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Shadow tomography is a framework for constructing succinct descriptions of quantum states using ran-
domized measurement bases, called “classical shadows,” with powerful methods to bound the estimators
used. We recast existing experimental protocols for continuous-variable quantum state tomography in
the classical-shadow framework, obtaining rigorous bounds on the number of independent measurements
needed for estimating density matrices from these protocols. We analyze the efficiency of homodyne,
heterodyne, photon-number-resolving, and photon-parity protocols. To reach a desired precision on the
classical shadow of an N-photon density matrix with high probability, we show that homodyne detection
requires order O(N*+1/3) measurements in the worst case, whereas photon-number-resolving and photon-
parity detection require ((N*) measurements in the worst case (both up to logarithmic corrections). We
benchmark these results against numerical simulation as well as experimental data from optical homo-
dyne experiments. We find that numerical and experimental analyses of homodyne tomography match
closely with our theoretical predictions. We extend our single-mode results to an efficient construction of

multimode shadows based on local measurements.
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I. INTRODUCTION

The ability to estimate states accurately with as few
measurements as possible—the primary goal of quan-
tum state tomography—yields an indispensable tool in
quantum information processing [1]. State characteriza-
tion is necessary for realizing quantum technologies in
finite-dimensional tensor-product quantum systems gov-
erned by discrete variables (DVs), as well as in quantum
systems governed by continuous variables (CVs) [2], such
as electromagnetic or mechanical modes.

The recent development of classical-shadow tomogra-
phy yields a succinct way to learn information about a
DV quantum state through randomly chosen measure-
ments, in such a way that the learned information can
later be used to predict properties of the state [3-5]. A
key benefit of shadow tomography is that it comes with
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rigorously proven guarantees on the minimum number
of samples required to achieve high accuracy with high
probability. However, the best guarantees require struc-
tures from finite-dimensional DV spaces, such as state and
unitary designs [4] or symmetric, informationally com-
plete positive operator-valued measures (SIC-POVMs)
[6], thereby obscuring any practical extension to the intrin-
sically infinite-dimensional CV systems.

In this paper, we apply the shadow-tomography frame-
work to a large family of well-known and well-used CV
tomographic protocols. We distill the mathematical tools
behind shadow guarantees in such a way that the depen-
dence on strictly DV ingredients is eliminated and we
may reformulate established CV protocols in the shadow
framework. This reformulation yields accuracy guaran-
tees for expectation values of local observables whose
required number of samples scales polynomially with both
the number of participating CV modes and the maximum
occupation (aka photon) number of each mode.

CV tomography is a long-standing and well-developed
field [7]. Focusing on established protocols allows us
to boost their credibility, as opposed to developing new
protocols that may be equally efficient theoretically but
whose practical utility is left as an open question (e.g.,
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see Sec. VLA in Ref. [8]). Specifically, our work focuses
on tomographic methods that can be easily implemented
experimentally with existing quantum optical technol-
ogy, which underpins fiber-based and free-space quantum
communication and key distribution [2]. To illustrate the
connection to optics and our commitment to the mantra
of classical shadows “measure first, ask questions later”
[5], we apply our framework retroactively to experimen-
tal quantum-optical data published in 2010 [9]. Naturally,
our theoretical guarantees apply equally well if the corre-
sponding protocols are performed in other CV platforms
such as microwave cavities coupled to superconducting
qubits [10], motional degrees of freedom of trapped ions
[11], and optomechanical [12] and nanoscale acoustic [13]
resonators.

The first method that we are able to recast in the shadow-
tomography framework is homodyne detection [7,14—19].
We show that the number of samples needs to scale at most
as the fifth power of the maximum occupation number
(up to a logarithmic correction) to yield reliable homo-
dyne shadow estimates of a single-mode state. Since we
require a finite occupation number cutoff, this bound holds
only for portions of states supported on finite-dimensional
subspaces of the infinite-dimensional Fock space. Our the-
oretical guarantees use several important technical bounds
proved in earlier work [20]. While there have been stud-
ies of the statistical efficiency of homodyne tomography
(e.g., Refs. [20-24]), to our knowledge, our bounds are
an improvement over previous results as they allow us
to analyze the sample complexity for the convergence
of the operator norm of the estimated state to its ideal
value. These improvements are made possible because
of our use of matrix concentration inequalities reviewed
in Sec. II (see Refs. [25,26]) that were not used in past
work on CV state tomography. A recent paper also con-
sidered the statistical efficiency of homodyne tomography
using these improved matrix concentration inequalities
[27]. Here we present more explicit formulas for the
bounds in the case of states with a hard photon num-
ber cutoff. Adaptation of our approach to the formulation
in Ref. [27] also leads to explicit bounds on their sam-
ple complexity that appear to give agreement between the
two papers in areas where there is overlap. On a related
note, Rosati [19] recently studied the sample complexity
of estimating unknown Gaussian or generalized (i.e., linear
combinations of) Gaussian CV states, where a risk func-
tion is minimized. The distance between the outcomes of
the original state and the estimated state, averaged over
channels and measurements, was the metric of error. Our
work, on the other hand, considers an absolute error via
the trace norm of the difference of the original state and
the estimated state. Finally, we remark that our results
provide upper bounds on the scaling of the number of sam-
ples required, i.e., the sample complexity, for estimating
the state from random measurements. We leave open the

important problem of obtaining lower bounds on the opti-
mal sample complexity [4], which have been examined, for
example, in the case of homodyne tomography [28].

