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C o n c at e n ati n g b os o ni c err or- c orr e cti n g c o d es  wit h q u bit c o d es c a n s u bst a nti all y b o ost t h e err or-

c orr e cti n g p o w er of t h e ori gi n al q u bit c o d es. It is n ot cl e ar h o w t o c o n c at e n at e o pti m all y, gi v e n t h at t h er e

ar e s e v er al b os o ni c c o d es a n d c o n c at e n ati o n s c h e m es t o c h o os e fr o m, i n cl u di n g t h e r e c e ntl y dis c o v er e d

G ott es m a n- Kit a e v- Pr es kill ( G K P) – st a bili z er c o d es [ P h ys.  R e v. L ett. 1 2 5 , 0 8 0 5 0 3 ( 2 0 2 0)] t h at all o w pr o-

t e cti o n of a l o gi c al b os o ni c  m o d e fr o m fl u ct u ati o ns of t h e c o nj u g at e v ari a bl es of t h e  m o d e.  We d e v el o p

e ffi ci e nt  m a xi m u m-li k eli h o o d d e c o d ers f or a n d a n al y z e t h e p erf or m a n c e of t hr e e di ff er e nt c o n c at e n ati o ns

of c o d es t a k e n fr o m t h e f oll o wi n g s et: q u bit st a bili z er c o d es, a n al o g or  G a ussi a n st a bili z er c o d es,  G K P

c o d es, a n d  G K P-st a bili z er c o d es.  We b e n c h m ar k d e c o d er p erf or m a n c e a g ai nst a d diti v e  G a ussi a n  w hit e

n ois e, c orr o b or ati n g o ur n u m eri cs  wit h a n al yti c al c al c ul ati o ns.  We o bs er v e t h at t h e c o n c at e n ati o n i n v ol v-

i n g  G K P-st a bili z er c o d es o ut p erf or ms t h e  m or e c o n v e nti o n al c o n c at e n ati o n of a q u bit st a bili z er c o d e  wit h

a  G K P c o d e i n s o m e c as es.  We als o pr o p os e a  G K P-st a bili z er c o d e t h at s u p pr ess es fl u ct u ati o ns i n b ot h

c o nj u g at e v ari a bl es  wit h o ut e xtr a q u a dr at ur e s q u e e zi n g a n d f or m ul at e q u dit v ersi o ns of  G K P-st a bili z er

c o d es.

D OI: 1 0. 1 1 0 3/ P R X Q u a nt u m. 4. 0 2 0 3 4 2

I. I N T R O D U C TI O N

Q u a nt u m err or c orr e cti o n ( Q E C) is o n e of t h e  m ost c h al-
l e n gi n g t as ks i n b uil di n g l ar g e-s c al e q u a nt u m c o m p ut ers.
Its b asi c i d e a is t o e n c o d e a f e w l o gi c al d e gr e es of fr e e d o m
i nt o a l ar g er p h ysi c al s yst e m.  Q E C is r e q uir e d if  w e ar e t o
s c al e u p q u a nt u m d e vi c es b ot h i n t er ms of t h e l e n gt h of a
q u a nt u m c o m m u ni c ati o n li n k or t h e c o m p ut ati o n al p o w er
of a q u a nt u m c o m p ut er.

O n o n e si d e of t h e l ar g e fi el d of  E C ar e t h e  w ell-
est a blis h e d q u bit or dis cr et e- v ari a bl e ( D V) st a bili z er c o d es
[1 ,2 ], s o m e of  w hi c h all o w us t o s u p pr ess n ois e t o ar bi-
tr ar y a c c ur a c y gi v e n s u ffi ci e nt p h ysi c al r es o ur c es o n c e t h e
p h ysi c al err or r at e is b el o w a c ert ai n t hr es h ol d v al u e — a

* yiji a @ u m d. e d u
† w a n g yi x u @t er p m ail. u m d. e d u

P u blis h e d b y t h e  A m eri c a n  P h ysi c al S o ci et y u n d er t h e t er ms of
t h e Cr e ati v e  C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er distri b uti o n of t his  w or k  m ust  m ai nt ai n attri b uti o n t o t h e
a ut h or(s) a n d t h e p u blis h e d arti cl e’s titl e, j o ur n al cit ati o n, a n d
D OI.

m a nif est ati o n of t h e all-i m p ort a nt t hr es h ol d t h e or e m [ 3 – 6 ].
O n t h e ot h er si d e ar e t h e b os o ni c c o d es [ 7 ],  w hi c h ar e

i nst e a d t y pi c all y d esi g n e d t o s atisf y e xisti n g r es o ur c e c o n-
str ai nts a n d  w hi c h ar e n at ur all y c o m p ati bl e  wit h s e v er al
c o nti n u o us- v ari a bl e ( C V) q u a nt u m pl atf or ms, i n cl u di n g
mi cr o w a v e c a viti es [ 8 – 1 9 ] a n d  m oti o n al d e gr e es of fr e e-
d o m of tr a p p e d i o ns [ 2 0 – 2 3 ].  T h e a n al o g i nf or m ati o n
gi v e n b y t h e i n fi nit e- di m e nsi o n al n at ur e of t h e b os o ni c
Hil b ert s p a c e als o all o ws f or  E C s c h e m es t h at ar e n ot
a v ail a bl e i n t h e  D V  w orl d [ 2 4 – 3 0 ].

It is fr uitf ul t o c o nsi d er t h e  m arri a g e of t h e a bstr a ct
y et s c al a bl e q u bit p ar a di g m  wit h t h e pr a cti c all y ori e nt e d
b os o ni c p ar a di g m, i n t h e h o p e of bri n gi n g o ut t h e a d v a n-
t a g es of b ot h.  T his dir e cti o n h as s o f ar pr o v e n t o b e pr o mis-
i n g,  wit h t h e a n al o g-s y n dr o m e i nf or m ati o n pr o vi d e d b y a
C V l a y er of c orr e cti o n s u bst a nti all y i n cr e asi n g t h e c orr e ct-
i n g p o w er of t h e o ut er  D V l a y er i n a c o n c at e n at e d s c h e m e.
F or e x a m pl e, t h er e h a v e b e e n c orr o b or ati n g st u di es o n
c o n c at e n ati n g a p arti c ul ar b os o ni c c o d e —t h e  G ott es m a n-
Kit a e v- Pr es kill ( G K P) c o d e [ 3 1 – 3 3 ] — wit h s e v er al  D V
c o d es, s u c h as t h e r e p etiti o n c o d e [ 2 4 ], t h e [[ 4, 2, 2]]
c o d e [ 2 4 ,2 5 ], t h e s urf a c e c o d es [2 6 ,2 7 ,2 9 ,3 2 ,3 4 – 3 7 ], t h e
c ol or c o d e [ 3 8 ], t h e X Z Z X s urf a c e c o d e [ 3 9 ], a n d t h e
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lift e d- pr o d u ct q u a nt u m l o w- d e nsit y- p arit y- c h e c k ( Q L D P C)
c o d e [ 4 0 ].

Gi v e n t h e a b u n d a n c e of b os o ni c c o d es [ 4 1 – 4 4 ], t h er e
r e m ai n ot h er l ess  w ell-st u di e d  w a ys of e n c o di n g q u bits
i nt o  m o d es t h at  m a y o ut p erf or m t h e af or e m e nti o n e d est a b-
lis h e d  D V- C V c o n c at e n ati o n s c h e m e i n eit h er s c al a bilit y
or r es o ur c e e ffi ci e n c y.  M or e o v er, d u e t o t h e dis c o v er y of
G K P-st a bili z er c o d es [ 4 5 ], it is p ossi bl e t o s u p pr ess s m all
fl u ct u ati o ns of t h e p ositi o n a n d  m o m e nt u m q u a dr at ur es
of a l o gi c al  m o d e b y e n c o di n g it i nt o s e v er al p h ysi c al
m o d es. Pr e vi o us st u di es s h o w t h at a n al o g-st a bili z er c o d es
utili zi n g o nl y  G a ussi a n r es o ur c es ar e li mit e d a n d c a n-
n ot pr ot e ct a g ai nst  G a ussi a n n ois e [ 2 7 ,4 6 ,4 7 ].  T h e k e y
c o n c e pt of  G K P-st a bili z er c o d es is t o i ntr o d u c e a u xil-
i ar y  m o d es i niti ali z e d i n  G K P st at es [3 1 ,4 8 ,4 9 ] as n o n-
G a ussi a n r es o ur c es t o cir c u m v e nt t h es e n o- g o t h e or e ms.
H e n c e, it is i nt er esti n g t o i n v esti g at e t h e p erf or m a n c e
of  G K P-st a bili z er c o d es  w h e n t h e y ar e us e d f or pr ot e ct-
i n g a dis cr et e- v ari a bl e ( G K P) s u bs p a c e of a  C V  m o d e.
Gi v e n t h e r e c e nt a d v a n c es i n t h e r e ali z ati o n of  G K P c o d es
[1 3 ,1 7 ,2 0 ,2 1 ,2 3 ], a n d b os o ni c g at e o p er ati o ns [5 0 ,5 1 ], t h e-
or eti c al a n d n u m eri c al st u di es of  G K P c o d es a n d t h eir
v ari o us c o n c at e n ati o ns  m a k e u p a n i m p er ati v e t o pi c.  A
g o al of t his  w or k is t o b e gi n t o pr o b e  w h et h er utili zi n g t his
n e w c o d e i n a c o n c at e n ati o n s c h e m e c a n pr o vi d e a d v a n-
t a g es o v er est a blis h e d s c h e m es as  w ell as s c h e m es usi n g
ot h er  m o d e-i nt o- m o d e b os o ni c c o d es [ 5 2 – 5 9 ].

T h e p erf or m a n c e of si n gl e- m o d e b os o ni c c o d es h as b e e n
st u di e d i n  R ef. [ 6 0 ].  H o w e v er, a n al yti c al a n d n u m eri c al
st u di es of  m ulti m o d e b os o ni c c o d es ar e f ar fr o m b ei n g
e x h a ust e d, d u e t o t h e l a c k of a u ni fi e d f or m alis m f or  C V
c o d es. I n p arti c ul ar, t h e  m oti v ati o n al  G K P-st a bili z er  w or k

[4 5 ] f o c us es s u bst a nti all y o n pr o of- of- pri n ci pl e e x a m pl es
a n d l a c ks a g e n er al d e c o d er. I n t his  w or k,  w e als o pr o-
vi d e a u ni fi e d fr a m e w or k t o d es cri b e  m a xi m u m-li k eli h o o d
d e c o di n g a g ai nst i n d e p e n d e nt a n d i d e nti c all y distri b ut e d
(II D)  G a ussi a n q u a dr at ur e n ois e f or t hr e e di ff er e nt c o n-
c at e n ati o n s c h e m es, o n e of  w hi c h i n cl u d es  G K P-st a bili z er
c o d es.

II. S U M M A R Y  O F  R E S U L T S

We st u d y t hr e e t y p es of c o n c at e n at e d e n c o di n gs of
q u bits i nt o  m o d es t h at c o nsist of v ari o us c o m bi n ati o ns of
t h e q u bit a n d b os o ni c [6 1 ] st a bili z er c o d es (s e e Fi g. 1 ).  O ur
m oti v ati o n is t o s h e d li g ht o n  w hi c h c o m bi n ati o ns of s u c h
q u bit-i nt o- m o d e a n d  m o d e-i nt o- m o d e e n c o di n gs p erf or m
t h e b est u n d er st a n d ar d n ois e  m o d els.

O ur first e n c o di n g,  w hi c h  w e c all s c h e m e I, c o nsists
of first e n c o di n g q u bits i nt o a q u bit [[ n , k , d ]] st a bili z er
c o d e [ 1 ,2 ] a n d t h e n f urt h er e n c o di n g e a c h q u bit i nt o its
o w n  m o d e usi n g t h e  G K P q u bit-i nt o- m o d e c o d e [ 3 1 ].  T his
s c h e m e is t h e o n e  m ost c o m m o nl y us e d  w h e n c o n c at e n at-
i n g q u bit a n d b os o ni c c o d es [2 4 – 2 7 ,3 2 ,3 4 – 4 0 ].  T h e s e c o n d
e n c o di n g —s c h e m e II —is ess e nti all y t h e r e v ers e of t h e
first: e a c h q u bit is first e n c o d e d i nt o a “l o gi c al  m o d e ” usi n g
t h e  G K P c o d e,  w hi c h is s u bs e q u e ntl y e n c o d e d i nt o a n a n a-
l o g [[n , k , d ]]R b os o ni c st a bili z er c o d e [ 5 2 ,5 3 ,6 2 ,6 3 ].  T h e
t hir d e n c o di n g —s c h e m e III —s u bstit ut es t h e a n al o g c o d e
of s c h e m e II  wit h a  G K P-st a bili z er  m o d e-i nt o- m o d e c o d e
[4 5 ].

We first o bs er v e t h at t h e e n c o di n g  m a ps f or all t hr e e
s c h e m es ar e of a si mil ar t y p e (s e e S e c. III).  We s h o w t h at
t h e e n c o di n g  m a ps f or all t hr e e s c h e m es c a n b e f or m ul at e d

( a)

( d)

( b) ( c)

(I)

(II)

(III)

FI G. 1.  A s u m m ar y of e n c o d ers. ( a)  A s k et c h of t h e c o n v e nti o n al dis cr et e- v ari a bl e ( D V) a n d c o nti n u o us- v ari a bl e ( C V) c o n c at e n at e d
e n c o di n g cl ass “ D V- D V- C V, ”  w h er e l o gi c al q u bits ar e e n c o d e d i nt o a n o ut er  m ulti q u bit c o d e a n d e a c h q u bit of t h e o ut er c o d e is f urt h er
e n c o d e d i nt o a si n gl e p h ysi c al  m o d e. ( b)  A n alt er n ati v e c o n c at e n at e d e n c o di n g cl ass “ D V- C V- C V, ”  w h er e e a c h l o gi c al q u bit is e n c o d e d
i nt o a n o ut er si n gl e- m o d e c o d e a n d t h e  m o d es ar e f urt h er e n c o d e d i nt o a  m ulti m o d e  C V c o d e. ( c)  E n c o di n g  m a ps f or o ur c o n c at e n at e d
c o d es c a n b e f or m ul at e d as  G a ussi a n o p er ati o ns U e n c a cti n g o n k “l o gi c al ”  m o d es e n c o d e d i n  G K P st at es a n d n − k m o d es i n a fi x e d
i niti al st at e |I NI T . ( d)  A t a bl e of t h e c o n c at e n at e d e n c o di n gs c o nsi d er e d i n t his  w or k.  T h e “ St a bili z er- G K P ”  D V- D V- C V e n c o di n g
s c h e m e I is t h e c o n v e nti o n al c o n c at e n ati o n of a q u bit [[ n , k , d ]] st a bili z er o ut er c o d e [1 ,2 ]  wit h a  G K P i n n er c o d e [3 1 ].  T h e “ G K P-
a n al o g ”  D V- C V- C V e n c o di n g s c h e m e II is a c o n c at e n ati o n of a si n gl e- m o d e  G K P o ut er c o d e  wit h a n a n al o g [[ n , k , d ]]R st a bili z er c o d e
[5 2 ,5 3 ,6 2 ,6 3 ].  T h e “ G K P-st a bili z er ”  D V- C V- C V e n c o di n g s c h e m e III is a c o n c at e n ati o n of a si n gl e- m o d e  G K P o ut er c o d e  wit h a n
n - m o d e  G K P-st a bili z er c o d e [4 5 ].  T h e i niti al st at e |I NI T f or t h e e n c o di n g cir c uits f or t h e t hr e e c o d es, s h o w n i n t h e t hir d c ol u m n of t h e
t a bl e, is a  G K P l o gi c al- z er o st at e |0 G K P i n  E q. ( 2), t h e p ositi o n st at e q̂ = 0 , or t h e c a n o ni c al  G K P st at e |G K P i n  E q. ( 7), r es p e cti v el y.
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as a  G a ussi a n u nit ar y a cti n g o n k l o gi c al  G K P q u bits t e n-
s or e d  wit h n − k a u xili ar y r es o ur c e st at es t h at ar e eit h er
G K P st at es or p ositi o n ei g e nst at es (s e e Fi g. 1 ).

As f or d e c o di n g,  w e r e c ast t h e pr o bl e m of fi n di n g
t h e  m ost li k el y err or u n d er z er o- m e a n  G a ussi a n dis pl a c e-
m e nt n ois e as a li n e ar o pti mi z ati o n pr o bl e m f or s c h e m e
II a n d si m plif y s ai d pr o bl e m f or s c h e m e III t o a cl os el y
r el at e d li n e ar o pti mi z ati o n (s e e S e c. I V).  B ot h  m a xi m u m-
li k eli h o o d o pti mi z ati o ns c a n b e s ol v e d e x a ctl y i n a ti m e
t h at is p ol y n o mi al i n t h e t ot al n u m b er of  m o d es n of t h e
e n c o di n g, yi el di n g a n e ffi ci e nt d e c o d er f or a n al o g- a n d
G K P-st a bili z er c o d es i n t h e pr o c ess.

T o b e n c h m ar k t h e t hr e e s c h e m es,  w e n u m eri c all y c o m-
p ar e e a c h s c h e m e usi n g r e p etiti o n, [[ 5, 1, 3]] a n d [[ 7, 1, 3]]
( St e a n e) [6 4 ], a n d [[ 9, 1, 3]] ( S h or) [6 5 ] c o d es (s e e S e c. V ).
T o g e n er at e t h e e x a m pl es,  w e fi x t h e  G K P c o d es t o b e t h e
s a m e f or e a c h s c h e m e,  m e a ni n g t h at  w e ar e l eft  wit h t h e
c h oi c e of t h e q u bit st a bili z er c o d e f or s c h e m e I, t h e a n al o g-
st a bili z er c o d e f or s c h e m e II, a n d t h e  G K P-st a bili z er c o d e
f or s c h e m e III.  We c o m p ar e t h e p erf or m a n c e of t h e dif-
f er e nt s c h e m es  wit h r es p e ct t o a fi x e d st a bili z er c o d e. F or
e x a m pl e, t h e c o m p aris o n b as e d o n t h e r e p etiti o n c o d e (s e e
S e c. V A ) utili z es t h e q u bit r e p etiti o n c o d e f or s c h e m e I, its
a n al o g v ersi o n [ 5 3 ] f or s c h e m e II, a n d t h e  G K P-r e p etiti o n
c o d e [ 4 5 ] f or s c h e m e III.  T h e c o m p aris o n b as e d o n t h e
fi v e- q u bit c o d e (s e e S e c. V B ) utili z es, r es p e cti v el y, t h e
fi v e- q u bit c o d e [ 6 6 ], its a n al o g v ersi o n [5 2 ], a n d t h e  G K P-
[[ 5, 1, 3]]  m o d e-i nt o- m o d e c o d e [4 5 ].  We c orr o b or at e s o m e
of o ur n u m eri cs b y a n al yti c all y c al c ul ati n g l o gi c al err or
pr o b a biliti es (s e e S e c. I V  D).

