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Concatenating bosonic error-correcting codes with qubit codes can substantially boost the error-
correcting power of the original qubit codes. It is not clear how to concatenate optimally, given that there
are several bosonic codes and concatenation schemes to choose from, including the recently discovered
Gottesman-Kitaev-Preskill (GKP)—stabilizer codes [Phys. Rev. Lett. 125, 080503 (2020)] that allow pro-
tection of a logical bosonic mode from fluctuations of the conjugate variables of the mode. We develop
efficient maximum-likelihood decoders for and analyze the performance of three different concatenations
of codes taken from the following set: qubit stabilizer codes, analog or Gaussian stabilizer codes, GKP
codes, and GKP-stabilizer codes. We benchmark decoder performance against additive Gaussian white
noise, corroborating our numerics with analytical calculations. We observe that the concatenation involv-
ing GKP-stabilizer codes outperforms the more conventional concatenation of a qubit stabilizer code with
a GKP code in some cases. We also propose a GKP-stabilizer code that suppresses fluctuations in both
conjugate variables without extra quadrature squeezing and formulate qudit versions of GKP-stabilizer

codes.
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I. INTRODUCTION

Quantum error correction (QEC) is one of the most chal-
lenging tasks in building large-scale quantum computers.
Its basic idea is to encode a few logical degrees of freedom
into a larger physical system. QEC is required if we are to
scale up quantum devices both in terms of the length of a
quantum communication link or the computational power
of a quantum computer.

On one side of the large field of EC are the well-
established qubit or discrete-variable (DV) stabilizer codes
[1,2], some of which allow us to suppress noise to arbi-
trary accuracy given sufficient physical resources once the
physical error rate is below a certain threshold value—a
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manifestation of the all-important threshold theorem [3—6].

On the other side are the bosonic codes [7], which are
instead typically designed to satisfy existing resource con-
straints and which are naturally compatible with several
continuous-variable (CV) quantum platforms, including
microwave cavities [8—19] and motional degrees of free-
dom of trapped ions [20-23]. The analog information
given by the infinite-dimensional nature of the bosonic
Hilbert space also allows for EC schemes that are not
available in the DV world [24-30].

It is fruitful to consider the marriage of the abstract
yet scalable qubit paradigm with the practically oriented
bosonic paradigm, in the hope of bringing out the advan-
tages of both. This direction has so far proven to be promis-
ing, with the analog-syndrome information provided by a
CV layer of correction substantially increasing the correct-
ing power of the outer DV layer in a concatenated scheme.
For example, there have been corroborating studies on
concatenating a particular bosonic code—the Gottesman-
Kitaev-Preskill (GKP) code [31-33]—with several DV
codes, such as the repetition code [24], the [[4,2,2]
code [24,25], the surface codes [26,27,29,32,34-37], the
color code [38], the XZZX surface code [39], and the
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lifted-product quantum low-density-parity-check (QLDPC)
code [40].

Given the abundance of bosonic codes [41—44], there
remain other less well-studied ways of encoding qubits
into modes that may outperform the aforementioned estab-
lished DV-CV concatenation scheme in either scalability
or resource efficiency. Moreover, due to the discovery of
GKP-stabilizer codes [45], it is possible to suppress small
fluctuations of the position and momentum quadratures
of a logical mode by encoding it into several physical
modes. Previous studies show that analog-stabilizer codes
utilizing only Gaussian resources are limited and can-
not protect against Gaussian noise [27,46,47]. The key
concept of GKP-stabilizer codes is to introduce auxil-
iary modes initialized in GKP states [31,48,49] as non-
Gaussian resources to circumvent these no-go theorems.
Hence, it is interesting to investigate the performance
of GKP-stabilizer codes when they are used for protect-
ing a discrete-variable (GKP) subspace of a CV mode.
Given the recent advances in the realization of GKP codes
[13,17,20,21,23], and bosonic gate operations [50,51], the-
oretical and numerical studies of GKP codes and their
various concatenations make up an imperative topic. A
goal of this work is to begin to probe whether utilizing this
new code in a concatenation scheme can provide advan-
tages over established schemes as well as schemes using
other mode-into-mode bosonic codes [52—59].

The performance of single-mode bosonic codes has been
studied in Ref. [60]. However, analytical and numerical
studies of multimode bosonic codes are far from being
exhausted, due to the lack of a unified formalism for CV
codes. In particular, the motivational GKP-stabilizer work

[45] focuses substantially on proof-of-principle examples
and lacks a general decoder. In this work, we also pro-
vide a unified framework to describe maximum-likelihood
decoding against independent and identically distributed
(IID) Gaussian quadrature noise for three different con-
catenation schemes, one of which includes GKP-stabilizer
codes.

II. SUMMARY OF RESULTS

We study three types of concatenated encodings of
qubits into modes that consist of various combinations of
the qubit and bosonic [61] stabilizer codes (see Fig. 1). Our
motivation is to shed light on which combinations of such
qubit-into-mode and mode-into-mode encodings perform
the best under standard noise models.

Our first encoding, which we call scheme I, consists
of first encoding qubits into a qubit [n, k,d] stabilizer
code [1,2] and then further encoding each qubit into its
own mode using the GKP qubit-into-mode code [31]. This
scheme is the one most commonly used when concatenat-
ing qubit and bosonic codes [24-27,32,34-40]. The second
encoding—scheme Il—is essentially the reverse of the
first: each qubit is first encoded into a “logical mode” using
the GKP code, which is subsequently encoded into an ana-
log [[n,k,d]lr bosonic stabilizer code [52,53,62,63]. The
third encoding—scheme III—substitutes the analog code
of scheme II with a GKP-stabilizer mode-into-mode code
[45].

We first observe that the encoding maps for all three
schemes are of a similar type (see Sec. 11I). We show that
the encoding maps for all three schemes can be formulated

(a) ’I \./ (b) \./ (c) 1 ( \
i \./ \./ k GKP-qubit o))
\./ logical state k
k+1 Uenc

(d) Scheme Encoding INIT) 5 —Fk [INIT) =———
(D Stabilizer-GKP  zF k4, 7on CKP, pon 10y rp a”’;‘lhary .

(1) GKP-analog 29k SKP, pok [k dhy pon |5 _ ) Modes [INIT) Z—

(I) GKP-stabilizer ~z§* SXL; ek GKEstablleer, pen  qRp) .

FIG. 1. A summary of encoders. (a) A sketch of the conventional discrete-variable (DV) and continuous-variable (CV) concatenated
encoding class “DV-DV-CV,” where logical qubits are encoded into an outer multiqubit code and each qubit of the outer code is further
encoded into a single physical mode. (b) An alternative concatenated encoding class “DV-CV-CV,” where each logical qubit is encoded
into an outer single-mode code and the modes are further encoded into a multimode CV code. (¢) Encoding maps for our concatenated
codes can be formulated as Gaussian operations Uy, acting on k “logical” modes encoded in GKP states and » — k modes in a fixed
initial state |INIT). (d) A table of the concatenated encodings considered in this work. The “Stabilizer-GKP” DV-DV-CV encoding
scheme I is the conventional concatenation of a qubit [[n, k, d] stabilizer outer code [1,2] with a GKP inner code [31]. The “GKP-
analog” DV-CV-CV encoding scheme II is a concatenation of a single-mode GKP outer code with an analog [[n, k, ]| stabilizer code
[52,53,62,63]. The “GKP-stabilizer” DV-CV-CV encoding scheme III is a concatenation of a single-mode GKP outer code with an
n-mode GKP-stabilizer code [45]. The initial state [INIT) for the encoding circuits for the three codes, shown in the third column of the
table, is a GKP logical-zero state |0)gkp in Eq. (2), the position state |§ = 0), or the canonical GKP state |GKP) in Eq. (7), respectively.
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as a Gaussian unitary acting on k logical GKP qubits ten-
sored with n — k auxiliary resource states that are either
GKP states or position eigenstates (see Fig. 1).

