
VULGEN: Realistic Vulnerability Generation Via
Pattern Mining and Deep Learning

Yu Nong
Washington State University

Pullman, WA, USA

yu.nong@wsu.edu

Yuzhe Ou
The University of Texas at Dallas

Richardson, TX, USA

yuzhe.ou@utdallas.edu

Michael Pradel
University of Stuttgart
Stuttgart, Germany

michael@binaervarianz.de

Feng Chen
The University of Texas at Dallas

Richardson, TX, USA

feng.chen@utdallas.edu

Haipeng Cai∗
Washington State University

Pullman, WA, USA

haipeng.cai@wsu.edu

Abstract—Building new, powerful data-driven defenses against
prevalent software vulnerabilities needs sizable, quality vulner-
ability datasets, so does large-scale benchmarking of existing
defense solutions. Automatic data generation would promisingly
meet the need, yet there is little work aimed to generate much-
needed quality vulnerable samples. Meanwhile, existing similar
and adaptable techniques suffer critical limitations for that
purpose. In this paper, we present VULGEN, the first injection-
based vulnerability-generation technique that is not limited to
a particular class of vulnerabilities. VULGEN combines the
strengths of deterministic (pattern-based) and probabilistic (deep-
learning/DL-based) program transformation approaches while
mutually overcoming respective weaknesses. This is achieved
through close collaborations between pattern mining/application
and DL-based injection localization, which separates the concerns
with how and where to inject. By leveraging large, pretrained
programming language modeling and only learning locations,
VULGEN mitigates its own needs for quality vulnerability data
(for training the localization model). Extensive evaluations show
that VULGEN significantly outperforms a state-of-the-art (SOTA)
pattern-based peer technique as well as both Transformer- and
GNN-based approaches in terms of the percentages of generated
samples that are vulnerable and those also exactly matching the
ground truth (by 38.0–430.1% and 16.3–158.2%, respectively).
The VULGEN-generated samples led to substantial performance
improvements for two SOTA DL-based vulnerability detectors
(by up to 31.8% higher in F1), close to those brought by the
ground-truth real-world samples and much higher than those by
the same numbers of existing synthetic samples.

Index Terms—Software vulnerability, data generation, bug
injection, pattern mining, deep learning, vulnerability detection

I. INTRODUCTION

The prevalence of code vulnerabilities are a major cause

of security risks with modern software systems [1]. As a re-

sponse, significant effort has been made in helping secure these

systems by detecting [2]–[8] and repairing [9], [10] software

vulnerabilities—most of these exemplified works follow data-

driven (e.g., machine/deep-learning based) approaches. Indeed,

such approaches have been gaining growing momentum in

* Haipeng Cai is the corresponding author.

recent years, showing promising performance according to the

originally reported experimental results.

Meanwhile, the scarcity of quality vulnerability datatsets has

become a critical barrier to further advancing those data-driven

defense techniques—without being trained on such datasets,

the techniques often fail to perform well in real-world scenar-

ios (e.g., detecting vulnerabilities in large/complex real-world

software), just as expected [2], [11]. Not only has it blocked

training new, more powerful learning-based approaches, this

scarcity is also a main reason behind weak evaluations of

existing techniques regardless of their being data-driven or

not (e.g., code-analysis-based) [12]–[14]. The urgent need for

realistic vulnerability datasets has been put under the spotlight

in a recent study [15].

High-quality vulnerability datasets do exist [16]–[19], but

they are commonly or even collectively not sizable enough

to train powerful data-driven models or serve large-scale

benchmarking. On the other hand, existing larger datasets [20],

[21] are not well representative of real-world vulnerabilities,

while current automated data-collection methods suffer from

great inaccuracy/noise in the resulting datasets [22]–[24].

To address this data-shortage problem, a few data-
generation methods have been proposed as well, mainly

based on pattern mining/application [25], [26] or machine/deep

learning (DL) [15], [27]—the approach in [28] is based on

static code analysis and covers one single vulnerability class.

Yet these approaches face critical challenges that substantially

limit their potentials. In particular, solely pattern mining/ap-

plication based (i.e., pattern-based for brevity) techniques

suffer from great ambiguity—the patterns extracted are either

too generic or too specific to be applicable, while purely DL-
based approaches are subject to the data-shortage problem by

itself—they need a sizable, quality training dataset to be ef-

fective [15] (i.e., the chicken-egg dilemma). Like Getafix [25],

approaches originally designed for bug [29] or vulnerability

repair [10] could be adapted for bug/vulnerability injection

as done in [15]. While conceptually repair and injection may

seem to be dual/reversals to each other, technically injection

2527

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00211

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
02

11

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

can be harder as it requires more buggy/vulnerable samples

which are what we lack (versus repair may just need more

normal samples—learning to generate normal code directly

without using paired data as in [30], which are richly avail-

able). When it comes to vulnerability injection, the problem

is even worse given the greater scarcity of vulnerable samples

than that of bug datasets.

To tackle these challenges, we propose VULGEN, a novel

automatic data-generation approach that aims at realistic
injection-based vulnerability generation via pattern min-
ing/application collaborating with deep learning in synergy.

With a corpus of existing pairs of vulnerable samples and their

fixed versions, VULGEN first extracts patterns of vulnerability-

introducing code edits which represent how to inject vulnera-

bilities, while training a DL-based model (on the same corpus)

to locate where to inject. Then, given a normal program,

VULGEN queries the trained model to identify candidate

injection locations where it applies compatible edit patterns

to realize vulnerability injection (in the normal program).

The key insight underlying our approach is that, through

the collaboration of a deterministic process (i.e., pattern

mining/application) and a probabilistic process (i.e., injection

localization) and the separation of the how and where parts of

injection, VULGEN combines the strengths of pattern- and DL-

based approaches while mitigating each others’ weaknesses. In

particular, the localization model guides pattern application to

mitigate the ambiguity challenge to pattern-based approaches;

meanwhile, the mined patterns inform the localization model

to choose the best locations. Also, the chicken-egg dilemma

in training the (DL-based) localization model is mitigated

by (1) leveraging a large pretrained programming-language

model hence reducing general data needs and (2) learning to

predict just the injection locations without further generating

the injected code hence further reducing task-specific data

needs (or improving model performance for a given amount

of training data since predicting locations alone is intuitively

easier than predicting the injected code in addition).

We evaluate VULGEN on a real-world vulnerability dataset

containing 10,783 pairs of normal functions and respective

vulnerable versions for training and testing. VULGEN achieved

14.6% precision (i.e., percentage of generated samples ex-

actly matching ground truth) and a 69% success rate (i.e.,

percentage of generated samples that are indeed vulnerable).

Without an existing peer work targeting vulnerability injection,

we adapt a pattern-based approach (originally designed for

bug repair [25]), a DL/Transformer-based text-to-text trans-

lation approach (originally for vulnerability repair [10]), and

a deep/GNN-based neural code editing approach (originally

for general code-edits generation [31]) as baselines. VULGEN

outperforms these potential peer approaches by 16.3–158.2%

and 38.0–430.1% in terms of relative precision and success

rate improvements, respectively. We also assess the usefulness

of the VULGEN-generated samples by adding them to the

original training sets of two state-of-the-art DL-based vul-

nerability detectors. The addition boosted their performance

significantly (by up to 31.8% greater F1) in both reproduction

and replication settings—very close to those by adding the

ground-truth vulnerable samples and much higher than adding

equal numbers of existing synthetic samples. VULGEN is also

efficient, generating 900+ vulnerable samples in one hour.

In summary, our paper makes the following contributions:

• To the best of our knowledge, VULGEN is the first automatic

approach to injection-based realistic vulnerability genera-
tion without being limited to a particular vulnerability class.

• We show the design of combining deterministic and proba-
bilistic approaches for program transformation, where pat-
tern mining/application and localization deal with how and

where to inject respectively while collaborating in synergy.

• We performed extensive experiments that demonstrate sig-

nificant merits of this VULGEN design over both pattern-

and learning-based (both sequence and graph modeling)

approaches; our results also show substantial improvements

the generated samples bring to vulnerability detection.

II. MOTIVATION AND BACKGROUND

In this section, we motivate our vulnerability injection

technique using concrete examples and discuss key challenges.