S c h e m e II is us e d, i n p art, f or r ef er e n c e i n o ur n u m er-
i c al c o m p aris o ns b e c a us e t h e o ut er a n al o g c o d es ar e
i n e ff e cti v e a g ai nst  G a ussi a n n ois e [2 7 ,4 6 ,4 7 ].  H o w e v er,
si n c e t h e i n n er c o d e us es n o n- G a ussi a n r es o ur c es, t h es e
n o- g o t h e or e ms t e c h ni c all y d o n ot a p pl y t o t h e e ntir e
s c h e m e.

We o bs er v e t h at s c h e m e III o ut p erf or ms s c h e m e I
i n t h e r e p etiti o n- c o d e c o m p aris o n b y a c o nst a nt f a ct or
i n t h e i nt er m e di at e n ois e r e gi m e d es pit e t h e n u m b er of
s y n dr o m es a n d t h e d e c o di n g c o m pl e xit y b ei n g s u bst a n-
ti all y hi g h er.  H o w e v er,  w h e n t h e n u m b er of p h ysi c al
m o d es gr o ws, as i n t h e f oll o wi n g c o m p aris o ns of t h e
[[ 5, 1, 3]], [[ 7, 1, 3]], a n d [[ 9, 1, 3]] c o d es, s c h e m e I e asil y
s ur p ass es t h e ot h er s c h e m es.

S c h e m e II p erf or ms t h e  w orst i n t h e r e p etiti o n a n d
[[ 5, 1, 3]] c o d e c o m p aris o ns,  w hil e att ai ni n g s e c o n d pl a c e
f or t h e [[ 7, 1, 3]] a n d [[ 9, 1, 3]] c o m p aris o ns.  D es pit e t h e
e xisti n g n o- g o t h e or e ms [ 2 7 ,4 6 ,4 7 ] s h o wi n g t h e i n a bilit y
of a n al o g-st a bili z er c o d es t o c orr e ct t h e II D  G a ussi a n n ois e
c o nsi d er e d i n t his  w or k, s c h e m e II still e x hi bits  E C a bilit y.
T his is li k el y d u e t o t h e f a ct t h at t h e n o- g o t h e or e m a p pli es
o nl y t o a p art of s c h e m e II a n d t h at t h e e ntir e s c h e m e
us es n o n- G a ussi a n r es o ur c es i n t h e f or m of a l o gi c al  G K P
e n c o di n g.  T h e p erf or m a n c e of s c h e m e II is a ff e ct e d b y
t h e i nt er pl a y b et w e e n t h e d ef or m ati o n of t h e l o gi c al n ois e

q u a dr at ur e b y t h e a n al o g-st a bili z er e n c o di n g a n d t h e l atti c e
s h a p e of t h e i niti al l o gi c al  G K P st at es.

O ur fi n di n gs f or t h e r e p etiti o n- c o d e c o m p aris o n hi g h-
li g ht t h at s c h e m e III c a n b e o n p ar  wit h t h e  m or e  wi d el y
us e d s c h e m e I  w hil e b ei n g h ar d w ar e e ffi ci e nt i n t h at it
r e q uir es f e w er s y n dr o m es, es p e ci all y  w h e n t h e p h ysi c al
m o d e n u m b er is s m all.  W h e n t h e s yst e m si z e gr o ws,
s c h e m e III is s ur p ass e d b y s c h e m e I i n t h e [[ 5, 1, 3]]
c o d e a n d f urt h er b y s c h e m e II i n t h e [[ 7, 1, 3]] a n d
[[ 9, 1, 3]] c o d es.  We p ost ul at e t h at t his p h e n o m e n o n h a p-
p e ns b e c a us e s c h e m e-III e n c o di n g s u ff ers fr o m “ err or
c o n c e ntr ati o n ”  w h e n e v er a  G K P-st a bili z er c o d e  wit h hi g h
st a bili z er  w ei g hts is us e d. Si n c e s c h e m e III d o es n ot h a v e
a n o ut er l a y er of  G K P  E C li k e s c h e m e I, dir e ctl y  m e as ur-
i n g a hi g h- w ei g ht st a bili z er c a n c a us e n ois e o n e a c h  m o d e
i n t h e s u p p ort of t h e st a bili z er t o a d d u p t o a n u n c orr e ct a bl e
err or.

O ur e n c o di n g a n d d e c o di n g s c h e m es c a n h a n dl e g e n er al
G K P c o d e l atti c es.  T his is d e m o nstr at e d b y a st u d y of t h e
err or r at e  wit h r es p e ct t o  G K P l atti c e s h a p es, t a ki n g t h e
r e p etiti o n c o d e as a n e x a m pl e (s e e  A p p e n di x C 2 ). Fr o m
t his p ers p e cti v e, t h e t hr e e s c h e m es ar e s a m pl e p oi nts fr o m
a f a mil y of c o nti n u o usl y d ef or m e d s c h e m es.  T h e a bilit y of
d ef or m ati o n e n a bl es us t o d esi g n ( o ut er) e n c o di n g  m et h-
o ds a d a pt e d t o v ari o us (i n n er) st a bili z er c o d es a n d err or
m o d els.

Fi n all y,  w e pr o p os e a v ari a nt of t h e  G K P-r e p etiti o n
c o d e,  w hi c h si m ult a n e o usl y s u p pr ess es p ositi o n a n d
m o m e nt u m err or  wit h o ut e xtr a q u a dr at ur e s q u e e zi n g (s e e
S e c. VI ). Pr e vi o us  w or k [4 5 ] eit h er r e q uir es s q u e e zi n g t o
s u p pr ess b ot h q u a dr at ur es or a c hi e v es si mil ar s u p pr essi o n
i n o nl y o n e q u a dr at ur e vi a t h e  G K P-r e p etiti o n c o d e.  We
als o pr es e nt a g e n er ali z ati o n of  G K P-st a bili z er c o d es t o
q u dits i n  A p p e n di x. D .

III.  E N C O DI N G S  A N D  E R R O R  M O D E L

We d es cri b e e n c o di n g cir c uits f or t h e t hr e e s c h e m es
list e d i n Fi g. 1( d) .  We fi nis h t his s e cti o n  wit h a d es cri pti o n
of t h e dis pl a c e m e nt err or  m o d el c h os e n f or o ur c o m p ari-
s o n.

A. S c h e m e I: St a bili z e r- G K P e n c o di n g

I n t his e n c o di n g,  w e first  m a k e us e of a n [[n , k , d ]] st a bi-
li z er c o d e [1 ,2 ] t o e n c o d e k l o gi c al q u bits i nt o n p h ysi c al
q u bits.  T h e n, e a c h of t h e n p h ysi c al q u bits is e n c o d e d i nt o a
h ar m o ni c os cill at or usi n g t h e  G K P c o d e c orr es p o n di n g t o a
s q u ar e l atti c e i n p h as e s p a c e [ 3 1 ].  T h e c o m bi n e d e n c o di n g
m a p is fr o m t h e s p a c e of k q u bits i nt o t h at of n os cill at ors,

st a bili z er- G K P: Z ⊗ k
2

[[n ,k ,d ]]
− − − → Z ⊗ n

2

G K P
− − → R ⊗ n , ( 1)

w h er e Z 2 (R ) r e pr es e nts a q u bit ( m o d e).
T h e st a bili z er- G K P e n c o di n g c a n b e p erf or m e d b y

t h e f oll o wi n g pr o c e d ur e, ill ustr at e d i n t h e l eft p a n el of
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Fi g. 1( a) .  Gi v e n n h ar m o ni c os cill at or  m o d es,  w e pr e-
p ar e t h e m i n  G K P st at es, i n  w hi c h k m o d es c arr y l o gi c al
i nf or m ati o n of t h e k l o gi c al q u bits a n d t h e r e m ai ni n g
(n − k ) a u xili ar y  m o d es ar e i n t h e l o gi c al- z er o st at e of t h e
s q u ar e-l atti c e  G K P c o d e,

|0 G K P =
n ∈ Z

|q̂ = 2 n
√

π , ( 2)

w h er e |q̂ = k is t h e n o n- n or m ali z a bl e os cill at or p ositi o n
st at e at p ositi o n k .  T h e n,  w e a ct  wit h a  G a ussi a n cir c uit
U e n c t o p erf or m t h e [[n , k , d ]] st a bili z er e n c o di n g at t h e l e v el
of  G K P q u bits.  A c o d e  w or d of t h e r es ulti n g c o d e is si m ul-
t a n e o usl y st a bili z e d b y t h e st a bili z ers of t h e i n n er  G K P
c o d es a n d t h e o ut er e m b e d d e d q u bit st a bili z er c o d es.

B. S c h e m e II:  A n al o g-st a bili z e r e n c o di n g

I n t his e n c o di n g, e a c h of t h e k l o gi c al q u bits is first
e n c o d e d i nt o a  m o d e usi n g t h e  G K P c o d e.  Aft er w ar d,
t h e k “l o gi c al  m o d es ” ar e e n c o d e d i nt o n p h ysi c al  m o d es
usi n g a n [[ n , k , d ]]R a n al o g-st a bili z er c o d e [ 5 2 ,5 3 ,6 2 ,6 3 ].
T h e c o m bi n e d e n c o di n g  m a p c a n b e r e pr es e nt e d as t h e
f oll o wi n g:

G K P- a n al o g: Z ⊗ k
2

G K P
− − → R ⊗ k [[n ,k ,d ]]R

− − − − → R ⊗ n . ( 3)

D es pit e t h e f a ct t h at t h e s c h e m e I a n d s c h e m e II e n c o di n gs
aris e fr o m di ff er e nt c o n c at e n ati o n or d ers [s e e Fi g. 1( a) ],
t h e di ff er e n c e i n t h e cir c uit-l e v el i m pl e m e nt ati o n li es o nl y
i n t h e i niti al st at e of t h e a u xili ar y  m o d es. I n ot h er  w or ds,
t h e e n c o di n g of t his s c h e m e c a n b e p erf or m e d b y t h e s a m e
cir c uit as t h e pr e vi o us e n c o di n g fr o m Fi g. 1( c) b ut  wit h t h e
n − k a n cill ar y  m o d es e a c h i niti ali z e d i n t h e p ositi o n st at e
|q̂ = 0 .

B ef or e t h e  G a ussi a n u nit ar y U e n c i s a p pli e d i n t h e af or e-
m e nti o n e d cir c uit, t h e i niti al st at e is st a bili z e d b y  G K P
st a bili z ers a cti n g o n t h e first k m o d es a n d a n ni hil at e d b y
p ositi o n o p er at ors { q̂ j |k < j ≤ n } of t h e a u xili ar y n − k
m o d es.  Aft er t h e u nit ar y is a p pli e d, c o d e  w or ds ar e si m ul-
t a n e o usl y st a bili z e d b y l o gi c al  G K P st a bili z ers a n d a n ni-

hil at e d b y t h e n − k n ulli fi ers  U e n c q̂ j U
†
e n c of t h e a n al o g

c o d e.
Si n c e U e n c i s a  G a ussi a n tr a nsf or m ati o n, its a cti o n o n t h e

p ositi o n ( q̂ ) a n d  m o m e nt u m (p̂ ) q u a dr at ur e o p er at ors of t h e
m o d e c a n e q ui v al e ntl y b e r e pr es e nt e d as a 2 n - di m e nsi o n al
s y m pl e cti c  m atri x A e n c a cti n g o n t h e 2 n - di m e nsi o n al v e ct or
of o p er at ors [ 5 4 ,6 7 ],

U e n c r U e n c
† = A e n c r ,  wit h r = ( q̂ 1 , . . . , q̂ n , p̂ 1 , . . . , p̂ n )

T ,
( 4)

w h er e v T i s t h e tr a ns p os e of v .  D et er mi ni n g h o w a p arti c-
ul ar q u a dr at ur e j tr a nsf or ms u n d er U e n c a m o u nts t o t a ki n g
t h e j t h c o m p o n e nt of b ot h si d es.  O n t h e ri g ht- h a n d si d e,
t his yi el ds a n i n n er pr o d u ct of t h e j t h r o w of A e n c wit h r.

We ar e oft e n i nt er est e d i n h o w a p arti c ul ar s u bs et of
q u a dr at ur es tr a nsf or ms, f or  w hi c h  w e o nl y n e e d t h e s et
of c orr es p o n di n g r o ws of A e n c . F or s u c h p ur p os es, it is
c o n v e ni e nt t o d e c o m p os e t h e e n c o di n g  m atri x i nt o f o ur
r e ct a n g ul ar s u b m atri c es [2 7 ,  A p p e n di x.  E],

A e n c =

⎛

⎜
⎝

Q
G
P
D

⎞

⎟
⎠ =

⎛

⎜
⎝

k × 2 n m atri x
(n − k ) × 2 n m atri x

k × 2 n m atri x
(n − k ) × 2 n m atri x

⎞

⎟
⎠ . ( 5)

T h e s u b m atri x c o m bi n ati o ns r el e v a nt t o s c h e m es II a n d III
ar e

A 1 = G , A 2 =
Q
P

, A 3 =
G
D

. ( 6)

F or t h e a n al o g-st a bili z er e n c o di n g of s c h e m e II, A 1 r e pr e-
s e nts h o w t h e n − k a u xili ar y p ositi o n o p er at ors q̂ j f or j ∈

{k + 1, . . . , n } ar e tr a nsf or m e d i nt o n ulli fi ers U e n c q̂ j U
†
e n c

a n d A 2 d et er mi n es h o w t h e p ositi o ns a n d  m o m e nt a of k
l o gi c al  m o d es ar e e n c o d e d.

C. S c h e m e III:  G K P-st a bili z e r e n c o di n g

T his e n c o di n g is a  m o di fi c ati o n of s c h e m e II s u c h
t h at t h e  m o d e-i nt o- m o d e o ut er e n c o di n g is n o w a  G K P-
st a bili z er c o d e [ 4 5 ] (s e e als o  R efs. [4 8 ,4 9 ]).  T h e c orr e-
s p o n di n g cir c uit is y et a g ai n of t h e s a m e t y p e as t h at
d e pi ct e d i n Fi g. 1( c) b ut  wit h t h e a u xili ar y  m o d es i niti al-
i z e d i n t h e s o- c all e d c a n o ni c al  G K P st at e ( a k a t h e gri d
st at e or t h e tri vi al  G K P c o d e):

|G K P =
n ∈ Z

|q̂ = n
√

2 π . (7 )

T his st at e is t h e u ni q u e si m ult a n e o us ei g e nst at e of t h e

c a n o ni c al  G K P st a bili z ers e i
√

2 π q̂ a n d e − i
√

2 π p̂ wit h ei g e n-
v al u e + 1, s p a n ni n g t h e o n e- di m e nsi o n al c o d e s p a c e of t h e
tri vi al s q u ar e-l atti c e  G K P c o d e.  T h e st at e di ff ers fr o m t h e
l o gi c al s q u ar e-l atti c e  G K P st at e ( 2) i n t h e s p a ci n g b et w e e n
t h e s u p er p os e d p ositi o n st at es.

T h e c a n o ni c al  G K P st at e c a n b e tr a nsf or m e d fr o m
|0 G K P vi a s q u e e zi n g.  As s u c h, t h e e n c o di n g of s c h e m e III
o nl y di ff ers fr o m t h at of s c h e m e I b y si n gl e- m o d e s q u e e z-
i n g a cti n g o n e a c h a u xili ar y  m o d e.  E n c o d e d st at es ar e
st a bili z e d b y t h e 2 (n − k ) c a n o ni c al  G K P st a bili z ers as
w ell as t h e 2 k s q u ar e-l atti c e  G K P st a bili z ers of t h e first
k m o d es, all c o nj u g at e d b y U e n c .

D.  Dis pl a c e m e nt e r r o r  m o d el

We a d o pt a st a n d ar d err or  m o d el t hr o u g h o ut t his p a p er.
I n or d er t o pr o vi d e a b as eli n e c o d e c o m p aris o n,  w e ass u m e
t h at t h e e n c o di n g, s y n dr o m e  m e as ur e m e nt, a n d d e c o d-
i n g f or e a c h s c h e m e ar e n ois el ess.  T h e o nl y s o ur c e of
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n ois e c o m es aft er t h e e n c o di n g,  w h e n a dis pl a c e m e nt n ois e
( a k a a d diti v e  G a ussi a n  w hit e- n ois e [6 0 ,6 8 ,6 9 ]) c h a n n el is
a p pli e d o n t h e p ositi o n a n d  m o m e nt u m q u a dr at ur es of e a c h
of t h e n m o d es.  T h e p ositi o n a n d  m o m e nt u m of e a c h  m o d e
j ∈ { 1, 2, . . . , n } ar e s hift e d b y a r a n d o m fl u ct u ati o n ξ as

q j → q j + ξ j , (8 a )

p j → p j + ξ j + n . ( 8 b)

We c oll e ct all fl u ct u ati o ns i n a 2 n - di m e nsi o n al n ois e v e c-
t or:

ξ = ( ξ1 , ξ 2 , . . . , ξ 2 n )
T = ( ξ1, q , . . . , ξ n ,q , ξ 1, p , . . . , ξ n ,p ) T .

( 9)

We us e eit h er f or m f or t h e a b o v e v e ct or c o m p o n e nts
t hr o u g h o ut t h e p a p er, d e p e n di n g o n  w h et h er  w e  w a nt t o
s p e cif y if a gi v e n q u a dr at ur e is a p ositi o n or a  m o m e nt u m.

We d e v el o p o ur d e c o di n g f or m alis m  wit h t h e ass u m p-
ti o n t h at t h e a m plit u d es of t h e 2n dis pl a c e m e nt err ors ξ
f or ∈ { 1, 2, . . . , 2n } ar e II D  G a ussi a n r a n d o m v ari a bl es
wit h t h e s a m e z er o  m e a n a n d st a n d ar d d e vi ati o n σ .

I V.  E R R O R  C O R R E C TI O N  A N D  D E C O DI N G

We s u m m ari z e t h e  E C pr o c ess es f or t h e t hr e e s c h e m es
o utli n e d i n Fi g. 1 .  E a c h r o u n d c o nsists of t w o  E C l a y-
ers — o n e f or t h e i n n er c o d e a n d o n e f or t h e o ut er.  T h e
c h e c k o p er at ors  m e as ur e d i n e a c h l a y er ar e list e d i n
Fi g. 2( a) a n d c orr e cti o n cir c uits f or e a c h s c h e m e ar e s h o w n
i n Fi gs. 2( b) – 2( d) , r es p e cti v el y.