As for decoding, we recast the problem of finding
the most likely error under zero-mean Gaussian displace-
ment noise as a linear optimization problem for scheme
IT and simplify said problem for scheme IlI to a closely
related linear optimization (see Sec. [V). Both maximum-
likelihood optimizations can be solved exactly in a time
that is polynomial in the total number of modes n of the
encoding, yielding an efficient decoder for analog- and
GKP-stabilizer codes in the process.

To benchmark the three schemes, we numerically com-
pare each scheme using repetition, [5,1,3] and [7,1,3]]
(Steane) [64], and [[9, 1, 3] (Shor) [65] codes (see Sec. V).
To generate the examples, we fix the GKP codes to be the
same for each scheme, meaning that we are left with the
choice of the qubit stabilizer code for scheme I, the analog-
stabilizer code for scheme II, and the GKP-stabilizer code
for scheme IlI. We compare the performance of the dif-
ferent schemes with respect to a fixed stabilizer code. For
example, the comparison based on the repetition code (see
Sec. V A) utilizes the qubit repetition code for scheme I, its
analog version [53] for scheme II, and the GKP-repetition
code [45] for scheme IIl. The comparison based on the
five-qubit code (see Sec. V B) utilizes, respectively, the
five-qubit code [66], its analog version [52], and the GKP-
[5, 1, 3] mode-into-mode code [45]. We corroborate some
of our numerics by analytically calculating logical error
probabilities (see Sec. IV D).

Scheme II is used, in part, for reference in our numer-
ical comparisons because the outer analog codes are
ineffective against Gaussian noise [27,46,47]. However,
since the inner code uses non-Gaussian resources, these
no-go theorems technically do not apply to the entire
scheme.

We observe that scheme III outperforms scheme 1
in the repetition-code comparison by a constant factor
in the intermediate noise regime despite the number of
syndromes and the decoding complexity being substan-
tially higher. However, when the number of physical
modes grows, as in the following comparisons of the
[5,1,30,07, 1,31, and [9,1,3] codes, scheme I easily
surpasses the other schemes.

Scheme II performs the worst in the repetition and
[5,1,3] code comparisons, while attaining second place
for the [[7,1,3] and [9,1,3] comparisons. Despite the
existing no-go theorems [27,46,47] showing the inability
of analog-stabilizer codes to correct the 1ID Gaussian noise
considered in this work, scheme I still exhibits EC ability.
This is likely due to the fact that the no-go theorem applies
only to a part of scheme Il and that the entire scheme
uses non-Gaussian resources in the form of a logical GKP
encoding. The performance of scheme II is affected by
the interplay between the deformation of the logical noise

quadrature by the analog-stabilizer encoding and the lattice
shape of the initial logical GKP states.

Our findings for the repetition-code comparison high-
light that scheme III can be on par with the more widely
used scheme I while being hardware efficient in that it
requires fewer syndromes, especially when the physical
mode number is small. When the system size grows,
scheme III is surpassed by scheme I in the [5,1,3]
code and further by scheme II in the [[7,1,3] and
9, 1,31 codes. We postulate that this phenomenon hap-
pens because scheme-Ill encoding suffers from “error
concentration” whenever a GKP-stabilizer code with high
stabilizer weights is used. Since scheme II1 does not have
an outer layer of GKP EC like scheme I, directly measur-
ing a high-weight stabilizer can cause noise on each mode
in the support of the stabilizer to add up to an uncorrectable
error.

Our encoding and decoding schemes can handle general
GKP code lattices. This is demonstrated by a study of the
error rate with respect to GKP lattice shapes, taking the
repetition code as an example (see Appendix C2). From
this perspective, the three schemes are sample points from
a family of continuously deformed schemes. The ability of
deformation enables us to design (outer) encoding meth-
ods adapted to various (inner) stabilizer codes and error
models.

Finally, we propose a variant of the GKP-repetition
code, which simultaneously suppresses position and
momentum error without extra quadrature squeezing (see
Sec. VI). Previous work [45] either requires squeezing to
suppress both quadratures or achieves similar suppression
in only one quadrature via the GKP-repetition code. We
also present a generalization of GKP-stabilizer codes to
qudits in Appendix. D.

II1. ENCODINGS AND ERROR MODEL

We describe encoding circuits for the three schemes
listed in Fig. 1(d). We finish this section with a description
of the displacement error model chosen for our compari-
Son.

A. Scheme I: Stabilizer-GKP encoding

In this encoding, we first make use of an [n, k, d] stabi-
lizer code [1,2] to encode k logical qubits into n physical
qubits. Then, each of the n physical qubits is encoded into a
harmonic oscillator using the GKP code corresponding to a
square lattice in phase space [31]. The combined encoding
map is from the space of k qubits into that of n oscillators,

stabilizer-GKP:  Z&% LM 7en S8 pon ()

where Z; (R) represents a qubit (mode).
The stabilizer-GKP encoding can be performed by
the following procedure, illustrated in the left panel of
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Fig. 1(a). Given n harmonic oscillator modes, we pre-
pare them in GKP states, in which & modes carry logical
information of the k logical qubits and the remaining
(n — k) auxiliary modes are in the logical-zero state of the
square-lattice GKP code,

0)akp = ) _ 1§ = 2ny/7), (2)

neL

where |§ = k) is the non-normalizable oscillator position
state at position k. Then, we act with a Gaussian circuit
Uenc to perform the [[n, k, d]] stabilizer encoding at the level
of GKP qubits. A code word of the resulting code is simul-
taneously stabilized by the stabilizers of the inner GKP
codes and the outer embedded qubit stabilizer codes.

B. Scheme II: Analog-stabilizer encoding

In this encoding, each of the k logical qubits is first
encoded into a mode using the GKP code. Afterward,
the k& “logical modes” are encoded into n physical modes
using an [n, k,d]]r analog-stabilizer code [52,53,62,63].
The combined encoding map can be represented as the
following:

GKP-analog: Z$* GKP rok [PAAR pon 3)

Despite the fact that the scheme I and scheme II encodings
arise from different concatenation orders [see Fig. 1(a)],
the difference in the circuit-level implementation lies only
in the initial state of the auxiliary modes. In other words,
the encoding of this scheme can be performed by the same
circuit as the previous encoding from Fig. 1(c) but with the
n — k ancillary modes each initialized in the position state
1g = 0).

Before the Gaussian unitary U, is applied in the afore-
mentioned circuit, the initial state is stabilized by GKP
stabilizers acting on the first £ modes and annihilated by
position operators {g;|k <j < n} of the auxiliary n — k
modes. After the unitary is applied, code words are simul-
taneously stabilized by logical GKP stabilizers and anni-
hilated by the n — k nullifiers Ug,.q; Ul of the analog
code.

Since Ug, is a Gaussian transformation, its action on the
position (§) and momentum (p) quadrature operators of the
mode can equivalently be represented as a 2rn-dimensional
symplectic matrix Aene acting on the 2rn-dimensional vector
of operators [54,67],

']-r)rn:nc}:[}erlc‘r = ACI‘IC}:) sﬁn)Ts
4)

with7 = (q1,...,qn, P15 - -

where 97 is the transpose of ¥. Determining how a partic-
ular quadrature j transforms under U, amounts to taking
the jth component of both sides. On the right-hand side,
this yields an inner product of the j th row of Aeyc with 7.