Then, we use these examples to illustrate the limitations of

existing peer techniques on the challenges. Later, we will use

the same examples to illustrate our own approach.

A. Motivation Examples and Challenges

As an example of vulnerable sample generation, let us

consider injecting vulnerabilities to existing real-world normal

functions. Figure 1 shows three examples of vulnerability

injections on normal functions, which delete a buffer size (i.e.,

sizeof(d->msg)) checking for early return, change to use

an unsafe memory allocation rather a self-defined, safe one,

and remove one of the boundary checking in an if condition,

respectively. Overall, to inject the vulnerabilities automatically,

the technique needs to solve at least two challenges below:

First, the technique needs to know where to inject the

vulnerabilities. In other code editing tasks, such as bug fixing,

the code fragments to be edited have already been provided,

either by the testing dataset itself [10] or external static

analyzers [25]. However, such location information is not

available in the vulnerability generation task, nor is it trivial

to obtain. The localization for vulnerability injection needs

both syntactic (e.g., the code structures) and semantic (e.g.,

information hidden in identifier names and insights into what

kinds of statements typically are most prone to vulnerabilities)

information in the code [15]. For instance, in the first example

in Figure 1, we not only need to locate an if statement that

contains an early return (syntactic information), but also need

to know it is a buffer size checking (semantic information).

Second, the technique needs to know how to edit the

located code fragments to inject vulnerabilities. For instance,

in the second example in Figure 1, the technique needs to

change the function call name in the assignment statement

from safe_calloc to malloc. In the third example, the

technique needs to remove the OR expression in the if
condition and replace it with the second expression in the

2528

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

// …
sz = pdf->xrefs[i].end - ftell(fp);
buf = safe_calloc(sz + 1); => malloc(sz + 1);
SAFE_E(fread(buf, 1, sz, fp), sz,

"Failed to load /Root.\n");
buf[sz] = '\0’;
// …

// …
BDRVVPCState *s = bs->opaque;
uint32_t pagetable_index,pageentry_index;
pagetable_index=offset/s->block_size;
pageentry_index=(offset%s->block_size)/512;
if(pagetable_index >= s->max_table_entries ||

s->pagetable[pagetable_index]==0xffffffff)
return -1;

// …

static int
cx24116_send_diseqc_msg(/*…*/)
{

struct cx24116_state *state=fe->demodulator_priv;
int i, ret;
if (d->msg_len > sizeof(d->msg))

return -EINVAL;
// …

}

Delete a buffer size checking Use an unsafe memory allocation rather
than a self-defined safe one.

Remove one of the boundary checking in an
if condition

Fig. 1. Motivating/illustrating examples on vulnerability injection.

OR expression. These vulnerable functions are not easy to

generate, as we need to ensure the syntactic correctness of

the code (e.g., any token mistakenly generated in the example

would make the code not compilable). Therefore, we need to

ensure that the technique edits the code in a correct way.

B. Existing Peer Techniques and Limitations

To motivate our technique, we illustrate two existing peer

techniques that can be used for vulnerability injection and

discuss their limitations on the two challenges.

1) Getafix: Getafix is a technique which automatically

fixes bugs using the patterns learned in the existing bug-fixing

examples. Specifically, it has three phases to learn the bug-

fixing patterns and apply them to fix a new buggy program:

Phase 1: Pattern Mining. Given a set of example fixes

where each is a pair of buggy and fixed code, Getafix converts

the code into abstract syntax trees (ASTs) which contain a set

of nodes indicating the syntactic structure of the code [25].

Then, Getafix employs an AST differencer to get the edits

from the buggy code to the fixed code, called concrete edits.

With the concrete edits, Getafix uses anti-unification to

obtain abstracted edits and then hierarchical clustering to mine

the summarized edit patterns for bug fixes. Because of the

space limit, we refer readers to the original Getafix paper [25]

for further details. After hierarchical clustering, the concrete

edit patterns are merged into generalizable edit patterns which

can inject vulnerabilities in a variety of normal functions.

Phase 2: Pattern Application. After the hierarchical clus-

tering, there are many edit patterns available, ranging from

very generic to very specific [25]. Getafix thus needs to

select an appropriate pattern and a candidate pattern-applicable

location. It thus grades the pairs of patterns and locations with

three scores: (1) the proportion of bugs in the training set that

can be fixed by applying the pattern (i.e., prevalence score);

(2) the proportion of bugs in the training set that can be fixed

z lines away from the static analyzer warning location (i.e.,

location score), and (3) the reciprocal of the proportion of

subtrees in the given input program that the pattern can match

(i.e., specialization score) [25]. Then, Getafix ranks the pairs

of patterns and locations with the products of the three scores

and selects the top-k pairs to apply the patterns to fix bugs.

Phase 3: Validation. In the list of ranked bug fixes, Getafix

uses static analyzers to validate whether the bug has been

removed. If so, Getafix suggests the bug fixes to developers.

As Getafix uses a deterministic approach to learn bug

fixing, the number of training samples can be relatively

small compared to the one for DL-based approaches. The

hierarchical clustering also allows Getafix to generate human-

like (i.e., realistic) bug fixes. Thus, it is a good approach for

our vulnerability generation technique to start with. However,

it has two major technical limitations for our task:

• Getafix uses static analyzers to locate buggy code to fix, but

there is no static analyzer to do so for vulnerability injection.

• The edit patterns mined only match and edit code syntacti-

cally without semantic awareness, making the vulnerability

injection ambiguous. For example, in the third example of

Figure 1, the mined pattern may be like if(h0||h1) =>

if(h1) where h0 and h1 are place holders that can match

any expression. However, such an edit pattern that removes

one of the conditions in the if statement may not inject a

vulnerability if the conditions are not relevant to security.

This may make Getafix fail to inject vulnerabilities.

2) Transformer-based Code Edit Model: A number of

pretrained transformer models have been built for software

engineering (SE) tasks, of which CodeT5 [32] has been shown

to be quite promising for semantic-aware code generation

[10], [33]. Thus, these models seem to be a good starting

point for our task. Yet they also suffer two key challenges:

• Current Transformer-based bug fixing techniques rely on the

error messages [33] or the bug location information [10]

to be given. Thus, the techniques only need to output the

fixed version of the buggy code fragments rather than the

whole programs/functions. This allows the outputs to be

short texts. However, for vulnerability generation, the model

has to output the whole programs/functions which are much

longer, as we do not have the information that the bug-fixing

techniques rely on. Previous work [15] has shown that these

models are not good at generating long texts. This greatly

limit their ability to directly generate vulnerable code.

• While the CodeT5 model has the capability to understand

code semantics, it is not syntax-aware [34]. Since program-

ming languages are highly structured, any erroneous tokens

would make the generated code invalid. For example, in the

third example of Figure 1, missing or wrongly predicting

any token like ->,] or) would break the whole program.

Thus, every token has to be predicted correctly, but this is

difficult for the Transformer model to accomplish alone.

III. OVERVIEW

Figure 2 gives an overview of our technical design. As

shown, VULGEN consists of three main technical mod-

ules/phases: pattern mining, localization learning, and vulner-
ability injection, working in two modes. In the mining/learning

2529

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

Vulnerability Injection

Pattern Mining

Anti unification

Hierarchical clustering

AST differencing
concrete edits

abstracted edits

Selected location(s) & patterns

Localization Learning

Fine tuning

Source differencing
modified statements

Pretrained
PL model
(CodeT5)

initial
model
weights

Pattern application

Preprocessing
AST constructionSubword tokenization

Pattern location mutual filtering

Existing real world
vulnerable samples

and their fixed
(normal) versions

VULGEN Corpus

VULGEN
input

Given normal
program

Mined
edit

patterns

Trained
model

Generated
vulnerable
program(s)
VULGEN
output

Candidate
location(s)Localization

model
Localization

model

probabilistic process (largely) deterministic process mining/learning workflow generation workflow

1.2

1.3

1.1
2.1

2.2

3.1

3.2

3.3

Fig. 2. An overview of VULGEN, including its three key technical modules (phases) and two workflows (modes).

mode, VULGEN mines patterns of real-world vulnerability-

inducing code edits (i.e., reversal of respective fixes) from the

given corpus of existing vulnerable program samples and their

fixed (i.e., normal) versions and then learns to locate where

vulnerabilities may be injected. With the resulting edit patterns

and the trained localization model, in the subsequent genera-

tion mode, VULGEN takes a given normal program as input,

queries the model to obtain candidate injection locations and

applies compatible patterns, and hence produces vulnerable

program(s). Two preprocessing steps, AST construction and

subword tokenization, are shared between both modes.