F or e a c h l a y er, ξ d e n ot es t h e a ct u al err or t h at is a p pli e d
t o t h e s yst e m; z d e n ot es a s y n dr o m e  m e as ur e m e nt o ut-
c o m e,  w hi c h is eit h er r e al v al u e d i n t h e c as e of n ulli fi er-
b as e d c orr e cti o n or a p h as e i n t h e c as e of  G K P- b as e d
c orr e cti o n; a n d ξ ∗ d e n ot es t h e  m ost li k el y dis pl a c e m e nt
err or d e d u c e d fr o m t h e s y n dr o m e.

O ur d e c o di n g o pti mi z ati o ns f or s c h e m es II a n d III ar e
s ol v e d b y i n v erti n g a  m atri x t h e di m e nsi o ns of  w hi c h ar e
at  m ost 2 n , yi el di n g a p ol y n o mi al-ti m e [7 0 ] d e c o d er.

A. S c h e m e I: St a bili z e r- G K P d e c o di n g

A c orr e cti o n r o u n d f or t his s c h e m e c o nsists of  G K P-
q u bit  E C, f oll o w e d b y q u bit st a bili z er  E C [s e e Fi g. 2( b) ].
T his pr o c e d ur e is t h e  m ost  wi d el y us e d a m o n g t h e t hr e e
t h at  w e c o nsi d er a n d  w e r ef er t h e r e a d er t o  R efs. [2 7 ,3 4 ,
3 5 ,3 7 – 3 9 ,7 1 ] f or  m or e d et ails.

1.  L a y er 1:  G K P  E C

T h e first st e p is t o  m e as ur e t h e  G K P st a bili z ers of
e a c h p h ysi c al  G K P q u bit, i. e., e i2

√
π q̂ j a n d e − i2

√
π p̂ j f or

( a)

( b)

( c)

( d)

FI G. 2.  A s u m m ar y of d e c o d ers. ( a)  A t a bl e of t h e c h e c k
o p er at ors t h at ar e  m e as ur e d i n e a c h of t h e t w o l a y ers of  E C
of s c h e m es I, II, a n d III d es cri b e d i n Fi g. 1 . ( b) –( d) S k et c h es
of t h e c orr es p o n di n g cir c uits f or s c h e m es I, II, a n d III, r es p e c-
ti v el y.  E a c h cir c uit c o nsists of t w o l a y ers of c orr e cti o n, f oll o w e d
b y t h e i n v ers e e n c o di n g  m a p t h at  m a ps t h e pr o c ess e d l o gi c al
i nf or m ati o n b a c k i nt o t h e first k m o d es d e pi ct e d i n Fi g. 1( c) .

j ∈ { 1, 2, . . . , n }.  M e as uri n g t h es e yi el ds a 2n - di m e nsi o n al
s y n dr o m e v e ct or,

z = (z 1, q , . . . , z n ,q , z 1, p , . . . , z n ,p ) T , ( 1 0)

c o nsisti n g of p h as eli k e  G K P s y n dr o m es z j ,q , z j ,p ∈
[−

√
π / 2,

√
π / 2 ).

T h er e ar e  m a n y p ossi bl e n ois e v e ct ors ξ i n  E q. ( 9) t h at
yi el d a p arti c ul ar s y n dr o m e v e ct or a n d t h e n e xt st e p is
t o d e d u c e t h e  m ost li k el y o n e (i. e., t o a p pl y m a xi m u m-
li k eli h o o d d e c o di n g).  E a c h n ois e- v e ct or c o m p o n e nt ξ j c a n
b e e x pr ess e d as a s u m of s o m e i nt e g er  m ulti pl e of

√
π a n d

a r e m ai n d er t er m,

ξ j = m
√

π + R √
π ( ξj ), ( 1 1)

w h er e m ∈ Z ,  w h er e  w e us e t h e r e m ai n d er f u n cti o n

R s (x ) = x − s
x

s
( 1 2)
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a n d  w h er e [ x ] r o u n ds x t o t h e n e ar est i nt e g er.  T h e r e m ai n-
d er t er m is pr e cis el y  w h at is e xtr a ct e d vi a s y n dr o m e
m e as ur e m e nts, z j = R √

π ( ξj ), a n d t h e s h ort est d e d u c e d
dis pl a c e m e nt v e ct or is t h us

ξ ∗ = z = R √
π (ξ ) . ( 1 3)

I n or d er t o c orr e ct,  w e a p pl y a c oll e cti v e dis pl a c e m e nt b y
− ξ ∗ , yi el di n g t h e r esi d u al n ois e v e ct or

ξ = ξ − ξ ∗ = ξ − R √
π (ξ ) ( 1 4)

a n d c o m pl eti n g t h e first l a y er of c orr e cti o n.

2.  L a y er 2:  Q u bit st a biliz er  E C

T h e first l a y er h as r e c o v er e d t h e l o gi c al i nf or m ati o n
b a c k t o t h e l o gi c al  G K P s u bs p a c e of e a c h  m o d e.  T h e r esi d-
u al n ois e v e ct or ξ i m p os es a l o gi c al P a uli err or o n t h e
i n n er st a bili z er c o d e.  T o e xtr a ct t his err or,  w e n e e d t o  m e a-
s ur e t h e  G K P f or m of t h e st a bili z ers of t h e o ut er [[ n , k , d ]]
c o d e.  T h es e ar e c o nstr u ct e d usi n g t e ns or pr o d u cts of  G K P

dis pl a c e m e nts X j = e − i
√

π p̂ j a n d Z j = e i
√

π q̂ j ,  w hi c h a ct as
l o gi c al P a uli o p er at ors o n t h e i n n er  G K P c o d e of  m o d e j .
F or e x a m pl e, f or t h e [[ 5, 1, 3]] st a bili z er o ut er c o d e, if  w e
w a nt t o e xtr a ct t h e s y n dr o m e c orr es p o n di n g t o t h e c h e c k
o p er at or I X Z Z X ,  w e n e e d t o  m e as ur e e x p[i

√
π ( − ˆp 2 +

q̂ 3 + ˆq 4 − ˆp 5 )]. Si n c e t h e n ois e v e ct or c o nsists of i nt e g er
m ulti pl es of

√
π , e a c h  m e as ur e d s y n dr o m e v al u e c a n o nl y

b e ± 1.
Aft er e xtr a cti n g t h e bi n ar y s y n dr o m es,  w e n e e d t o

d et er mi n e t h e err or b as e d o n t h e s y n dr o m es a n d a p pl y a
G K P- P a uli c orr e cti o n o p er ati o n.  T h es e st e ps c o m pl et e t h e
s e c o n d l a y er of c orr e cti o n.

Aft er t h e a b o v e t w o-l a y er r o u n d of c orr e cti o n,  w e c a n

a p pl y t h e d e c o di n g cir c uit U
†
e n c if  w e  w a nt t o o bt ai n t h e l o g-

i c al i nf or m ati o n or r e p e at t h e r o u n d if  w e  w a nt t o f urt h er
pr es er v e t h e i nf or m ati o n.

B. S c h e m e II:  G K P- a n al o g d e c o di n g

A c orr e cti o n r o u n d f or t his s c h e m e c o nsists of n ulli fi er-
b as e d  m o d e-i nt o- m o d e  E C, f oll o w e d b y c o n v e nti o n al
G K P- q u bit  E C [s e e Fi g. 2( c) ].

1.  L a y er 1:  A n al o g  E C

T h e first st e p i n t his s c h e m e is t o  m e as ur e t h e

n ulli fi ers U e n c q̂ j U
†
e n c f or j ∈ { k + 1, k + 2, . . . , n } of t h e

o ut er a n al o g-st a bili z er c o d e.  T his yi el ds r e al- v al u e d n ul-
li fi er s y n dr o m es z j f or j ∈ { 1, 2, . . . , n − k }, c oll e cti v el y
d e n ot e d b y t h e (n − k )- di m e nsi o n al s y n dr o m e v e ct or z .

T h e n ulli fi ers ar e r el at e d t o t h e u n e n c o d e d a u xili ar y-
m o d e p ositi o n o p er at ors b y t h e (n − k )- b y- 2n - di m e nsi o n al
m atri x A 1 fr o m  E q. ( 6) a n d t h e s y n dr o m e v e ct or is si mi-
l arl y r el at e d t o t h e n ois e v e ct or ξ i n  E q. ( 9) b y t h e e q u ati o n
z = A 1 ξ .

Si n c e A 1 i s r e ct a n g ul ar, s e v er al di ff er e nt n ois e v e ct ors
c a n yi el d t h e s a m e s y n dr o m e v e ct or.  T h e pri n ci pl e of
m a xi m u m-li k eli h o o d d e c o di n g i m pli es t h at  w e pi c k t h e
s h ort est ξ t h at is c o m p ati bl e  wit h t h e s y n dr o m es,

ξ ∗ = ar g  mi n
A 1 ξ = z

ξ , ( 1 5)

w h er e v =
√

v · v is t h e  Hil b ert- S c h mi dt n or m of v .
Fi n di n g t h e s h ort est c o m p ati bl e n ois e v e ct or t ur ns o ut t o

b e a st a n d ar d  mi ni mi z ati o n pr o bl e m [ 7 2 ], t h e s ol uti o n of
w hi c h is gi v e n b y

ξ ∗ = A T
1 (A 1 A

T
1 ) − 1 z . ( 1 6)

A b o v e, A T
1 i s t h e tr a ns p os e of A 1 a n d A 1 A

T
1 i s a (n −

k )- di m e nsi o n al s q u ar e  m atri x t h at is i n v erti bl e si n c e all
t h e n ulli fi er  m e as ur e m e nts ar e li n e arl y i n d e p e n d e nt.  N ot e
t h at A T

1 (A 1 A
T
1 ) − 1 i s als o c all e d t h e ri g ht  M o or e- P e nr os e

ps e u d oi n v ers e of A 1 .
T h e first l a y er of  E C is t h e n p erf or m e d b y d e d u cti n g t h e

esti m at e d n ois e v e ct or ξ ∗ fr o m t h e s yst e m.  T h e u p d at e d
q u a dr at ur e n ois e v e ct or ξ t a k es t h e f or m

ξ = ξ − ξ ∗ = P ⊥
A 1

ξ , ( 1 7)

w h er e  w e us e t h e f or m ul a f or t h e pr oj e cti o n o nt o t h e k er n el
of a  m atri x M ,

P ⊥
M = I − M T (M M T )− 1 M , ( 1 8)

s atisf yi n g M P ⊥
M = 0 a n d P ⊥

M M T = 0. I n ot h er  w or ds, t his
l a y er of c orr e cti o n a p pli es s hifts t o t h e n ulli fi er q u a dr at ur es
s u c h t h at t h e n ulli fi er e x p e ct ati o n v al u es ar e r es et t o z er o.

T h e a b o v e l a y er of c orr e cti o n yi el ds a s h ort er r esi d u al
n ois e v e ct or: ξ is a s h ort er t h a n ξ si n c e P ⊥

A 1
i s a pr oj e c-

ti o n.  W hil e t his l a y er c a n n ot d e cr e as e t h e v ari a n c e of t h e
l o gi c al- m o d e q u a dr at ur e n ois e [2 7 ,4 5 ],  w e ar e i nt er est e d i n
e n c o di n g l o gi c al q u bits i n s ai d  m o d es a n d t h us pr o c e e d t o
t h e s e c o n d l a y er of c orr e cti o n.

2.  L a y er 2:  G K P  E C

T h e a b o v e a n al o g c orr e cti o n pr o c e d ur e  m a ps t h e o ut er
m o d e-i nt o- m o d e e n c o di n g b a c k i nt o t h e “l o gi c al ” k - m o d e
s p a c e, d e fi n e d as t h e c oll e cti v e 0- ei g e n v al u e s u bs p a c e of
all n − k n ulli fi ers.  T h e n e xt l a y er c o nsists of d et e cti n g a n d
c orr e cti n g l o gi c al err ors of t h e k G K P q u bits e n c o d e d i n t h e
l o gi c al- m o d e s p a c e. S u c h err ors ar e c a us e d b y t h e r esi d u al
n ois e v e ct or P ⊥

A 1
ξ i n  E q. ( 1 7).

T h e 2 k c h e c k o p er at ors  m e as ur e d i n t his r o u n d ar e  G K P
st a bili z ers of t h e first k m o d es c o nj u g at e d b y t h e e n c o di n g

u nit ar y U e n c , i. e., U e n c e
i2

√
π q̂ j U

†
e n c a n d U e n c e

− i2
√

π p̂ j U
†
e n c f or
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j ∈ { 1, 2, . . . , k }.  M e as uri n g t h es e yi el ds a 2k - di m e nsi o n al
s y n dr o m e v e ct or,

z = (z 1, q , . . . , z k ,q , z 1, p , . . . , z k ,p ) T , ( 1 9)

c o nsisti n g of  G K P s y n dr o m es z j ,q , z j ,p ∈ [−
√

π / 2,
√

π / 2 ).
T h e s y n dr o m e v e ct or c a n e q ui v al e ntl y b e r e pr es e nt e d as

t h e r e m ai n d er of t h e r esi d u al n ois e v e ct or P ⊥
A 1

ξ i n  E q. ( 1 7)
e n c o d e d i nt o t h e  G K P l o gi c al s p a c e vi a t h e s u b m atri x A 2

i n  E q. ( 6) of t h e s y m pl e cti c  m atri x A e n c c orr es p o n di n g t o
U e n c ,

z = R √
π (A 2 P

⊥
A 1

ξ ) . ( 2 0)

T h e r e m ai n d er f u n cti o n R √
π , a p pli e d t o e a c h e ntr y of

t h e v e ct or i n t h e ar g u m e nt, e ns ur es t h at o nl y t h e  m o d u-
l ar q u a dr at ur e i nf or m ati o n is e xtr a ct e d fr o m t h e pr o c ess e d
n ois e v e ct or.

A p pl yi n g t h e  m a xi m u m-li k eli h o o d pri n ci pl e,  w e n e e d t o
fi n d t h e  m ost pr o b a bl e err or v e ct or aft er t h e first  E C, ξ ∗ ,

t h at is c o nsist e nt  wit h t h e s y n dr o m es, A 2 ξ ∗ = z .  H o w e v er,
si n c e t h e e ntri es of t h e r esi d u al n ois e v e ct or i n  E q. ( 1 7) ar e
c orr el at e d, t h e  m ost li k el y err or v e ct or c a n n ot b e c al c ul at e d
vi a  mi ni mi zi n g t h e n or m of ξ .  R at h er, as P ⊥

A 1
i s a d et er mi n-

isti c li n e ar  m atri x, t h e  m ost pr o b a bl e ξ s h o ul d c o m e fr o m
t h e  m ost pr o b a bl e ξ .  T his yi el ds t h e o pti mi z ati o n pr o bl e m
[7 3 ]

ξ ∗ = P ⊥
A 1

ar g  mi n
A 2 P ⊥

A 1
ξ = z

ξ ( 2 1)

f or t h e  G K P l a y er of c orr e cti o n.  T h e a b o v e o pti mi z ati o n is
s ol v e d i n t h e s a m e  w a y as  E q. ( 1 5), yi el di n g

ξ ∗ = P ⊥
A 1

(A 2 P
⊥
A 1

) T (A 2 P
⊥
A 1

)(A 2 P
⊥
A 1

) T
− 1

z . ( 2 2)

Aft er i m pl e m e nti n g t h e a b o v e as t h e r e c o v er y dis pl a c e-
m e nt f or t his s e c o n d l a y er,  w e a p pl y A e n c (t h e d e c o di n g
m a p i n t h e  H eis e n b er g pi ct ur e).  T h e fi n al r esi d u al n ois e
v e ct or is

ξ fi n al = A e n c (ξ − ξ ∗ ). ( 2 3)

If  w e  w a nt t o f o c us o n t h e err ors of t h e first k “l o gi c al ”
m o d es t h at h o us e t h e  G K P q u bits i n Fi g. 1( c) ,  w e c a n
i nst e a d d e c o d e usi n g t h e s u b m atri x A 2 i n  E q. ( 6) a n d t h e
r e m ai n d er f u n cti o n R i n  E q.( 1 2), t o o bt ai n

ξ fi n al, l = A 2 (ξ − ξ ∗ )

= A 2 P
⊥
A 1

ξ − R √
π (A 2 P

⊥
A 1

ξ ) . ( 2 4)

3. Si m plif yi n g c as es

T h e r e m ai n d er o p er ati o n i n t h e n ois e- v e ct or e x pr essi o n
i n  E q. ( 2 4) c a n b e r e m o v e d i n t h e l o w- n ois e c as e, si n c e
R √

π ( ξ ) = ξ f or s u ffi ci e ntl y s m all ξ . I n t h at c as e, ξ − ξ ∗ =

P ⊥
Ã

ξ ,  w h er e P ⊥
Ã

i n  E q. ( 1 8) is t h e pr oj e cti o n o nt o t h e k er n el

of t h e bl o c k  m atri x Ã = A 1
A 2

.  T his  m e a ns t h at if  w e disr e-

g ar d t h e c a v e at t h at t h e l o gi c al  G K P s y n dr o m e is  m e as ur e d
m o d ul o

√
π ,  w e c a n c o m bi n e t h e t w o l a y ers of t h e  E C i nt o

o n e a n d o bt ai n t h e s a m e r es ult.
A n ot h er si m plif yi n g c as e is t h e c o n diti o n A 1 A

T
2 = 0,

w hi c h  m e a ns t h at t h e  m e as ur e m e nts of A 1 a n d A 2 ar e i n
t w o ort h o g o n al h y p er pl a n es. I n t h at c as e, t h e o pti mi z a-
ti o n pr o bl e ms f or t h e t w o l a y ers b e c o m e i n d e p e n d e nt,
R √

π (A 2 P
⊥
A 1

ξ ) = R √
π (A 2 ξ ) , a n d t h e or d er i n  w hi c h t h e

c orr e cti o ns f or t h e t w o l a y ers ar e a p pli e d d o es n ot  m att er.