We are often interested in how a particular subset of
quadratures transforms, for which we only need the set
of corresponding rows of A.,.. For such purposes, it is
convenient to decompose the encoding matrix into four
rectangular submatrices [27, Appendix. E],

G
ABDC - (g) -

The submatrix combinations relevant to schemes II and II1

are
Ai1=G, A= (g), Az = (g) (6)

For the analog-stabilizer encoding of scheme 11, 4; repre-
sents how the n — k auxiliary position operators g; forj €

k x 2n matrix

(n — k) x 2n matrix
k x 2n matrix

(n — k) x 2n matrix

)

{k+1,...,n} are transformed into nullifiers Upp.g; UIDG
and A; determines how the positions and momenta of k
logical modes are encoded.

C. Scheme III: GKP-stabilizer encoding

This encoding is a modification of scheme II such
that the mode-into-mode outer encoding is now a GKP-
stabilizer code [45] (see also Refs. [48,49]). The corre-
sponding circuit is yet again of the same type as that
depicted in Fig. 1(c) but with the auxiliary modes initial-
ized in the so-called canonical GKP state (aka the grid
state or the trivial GKP code):

|GKP) = ) |§ = nv/2n). (7)

nek

This state is the unique simultaneous eigenstate of the
canonical GKP stabilizers V2™ and e~V with eigen-
value +1, spanning the one-dimensional code space of the
trivial square-lattice GKP code. The state differs from the
logical square-lattice GKP state (2) in the spacing between
the superposed position states.

The canonical GKP state can be transformed from
[0)gkp via squeezing. As such, the encoding of scheme I1I
only differs from that of scheme 1 by single-mode squeez-
ing acting on each auxiliary mode. Encoded states are
stabilized by the 2(n — k) canonical GKP stabilizers as
well as the 2k square-lattice GKP stabilizers of the first
k modes, all conjugated by Uep.

D. Displacement error model

We adopt a standard error model throughout this paper.
In order to provide a baseline code comparison, we assume
that the encoding, syndrome measurement, and decod-
ing for each scheme are noiseless. The only source of

020342-4



QUBIT-OSCILLATOR CONCATENATED CODES...

PRX QUANTUM 4, 020342 (2023)

noise comes after the encoding, when a displacement noise
(aka additive Gaussian white-noise [60,68,69]) channel is
applied on the position and momentum quadratures of each
of the » modes. The position and momentum of each mode
Jj €{1,2,...,n} are shifted by a random fluctuation £ as

g —> ¢ +5§&. (8a)

pi = P+ (8b)
We collect all fluctuations in a 2n-dimensional noise vec-
tor:

E= (60, 60" = Elgre s EngrE1ps- - Enp) -
)

We use either form for the above vector components
throughout the paper, depending on whether we want to
specify if a given quadrature is a position or a momentum.

We develop our decoding formalism with the assump-
tion that the amplitudes of the 2n displacement errors &
for £ € {1,2,...,2n} are 1ID Gaussian random variables
with the same zero mean and standard deviation o.

IV. ERROR CORRECTION AND DECODING

We summarize the EC processes for the three schemes
outlined in Fig. 1. Each round consists of two EC lay-
ers—one for the inner code and one for the outer. The
check operators measured in each layer are listed in
Fig. 2(a) and correction circuits for each scheme are shown
in Figs. 2(b)-2(d), respectively.

For each layer, £ denotes the actual error that is applied
to the system; z denotes a syndrome measurement out-
come, which is either real valued in the case of nullifier-
based correction or a phase in the case of GKP-based
correction; and &, denotes the most likely displacement
error deduced from the syndrome.

Our decoding optimizations for schemes II and III are
solved by inverting a matrix the dimensions of which are
at most 2n, yielding a polynomial-time [70] decoder.

A. Scheme I: Stabilizer-GKP decoding
A correction round for this scheme consists of GKP-
qubit EC, followed by qubit stabilizer EC [see Fig. 2(b)].
This procedure is the most widely used among the three

that we consider and we refer the reader to Refs. [27,34,
35,37-39,71] for more details.

1. Layer 1: GKP EC

The first step is to measure the GKP stabilizers of
each physical GKP qubit, i.e., €Y% and e~2V™ for

(a) Scheme First-layer chexks Second-layer chexks
(1) 2n GKP stabilizers 1 — k qubit stabilizers
(11) n — k nullifiers 2k GKP stabilizers

(I1I) 2(n 2k GKP stabilizers

b

O HH )
wi [
'_-‘_ stabilizer EC | -
i
o HF

k) canonical-GKP stabilizers

t
Uenc

(©_ r N N[ N\
nullifier EC GKP EC Uene

T\ VRN J J

d__r N\ N )

canonical-GKP| -

-stabilizer EC GKPEC

+
UET'IC

-

J \ AN J/

FIG. 2. A summary of decoders. (a) A table of the check
operators that are measured in each of the two layers of EC
of schemes I, II, and III described in Fig. 1. (b){(d) Sketches
of the corresponding circuits for schemes I, II, and III, respec-
tively. Each circuit consists of two layers of correction, followed
by the inverse encoding map that maps the processed logical
information back into the first k modes depicted in Fig. 1(c).

j €{1,2,...,n}. Measuring these yields a 2rn-dimensional
syndrome vector,

p T
z:(z],t}"'“"zﬂ,t}'szl‘ps""’zﬂ,p) k] (10}

consisting of phaselike GKP syndromes z; 4z, €
[~V /2, /T /2). )

There are many possible noise vectors & in Eq. (9) that
yield a particular syndrome vector and the next step is
to deduce the most likely one (i.e., to apply maximum-
likelihood decoding). Each noise-vector component &; can
be expressed as a sum of some integer multiple of \/7 and
a remainder term,

& =mym + R z(&), (11)

where m € Z, where we use the remainder function

R,(x) :x—s[ﬂ (12)
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and where [x] rounds x to the nearest integer. The remain-
der term is precisely what is extracted via syndrome
measurements, z; = R /7(§;), and the shortest deduced
displacement vector is thus

-

E, =7 =R /(). (13)
In order to correct, we apply a collective displacement by
—£,, yielding the residual noise vector

E=f—E =E—RszE) (14)

and completing the first layer of correction.

2. Layer 2: Qubit stabilizer EC

The first layer has recovered the logical information
back to the logical GKP subspace of each mode. The resid-
ual noise vector £ imposes a logical Pauli error on the
inner stabilizer code. To extract this error, we need to mea-
sure the GKP form of the stabilizers of the outer [[n, k, d]|
code. These are constructed using tensor products of GKP
displacements X; = e~V and Z; = ¢'V™% , which act as
logical Pauli operators on the inner GKP code of mode j.
For example, for the [5, 1, 3] stabilizer outer code, if we
want to extract the syndrome corresponding to the check
operator IXZZX, we need to measure exp[i/m(—p; +
g3 + ga — ps)]. Since the noise vector consists of integer
multiples of /7, each measured syndrome value can only
be £1.

After extracting the binary syndromes, we need to
determine the error based on the syndromes and apply a
GKP-Pauli correction operation. These steps complete the
second layer of correction.

After the above two-layer round of correction, we can
apply the decoding circuit Ulye if we want to obtain the log-
ical information or repeat the round if we want to further
preserve the information.

B. Scheme II: GKP-analog decoding

A correction round for this scheme consists of nullifier-
based mode-into-mode EC, followed by conventional
GKP-qubit EC [see Fig. 2(c)].

L. Layer 1: Analog EC

The first step in this scheme is to measure the
nullifiers Uencgj UI,.C forje{k+1,k+2,...,n} of the
outer analog-stabilizer code. This yields real-valued nul-
lifier syndromes z; for j € {1,2,...,n — k}, collectively
denoted by the (n — k)-dimensional syndrome vector Z.

