of differing species are present. Reaction products are put on
the same lattice point as the reactants.

In the limit of large diffusivities (relative to the reaction rates \’) the system can be con-
sidered well-mixed. Hence, the RPS rules can be approximated by the three coupled mean-field
rate equations for the homogenized species concentrations and with the volume reactivities
A=c79\":

dac‘h(’) = (1) [ar(1) — a3 (1)),
d“st(t) = Aax(t) [as (1) — an ()],
d%f[) = )\a3 ([) [al (l) —a (l‘)} . (2)

This system of ordinary differential equations yields non-linear oscillations around a neutral
fixed-line which is determined by the initial conditions. The fixed-line steady-state concentra-
tions can be obtained by setting the time derivatives to zero, resulting in

a;>°:§, Vi€ {1,2,3}, 3)
with the conserved total population density p = a; + a, 4+ a3 = const, parameterizing the

fixed-line. Linearization about this three-species coexistence fixed-line yields the stability
matrix
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A\ 0 +1 -1
Sgps = ?" 1 0 +1], 4)
+1 -1 0

with eigenvalues {0, —iwp,iwp}. Since the non-zero eigenvalues are purely imaginary, the
mean-field RPS system performs perpetual non-linear oscillations around the coexistence fixed
point with frequency (in the linearized approximation) wy = pA/ V3.

2.2. Doi-Peliti field theory and generalized Langevin equations

The bulk part of the Doi—Peliti action for the stochastic spatially extended RPS model follows
directly from the reactions (1) and reads*

ARPS — Z / drd'xa; (0, — DV?*) a; + A Z / drdxa; (ai) — ;) ajaig, . (5)
i=12,3 i=1,2,3

For convenience, here we drop all position and time indices (X, ¢) on the fields and identify a4 =
a;. The first term describes the random nearest-neighbor hopping of the particles in the system,
while the second contribution originates from the nonlinear reactions (1). As the auxiliary
field a;(X,t) corresponds to a projection dual state, with average (g; (X,#)) = 1, a Doi shift
a;(¥,t) = a;(¥,r) — 1 is conveniently applied to have the new field averaged to (g;(X,#)) = 0.
After the Doi shift and ignoring boundary terms, the action becomes

ARPS = % / drd’xa; (0, —DV?)a; + A > / dedx (@; + 1) (@1 — @i ) aiaiy ;. (6)
i=1.2,3 i=1.2,3

This shifted action may now be viewed as a Janssen—De Dominicis response functional
[42, 43] that represents the stochastic dynamics in terms of generalized Langevin equations.
The q; fields play the role of response fields and their coupling to the particle densities, shown
in the terms that are second order in these fields, entails the presence of multiplicative noise
terms. This comparison leads to the formulation of equivalent Langevin stochastic differential
equations encoded in the action (6),

da; = DV?a; + Aa; (aiv1 —ai—1) + ¢, (7

where (;(X,¢) are the components of multiplicative noise in the system with vanishing means
and correlations

(G(X, 1) Gy 1)) = 270D (%) — %2)d (1 — 1), (8
with the noise correlation matrix

1
aja;  —3a14; —3a1a3
_ 1 1
Z=\| —za1a2 aas —5mas | . ©))
—Layas —lasa aia
U143 Z¢2d3 143

Note that the noise auto-correlations Z;; are always determined by the concentration of the
predator species A; and its respective prey A, 1, and the scale is set by the predation rate .

4 A brief introduction of the Doi—Peliti field theory representation is presented in appendix A. We refer interested
readers to [40, 41] for more details.
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Hence the noise directly associated with a given species is solely determined by its role as
predator.

2.3. Particle number conservation and Noether’s theorem

Before we proceed with the perturbation theory analysis, we quickly comment on the con-
served Noether current associated with the total particle number preservation in the stochastic
reaction processes (1). This conservation law corresponds to a global U(1) symmetry in the
Doi—Peliti action (5) for the RPS model, namely it remains invariant under the U(1) gauge
transformation

al =e "a;, al =evq;, (10)

where 6 is an arbitrary phase angle. The conservation law follows from the action (5) and the
symmetry transformation (10) and assumes the usual form of a continuity equation

Do +V ] =0, an
with
jo=Y aia;, j=-DY (a;Va;—a;Va;). (12)

When choosing the Doi field a; = 1, a; represents the density of particle species A; and
equation (12) turns into the diffusion equation for the conserved total particle number density,

0 Y ai=DV* Y a. (13)

i=1,2,3 i=1,2,3

We note that the symmetry (10) corresponds to the freedom of choosing the phases of the
probability state a; and its dual projected state a;.

2.4. Diagonalization of the harmonic action

To start, we transform the fields to describe the fluctuations around the stationary fixed-point
species concentrations. To this end we employ the linear transformation

a@ ) =a@n L, @) =al@ ), (14)

which implies {(c;) = 0. In the symmetric RPS model, there is both total particle number con-
servation and cyclic permutation symmetry among the three distinct species. These two sym-
metries combined imply vanishing additive counterterms to the stationary concentrations due
to fluctuations. The action for these new fluctuating fields now reads

Ap? A A
ARPS = /dlddxz |:Z'i (& —DVZ) ci — Tpf’i (€ —Cip1) — 7”& (Cip1 — Ciza) — ?pz'iz(ci +cip1)

>

P - . 2 -
?CiCiJrl(Ci + Cit1) — ACici (Cip1 — Cig1) — AG Cicip1 + ACiCig1€CiCig1 |5

s5)

Jr
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where we again identify c4 = ¢; and cs = ¢, for convenience. The quadratic part in the above
action can be diagonalized by means of the following linear transformation

1 _Liv3  _1=iV3
2

C1 2 ¢
o)== |1 s s | (o], (16)
C3 \/‘;’ g : ¢_
1 1 1
and
1 =3 _1+iV3 -
E'1 1 2 2 (?o
§=2 :ﬁ 1 _1+éﬁ _]_éﬁ ?Jr . (17)
“ 1o 1 ¢-

The resulting action becomes ARPS = ARPS + ARPS, with the Gaussian part

ARPS _ / drd’x [¢3+ (0 — DV2 + i) by + b (8 — DV2) by + & (8 — DV2 — iwo)qs,] ,
(18)

and the nonlinear contributions (vertices)

S Ao~ [~ ~ 2Mp -
A = [t [— NPGeb i 00 (8161 —0-6-) = £ 046,

— A (6102~ 00} — 016400+ 660,

_ i% [(1 _ i\@)éi(bf —(1+ i\/§)¢?27¢+} -+ four-point vertices|. (19)

Here, wy = \p/ /3 denotes the zeroth-order oscillation frequency of the ¢4/ modes. Agps
is the diagonalized harmonic part of the action, while Aﬁffs represents the ‘interaction’ con-
tributions for the perturbative expansion. We omit the explicit expressions for the four-point
vertices as they will not contribute to the dispersion relations at one-loop order, which shall be
clear in the calculation below. It is manifest that ¢, = (a; +as + a3 — p)/+/3 represents the
fluctuation of the total particle number density. Due to the conservation law (13), the ¢, mode
is purely diffusive, and its exact dispersion relation in the harmonic part of the action acquires
no fluctuation corrections. The ¢ and ¢_ modes may be viewed as the left- and right-rotating
waves in the system. At tree level, they are purely oscillating modes without dissipation, i.e. the
real part of the mass term vanishes.