C. S c h e m e III:  G K P-st a bili z e r d e c o di n g

A c orr e cti o n r o u n d f or t his s c h e m e c o nsists of c a n o ni-
c al  G K P-st a bili z er  m o d e-i nt o- m o d e  E C [ 4 5 ], f oll o w e d b y
c o n v e nti o n al  G K P- q u bit  E C [s e e Fi g. 2( d) ].  We  m o dif y
t h e c a n o ni c al  G K P d e c o di n g pr o c e d ur e s u c h t h at t h e u ni-

t ar y U
†
e n c i s a p pli e d l ast ( w h er e as it ori gi n all y pr e c e d e d t h e

c a n o ni c al  G K P s y n dr o m e  m e as ur e m e nts i n  R ef. [ 4 5 ]) i n
or d er t o  m a k e t his s c h e m e c o nsist e nt  wit h s c h e m es I a n d
II a n d i n or d er t o d e m o nstr at e h o w  m ulti pl e r o u n ds of  E C
c a n b e p erf or m e d.

O ur  m o di fi c ati o n als o all o ws t h e  m e as ur e m e nt of ot h er
s ets of  G K P-st a bili z er g e n er at ors.  T h e g e n er at ors ar e
d et er mi n e d b y t h e  m atri x A 3 i n  E q. ( 6) b ut t h er e ar e  m a n y
s u c h p ossi bl e  m atri c es, all r el at e d t o e a c h ot h er b y a li n e ar
tr a nsf or m ati o n of r o ws.  T his  m e a ns t h at  w e c a n o pti mi z e
t h e g e n er at or  m atri x A 3 s u c h t h at e a c h r o w h as t h e l o w-
est p ossi bl e n or m,  w hi c h, a c c or di n g t o o ur o bs er v ati o ns,
i m pr o v es t h e d e c o d er p erf or m a n c e.

1.  L a y er 1:  G K P-st a biliz er  E C

T h e first l a y er of t his s c h e m e is si mil ar t o t h e s e c-
o n d l a y er of s c h e m e II i n t h at b ot h  m e as ur e  G K P-t y p e
st a bili z ers.  H er e, o n e st arts b y  m e as uri n g t h e 2 (n − k )
c a n o ni c al  G K P st a bili z ers ass o ci at e d  wit h t h e n − k a u x-
ili ar y  m o d es, n a m el y, t h e o p er at ors U e n c e

i
√

2 π q̂ j U
†
e n c a n d

U e n c e
− i

√
2 π p̂ j U

†
e n c f or j ∈ { k + 1, k + 2, . . . , n }.  M e as uri n g

t h es e yi el ds a 2(n − k )- di m e nsi o n al v e ct or z of c a n o ni c al
G K P s y n dr o m es z j ,q , z j ,p ∈ [−

√
π / 2,

√
π / 2 ) [ cf.  E q. ( 1 9)].

T h e s y n dr o m e v e ct or c a n e q ui v al e ntl y b e r e pr es e nt e d as
t h e r e m ai n d er of t h e n ois e v e ct or ξ i n  E q. ( 9) e n c o d e d i nt o
t h e  G K P l o gi c al s p a c e vi a t h e s u b m atri x A 3 i n  E q. ( 6) of
t h e s y m pl e cti c  m atri x A e n c c orr es p o n di n g t o U e n c ,

z = R √
2 π (A 3 ξ ) . ( 2 5)

T h e r e m ai n d er f u n cti o n R √
2 π , a s d e fi n e d i n E q.( 1 2), n o w

m o d ul o
√

2 π b e c a us e c a n o ni c al  G K P st at es ar e us e d f or
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a u xili ar y  m o d es, o n c e a g ai n e xtr a cts o nl y t h e  m o d ul ar
q u a dr at ur e i nf or m ati o n.

We o n c e a g ai n pi c k t h e s h ort est ξ t h at is c o m p ati bl e  wit h
t h e s y n dr o m es z ,  w hi c h yi el ds a n o pti mi z ati o n i d e nti c al t o
t h at fr o m  E qs. ( 1 6)– ( 1 7),

ξ ∗ = ar g  mi n
A 3 ξ = z

ξ = A T
3 (A 3 A

T
3 ) − 1 R √

2 π (A 3 ξ ) . ( 2 6)

S u btr a cti n g t his  m ost li k el y c orr e cti o n fr o m t h e i niti al
n ois e v e ct or c o m pl et es t his l a y er a n d yi el ds

ξ = ξ − ξ ∗ = ξ − A T
3 (A 3 A

T
3 ) − 1 R √

2 π (A 3 ξ ) . ( 2 7)

N ot e t h at t h e pr es e n c e of t h e r e m ai n d er f u n cti o n R
o bstr u cts us fr o m t h e si m pli fi c ati o ns t h at  w e ar e a bl e t o
m a k e f or t h e first l a y er of s c h e m e II [ cf.  E q. ( 1 7)].

2.  L a y er 2:  G K P  E C

We pr o c e e d t o  m e as ur e t h e 2 k G K P st a bili z ers of t h e
first k m o d es c o nj u g at e d b y t h e e n c o di n g u nit ar y U e n c ,
r e c o v eri n g t h e s a m e 2k - di m e nsi o n al  G K P s y n dr o m e v e ct or
i n  E q. ( 1 9) as t h at i n l a y er 2 of s c h e m e II.

Pr o c e e di n g a n al o g o usl y t o s c h e m e II,  w e e x pr ess t h e
s y n dr o m e v e ct or i n t er ms of t h e l a y er- 1 r esi d u al err or v e c-
t or ξ i n  E q. ( 2 7) e n c o d e d i nt o t h e l o gi c al  m o d es usi n g
t h e r e ct a n g ul ar  m atri x A 2 i n  E q. ( 6) a n d r estri ct e d t o
o nl y its  m o d ul ar c o m p o n e nts vi a t h e  G K P- q u bit r e m ai n d er
o p er ati o n,

z = R √
π A 2 ξ − A T

3 (A 3 A
T
3 ) − 1 R √

2 π (A 3 ξ ) . ( 2 8)

A b o v e, t h e s h ort h a n d n ot ati o n R √
π A 2 (v ) = R √

π (A 2 (v )) .
T h e  m a xi m u m-li k eli h o o d pr o bl e m f or t his l a y er is t o

fi n d t h e  m ost pr o b a bl e ori gi n al err or c o n fi g ur ati o n ξ t h at
is c o m p ati bl e  wit h z .  T his ti m e, h o w e v er, t h e o pti mi z ati o n
is n ot li n e ar b e c a us e t h e  m a p fr o m ξ t o ξ i n  E q. ( 2 7) is n ot
li n e ar d u e t o t h e r e m ai n d er f u n cti o n R √

2 π .
We pr o c e e d  wit h a r el at e d li n e ar o pti mi z ati o n pr o bl e m,

ξ ∗ = ar g  mi n
z = A 2 (ξ − A T

3 (A 3 A T
3 )− 1 z )

ξ , ( 2 9)

w h er e z is a c o nst a nt fi x e d b y t h e  m e as ur e m e nt o ut c o m es.
T h e s ol uti o n is

ξ ∗ = A T
2 (A 2 A

T
2 ) − 1 (z + A 2 A

T
3 (A 3 A

T
3 ) − 1 z ). ( 3 0)

T h e a b o v e o pti mi z ati o n is di ff er e nt fr o m t h e n o nli n e ar
c as e,  w h er e z is i n p ut as a f u n cti o n of ξ .  H o w e v er, t h e t w o
t y p es of o pti mi z ati o ns ar e tri e d f or s c h e m e II (s e e [7 3 ])
a n d, d es pit e yi el di n g di ff er e nt o ut c o m es, still c orr es p o n d
t o t h e s a m e r esi d u al n ois e v e ct or ξ fi n al, l o n t h e k l o gi c al
m o d es.  We t h us h a v e s o m e e vi d e n c e t o b eli e v e t h at t his

o pti mi z ati o n  m a y n ot b e t o o f ar o ff fr o m t h e tr u e n o nli n e ar
o n e.

Usi n g t h e a b o v e r es ult f or c orr e cti n g l a y er- 2 dis pl a c e-
m e nt yi el ds t h e fi n al r esi d u al n ois e v e ct or ξ fi n al i n  E q.
( 2 3) aft er t h e t w o l a y ers of s c h e m e III a n d t h e d e c o di n g
o p er ati o n A e n c .  T h e l o gi c al- m o d e r esi d u al n ois e s u b v e ct or
is

ξ fi n al, l = A 2 (ξ − ξ ∗ )

= A 2 ξ − A 2 A
T
3 (A 3 A

T
3 ) − 1 z

− R √
π (A 2 (ξ − A T

3 (A 3 A
T
3 ) − 1 z )). ( 3 1)

O n e c a n vi e w b ot h s c h e m e II a n d s c h e m e III as e x a m-
pl es fr o m a f a mil y of s c h e m es t h e i niti al a u xili ar y  m o d es

of  w hi c h ar e i n  G K P st at es  wit h st a bili z ers e i
√

2 π / α q̂ i a n d
e i

√
2 π α p̂ i .  T h e p eri o d i n q i i s

√
2 π α a n d t h at i n p i i s

√
2 π / α .

S c h e m e III c orr es p o n ds t o t h e c as e α = 1,  w hil e s c h e m e
II c a n b e vi e w e d as t h e li miti n g c as e α → ∞ (s c h e m e I
is α = 2).  We a p pl y R √

2 π α t o t h e q i s y n dr o m e  m e as ur e-
m e nt a n d R √

2 π / α t o t h at of p i.  W h e n α → ∞ , t h e p eri o d
i n q i g o es t o i n fi nit y, s o n o r o u n di n g is n e e d e d i n t h e first-
l a y er E C of s c h e m e II a n d z = A 1 ξ .  H o w e v er, t h e p eri o d
i n p i b e c o m es i n fi nit esi m al.  A p pl yi n g R √

2 π / α will r o u n d
a n y  m e as ur e m e nt r es ult t o 0, s o n o i nf or m ati o n c a n b e s u b-
tr a ct e d fr o m p i m e as ur e m e nt a n d h e n c e t h e y ar e o mitt e d i n
s c h e m e II.  C orr es p o n di n gl y, t h e A 3 m atri x i n s c h e m e III
r e d u c es t o A 1 i n s c h e m e II.

D.  C al c ul ati n g l o gi c al e r r o r r at es

I n or d er t o c o m p ar e t h e a b o v e s c h e m es,  w e c a n c al c u-
l at e t h e l o gi c al err or pr o b a biliti es i n d u c e d b y t h e r esi d u al
n ois e v e ct or ξ fi n al o n t h e l o gi c al  G K P q u bits h o us e d i n t h e
k l o gi c al  m o d es [s e e Fi g. 1( c) ]. S u c h a c al c ul ati o n is d o n e
s o m e w h at di ff er e ntl y i n s c h e m e I t h a n i n s c h e m es II a n d
III, d u e t o t h e l att er t w o h a vi n g  C V o ut er c o d es.

L et p (ξ ) d e n ot e a n ar bitr ar y distri b uti o n f or t h e i niti al
n ois e v e ct or ξ i n  E q. ( 9).  R e c all t h at t h e n ois e v e ct or
tr a c ks a p arti c ul ar i nst a n c e of r a n d o m q u a dr at ur e dis-
pl a c e m e nts i n  E q. ( 8),  w hi c h ar e us u all y i n d e p e n d e ntl y
distri b ut e d a c c or di n g t o a  G a ussi a n distri b uti o n  wit h  m e a n
z er o a n d fi x e d st a n d ar d d e vi ati o n (i n  w hi c h c as e, p (ξ ) ≡

2 n
j = 1 p ( ξj ),  w h er e p ( ξj ) is a  G a ussi a n distri b uti o n).  We

e m p h asi z e t h at t h e a n al ysis of t his s u bs e cti o n is i n d e p e n-
d e nt of t h e c h oi c e of distri b uti o n.

1. S c h e m es II a n d III

Aft er t w o l a y ers of  E C a n d a p pli c ati o n of U e n c
† , t h e

i niti al n ois e v e ct or ξ tr a nsf or ms as

ξ → ξ fi n al ≡ f (ξ ) , ( 3 2)

w h er e ξ fi n al i n  E q. ( 2 3) is t h e r esi d u al 2n - di m e nsi o n al
l o gi c al- m o d e n ois e v e ct or aft er t w o l a y ers of c orr e cti o n
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a n d a d e c o di n g  m a p f or eit h er s c h e m e II or s c h e m e III
a n d t h e  m a p fr o m ξ t o t his v e ct or is r e pr es e nt e d b y t h e

v e ct or- v al u e d f u n cti o n f . T h e first 2k c o m p o n e nts of t his
v e ct or ar e i n  E qs. ( 2 4) a n d ( 3 1) f or s c h e m es II a n d III,
r es p e cti v el y.

O n t h e l o gi c al- m o d e l e v el, t h e pr o b a bilit y of a dis pl a c e-
m e nt b y η of a l o gi c al- m o d e q u a dr at ur e j ∈ { 1, 2, . . . , 2k }
is a n i nt e gr al o v er c o ntri b uti o ns fr o m all s hifts ξ t h at ar e
c o m p ati bl e  wit h t h e fi n al o ut c o m e b ei n g t h e j t h c o m p o n e nt

of f (ξ ) ,

Pr j ( η | f ) =
∞

− ∞

d 2 n ξ p (ξ ) δ η − fj (ξ ) , ( 3 3)

w h er e d 2 n ξ ≡ d ξ q 1
· · · d ξ q n d ξ p 1

· · · d ξ p n i s t h e i nt e gr ati o n
m e as ur e o n all q u a dr at ur es.  T his is t h e l o gi c al- m o d e dis-

pl a c e m e nt distri b uti o n ass o ci at e d  wit h f .
O n t h e l o gi c al- q u bit l e v el,  G K P  E C s u c c e e ds  w h e n e v er

η − R √
π ( η ) is a n e v e n i nt e g er. I n ot h er  w or ds, t h e pr o b a-

bilit y p n o err or
j of s u c c essf ul c orr e cti o n of t h e j t h q u a dr at ur e

is t h e i nt e gr al of t h e dis pl a c e m e nt distri b uti o n i n  E q. ( 3 3)
o v er a s et of i nt er v als c e nt er e d at e v e n  m ulti pl es of

√
π

(s e e, e. g.,  R ef. [3 5 ,  E q. 1 0)]):

p n o err or
j =

m ∈ Z

(2 m + (1 / 2 ))
√

π

(2 m − (1 / 2 ))
√

π

d η Pr j ( η |f ). ( 3 4)

F or f e w- m o d e c o d es, t h es e i nt e gr als c a n oft e n b e d o n e
a n al yti c all y.

L o gi c al err ors r es ult  w h e n at l e ast o n e p n o err or
j i s

n o n z er o. F or a c o d e  wit h k l o gi c al q u bits a n d u n c orr e-
l at e d dis pl a c e m e nt err ors, t h e l o gi c al err or pr o b a bilit y is
t h e c o m pl e m e nt of t h e pr o d u ct of n o- err or pr o b a biliti es of
all of t h e q u a dr at ur es,

p l o gi c al err or = 1 −

2 n

j = 1

p n o err or
j . ( 3 5)

F or c orr el at e d n ois e, t his s h o ul d b e c o m e a l o w er b o u n d.

2. S c h e m e I

Aft er t h e first l a y er of  E C f or t his s c h e m e, e a c h  m o d e
c a n b e r e a dil y tr e at e d as a  G K P q u bit, e n c o d e d i n a  m o d e
t h at i n t ur n is  m a d e u p of a p ositi o n a n d a  m o m e nt u m
q u a dr at ur e.  As t his is t h e first l a y er, t h er e is n o a d diti o n al
pr o c essi n g of t h e n ois e v e ct or,  m e a ni n g t h at err or pr o b-
a biliti es c a n b e c al c ul at e d as a s p e ci al i nst a n c e of t h os e
of s c h e m es II a n d III b ut  wit h t h e pr o c essi n g f u n cti o n f
b ei n g i d e ntit y.  T h e r es p e cti v e pr o b a biliti es of n o bit fli ps
or n o p h as e fli ps f or a  G K P q u bit e n c o d e d i n  m o d e j ar e

ot h er wis e a n al o g o us t o  E q. ( 3 4):

p n o Z err or
j =

m ∈ Z

(2 m + (1 / 2 ))
√

π

(2 m − (1 / 2 ))
√

π

d η Pr j ( η |1 ),

p n o X err or
j =

m ∈ Z

(2 m + (1 / 2 ))
√

π

(2 m − (1 / 2 ))
√

π

d η Pr j + n ( η |1 ).

( 3 6)

Wit h t h es e i ntri nsi c X a n d Z err or pr o b a biliti es of p h ysi c al
G K P q u bits, o n e c a n c al c ul at e t h e l o gi c al err or pr o b a bil-
it y j ust as i n t h e us u al q u bit st a bili z er c o d es.  T h e fi n al
e x pr essi o n d e p e n ds o n t h e st a bili z er c o d e t h at  w e c h o os e.

3. Si m pli fi e d err or-r at e c al c ul ati o ns

We dis c o v er a si m pli fi c ati o n i n c al c ul ati n g t h e l o gi c al
err or r at e of a t w o-l a y er r o u n d of  E C f or s c h e m es II a n d
III.  N a m el y, c al c ul ati n g t h e r at es p n o err or

j d o es n ot r e q uir e
t h e l a y er- 2  G K P r e c o v er y o p er ati o n t o b e pr es e nt i n t h e

f u n cti o n f .
I n  A p p e n di x B ,  w e s h o w t h at if f (ξ ) d e fi n es t h e r es ult-

i n g err or v e ct or aft er o n e l a y er of c orr e cti o n, t h e s e c o n d

l a y er  m o di fi es as f (ξ ) → f (ξ ) − R √
π (f (ξ )) , i d e nti c al t o

t h e b ar e  G K P c orr e cti o n s c h e m e i n  E q. ( 1 4).  We c o m bi n e
t his  wit h t h e f a ct t h at e a c h of t h e f - d e p e n d e nt i nt e gr als i n
E q. ( 3 4) is i n v ari a nt u n d er f → f − R √

π f ,

(2 m + (1 / 2 ))
√

π

(2 m − (1 / 2 ))
√

π

d η Pr j ( η |f ) =
(2 m + (1 / 2 ))

√
π

(2 m − (1 / 2 ))
√

π

d η Pr j ( η |f

− R √
π f ), ( 3 7)

t o s h o w t h at e x pli cit  G K P r e c o v er y is n ot n e c ess ar y t o c al-
c ul at e t h e l o gi c al- m o d e, a n d t h er ef or e l o gi c al- q u bit, err or
r at es.

G K P r e c o v er y, of c o urs e, still h as t o b e p erf or m e d t o
yi el d a l o gi c al q u bit e n c o di n g g o v er n e d b y t h e af or e m e n-
ti o n e d err or r at es.  T h e b e n e fit of  G K P c orr e cti o n still e xists
i n t h e err or-r at e c al c ul ati o n b e c a us e t h e dis pl a c e m e nt dis-
tri b uti o n is i nt e gr at e d o v er a u ni o n of s e g m e nts c o m prisi n g
h alf of t h e r e al li n e,  w hi c h is t h e c orr e ct a bl e r e gi o n of a
G K P e n c o di n g.