The nullifiers are related to the unencoded auxiliary-
mode position operators by the (n — k)-by-2n-dimensional
matrix 4, from Eq. (6) and the syndrome vector is simi-
larly related to the noise vector £ in Eq. (9) by the equation
Z = A£.

Since A, is rectangular, several different noise vectors
can yield the same syndrome vector. The principle of
maximum-likelihood decoding implies that we pick the
shortest & that is compatible with the syndromes,

£ = arg min ||El, (15)

AE=2

where ||U]| = 4/¥ - ¥ is the Hilbert-Schmidt norm of v.

Finding the shortest compatible noise vector turns out to
be a standard minimization problem [72], the solution of
which is given by

£, =AT(4,4DH) 7z, (16)

Above, A{ is the transpose of A4; and AIA{ isa (n—
k)-dimensional square matrix that is invertible since all
the nullifier measurements are linearly independent. Note
that A{(AIA{)_I is also called the right Moore-Penrose
pseudoinverse of 4.

The first layer of EC is then performed by deducting the
estimated noise vector é‘,.c from the system. The updated
quadrature noise vector E;’ takes the form

E'=&—& =PE, (17)

where we use the formula for the projection onto the kernel
of a matrix M,

Py =1-M"(MMT)'M, (18)

satisfying MP;; = 0 and Pi;MT = 0. In other words, this
layer of correction applies shifts to the nullifier quadratures
such that the nullifier expectation values are reset to zero.

The above layer of correction yields a shorter residual
noise vector: £ is a shorter than £ since PA1 is a projec-
tion. While this layer cannot decrease the variance of the
logical-mode quadrature noise [27,45], we are interested in
encoding logical qubits in said modes and thus proceed to
the second layer of correction.

2. Layer 2: GKP EC

The above analog correction procedure maps the outer
mode-into-mode encoding back into the “logical” k-mode
space, defined as the collective 0-eigenvalue subspace of
all n — k nullifiers. The next layer consists of detecting and
correcting logical errors of the £ GKP qubits encoded in the
logical-mode space Such errors are caused by the residual
noise vector PA1.§ in Eq. (17).

The 2k check operators measured in this round are GKP
stabilizers of the first £ modes conjugated by the encoding
unitary Usp, i.¢., Uenc€2V™% Ut . and Uce 2V UL for
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j €{1,2,...,k}. Measuring these yields a 2k-dimensional
syndrome vector,

2 = (2 g1 Zhgr Zlps- -2 Zkp) s (19)
consisting of GKP syndromes z; , 7} , € [—/7/2,/7/2).

The syndrome vector can equivalently be represented as
the remainder of the residual noise vector PA, in Eq. (17)
encoded into the GKP logical space via the submatrix 4>
in Eq. (6) of the symplectic matrix A4.,. corresponding to
UBDC'!

7 =R /z(4,P5 ). (20)
The remainder function R /7, applied to each entry of
the vector in the argument, ensures that only the modu-
lar quadrature information is extracted from the processed
noise vector.

Applying the maximum-likelihood principle, we need to
find the most probable error vector after the first EC, .§*,
that is consistent with the syndromes, Agé‘* = 7'. However,
since the entries of the residual noise vector in Eq. (17) are
correlated, the most likely error vector cannot be calculated
via minimizing the norm of €'. Rather, as PA is a determin-

istic linear matrix, the most probable g’ should come from
the most probable £. This yields the optimization problem
[73]

§ =P} (arg min ||s||) 1)
AzPAIZ;'—Z

for the GKP layer of correction. The above optimization is
solved in the same way as Eq. (15), yielding

. -1
g;c:le(Angl)T((Angl)(Angl)T) 7. (22)

After implementing the above as the recovery displace-
ment for this second layer, we apply Aene (the decoding
map in the Heisenberg picture). The final residual noise
vector is

gﬁna] = Aenc(gf - g::) (23}
If we want to focus on the errors of the first £ “logical”
modes that house the GKP qubits in Fig. 1(c), we can
instead decode using the submatrix 4> in Eq. (6) and the
remainder function R in Eq.(12), to obtain

Efnaly = A2 (E' — E;)

= A PLE — R 7m(4P1E). (24)

3. Simplifying cases
The remainder operation in the noise-vector expression

in Eq. (24) can be removed in the low-noise case, since
R /z(&) = & for sufficiently small £. In that case, S;‘ .§* =

Pjg , where P;1 in Eq. (18) is the projection onto the kernel

of the block matrix 4 = (j

gard the caveat that the logical GKP syndrome is measured
modulo /7, we can combine the two layers of the EC into
one and obtain the same result.

Another simplifying case is the condition 4147 =0,
which means that the measurements of 4; and 4, are in
two orthogonal hyperplanes. In that case, the optimiza-
tion problems for the two layers become independent,
R\/_(AQPA E;) = R\/—(Agg) and the order in which the
corrections for the two layers are applied does not matter.

; ) This means that if we disre-

C. Scheme I1I: GKP-stabilizer decoding

A correction round for this scheme consists of canoni-
cal GKP-stabilizer mode-into-mode EC [45], followed by
conventional GKP-qubit EC [see Fig. 2(d)]. We modify
the canonical GKP decoding procedure such that the uni-
tary Ul is applied last (whereas it originally preceded the
canonical GKP syndrome measurements in Ref. [45]) in
order to make this scheme consistent with schemes I and
IT and in order to demonstrate how multiple rounds of EC
can be performed.

Our modification also allows the measurement of other
sets of GKP-stabilizer generators. The generators are
determined by the matrix 43 in Eq. (6) but there are many
such possible matrices, all related to each other by a linear
transformation of rows. This means that we can optimize
the generator matrix A5 such that each row has the low-
est possible norm, which, according to our observations,
improves the decoder performance.

1. Layer 1: GKP-stabilizer EC

The first layer of this scheme is similar to the sec-
ond layer of scheme II in that both measure GKP-type
stabilizers. Here, one starts by measuring the 2(n — k)
canonical GKP stabilizers associated with the n — k aux-
iliary modes, namely, the operators Uence"m‘}f UIDG and
Uence V7P Ul forj € {k+ 1,k +2,...,n). Measuring
these yields a 2(n — k)-dimensional vector Z of canonical
GKP syndromes z; 4,zj , € [—+/7/2, /7 /2) [cf. Eq. (19)].

The syndrome vector can equivalently be represented as
the remainder of the noise vector £ in Eq. (9) encoded into
the GKP logical space via the submatrix 43 in Eq. (6) of
the symplectic matrix A, corresponding to Uy,

= R 5=(43E).

The remainder function R /57, as defined in Eq.(12), now
modulo /2 because canonical GKP states are used for

(25)
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auxiliary modes, once again extracts only the modular
quadrature information.

We once agam pick the shortest £ that is compatible with
the syndromes Z, which yields an optimization identical to

that from Eqgs. (16)~(17),
£ =arg Amsm IE = AT (4349 7'R 3z (4:8).  (26)
35=Z

Subtracting this most likely correction from the initial
noise vector completes this layer and yields

F=f-EL=F-A[AA) ' Rz4D). )
Note that the presence of the remainder function R
obstructs us from the simplifications that we are able to
make for the first layer of scheme II [cf. Eq. (17)].