Building on the formalism in Ref. [29], we are also able
to recast a large class of protocols using displaced Fock
states and make contact with heterodyne, photon-number-
resolving (PNR), and photon-parity tomography [7]. For
the latter two methods, we show that the number of sam-
ples needs to scale at most as the fourth power of the
maximum occupation (up to a logarithmic correction) to
yield reliable PNR shadow estimates. For heterodyne mea-
surements, our upper bound is effectively exponential in
the maximum occupation.

Following our theoretical analysis of single-mode sys-
tems, we provide a generalization to multimode states. We
prove that local CV shadow data can be used to recon-
struct k-local reduced density matrices on any subset of the
modes with a sample complexity polynomial in the total
number of modes and exponential in k.

We support our theoretical analysis with multiple
numerical simulations and the analysis of existing exper-
imental homodyne data. We begin by verifying that both
shadow methods indeed construct reliable estimates of a
target state. We then determine how the number of sam-
ples required for both methods scales with the maximum
occupation number N. Through simulations involving the
reconstruction of the vacuum state, coherent state superpo-
sition (CSS) states (i.e., cat states), and random pure states,
we observe that the scaling range for both the measurement
schemes agree with the theoretical predictions. We also
provide a basic demonstration of homodyne tomography
on multimode separable and entangled states, finding that
the latter require more samples to reach the same precision.
Our results are summarized in Table L

We begin with a general result for estimating den-
sity matrix elements of a single-mode CV state using a
generic shadow-based protocol in Sec. II. Its application
to homodyne measurements and photon-number-resolving
measurements is discussed in Sec. III. In Sec. IV, we
extend our theory to multimode CV states, and we sup-
port our methods by numerical results and analysis of
experimental data in Sec. V. We conclude this paper in
Sec. VL.

II. SINGLE-MODE SHADOWS: GENERAL CASE

Here we distill the necessary mathematical tools from
DV shadow-based accuracy guarantees in a general lemma
that we apply to specific CV protocols in later sections.
We adapt the slight reformulation from Appendix A in
Ref. [30], the original shadow work, in which guarantees
are shown exclusively in terms of the system state. This
allows us to derive sampling guarantees that are subopti-
mal relative to the qubit case, but are sufficiently general
to be applied to numerous CV tomographic protocols.
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TABLE 1. Summary of the different protocols that exist, to our knowledge, for studying the sample complexities of CV state tomog-
raphy. For each protocol, we indicate the measurement basis and a bound on the scaling of sample complexity (with system size N
and number of modes M for multimode shadows). The sample complexity of design-based shadows was estimated with use of known
variance bounds [4,8]. Additionally, for single-mode measurement methods considered in this paper, we provide the scaling observed

in numerical simulations.

Upper bound on scaling
Protocol Basis expansion Upper bound scaling from numerical simulations
Single-mode homodyne shadows Position states/pattern functions N4 N*
Single-mode PNR shadows Displaced Fock states/T operator N* N6
Design-based CV tomography [8] 3-design N*
Multimode shadows Local shadows N _ NG+1/DM

We assume loss-free propagation and detection for our
theoretical derivations.

A single-mode CV density matrix can be represented in
various ways, e.g., using Wigner, Q, P [31,32], or more
general [29] representations, moment expansions [33],
homodyne measurements [7,16,17], or outer products of
occupation number (aka Fock) or other simple basis states.
All these ways effectively express the density matrix as a
linear combination of some basis set of operators {o (1)}
with corresponding coefficients p(u), where p parame-
terizes some generally continuous and noncompact space

X,
p= fx dup() o (). (1)

Assuming a non-negative and normalized weight function
p(w) and sufficiently well-behaved space X allows one to
re-express the above formula in a statistical fashion, i.e.,
as an expectation value over samples o, sampled from X’
according to the probability distribution governed by p (1),

p=E,xo(n)=E,o(n). (2)

Classical-shadow tomography in our formulation refers to
tomographic protocols with the restriction that p(u) is a
probability distribution over random measurement settings
and their outcomes. A general quantum state tomography
protocol based solely on Eq. (1) may not have a formula-
tion as a type of classical-shadow tomography. Crucially,
though, we see below that there is a natural analysis of
homodyne tomography that fits into the classical-shadow
framework.

The above formulation allows a simple application of
matrix concentration inequalities (loosely speaking, the
matrix version of the law of large numbers; see Refs.
[25,26]). If we are given a set of T independent samples
T ={u1,...,ur}, we can construct an estimator for the
state by averaging the basis operators corresponding to the

outcomes in the set,

1 T
or = ?gjams). 3)

We define the above estimator as a shadow of size T. Such
shadows recover the state by taking their expectation value
over all sample sets 7,

1 T
Eor = ;;Eoma =Eow=p. 4
This convergence property is a necessary starting point for
shadow estimation, but it says nothing about how fast the
convergence happens as the number of samples increases
[34].