During the pattern mining phase, VULGEN extracts concrete

(AST) edits from the pairs of (normal and respective vulner-

able) samples in the given corpus through AST differencing,

followed by anti-unification to obtain abstracted edits and then

hierarchical clustering to mine the eventual edit patterns—

an idea similar to that for bug-fixing pattern extraction in

Getafix [25]. Yet the resulting patterns are often either (1) too

generic, which are compatible with numerous code locations

but not helpful for vulnerability injection since these patterns

tend to have many placeholders (holes) that cannot be instan-

tiated, or (2) too specific, which are hardly compatible with

any code locations for injection, as illustrated in §II-B1.

Thus, VULGEN comes with localization learning, a dedi-

cated module to disambiguate pattern-based injection. In this

phase, VULGEN aims to learn injection localization from real-

world developers’ historical vulnerability-fixing code-change

locations. Given the scarcity of such fixes, we leverage

CodeT5 [32], a state-of-the-art programming-language (PL)
model that was pretrained on millions of code samples against

relevant objectives. To enable its working for our localization

task, VULGEN fine-tunes it against those historical locations

obtained by source-level differencing between the sample pairs

in the given corpus. Note that this module learns only where

to inject (i.e., predicting injection locations), but not how (i.e.,

generating the injected code itself).

Finally, in the vulnerability injection phase, VULGEN feeds

the trained localization model with the subword-tokenized

code of a given input normal program to obtain candidate

injection location(s) and selects those compatible with any of

the mined edit patterns, followed by injecting vulnerabilities

at chose locations via pattern application. This results in the

vulnerability-injected (i.e., potentially vulnerable) version of

the input program. Depending on how many top candidate

locations taken from the localization model, VULGEN may

produce one or multiple vulnerable programs as its output(s).

A key novelty of VULGEN lies in the close collaboration of

a deterministic process (i.e., pattern mining and application)

with a probabilistic process (i.e., injection localization), as

reflected in the pattern-location mutual filtering step: (1) the

probabilistic (localization) informs the deterministic (pattern

application) about where to apply patterns and which to

apply—the resulting locations help filter out incompatible pat-

terns, while (2) the deterministic (pattern mining) helps select

the best locations returned by the probabilistic (localization)—

the mined patterns help filter out incompatible locations.

The overall vulnerable sample generation (vulnerability in-

jection) process by VULGEN is realistic for two reasons. First,

when an injection is localized, the location prediction is made

based on real-world vulnerability-introducing code locations.

Second, when a vulnerability is injected, the code editing

is done by following (the reversal of) how developers make

vulnerability fixes in diverse real-world software projects.

IV. APPROACH

In this section, we describe the detailed design of VULGEN,

elaborating on its key technical components/phases shown in

Figure 2 and illustrating each using the examples of Figure 1.

2530

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

A. Pattern Mining

In the pattern mining phase, VULGEN follows Getafix to

mine the patterns for vulnerability injection. VULGEN takes

the pairs of normal functions and the respective vulnerable

versions as the inputs for pattern mining (as well as for

localization learning). Each pair is a vulnerability injection

example. To convert the code to ASTs, we use srcML [35], an

AST parser for C language, to get the ASTs for each example.

We choose srcML because we can convert the parsed AST

back to source code easily. Then, VULGEN uses GumTree [36]

to differentiate the ASTs to get concrete edits. Then it follows

the original Getafix to perform hierarchical clustering and get

the edit patterns for vulnerability injection.

To illustrate, consider the vulnerability-injection case in the

second example of Figure 1, VULGEN extracts the concrete

edit patterns below.

safe_calloc(sz + 1) => malloc(sz + 1) (1)

Then, Getafix uses anti-unification to merge similar con-

crete edits into abstracted edits. For example, Pattern 1 and

safe_calloc(bufsize)=>malloc(bufsize) can be

merged into safe_calloc(h0)=>malloc(h0), where h0
is a placeholder that can match any subtrees. With anti-
unification, Getafix performs hierarchical clustering to get edit

patterns for vulnerability injection.

B. localization Learning

In this phase, VULGEN trains a Transformer-based model

for locating vulnerability injection spots. We formulate the

task as a text-to-text prediction problem: given a normal

function, the model generates the statement text where an edit

pattern should apply to inject a vulnerability. For instance,

in Figure 1, given the whole functions as the input, the

model outputs the statements in the red rectangle, without

any modification. We use a Transformer-based model only for

localization rather than vulnerability injection, because: (1) it

is hard for the model to predict whole functions which are

long; (2) programming languages are highly structured and

thus every token predicted has to be correct, which is hard for

the model to achieve.

To build the localization model, VULGEN fine-tunes the

pretrained Transformer model CodeT5 [32] because CodeT5

is able to understand code semantically. To deal with the

out-of-vocabulary (OOV) issue which is widely exists in

code relevant tasks [37], we leverage the Byte Pair Encoding

(BPE) approach [38] to represent the input and output text.

Specifically, BPE splits the original tokens into sequences of

characters and merges the frequent symbol pairs into new

tokens. Thus, it can split rare tokens into meaningful subwords

so that the vocabulary size can be reduced.

Different from traditional Transformer that leverages an

absolute positional encoding layer, we use a relative positional

encoding layer [39] to captures the relative information be-

tween tokens. Specifically, in the relative positional encoding,

the self-attention is computed through four matrices: the query

matrix Q, the key matrix K, the value matrix V [40], and the

matrix P that encodes relative positional information.

Attention(Q,K,V,P) = softmax(
Q(K + P)T√

dk
)(V + P) (2)

where P is the edge representation for the pairwise inputs. P
is supplied as a sub-component of the value matrix [39].

To fine-tune the CodeT5 model for injection localization,

we process our examples into a fine-tuning dataset D =
{(ni, si)}Ni=1, where each sample consists of a normal function

n and the respective ground-truth statement s where the

vulnerability can be injected, both in text form. Denote the

model parameters as θ, the fine-tuning objective is a maximum

likelihood estimation which minimizes the following negative

log-likelihood loss:

L(D; θ) =
N∑

i=1

−log p(si|ni; θ) (3)

To obtain the ground-truth statement s as our localization

target, we apply the diff tool to each example and use

the modified statement as the ground-truth output. After fine-

tuning, the injection localization model is expected to predict a

statement to inject a vulnerability in a given normal function.

Given that the injection localization model is a probabilistic

model, we leverage beam search to select multiple statements

given a normal program. The number of predicted statement

candidates replies on a parameter called beam size β. Beam

search selects the best β statement candidates that have the

highest probability. Later we will use different beam sizes to

evaluate VULGEN and the baseline techniques.

C. Vulnerability Injection

Once we have the edit patterns mined and the localization

model trained, VULGEN is expected to inject a vulnerability

given a new normal function. This input function is first fed

into the localization model, and the model locates a statement

for vulnerability injection. Since the edit patterns are based

on and supposed to be eventually applied back on ASTs, we

again use srcML [35] to parse the input normal function into an

AST. As the localization model outputs the located statements

in source code, we convert all the subtrees in the AST back

to source code and compare the source code of each subtree

with the localization model output to get the located subtree.

Given the located subtree, we need to select an appropriate

pattern to apply. The original Getafix ranks edit patterns based

on the three scores described in Section II. Since we cannot

use localization score as no static analyzer can be used, we

only compute the prevalence score and the specialization score

to rank the edit patterns.

Specifically, given an edit pattern E and normal functions

n in the training set D, VULGEN computes prevalence score

for E as follows:

sEprevalence =
|{n ∈ D|E can inject a vulnerability to n}|

|D|
(4)

2531

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

This computes the likelyhood that a pattern can inject a

vulnerability. Note that in the equation above, we assume that

the pattern can find the location to apply perfectly (i.e., once

applying E to one of the applicable locations in n can inject

a vulnerability, E can inject a vulnerability to n).