2.5. One-loop fluctuation corrections

We have applied a field-theoretical perturbation theory to one-loop order and calculated the
renormalized diffusion constant D,, damping constant -,, and oscillation frequency w,.> To
all orders in the fluctuation expansion extending beyond the mean-field approximation, there
should be no correction to the two-point vertex function I‘g ’;) or propagator self-energy for

the ¢, mode, whence it retains its tree-level purely diffusive dispersion relation as dictated by

5 For more details on the perturbation expansion and Feynman graph representations, we refer to [39, 40, 44].

8
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Figure 2. One-loop fluctuation contributions to the two-point vertex function Fg;;i in

RPS model. The solid lines represent the ¢4 and ¢— modes, whereas the dashed lines
represent the purely diffusive ¢, mode.

the conservation law. For the ¢ modes, the one-loop Feynman diagrams for the two-point

vertex functions ng’l;i are displayed in figure 2. The solid lines represent the ¢, and ¢_

propagators, while the dashed lines indicate the diffusive mode ¢,. In our convention, time

and hence momentum always flow from right to left in the Feynman diagrams. The analytic
(1.1

expression for the two-point vertex function I' Fion reads
(1,1) . 2 . \/g)\wo Uy £ iwo
Fd;;t(ﬁ:t(p’w) = iw + Dp” + up £ iwp + D kI D

V3w uy F iwo Awd 1 Uy F iwg
— 1+iV3) |1 - I 20
6D ’f)/k< D ) DZ/kkzwz;’( D ) <0

where j}( is short-hand for the d-dimensional wavevector integral [d?k/(2)?, and the function
I is defined as

I
R D

I(m?) 1)

The damping constant ug in equation (20) is introduced to regularize the IR singularities that
emerge in later calculations. A nonzero renormalized u, will be generated by the fluctuations,
but it is of higher order in the perturbation expansion; thus, we need to take uy — 0 at the end.
This two-point function can also be expressed with the renormalized parameters as

(1,1) _ . ) .
L, (p,w) =Z4, (iw+Dp* +u, +iw,), (22)

where Z,, absorbs all related wave function renormalizations (ultraviolet/UV divergences)
in (20). The renormalized diffusivity D,, damping u,, and oscillation frequency w, can be
inferred accordingly from the explicit one-loop result (20) and (22). We obtain the following
formal expressions for D,, u,, and w,,

\/§ka K2 ﬁ)\wo . K2
Dr:D—i— 6dD / 2 i 3— 6dD (lﬂ:l\/g)/m
k (K £+ 55) k(K2 F 3)

i 1
dp? |, (kT iwﬁo)f

17i/ 1 jEiﬁ/\/ o
2D J k2 +5 T 6D [\ Rk j2iin

V3w 1 V3w . 1
+ /k - (1 zpzﬁ)/k(

12D2 ), (k2 + )2 12D2 K2 + )2

u, + iw, = £iwy

. (23)

9
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Hence we indeed see that a non-zero damping u, is generated at one-loop order from the fluc-
tuations, in agreement with Monte Carlo simulation data [14]. The IR divergence at one-loop
order that appears when in the renormalized oscillation frequency w, in low dimensions d < 2
is caused by the contribution of the massless ¢, mode as uy is set to zero. The IR divergence
at one-loop order that appears in the renormalized oscillation frequency w, in low dimen-
sions d < 2 is caused by the superposition of ¢ and ¢_ modes as i is set to zero. Our ana-
lysis of the one-loop results shows that the ¢+ modes are inherently massive, as they acquire
non-zero damping u,. Thus, the IR divergence can be resolved simply by maintaining a finite
value for uy. For dimensions d > 2, there are also UV divergences present. Nevertheless, all
systems of interest have a natural cutoff in the UV limit, which is defined by the lattice con-
stant c¢. The renormalized variables in different physically accessible dimensions are presented
below.

2.5.1 d=1  In one dimension, the renormalized parameters are

W2 V6 V3
ReD, D+>\\/7<64 +192—48>,

b2 ()]

m(fff)

(24)

“=p EFEEEREEY

some numerical results are depicted in figure 3. We observe that the renormalized frequency
w, diverges when uy — 0. This IR divergence indicates strong fluctuation corrections to the
oscillation frequency in the perturbative regime where reaction rates are small, and uy — u, ~
A is of first order in the reactivity. However, numerical simulations are invariably performed
outside this regime for the sake of computational efficiency, as large reaction rates are used
to avoid long relaxation times. Thus, no strong fluctuation-induced renormalization have been
encountered in the simulations. To one-loop order, u, > 0, which indicates the stability of the
system’s spatially homogeneous ground state with respect to fluctuations.

2.5.2. d=2. Intwo dimensions, the renormalized variables read

ReD, = D+~
321
A DA? A1 V3w
y=wo |l e[ o) - 2 =
Yr= et T 8D <uo) D7r<16+ 24)]
\ﬁ)\(.d()
21n2). 2
U= ggpy ST2Mn2) 25

Note that we have explicitly introduced the cutoff A ~ 7 /¢ to regularize the UV divergence for
the renormalized oscillation frequency. We plot w, and the damping parameter u, in figure 4.
The renormalized diffusion constant D, only linearly depends on the parameter . As in the
one-dimensional case, the oscillation frequency w, diverges as ug — 0. We note that the damp-
ing constant u, is also positive at d = 2.
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wo = 2 —_—— Uy =

W = T 2N T Ug = 0.1
wo =0.5 — up=0.01

‘ 005 010 015 0207
(b)

wo = 2 —_—— Wy = 0.5
wWo = 1 102 0 LT ettt e Wy = 1
wo=0.5 — wp=2

Figure 3. Renormalized parameters in one dimension (d=1) in the RPS model:
(a) renormalized frequency w, as a function of the reactivity parameter A, with D=1,
up = 0.01, and for different bare frequencies wy. (b) Renormalized frequency w, as a
function of the parameter \, with wy = 1, D = 1, and different bare damping coefficients
up. (c) Renormalized u, as a function of the parameter A with D =1 and different bare
frequencies wy. (d) Renormalized diffusion constant D, as a function of the parameter
A with D =1 and different bare frequencies wy.

Figure 4. Renormalized parameters in two dimensions (d =2) in the RPS model:
(a) renormalized frequency w, as a function of the reactivity parameter A with D=1
and different ratios DA2 /up. (b) Renormalized damping u, as a function of the para-
meter A with D =1 and different bare frequencies wy.

2.5.3. d=3. In three dimensions, we may safely set up = 0 and the renormalized system
parameters follow as

ReDrzD—i—i [0 E_M ,
m\ D \ 192 384

oA Jeo (V3 5V6 V2
pr\'D\96 192 T4 ) |

_ Awo wo( V3 5V6 ﬁ)

Wy = W

(26)

7

"oV D\ 796 T 102 e

1
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w, u,
2'0\\\\\ 0.004 e
15 ~~ -
- 0.003 -
~—. //
O 0.002 -
...... _
05 0001 7 e
Lo
0. 2 4 =6 8 107 “ 005 010 0.15 020 005 010 015 020"

(a) (b) (c)

Figure 5. Renormalized parameters in three dimensions (d =3) in the RPS model:
(a) renormalized frequency w, as a function of the reactivity parameter A with D =1 and
different ratios DA? /uo. (b) Renormalized damping u, as a function of the parameter A
with D =1 and different bare frequencies wy. (c) Renormalized diffusion constant D,
as a function of the parameter A\ with D =1 and different bare frequencies wy.

We notice that for d > 2 the IR divergences disappear and fluctuation effects become generally
weak. u, is also positive for d = 3, as displayed in figure 5.

We have found that in dimensions d = 1, 2, and 3, the diffusivity D experiences an upward
shift, indicating that fluctuations enhance the diffusion. Our results, depicted in figures 3-5,
show that as the reaction rate increases, the characteristic frequency w, shifts to smaller values,
as the reactions drive the system toward a spatially more homogeneous distribution, leading
to slower oscillations. The decline in the characteristic frequencies is in accordance with the
numerical simulation data in [14]. In contrast with the LV model, Monte Carlo simulations
of the RPS system do not appear to show strong renormalization effects [14], although both
models feature a logarithmic divergence in two dimensions. The IR divergence in the RPS
model appears as a consequence of the fact that the corrections are built using the Gaussian
theory which has zero damping, precisely as in the LV model. The positive fluctuation-induced
damping (,, in contrast to the possibly negative one in the LV model, indicates that the system
remains stable against the spontaneous emergence of spatio-temporal structures.