V.  E X A M P L E S

We n u m eri c all y b e n c h m ar k t w o s ets of e x a m pl es of t h e
t hr e e s c h e m es fr o m Fi g. 1 , o n e usi n g t h e r e p etiti o n c o d e
a n d its b os o ni c v ari a nts a n d a n ot h er usi n g t h e fi v e- q u bit
c o d e a n d its v ari a nts.  D et ails of o ur  M o nt e  C arl o s a m-
pli n g of q u a dr at ur e n ois e a n d its d e c o di n g ar e gi v e n i n
A p p e n di x C .

A.  R e p etiti o n- c o d e- b as e d c o m p a ris o n

T h e r e p etiti o n c o d e [ 7 4 ] is a n i m p ort a nt e x a m pl e i n b ot h
cl assi c al a n d q u a nt u m err or- c orr e cti n g c o d es.  T h er e ar e
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pr e vi o us st u di es o n t h e s c h e m e-I c o n c at e n at e d r e p etiti o n-
G K P c o d es [ 2 4 ] a n d [[ 4, 2, 2]]- G K P c o d es [2 5 ].

T h e t hr e e e n c o di n g s c h e m es f or t h e r e p etiti o n- c o d e
e x a m pl e ar e d es cri b e d b y t h e f oll o wi n g  m a p [ cf. Fi g. 1( c) ]:

(I) r e p etiti o n- G K P: Z 2
r e p etiti o n
− − − − → Z ⊗ 3

2

G K P
− − → R ⊗ 3 ,

(II) a n al o g-r e p etiti o n: Z 2
G K P
− − → R

a n al o g r e p etiti o n
− − − − − − − − → R ⊗ 3 ,

(III)  G K P-r e p etiti o n: Z 2
G K P
− − → R

G K P-r e p etiti o n
− − − − − − − → R ⊗ 3 .

( 3 8)

S c h e m e I is a st a n d ar d c o n c at e n at e d  G K P-r e p etiti o n
c o d e c o nstr u ct e d b y e n c o di n g e a c h p h ysi c al q u bit i nt o a
G K P c o d e. S c h e m e II is t h e a n al o g r e p etiti o n c o d e (s e e
A p p e n di x ? ? of  R ef. [ 4 5 ]) c o n c at e n at e d  wit h a b o n a fi d e
G K P c o d e. S c h e m e III r e pl a c es t h e a n al o g c o d e  wit h
t h e  G K P-r e p etiti o n c o d e [4 5 ],  w hi c h s u p pr ess es t h e v ari-
a n c e of p ositi o n err or a cti n g o n t h e l o gi c al  m o d e t o σ 2 / 3
if t h e err or r at e is s u ffi ci e ntl y l o w, c o n c at e n at e d  wit h a
G K P- q u bit c o d e.

E n c o di n g cir c uits f or all t hr e e s c h e m es ar e of si mil ar
f or m (s e e Fi g. 1 ).  T h e r el e v a nt  G a ussi a n u nit ar y U e n c i s

U e n c = C N O T 1 → 3 C N O T 1 → 2 , ( 3 9)

w h er e o ur c o ntr oll e d- N O T (C N O T ) [7 5 ] t w o- m o d e g at e a cts
o n q u a dr at ur es as

C N O T j → k q̂ j C N O T
†
j → k = ˆq j ,

C N O T j → k q̂ k C N O T
†
j → k = ˆq k − ˆq j ,

C N O T j → k p̂ j C N O T
†
j → k = ˆp j + ˆp k ,

C N O T j → k p̂ k C N O T
†
j → k = ˆp k .

( 4 0)

T h e tr a nsf or m ati o n of t h e  H a d a m ar d a n d c o ntr oll e d- Z (C Z )
g at es [ 7 6 ] is as f oll o ws:

H q̂ H † = ˆp ,

H p̂ H † = − ˆq ,

C Z j → k q̂ j C Z
†
j → k = ˆq j ,

C Z j → k q̂ k C Z
†
j → k = ˆq k ,

C Z j → k p̂ j C Z
†
j → k = ˆp j − ˆq k ,

C Z j → k p̂ k C Z
†
j → k = ˆp k − ˆq j ,

( 4 1)

w hi c h is us e d l at er.
T h e  E C f or s c h e m e I (s e e S e c. I V  A) s p e ci ali z es t o t h e

f oll o wi n g. First,  w e p erf or m  G K P  E C o n i n di vi d u al  G K P
m o d es t o eli mi n at e s m all dis pl a c e m e nt err ors a cti n g o n
e a c h  m o d e.  T h e n,  w e  m e as ur e r e p etiti o n- c o d e P a uli st a bi-
li z ers Z 1 Z 2 a n d Z 1 Z 3 a n d c orr e ct  G K P l o gi c al err ors a cti n g

o n i n di vi d u al  m o d es.  T h e t ot al n u m b er of s y n dr o m es is
ei g ht [ 7 7 ].

F or s c h e m e II, b ef or e e n c o di n g, t h e first  m o d e is a  G K P
l o gi c al st at e a n d t h e r est of t h e  m o d es ar e i niti ali z e d i n
|q̂ = 0 .  Aft er t h e e n c o di n g, t h e c o d e st at e is st a bili z e d b y
G K P st a bili z ers a n d n ulli fi e d b y n ulli fi ers si m ult a n e o usl y.
T h e  G K P st a bili z ers ar e e x p[ − i2

√
π ( p̂ 1 + ˆp 2 + ˆp 3 )] a n d

e x p[ i2
√

π q̂ 1 ] a n d t h es e s q u ar e r o ots yi el d l o gi c al P a uli-
X , Z g at es f or t h e e n c o d e d q u bit.  T h e n ulli fi ers of t h e
o ut er c o d e ar e q̂ 2 − ˆq 1 a n d q̂ 3 − ˆq 1 .  T h e t ot al n u m b er of
s y n dr o m es is f o ur.

F or t h e s c h e m e-II  E C pr o c e d ur e (s e e S e c. I V  B),  w e
first  m e as ur e t h e n ulli fi ers a n d o bt ai n s y n dr o m es ξ 2, q − ξ 1, q

a n d ξ 3, q − ξ 1, q .  We us e a  m a xi m u m-li k eli h o o d d e c o d er t o

p erf or m  E C, o bt ai ni n g a n err or- c orr e ct e d q u a dr at ur e ξ i n
E q. ( 1 7).  We t h e n  m e as ur e t h e  G K P st a bili z ers,  w hi c h
r et ur ns R √

π ( ξ1, p + ξ 2, p + ξ 3, p ) a n d R √
π ( ξ1, q ) [ w h er e R is

t h e r e m ai n d er f u n cti o n i n  E q. ( 1 2)].  We pr o c e e d t o d o
m a xi m u m-li k eli h o o d  E C b as e d o n s y n dr o m es di a g n os-
i n g t h e r esi d u al n ois e v e ct or ξ aft er t h e first l a y er of
c orr e cti o n.

I n s c h e m e III,  w e first  m e as ur e t h e a u xili ar y c a n o ni c al
G K P st a bili z ers, o bt ai ni n g t h e f o ur s y n dr o m es

z 2, q = R √
2 π ( ξ 2, q − ξ 1, q ),

z 3, q = R √
2 π ( ξ 3, q − ξ 1, q ),

z 2, p = R √
2 π ( ξ 2, p ),

z 3, p = R √
2 π ( ξ 3, p ).

( 4 2)

Aft er  m a xi m u m-li k eli h o o d  E C (s e e S e c. I V  C), t h e r esi d u al
n ois e v e ct or i n  E q. ( 3 1) a cti n g o n t h e l o gi c al  m o d e is

ξ 1, q = z 1, q +
1

3
(z 2, q + z 3, q ) =

ξ 1, q + ξ 2, q + ξ 3, q

3
,

ξ 1, p = z 1, p − z 2, p − z 3, p = ξ 1, p ,

( 4 3)

w h er e  w e ass u m e t h at all c o m p o n e nts ar e l ess t h a n
√

2 π i n
or d er t o r e m o v e t h e r e m ai n d er f u n cti o n R √

2 π . If  w e f urt h er
ass u m e t h at e a c h i niti al fl u ct u ati o n ξ is a n i d e nti c al a n d
i n d e p e n d e nt r a n d o m v ari a bl e  wit h z er o  m e a n a n d v ari a n c e
σ 2 , t h e v ari a n c es of t h e a b o v e err ors ar e

ξ 1, q ∼ N 0,
σ 2

3
,

ξ 1, p ∼ N (0, σ 2 ).

( 4 4)

S c h e m e III pr o c e e ds t o d o l o gi c al  G K P s y n dr o m e  m e a-
s ur e m e nt a n d c orr e cti o n,  w hi c h bri n gs t h e t ot al n u m b er of
s y n dr o m es u p t o si x.

T h e n u m eri c al c o m p aris o n f or t h e t hr e e s c h e m es is
s h o w n i n Fi g. 3( a) . S c h e m e II p erf or ms t h e  w orst li k el y
b e c a us e of a n o- g o t h e or e m f or t h e first l a y er [ 2 7 ] (s e e
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( a)

( b)

FI G. 3.  T h e n u m eri c al si m ul ati o ns. ( a)  T h e n u m eri c al si m ul a-
ti o n of t hr e e- q u bit r e p etiti o n c o d es i n t h e t hr e e di ff er e nt s c h e m es.
( b)  T h e n u m eri c al si m ul ati o n of [[ 5, 1, 3]] i n t h e t hr e e di ff er-
e nt s c h e m es, a c c or di n g t o t h e pr es cri pti o n i n  A p p e n di x. C . T h e
h ori z o nt al a xis σ r e pr es e nts t h e v ari a n c e of t h e  G a ussi a n dis-
pl a c e m e nt c h a n n el as dis c uss e d i n S e c. III  D.  T h e v erti c al a xis
p e m p r e pr es e nts t h e e m piri c al l o gi c al err or r at es t h at ar e n u m eri-
c all y c al c ul at e d b y t h e  m et h o d i n  A p p e n di x C .  E a c h d at a p oi nt is
o bt ai n e d b y a v er a gi n g 1 0 7 s a m pl es.

als o  R efs. [ 4 6 ,4 7 ]),  w hi c h st at es t h at a li n e ar  m o d e-i nt o-
m o d e c o d e d e fi n e d b y a s et of n ulli fi ers c a n o nl y s q u e e z e
t h e q u a dr at ur e err or b ut c a n n e v er r e d u c e n ois e o n b ot h
q u a dr at ur es.

F or t h e n ois e st a n d ar d d e vi ati o n σ ≥ 0. 1 8, s c h e m e III
o ut p erf or ms s c h e m e I, d e m o nstr ati n g t h e a d v a nt a g e of t h e
c a n o ni c al  G K P-st a bili z er f or m alis m f or s m all-s c al e q u bit
c o d es.  M or e o v er, s c h e m e III r e q uir es f e w er r es o ur c es,
usi n g si x s y n dr o m es i n c o ntr ast t o t h e ei g ht s y n dr o m es of
s c h e m e I.  T his cr oss o v er b e h a vi or ar o u n d σ = 0. 1 8 is als o
o bs er v e d i n fi v e- q u bit a n d s e v e n- q u bit r e p etiti o n c o d es
( n ot s h o w n i n t h e fi g ur e).

T o c o m pl e m e nt o ur n u m eri c al si m ul ati o ns,  w e a n al yti-
c all y c al c ul at e t h e distri b uti o ns of t h e p ositi o n a n d  m o m e n-
t u m dis pl a c e m e nt err ors a cti n g o n t h e l o gi c al  m o d e aft er
E C, f oll o wi n g  R ef. [ 4 5 ].  B as e d o n l o gi c al err or distri-
b uti o ns,  w e a n al yti c all y o bt ai n t h e l o gi c al err or r at es of
t h e di ff er e nt s c h e m es, as s h o w n i n Fi g. 3( a) .  T h e y ar e i n
g o o d a gr e e m e nt  wit h t h e  M o nt e  C arl o r es ults a n d t h e y
r e v e al a n e v e nt u al cr oss o v er b et w e e n t h e p erf or m a n c e of

s c h e m es I a n d III.  T h e c al c ul ati o n d et ails ar e c oll e ct e d i n
A p p e n di x A .

B.  Fi v e- q u bit c o d e- b as e d c o m p a ris o n

T h e [[ 5, 1, 3]] q u bit c o d e [ 6 6 ] is t h e s m all est q u bit c o d e
t o c orr e ct a n ar bitr ar y si n gl e- q u bit P a uli err or. Its e n c o d er
is s h o w n i n Fi g. 4 . Its  C V v ersi o n is st u di e d i n  R ef. [5 2 ].
Pl u g gi n g i n t his c o d e, t h e t hr e e s c h e m es fr o m Fi g. 1( d)
s p e ci ali z e t o t h e f oll o wi n g:

(I) [[ 5, 1, 3]]- G K P: Z 2
[[ 5, 1, 3]]
− − − → Z ⊗ 5

2

G K P
− − → R ⊗ 5 ,

(II) [[ 5, 1, 3]]- a n al o g: Z 2
G K P
− − → R

[[ 5, 1, 3]]R
− − − − → R ⊗ 5 ,

(III)  G K P-[[ 5, 1, 3]] : Z 2
G K P
− − → R

G K P − [[ 5, 1, 3]]
−− − − − − −→ R ⊗ 5 .

( 4 5)

F or t h e  E C p art of s c h e m e I,  w e first d o  E C o n e a c h  G K P
q u bit a n d t h e n p erf or m P a uli-st a bili z er  m e as ur e m e nts a n d
E C aft er w ar d.

F or t h e  E C p art of s c h e m e II,  w e first  m e as ur e n ulli fi ers,
w hi c h ar e d e fi n e d b y t h e n ulli fi er  m atri x A 1 [ s e e  E q. ( 6)]:

A 1 =

⎡

⎢
⎣

− 1 0 − 1  0  0  0 0 0 1 1
0 − 1 0 − 1  0  1 0 0 0 1
0 − 1 0  0 − 1 0 0 1 1 0
0 0 − 1 0 − 1 1 1 0 0 0

⎤

⎥
⎦ .

( 4 6)

T h e a b o v e  m atri x is e q ui v al e nt t o n ulli fi ers gi v e n b y q u dit
P a uli st a bili z ers [ 7 9 ]:

{Z − 1 I Z − 1 X X , X Z − 1 I Z − 1 X , I Z − 1 X X Z − 1 , X X Z − 1 I Z − 1 }

(f or Z 2 q u bits, Z − 1 = Z ).
I n t h e s e c o n d-l a y er  E C of s c h e m e II,  w e  m e as ur e l o gi c al

G K P st a bili z ers,

U e n c Ŝ q U e n c
† = e i2

√
π ( q̂ 1 − ˆq 2 − ˆq 3 + ˆq 4 − ˆq 5 ) ,

U e n c Ŝ p U e n c
† = e − i2

√
π ( p̂ 1 + ˆq 3 − ˆq 4 ) ,

( 4 7)

o bt ai ni n g s y n dr o m e o ut c o m es R √
π ( ξ1, q − ξ 2, q − ξ 3, q +

ξ 4, q − ξ 5, q ) a n d R √
π ( ξ1, p + ξ 3, q − ξ 4, q ).  T h e err or- c orr e ct e d

q u a dr at ur e aft er t h e first l a y er is ξ i n  E q. ( 1 7).
F or s c h e m e III, if ∀ i ∈ { 1, 2, . . . , n }, z i,q , z i,p

√
2 π ,

t h e err or- c orr e ct e d l o gi c al err or q u a dr at ur es aft er t h e first
l a y er ar e

ξ 1, q =
1

1 1
(5 ξ 1, q − 2 ξ 1, p − 2 ξ 2, p + 3 ξ 3, p + 3 ξ 4, p − 2 ξ 5, p ),

ξ 1, p =
1

1 1
(− 2 ξ 1, q + 3 ξ 1, p + 3 ξ 2, p + ξ 3, p + ξ 4, p + 3 ξ 5, p ).

( 4 8)

I d e all y, ξ 1, q ∼ N (0, 5 σ 2 / 1 1 ) a n d ξ 1, p ∼ N (0, 3 σ 2 / 1 1 ) i n
t h e u n a m bi g u o usl y disti n g uis h a bl e r e gi m e.
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FI G. 4.  T h e fi v e- m o d e e n c o d er U e n c [7 8 ].  H er e, C Z i→ j i s c h o-

s e n t o b e H j C N O T i→ j H
†
j a n d t h e t o p  m o d e i niti all y c o nt ai ns t h e

l o gi c al i nf or m ati o n.

I n t h e n u m eri c al si m ul ati o ns [s e e Fi g. 3( b) ],  w e p erf or m
a  M o nt e  C arl o si m ul ati o n (s e e  A p p e n di x C ) t o st u d y t h e
l o gi c al err or r at es of t h e t hr e e s c h e m es.  T h e r es ults s h o w
t h at s c h e m e I p erf or ms t h e b est,  w hil e s c h e m e II h as t h e
hi g h est l o gi c al err or r at e i n t his r e gi m e.

We b eli e v e t h at t h e di ff er e n c e i n p erf or m a n c e b et w e e n
s c h e m es I a n d III is d u e t o t h e f oll o wi n g. S c h e m e I p er-
f or ms  G K P-t y p e  m o d ul ar q u a dr at ur e c orr e cti o n o n e a c h
m o d e first,  w hi c h r e d u c es i n di vi d u al q u a dr at ur e n ois e
b ef or e it is p ass e d o n t o t h e n e xt l a y er of c orr e cti o n.
S c h e m e III, o n t h e ot h er h a n d,  mi x es s ai d q u a dr at ur e
n ois e vi a U e n c a n d i m pl e m e nts  m o d ul ar c orr e cti o n o n t h e
n − k a u xili ar y  m o d es o nl y aft er mi xi n g.  T h e  mi xi n g r e dis-
tri b ut es t h e i niti all y u nif or m n ois e i n a n as y m m etri c  w a y
a m o n gst t h e  m o d es, o p e ni n g u p t h e p ossi bilit y f or n ois e
fr o m s e v er al q u a dr at ur es t o c o n c e ntr at e o n o n e o ut p ut
m o d e, t h er e b y i n cr e asi n g t h e r es ulti n g n ois e v ari a n c e.  T his
is n ot a n iss u e if t h e v ari a n c e of t h e r es ulti n g a d diti v e n ois e
is  m u c h s m all er t h a n

√
2 π , i n  w hi c h c as e t h e s y n dr o m e z

m o d
√

2 π c a n b e a p pr o xi m at e d b y z .  H o w e v er, o n c e t h e
v ari a n c e of z is c o m p ar a bl e t o

√
2 π , t h e n z m o d

√
2 π c a n

b e q uit e di ff er e nt, l e a di n g t o u n c orr e ct a bl e err ors.