Thus, given an edit pattern E and a new normal function

n′, VULGEN computes the specialization score as:

sE,n′
specialization =

|{AST nodes of n′}|
|{AST subtrees of n′ that match E}| (5)

This avoids the selected patterns to be too general and priori-

tizes the more specific patterns.

Given an edit pattern E and a new normal function n′, VUL-

GEN computes the ranking score sE,n′
ranking = sEprevalence ×

sE,n′
specialization for each pattern and uses the ranking scores to

rank the edit patterns. The rationale is to select a pattern that

is not only likely to inject vulnerabilities but also specialized

enough. Then, VULGEN selects the first pattern in the ranking

from higher to lower scores that matches the located statement

to inject a vulnerability. However, it is possible that a given

function does not involve any security-relevant code hence no

vulnerability could be injected. Thus, to reduce false positives,

if the located statement cannot match any pattern, VULGEN

would not output a function and the input function is identified

as "no vulnerability can be injected". Otherwise, the output

function is expected to be vulnerable.

To illustrate, consider the third example in Figure 1. Once

the localization model locates the if statement in the red

rectangle, VULGEN ranks the patterns using the ranking score

above. Then, the first edit pattern applicable in the ranking

like if(h0|h1)h2 => if(h1)h2 will be applied, and the

normal function is injected with a vulnerability as shown.

V. EVALUATION

We describe our tool implementation and evaluation dataset,

and then seek to answer the following research questions:

• RQ1: How effective is VULGEN in vulnerability genera-

tion?

• RQ2: Hoe does VULGEN compare to a Transformer-based

program-transformation approach?

• RQ3: How does VULGEN compare to a traditional pattern-

based code-generation approach?

• RQ4: How does VULGEN compare to a GNN-based code-

editing approach?

• RQ5: How useful are the VULGEN-generated vulnerabilities

for training DL-based vulnerability detectors?

• RQ6: How efficient is VULGEN in vulnerability generation?

A. Tool Implementation

As Getafix is not publicly available, we re-implemented its

pattern mining and pattern application modules. For local-

ization learning, we use the pre-trained model CodeT5 and

the respective APIs provided by HuggingFace [41]. We partly

reused the CodeT5 fine-tuning code of VulRepair [10], only

for the injection-localization step in VULGEN. As that original

code of VulRepair is used for generating vulnerability fixes, we

TABLE I
EFFECTIVENESS OF VULGEN AND THE BASELINES FOR VULNERABILITY

INJECTION. THE NUMBERS IN PARENTHESES INDICATE VULGEN’S

RELATIVE IMPROVEMENT COMPARED TO THE BASELINES.

Editor Precision (Exactly-Matched) Success Rate
VulGen 14.64% 69%

T5 10.29% (42.27%↑) 17% (305.88%↑)
Getafix 5.67% (158.20%↑) 50% (38.00%↑)

Graph2Edit 12.59% (16.28%↑) 13% (430.77%↑)

changed/adapted it in order to serve our localization purposes.

Our experiments were performed on a server with an AMD

Ryzen Threadripper 3970X (3.7GHz) CPU with 32 Cores, an

Nvidia GeForce RTX 3090 GPU, and 256GB memory.

B. Dataset

Since the available real-world vulnerability data is rare,

we perform a comprehensive literature study for vulnerability

analysis datasets and combine them to build a relatively

large dataset. As a result, we build our evaluation dataset by

including (some of) the vulnerability fixing examples from five

reliable human-labeled vulnerability fixing datasets:

1) Devign [2]: 23,355 vulnerability fixing examples in C

language from four real-world projects, among which two

are publicly available. We include the 7,938 examples from

these two available projects to our evaluation dataset.

2) ReVeal [11]: 18,169 human-labeled vulnerable/non-

vulnerable samples in C language for vulnerability

detection. We select the vulnerable samples that are paired

with corresponding fixed versions and finally include 921

vulnerability fixing examples to our evaluation dataset.

3) PatchDB [18]: 12,073 vulnerability fixing examples in C

language extracted by nearest link search and then con-

firmed by humans. We include all of them to our dataset.

4) BigVul [17]: 3,754 vulnerability fixing examples extracted

from the CVE/NVD database where 2,185 examples are in

C language, we include the 2,185 to our dataset.

5) CVEFixes [19]: 31,092 vulnerability fixing examples from

CVE/NVD database where 4,120 are in C language, we

include the 4,120 to our dataset.

Thus, we include 27,237 vulnerability fixing examples to our

evaluation dataset. All the examples are at function level (i.e.,

each example is a pair of a vulnerable function and a respective

fixed one). We notice that many of the real-world vulnerability

fixing edits by the developers not only fix the vulnerabilities

themselves, but also modify the functionality or refactor the

code, thus there are code changes irrelevant to vulnerability in

these examples. To avoid the impact of these irrelevant code

changes, we only use samples where the edits are limited to

one statement, resulting in 10.783 samples. Since our goal is to

inject vulnerabilities, we reverse the fix in each example to get

the vulnerability injection examples. The 10,783 vulnerability

injection examples are the evaluation dataset we used.

C. RQ1: Effectiveness in Generating Vulnerabilities

We evaluate VULGEN’s ability to generate real-world vul-

nerabilities using the examples in the evaluation dataset. We

2532

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DO THE VULGEN-GENERATED VULNERABLE SAMPLES HELP IMPROVE THE DL-BASED VULNERABILITY DETECTORS?

Tool Setting Metric Baseline Synthetic Generated Ground Truth Wild

Devign

Reproduction: Precision 10.00% 10.69% (6.90%↑) 11.65% (16.50%↑) 10.97% (9.70%↑) 9.74% (-2.60%↑)
Training: Devign Recall 26.23% 37.26% (42.05%↑) 52.85% (107.04%↑) 47.91% (101.48%↑) 59.70% (127.60%↑)
Testing: ReVeal F1 14.48% 16.62% (12.87%↑) 19.09% (31.84%↑) 17.86% (23.34%↑) 16.75% (15.67%↑)
Replication: Precision 9.31% 8.85% (-4.94%↑) 8.59% (-4.18%↑) 8.92% (-4.18%↑) 8.13% (-12.67%↑)
Training: Devign Recall 26.56% 24.67% (-7.11%↑) 51.98% (95.71%↑) 54.99% (107.04%↑) 53.48% (101.35%↑)
Testing: Xen F1 13.78% 13.02% (-5.51%↑) 14.75% (7.04%↑) 15.36% (11.46%↑) 14.12% (2.47%↑)

ReVeal

Reproduction: Precision 10.63% 12.00% (12.88%↑) 12.00% (12.88%↑) 12.56% (18.16%↑) 11.28% (6.11%↑)
Training: Devign Recall 74.90% 49.80% (-33.51%↑) 73.38% (-2.02%↑) 74.52% (-0.51%↑) 79.85% (6.61%↑)
Testing: ReVeal F1 18.62% 19.35% (3.92%↑) 20.63% (10.80%↑) 21.50% (15.47%↑) 19.77% (6.18%↑)
Replication: Precision 7.68% 6.89% (-10.29%↑) 8.50% (10.68%↑) 8.17% (6.38%↑) 7.91% (2.99%↑)
Training: Devign Recall 82.67% 31.64% (-61.72%↑) 60.64% (-26.64%↑) 94.54% (14.36%↑) 95.29% (15.27%↑)
Testing: Xen F1 14.05% 11.33% (-19.36%↑) 14.90% (6.05%↑) 15.04% (7.05%↑) 14.60% (3.91%↑)

split the 10,783 examples into 9:1 for training and testing,

as prior work did [37]—which also gave us a sizable set

(i.e., >1000 samples) for testing. We also checked duplicates

between the training and testing sets and removed them to

ensure that the two sets have no overlap. As a result, we have

9,704 examples for pattern mining and localization learning.

The remaining 1,078 examples are used in the vulnerability

injection phase to test the effectiveness of VULGEN. For each

testing example, we input the normal function to VULGEN

and it outputs a (potential) vulnerable function if it can inject

a vulnerability to it. We count the number of output functions

that exactly match the ground-truth vulnerable functions, and

compute the precision by the proportion of exactly-match

functions in the output functions.