To bound the rate of convergence of the above esti-
mate, we restrict p to finite-dimensional truncated versions
pV, with the dimension cutoff N assumed to be suffi-
ciently large so that the truncated operators capture the
essence of the original ones. The resulting matrices have
nonzero entries only for row and column indices 0 through
N — 1. A “regularized” shadow is constructed with snap-
shots projected into the (N — 1)-photon subspace, with use

of Py = YN il
1 T
N _ — A
or =PyorPy = T E Py o () Py. (5)

i=1

Our analysis can be readily extended to more general soft
cutoffs by replacement of the projectors onto fixed photon
number spaces by operators with smooth cutoffs [35]. Note
also that we do not renormalize the above regularized den-
sity matrices or shadows. Doing so introduces additional
factors that would complicate our calculations. Hence, for
ease and uniformity, we chose to work with the regularized
matrices as they are.

We now bound the difference between the sample aver-
age o and the actual average p®™) = PypPy, backing
out the minimum shadow size T required for an accurate

010346-3



SRILEKHA GANDHARI et al.

PRX QUANTUM 5, 010346 (2024)

estimate. We use the trace norm or 1-norm of the difference

O'T}y — p" to quantify the error.

Lemma 1. Fix ¢€,6 € (0,1), and let O'TN be an N-
dimensional classical shadow of a single-mode continuous-
variable quantum state p. If the size of the classical shadow
is at least T such that

2 2
r= 20 tRG/zN) (In2N +1In1/8),  (6)
€
where
2 2
v =[Er @] =B @ w)] . ow
R= |o¥ () —Euo™w) . (7b)
then the probability

P(lor — Yl <€) 2 1-36.

Proof. Applying the matrix Bernstein inequality (see
Ref. [26] and Appendix A in Ref. [30]) to o — p" and
using Eq. (4), we obtain

T2 )2
N N ~
P(llor — " lloo = €) < 2N exp (—m)

Using the equivalence relation || X || < | X |[1 < N[ X ||ec

for an N-dimensional system, we have P(||X]; > ¢€) <
P(N||X |loc = €)- Substituting €/N — €, we get

Te?
P N _ N, > < 2N - )
(llog — "l = €) < 2N exp ( NZ2(V? + Re/3N))

Equating the error term on the right-hand side of the
inequality to § and rearranging the resulting expression, we
obtain the result (6). |

We replaced the original variance term |E, (O'N—
,(JN)2 [lec in Eq. (7a) , which measures the fluctuations

about the mean p", with the term |[E, (o )2 |l for ease
of calculations. We noticed that this leads to the derived
bounds being higher than they would otherwise have been
in some cases.

We see that the scaling of the required sample size in Eq.
(6) depends logarithmically on the inverse error probabil-
ity 8 and polynomially on the accuracy €, recovering the
corresponding portion of the qubit shadow result [4]. To
determine the dependence on the occupation number cut-
off N, we need to know the corresponding scaling of R and
v [Eq. (7)], which are sometimes referred to as “shadow
norms.” This scaling depends on the details of the protocol,
and we proceed to apply this lemma to specific cases.

III. APPLICATIONS

We apply the general shadow bound from Sec. II to
a large family of CV tomographic protocols that include
homodyne and photon-number-resolving tomography.

A. Homodyne shadows

Homodyne tomography is a popular technique used in
quantum optics to make quadrature measurements of CV
quantum states [7]. This technique allows one to mea-
sure a quadrature operator such as oscillator position,
momentum, or any of their superpositions.

Let a,a’ be the canonical mode lowering and rais-
ing operators satisfying [a,a’] = 1. A general quadrature
operator,

Xy = 7‘5(@—“9 +a'e?), (8)

is parameterized by 8 € [0,7), where § =0 (8 =x/2)
corresponds to the pure position (momentum) quadrature.
We consider all possible values of @ to be admissible
and do not consider the problem of choosing an appro-
priate discretization. In practice, we use pseudorandom
number generators to generate the values of ;. Each oper-
ator admits its own set of orthogonal but non-normalizable
“eigenstates” |xg) with x4 € R. Even though such “eigen-
states” are not quantum states but are instead distributions,
they do resolve the identity for each @ and thus yield valid
positive operator-valued measures (POVMs) [36]. For a
given #, a homodyne protocol yields a measurement in the
corresponding set of eigenstates.

To perform a homodyne measurement, the unknown
system state interferes with an ancillary mode in a coherent
state |ap o) [coherent state local oscillator (LO)] via a beam
splitter, as shown in Fig. 1(a). The phase of the coherent
state LO is precisely the phase @ that defines the quadra-
ture that is measured, and is picked uniformly from [0, 7).
Both output amplitudes of the beam splitter, N; and N,
respectively, are measured via homodyne detectors. Their
difference N_ is proportional to the quadrature amplitude
of the signal:

N_:«/E|al_o|x9 with probability {xg|plxs). (9)