3. Stochastic ML model

3.1. ML model and mean-field rate equations

The following discussion of the mean-field theory, Doi—Peliti action, and Langevin represent-
ation for the spatially extended stochastic ML model was laid out in detail in [20]. Here we
summarize the pertinent points needed for our comparison with the RPS model and the com-
putation of the fluctuation corrections to one-loop order. Following the conventions in [20],
the reactions in the ML model read

Bl' + Bi+1 J—> B,’ s

B 2B,
2B; = B;, 27)
where i = 1,2,3 denotes the three competing species, and we identify By = B; as before. In
contrast to the RPS system, the reactions in the ML model do not conserve the total particle
number. The first two reactions implement predation and reproduction independently, while

the third reaction implements ‘soft’ site occupation constraint to effectively represent a finite
carrying capacity. As in the RPS model, we consider a model wherein particles from all three

12
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species perform random walks on a d-dimensional hyper-cubic lattice with L sites and lat-
tice constant c. In the large diffusivity limit, the dynamics is governed by the mean-field rate
equations

dbclu(t) =by(1) ( —obs(1) +p— “b1(f))’
dbi(l) = ba(0)( = 0B (1) + 1 — kb (1)),
dbét( )~ by(o (= obat) + = rb3(1)) =

d d

where 0 = ¢?c’ and k = ¢k’ are the volume reaction rates. Instead of a fixed line defined
by the initial condition, the ML system displays a unique fixed point at mean-field level. By
setting the time derivatives to be 0, the steady-state concentrations are found to be

b = L

- 7V.€ 172737 29
Feto vie{123) 29)

and the associated stability matrix reads

x 0 o
swe=—""16 % 0 (30)
oTFk 0 o kK

Its eigenvalues at the coexistence fixed point are {—u, —u(2k — 0 +iv/30)/2(0 + k) }. The
first eigenvalue —p is always negative which implies the stability of the corresponding eigen-
mode, namely the exponential decay of the total particle number, see below. The imaginary
part of the two complex conjugate eigenvalues, ++/3u0/2(c + k), represents the frequency
of temporal oscillations for the associate modes, whose amplitudes are either exponentially
damped or growing. When 2« > o, the real part of the complex eigenvalues is negative and the
limit circles are stable. Otherwise, for 2x < o, the limit circles are unstable and one observes
the spontaneous formation of spiral structures in the system. In the vicinity of the Hopf bifurc-
ation at 2x = o, the time evolution of the two modes corresponding to the complex conjugate
eigenvalues becomes much slower than the fast relaxing mode, which introduces a natural time
scale separation. As a consequence of the critical slowing down near the Hopf bifurcation, the
fast relaxing mode can be integrated out and the system is effectively governed by the complex
time-dependent Ginzburg—Landau equation [20].

3.2. Doi-Peliti field theory and generalized Langevin equations

The Doi—Peliti action follows from the reactions of the ML model and reads

A= S [arats b 0 D9+ bt (1-00) b (5, 1)

i=1,2,3
+ O'i)ib,'b,‘_;,_] (l;i-i-l — 1):| . (31)

This action does not obey the U(1) global symmetry present in the RPS model; indeed, the
total particle number is not conserved under the ML reactions (27). Following the Doi shift to

13
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the fluctuating auxiliary fields b;(¥,7) = b;(X, ) — 1, the action becomes

AME =Y /dtddx {Ei (8 — DV? — p)b; — ub?b; + K bib} (15,- + 1)
i=1,2,3

t bbb (b+ 1)} . (32)

As in the RPS model above, we may now view this shifted action as a Janssen—De Dominicis
functional which is equivalent to the corresponding generalized Langevin equations

Oib; = DV*b; + pib; — kb? — obbiir +&;, (33)
where (¥, 1) represent the multiplicative noise components with correlators
(&(F1,0) & (%, 1)) = 256D (¥ — %)d (0 — ), (34)
with
pby — kbt —%biby —5b1b3
E=| —%biby  pby—Ab3  —Sbobs |. (35)
—35b1b3 —Sbybs by — b3

3.3. Diagonalization of the harmonic action

Before diagonalizing the quadratic action, we first shift to fluctuating fields, d;(¥,) = b;(%,1)
and d;(¥,1) = b;(¥,1) — ;4 — C. Here C is a counterterm which encodes the fluctuation cor-
rections to the average concentrations. Owing to the cyclic symmetry among the three different
species, we only need to introduce a single counterterm. The harmonic part of the action in

terms of the new fields Eli and d; reads

~ KL ol ~
AN — Z/dtddx {di (8, —DV?*+ ot (2K + a)c> d; + </<a+ + 0C> didiﬂ} - (36)

g

Since the counterterm C is of first order in the perturbative expansion parameters, up to zeroth
order the harmonic part of the action can be diagonalized by the following linear transformation

| =3 _1+iV3

él 1 2 2 7?0
R I @
} 1 1 1 ¥-
and
1 143 1-iV3
dl 1 2 2 wo
- 1—iv/3 1+ivV3
d, 7 1 1= - (O I (38)
s 1 1 v-

After applying this linear transformation, the action can be expressed as AME = AML + AML -
Aﬁf}, representing, respectively, the harmonic, source, and non-linear interaction terms. Again,
we omit the four-point vertices, since they will not contribute to the dispersion relation renor-

malizations at one-loop order. The other terms are

14
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Figure 6. Contributions to (1,) in the ML model up to one-loop order. The solid lines
represent the 1)+ modes as indicated, while the dashed lines denotes the 1), mode.

At = /dfdd [1/10 (0= DV + 114 2(0 + K)C) by + 4 (0, — DV + 70 + ivo) v
+9_ (8, — DV* + 40 — i) +% (a + 4k + iﬁa) Ciy

42 (o-+an—iv30) cJ)_;p_} , (39)
AME — /dtddx [ (uC+ (k+0)C?) (\/51/30 + 7]%%)

3P0 K—20 o\ 5
+(_(n+0)2+zum+aC+(2H_U)C>¢+w}’ (40)
ML _ 4y wk—20)  25—0 2 o) K40 -~
Aine —/dld [(\/g(ero) + 7 C) (¢+¢—+¢Jﬂ+) NG Dot

o 2(k+o) )*2 (M(Z‘i—d) 4K+ o ) - o
+( =5 )\ Bara s © ($otbs s+ Do)

73
%(n—a—!—\[w)i; Ui+ %(2/@—0 \[la)w.ub —|— 1%¢+¢

f

(4/1 40— flo) —Yoth— + ﬁ (4/—{ +o+ fza) Y4110+ + four-point Vertlces}

6
(41

where Yo = u(2k — 0)/2(0 + k) and vy = /3o /2(o + k). The 1), mode corresponds to the
fluctuation of the total particle density and decays exponentially at tree level. In contrast to
the RPS model, the ML . modes display non-vanishing dissipation 7y already on the mean-
field level. As mentioned above, a Hopf bifurcation occurs at 2k = ¢; when 2« < o, the system
is unstable and spiral structures are spontaneously generated. In the perturbative regime, the
assumed tiny fluctuation corrections should not change the overall stability features, but will
only shift the Hopf bifurcation point by a small amount.

3.4. One-loop fluctuation corrections

Prior to calculating the renormalized quantities, we need to determine the counterterm C by
requiring the average fluctuation of the total density to be zero, (1),) = 0. Up to one-loop order,
the contributions to (1,) are shown in figure 6. We note that the second diagram in figure 6 is
of second order and thus can be dropped. The corresponding analytic expression results in

__/M(Z%—U)/ 1
€= 2D(k+0)? i kP 4+ 42)
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Figure 7. One-loop fluctuation contributions to the two-point vertex function Fg ’1:}) in
the ML model.

We may now proceed to the fluctuation renormalization of the two-point vertex functions

FE[,I ’L) and Fg:’l)ﬁi’ which encode the self-energies entering the dispersion relation of the 1,

and 1 modes. As the total particle number is not conserved in the ML model, the dispersion

relation acquires non-trivial corrections from the perturbation expansion. The one-loop dia-

grams that contribute to the vertex function F(} D

o¥o

are pictured in figure 7. The last diagram is
of higher order and thus can be omitted; this results in

PUD (. w) = it + Dp? + i+ 20 + o) — PEF ) /I(E)
b ), \D

_2(0+H>%(%_\/gyo)/k,(vo)_M(WM)AM,(%),

3D D 3D D
43)

Provided 7y > 0, all corrections at one-loop level are real, and no imaginary part appears in the
mass term of the ¥, mode, hence there are no total particle number oscillations. However, for
Y0 < 0 the system exhibits emergent oscillations of the total particle number, indicating the
spontaneous formation of spatio-temporal structures. As the renormalized two-point vertex
function can also be written as

Y (pw) =2, (iw +Dop* + 1) , (44)

the renormalized diffusivity D? and mass parameter p, can be calculated accordingly. Here,
Z4, absorbs all wave function renormalizations. Since the rotating wave modes 4 acquires a
different diffusivity renormalization from the 0 mode, we carefully distinguish the renormal-
ized quantities D;* and D°.