With the 1,078 testing examples, VULGEN outputs 963

functions and the remaining 115 are identified as "no vul-

nerability can be injected" (see Section IV.C). In the 963

functions, 141 of them exactly-match the ground truths. Thus,

the precision is 14.64%.

However, it is possible that a vulnerability is injected but

the output function does not exactly match the ground truth.

This usually happens when the input function has multiple

locations to do vulnerability injection. Thus, to further evaluate

the effectiveness of VULGEN, we increase the beam size of

the localization model to 10. Thus, given a normal function,

the model outputs 10 statements for the edit patterns to inject

vulnerabilities and a normal function can be used to generate

up to 10 functions. With the 1,078 examples, VULGEN

generates 9,573 functions. We randomly sample 100 of the

generated functions and manually check whether they are

vulnerable. Note that 100 is sizable relative to the total number

of generated samples as used in our comparison studies.

Recent peer work used only <60 samples for similar-purpose

manual validation [22]. This is still not ideal, but manually

examining a sample is tedious and costly, while general,

accurate automated vulnerability detection is unavailable.

The manual checking is done by the first (Rater-1) and

second (Rater-2) authors of this paper and a non-author PhD

student (Rater-3) who have 2–4 years of experience in software

engineering and security, all following the same labeling

process. Based on the labels they agreed on, we calculated the

inter-rater agreement as 0.7877, 0.7476, and 0.6826 between

(Rater-1, Rater-2), (Rater-1, Rater-3), and (Rater-2, Rater-3),

respectively, in terms of Cohen’s Kappa. These agreements are

all substantial, showing reasonable reliability of our manual

labeling. Since each generated sample has a corresponding

normal sample, they focus on the changed code between the

pair and mainly check if the change introduces vulnerabilities

(by tracking data/control flow from the changed lines), which

also helped mitigate any possible biases during these manual

processes. As a result, 69 out of 100 checked functions

are vulnerable. Thus, the success rate of vulnerable sample

generation estimated by sub-sampling is 69%.

We also assess the generality of VULGEN by examining

the vulnerability types of the 100 randomly sampled functions

generated and assigning them with CWE vulnerability type

IDs [42]. Among them, the success cases of VULGEN covered

18 different CWE IDs, versus those of Getafix, T5, and

Graph2Edit only covering 12, 8, and 5 classes, respectively.

This indicates that by decoupling where-to-inject and how-
to-inject, VULGEN allows for more flexible/diverse identifi-

cation of injectable code locations where vulnerabilities can

be injected deterministically via pattern matching/applica-

tion, hence more general vulnerability generation than earlier

approaches. Besides, VULGEN learns injection patterns of

different vulnerability classes from the training data, making

it not limited to generating a particular class of vulnerabilities.

VULGEN achieves 14.64% exactly-match precision

and 69% success rate, suggesting its promising capa-

bility for realistic vulnerability generation.

D. RQ2: Comparison with Transformer-based Approach
VULGEN injects vulnerabilities based on the combination

of Transformer/CodeT5-based localization and pattern-based

code editing. However, as other studies have also shown that

the fine-tuned CodeT5 model has the capability to generate the

edited code directly [10], [33], people may cast a question:

whether we can directly fine-tune the CodeT5 model to

generate the vulnerable functions.

To test that, we remove the pattern mining phase and di-

rectly fine-tune CodeT5 for vulnerability injection. When fine-

tuning CodeT5, we replace the ground-truth outputs, which are

2533

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

originally the respective statements to inject vulnerabilities,

with the respective vulnerable functions. After fine-tuning, the

model is expected to output a respective vulnerable function

given a normal function. We keep the training examples and

testing examples the same as the ones for VULGEN.

Given the 1078 testing examples, the model outputs a

new function for each testing example. Thus, the model

generates 1078 new functions. However, among the generated

1078 functions, only 111 of them exactly match the ground-

truth vulnerable functions, making the precision only 10.29%,

where VULGEN outperforms it by 42.27%.

We again increase the beam size to 10 and randomly

sample 100 outputs and manually check whether they are

indeed vulnerable. Given the 1078 testing examples, the model

generate 10780 new functions. In the 100 sampled output

functions, only 17 of them are vulnerable and thus the success

rate of generating vulnerable functions is only 17%, which is

too low to build a high-quality vulnerability dataset.

The failure indicates the limitation of Transformer-based

code edit model for vulnerability generation. By manually

inspecting the generated samples, we notice that many of the

generated functions are not syntactically valid. For example,

some generated code ends at the middle of the functions. Some

generated code simply repeats the tokens until the maximum

limitation of the output tokens. We notice that such failures

are more serious when the functions are longer.

The Transformer-based approach achieves only

10.29% precision and 17% success rate, suggesting

its poor capability for vulnerability generation.

E. RQ3: Comparison with Pattern-based Approach (Getafix)

To show the effectiveness of VULGEN’s CodeT5-based

localization model, we remove the localization model and use

the original Getafix approach to inject the vulnerabilities. We

directly use the ranked patterns to edit the normal functions to

inject vulnerabilities. As the localization score which is based

on static analyzer error messages is not available, we cannot

rank the statements that the patterns can match. Thus, given a

normal function, we first get the top-10 patterns in the ranking

and extract the statements that the 10 patterns can match. Then,

we randomly select a statement and a pattern that match the

statement to inject a vulnerability.

Given the 1078 examples, Getafix generates 1073 new

functions. Only 61 of them match their ground-truth vulnerable

functions, making the precision 5.67%, where VULGEN out-

performs it by 158.20%. To compare the beam size 10 results

for VULGEN and the Transformer-based code edit approach,

we randomly select 10 pairs of patterns and statements to

generate new functions for each given normal sample. If there

are less than 10 pairs of patterns and statements, we use all the

pairs to generate new functions. Getafix thus generates 8114

new functions. With randomly sampling 100 new functions

and manually checking, 50 of them are vulnerable, thus the

success rate of generating vulnerable functions is 50%.

The results indicate the limitation of traditional-pattern-

based approach for vulnerability injection and show the impor-

tance of using semantic-aware model for injection localization.

The 5.67% exactly-match precision indicates that, although the

mined patterns have the capability to match the statements

to inject vulnerabilities syntactically, without the semantic

localization, they are difficult to find the correct locations

to inject vulnerabilities. However, the 50% success rate for

vulnerability injection also indicates the value of traditional

pattern-based approach. Compared with Transformer-based

code edit approach, it ensures the syntax validity and has

the capability to match some special tokens (e.g., memset,

free, etc.), although without understanding the context code.

This further indicates the necessity to combine semantic-aware

approach with traditional-pattern-based approach.

Getafix achieves 5.67% exactly-match precision, sug-

gesting the necessity of using semantic-aware model

for injection localization. However, the 50% success

rate also indicates value of pattern-based approach,

showing that the combination of pattern-based ap-

proach and CodeT5-based localization is promising.

F. RQ4: Comparison to GNN-based Approach (Graph2Edit)

In the study [15], Nong et al. show that the GNN-based

code edit approach Graph2Edit [31] achieves the highest

effectiveness for vulnerability injection. Graph2Edit takes the

AST of a given program as input, converts it into a graph,

and use its GNN embedding to predict a sequence of AST

edits to generate a new program. The design of the edit

operations and the dynamic programming algorithm makes

Graph2Edit outperforms other DL-based code editors [15].

Thus, we compare effectiveness of Graph2Edit with VULGEN.

We follow the experiments in [15] to set up Graph2Edit,

preprocess our examples into ASTs, use the same examples

for VULGEN to train and test the Graph2Edit model. For beam

size 1, Graph2Edit generates 1024 new functions and 129 of

them exactly match their ground-truth vulnerable functions.

Thus, the exactly-match precision is 12.59%, where VULGEN

outperforms it by 16.28%. For beam size 10, Graph2Edit gen-

erates 10240 functions. Sampling 100 of them and manually

checking the 100 functions, only 13 of them are vulnerable,

making the success rate only 13%.