To cast homodyne tomography into shadow terminol-
ogy, we first specialize the expansion in Eq. (1) to this
case. Substituting parameters 6 and xp) for p, we get the
expansion [see Eq. (23) in Ref. [7]]

p:ﬁ defdxgg(mmxgw(xg,e), (10)
R

where 1/ corresponds to picking 8 uniformly from [0, 7r),
and (xg|p|xs) corresponds to the conditional probability
of the homodyne setup yielding xp as the outcome. The
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FIG. 1. (a) Balanced homodyne detection. The unknown state
signal interferes with a local oscillator (a coherent state |a))
and the intensities N; and N, at the output arms are measured.
The difference in the intensities is proportional to the quadrature
amplitude of the unknown state in the mode defined by the oscil-
lator.(b) PNR measurement. The local oscillator is in a coherent
state |&r), and detection of N photons at the detector occurs with
probability p(N|a) = (N, «|p|N,a). BS, beam splitter.

matrix elements of the basis operators {F(xg,0)} have stan-
dard expansions in the quantum optics literature. They are
defined in terms of what are known as “pattern functions”

Smn (%) [7,37]:

(m|F (xg,0)|n) = &~ ., (x0). (an

These pattern functions are symmetric in m and n, and are
defined with use of Fock state wave functions v, (x) (mth
energy eigenstate of a harmonic oscillator) and ¢,(x) (nth
non-normalizable solution of the Schrédinger equation of
a harmonic oscillator) as

0
Jn(x) = PP (Um(@X)Pp(x)) for n>m. (12)

Because the quadrature probability distributions are nor-
malized for each 8, the above equation can automatically
be interpreted in the statistical fashion of Eq. (2). In this
interpretation, basis operators F' are sampled according to
the probability distribution defined by 6 and (xg|p|xs). A
regularized homodyne CV shadow of size T, constructed

with use of the samples {xgi.,G,‘}f":l, is therefore

T
1
of = =D PnF(x,6) Py.

(13)

The randomized choice of 6; independent being the state
is what allows us to reinterpret this reconstruction method
as an instance of classical shadows. We also remark that
a homodyne shadow is distinct from the Wigner function
projection of the state. A shadow estimates the density
operator in the Fock basis from a collection of homo-
dyne samples with randomly chosen 8. A Wigner func-
tion projection f dpgW(xg,ps) = (xg|pl|xg), on the other
hand, is the probability of obtaining specific measurement
outcomes at a fixed value of 6.

We now adapt Lemma 1 to homodyne shadows, rely-
ing on the bounds on the pattern-function matrix from
Ref. [20]. The following theorem gives an upper bound
on the sample complexity of constructing shadows through
homodyne samples, for an error ||c>’;."5r — oY1 < € with
high probability (greater than 1 — §).

Theorem 1. With use of homodyne tomography, for
€,8 € (0,1), some positive constant C; [20], and an N-
dimensional homodyne shadow O'TN (13) of a single-mode
CV state p,

P(loY — oVl <e)=1-8

when the size of the shadow is at least

2N13{3C1
€

Proof. From Theorem 3.2 in Ref. [20], we use

lo¥ 12, < CiN"7 and ||o¥ |3 < CoN3, which is valid for
any value of homodyne angle 6 and gives

lod — pVlloo < oM lloo +1 < /CON* 4+ 1 =R (14)

and
v = |Er 07| = Hfdxde Lixglolxgaf|  (15a)
%0
< [ dvas Lisolp)loflee (150
< [ dvas Lo (150
< CN"3, (15d)

Therefore, with use of Lemma 1, the size of the shadow
needs to be at least

_ 2N?(0? 4+ Re/2N)

T . (In2N — In§)
€
2NZ(CIN'P3 41 4 /CiNY%¢)2
< (@ v /)(In2N+lnl/3).
€
(16)
m

We see that the upper bound on the minimum number of
samples scales as N'3/3 In N for a photon-cutoff N.

Regarding the utility of homodyne shadows in calculat-
ing expectation values of observables, the pattern-function
operators F' are unequivocally more complex than the orig-
inal qubit shadows [4]. Nevertheless, efficient methods are
known to compute them using recursive relations [38].
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B. PNR shadows

Our second application is based on the T-operator for-
malism developed in Ref. [29]. The relevant basis expan-
sion of a single-mode CV state p can be written in terms
of what are called “T operators,”

o= %fdza Trlp T(a,e*)] T(a, ), (17)
C

where Tr[pT(c,a*)] plays the role of a quasiprobability
distribution over the complex plane C and the dual oper-
ators T(a,a*) are used to reconstruct the state given this
distribution.

The T operators are defined in terms of displaced Fock
states, which are the result of applying a displacement
operator D(a) = exp (aa® — a*a) on a Fock state: |a,n) =
D(a)|n). There exists a family of T(«,@*), and their cor-
responding duals T(a, @*), parameterized by —1 <r < 1,
such that the dual operator is given by

Ty(a,a*) = T_ (o, ™). (18)

T(a,a™) belonging to this family can be diagonalized as
oo
Ti(@,a*) = )  A"D(@)ln)(nlD(@)'
n=0

= 3" AP, m) (e, (19)

where the eigenvalues A" are

Lo _ 20—y
T T T+ £

(20)

With use of the above expansions, Eq. (17) becomes

do & 7
p= f — Y (maloln,a) AT (@0, (1)
C ﬂ'

n=0

which we interpret as an expectation value of samples
A®T,(a,a*) distributed according to the probabilities
1/ (n,a|p|n,a). However, in a physical interferometric
measurement procedure corresponding to this expansion
[see Fig. 1(b)], the displacement parameter o comes from
a noncompact set. This means that we need to first truncate
the sample region to make the above expression a valid
(i.e., normalizable) probability distribution.