The explicit expressions for D? and p, read

_ 1_2(0—!—/{)@ 1 o+k 1 p(o+k) 1
pr=H 30 u ) +% 3D S R+E 6D* | (R+B)

(o4 R) (l+ 2\/§V0’Yo>/ 1 V3(o+k) VoWo(’Yo—i—u)/ 1 }

3D2 W2 (2 + )2  3D3 ° (K +2)3

o_n_ Motk) K _2(ct+K)n B / K
br=P="3p /k(k2+g)3 3dD u(% \/g”‘)) (2 + 22)3

2v3(c + &) Yoy K
—WT(%-FM)/](W- (45)
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Figure 8. One-loop fluctuation contributions to the two-point vertex functions Fg
in the ML model.

After evaluating the integrals one arrives at

r(1-4d/2) <O’+l€ (M)d/Zfl N 2(c 4+ K)o <%>d/21)

2dgd/2 3D \D 3Dy \D

F=1-
K D

~(@2-4d/2)[plo+r) (g)d/HJr (0 +K)% 1+2ﬁuovo (@)WH
2dpd/2 6D?> \D 3D? w? D

3

- F(37d/2) \/§(O'+I€)I/()")/()( n )(@)d/2—3
2d7d/2 3D 0THD

o_n T(2-d/2) [p(o+k) p\9272  2(c+k)n0 Y0 4/?2
br=b- 2d+27rd/2{ 3D (B) 3D (V‘)’\@”‘)) (E)

T'(3—d/2) 2v/3(0 + )
T 3. 0d+2,d)2 3D

d/2—3
wioto+m) () - (46)

Ford > 2, UV divergences in y, are manifest; but since the lattice constant ¢ serves as a natural
UV cutoff in lattice models, we will not discuss these UV divergences further.

The renormalized vertex function Fg:l)bi can also be calculated according to the one-loop
diagrams in figure 8, resulting in

1"(171)

_ 2 . 0O+K .
@iwi(l)yw)—lerDP +70:tzy0+7ﬂ (vo+pLiv)C

G e [1(25)

(0 +K)7 . Yo+ iy
3Dy (Yo + i) A D

_2V3(o+ R (%Hg)/ 1 ](%:F%)
k

3D P+ % D

V3(a + K)o I o+ p v
- +i 1 . 47
3D (Yo + 4 WO)/kk2+7)° ( D > 47)

Upon invoking the relation with renormalized quantities

(10 _ . + 2 .
qujiwi(p,w)—Zﬁi (iw+Dyp* + 7, +iv,), (48)
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the expressions for the renormalized parameters -, and v, are readily inferred,

) I'(1-d/2) (%)f’/z 1

Y kiv, =0 Eive+ (0 + k) {M 2pd2 \D

(d—2)/4
o T(1—d/2) (¥+13 d—2
+M, dd)2 2 exp| Fi— 0

r(1—d/2 242\ d—2
pyCn /)((M+70)2+V0> exp(ii . n)

2d7d/? 4D

(d—4)/4
o T2—-d2) (d+13 d—4
+M, ]2 02 exp| Fi > 0

(d=4)/4
) P2-d/2) ((n+10)+15 d
M 4D? exp| +i

—4
. 77>] (49)

where the coefficients Ml(i) are defined in equation (B.2) in the appendix, and the angles 6
and 7 are given by tanf = /7o and tann = v/ (o + i). We note that at odd dimensions d,
the first term in the bracket in equation (49) switches from real to imaginary as -y, changes its
sign; however, at even dimensions, this term is always real. Finally, the renormalized diffusivity

reads
2 9>

(d—2)/4
K+o + v, d—
D%:D_dzdﬂd/z [ (1—d/2)P! (701)2 0) exp(q:z
—4
9)

(d-6)/4
T3 -d/2) o) (R 414 -6
> P 7 exp| Fi 7 0
_ @ ((B+7)*+15 d—2
+I(1-4d/2)Q; ( D7 exp +i 51
+70)* + 11 d—4
F(zd/z)Qgi’((“ Z(gZ > exp(:l:t . n)

(d—6)/4
3— d 2 w+v)" + d—6
( / ) Q(i) (( 0)2 Yo ) exp <:|:l ) 7])

—T(1—d/2) (p§i> +Q§i>> (VDO)(d_Z)/Z], (50)

In the appendices, we provide additional details and the definitions of the various coefficients,
as well as explicit evaluations for d = 1,2,3. Here, we focus on the behavior of the damping
parameter (i, across different dimensions. It is important to note that 1, is generally a complex
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Figure 9. Renormalized p, in one dimension (d = 1): (a) real part of p, as a function of
o+ rkwithD=1, u=1, vy = 1, and different values of 7¢. (b) Imaginary part of u, as
a function of A with D=1, u=1, 1y = 1, and different v < 0.
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Figure 10. Renormalized u, at two dimensions (d = 2) with cutoff A? = 10000: (a) real
part of i, as a function of o + k with D=1, u=1, 1y = 1, and different values of .
(b) Imaginary part of u, as a function of A with D=1, u=1, vy =1, and different
Y0 < 0.

number: Its imaginary part conveys information about spatial oscillations, while its real part
represents either exponential decay or growth of the average particle density.

3.4.1. d=1 In one dimension, the renormalized damping parameter (i, reads

. B a+n U+n \[V0+\/§Vo+ﬁyofyo 51)
Br=P\" " "oap \/ \/ Tt 16 | 164 | 62 )|

For vy < 0, u, acquires an imaginary part, indicating oscillatory behavior. However, if vy > 0,
there is only damping. We display different scenarios in figure 9.

3.4.2. d=2. Attwo dimensions, we need to introduce the UV cutoff A ~ 7 /c; the damping
parameter becomes

B 1,0+HﬁnDA2,J+HnDA2,U+”
Hr= 6Dr 1 v 12D7 4 24Dn

— 52
12D7 24 2% u? (52)

o+ kK <l+ \ﬁuo+ \/§uo+2\/§uo’70>]'

As in the one-dimensional case, when 7 > 0, we have pure damping, whereas the system
displays population oscillations if vy < 0. The damping coefficients i, at d =2 for different
bare parameters are plotted in figure 10.
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Figure 11. Renormalized p, at three dimensions (d = 3): (a) real part of y, as a function
of o +k with D=1, p=1, vy = 1, and different values of . (b) Imaginary part of u,
as a function of A with D=1, p=1, vy = 1, and different vy < 0.

3.4.3. d=3. In three dimensions, the damping parameter reads

e o (e o )]
16D\ D 6Dm \ D 4 16p 1670 22

Again, oscillations emerge in the region where vy < 0. The real and imaginary parts of the
damping parameter . are depicted in figure 11.

For vy = 1, the damping p, decreases in one and two dimensions, but increases in three
dimensions in the stable region where o > 0, as shown in figures 9—11. This indicates that the
reactions effectively slow down the relaxation processes in one and two dimensions, but speed
them up in three dimensions. However, due to the highly nonlinear dependence on the para-
meters 19, Yo, and v, a more general conclusion cannot be made. It is worth noting that in the
unstable region, an imaginary part of u, is generated, formally resulting from the subtraction
of an inadequate homogeneous steady state. Yet these emergent oscillations manifestly indic-
ate the instability with respect to spontaneous formation of spatio-temporal patterns in this
regime. We emphasize again that the one-loop fluctuation corrections should merely induce
small quantitative corrections, and cannot induce qualitative changes in the region where per-
turbation theory is applicable. The ML system thus maintains a bifurcation point, below which
the homogeneous ground state is rendered unstable and spiral structures emerge.

Hr = [

4. Comparison between the RPS, ML, and LV models

In this section, we present a thorough comparison between the spatically extended stochastic
LV, RPS, and ML models. We specifically discuss the spontaneous formation of spatio-
temporal structures and the stability of the homogeneous state up to perturbative one-loop
order in the fluctuation corrections. We also briefly address the influence of quenched spatial
disorder in the reaction rates in the perturbative regime.

4.1. Spiral formation from a single lattice site point of view

It is well-established that in sufficiently large spatial systems, the ML model displays spontan-
eously emerging dynamic spiral structures in individual simulation runs (these are of course
averaged out in ensemble averages). Here, we propose that one crucial necessary condition for
the formation of such persistent spatio-temporal patterns is the existence of a stable and uni-
form oscillation frequency at the local lattice site level, which then allows spatially extended
coherent oscillatory features.
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Figure 12. (a) Time evolution of the density of species A; in the RPS model on two
randomly chosen sites; (b) frequency spectrum of the time series in (a) obtained through
a Fourier transform. The simulation was run with a reaction rate 0.5 and on a lattice with
100 x 100 sites. The reactions in the simulation take place off-site and no additional
hopping processes are incorporated.