2. Layer 2: GKP EC

We proceed to measure the 2k GKP stabilizers of the
first £ modes conjugated by the encoding unitary Uy,
recovering the same 2k-dimensional GKP syndrome vector
in Eq. (19) as that in layer 2 of scheme Il

Proceeding analogously to scheme 1I, we express the
syndrome vector in terms of the layer-1 residual error vec-
tor é" in Eq. (27) encoded into the logical modes using
the rectangular matrix 42 in Eq. (6) and restricted to
only its modular components via the GKP-qubit remainder
operation,

2 = Ry (E - A AR (43D)) . (29)

Above, the shorthand notation R ;4,(V) = R /z(4,(V)).
The maximum-likelihood problem for this layer is to
find the most probable original error configuration & that
is compatible with Z'. This time, however, the optimization
is not linear because the map from S;‘ to S;‘ in Eq. (27) is not
linear due to the remainder function R /5.
We proceed with a related linear optimization problem,

£, =arg _ min &1, (29)
F=Ay (A3 (4347)7'7)

where Z is a constant fixed by the measurement outcomes.
The solution is

El = AJ (A7 @ + AT (434D)7'D). (30)

The above optimization is different from the nonlinear
case, where Z is input as a function of £. However, the two
types of optimizations are tried for scheme II (see [73])
and, despite yielding different outcomes, still correspond
to the same residual noise vector é‘ﬁm” on the k logical
modes. We thus have some evidence to believe that this

optimization may not be too far off from the true nonlinear
one.

Using the above result for correcting layer-2 displace-
ment yields the final residual noise vector §ﬁml in Eq.
(23) after the two layers of scheme III and the decoding
operation Aepe. The logical-mode residual noise subvector
is

=4 —E)
= Ay — 4,41 (434])7'2
— R (A (E — AL (434D '2)).  (31)

&final,/

One can view both scheme II and scheme III as exam-
ples from a family of schemes the initial auxiliary modes
of which are in GKP states with stabilizers ’vZ7/%% and
¢V2mabi The period in g; is /27w« and that in p; is /27 /o,
Scheme III corresponds to the case @ = 1, while scheme
I1 can be viewed as the limiting case & — 00 (scheme 1
is a = 2). We apply R ;577 to the g; syndrome measure-
ment and R /57 to that of p;. When o — 00, the period
in g; goes to infinity, so no rounding is needed in the first-
layer EC of scheme II and Z = 4;£. However, the period
in p; becomes infinitesimal. Applying R 77z will round
any measurement result to 0, so no information can be sub-
tracted from p; measurement and hence they are omitted in
scheme II. Correspondingly, the 43 matrix in scheme III
reduces to A; in scheme II.

D. Calculating logical error rates

In order to compare the above schemes, we can calcu-
late the logical error probabilities induced by the residual
noise vector .§ﬁm| on the logical GKP qubits housed in the
k logical modes [see Fig. 1(c)]. Such a calculation is done
somewhat differently in scheme 1 than in schemes II and
I11, due to the latter two having CV outer codes.

Let p(é‘) denote an arbitrary distribution for the initial
noise vector S;‘ in Eq. (9). Recall that the noise vector
tracks a particular instance of random quadrature dis-
placements in Eq. (8), which are usually independently
distributed according to a Gaussian distribution with mean
zero and fixed standard deviation (in which case, p(é‘)
szl p(&), where p(§;) is a Gaussian distribution). We
emphasize that the analysis of this subsection is indepen-
dent of the choice of distribution.

1. Schemes II and II1

After two Iayers_’of EC and application of Uapf, the
initial noise vector & transforms as

E - Epa =1 (€), (32)

where Eﬁnal in Eq. (23) is the residual 2n-dimensional
logical-mode noise vector after two layers of correction
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and a decoding map for either scheme II or scheme III
and the map from & to this vector is represented by the
vector-valued function f . The first 2k components of this
vector are in Eqs. (24) and (31) for schemes II and III,
respectively.

On the logical-mode level, the probability of a displace-
ment by n of a logical-mode quadrature j € {1,2,...,2k}
is an integral over contributions from all shifts £ that are
compatible with the final outcome being the j th component

of f (§),

Py17) = [ :dz"sp(é’)a (h-5®). 63

where d¥'& = d&,, ---d&, dE, ---dE, is the integration
measure on all quadratures. This is the logical-mode dis-
placement distribution associated with f .

On the logical-qubit level, GKP EC succeeds whenever
n — R sz(n) is an even integer. In other words, the proba-
bility pf® “™" of successful correction of the j th quadrature
is the integral of the displacement distribution in Eq. (33)
over a set of intervals centered at even multiples of /7
(see, e.g., Ref. [35, Eq. 10)]):

no error __

i dnPy; (n|f).

@mt+(1/2)V7
- f (34)

ez @m—(1/ )T

For few-mode codes, these integrals can often be done
analytically.

Logical errors result when at least one p/®®™ is
nonzero. For a code with k logical qubits and uncorre-
lated displacement errors, the logical error probability is
the complement of the product of no-error probabilities of
all of the quadratures,

2n
p]DglCEﬂ error _ | _ npjno error (35}
i=1

For correlated noise, this should become a lower bound.

2. Scheme I

After the first layer of EC for this scheme, each mode
can be readily treated as a GKP qubit, encoded in a mode
that in turn is made up of a position and a momentum
quadrature. As this is the first layer, there is no additional
processing of the noise vector, meaning that error prob-
abilities can be calculated as a special instance of those
of schemes II and III but with the processing function f
being identity. The respective probabilities of no bit flips
or no phase flips for a GKP qubit encoded in mode j are

otherwise analogous to Eq. (34):

2m+(1/2)) /7
jpoZelTOl‘ — f d‘f} prj (7}‘”),
2m—(1/2)) /7
mek (36}
. Qm+(1/2)) /7
= [ i
i Jam—a ) vE

With these intrinsic X' and Z error probabilities of physical
GKP qubits, one can calculate the logical error probabil-
ity just as in the usual qubit stabilizer codes. The final
expression depends on the stabilizer code that we choose.

3. Simplified error-rate calculations

We discover a simplification in calculating the logical
error rate of a two-layer round of EC for schemes II and
III. Namely, calculating the rates p;®“™" does not require
the layer-2 GKP recovery operation to be present in the
function f .

In Appendix B, we show that if f (€) defines the result-
ing error vector after one layer of correction, the second
layer modifies asf(g) —>f(§) — Rﬁ(f (§)), identical to
the bare GKP correction scheme in Eq. (14). We combine
this with the fact that each of the f -dependent integrals in
Eq. (34) is invariant under /' — f — R &f,

2m+(1/2)/7 . @m+(1/2)/7 .
f dn P, (n]f') = f dn Pr; (n|f
Qm—(1/2)y7 Qm—(1/2)yT
— R, (37)

to show that explicit GKP recovery is not necessary to cal-
culate the logical-mode, and therefore logical-qubit, error
rates.

GKP recovery, of course, still has to be performed to
yield a logical qubit encoding governed by the aforemen-
tioned error rates. The benefit of GKP correction still exists
in the error-rate calculation because the displacement dis-
tribution is integrated over a union of segments comprising
half of the real line, which is the correctable region of a
GKP encoding.

V. EXAMPLES

We numerically benchmark two sets of examples of the
three schemes from Fig. 1, one using the repetition code
and its bosonic variants and another using the five-qubit
code and its variants. Details of our Monte Carlo sam-
pling of quadrature noise and its decoding are given in
Appendix C.

A. Repetition-code-based comparison

The repetition code [74] is an important example in both
classical and quantum error-correcting codes. There are
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previous studies on the scheme-I concatenated repetition-
GKP codes [24] and [[4, 2, 2]]-GKP codes [25].