We restrict the integration of Eq. (21) to be over a phase-
space region A of finite area 4. We can set this region to be,
for example, a disk of radius amax. We will then be able to
account for the truncated Fock space by setting & = N
since that is the average occupation number of a coher-
ent state with || = tmax. In that case, 4 = 4w N scales
linearly with the maximum photon number cutoff.

Projection into an N-dimensional subspace implies that
we consider only states with some maximum photon num-
ber N — 1 and regularized T operators T (a,a*). Com-
bining this with the truncation of the phase-space integra-
tion yields the following approximate expression for the
truncated density matrix:

2o N .
P [ 2 maloina) 0T @at), (22)
A A =0 '

in which we interpret 4 A™ 7 (a,@*) as a PNR shadow
sampled from the probability distribution

1 .
p(?La) = Z(n$a|p|n1a) (23)

with parameters 0 <n < N — landa € A.

The eigenvalues A exhibit different behaviors for dif-
ferent values of r, and in the Appendix we analyze how
many samples are required for density matrix estimation in
each case. We obtain quartic scaling with N at r = 0, up to
logarithmic corrections, and unfavorable exponential scal-
ing for 0 < |r] < 1. In the favorable case, the upper bound
on the minimum number of samples is given by

32N? 42 s .
T=—5(n2N +In1/8) =ON*InN),  (24)
T

beating our theoretical estimates for homodyne shadows.
Therefore, we see that T operators at » = 0 have a favor-
able sample complexity scaling and can be used as a
tomographic method to estimate an unknown state. The
matrix elements of the T operator in the Fock basis are
equal to the matrix elements of the displacement operator
up to a phase

(m|To(a,a®)|n) = (1)"(m|DQ2a)|n), (25)

which can be used to efficiently compute the classical
shadows. Moreover, the case of r = 0 can also be real-
ized via photon-parity measurement tomography [39-42],
providing another experimental technique to realize these
shadows.

It is worth noting that in the limit r = —1, Tr(a,a*) =
T_,(a,a*) becomes a projector onto the coherent state
|}, making the measurement protocol equivalent to what
is known as heterodyne measurement, achieved with a
setup similar to the setup used in homodyne measure-
ment [43]. The basis expansion is given in terms of the O
function Q(a) = 1/ (x|p|a). However, the sample com-
plexity upper bound diverges in this case. It is possible to
avoid this divergence by taking a limit » — —1 as the num-
ber of samples increases. Unfortunately, this method only
achieves an upper bound that is exponential in N because,
as noted above, for any 0 < |r| < 1, our sample complex-
ity upper bound diverges exponentially with N (see the
Appendix).
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IV. MULTIMODE SHADOWS

In this section, we show that it is possible to construct
efficient representations of reduced density matrices on
constant numbers of modes from local CV shadow data.

Multimode CV states are states that are made up of mul-
tiple modes of the underlying system, such as different
frequencies of light in an optical system. This is anal-
ogous to having a multiqubit state in DVs. Each mode
is equipped with a generally continuous and noncompact
space X; and M-mode, possibly entangled, quantum states
reside in X = @M, X. Let the space X be parameter-
ized by a variable u = (¢!, ..., uM) and spanned by the
set of basis operators {o(x)}. Extending Eq. (1), we can
then write the density matrix of a general multimode state
belonging to this space as

p= fx drp(R) o (), (26)

where p(u) are the corresponding coefficients. Boldface
symbols are used to represent multimode variables and
states. All the density operators and shadows considered
in this section are the regularized versions, projected into
the N-photon subspace of each mode. The superscripts
indicating this are omitted for brevity.

Analogous to the single-mode case in Sec. 11, we require
a basis expansion of p such that p(u) = 0 for all p, the
non-negativity of p(u) allowing it be interpreted as a
probability distribution over w. We proceed by using an
expansion of the form p(u) = (pr|p|p), where the quan-
tum states or distributions |pu) parameterize the underlying
space. For example, we can take |u) to be local position
state eigenstates in the case of homodyne tomography.

We construct shadows of multimode states using local,
joint single-mode measurement. For an estimator of a state
p to qualify as a shadow, as introduced in Sec. 1I, it must
be equal to the state p in expectation. Below we show that
it can indeed be satisfied for shadows constructed through
local measurements. For this calculation, we use another
expansion of a general quantum state p in terms of some
set of separable operators {p,} and corresponding complex
coefficients {c,},

M
pP=) cabe=Y ca(@)pi (27)
o o i=1

Such an expansion is possible irrespective of whether the
state is separable or entangled. The estimator becomes

M

B, o) = [ dix (ulpln) x @) o)

i=1

(28a)

M
= Yeu [ dnx @uletlu o (280
o i=l

M
~Y @@ [ dtiowew)  eso
o i=1 i

= anpa =p
o

In the following theorem, we calculate the variance and
thereby the sample complexity of estimating a multimode
state through local CV shadows. This result reduces to the
single-mode result from Lemma 1 when M = 1.