C.  N u m e ri c al si m ul ati o n of S h o r a n d St e a n e c o d es

I n t his s e cti o n,  w e us e t h e s a m e n u m eri c al  m et h o d t o
st u d y t h e err or r at es of t h e [[ 9, 1, 3]] ( S h or) c o d e [ 6 5 ] a n d
t h e [[ 7, 1, 3]] ( St e a n e) c o d e [6 4 ].  B ot h t h e S h or a n d St e a n e
c o d es c a n c orr e ct ar bitr ar y si n gl e- q u bit P a uli err ors.

T h e n u m eri c al r es ult is s h o w n i n Fi g. 5 . S c h e m e III
p erf or ms t h e  w orst i n b ot h c as es, c o m p ar e d t o s c h e m es
I a n d II.  T his n u m eri c al r es ult is e x p e ct e d, a c c or di n g
t o t h e c o nj e ct ur e o n t h e “ err or- c o n c e ntr ati o n ” iss u e of
G K P-st a bili z er c o d es.

We first c o m p ar e t h e p erf or m a n c e of s c h e m e III  wit h
t h e [[ 7, 1, 3]] a n d ł[[ 5, 1, 3]] c o d es, b e c a us e b ot h of t h e m
o nl y i n v ol v e  w ei g ht- 4 st a bili z ers a n d c a n c orr e ct ar bitr ar y
si n gl e- q u bit P a uli err ors.  We fi n d t h at t h e l o gi c al err or
r at es of s c h e m e III ar e si mil ar i n t h e [[ 7, 1, 3]] a n d [[ 5, 1, 3]]

( a)

( b)

FI G. 5.  N u m eri c al si m ul ati o ns of t h e ( a) S h or [[ 9, 1, 3]] a n d ( b)
St e a n e [[ 7, 1, 3]] c o d es.  T h e h ori z o nt al a xis σ r e pr es e nts t h e v ari-
a n c e of t h e  G a ussi a n dis pl a c e m e nt c h a n n el as dis c uss e d i n S e c.
III  D.  T h e v erti c al a xis p e m p r e pr es e nts t h e e m piri c al l o gi c al err or
r at es t h at ar e n u m eri c all y c al c ul at e d b y t h e  m et h o d i n  A p p e n di x
C .  E a c h d at a p oi nt is o bt ai n e d b y a v er a gi n g 1 07 s a m pl es.

c o d es.  T his s u g g ests t h at v ersi o ns of s c h e m e III  wit h  D V
c o d es h a vi n g si mil ar st a bili z er  w ei g hts a n d dist a n c es  will
h a v e si mil ar l o gi c al err or r at es.

F urt h er m or e,  w e c o m p ar e t h e l o gi c al err or r at e of
s c h e m e III  wit h t h e [[ 7, 1, 3]] a n d [[ 9, 1, 3]] c o d es.  We fi n d
t h at s c h e m e III h as a l o w er l o gi c al err or r at e i n [[ 7, 1, 3]]
c o d es t h a n i n t h e [[ 9, 1, 3]] c o d e.  B ot h [[ 7, 1, 3]] a n d [[ 9, 1, 3]]
c a n c orr e ct ar bitr ar y si n gl e- q u bit P a uli err ors.  H o w e v er,
t h e  m a xi m u m st a bili z er  w ei g ht of [[ 7, 1, 3]] c o d e is 4,  w hil e
t h e  m a xi m u m st a bili z er  w ei g ht of [[ 9, 1, 3]] is 6.  T h e c or-
r el ati o n b et w e e n st a bili z er  w ei g hts a n d l o gi c al err or r at es
als o c o ns oli d at es o ur h y p ot h esis of “ err or c o n c e ntr ati o n ”
t h at t h e p erf or m a n c e of s c h e m e III  will b e a ff e ct e d b y
hi g h- w ei g ht st a bili z ers.

T h e l o gi c al err or r at es f or t h e [[ 5, 1, 3]], [[ 7, 1, 3]], a n d
[[ 9, 1, 3]] c o d es usi n g s c h e m e III ar e s h o w n i n  T a bl e I.
We fi n d t h at t h e l o gi c al err or r at es of s c h e m e III [[ 5, 1, 3]]
a n d [[ 7, 1, 3]] ar e o n t h e s a m e s c al e,  w hil e t h e l o gi c al
err or r at e of [[ 9, 1, 3]] is  m u c h gr e at er t h a n f or t h e ot h er
t w o c o d es.  T his f a ct als o c orr o b or at es o ur pr e vi o us err or-
c o n c e ntr ati o n h y p ot h esis.
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T A B L E I. S c h e m e III yi el ds c o m p ar a bl e l o gi c al err or r at es i n
t hr e e di ff er e nt i nst a n c es  w h er e a dist a n c e- 3 c o d e is us e d.  H er e,
w e c h o os e 0. 1 5 ≤ σ ≤ 0. 2 0,  w h er e t h e l o gi c al err or r at es ar e n ot
f ull y s at ur at e d i n all t hr e e c o d es.

σ [[ 5, 1, 3]] c o d e [[ 7, 1, 3]] c o d e [[ 9, 1, 3]] c o d e

0. 1 5 7. 4 1 0 × 1 0 − 5 1. 8 1 0 × 1 0 − 5 3. 7 6 5 × 1 0 − 4

0. 1 6 2. 2 0 7 × 1 0 − 4 5. 8 2 0 × 1 0 − 5 8. 2 1 1 × 1 0 − 4

0. 1 7 5. 5 0 7 × 1 0 − 4 1. 5 4 4 × 1 0 − 4 1. 6 5 9 × 1 0 − 3

0. 1 8 1. 2 3 3 × 1 0 − 3 3. 5 2 5 × 1 0 − 4 2. 9 5 4 × 1 0 − 3

0. 1 9 2. 4 3 1 × 1 0 − 3 7. 3 9 2 × 1 0 − 4 4. 7 7 0 × 1 0 − 3

0. 2 0 4. 3 9 3 × 1 0 − 3 1. 3 7 4 × 1 0 − 3 7. 3 1 9 × 1 0 − 3

V I.  U N BI A S E D  G K P- R E P E TI TI O N  C O D E S

We pr o p os e a n u n bi as e d  G K P-r e p etiti o n c o d e t h at us es
2 n a u xili ar y  m o d es t o si m ult a n e o usl y s u p pr ess t h e v ari-
a n c e of b ot h p ositi o n a n d  m o m e nt u m err ors of a si n gl e
l o gi c al  m o d e  wit h o ut e xtr a q u a dr at ur e s q u e e zi n g.  T h e c o d e
r e q uir es 2n + 1  m o d es a n d all o ws t h e i niti al n ois e v ari-
a n c e σ 2 t o b e s u p pr ess e d t o σ 2 /( n + 1 ). Pr e vi o us  w or k
(s e e  R ef. [4 5 ]) eit h er r e q uir es s q u e e zi n g t o s u p pr ess b ot h
q u a dr at ur es or a c hi e v es si mil ar s u p pr essi o n i n o nl y o n e
q u a dr at ur e vi a t h e  G K P-r e p etiti o n c o d e.

T h e e n c o di n g cir c uit U e n c f or t his c o d e is s h o w n i n Fi g. 6
a n d  w e pr o c e e d t o pr o v e o ur st at e d cl ai ms usi n g t h e f or-
m alis m of  R ef. [ 4 5 ].  We d o n ot c o n c at e n at e t his c o d e  wit h
a q u bit c o d e as is d o n e i n t h e f or m alis m of S e c. I V.

T h e  m ai n i d e a of c a n o ni c al  G K P-r e p etiti o n c o d es is
t o pr o p a g at e t h e p ositi o n err or ξ 0, q t o t h e p ositi o n s y n-
dr o m e of a u xili ar y  m o d es a n d t h e n p erf or m t h e  m a xi m u m-
li k eli h o o d esti m ati o n.  A p pl yi n g it t o o ur c as e,  w e l a b el t h e
l o gi c al  m o d e b y 0; t h e r est of t h e 2n m o d es ar e a u xili ar y
m o d es.

T h e err or s y n dr o m es z aft er t h e d e c o di n g cir c uit fr o m
Fi g. 6 c a n b e  writt e n as

z 0, q = R √
π (

n

k = 1

ξ k ,p − ξ 0, p ),

FI G. 6.  T h e e n c o d er of u n bi as e d  G K P-r e p etiti o n c o d e U e n c .
T h e c o ntr oll e d- d e n ot es a n i n v ers e- S U M g at e.

z 0, p = R √
π ( ξ 0, q −

2 n

k = n + 1

ξ k ,p ),

z j ,q = R √
2 π ( ξ j ,q + ξ 0, q ), 1 ≤ j ≤ n ,

z l,q = R √
2 π ( ξ l,q +

n

k = 1

ξ k ,p − ξ 0, p ), n + 1 ≤ l ≤ 2 n ,

z s,p = R √
2 π ( ξ s,p ), 1 ≤ s ≤ 2 n . ( 4 9)

T h e l o gi c al P a uli o p er at ors f or t his c o d e ar e

X = e x p − i
√

π q̂ 0 −

2 n

k = n + 1

p̂ k ,

Z = e x p i
√

π − ˆp 0 +

n

k = 1

p̂ k .

( 5 0)

T h e st a bili z ers ar e

Ŝ 0, q = Z
2

= e x p − 2 i
√

π q̂ 0 −

2 n

k = n + 1

p̂ k ,

Ŝ 0, p = X
2

= e x p 2 i
√

π − ˆp 0 +

n

k = 1

p̂ k ,

Ŝ j ,q = e x p i
√

2 π ( q̂ j + ˆq 0 ) , 1 ≤ j ≤ n ,

Ŝ l,q = e x p i
√

2 π q̂ l +

n

k = 1

p̂ k − ˆp 0 ,

n + 1 ≤ j ≤ 2 n ,

Ŝ s,p = e x p − i
√

2 π p̂ s , 1 ≤ s ≤ 2 n .

( 5 1)

H er e, Ŝ 0, q a n d Ŝ 0, p ar e t h e  G K P st a bili z ers of l o gi c al
m o d es t h at  will b e us e d i n t h e s e c o n d l a y er of  E C i n
s c h e m e III.  T h e l ast t hr e e li n es of  E q. ( 5 0) ar e t h e
c a n o ni c al  G K P st a bili z ers us e d i n t h e first l a y er of  E C.
Si mil ar t o t h e c a n o ni c al  G K P-r e p etiti o n c o d es,  w e us e
m a xi m u m li k eli h o o d t o esti m at e t h e  m ost pr o b a bl e q u a dr a-
t ur e err or ξ ∗ c o m p ati bl e  wit h a gi v e n  m e as ur e m e nt r es ult
(z 1, q , . . . , z 2 n ,q , z 1, p , . . . , z 2 n ,p ) s u c h t h at |ξ |2 i s  mi ni mi z e d.
Si n c e t h e v ari a n c e of e a c h q u a dr at ur e n ois e is pr o p orti o n al
t o n , t h e s m all- err or r e gi m e t o all o w f or a p pr o xi m ati n g
R √

2 π (z ) = z is
√

n σ
√

2 π .
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We c a n  writ e |ξ |2 i n t er ms of z ,

|ξ |2 = z 0, p +

2 n

k = n + 1

z k ,p

2

+

2 n

k = 1

(z k ,p ) 2 +

n

k = 1

z k ,p − z 0, q

2

+

n

k = 1

⎛

⎝ z k ,q − z 0, p −

2 n

j = n + 1

z j ,p

⎞

⎠

2

+

2 n

k = n + 1

(z k ,q − z 0, q )
2 . ( 5 2)

F oll o wi n g t h e  m a xi m u m-li k eli h o o d  E C of l a y er 1 of
s c h e m e III (s e e S e c. I V  C),  w e o bt ai n t h e  m ost pr o b a bl e
err ors o n b ot h q u a dr at ur es:

z 0, q =
1

n + 1

n

k = 1

z k ,p +

2 n

k = n + 1

z k ,q ,

z 0, p =
− 1

n + 1
(n + 1 )

2 n

k = n + 1

z k ,p −

n

k = 1

z k ,q ,

( 5 3)

w hi c h a ct o n t h e l o gi c al  m o d e aft er d e c o di n g.  T h e a b o v e

e q u ati o n is e q ui v al e nt t o
z 0, q
z 0, p

= A 2 ξ .

Fi n all y,  w e p erf or m  E C b y s u btr a cti n g t h e a ct u al q u a dr a-
t ur e err or b y t h e esti m at e d v al u es.  T h e r esi d u al n ois e
v e ct or o n p ositi o n a n d  m o m e nt u m q u a dr at ur es is t h e n

ξ fi n al, l = A 2 (ξ − ξ ∗ ) =
z 0, q − z 0, q

z 0, p − z 0, p
, ( 5 4)

w h er e

z 0, q − z 0, q =
1

n + 1
ξ 0, p −

2 n

k = n + 1

ξ k ,q ∼ N 0,
σ 2

n + 1
,

z 0, p − z 0, p =
1

n + 1
ξ 0, q −

n

k = 1

ξ k ,q ∼ N 0,
σ 2

n + 1
.

( 5 5)

T his c o nstr u cti o n c a n si m ult a n e o usl y s u p pr ess l o gi c al
p ositi o n a n d  m o m e nt u m err or  wit h o ut e xtr a s q u e e zi n g.
H o w e v er, u nli k e t h e ori gi n al  G K P-r e p etiti o n c o d e,  w hi c h
h as a s y n dr o m e  wit h c o nst a nt v ari a n c e f or a gi v e n v ari a n c e
of p h ysi c al n ois e σ 2 , t h e u n bi as e d  G K P-r e p etiti o n c o d e h as
a s y n dr o m e q u a dr at ur e t h e v ari a n c e of  w hi c h s c al es as n ,
m e a ni n g t h at t h er e is at  m ost a li n e ar s u p pr essi o n of l o gi c al
err ors.  T h e c o nstr u cti o n of a f a mil y of c a n o ni c al  G K P-
st a bili z er c o d es t h at c a n q u a dr ati c all y s u p pr ess b ot h l o gi c al
p ositi o n a n d  m o m e nt u m dis pl a c e m e nt err or  wit h s y n dr o m e
i n d e p e n d e nt of n wit h o ut s q u e e zi n g is a n i nt er esti n g o p e n
q u esti o n.

VII. S U M M A R Y  A N D  DI S C U S SI O N

It’s n ot a b o ut t h e c o d e, it’s a b o ut t h e d e c o d er.
— err or- c orr e cti o n l or e

We st u d y a n d b e n c h m ar k t hr e e s c h e m es e n c o di n g q u bits
i nt o h ar m o ni c os cill at ors utili zi n g c o n c at e n ati o ns of v ar-
i o us q u bit a n d b os o ni c e n c o di n gs.  W hil e t h e e n c o di n g
cir c uits f or all of t h e s c h e m es f oll o w a si mil ar p att er n, t h e
d e c o d ers a n d err or- c orr e cti n g p erf or m a n c e of t h e s c h e m es
ar e s u bst a nti all y di ff er e nt, r es o n ati n g  wit h t h e a b o v e q u ot e.

A k e y  m oti v ati o n f or t his  w or k is t o g a u g e t h e us ef ul n ess
of t h e r e c e ntl y dis c o v er e d  G K P-st a bili z er c o d es [ 4 5 ] f or
e n c o di n g dis cr et e- v ari a bl e i nf or m ati o n.  We c o n c at e n at e
t h es e  m o d e-i nt o- m o d e c o d es  wit h b o n a fi d e q u bit-i nt o-
m o d e  G K P c o d es [ 3 1 ] i n t h e t hir d of t h e t hr e e c o n c at e n a-
ti o n s c h e m es c o nsi d er e d i n t his  w or k. Pr e vi o us r es e ar c h o n
t h e d e c o di n g of  G K P-st a bili z er c o d es h as b e e n c o n d u ct e d
o n a c as e- b y- c as e b asis. I n t his st u d y,  w e i ntr o d u c e a f or-
m alis m f or a  m a xi m u m-li k eli h o o d d e c o d er t h at all o ws f or
e ffi ci e nt c al c ul ati o n of t h e p erf or m a n c e of g e n er al  G K P-
st a bili z er c o d es.  O ur a p pr o a c h als o s er v es as a r e ci p e
f or c o n d u cti n g  M o nt e  C arl o si m ul ati o ns a n d  w e pr o vi d e
ill ustr ati v e e x a m pl es of t his.

We fi n d t h at t h e p erf or m a n c e of t h e  G K P-st a bili z er
c o n c at e n at e d c o d es c a n v ar y gr e atl y.

I n t h e c as e  w h e n t h e t hr e e c o n c at e n ati o n s c h e m es uti-
li z e d eri v ati v es of t h e r e p etiti o n c o d e, t h e  G K P-st a bili z er
c o d es o ut p erf or m t h e t w o c o n v e nti o n al s c h e m es.  T h e p er-
f or m a n c e of all t hr e e s c h e m es d o es n ot d e p e n d v er y  m u c h
o n t h e ( cl assi c al) dist a n c e of t h e ( bit- fli p) r e p etiti o n c o d e
si n c e, i n all c as es, t h e l o gi c al- err or-r at e c o ntri b uti o ns ar e
d o mi n at e d b y p h as e- fli p err ors.

I n c as es  w h e n t h e t hr e e c o n c at e n ati o n s c h e m es utili z e
d eri v ati v es of ot h er c o d es, s u c h as t h e [[ 5, 1, 3]], [[ 7, 1, 3]],
or [[ 9, 1, 3]] c o d es, t h e  G K P-st a bili z er s c h e m e c o m es i n
eit h er s e c o n d or t hir d pl a c e.  We c o nj e ct ur e t h at t h e  G K P-
st a bili z er s c h e m e p erf or m a n c e is v er y s e nsiti v e t o t h e
w ei g ht of t h e st a bili z ers of t h e u n d erl yi n g c o d e.  G K P-
st a bili z er  E C  w as ori gi n all y d esi g n e d f or t h e li mit of
s m all  G a ussi a n fl u ct u ati o ns.  L ar g er- w ei g ht st a bili z ers c ol-
l e ct fl u ct u ati o ns c o mi n g fr o m  m or e  m o d es, c o n c e ntr ati n g
n ois e i n s u c h a  w a y t h at t his li mit n o l o n g er a p pli es. I n
s u c h c as es,  w e t h us e x p e ct ( a n d o bs er v e) a d e gr a d ati o n i n
t h e p erf or m a n c e of  G K P-st a bili z er  E C.