The three encoding schemes for the repetition-code
example are described by the following map [cf. Fig. 1(c)]:

(I) repetition-GKP:  Z, 2<% 783 KL pes

(IT) analog-repetition: Z; GKE R 2nalog repetition R®3,
(1) GKP-repetition:  Z, o R SKPrepetiton pe3.
(38)

Scheme 1 is a standard concatenated GKP-repetition
code constructed by encoding each physical qubit into a
GKP code. Scheme II is the analog repetition code (see
Appendix 7?7 of Ref. [45]) concatenated with a bona fide
GKP code. Scheme III replaces the analog code with
the GKP-repetition code [45], which suppresses the vari-
ance of position error acting on the logical mode to ¢%/3
if the error rate is sufficiently low, concatenated with a
GKP-qubit code.

Encoding circuits for all three schemes are of similar
form (see Fig. 1). The relevant Gaussian unitary Ugyc 1S

Ucnc = CNOT{_,3CNOT{_,3, (39)

where our controlled-NOT (CNOT) [75] two-mode gate acts
on quadratures as

CNOT; _, k; CNOT;’_> e =4
CM::TJ,—_,,;c.?;,kCNOT;’_> =G4k — G, (40)
CNOT; _, 4P CNOT}_, « =D + Pr

CNOT; _, kﬁkCNOT;_, + = Pk

The transformation of the Hadamard and controlled-Z (CZz)
gates [76] is as follows:

HGH' =p,
HpH' = -3,
AR AT
. @1)
CZj > kqkCZ; _ x = Gk
CZ; _ kP cz}r_}k = P;j — x>
CZj—»k};kCZ;_yk =Pk —§j,
which is used later.
The EC for scheme I (see Sec. IV A) specializes to the
following. First, we perform GKP EC on individual GKP
modes to eliminate small displacement errors acting on

each mode. Then, we measure repetition-code Pauli stabi-
lizers Z1Z; and Z1Z3 and correct GKP logical errors acting

on individual modes. The total number of syndromes is
eight [77].

For scheme II, before encoding, the first mode is a GKP
logical state and the rest of the modes are initialized in
|g = 0). After the encoding, the code state is stabilized by
GKP stabilizers and nullified by nullifiers simultaneously.
The GKP stabilizers are exp[—i2+/7(p1 + p2 + p3)] and
exp[i24/m¢1] and these square roots yield logical Pauli-
X,Z gates for the encoded qubit. The nullifiers of the
outer code are §» — g and g3 — §;. The total number of
syndromes is four.

For the scheme-1I EC procedure (see Sec. IV B), we
first measure the nullifiers and obtain syndromes &, — &1 4
and &34 — &14. We use a maximum-likelihood decoder to
perform EC, obtaining an error-corrected quadrature §’ in
Eq. (17). We then measure the GKP stabilizers, which
returns Rﬁ(é‘{‘p + .§2’p + é‘g‘p) and R\/,—[(é‘l"q) [where R is
the remainder function in Eq. (12)]. We proceed to do
maximum-likelihood EC based on syndromes diagnos-
ing the residual noise vector £ after the first layer of
correction.

In scheme III, we first measure the auxiliary canonical
GKP stabilizers, obtaining the four syndromes

229 = R 5z (624 — §1,9)s
239 = R /57834 — §1.9) @)
2p = R\/Z_n(gzp)s '

Z3p = R 57 (53,)-

After maximum-likelihood EC (see Sec. IV C), the residual
noise vector in Eq. (31) acting on the logical mode is

ro_ 1 o gl,q + gZ,q + ‘§3,q
§1,=214+ 3 (224 +239) = 3 w3

El, =21p — 22p — Z3p = E1p,

where we assume that all components are less than /277 in
order to remove the remainder function R ;. If we further
assume that each initial fluctuation £ is an identical and
independent random variable with zero mean and variance
o2, the variances of the above errors are

r 0'2
= (05). (44)
&, ~N(0,0%.

Scheme III proceeds to do logical GKP syndrome mea-
surement and correction, which brings the total number of
syndromes up to six.

The numerical comparison for the three schemes is
shown in Fig. 3(a). Scheme II performs the worst likely
because of a no-go theorem for the first layer [27] (see
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FIG. 3. The numerical simulations. (a) The numerical simula-

tion of three-qubit repetition codes in the three different schemes.
(b) The numerical simulation of [5,1,3] in the three differ-
ent schemes, according to the prescription in Appendix. C. The
horizontal axis o represents the variance of the Gaussian dis-
placement channel as discussed in Sec. IIID. The vertical axis
Pemp Tepresents the empirical logical error rates that are numeri-
cally calculated by the method in Appendix C. Each data point is
obtained by averaging 107 samples.

also Refs. [46,47]), which states that a linear mode-into-
mode code defined by a set of nullifiers can only squeeze
the quadrature error but can never reduce noise on both
quadratures.

For the noise standard deviation o > 0.18, scheme III
outperforms scheme I, demonstrating the advantage of the
canonical GKP-stabilizer formalism for small-scale qubit
codes. Moreover, scheme IIl requires fewer resources,
using six syndromes in contrast to the eight syndromes of
scheme 1. This crossover behavior around o = 0.18 is also
observed in five-qubit and seven-qubit repetition codes
(not shown in the figure).

To complement our numerical simulations, we analyti-
cally calculate the distributions of the position and momen-
tum displacement errors acting on the logical mode after
EC, following Ref. [45]. Based on logical error distri-
butions, we analytically obtain the logical error rates of
the different schemes, as shown in Fig. 3(a). They are in
good agreement with the Monte Carlo results and they
reveal an eventual crossover between the performance of

schemes | and III. The calculation details are collected in
Appendix A.

B. Five-qubit code-based comparison

The [5, 1, 3] qubit code [66] is the smallest qubit code
to correct an arbitrary single-qubit Pauli error. Its encoder
is shown in Fig. 4. Its CV version is studied in Ref. [52].
Plugging in this code, the three schemes from Fig. 1(d)
specialize to the following:

(D) [5,1,3]-GKP: 7, 22 785 & ges,
(1) [5, 1, 3]-analog:  Z =5 R BLR ges.
(1) GKP-[5,1,3] :  Zp 25 r SEBLA pes,
(45)

For the EC part of scheme I, we first do EC on each GKP
qubit and then perform Pauli-stabilizer measurements and
EC afterward.

For the EC part of scheme 11, we first measure nullifiers,
which are defined by the nullifier matrix 4; [see Eq. (6)]:

-1 0 -1 0 0 0 0 0 1 1
A_{0—10—1010001
'=1r0 -1 0 0 -1 00110

|_00—10—111000

(46)

The above matrix is equivalent to nullifiers given by qudit
Pauli stabilizers [79]:

(z'1iz7'xx, xz7'1z7'x, 1z xxz- ', xxz iz

(for Z, qubits, Z~1=Z).
In the second-layer EC of scheme I, we measure logical
GKP stabilizers,

Uencsq UencT = eaﬁ (G1—G2—§3+d4 —?15),
S s (47)
UencSp UencT = e‘aﬁ(ﬂlﬂfs —44),
obtaining syndrome outcomes R 7z(§], — &, — &, +
€14~ &) andR 7 (51, +&, —ﬂ%'j,q). The error-corrected

quadrature after the first layer is £’ in Eq. (17).

For scheme III, if Vi € {1,2,...,n), Zig.zip < ~/27,
the error-corrected logical error quadratures after the first
layer are

1
E,= 77 81 — 2615 — 2625 + 3835 + 384y — 2s,),

1
Sp = ﬁ(_z'gl.q + 381, + 362 + &3, + 84y +365,).
(48)

Ideally, & , ~ N(0,50%/11) and &{ , ~ N'(0,30%/11) in
the unambiguously distinguishable regime.
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FIG. 4. The five-mode encoder Upy [78]. Here, CZ;_,; is cho-

sen to be H;CNOT;_,; H}T and the top mode initially contains the
logical information.