Each site in a lattice subject to stochastic reactions and spreading processes can be regarded
as a separate system that is coupled to a particle reservoir (in the thermodynamic limit). In the
ML model, at the (linearized) mean-field level, the local oscillation frequency is uniquely
determined by the reaction rates, as is also apparent in the diagonalized ML Doi—Peliti
action (39) at tree level. A similar definition of the oscillation frequency at linearized mean
field level can also be obtained in the LV model [39]. However, in the RPS model at tree level,
the oscillation frequency is set by the global conserved particle number p. As the particle num-
ber at each site is changing all the time owing to its coupling to the environment that serves as
a nonlocal reservoir, there does not exist a unique characteristic oscillation frequency for each
site during any single run stochastic realization. Ultimately, these nonlocal effects originate
from the long-range correlations introduced by the global particle number conservation law,
whose relevance in the context of pattern formation was demonstrated in [11]. The average of
the oscillation frequency with a fixed total particle number is given by the expression in the
diagonalized RPS Doi—Peliti action (18).

These straightforward tree-level arguments are readily generalized to all (loop) orders in the
perturbation expansion. In the ML model, no nonlinear terms that depend on the total particle
density (or any other global quantity) are present in the action, and thus the renormalized fre-
quency will also be independent of the particle number density. This is not the case for the
RPS model, where p manifestly enters the vertices. A perhaps more straightforward way to
understand this distinction invokes the fixed points (stationary species densities) of the sys-
tems. In the RPS system, there exists a fixed line that is parameterized by the conserved total
particle number. For each lattice site in the RPS model, the population oscillations wander
along this fixed line with a mean that corresponds to the averaged local total particle number
at this specific site. In contrast, the ML and LV models have unique fixed points, independent
of any global constraints that originate from conservation laws, and consequently all lattice
sites are governed by identical oscillation frequencies determined by these fixed points.

To illustrate these points, we plot the time evolution of the population density of a single
species at two randomly chosen lattice sites in a single simulation run for the RPS and ML
models in figures 12 and 13, respectively. For the RPS species density, the time intervals sep-
arating different peaks are not regularly spaced for the two lattice sites. Correspondingly, its
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Figure 13. (a) Time evolution of the density of species B; in the ML model on two
randomly chosen sites; (b) frequency spectrum of the time series in (a) obtained through
a Fourier transform. In the simulation, the predation and reproduction rates are both set
to 0.5 and the system size is 100 x 100 lattice sites. The reactions in the simulation take
place off-site, and no additional hopping processes are incorporated.

Fourier transform displays multiple peaks with almost equal intensities, and no well-defined
characteristic frequency is discernible. In contrast, the peaks in the ML species density time
evolution are evenly separated, and hence a dominant Fourier peak emerges. These numerical
observations support our analysis that the frequency in a single run in the ML model is well-
defined, while that is clearly not the case for the RPS system. Yet a well-defined oscillation
frequency clearly constitutes a necessary condition to form spatio-temporal patterns.

Although the arguments in this section are formulated in the framework of individual sites
in a regular lattice, they are readily extended to an effective unit cell that is similar in size to
the characteristic diffusion length scale, or to models defined on a continuum which require a
finite reaction range. As long as the system size is much larger than any of these small length
scales (that provide suitable ultraviolet cutoffs for the continuum field theory), the specific
microscopic details implemented in numerical simulations are not expected to have a signific-
ant impact on our conclusions.

4.2. Stability of the homogeneous ground states against fluctuations (to one-loop order)

While we posit above that a stable oscillation frequency at each lattice site is a necessary
requirement to form oscillatory spatio-temporal patterns such as spirals, this is not a sufficient
condition. Another crucial ingredient is of course that the spatially homogeneous stationary
state is rendered unstable; fluctuations of a certain wavevector range will then spontaneously
generate spatial patterns [45, 46].

In the stochastic spatially extended LV model [39], in the absence of site restrictions, the
population oscillation damping vanishes in the Gaussian approximation. To one-loop order, a
negative damping frequency is generated which indicates an instability of the spatially uniform
system, inducing nontrivial particle transport that in turn drives the formation of expanding
evasion-pursuit activity waves. In the ML model, the damping coefficient is already nonzero in
the Gaussian approximation. As stated above, when 2k < o, the limit cycles of the ML model
become unstable and spiral structures emerge. Yet within the realm of a perturbative approach,
any fluctuation corrections will only shift the Hopf bifurcation point, but cannot qualitatively
change the system’s overall features. In contrast, the RPS system behaves similarly to the LV
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system, as we encounter a vanishing damping coefficient in the Gaussian approximation. How-
ever, at one-loop level, the generated mass term is positive indicating merely a generated finite
damping constant, as opposed to its negative counterpart in the LV model. Hence the RPS
model remains inert against spontaneous pattern formation. Higher-order terms in the fluctu-
ation expansion should not overturn the sign of the one-loop results within the perturbative
regime, which renders this argument perturbatively robust.

4.3. Influence of quenched spatially disordered reaction rates

In this part, we briefly investigate the effect of spatially disordered, uniformly distributed
quenched reaction probabilities on the fluctuation corrections. We start with the Doi—Peliti
action

A= /dtddx [ﬁo(fli,ai) + E’(&i,ai)] s (54)

where £y and £ are (usually polynomial) functions of the fields {a;} and {a;}. We introduce
spatial disorder to £, which we take to represent stochastic reactions while £ encodes particle
diffusions. The action with quenched spatial disorder is then given by

Ap Z/dtddxﬁo—k/ddxn()_c’) /d/l’; (55)

here, we assume 7)(¥X) to be uniformly distributed in the interval [0,2] with mean 77 = 1. Note
that the reaction rates are only spatially disordered and remain fixed in time. The average of
any observables follows from equation (A.9) through

H/ ') /HD O({arai})e (56)

where the overline denotes the quenched disorder average. We can readily integrate out the
disorder 7(X) first, since the observable O is independent of the random variables 7, and arrive
at

/ [TPlaiplajotaane . 57)
with
Ap=A+ /ddxln {W} : (58)

Incorporating disorder in the original Doi—Peliti action (54) thus effectively leads to an addi-
tional term that is nonlocal in the time domain, owing to the temporally fixed reaction rates.

However, in the perturbative regime where £’ is small, this extra term can be expanded near
L=

In {Smf(c{tﬁt’ﬁ)} - §/dtd’15/£r' +0(L7), 59

where the labels 7 and ¢ distinguish the different time dependences. It is evident from this
expansion that the extra temporally nonlocal term ‘entangles’ different replicas of the system.
However, as the first term is already second-order in £’, it is of higher order than the original
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action A, and should not markedly affect the system’s fluctuation corrections in the naive per-
turbation regime, at least to low loop orders. This observation may account for the insensitivity
of the RPS and ML models to quenched randomness in the reaction rates, as reported in [14,
17]. We remark that the stronger effects of varying predation rates A in the LV system can be
largely traced to the sensitivity ~1/) of the stationary species densities already on the mean-
field approximation level [35].

5. Summary and conclusions

In this paper, we have investigated the dynamics of the RPS and ML models up to one-
loop order in the fluctuation corrections by means of a perturbative field-theoretical ana-
lysis. We utilized the Doi—Peliti formalism to obtain the dynamical probability functional for
the stochastic Markovian dynamics, and also extracted the equivalent generalized Langevin
equations. In the Gaussian theory, as expected, the RPS model displays only purely oscil-
latory modes in addition to the strictly diffusive conserved total particle density. In the ML
model, a Hopf bifurcation point appears at 2x — o = 0 that separates the parameter space into
stable and unstable regions; in the latter regime, spiral structures are spontaneously generated.

The one-loop fluctuation corrections in the RPS model, which are of first order in the effect-
ive nonlinear coupling A\/D < 1, generate dissipation. We have found that in the physically
accessible dimensions d =1, 2, 3, the damping coefficient is always positive. This indicates
the stability of the spatially uniform stationary state in the RPS model, at least in the perturb-
ative regime. Thus, our analysis sheds light on the absence of spatio-temporal structures in the
RPS model. In addition, the one-loop correction to the oscillation frequency is IR divergent
due to the dissipation-free nature of the mean-field modes, very similar to the LV model. How-
ever, outside the range of validity of the perturbation expansion, the damping terms become
sizeable; hence we argue that this IR divergence becomes naturally regularized. This explains
why no significant fluctuation corrections to the oscillation frequency have as yet been numer-
ically observed in computer simulations, which have invariably been situated far away from
the perturbative regime.