The results indicate the advantage of VULGEN compared

with the GNN-based approach. We notice that Graph2Edit

does not have the capability to understand the code semantic

compared with our localization model. One of the main

reasons is that our localization model is based on CodeT5

which are trained on millions of code samples. Thus, the fine-

tuned model has the capability to deal with more diverse code

and is better at understanding the code semantics rather than

uses irrelevant code features (e.g., program lengths or single

tokens) to edit code. In comparison, Graph2Edit is a randomly

initialized model and only the 9704 examples from our dataset

are used to train the model. Given the fact that DL models

require a large amount data (usually >100,000 samples) to train

2534

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

the models well, our 9704 examples are too few. Therefore, the

Graph2Edit model is overfitted and cannot deal with complex

code edit scenarios. Given the fact that there is a lack of

vulnerability data to train the DL model, the GNN-based code

edit approach may not be suitable for vulnerability injection.

Graph2Edit achieves 12.59% precision and 13% suc-

cess rate, indicating its limitation of understanding

code semantics compared with VULGEN.

G. RQ5: Usefulness of VULGEN

To evaluate the usefulness of VULGEN, we explore the

effectiveness of using the generated functions to improve the

DL-based vulnerability detectors. We follow the experiment

settings in [15] and perform the evaluation on Devign [2] as

well as ReVeal [11] which are the state-of-the-art vulnerability

detectors at function level for C language. There might be

other even more advanced DL-based detectors (e.g., in the

future). Yet our main goal with RQ5 here is to show the

improvement our generated samples can bring, instead of the

absolute numbers on detection accuracy. Thus, whether the

chosen detectors outperform all other options may not be our

major concern for this paper. We believe that if our samples

can help improve the chosen detectors, they would be expected

to help other detectors (e.g., LineVul [37]) as well.

Similar to [15], we apply the independent testing that

the training samples and testing samples are from different

datasets to simulate the real-world vulnerability detection

scenario. We use the datasets in [15] as the baseline datasets

for training and testing. As our generated functions involve

samples from the datasets Devign and ReVeal, we remove

the duplicates in the datasets for vulnerability detection. Thus,

the numbers of samples in our experiments are different from

the ones in [15]. We use Devign dataset (which has 9,744

vulnerable samples and 11,012 non-vulnerable samples) for

training and use ReVeal (which has 1,630 vulnerable samples

and 16,487 non-vulnerable samples) and Xen (which has 531

vulnerable samples and 7,436 non-vulnerable samples) for

testing as the Devign dataset is relatively balanced.

Then, we add the 963 generated functions from VULGEN

to the training set of Devign and see whether the new training

set improves the performance of the detectors—since we have

963 samples produced by VULGEN, we simply use all of

them. To avoid the impact on training brought by any change

in the dataset balance (ratio of #vulnerable samples to #non-

vulnerable samples), we also add the proportional number of

real-world normal samples from [43] to the training set to

keep the balance the same as before. Table II column Baseline

shows the performance of the two detectors on testing sets

ReVeal and Xen using the original Devign training set. The

column Generated shows the improvement compared to the

baseline using the new training set. We can see that VULGEN’s

generated functions significantly improve the vulnerability

detector performance. For example, in the reproduction setting,

our the training set improves Devign’s F1 by 31.84%, which

generally shows the effectiveness of the generated functions.

To show that the VULGEN’s generated functions are better

than the synthetic samples, we replace the 963 generated

functions with equal number of synthetic vulnerable functions

from SARD [20] and re-train the Devign and ReVeal detectors.

Table II column Synthetic shows the improvements using

the synthetic samples. We notice that the synthetic samples

improve the detectors much less than the VULGEN’s generated

samples do (Reproduction setting for both Devign and ReVeal)

or even decrease the performance (Replication setting for De-

vign and ReVeal). This indicates that the VULGEN’s generated

functions are more useful than the synthetic ones.

We also compare the VULGEN’s generated functions with

their respective ground-truth vulnerable functions. Table II col-

umn Ground Truth shows the improvements using the ground-

truth vulnerable functions of the 963 generated functions. We

notice that the improvements are mostly better than the ones

of the generated functions (except for Devign’s replication

setting experiment), which is as expected since our generated

functions have 69% success rate and there is noise brought in

the rest of generated functions.

To show that VULGEN is not limited to use the normal

functions from the examples of vulnerability fixes to generate

vulnerable functions, we use the normal functions which are

not fixed from vulnerable functions in the BigVul dataset [17]

for injection. To support it, and make the experiment compa-

rable, we randomly select the same number (963) of generated

functions to improve the training set and column Wild shows

the improvements. We notice that although the improvements

are less than the ones in the Generated and Ground Truth

experiments, they are still better than the ones in the Synthetic

experiment, indicating the potential of VULGEN to generate a

large amount of useful vulnerable functions.

VULGEN’s generated functions are useful to improve

the DL-based vulnerability detectors.

H. RQ6: Efficiency
We measure the efficiency of VULGEN by tracking the

time cost of generating the 963 functions. The experiment

is performed on the machine we descirbe in Section III.F.

We apply 15-process parallel computing for the task. In total,

VULGEN takes 55 minutes to generate 963 functions, and thus

it generates 17.5 functions per minute in average.

VULGEN is efficient for vulnerability generation.

VI. DISCUSSION

In this section, we use several case studies to show why

VULGEN works better than other learning-based code edit

approaches for vulnerability injection.

Pattern-based approach is more effective than Trans-
former-based model for code editing. Figure 3 shows an

example that VULGEN successfully injects a vulnerability but

the Transformer-based code edit model does not. The not-

commented code is the normal function before edited (lines

1-6 and 16-26). The ground truth of the vulnerability injection

2535

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

static int mp_property_video_frame_info(void *ctx,
struct m_property *prop, int action, void *arg)

{
MPContext *mpctx = ctx;
struct mp_image *f = mpctx >video_out

? vo_get_current_frame(mpctx >video_out) : NULL;
// The code below is added by the translation model

/*const char *pict_types[] = {0, "I", "P", "B"};
const char *pict_type = f >pict_type >= 1

&& f >pict_type <= 3
? pict_types[f >pict_type] : NULL;

struct m_sub_property props[] = {{“picture type”/*…*/};
MPContext *mpctx = ctx;
struct mp_image *f = mpctx >video_out

? vo_get_current_frame(mpctx >video_out) : NULL;*/
if (!f)

return M_PROPERTY_UNAVAILABLE;
const char *pict_types[] = {0, "I", "P", "B"};
const char *pict_type = f >pict_type >= 1

&& f >pict_type <= 3
? pict_types[f >pict_type] : NULL;

struct m_sub_property props[] = {{"picture type"/*…*/};
// The statement below is deleted by both VulGen and translation model

talloc_free(f);
return m_property_read_sub(props, action, arg);

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Fig. 3. An example of VULGEN’s merits over the Transformer-based
approach.

static inline unsigned int get_rtc_time(struct rtc_time *wtime){
struct pdc_tod tod_data;
long int days, rem, y;
const unsigned short int *ip;

// The line below is deleted by VulGen
memset(wtime, 0, sizeof(*wtime));
if (pdc_tod_read(&tod_data) < 0)

return RTC_24H | RTC_BATT_BAD;
/*…*/
y = 1970;

// Graph2Edit modifies the line below is modified into
// while (days < 0)

while (days < 0 || days >= (__isleap(y) ? 366 : 365))
{

long int yg = y + days / 365 (days % 365 < 0);
days = ((yg y) * 365 + LEAPS_THRU_END_OF(yg 1)

LEAPS_THRU_END_OF(y 1));
y = yg;

}
/*…*/
wtime >tm_mday = days + 1;
return RTC_24H;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Fig. 4. An example of VULGEN’s merits over the GNN-based approach.

is to remove the free statement at line 24 to inject a memory
leak vulnerability [44]. VULGEN uses its injection localization

model to correctly locate that line, and uses the edit pattern to

delete the free statement to inject the vulnerability. In compar-

ison, the Transformer-based model also correctly deletes line

24, indicating that it also has the capability to correctly locate

the statement to inject a vulnerability. However, it strangely

adds the code from line 8 to 15 and completely changes the

code functionality. It seems that the translation model wants

to delete the statement at lines 16-17 (indeed, deleting the if

statement could also inject a use of null pointer vulnerability),

as the first added 5 lines are the same as the 5 lines after the if

statement. Then, it messes up and generates the function body

again and deletes the free statement at line 24.