(28d)

Theorem 2. Fix €,8 € (0,1), and let o7 be an NM-
dimensional classical shadow obtained through local mea-
surements o () = ®‘:’il o (u') of an M-mode CV state p
[Eq. (27)]. If the size of the classical shadow is at least

_ 2N MY |cal+Re/3NM)

r )

(M1n2N + In1/8),
(29)

€

then
P(lor—plli <€) =1-3,

written in terms of the single-mode variance ul2 [Eq. (7a)]
and R > lo(p) — Epo(p1)llo-

Proof. The measurement variance for an M-mode state
proceeds as in the single-mode case with the help of Eq.
(27):

Vi = E (0(n)? (30a)
M . M .12

— [ TTaw < ot x @ ('] Gov)
j=1 i=1 00

=X e® [ dututeliu @)’ oo

<Yl ] H [ di et (o)) Goa

<) leal [ o1 (30e)

(300

= V]ZMZ [Cal-
o

Using the matrix Bernstein inequality and following a cal-
culation similar to that in Lemma 1, replacing N with NM,
we get the desired result in Eq. (29). |
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As a consequence, we obtain a sample complexity
bound on estimating k-local reduced density matrices,
which are the outcome of tracing over all but £ modes of
a multimode state. Since we are tracing out some of the
modes, we are left with a “reduced density matrix.”

Corollary 1. If p, denotes the reduced density matrix
of p in k < M modes and its estimator constructed through
local measurements is o 7 such that the size of the shadow
is at least

_ 2N*H Y leal + Re/3NF)

T )

(kIn2N +In1/5),

then
P(lorx — pillh <€) > 1-86.

Proof. Without loss of generality, let us assume p, is the
reduced density matrix over the modes 1,...,k, with k <

M, ie., py = Trep1,pm(p). Define py = (u',...,uF) to
parameterize this k-mode subspace, and the local operators

k
or(ig) = Tregr, (o () = Q) o (1),
i=1

The classical shadow of the reduced matrix o 7 is then the
average of T such operators. The variance of estimating
this reduced matrix, following earlier calculations, is given

by
v = B rwo)’| s v¥ Yleal 6D

One can further generalize this result to derive sample
complexity bounds for determining the reduced density
matrix for any choice of k-local modes. The proof follows
from an application of the union bound and increases the
sample complexity by a factor of k [4,30].

The sum of the absolute values of the coefficients in
Eq. (27) is a factor that affects the sampling complexity
of multimode states. These coefficients can, in general, be
complex. When the state is separable (i.e., can be written
as a product state) this factor becomes 1, thereby resulting
in a complexity that is equivalent to sampling all the modes
individually, as expected of a product state. When the coef-
ficients are all positive, they again sum up to 1 (since the
trace of the state must equal 1), resulting in no increase
in complexity as compared with a separable state. In the
general case, we can still upper-bound the sampling com-
plexity, but the overall scaling with the number of modes
has a larger prefactor in the exponent. These results are
summarized in Table 1.

We add that the proposed local-joint measurements are
not the most general measurements for multimode CV
states. On trying many different bases of entangled/global
states, we have not found a suitable one that fulfills our
criteria of a positive weight function for all states [p (i) in
Eq. (26)], but have not ruled out the possibility of their
existence. Studies of whether global measurements can
facilitate such a statistical interpretation and of the sam-
ple complexity when such bases are used are interesting
avenues for future work.

Corollary 2. Similarly, we can estimate the expectation
values for a list of multimode observables {O,..., Oy},
local to {ki,...,ky} modes, respectively, and each mode
within an N-photon subspace, from a shadow of size

upper-bounded by T'= O (max; %’l In(M/ 3)) such that

P(|Tr(0;p) — Tr(Oo7)| <€) >1—4foralll <i< M.
(32)

Proof. Since the 1-norm of a matrix is the sum of its
singular values, with use of Holder’s inequality,

ITr(0p)| < [1Ollcclloll1- 33)

Therefore,

P(ITr(0i(p —o1)| = €) =P (I0llliplli = €)

€
=P > —1.
("” oo 2 ||0||1)

With use of the matrix Bernstein inequality, this implies

P(ITr(0:(p — o 1))| = €)

2
< oW exp [ T/10l) |
2N (% + Re 3NF]0llco)

where v and R are as defined in Theorem 2. Equating the
upper bound on probability to §/M and using the union
bound [4], we find that a shadow size upper-bounded by

2 01‘ NZI:,— 2k;
T = max ""“+2” (kiIn2N +InM/8)  (34)
suffices to estimate the list of multimode observables
{0}, with the desired accuracy. |

V. NUMERICAL AND EXPERIMENTAL TESTS

In this section, we verify our shadow construction
methods and present numerical results on sample com-
plexity scaling, with the maximum occupation number
N, of single-mode shadows. We also analyze experimen-
tal homodyne data and demonstrate the reconstruction of
multimode states.
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FIG. 2. Single-mode shadows. (a) Density matrix elements and (b) Wigner function representation of the original state, a homodyne
shadow, and a PNR shadow of an even CSS state |¢/) o |a) + | — @) with @ = +/10. (c),(d) Numerical sample complexity of single-
mode shadows; the precision and confidence parameters are € = 0.1 and § = 0.1. (c) Homodyne shadows: vacuum state (T oc N1-389),
CSS state with amplitude @ = /10 (T o« N'¥2%), and random pure states (T oc N'?'?). (d) PNR shadows: vacuum state (T oc N>°")

and pure random states.