In the numerical simulations [see Fig. 3(b)], we perform
a Monte Carlo simulation (see Appendix C) to study the
logical error rates of the three schemes. The results show
that scheme I performs the best, while scheme II has the
highest logical error rate in this regime.

We believe that the difference in performance between
schemes I and III is due to the following. Scheme [ per-
forms GKP-type modular quadrature correction on each
mode first, which reduces individual quadrature noise
before it is passed on to the next layer of correction.
Scheme III, on the other hand, mixes said quadrature
noise via Ugye and implements modular correction on the
n — k auxiliary modes only affer mixing. The mixing redis-
tributes the initially uniform noise in an asymmetric way
amongst the modes, opening up the possibility for noise
from several quadratures to concentrate on one output
mode, thereby increasing the resulting noise variance. This
is not an issue if the variance of the resulting additive noise
is much smaller than \/2_:"1' , in which case the syndrome z
mod /27 can be approximated by z. However, once the
variance of z is comparable to /27, thenz mod /27 can
be quite different, leading to uncorrectable errors.

C. Numerical simulation of Shor and Steane codes

In this section, we use the same numerical method to
study the error rates of the [[9, 1, 3] (Shor) code [65] and
the [[7, 1, 3] (Steane) code [64]. Both the Shor and Steane
codes can correct arbitrary single-qubit Pauli errors.

The numerical result is shown in Fig. 5. Scheme I1I
performs the worst in both cases, compared to schemes
I and II. This numerical result is expected, according
to the conjecture on the “error-concentration” issue of
GKP-stabilizer codes.

We first compare the performance of scheme III with
the [[7,1,3] and 15,1, 3] codes, because both of them
only involve weight-4 stabilizers and can correct arbitrary
single-qubit Pauli errors. We find that the logical error
rates of scheme III are similar in the [[7, 1, 3] and [[5, 1, 3]]
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A e ®
' e®
10_2 “‘A ..... xxxx
A [ ]
A ' ° [ ] » ®
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FIG. 5. Numerical simulations of the (a) Shor [9, 1, 3] and (b)
Steane [[7, 1, 3]] codes. The horizontal axis o represents the vari-
ance of the Gaussian displacement channel as discussed in Sec.
III D. The vertical axis pemp represents the empirical logical error
rates that are numerically calculated by the method in Appendix
C. Each data point is obtained by averaging 107 samples.

codes. This suggests that versions of scheme III with DV
codes having similar stabilizer weights and distances will
have similar logical error rates.

Furthermore, we compare the logical error rate of
scheme III with the [[7,1,3] and [[9, 1, 3]] codes. We find
that scheme III has a lower logical error rate in [7,1,3]
codes than in the [[9, 1, 3] code. Both [7, 1,3] and [9, 1, 3]
can correct arbitrary single-qubit Pauli errors. However,
the maximum stabilizer weight of [7, 1, 3] code is 4, while
the maximum stabilizer weight of [9, 1,3] is 6. The cor-
relation between stabilizer weights and logical error rates
also consolidates our hypothesis of “error concentration”
that the performance of scheme III will be affected by
high-weight stabilizers.

The logical error rates for the [5,1,3], [[7, 1, 3], and
[9,1,3] codes using scheme III are shown in Table I.
We find that the logical error rates of scheme III [5, 1, 3]
and [7,1,3] are on the same scale, while the logical
error rate of [9,1,3] is much greater than for the other
two codes. This fact also corroborates our previous error-
concentration hypothesis.
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TABLE L

Scheme III yields comparable logical error rates in
three different instances where a distance-3 code is used. Here,
we choose 0.15 < ¢ < 0.20, where the logical error rates are not
fully saturated in all three codes.

o [I5,1,3] code [7,1,3] code [9,1,3] code
0.15 7.410 x 1073 1.810 x 103 3.765 x 1074
0.16 2.207 x 10~ 5.820 x 103 8.211 x 104
0.17 5.507 x 10~* 1.544 x 10~* 1.659 x 103
0.18 1.233 x 103 3.525 x 10~ 2.954 x 1073
0.19 2431 x 1073 7.392 x 10~* 4.770 x 1073
0.20 4.393 x 1073 1.374 x 1073 7.319 x 103

VI. UNBIASED GKP-REPETITION CODES

We propose an unbiased GKP-repetition code that uses
2n auxiliary modes to simultaneously suppress the vari-
ance of both position and momentum errors of a single
logical mode without extra quadrature squeezing. The code
requires 2n + 1 modes and allows the initial noise vari-
ance o to be suppressed to o2/(n+ 1). Previous work
(see Ref. [45]) either requires squeezing to suppress both
quadratures or achieves similar suppression in only one
quadrature via the GKP-repetition code.

The encoding circuit Uy, for this code is shown in Fig. 6
and we proceed to prove our stated claims using the for-
malism of Ref. [45]. We do not concatenate this code with
a qubit code as is done in the formalism of Sec. [V.

The main idea of canonical GKP-repetition codes is
to propagate the position error &4 to the position syn-
drome of auxiliary modes and then perform the maximum-
likelihood estimation. Applying it to our case, we label the
logical mode by 0; the rest of the 2n modes are auxiliary
modes.

The error syndromes Z after the decoding circuit from
Fig. 6 can be written as

204 =Rz(Q_ &y — E0p),

k=1
¥) El ,L
|GKP) o
CKP) S
|GKP) o
IGKP) —&

FIG. 6. The encoder of unbiased GKP-repetition code Usgpc.
The controlled-© denotes an inverse-SUM gate.

2n
Z gk‘p)a

k=n+1

Zjg = R 57 (&4 + 0),

Z0p = R\/r_r(éﬂ,q -
1<j=n

Zlg = R\/Z_rr(g.',q + Zéhp —&op), n+1=<1<2n,

k=1

Zsp =R 5 (€sp), 1 <5 <2n. (49)

The logical Pauli operators for this code are

2n
Y- exp(—:‘ﬁ (ao ¥ p)) |
k=n+1 (50}
7= (f (p . z,ak)) |
k=1
The stabilizers are
Soq=Z _exp( (qﬂ—zpk))
k=n+1
S0, =X" =exp (21 ( —po+ ZP!;) )
S q=exp (N2n(&,- +c}o)), 1<j=<n (51)

S';‘q = exp (I'V 2 (@;—FZﬁk—ﬁo)),
k=1
n+1<j<2n,

S's‘p = exp (—:’\/2Jrﬁ,), 1 <s<2n.

Here, S'@,q and 3’0 p» are the GKP stabilizers of logical
modes that will be used in the second layer of EC in
scheme III. The last three lines of Eq. (50) are the
canonical GKP stabilizers used in the first layer of EC.
Similar to the canonical GKP-repetition codes, we use
maximum likelihood to estimate the most probable quadra-
ture error &, compatible with a given measurement result
(Z1,gs+ -+ »Z2n,gsZ1ps - + - s Z2np) such that |.§|2 is minimized.
Since the variance of each quadrature noise is proportional
to n, the small-error regime to allow for approximating

R ;57(z) =zis /no < V/27.
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. i 2 - -
We can write |£|” in terms of Z,

2
|‘_§:|2 (zﬂp+ Z zkp) +Z(zk,p) + (.sz,p —Z q)

k=n+1
2

n 2n
+Z Zkg — Z0p — Z Zjp

k=1 j=n+1

2n
2

+ D (g — 209" (52)

k=n+1

Following the maximum-likelihood EC of layer 1 of
scheme III (see Sec. IV (), we obtain the most probable
errors on both quadratures:

Zog = n+1 (Zz;@ Z qu)

k=n+1

[(n—}— 1) Z Zkp — szq]

k=n+1

(33)

which act on the logical mode after decoding. The above
) = A,
Finally, we perform EC by subtracting the actual quadra-

ture error by the estimated values. The residual noise
vector on position and momentum quadratures is then

equation is equivalent to (Eooﬁ

Efnaly = A2 — E) = (j:}}:: B ZE:E) , (54)
where
2n N 0'2
_z ~ 0, ——
204 —Z0g = P (Eo,p ;c;rl %'k,q) ( oy 1)’
2
zO,p_EO,p— (gﬂq ng,q) NN( +1)
(55)

This construction can simultaneously suppress logical
position and momentum error without extra squeezing.
However, unlike the original GKP-repetition code, which
has a syndrome with constant variance for a given variance
of physical noise o2, the unbiased GKP-repetition code has
a syndrome quadrature the variance of which scales as n,
meaning that there is at most a linear suppression of logical
errors. The construction of a family of canonical GKP-
stabilizer codes that can quadratically suppress both logical
position and momentum displacement error with syndrome
independent of n without squeezing is an interesting open
question.