This indicates that the translation model may not be suit-

able for whole-function code editing. Different from other

Transformer-based code edit approaches (e.g., bug repair) that

only need to generate a few tokens (e.g., a buggy statement),

our vulnerability injection task needs to edit whole functions

(of often hundreds of tokens), since we do not have an external

static analyzer to extract the statements to inject vulnerabil-

ities and the code contexts are also important. However, the

translation model is not good at generating a long sequence of

tokens as it needs to generate the tokens one by one iteratively.

Pre-trained CodeT5 model allows for understanding

static int rt5514_dsp_voice_wake_up_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)

{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct rt5514_priv *rt5514 = snd_soc_component_get_drvdata(component);
const struct firmware *fw = NULL;
u8 buf[8];
if (ucontrol >value.integer.value[0] == rt5514 >dsp_enabled)

return 0;
// The whole if statement below is deleted by Getafix
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
{

rt5514 >dsp_enabled = ucontrol >value.integer.value[0];
if (rt5514 >dsp_enabled)
{

if (rt5514 >pdata.dsp_calib_clk_name &&
!IS_ERR(rt5514 >dsp_calib_clk))

{
/*…*/
// The line below is deleted by VulGen
memset(buf, 0, sizeof(buf));
rt5514 >pll3_cal_value = buf[0] | buf[1] << 8

| buf[2] << 16 | buf[3] << 24;
rt5514_calibration(rt5514, false);
clk_disable_unprepare(rt5514 >dsp_calib_clk);

}
/*…*/

}
/*…*/

}
/*…*/

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Fig. 5. An example of VULGEN’s merits over the pattern-based approach.

code semantically. Figure 4 shows an example that VULGEN

successfully injects a vulnerability but the GNN-based ap-

proach Graph2Edit does not. Again, the not-commented code

is the normal function before edited. VULGEN successfully

generates the ground-truth vulnerable function. It correctly lo-

cates the statement at line 6 which initializes a structure pointer

and uses its pattern to delete the statement to inject a use
of uninitialized variable vulnerability, based on the semantic

of the statement and the context code. However, Graph2Edit

locates to line 13 and uses its sequence of edits to remove

the second condition in the while loop. While removing the

conditions in while loops may inject vulnerabilities in other

cases (e.g., writing bytes one by one to a buffer), this just

injects a bug that makes the date on the calendar incorrect.

The failure of Graph2Edit indicates that it may not have

enough capability to understand code semanticsThe main

reason of the failure may be the lack of training data (<10K).

The DL model of Graph2Edit is not well trained to deal with

different code edit scenarios. Thus, fine-tuning a pre-trained

code-semantic-aware model is a better way. Previous studies

have shown that using pre-trained models like CodeBERT [45]

and CodeT5 [32] can improve the DL models for code relevant

tasks significantly, although the training datasets may not be

very large [10], [37]. VULGEN takes the advantage of the pre-

trained model CodeT5 for localization and thus outperforms

Graph2Edit for vulnerability injection.

DL-based model allows changing the task for code easily.
Figure 5 shows an example that VULGEN correctly locates

and deletes the statement at line 21 to inject a vulnerability

but Getafix does not. Since we do not have an external static

analyzer for localization, once Getafix ranks the top edit

patterns to use, it could only randomly select a location to

apply the pattern. In Figure 5, Getafix simply matches and

deletes an if statement where the condition is an equality

expression, without other localization information used. Thus,

Getafix completely breaks the functionality of the function but

2536

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

does not inject any vulnerability.

The reason that we cannot use static analyzers for vul-

nerability injection is that they are mostly rule-based code

analyzers. Those rules are defined by human experts based

on their experience and knowledge. For example, the static

analyzers for bug localization have been studied and developed

for many years [46]–[50] and can be directly used for bug

localization in the original Getafix. However, the rules are de-

fined by humans and cannot be transferred to our vulnerability

injection localization task. In contrast, the DL-based model

can be trained for different tasks in the same domain once the

model is designed and the training data is ready. The CodeT5

pre-trained model can be fine-tuned for different code relevant

tasks such as code summarization, clone detection, and code

translation [32]. Thus, we fine-tune it for our vulnerability

injection localization task and it makes VULGEN outperforms

Getafix for vulnerability injection.

VII. THREATS TO VALIDITY

Internal validity. As the source code of Getafix [25] is

not available, the major threat to internal validity lies in

the implementation of the pattern mining and vulnerability

injection phases, which might differ from the one in the

original Getafix tool. To mitigate this problem, we do unit

testing and integration testing on the pattern mining and

vulnerability injection phases to ensure they work correctly.

Another threat to validity lies on the hyperparameter setting

for training the injection localization model, other baseline

models, as well as the DL-based vulnerability detection mod-

els. As hyperparamter tuning for these models are expensive,

we use the default setting for all the DL models used as they

have the best performance in their original evaluation.

External validity. The main threat to the external validity

lies in the datasets we used for evaluation. Although the

vulnerability fixes in the datasets we include are labeled or

confirmed by humans, they cannot be ensured to be precise.

Also, many real-world vulnerability fixing examples not only

involve the fixing themselves, but also involve other edits

not relevant to the vulnerabilities. Thus, the edit patterns

we extract and the injection localization training data may

have noise. To mitigate this, we only select one-statement-edit

vulnerability fixing examples for our evaluation dataset.

VIII. ETHICAL IMPLICATIONS

As highlighted earlier (§I), we aim to address the data

needs for large-scale benchmarking and deep-learning(DL)-

based technique development, rather than benefiting/support-

ing attackers. We expect no ethical concerns because: (1)

the generated vulnerable samples are not real-world software

and will not be deployed; (2) after being used for training

DL-models, these samples will not be disclosed to users—

only the trained models are deployed/shared; (3) even if the

samples become accessible to attackers who may leverage

the vulnerabilities therein against real-world software, such

vulnerabilities would be readily detectable by models trained

on such samples—and no exploits are provided.

IX. RELATED WORK

Many efforts on building vulnerability datasets exist.

SARD [20] and SATE IV [21] are popular datasets which

contain over 60,000 vulnerability samples, but the samples

are synthetic. BigVul [17] and CVEFixes [19] develop scripts

to automatically collect the real-world vulnerability fixing

examples based on the reports in the CVE/NVD database [16],

but the total numbers of available fixes are still small (e.g,

<5,000 fixes for C language). Some other works [22]–[24]

develop techniques to automatically detect vulnerability fixes

in real-world projects, but the accuracy is low (<60%).
There are also techniques that automatically generate

bug/vulnerability data. Zhang et al. [28] develop a framework

to automatically generate null-pointer-dereference vulnerabil-

ity samples, but only one type of vulnerability samples can

be generated. FixReverter [26] reverts known bug-fix patterns

to inject bugs for benchmarking fuzzers. SemSeed [27] is a

technique that seeds realistic bugs semantically using word

embedding model, but it can only seed one-line bugs.
Other learning-based techniques that edit code for different

purposes exist. Many of them edit code for bugs/vulnerability

repair. Getafix [25] is a pattern-based code editor which

automatically suggests human-like bug fixes to the developers.

VulRepair [10] automatically fixes real-world vulnerabilities

using a fine-tuned CodeT5 model [32]. CURE [29] automati-

cally fixes bugs using a code-aware neural machine translation

model. However, as vulnerability injection is different from

bug/vulnerability repair, these techniques cannot be directly

used for vulnerability injection.
In comparison, VULGEN automatically generates vulnera-

bility samples based on the widely available normal samples

and the generated samples can be directly used for training

vulnerability analysis models without further cleaning.

X. CONCLUSION

To generate large-scale vulnerability datasets for training or

benchmarking vulnerability analysis techniques, we propose

VULGEN, the first injection-based vulnerability-generation

technique not being limited to one vulnerability class. VUL-

GEN combines the strengths of deterministic (pattern-based)

and probabilistic (DL-based) approaches to achieve realis-

tic vulnerability injection. Our evaluation results show that

VULGEN significantly outperforms state-of-the-art potential

peer techniques for vulnerability injection, and the promising

usefulness of the generated samples.