In the ML model, as both the dissipation and oscillation frequencies are already finite
at mean-field level, the one-loop fluctuation corrections should not qualitatively modify the
mean-field conclusions. Since both propagating modes are massive due to the finite damping
coefficients, the ML system does not display any IR singularities. Hence the ML model is
insensitive to fluctuations at least perturbatively, and in the region where the homogeneous
steady state is stable. Moreover, we have argued that uniformly distributed quenched random
disorder in the reaction rates only weakly influences fluctuation corrections in either system,
which is in agreement with earlier Monte Carlo simulation data.

Finally, we provided two decisive criteria that determine the possibility of spatio-temporal
structures in the LV, RPS, and ML models. The first argument considers a single lattice site
point of view, while the second is based on studying the global stability of the spatially homo-
geneous stationary state of the system. From a single lattice site perspective, a necessary (but
not sufficient) condition for the emergence of spatially extended coherent oscillatory behavior
is that the oscillation frequency is constant over space and time in each run. Different oscil-
lation frequencies on distinct sites would not allow the formation of stable coherent patterns.
From a global point of view, only if the spatially uniform quasi-steady state is unstable against
finite-wavelength fluctuations can non-trivial spatio-temporal structures be generated, as is
evident in the ML model. Both these criteria explain the absence of spatio-temporal patterns
in the RPS system, as a consequence of the relevant conservation law for the total particle
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number, in contrast with the otherwise apparently similar LV and ML models. We remark that
adding some external noise to the RPS model that explicitly invalidates total particle number
conservation might induce the formation of spiral patterns at sufficiently large length and long
time scales.
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Appendix A. Doi—Peliti formalism and the asymmetric RPS model

In this appendix, we provide a brief overview of the construction of the time evolution operator
and the resulting field-theoretic action via the Doi—Peliti mapping of stochastic reactions to a
non-Hermitean many-body quantum action [47-50] (for recent reviews and additional details,
see [40, 41, 51, 52]). We then proceed to construct coupled Langevin equations describing
the dynamics of the system similar to previous work in the context of the LV system [32, 39,
40], plankton-based predator-prey models [53], and Turing patterns [54]. An interesting corner
limit is analyzed via the generalized Langevin equations; we will show that the strongly asym-
metric RPS system reduces to an effective LV model. Finally, we construct the diagonalized
action for the RPS model and briefly compare the general situation with the symmetric version
discussed in the bulk of this paper. This appendix is written in a self-consistent way and we
hope it will be of use to readers who would like to delve into the Doi—Peliti formalism.

A.1. Stochastic time evolution operator

The RPS rules (1) mandate that particle numbers are discrete, hence the occupation numbers
of lattice sites can be written as positive integers n;,, where the index i accounts for different
particle species, while o enumerates the sites on a d-dimensional hyper-cubic lattice. The
master equation for the local, on-site RPS reactions then reads:

OP(niq;t)

o — Z )‘i/ [(niail)(ni“’ladl»1)P(nia*1,ni+1a+1;[)

i=12,3 (A.1)
— niaNit1aP(Mia,Nit1a31)],

where the index i wraps around (i.e. i =4 is to be identified with i = 1). Note that for brevity

we have not included hopping to adjacent lattice sites here. As an initial state, we assume a

uniform distribution of particles with an average initial number of particles N; per lattice site of
species i. This corresponds to a Poisson distribution for the occupation number of each species
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i atall lattice sites v, P(nja;1) = [[;—; 5 3Ni" €™/ (nia!). The discrete nature of the possible
states of the RPS systems suggests the introduction of a product Fock space state vector

@) =Y Pmiait) ] Hlnm (A2)

{nia} i=1,23a=1

where the |n;,) represent the occupation states of species i on lattice site i. In analogy
with the quantum-mechanical harmonic oscillator, the single-site states (and thereby the full
state vector) can be acted upon by bosonic ladder operators obeying the commutation rela-
tions [g;q,a;3) = 0 and [a,'a,a;.rﬁ] = da36;. The occupation number eigenstates are construc-

ted via a;|nia) = Rialtia — 1), a}a|nm> = |nio + 1), and the empty state |0) is defined by
Ai |0> =0.

The time evolution of the state vector (A.2) follows directly from the master equation (A.1)
and can be written in the form

%\¢(I)>=—H|<1>(t)><=>l‘1>( 1) =e~"2(0)), (A3)

where H denotes the (time-independent) Liouville operator which can be split into a diffusion
and a reaction term, H = Hyisr + Hyeac, Where the on-site reaction contribution is a sum of local

terms Hieae = Z{“il H,, and specifically for the RPS model
H, = E A (a}:rm — aja) a;raa,-aa,-Ha. (A4)
i=1,2,3

Similarly, since on-lattice diffusion is implemented by particles performing simple jumps
between nearest-neighbor lattice sites, the diffusion part of H reads

Hig= Y. = Z( —aly) (aja — aip), (A5)

i= 123 (apB)

where (o) indicates a sum over all possible nearest-neighbor lattice site pairs in the system.

A.2. Coherent-state path integral and equivalent Langevin partial differential equations
Following the steps of [39-41], we write averages for observables O = O({n;,}) as a multi-

dimensional integral over coherent states

Ld

/ [T ] @vfadtia O({tia}) e AWiatioi), (A6)

i=1,23a=1

where the v;,, and 9}, are complex eigenvalues describing the coherent right and left eigen-
states of the ladder operators a;,, and al respectively. The coherent-state ‘action’ is given by

i
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[/ ar 05 (0 222D g () — N 0)

AWy tbiait’) = 3 i
1,2,3a=

i= 1

/

+/ le( _>1zbzo¢( ) dia _>wio¢<t))a (A7)
0

where we have to replace the ladder operators by their eigenvalues in the Liouville operator
H.
In the spatial continuum limit (lattice constant c — 0) we may replace the sum over lat-

tice sites with a d-dimensional volume integral Z . c“’ [ d’x, and the discretely spaced
coherent-state values with continuous fields t;, (¢) — c¢?a;(¥,7) and ¥}, () — 1 +a;(¥,1).
Hence, the ‘bulk’ part of action (not considering the terms from the initial conditions at t =0
and the projection states at = ') of the RPS system is given by

A= /dtdd [

i (81 —DaV2> a; + )\161102(511 + 1)(&2 — le)
i=1,2,3

+ Maras (Elz + 1)(&3 — az) + \3aza; (213 + 1)(&1 — &3) . (A.8)

In the continuum limit we can thus write averages in the following coherent-state path integral
form

/ [I Plaiplalo({ai})e 4@ (A.9)

i=1,2,3

Our aim here is to derive stochastic partial differential (Langevin) equations for the species
concentrations that accurately capture the intrinsic reaction noise. To this end, we note that the
Janssen—de Dominicis response functional [40, 42, 43, 55]

A= / drd’x> @ <6lal~—D,~V2a,~ Fil{a:}] ZL,] {a:}] ) (A.10)

is equivalent to the set of SPDEs

da; = DiV*a;(%,1) + F;[{ai(Z,1)}] + G(%.1), (A.11)
with the associated noise (cross-)correlations

(GENGE 1) =2Ly[{ai(¥,1) o (r —1")0 (X — X'). (A.12)

This correspondence allows the immediate derivation of a coupled Langevin equation formu-
lation of any system that exhibits an action functional of the form (A.10). Hence, via a direct
comparison with the action of the RPS system (A.7), we can extract the deterministic part of
the SPDEs describing the RPS system
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Fi = (MNay — Ma3)ar, Fr=(Ma3—MNai)ay, F3=(\a;— X ay)as, (A.13)

which equal the right-hand side of the mean-field equations, as they should. Furthermore, the
effective noise correlations are given by the matrix L;:

1 3
Ly =MNaay, Lp=-—-—aa, Lij3z=-——aa;,

2 2

A2
Ly = lara3, Lp= — 5 ®2as, L3z = Azaia3. (A.14)

Hence, the SPDEs (A.11) can be constructed from the mean-field equations by including
a term that accounts for diffusion and multiplicative noise terms obeying the given (cross-
)correlations. Note that the noise auto-correlations L;; are always determined by the concentra-
tion of the predator species A; and its respective prey A, 1, and the scale is set by the associated
predation rate \;. Thus, the noise directly associated with a given species is solely determined
by its role as predator.