A. Single-mode simulations

To analyze the applicability of our theoretical guaran-
tees, we construct estimators of density matrices of certain
target states using homodyne and PNR shadows. The mea-
surement bases in all cases were generated using uniform
pseudorandom-number generators. We then analyzed how
close they are to the target states in spectral norm, for ease
of simulation. Figure 2(a) shows how a reconstructed CSS
state with mean photon number of 10 compares with the
original density matrix elements for both homodyne and
PNR tomography. A comparison in terms of the Wigner
function is shown in Fig. 2(b). To achieve equally accu-
rate shadows such that [0 — p" | = 0.1, we had to
use 5 x 10* samples for homodyne tomography and 10°
samples for PNR tomography.

Of primary interest in the classical-shadow formalism
is the number of samples required to achieve a given tar-
get precision with high probability. This minimum shadow
size for a given state T was numerically obtained by our
repeating the estimation process for several shadow sizes
and identifying the one that results in precision € with a
probability of at least 1 — §. We observed that if we are
looking for a fixed error in the norm (i.e., fixing €), increas-
ing the shadow size decreases the probability with which
this error occurs (i.e., §) as the estimation becomes more
accurate. We observed that T for fixed € is proportional to
In 1/8 and this helped us narrow down our search for min-
imum shadow sizes corresponding to our chosen pair (e,
8) = (0.1, 0.1). The scaling with the occupation number
cutoff'is then obtained by our finding the minimum shadow
size for different values of NV, and the error bars indicate
the statistical errors in estimating T via this process. We
again note that in our numerics we analyze wrt spectral
norm distance. The scaling we desire, wrt trace distance,
can however be easily extrapolated from these simulations
using Lemma 1 and [|X [|oc < [|X|li. The desired scaling
is greater than the obtained scaling utmost by a factor of
N2.In Figs. 2(c) and 2(d), we plot this observed minimum

size for different states for homodyne and PNR shadows,
respectively.

We ran our simulations for a vacuum state |{) = |0), a
CSS state |¢) o< |a) + | — ) with mean photon number
|a|? = 10, and random pure states. The random pure states
of size N had nonzero support up to only the (N — 1)th
Fock state. Homodyne tomography results are slightly bet-
ter than, but close to, the theoretical upper bound. PNR
tomography for vacuum states also agrees with our the-
oretical predictions. We also tested the scaling of PNR
tomography of random pure states, but were computation-
ally limited in the accessible sizes. Over the range we
observed, the results are consistent with the scaling of the
vacuum state.

B. Experimental data

Here we analyze the sample complexity of experimental
homodyne data from Ref. [9]. Once again, our analy-
sis uses spectral norm distance, the outcomes of which
are extrapolated to the case of trace norm distance. The
experiment consisted of creating CSSs, where the created
states were approximations to small-amplitude, even CSS
states [{) o |a) + | — @). A squeezed vacuum was gen-
erated through spontaneous parametric down-conversion
in a KNbO;3 nonlinear crystal: an up-converted laser pulse
at 430 nm created the squeezed vacuum at 860 nm. After
spectral filtering, the squeezed vacuum was incident on a
weakly reflecting beam splitter with reflectivity R. Photons
detected in the reflected path herald a CSS emerging from
the transmission port of the beam splitter. The resulting
CSS was then directed to a homodyne detection setup. The
homodyne setup consisted of a 50:50 beam splitter, two
high-efficiency photodiodes, and a low-noise amplification
circuit. The local oscillator was created with a strong laser
field (approximately 10° photons per pulse) that allows
access to the quadratures through balanced detection. The
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FIG. 3.

Experimental test of single-mode shadows. (a) Density matrix elements and (b) Wigner function representation of the ideal

CSS state from theory (left) and the reconstructed state from experimental homodyne measurements (right). Ideal CSS state: |y) o
l¢) + | — @), & = 1.32, T = 3 x 10°. (c) Sample complexity scaling with maximum photon number N, from the homodyne data from
the experiment. The two methods “TES 2” and “APD 1” correspond to photon detection through a TES and a SPAD, respectively. The
scaling shown is for ¢ = 0.4 and § = 0.1. (d),(e) Homodyne two-mode shadows. Density matrix elements of the original states and
numerically reconstructed states. The number of samples T = 5 x 104, N = 2, and @ = /1.5 in both cases. (d) Two-mode separable
state: |W) = |, ) ® |¥.), where |V, ) o |a) + | — @), and the infinity norm distance of the reconstructed state from the ideal state is
€ = 0.03. (e) Two-mode entangled state: |¥) o¢ |a, ) + | — @, —a) and € = 0.05.

heralded photon detection was done with either two single-
photon avalanche diodes (SPADs) [44] or one transition-
edge sensor (TES) [45]. The experiment analyzed here
used both heralded-photon detection schemes. The CSSs
were heralded on the detection of two heralding photons,
generating the approximation of a small-amplitude even
cat state.

Using the homodyne data from this experiment, we
constructed an estimate of the state, an example of which
is shown in Figs. 3(a) and 3(b), and studied how close
the reconstructed states are to the target states. Before
analyzing the sample complexity, we preprocessed the
experimental data to account for propagation losses and
detection inefficiencies [9].