XI. DATA AVAILABILITY

Our source code, datasets, and experimental results are all

available in our publicly accessible artifact.

ACKNOWLEDGMENT

We thank the reviewers for their constructive comments

which helped us improve our original manuscript. This re-

search was supported by the Army Research Office (ARO,

grant number W911NF-21-1-0027), the European Research

Council (ERC, grant agreement 851895), and the German Re-

search Foundation within the ConcSys and DeMoCo projects.

2537

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. Civaner, “Real-life software security vulnerabilities and what you

can do to stay safe,” https://hackernoon.com/how-software-security-

vulnerabilities-work-and-what-you-can-do-to-stay-safe-c9596d993581.

[2] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-

nerability identification by learning comprehensive program semantics

via graph neural networks,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 32, 2019.

[3] X. Zhou and R. M. Verma, “Vulnerability detection via multimodal

learning: Datasets and analysis,” in Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Security (AsiaCCS),
2022, pp. 1225–1227.

[4] T. H. M. Le and M. A. Babar, “On the use of fine-grained vulnerable

code statements for software vulnerability assessment models,” in 2022
IEEE/ACM 19th International Conference on Mining Software Reposi-
tories (MSR), 2022, pp. 621–633.

[5] D. Hin, A. Kan, H. Chen, and M. A. Babar, “LineVD: statement-level

vulnerability detection using graph neural networks,” in Proceedings
of the 19th International Conference on Mining Software Repositories
(MSR), 2022, pp. 596–607.

[6] X. Fu and H. Cai, “FlowDist:multi-staged refinement-based dynamic

information flow analysis for distributed software systems,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2093–

2110.

[7] W. Li, J. Ming, X. Luo, and H. Cai, “{PolyCruise}: A {Cross-

Language} dynamic information flow analysis,” in 31st USENIX Se-
curity Symposium (USENIX Security 22), 2022, pp. 2513–2530.

[8] W. Li, J. Ruan, G. Yi, L. Cheng, X. Luo, and H. Cai, “PolyFuzz: Holistic

greybox fuzzing of multi-language systems,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023.

[9] Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer learn-

ing for repairing security vulnerabilities in c code,” arXiv preprint
arXiv:2104.08308, 2021.

[10] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “VulRe-

pair: a t5-based automated software vulnerability repair,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022, pp. 935–947.

[11] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning

based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering (TSE), 2021.

[12] Y. Nong, H. Cai, P. Ye, L. Li, and F. Chen, “Evaluating and comparing

memory error vulnerability detectors,” Information and Software Tech-
nology, vol. 137, p. 106614, 2021.

[13] Y. Nong and H. Cai, “A preliminary study on open-source memory

vulnerability detectors,” in 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,

2020, pp. 557–561.

[14] Y. Nong, R. Sharma, A. Hamou-Lhadj, X. Luo, and H. Cai, “Open

science in software engineering: A study on deep learning-based vul-

nerability detection,” IEEE Transactions on Software Engineering (TSE),
2022.

[15] Y. Nong, Y. Ou, M. Pradel, F. Chen, and H. Cai, “Generating realistic

vulnerabilities via neural code editing: an empirical study,” in Proceed-
ings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2022, pp.

1097–1109.

[16] H. Booth, D. Rike, G. A. Witte et al., “The national vulnerability

database (NVD): Overview,” 2013.

[17] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability

dataset with code changes and cve summaries,” in Proceedings of the

17th International Conference on Mining Software Repositories (MSR),
2020, pp. 508–512.

[18] X. Wang, S. Wang, P. Feng, K. Sun, and S. Jajodia, “Patchdb: A

large-scale security patch dataset,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2021, pp. 149–160.

[19] G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes: automated col-

lection of vulnerabilities and their fixes from open-source software,” in

Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering (PROMISE), 2021, pp. 30–

39.

[20] P. E. Black et al., “SARD: A software assurance reference dataset,” in

Anonymous Cybersecurity Innovation Forum.(), 2017.

[21] V. Okun, A. Delaitre, P. E. Black et al., “Report on the static analysis

tool exposition (sate) iv,” NIST Special Publication, vol. 500, p. 297,

2013.

[22] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,

A. Morari, and Z. Su, “D2A: A dataset built for ai-based vulnerability

detection methods using differential analysis,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), 2021, pp. 111–120.

[23] W. Li, L. Li, and H. Cai, “Polyfax: a toolkit for characterizing multi-

language software,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE-Demo), 2022, pp. 1662–1666.

[24] T. Fehrer, R. C. Lozoya, A. Sabetta, D. Di Nucci, and D. A. Tamburri,

“Detecting security fixes in open-source repositories using static code

analyzers,” arXiv preprint arXiv:2105.03346, 2021.

[25] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning

to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–27, 2019.

[26] Z. Zhang, Z. Patterson, M. Hicks, and S. Wei, “FIXREVERTER: A

realistic bug injection methodology for benchmarking fuzz testing,” in

31st USENIX Security Symposium (USENIX Security 22), 2022, pp.

3699–3715.

[27] J. Patra and M. Pradel, “Semantic bug seeding: a learning-based ap-

proach for creating realistic bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2021, pp.

906–918.

[28] S. Zhang, “A framework of vulnerable code dataset generation by open-

source injection,” in 2021 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), 2021, pp. 1099–

1103.

[29] N. Jiang, T. Lutellier, and L. Tan, “CURE: Code-aware neural machine

translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.

1161–1173.

[30] C. S. Xia and L. Zhang, “Less training, more repairing please: revisiting

automated program repair via zero-shot learning,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022, pp. 959–971.

[31] Z. Yao, F. F. Xu, P. Yin, H. Sun, and G. Neubig, “Learning

structural edits via incremental tree transformations,” arXiv preprint
arXiv:2101.12087, 2021.

[32] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware

unified pre-trained encoder-decoder models for code understanding and

generation,” arXiv preprint arXiv:2109.00859, 2021.

[33] B. Berabi, J. He, V. Raychev, and M. Vechev, “Tfix: Learning to fix cod-

ing errors with a text-to-text transformer,” in International Conference
on Machine Learning. PMLR, 2021, pp. 780–791.

2538

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

[34] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “SPT-code: sequence-

to-sequence pre-training for learning source code representations,” in

Proceedings of the 44th International Conference on Software Engi-
neering (ICSE), 2022, pp. 2006–2018.

[35] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An infrastructure

for the exploration, analysis, and manipulation of source code: A tool

demonstration,” in 2013 IEEE International Conference on Software
Maintenance, 2013, pp. 516–519.

[36] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,

“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering (ASE), 2014, pp. 313–324.

[37] M. Fu and C. Tantithamthavorn, “LineVul: a transformer-based line-

level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories (MSR), 2022, pp. 608–620.

[38] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of

rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[39] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative

position representations,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), Volume 2
(Short Papers), 2018, pp. 464–468.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

[41] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,

P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s trans-

formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[42] S. Christey, J. Kenderdine, J. Mazella, and B. Miles, “Common weakness

enumeration,” Mitre Corporation, 2013.

[43] G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-based vulner-

able function detection: A benchmark,” in International Conference on
Information and Communications Security. Springer, 2019, pp. 219–

232.

[44] W. Li, H. Cai, Y. Sui, and D. Manz, “PCA: memory leak detection

using partial call-path analysis,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE-Demo), 2020,

pp. 1621–1625.

[45] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,

T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming

and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[46] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building useful

program analysis tools using an extensible Java compiler,” in 2012 IEEE
12th International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2012, pp. 14–23.

[47] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,

P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving

fast with software verification,” in NASA Formal Methods Symposium.

Springer, 2015, pp. 3–11.

[48] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Companion
to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications (OOPSLA), 2004,

pp. 132–136.

[49] D. Kroening and M. Tautschnig, “CBMC–c bounded model checker,” in

International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2014, pp. 389–391.

[50] D. Marjamäki, “Cppcheck: a tool for static c/c++ code analysis,” https:

//cppcheck.sourceforge.io/, 2013.

2539

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 09,2024 at 03:20:04 UTC from IEEE Xplore. Restrictions apply.