A.3. Strongly asymmetric RPS model: mapping to the LV system

In order to investigate the asymmetric ‘corner’ limit of the RPS system, we re-define the inter-
action rates as A\; = A/x, A, = A and A3 = k. The dimensionless variable x varies in the inter-
val (0, 1] and describes the asymmetry of the rates, while the equally dimensionless parameter
k is of order unity and describes the difference between the predation rates of species A, and
As. We are interested in the limit x — 0 in which the predation reactions between species A;
and A, dominate. The concentrations at the coexistence fixed point become

(Q1,0,93) = p(x, kx, 1 — [1 + r]x) + O(x?). (A.15)

Hence, the densities of species A} and A; become small as x — 0, while species A3 makes
up most of the overall species abundance. This is the ‘corner’ limit in which RPS can be
approximated by a two-species LV system, with the third, most abundant species serving as
a mean-field like reservoir to feed the first species, and to provide the effective spontaneous
death reaction for the second species, as explained above [56]. Species A| thus effectively turns
into prey, while A, becomes the sole predator species. The noise correlation matrix L in this
corner case reads

K
Ly =—aia2, Lip=——aia2, Liz=——ap,
X 2x 2

A
Ly =~ dazp, Lp= —5@p; L3z = kAayp.

The noise strength of species A, as well as the noise cross-correlations between species A
and A,, are inversely proportional to the large rate scaling factor x, indicating that fluctuations
of species A; and A, (the LV predator and prey, respectively) become strong in the limit x — 0.
Indeed, writing the resulting effective SPDEs in the limit of large A; and assuming a homo-
geneous and stationary distribution of species A3 yields
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A+ A
Oy %Dlvzal-i-/\]alaz—P(l— 2; 3)/\3014-(17 (A.16)
1
A+ A
G,azzDzvzaanp(l 2:—1 3))\2a2)\1a1a2+C2, (A.17)
with the noise correlations
<C1 (f,l)cl(f/,t/)> = 2/\1611(125()?-)?’)5(2‘- l‘/) s (A18)
<<1 ()?, I)Cg(f/,l‘/» = —)\lalazé(f—f’)é(t— l‘/) s (A]g)
A+ A
(GENGE ) =2Xp (1 - A“) a6(%— X3 —1"). (A20)

This set of Langevin equations precisely matches those derived directly for the LV model [39].

A.4. Fluctuation corrections

In order to gain more insight into the role of fluctuations in the RPS system, we study the non-
linear vertices arising from the Doi—Peliti action (A.7). To this end, we first need to diagonalize
the action by transforming to appropriate field combinations. We then list the resulting vertices
that capture fluctuation corrections beyond the Gaussian mean-field approximation.

To start, we transform the fields to describe the fluctuations around the fixed-point species
concentrations. To this end we employ the linear transformation

Cl,(.?, l) =Q;+ C,'(.f7 l>7 Zli(f, l) = E‘,’(.ﬁ t>7 (A.21)

here ignoring higher-order shifts of the steady-state coexistence concentrations induced by
stochastic fluctuations (i.e. the counter-terms or additive renormalizations in [39]). The action
for these new fluctuating fields becomes

A= / dr d’x Z & (0 —DiV?) i+ A, (A.22)

i=1,2,3
with the reduced part

1 - -
A== [A] @+ 1)(@1 — &) (Aer + Map)(hea + Aap)

+ )\2’(52 + 1)(6‘2 — 2‘3)(5\6‘2 + )\3[))(5\63 + /\1p)

+A3(e3 +1)(E3 — &) (Aes + Aip) (Aer + Azp)} : (A.23)

and X\ = \; + X\, + \s. The harmonic part of this action can be cast in a bilinear matrix form

Sp = y_; CjAjic; with the mass matrix
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[ V5 VD V5 WS
M 0 s | =-A,, (A.24)
AN A 0

b
Il
>

where A; is the stability matrix of the system at mean-field level. We note that it reduces to the
stability matrix (4) in the symmetric limit \; = Ay = A3 = \.

Our goal is to find a transformation that diagonalizes the mass matrix A, and thus the har-
monic part of the action (A.7), if we set all diffusivities equal, D; = D. The matrix A is asym-
metric, hence we make use of its orthogonal left and right eigenvectors il; A = e;u; and AV; =
e;V;, respectively. The resulting eigenvector matrices Q = (i},i,43) and P = (V},V,,13)
read

1 1 1
MOEA)  A(AdA)
o=|1 —55in —Sonon |, (A.25)
1 — A(A+A3) Aa(Ma+As)
A A2 —iA A +iA

where A = \//\1/\2/\3(/\1 + X —|—)\3), and

1 1 1
A mutd) mat)
P=1X Mo —iA antia |- (A.26)
A A(etAs) Qe ts)
A2 A1 +iA A —iA

The right and left eigenvector matrices then transform the mass matrix to the diagonal form
QTAP(~QTP)*1 = diag(e;). Defining new fields ¢; and ¢; according to the transformation ¢; =
Zj Qj{@sj and ¢; = Zj Pj;, we arrive at®

Gr=v+dr+oo,
- = Ao ~ ~ lA//\s/] ~ ~
Cop3 =% — N (py +0-) = ST, (b —b-), (A.27)
a=v+or+o-,
B /\3/] )\3/1 iA/)\z
Cy3 = " b — N (o +0-)F N (P4 —9-). (A.28)

It is already obvious from this structure that the fields 1; and 1) describe the fluctuation of the
total population, while the other fields are oscillatory in nature. Employing these transforma-
tions, one arrives at the diagonalized harmonic action

6 Note that we have employed a different diagonalization convention in this appendix as compared to the main text.
This difference is reflected in the constant factors in the propagators.
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Table A1. Coefficients of the vertices in the action after the transformation to fluctuating
fields.

Two-point (noise) sources >

72 Y A2 =23)=A2( A =X2) |
et + (>\|+;\3)2 (p l /\|+A2+3>\3 + lwo[)\l - /\3})
¢~3+¢~)7 20" Aot A st

Atz Alt+A2+As

Merging three-point vertices —

7 wy At At+N)?
e T vEs

Srddh () (A — Al £ A — 20 + As))

Prot —(A5A5E) 7 ([0 — da) £ A + 220 + As))

Splitting three-point vertices >

s oy (P O = A3) + X5 (Aa = A)] o [Ar = As][Ar + X + As))
Y- =522 (M AAs 4 X s)

T 2o At t+As
Prpor  F2iwo 55,

$+0% o (A = D] = Aa [+ X 200 222 Do (A - X) +
AMAs(Az + Az —2A1)])

0% — s (AP 3% = M A A 2000 + XA +
A £ Z22[= A0 + M3 + XM + AT (2X0 + X))

Tw

Gdr-  oriboy CMAT+ [ = AT — [N+ R F 22T e+ As) -
AA3 = Ao s))

Ao = /dt/ddx()\l + A2+ A3) [Aizzp (0, —DV?) ¢

1

~ . 1 ~ )
N0t (0= DV i) b4+ 56 (0, - DV — i) ¢,} . (A.29)

+
AL+ Az

The fieldv = Ay (c1 + ¢z +¢3) /(A1 + A2 + A3) is massless, encodes no reactions, and is purely
diffusive, as it represents the total local concentration of all three species. The corresponding
harmonic propagator is given in Fourier space by

T Az (27) 1§(q+q’)5(w+w’)
! / 30
- A-
<¢(q7(“’)¢(q W ) )\1 /\2 )\3 i D 2 ) ( )

while the oscillating field propagators display poles at finite eigenfrequencies Fwy, similar to
the LV case [39]. The action transformed to the new fields becomes quite cumbersome to write
out in full, hence we merely provide the coefficients of the possible field combinations in the
vertices in table Al. Note that we omit the coefficients of any four-point vertices as these do
not contribute to one-loop order corrections.
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Appendix B. Detailed calculations for the ML model

Here we provide intermediate steps for the one-loop calculation of the ML model. The renor-

malized frequencies are
() 1 (+) 1
M M s
! /kk2+%’ I /kk2+7°j£’”°

(+) 1 (+) 1 (+) 1
Y P VY S NV Ry (S —
3 P k2 4+ u+'£<biwo 4 v (K2 + ’YOT)WO)Z 5 v (K2 + u+'§<bim)2