We then performed the same numerical tests as in Sec.
V A to find the minimum shadow size (T) required to
achieve a fixed (e, 8) for different occupational number (N)
cutoffs. Working with a given dataset means our shadow
size is limited to the size of the dataset and that accu-
racy cannot be increased arbitrarily. Figure 3(c) shows
how T changed with N, and we observe a scaling of
T oc NO-639+0.001 £5r 3 CSS with @ = 1.16 using the TES,
and as T oc NO85+0001 5 3 CSS with a = 1.32 using
the SPADs. Adjusted to trace-norm distance, the scaling
of T ox N*© agrees with the upper bounds in our theoreti-
cal predictions and numerical simulations for single-mode
homodyne shadows.

C. Multimode simulations

We now provide an example reconstruction of both
separable and entangled two-mode states.

In Fig. 3(d) we can see original and reconstructed
density matrices of a separable two-mode state |W) =
[Va) @ |We), where |Yg) is an even CSS state of ampli-
tude @ = +/1.5. In Fig. 3(e), we show the reconstruction
of an entangled state |¥) = |o) @ |a) + | —a) ® | — @),
with the same number of measurements. The infinity-norm
distance € between the original state and the reconstructed
state is 0.03 and 0.03, respectively. The increased sam-
ple complexity needed to reach a given precision for the
entangled state tomography is consistent with our general
expectations from the theoretical analysis in Sec. IV.

VI. OUTLOOK AND CONCLUSIONS

We developed a formalism to derive worst-case sample
complexity of a large class of state-reconstruction proce-
dures for single-mode CV states (Lemma 1 and Theorem
1). In an experimental context, our work provides a tool to
compare the sample complexity of different measurement
methods. For photon-number-resolving measurements, we
show through numerical simulations that our analytical
derived upper bound is close to the observed complex-
ity. In the case of homodyne tomography, we notice that
the simulation results surpass our derived bound, ren-
dering homodyne tomography more efficient than PNR
tomography and photon-parity tomography in practice.

We obtain the sample complexity of estimating mul-
timode CV states by reconstructing shadows of the true
states from local measurements on each mode, in the spirit
of the qubit-based shadow tomography proposal [3—5]. We
also consider a CV manifestation of a global version of the

010346-10



PRECISION BOUNDS ON CONTINUOUS-VARIABLE. ..

PRX QUANTUM 5, 010346 (2024)

original shadow protocol, where one uses global measure-
ments over various linear combinations of the constituent
modes for state reconstruction. Of particular note is that in
contrast to the discrete-variable systems, our analysis does
not rely on the construction of state designs (approximate
or otherwise) such as in Sec. VL.A in Ref. [8]. Instead, we
focus on adapting existing techniques for CV tomography
to fit within the framework of randomized measurements.

In summary, we recast existing homodyne and photon-
number-resolving protocols as shadow-tomography pro-
tocols and show that such protocols yield good local
estimates of a multimode state using a number of sam-
ples that is polynomial in the number of modes 1. Our
CV shadow framework can be extended to analyze other
metrics such as the total variation distance between two
outcome probability distributions, which is valuable for
verifying sampling experiments such as boson sampling
[46]. Another remaining open question is to determine the
robustness of CV protocols to noise, e.g., within the frame-
work of robust shadow estimation [47]. Deriving rigorous
lower bounds that can match the numerically and exper-
imentally observed scaling for homodyne tomography is
also an important outstanding challenge.
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APPENDIX: SCALING WITH PNR
TOMOGRAPHY

Beginning with the approximate expression for a trun-
cated density matrix in the displaced Fock basis (A1), we
want to estimate the sample complexity of PNR shadows:

d2 N-1 _
e f _: Y (nalpln,a) AAPTY (@,0®). (A1)
AT n=0

The above expansion in terms of T.(a,a™) is valid for
—1 < r <1 as mentioned in Sec. III B. Depending on
whether r is positive or negative, one of A" or A" (the lat-
ter being an eigenvalue of T_,(«, @*)) increases with n and
the other decreases with n. For r = 0, the eigenvalues JLS"J
are independent of n. With use of the triangle inequality

and Eq. (20), the shadow norm bound (7b) becomes

1AAPTY — pV [l < AIAPTY oo + 4 (A2a)
< AN A + 4 (A2b)

24p5)
<—_4+A=R, (A2)

(1 +|r))

with the equality holding at ¥ = 0. As for the variance from
Eq. (7a), we have

v = By, (20T ‘ (A3a)

“ f Z pn,a) (AT ) (A3b)

<[ E S pmars oL, o
da =

<[ = Zp(n,a)AzlJLfﬂ)k{ W s

< AH;&“’J& 1% (A3e)

The remaining norm can be bounded with use of Eq. (20)
as was done in Eq. (A2), and the remaining sum and
integral can be upper-bounded by a factor of 4, yielding

5 16 42 1+ 1\
vE <
Tt = )2 \1 - r|
Applying Lemma 1 and using 4 = aN, we find that the
upper bound on the minimum number of samples is given

by
3242 N* 1+ |r] 2""] 2N 45)
= ny{ —
74e2(1 — |12 \ 1 — 7| s )’

growing exponentially with N for r # 0.
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