I n t h e pr o c ess of b e n c h m ar ki n g o ur s c h e m es,  w e r e c ast
m a xi m u m-li k eli h o o d  E C a g ai nst q u a dr at ur e fl u ct u ati o ns
i nt o a st atisti c al esti m ati o n pr o bl e m f or  G K P c o d es,  G K P-
st a bili z er c o d es, a n d a n al o g-st a bili z er c o d es.  We b eli e v e
t h at t h e r es ulti n g st atisti c al i nf er e n c e pr o bl e m is r el at e d t o
c o m pr ess e d s e nsi n g. Si n c e c o m pr ess e d s e nsi n g h as b e e n
st u di e d i n t h e c o nt e xt of q u a nt u m t o m o gr a p h y [ 8 0 ], it  m a y
b e i nt er esti n g t o i n v esti g at e t h e u n d erl yi n g c o n n e cti o ns
b et w e e n o ur s c h e m es a n d t h at  w or k.

O ur s c h e m es all r el y o n t h e us e of  G K P st at es,  w hi c h  w e
s et t o b e t h os e ass o ci at e d  wit h a s q u ar e l atti c e i n t h e p h as e
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s p a c e of a  m o d e.  H o w e v er, gi v e n t h at o ur d e c o di n g pr o-
c ess es distri b ut e t h e i niti all y u nif or m dis pl a c e m e nt n ois e
i n a l o psi d e d  m a n n er a m o n g t h e  m o d es, t h er e is g o o d r e a-
s o n t o c o nsi d er i niti ali zi n g a u xili ar y  m o d es t o  G K P st at es
ass o ci at e d  wit h r e ct a n g ul ar l atti c es.  T h e s h a p e of t h e l at-
ti c e c a n b e a d d e d as a n e xtr a p ar a m et er i n t h e st atisti c al
esti m ati o n pr o bl e m, p ot e nti all y yi el di n g a  m or e e ff e cti v e
d e c o d er.

O ur r es ults ar e a p pli c a bl e t o t h e fi nit e- e n er g y  G K P st at es
i n a r e alisti c s etti n g b y i ntr o d u ci n g a n ot h er  G a ussi a n n ois e
c h a n n el t o t h e i niti ali z ati o n st a g e, b e c a us e t h e fi nit e- e n er g y
G K P st at e is us u all y i m pl e m e nt e d b y a p pl yi n g a n e n v el o p e
o p er at or e x p (− n̂ ) t o a n i d e al  G K P st at e [3 4 ,8 1 ,8 2 ]. F or
t h e 1 r e gi m e,  w e c a n e x p a n d t h e e n v el o p e o p er at or
i n t er ms of a  G a ussi a n dis pl a c e m e nt c h a n n el.

T o w ar d e x p eri m e nt al r e ali z ati o ns, t h e t hr e e  m aj or o bst a-
cl es ar e ( 1) t h e  G K P-st at e pr e p ar ati o n, ( 2) t h e s y n dr o m e
m e as ur e m e nts of t h e  G K P st a bili z ers, a n d ( 3) t h e t w o-
m o d e  G a ussi a n o p er ati o ns.  T h e  m ost pr o misi n g pl atf or ms
f or r e ali zi n g  G K P  E C ar e  mi cr o w a v e c a viti es, o pti c al
s yst e ms, a n d p h o n o ni c  m o d es i n i o n tr a ps.

M ulti m o d e  G a ussi a n o p er ati o ns h a v e l o n g b e e n r e ali z e d
i n t h e o pti c al d o m ai n [5 0 ],  wit h t h e pri m ar y r e m ai n-
i n g di ffi c ult y b ei n g t h e pr e p ar ati o n of  G K P st at es. F or
mi cr o w a v e- c a vit y s yst e ms,  G K P-st at e pr e p ar ati o n a n d
s y n dr o m e  m e as ur e m e nt h a v e r e c e ntl y b e e n i m pl e m e nt e d
[1 3 ,1 7 ] a n d t w o- c a vit y  G a ussi a n o p er ati o ns h a v e b e e n
d e m o nstr at e d i n ot h er a p pli c ati o ns of c a vit y a n d cir c uit
Q E D [ 1 4 ,8 3 – 8 6 ]. F or i o n-tr a p s yst e ms,  G K P-st at e pr e p a-
r ati o n a n d s y n dr o m e  m e as ur e m e nt h a v e als o b e e n si m ult a-
n e o usl y r e ali z e d [ 2 0 ,2 1 ,2 3 ].  R e c e ntl y, t w o- m o d e  G a ussi a n
o p er ati o ns h a v e als o b e e n a c hi e v e d [ 5 1 ].  O v er all,  wit h
t h es e r e c e nt a d v a n c es, it s e e ms v er y li k el y t h at  m ulti m o d e
G K P c o d es  will b e i m pl e m e nt e d i n t h es e t e c h n ol o gi es i n
t h e n e ar f ut ur e.

We b e n c h m ar k o ur c o n c at e n at e d s c h e m es a g ai nst dis-
pl a c e m e nt n ois e o nl y,  w hi c h is j ust t h e ti p of t h e i c e-
b er g.  Asi d e fr o m dis pl a c e m e nt err or, l oss a n d d e p h as-
i n g err ors ar e als o pr e v al e nt i n p h ysi c al s yst e ms.  W hil e
G K P a n d  G K P-st a bili z er c o d es h a v e b e e n d e v el o p e d
wit h tr a nsl ati o n al-t y p e dis pl a c e m e nt n ois e i n  mi n d, it
m a y b e i nt er esti n g t o g e n er ali z e o ur s c h e m es t o  w or k
a g ai nst d e p h asi n g err ors usi n g a u xili ar y  m o d es i n r ot ati o n-
s y m m etri c st at es s u c h as n u m b er- p h as e st at es or c at st at es
[4 3 ].  A n ot h er dir e cti o n  w o ul d b e t o a d a pt o ur s c h e m es
t o bi as e d n ois e [8 7 – 9 1 ], utili zi n g s q u e e zi n g a n d/ or hi g hl y
d ef or m e d  G K P l atti c es [ 3 7 ,9 2 ,9 3 ].

A C K N O W L E D G M E N T S

We t h a n k  K y u n gj o o  N o h,  M o h a m m a d  H af e zi, a n d
A nt h o n y J.  Br a d y f or h el pf ul dis c ussi o ns, as  w ell as  H e nr y
P fist er f or p assi n g o n err or- c orr e cti o n l or e i n t h e f or m
of t h e q u ot e  m e nti o n e d n e ar t h e e n d of t his p a p er.  Y. X.
a n d  E.-J. K.  w er e s u p p ort e d b y  Ar m y  R es e ar c h  O ffi c e

( A R O)  Gr a nt  N o.  W 9 1 1 N F- 1 5- 1- 0 3 9 7,  N ati o n al S ci e n c e
F o u n d ati o n Q u a nt u m  L e a p  C h all e n g e I nstit ut es ( Q L CI)
Gr a nt  N o.  O M A- 2 1 2 0 7 5 7,  Air F or c e  O ffi c e of S ci e nti fi c
R es e ar c h ( A F O S R) –  M ulti dis ci pli n ar y  R es e ar c h Pr o gr a m
of t h e  U ni v ersit y  R es e ar c h I niti ati v e ( M U RI)  Gr a nt  N o.
F A 9 5 5 0- 1 9- 1- 0 3 9 9, a n d t h e  D e p art m e nt of  E n er g y ( D O E)
Q u a nt u m S yst e ms  A c c el er at or ( Q S A) pr o gr a m.  Y. W.  w as
s u p p ort e d b y t h e  A F O S R u n d er  A w ar d  N o. F A 9 5 5 0- 1 9- 1-
0 3 6 0.  Y. X. t h a n ks  Mi c h a el  G ull a ns a n d  Al e x a n d er  B ar g
f or t e a c hi n g t h e cl assi c al a n d q u a nt u m err or- c orr e cti o n
c o urs es.  Y. X.  w o ul d li k e t o t h a n k  Yil u n  Li a n d  Y uji e  Z h a n g
f or t h eir  m e nt al s u p p ort d uri n g t h e  C O VI D- 1 9 p a n d e mi c.
V. V. A. t h a n ks  Ol g a  Al b ert a n d  R y h or  K a n dr ats e ni a f or
pr o vi di n g d a y c ar e s u p p ort t hr o u g h o ut t his  w or k.

A P P E N DI X  A:  A N A L Y TI C A L  E X P R E S SI O N  O F
L O GI C A L  E R R O R  R A T E S I N  T H R E E- Q U BI T

R E P E TI TI O N  C O D E

I n t his a p p e n di x,  w e gi v e a n al yti c al e x pr essi o ns f or
t h e l o gi c al err or r at es of t h e t hr e e- q u bit r e p etiti o n c o d e
i n t h e di ff er e nt s c h e m es.  H er e,  w e ass u m e t h at t h e p osi-
ti o n a n d t h e  m o m e nt u m dis pl a c e m e nt err ors o n e a c h
os cill at or o b e y t h e s a m e  G a ussi a n distri b uti o n, p σ ( ξ ) =
(2 π σ 2 )− 1 / 2 e x p (− ξ 2 / 2 σ 2 ).

F or t h e [[ 5, 1, 3]] c o d e, c al c ul ati o ns c a n b e p erf or m e d
usi n g t h e s a m e a n al ysis.  T h e y ar e  m or e c o m pli c at e d i n
t h eir e x pr essi o n as  m or e  m o d es ar e i n v ol v e d a n d t h e p osi-
ti o n  m o m e nt u m err ors ar e  mi x e d, s o  w e d o n ot pr es e nt t h e
r es ults.

1. S c h e m e I

S c h e m e I is a n al o g o us t o t h e us u al st a bili z er c o d e.  We
first c al c ul at e t h e err or r at e of p a n d q o n e a c h p h ysi c al
G K P q u bit a n d t h e n  w e c al c ul at e t h e l o gi c al err or r at e.

F or a si n gl e p h ysi c al q u bit, if t h e dis pl a c e m e nt err or
ξ p ,q i ∈ [(2 n − 1 / 2 )

√
π , (2 n + 1 / 2 )

√
π ) , it c a n b e c or-

r e ct e d  wit h o ut i ntr o d u ci n g a n err or.  As  w e s u p p os e t h at
t h e p ositi o n a n d  m o m e nt u m err or o b e y t h e s a m e  G a ussi a n
distri b uti o n, t h e s u c c ess pr o b a bilit y is

p 0 =
n ∈ Z

(2 n + 1 / 2 )
√

π

(2 n − 1 / 2 )
√

π

d ξ p ,q i p σ ( ξp ,q i ). ( A 1)

T h e t hr e e- q u bit r e p etiti o n c o d e c a n c orr e ct at  m ost o n e X
err or.  T his  m e a ns t h at o nl y  w h e n t h er e is n o q err or o n a n y
p h ysi c al  G K P a n d at  m ost o n e p err or is t h er e n o l o gi c al
err or.  T h er ef or e, t h e l o gi c al err or r at e is

Pr o b 1 (l o gi c al err or) = 1 − (p 3
0 + 3 p 0 (1 − p 0 )

2 )(p 3
0

+ 3 p 2
0 (1 − p 0 )). ( A 2)
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2. S c h e m e II

Aft er d e c o di n g, t h e l o gi c al i nf or m ati o n is i n t h e first os cill at or  m o d e, s o  w e c a n  m a k e us e of  E q. ( 2 4) t o c al c ul at e t h e
fi n al l o gi c al err or distri b uti o n i n t er ms of t h e err ors o n t h e p h ysi c al q u bits:

ξ q =
1

3
( ξq 1

+ ξ q 2
+ ξ q 3

) − R √
π

1

3
( ξq 1

+ ξ q 2
+ ξ q 3

) ,

ξ p = ξ p 1
+ ξ p 2

+ ξ p 3
− R √

π ( ξ p 1
+ ξ p 2

+ ξ p 3
).

( A 3)

It is us ef ul t o  m a k e t h e v ari a bl e c h a n g e x p / q = 1
3
( ξ p 1 / q 1

+ ξ p 2 / q 2
+ ξ p 3 / q 3

), y p / q = ξ p 2 / q 2
− ξ p 1 / q 1

, a n d z p / q = ξ p 3 / q 3
−

ξ p 1 / q 1
.  T h e pr o b a bilit y d e nsit y f u n cti o ns of t h e l o gi c al q u a dr at ur e n ois e ξ q a n d ξ p ar e

Q 2 ( ξq ) =
∞

− ∞

d ξ q 1

∞

− ∞

d ξ q 2

∞

− ∞

d ξ q 3
p σ ( ξq 1

)p σ ( ξq 2
)p σ ( ξq 3

) δ ξ q −
1

3
( ξq 1

+ ξ q 2
+ ξ q 3

) + R √
π

1

3
( ξq 1

+ ξ q 2
+ ξ q 3

)

=
∞

− ∞

d x q

∞

− ∞

d y q

∞

− ∞

d z q p σ (x q −
y q

3
−

z q

3
)p σ x q +

2 y q

3
−

z q

3
p σ x q −

y q

3
+

2 z q

3
δ ( ξ q − x q + R √

π (x q ))

=
n ∈ Z

(n + (1 / 2 ))
√

π

(n − (1 / 2 ))
√

π

d x q

∞

− ∞

d y q

∞

− ∞

d z q p σ x q −
y q

3
−

z q

3
p σ x q +

2 y q

3
−

z q

3

× p σ x q −
y q

3
+

2 z q

3
δ ( ξ q + n

√
π ) ,

P 2 ( ξp ) =
n ∈ Z

(1 / 3 )(n + (1 / 2 ))
√

π

(1 / 3 )(n − (1 / 2 ))
√

π

d x p

∞

− ∞

d y p

∞

− ∞

d z p p σ x p −
y p

3
−

z p

3
p σ x p +

2 y p

3
−

z p

3

× p σ x p −
y p

3
+

2 z p

3
δ ( ξ p + n

√
π ) . ( A 4)

T his  m e a ns t h at aft er  E C a n d d e c o di n g, t h e l o gi c al err ors t a k e dis cr et e v al u es of n
√

π , n ∈ Z .  W h e n n t a k es e v e n n u m b ers,
t h er e is n o err or, s o

Pr o b 2 (q is c orr e ct) =
n ∈ Z

(2 n + (1 / 2 ))
√

π

(2 n − (1 / 2 ))
√

π

d x q

∞

− ∞

d y q

∞

− ∞

d z q

× p σ x q −
y q

3
−

z q

3
p σ x q +

2 y q

3
−

z q

3
p σ x q −

y q

3
+

2 z q

3
,

Pr o b 2 (p is c orr e ct) =
n ∈ Z

(1 / 3 )(2 n + (1 / 2 ))
√

π

(1 / 3 )(2 n − (1 / 2 ))
√

π

d x p

∞

− ∞

d y p

∞

− ∞

d z p

× p σ x p −
y p

3
−

z p

3
p σ x p +

2 y p

3
−

z p

3
p σ x p −

y p

3
+

2 z p

3
.

( A 5)

T h e fi n al l o gi c al err or r at e is

Pr o b 2 (l o gi c al err or) = 1 − Pr o b 2 (p is c orr e ct)Pr o b 2 (q is c orr e ct). ( A 6)

3. S c h e m e III

Si mil ar t o s c h e m e II,  w e  m a k e us e of  E q. ( 3 1) t o  writ e t h e l o gi c al err or as

ξ q = ξ q 1
+

1

3
(R √

2 π ( ξ q 2
− ξ q 1

) + R √
2 π ( ξ q 3

− ξ q 1
)),

ξ p = ξ p 1
+ ξ p 2

+ ξ p 3
− R √

2 π ( ξ p 2
) − R √

2 π ( ξ p 3
).

( A 7)
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T h e pr o b a bilit y d e nsit y f u n cti o ns of t h e l o gi c al q u a dr at ur e n ois e ξ q a n d ξ p ar e

Q 3 ( ξq ) =
∞

− ∞

d ξ q 1

∞

− ∞

d ξ q 2

∞

− ∞

d ξ q 3
p σ ( ξq 1

)p σ ( ξq 2
)p σ ( ξq 3

) δ ξ q − ξ q 1
−

1

3
(R √

2 π ( ξ q 2
− ξ q 1

) + R √
2 π ( ξ q 3

− ξ q 1
))

=
∞

− ∞

d x q

∞

− ∞

d y q

∞

− ∞

d z q p σ x q −
y q

3
−

z q

3
p σ x q +

2 y q

3
−

z q

3
p σ x q −

y q

3
+

2 z q

3

× δ ξ q − x q −
1

3
(y q − R √

2 π (y q ) + z q − R 2
√

π (z q ))

=
n y ∈ Z n z ∈ Z

(n y + (1 / 2 ))
√

2 π

(n y − (1 / 2 ))
√

2 π

d y q

(n z + (1 / 2 ))
√

2 π

(n z − (1 / 2 ))
√

2 π

d z q p σ ξ q −

√
2 π

3
(n y + n z ) −

y q

3
−

z q

3
p σ

× ξ q −

√
2 π

3
(n y + n z ) +

2 y q

3
−

z q

3
p σ ξ q −

√
2 π

3
(n y + n z ) −

y q

3
+

2 z q

3
,

P 3 ( ξp ) =
n y ∈ Z n z ∈ Z

(n y + (1 / 2 ))
√

2 π

(n y − (1 / 2 ))
√

2 π

d ξ p 2

(n z + (1 / 2 ))
√

2 π

(n z − (1 / 2 ))
√

2 π

d ξ p 3

× p σ ( ξp 2
)p σ ( ξp 3

)p σ ( ξp −
√

2 π ( n y + n z )).

( A 8)

Wit h t h e l o gi c al err or distri b uti o n,  w e c a n c al c ul at e

Pr o b 3 (q is c orr e ct) =
n ∈ Z

(2 n + (1 / 2 ))
√

π

(2 n − (1 / 2 ))
√

π

d ξ q Q 3 ( ξq ),

Pr o b 3 (p is c orr e ct) =
n ∈ Z

(2 n + (1 / 2 ))
√

π

(2 n − (1 / 2 ))
√

π

d ξ p P 3 ( ξp ),

Pr o b 3 (l o gi c al err or) = 1 − Pr o b 3 (p is c orr e ct)Pr o b 3

(q is c orr e ct).