(B.1)

Y tiv, =" Livg+ (0 + k)

with the coefficients Mfi) = ReM; +ImM;, where

ReM, = . 0 T [v@u(% — )t = 5 (475 — 1995+ 200" + 81%)
V3D [(0 — )2 + 1]

— 15 (70 — )2 (2% — 5701+ 2yop® +31°) — 1§ (20 + SM)] :

1 2 4 4,3 2 2 3
ImM, = 5 [—%u(%—u) =1 (470 — 17Tvop+ 270" +247)
V3Dp? [(yo — )% + 1]

—15(2%0 — Yor +601” — 870p + 11°) — v (20 + u)] ,

2
% (V370 + ) Y0 (V3% + o)
ReM, = — OWV200020) -y, 0LV 200 20)
e 3Duvy : 3Dpu ’
ReMs = — w0 — [2\/§VS (646 — Yo — 31%) + iy (o + 1)
3D (o — p)? +13)
+205 (70 — 10)* (0 + 1) — 283w (0 — 16)* (0 + 1) + (0 — 1) * (0 + 1) — 4\@/3] :
ImM; = e T [2\/51/0(273 + 01 — 4yo” + 1) +2V303 (1 — 670)
3Dp (o — )2 + 1]
=205 (0 — 1)* = (o — )" — VS] :
2 2 2 2
ReM4:_(’Yo+\/§V02)(’Yo+V0)7 ImM4:’YO(’Y0 +Vo)’
6D V3D
0 4 3 22
ReMs = — [’Yo — %o (1 —2V310) — You
6D [ (o — ) + 1]

+0( = 2v/3u0) (4 + 318) — 15 (” + 18]
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Yoo 3 2 2
ImMs = — [270 — 395 (e — 2V/310) + 27014
6Dy [ (vo — 11)? + 1]

+ (1= 2v3w0) (6 +14) - (B.2)
The renormalized diffusivity is

(70 — V3w) K

Df=D—(k+o0) (70$iV0)/7.3
3dD,LL k (k2 + ’YO:BWO>

By + i) / S

- Yo T {1V 3
+iv

3dD/J, k (kZ + #JF’EUD 0)

2V3%, 5, . !
+ 3dD2/L (70 + VO)(,YO + lVo)/( (kz + "/oill;iuo )3

2v/3 1 .2/3, 1
+ °(v§+1/§)/k( + °(v§+V§)/k

i - -
3dDuwy 2+ 'yqu:iyo)z 3d,UV§ K+ 'Yoﬂgzuo

B \/§70V0(70+,U:|3W0)2/ 1
20 (— j L +ivg\3
3dD?pu(—~o + p L ivp) k(k2+/+;oDzo)

_ 4\/§’7§V0(70+MiiV0)/ 1
3dDp( =0 + p t ivg)? K (

2, ptyotivg )2
k + 2D )

B 8\/§’ygl/()(’)/()+ﬂ:|:il/0)/ 1
3dp(—yo +pLivg)d Ji k2 s

\ .
2y {‘W%(’Y‘H‘—HVO)—i(’yz—i-vg)}/ — (B.3)
k

+ , S
V3dug | (=y+p+iv)? K>+ 3

and can be further simplified to

+ K+o + 1 + 1 + 1
by =D+ d [Pg )/ 2 | WFin 3+P§ )/ 2 | WFiv 2+P5 ) K2 + NEivo
k(k +-5 ) k(k +-5 ) k D
(+) (+) () 1
+o [ . / 0 [
B e I L

(£) (£) 1
P +0 - , B.4
( ! ! ) /kk2 D0 ] 5
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where Pl.(i) = ReP; +ilmP; and Qi(i) = ReQ; +iImQ;, with

2 2 2
ReP, =0,  Imp, = 2000 +%)
V3
Y0 (2\575 — Yoo + 3\/§y§) vy (70 _ \ﬁyo)
RCPZ = , ImP2 =20 VoA
3Duvy 3Du
ReP; = (76 = 3v3%510 — 7015 — V315) _ 2% (V3% +w)
eP3; = D2 , ImP3f—T7
r I
ReQ| — 87510 (67015 (1 —70) + (0 — 1)’ (0 + 1) + 5]
= g 7
V3 [(vo — 1) + 1]
Img, — 167676 (226 =338 = 200 + u” + pur)
1= 3 ,
V3 [(v0 — 1) + 3]
_ 0 Sy 4 (43
ReQ, = - |6+ (43— 3
3Dp [(h0 — 1)? + 1)
+ ZVS (Mz - 2\/§,u1/0 + V(%) + 273 (/f — 2\@u2u0 — ;u/g — 6\f3y3>
2
0 (30 = 40 1) (12 -+-8) 4 )7
ImQ, = Yoro [=205 (0 — 11)* — 4310330 + ) (0 — 1) — (0 — 11)* + 43014 — 1]
= - ’
3Dp (0 — )2 + 3]
"o 4 3 )
Re = [ +2\[31/ -2 ( —\/§y>
s 6D2 [(% — )%+ V&) Yo Yoo — LYo \ K 0

— 2010 (\@,uz —2uy+ 3\@1/3) + (,uz —2V3uy — y&) (12 +15) } ,

2 o _ )2 _ 3
Img, — 200 [B 0ot p) + \/§Vo(372 1) (0 +g) + (0= V00 +19) Vsl s
302 [(v0 — p)? + 1]
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Appendix C. Renormalized variables in the ML model at physically accessible
dimensions

Finally, we list the expressions of the renormalized variables at physically accessible dimen-
sions d =1, 2, and 3.

C.1 d=1

For the 1), mode, the renormalized parameters read

B 5(c+k) _o++k fVO+\/§Vo+\@Vovo
Hr=t = "up \/ \/ 12 3u 16 167 62 )|

DY "”\/» gtk (7‘) Van f”°> C.1)
7 2p 2%

For the ¥+ modes, when vy > 0, the renormalized parameters are

—1/4
D |1 1 0 0
Yy = %JF(UJFH)”VO LReMM /,70 3 (1+ Yo > (ReMgcos2 ImMzsinz)
v

2 2 -1/
g (1 + W) (ReM3 cosg + ImM; sin%)

0

+

D 2 /4 30 30
+— (14 ’y% ReM,cos — — ImM, sin —
4y v 2 2

2D 2\ /4 3 3
f (1+ (/H_;YO) ) (ReMscoszn—i—ImMSSinzn)},

21/0 vy
D [1 w1 2\ "1/ 0 0
v,=1vy+ (0 +k) P {2ImM1 %—FE <1—|—Z§> (ReMzsin2 —|—ImM2c052)
—1/4
2
+ — V2 1+ M (—ReM3 sinﬂ + ImMj; cos ﬂ)
2 7 2 2
o\ —3/4
Y% . 36 360
—‘rrl/o <1+V§) (RCM4SIH2+ImM4COSZ
2D 2\ /4 3 3
L Y2D () (o) “ReMssin 2! 4 ImMscos 2 ) |; (C.2)
AT 7 2 2
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yet if 4o < 0, the first term in both parameters changes:

—1/4

/D] 1 [vo 1 % 0 .0

= — | —=ImM, | —+ = |1+ ReM. — —ImM =
Y=+ (+kK) Vo[ 2 1 |70|+2( +V§ e 20052 2s1n2

2 2 —1/4
+ £ 1+ M (ReM3 cos i + ImM3 sin Q)
2 V5 2 2

—3/4
D % 30 30
+r% <1+y§) (ReM4COSz—ImM4SIH2

2D 2\ /4 3 3
+ V2 1+ (/H_;lo) RCM5COS£+ImM5Sin£ ,
2ug Vg 2 2

+(o+ )\/D Lreny [7C 4 L (1420 o ReMysin & + ImM cos -
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The renormalized diffusivity is not affected by the sign of ~y,
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C2 d=2

For the 1), mode, the renormalized parameters read
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For the v+ modes, the renormalized parameters are
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and the renormalized diffusivity is
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C.3. d=38

For the 1, mode, the renormalized parameters read
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For the v+ modes, if vy > 0, the renormalized parameters are
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When ~y < 0 and the system is rendered unstable, the renormalized parameters become
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For the v+ modes, for vy > 0, the renormalized parameters are
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The renormalized diffusivity is not affected by the sign of 7y,
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