( A 9)

A P P E N DI X  B:  A N A L Y SI S  O N  T H E  L O GI C A L
G K P- S T A BI LI Z E R  E R R O R  C O R R E C TI O N

I n t his a p p e n di x,  w e s h o w t h at if t h e l o gi c al  G K P-
st a bili z er  E C is t h e l ast l a y er, it d o es n ot c h a n g e t h e fi n al
err or r at e.

We first est a blis h t h e f oll o wi n g l e m m a of i nt e gr al e q ui v-
al e n c e.

L e m m a 1 ( e q ui v al e n c e of i nt e gr als). — L et f : V 2 n →
V 2 n b e a f u n cti o n s u c h t h at η = f (ξ ) . L et η l b e its c o m-
p o n e nt a n d  writ e η l = fl(ξ ) . L et d 2 n ξ ≡ d ξ 1 · · · d ξ 2 n b e t h e
i nt e gr ati o n  m e as ur e a n d l et p (ξ ) b e t h e pr o b a bilit y distri-
b uti o n of t h e v e ct or ξ .  T h e n, ∀ n ∈ Z , t h e f oll o wi n g t w o

i nt e gr als ar e e q ui v al e nt:

(n + 1 / 2 )
√

π

(n − 1 / 2 )
√

π

d η l d 2 n ξ p (ξ ) δ ( η l − fl(ξ ))

=
(n + 1 / 2 )

√
π

(n − 1 / 2 )
√

π

d η l d 2 n ξ p (ξ ) δ ( η l − fl(ξ )

+ R √
π (fl(ξ ))) . (B 1 )

Pr o of. — I nt e gr ati n g a g ai nst d ξ l, t h e cl ai m e d e q ui v al e n c e
i n  E q. ( B 1) is tr a nsf or m e d i nt o

V 1

d 2 n ξ p (ξ ) =
V 2

d 2 n ξ p (ξ ) , ( B 2)

w h er e V 1 = { ξ |fl(ξ ) ∈ [(n − 1 / 2 )
√

π , (n + 1 / 2 )
√

π ) } a n d

V 2 = { ξ |fl(ξ) − R √
π (fl(ξ )) ∈ [(n − 1 / 2 )

√
π , (n + 1 / 2 )

√
π ) }.

It is s u ffi ci e nt t o s h o w t h at V 1 = V 2 . V 1 ⊆ V 2 i s
o b vi o us.  O n t h e ot h er h a n d, if fl(ξ ) − R √

π (fl(ξ )) ∈

[(n − 1 / 2 )
√

π , (n + 1 / 2 )
√

π ) , si n c e fl(ξ ) − R √
π (fl(ξ )) is

a n i nt e g er  m ulti pl e of
√

π ,  w e  m ust h a v e fl(ξ ) −

R √
π (fl(ξ )) = n

√
π .  B y d e fi niti o n, R √

π (fl(ξ )) ∈ [− 1 / 2
√

π , 1/ 2
√

π ) , t h er ef or e  w e h a v e fl(ξ ) = n
√

π + R √
π

(fl(ξ )) ∈ [(n − 1 / 2 )
√

π , (n + 1 / 2 )
√

π ) . S o V 2 ⊆ V 1 , a n d
V 1 = V 2 .  H e n c e  w e pr o v e  E q. ( B 1).

We n o w i n v esti g at e t h e c as es of s c h e m es II a n d III. I n
s c h e m e II, if  w e o nl y d o t h e first r o u n d of  E C, t h e fi n al
err or distri b uti o n is ξ fi n al = A e n c P

⊥
A 1

ξ [ cf.  E q u ati o n ( 1 7)].
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If  w e o nl y f o c us o n t h e p ositi o n a n d  m o m e nt u m err ors of
t h e l o gi c al  m o d es,  w e s u btr a ct t h e c orr es p o n di n g r o ws a n d

o bt ai n ξ (1 )
fi n al, l = A 2 P

⊥
A 1

ξ . I n s c h e m e II, t h e fi n al err or aft er
t w o r o u n ds of  E C is  E q. ( 2 4).  A g ai n, f o c usi n g o n t h e err ors
of l o gi c al  m o d es,  w e h a v e

ξ (2 )
fi n al, l = A 2 P ⊥

A 1
ξ − (A 2 P

⊥
A 1

) T A 2 P
⊥
A 1

A T
2

− 1

R √
π (A 2 P

⊥
A 1

ξ )

= A 2 P
⊥
A 1

ξ − R √
π (A 2 P

⊥
A 1

ξ ) . ( B 3)

C o m p ari n g ξ (1 )
fi n al, l a n d ξ (2 )

fi n al, l wit h  E q. ( B 1),  w e s e e t h at

f (ξ ) = A 2 P
⊥
A 1

ξ .  R e c all t h at f or t h e p ositi o n or  m o m e nt u m
err or of t h e j t h l o gi c al  m o d e, its c orr e ct r at e c a n b e  writt e n
as

7
n

(2 n + 1 / 2 )
√

π

(2 n − 1 / 2 )
√

π

d ξ j ,p / q d 2 n ξ p (ξ ) δ ( ξ j ,p / q

− ξ
(1 / 2 )
fi n al, l

j ,p / q
). (B 4 )

T h er ef or e, s u m mi n g o v er all t h e e v e n i nt e g ers i n  E q. ( B 1)

usi n g eit h er ξ (1 )
fi n al, l or ξ (2 )

fi n al, l pr o d u c es t h e s a m e r es ult.  T his
m e a ns t h at t h e c orr e ct r at e of e a c h l o gi c al  m o d e d o es n ot
c h a n g e aft er t h e s e c o n d r o u n d of l o gi c al  G K P-st a bili z er
E C.

F or s c h e m e III, as dis c uss e d i n S e c. I V  C, if  w e st o p aft er
o nl y t h e first l a y er, t h e err ors o n t h e l o gi c al  m o d es ar e [s e e
E q. ( 2 7)]

ξ (1 )
fi n al, l = A 2 (ξ − ξ ∗ ) = A 2 ξ − A 2 A

T
3 (A 3 A

T
3 ) − 1 R √

2 π (A 3 ξ ) .

( B 5)

Aft er a p pl yi n g l a y er 2, t h e fi n al err ors o n t h e l o gi c al  m o d es
ar e as s h o w n i n  E q. ( 3 1).  We r e p e at it b el o w:

ξ (2 )
fi n al, l = A 2 (ξ − ξ ∗ ) = A 2 ξ − A 2 A

T
3 (A 3 A

T
3 ) − 1 z

− R √
π (A 2 (ξ − A T

3 (A 3 A
T
3 ) − 1 z )), ( B 6)

w h er e z = R √
2 π (A 3 ξ ) .  N o w, a g ai n c o m p ari n g ξ (1 )

fi n al, l, ξ (2 )
fi n al, l,

a n d  E q. ( B 1), it is e as y t o s e e t h at i n t h e c as e of s c h e m e

III, f (ξ ) = A 2 ξ − A 2 A
T
3 (A 3 A

T
3 ) − 1 R √

2 π (A 3 ξ ) .  A p pl yi n g t h e
s a m e ar g u m e nt as i n s c h e m e II ,  w e s e e t h at f or s c h e m e III,
t h e s e c o n d l a y er of l o gi c al  G K P  E C d o es n ot c h a n g e t h e
c orr e ct r at e of e a c h l o gi c al  m o d e eit h er.

Alt h o u g h t h e a b o v e dis c ussi o n f o c us es o n t h e p ositi o n
or  m o m e nt u m err or of a si n gl e  m o d e, it is n ot di ffi c ult t o
s e e t h at t h e err or r at e o n a  m ulti m o d e c o d e s u bs p a c e s h o ul d
b e u n c h a n g e d i n t h e s etti n g of t his a p p e n di x.

A P P E N DI X  C:  N U M E RI C A L SI M U L A TI O N S

1.  M et h o ds

I n t his a p p e n di x,  w e dis c uss h o w t o n u m eri c all y si m u-
l at e di ff er e nt  E C s c h e m es usi n g t h e  M o nt e  C arl o  m et h o d.

T h e  m et h o d c o nsists of t w o st e ps a n d is r e p e at e d M
ti m es:

( 1) I niti aliz ati o n. First,  w e i niti ali z e t w o v e ct ors t o st or e
t h e dis pl a c e m e nt n ois e v e ct or [s e e  E qs. ( 8) a n d
( 9)] a cti n g o n c o d e- w or d q u bits, i. e., t h e v e ct or
(ξ n

q |ξ n
p ) c o nsisti n g of t w o n - di m e nsi o n al v e ct ors ξ n

q

a n d ξ n
p .  T h e dis pl a c e m e nt err or a cti n g o n t h e c o d e-

w or d q u bits is c h ar a ct eri z e d b y t h e 2 n - di m e nsi o n al
c o v ari a n c e  m atri x σ .

( 2) Err or c orr e cti o n .  T h e  E C pr o c e d ur e us es t h e u p d at e
r ul es t h at  w e dis c uss i n S e c. I V, r es ulti n g i n t h e
r esi d u al n ois e v e ct or ξ fi n al .

Aft er  E C,  w e d e c o d e t h e err or- c orr e ct e d q u a dr at ur e
a n d o bt ai n t h e fi n al r esi d u al n ois e v e ct or ξ fi n al ( 2 3).
If ∃ i ∈ { 1, 2, . . . , k }, s u c h t h at R 2

√
π ( ξ j ,q ) ≥ (

√
π / 2 ) or

R 2
√

π ( ξ j ,p ) ≥ (
√

π / 2 ), t h e n t h er e is a n err or a n d  w e u p d at e
t h e err or r at e a c c or di n gl y:

l o gi c al err or r at e ← l o gi c al err or r at e +
1

M
. ( C 1)

Aft er c o m pl eti n g t h e a b o v e M ti m es,  w e c all t h e r es ulti n g
v al u e t h e e m piri c al l o gi c al err or r at e p e m p .

F or t h e err or of t h e  M o nt e  C arl o si m ul ati o ns,  w e r e g ar d
t h e s a m pli n g pr o c ess as a bi n o mi al distri b uti o n: t h e a ct u al
l o gi c al err or r at e is p f or e a c h s a m pl e,  w h er e p d e p e n ds o n
t h e d e c o di n g s c h e m e.  T h e bi n o mi al distri b uti o n is

Pr o b (n o l o gi c al err or ) = Pr o b (x = 0 ) = 1 − p ,

Pr o b (l o gi c al err or) = Pr o b (x = 1 ) = p ,
( C 2)

w h er e x is t h e fr e q u e n c y of l o gi c al err or.  We d e fi n e t h e
e m piri c al l o gi c al r at e p e m p a s

M
i= 1 x i

M
=

N err or

M
= p e m p , ( C 3)

w h er e N err or i s t h e n u m b er of s a m pl es  wit h l o gi c al err ors.
If  w e t a k e M i n d e p e n d e nt a n d i d e nti c al s a m pl es, t h e

pr o b a bilit y of o bt ai ni n g a n e m piri c al l o gi c al err or r at e p e m p

i s

N err or

M
p N err or (1 − p )M − N err or . ( C 4)

T h e c e ntr al li mit t h e or e m t ells us t h at t h e  m e a n v al u e of x
will c o n v er g e t o p a n d t h e v ari a n c e of x / M will c o n v er g e
t o p (1 − p ) /M w h e n M → ∞ .  H e n c e,  w e pl ot err or b ars
of si z e ± p e m p (1 − p e m p ) /M f or t h e n u m eri c al st u di es i n
t h e n e xt s e cti o n.

2.  M o r e n u m e ri c al r es ults

Fi g ur e 7 s h o ws t h e n u m eri c al si m ul ati o n of s c h e m es
I a n d III f or fi v e- q u bit a n d s e v e n- q u bit r e p etiti o n c o d es.
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FI G. 7.  A c o m p aris o n b et w e e n s c h e m es I a n d III f or fi v e- q u bit
a n d s e v e n- q u bit r e p etiti o n c o d es.  T h e r es ult f or s c h e m e I is c al-
c ul at e d a n al yti c all y,  w hil e t h e r es ult f or s c h e m e III is o bt ai n e d
b y  M o nt e  C arl o si m ul ati o n.

D u e t o t h e li mit ati o ns of n u m eri c al si m ul ati o n,  w e d o
n ot i n cl u d e t h e si m ul ati o n of s c h e m e III f or σ < 0. 1 8. I n
t h es e c o d es, u n d er t h e ass u m pti o n of o ur u n bi as e d n ois e
m o d el, t h e fi n al l o gi c al err or is  m ostl y d u e t o t h e p h as e
err or of 1 bit i n b ot h s c h e m es.  T h er ef or e,  w e e x p e ct t h at
t h e cr oss o v er of t h e l o gi c al err or r at es b et w e e n t h e t w o
s c h e m es  will h a p p e n at r o u g hl y t h e s a m e σ , r e g ar dl ess of
t h e n u m b er of p h ysi c al  m o d es.

Fi g ur e 8 d e m o nstr at es t h e c h a n gi n g of t h e l o gi c al err or
r at es  wit h r es p e ct t o t h e s h a p e of t h e  G K P l atti c e.  T h e
p ar a m et er a is d e fi n e d s o t h at t h e s q u e e zi n g c h a n g es p̂ →√

α p̂ a n d q̂ → (1 /
√

α ) q̂ .  C orr es p o n di n gl y, t h e p eri o d i n
q̂ i s  m ulti pli e d b y

√
α ,  w hil e t h e p eri o d i n p̂ i s  m ulti-

pli e d b y 1 /
√

α .  T his s h o ws t h at t h e disti n g uis h a bilit y of
t h e s y n dr o m e  m e as ur e m e nts c a n b e i m pr o v e d b y a p pl yi n g
s q u e e zi n g t o  G K P  m o d es.

A P P E N DI X  D:  Q U DI T  V E R SI O N  O F
G K P- S T A BI LI Z E R  C O D E S

I n t his a p p e n di x,  w e d e m o nstr at e t h e q u dit v ersi o n of
t h e  G K P-st a bili z er c o d e.  H er e,  w e d e fi n e t h e q u dit P a uli
m atri c es t o b e

X =

d − 1

j = 0

|j + 1 j | , Z =

d − 1

j = 0

ω j |j j | , ( D 1)

w h er e ω = e i2 π / d .  We d e fi n e t h e C N O T g at e t o b e

C N O T 1 → 2 |x ⊗ | y = | x ⊗ | (x + y ) m o d d . ( D 2)

H er e,  w e us e t h e t w o- m o d e  G K P-r e p etiti o n c o d e [ 4 5 ] t h at
e n c o d es t h e l o gi c al i nf or m ati o n of a d at a q u dit i nt o a t w o-
q u dit s yst e m as a n e x a m pl e.  L et t h e q u a nt u m st at e of t h e

d at a q u bit b e |ψ = d − 1
x = 0 |x ,  w h er e |x is t h e ei g e nst at e

of Z wit h ei g e n v al u e ω x .

( a)

( b)

FI G. 8.  T h e p erf or m a n c e of s c h e m es I a n d III f or r e ct a n gl e
G K P l atti c es. ( a) Si m ult a n e o us s q u e e zi n g of all t h e  m o d es p̂ →√

α p̂ , q̂ → (1 /
√

α ) q̂ f or s c h e m e I. ( b) S q u e e zi n g of o nl y t h e
a u xili ar y  m o d e p̂ →

√
α p̂ , q̂ → (1 /

√
α ) q̂ f or s c h e m e III.  T h e

v erti c al a xis i n b ot h s u b pl ots r e fl e cts t h e r ati o of t h e l o gi c al err or
r at e t o t h e l o gi c al err or r at e of t h e u ns q u e e z e d (α = 1) s c e n ari o.

T h e a u xili ar y q u dit is i niti ali z e d t o a c a n o ni c al q u dit-
G K P st at e

|G K P q u dit =
1

√
d / r

d / r− 1

m = 0

|r m , ( D 3)

w hi c h is st a bili z e d b y X r a n d Z r .  T h e s e c o n d st a bi-
li z er i m pli es a n a d diti o n al c o n diti o n t h at (2 π r 2 / d ) m o d
2 π = 0.

Si mil ar t o t h e r e g ul ar t w o- m o d e c a n o ni c al  G K P-
r e p etiti o n c o d e, t h e e n c o di n g cir c uit is a C N O T 1 → 2 :

C N O T 1 → 2 |ψ ⊗ | G K P q u dit =

d − 1

x = 0

d / r− 1

m = 0

ψ ( x )
√

d / r
|x |r m + x .

( D 4)

We t h e n a p pl y a d diti v e P a uli err or X
a 1
1 Z

c 1
1 X

a 2
2 Z

c 2
2 ,

w h er e a 1 , c 1 , a 2 , a n d c 2 ar e II D z er o- m e a n r a n d o m

0 2 0 3 4 2- 1 9
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v ari a bl es:

| = X
a 1
1 Z

c 1
1 X

a 2
2 Z

c 2
2

d − 1

x = 0

d / r− 1

m = 0

ψ ( x )
√

d / r
|x |r m + x

=
1

√
d / r

d − 1

x = 0

d / r− 1

m = 0

e iω [(r m + x )c 2 + x c 1 ]ψ ( x ) |x + a 1

|r m + x + a 2 ( D 5)

We t h e n a p pl y t h e d e c o di n g cir c uit

C N O T
†
1 → 2 | =

d − 1

x = 0

e iω x (c 1 + c 2 ) ψ ( x ) |x + a 1

d / r− 1

m = 0

e iω r m c 2

√
d / r

|r m + a 2 − a 1

= X
a 1
1 Z

c 1 + c 2
1 |ψ X

a 2 − a 1
2 Z

c 2
2 |G K P q u dit .

( D 6)

Si n c e t h e c o d e dist a n c e of t h e a n cill a is r, if |a 2 − a 1 |
a n d |c 2 | ar e s m all er t h a n r/ 2, t h e n  w e c a n e xtr a ct t h e
a 2 − a 1 a n d c 2 b y  m e as uri n g t h e st a bili z er of a u xili ar y
q u dit ( X r

2 a n d Z r
2 ).  H e n c e  w e c a n c orr e ct t h e X err or a ct-

i n g o n t h e d at a q u dit b y a p pl yi n g  E C Z
− c 2
1 X

(1 / 2 )(a 2 − a 1 )
1 . B y

ass u mi n g t h at a 2 − a 1 a n d c 2 li e i n t h e u n a m bi g u o usl y dis-
ti n g uis h a bl e r a n g e [− r/ 2, r/ 2], t his err or- c orr e cti n g c o d e
c a n r e d u c e t h e v ari a n c e of t h e X err or a cti n g o n t h e d at a
q u dit b y 5 0 %  wit h o ut a m plif yi n g t h e v ari a n c e of t h e Z
err or.
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