VII. SUMMARY AND DISCUSSION

It’s not about the code, it’s about the decoder.
—error-correction lore

We study and benchmark three schemes encoding qubits
into harmonic oscillators utilizing concatenations of var-
ious qubit and bosonic encodings. While the encoding
circuits for all of the schemes follow a similar pattern, the
decoders and error-correcting performance of the schemes
are substantially different, resonating with the above quote.

A key motivation for this work is to gauge the usefulness
of the recently discovered GKP-stabilizer codes [45] for
encoding discrete-variable information. We concatenate
these mode-into-mode codes with bona fide qubit-into-
mode GKP codes [31] in the third of the three concatena-
tion schemes considered in this work. Previous research on
the decoding of GKP-stabilizer codes has been conducted
on a case-by-case basis. In this study, we introduce a for-
malism for a maximum-likelihood decoder that allows for
efficient calculation of the performance of general GKP-
stabilizer codes. Our approach also serves as a recipe
for conducting Monte Carlo simulations and we provide
illustrative examples of this.

We find that the performance of the GKP-stabilizer
concatenated codes can vary greatly.

In the case when the three concatenation schemes uti-
lize derivatives of the repetition code, the GKP-stabilizer
codes outperform the two conventional schemes. The per-
formance of all three schemes does not depend very much
on the (classical) distance of the (bit-flip) repetition code
since, in all cases, the logical-error-rate contributions are
dominated by phase-flip errors.

In cases when the three concatenation schemes utilize
derivatives of other codes, such as the [[5, 1, 3], [7, 1. 3],
or [[9,1,3] codes, the GKP-stabilizer scheme comes in
either second or third place. We conjecture that the GKP-
stabilizer scheme performance is very sensitive to the
weight of the stabilizers of the underlying code. GKP-
stabilizer EC was originally designed for the limit of
small Gaussian fluctuations. Larger-weight stabilizers col-
lect fluctuations coming from more modes, concentrating
noise in such a way that this limit no longer applies. In
such cases, we thus expect (and observe) a degradation in
the performance of GKP-stabilizer EC.

In the process of benchmarking our schemes, we recast
maximum-likelihood EC against quadrature fluctuations
into a statistical estimation problem for GKP codes, GKP-
stabilizer codes, and analog-stabilizer codes. We believe
that the resulting statistical inference problem is related to
compressed sensing. Since compressed sensing has been
studied in the context of quantum tomography [80], it may
be interesting to investigate the underlying connections
between our schemes and that work.

Our schemes all rely on the use of GKP states, which we
set to be those associated with a square lattice in the phase
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space of a mode. However, given that our decoding pro-
cesses distribute the initially uniform displacement noise
in a lopsided manner among the modes, there is good rea-
son to consider initializing auxiliary modes to GKP states
associated with rectangular lattices. The shape of the lat-
tice can be added as an extra parameter in the statistical
estimation problem, potentially yielding a more effective
decoder.

Our results are applicable to the finite-energy GKP states
in a realistic setting by introducing another Gaussian noise
channel to the initialization stage, because the finite-energy
GKP state is usually implemented by applying an envelope
operator exp(—A#) to an ideal GKP state [34,81,82]. For
the A « 1 regime, we can expand the envelope operator
in terms of a Gaussian displacement channel.

Toward experimental realizations, the three major obsta-
cles are (1) the GKP-state preparation, (2) the syndrome
measurements of the GKP stabilizers, and (3) the two-
mode Gaussian operations. The most promising platforms
for realizing GKP EC are microwave cavities, optical
systems, and phononic modes in ion traps.

Multimode Gaussian operations have long been realized
in the optical domain [50], with the primary remain-
ing difficulty being the preparation of GKP states. For
microwave-cavity systems, GKP-state preparation and
syndrome measurement have recently been implemented
[13,17] and two-cavity Gaussian operations have been
demonstrated in other applications of cavity and circuit
QED [14,83-86]. For ion-trap systems, GKP-state prepa-
ration and syndrome measurement have also been simulta-
neously realized [20,21,23]. Recently, two-mode Gaussian
operations have also been achieved [51]. Overall, with
these recent advances, it seems very likely that multimode
GKP codes will be implemented in these technologies in
the near future.

We benchmark our concatenated schemes against dis-
placement noise only, which is just the tip of the ice-
berg. Aside from displacement error, loss and dephas-
ing errors are also prevalent in physical systems. While
GKP and GKP-stabilizer codes have been developed
with translational-type displacement noise in mind, it
may be interesting to generalize our schemes to work
against dephasing errors using auxiliary modes in rotation-
symmetric states such as number-phase states or cat states
[43]. Another direction would be to adapt our schemes
to biased noise [87-91], utilizing squeezing and/or highly
deformed GKP lattices [37,92,93].
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APPENDIX A: ANALYTICAL EXPRESSION OF
LOGICAL ERROR RATES IN THREE-QUBIT
REPETITION CODE

In this appendix, we give analytical expressions for
the logical error rates of the three-qubit repetition code
in the different schemes. Here, we assume that the posi-
tion and the momentum displacement errors on each
oscillator obey the same Gaussian distribution, p,(§) =
Qmo?)~2exp (—£2/20?).

For the [5,1,3] code, calculations can be performed
using the same analysis. They are more complicated in
their expression as more modes are involved and the posi-
tion momentum errors are mixed, so we do not present the
results.

1. Scheme 1

Scheme [ is analogous to the usual stabilizer code. We
first calculate the error rate of p and g on each physical
GKP qubit and then we calculate the logical error rate.

For a single physical qubit, if the displacement error
Epg €[@2n—1/2)/m,(2n+ 1/2)/7), it can be cor-
rected without introducing an error. As we suppose that
the position and momentum error obey the same Gaussian
distribution, the success probability is

@n+1/2)ym
Po= Z f d€p g:Po (§p.g;)-
vez Jan-1/2 7

(AT)

The three-qubit repetition code can correct at most one X
error. This means that only when there is no g error on any
physical GKP and at most one p error is there no logical
error. Therefore, the logical error rate is

Prob; (logical error) = 1 — (p3 + 3po(1 — po)*) (pj
+3p3 (1 — po)).- (A2)
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2. Scheme I1

After decoding, the logical information is in the first oscillator mode, so we can make use of Eq. (24) to calculate the
final logical error distribution in terms of the errors on the physical qubits:

1 1
b= 3+ + i) Rz (360 +En + ). )
Ep =&p +6p, +5p — Rﬁ(é—m + &, + &p2)-

It is useful to make the variable change x,/, = %(Eplf‘i"l + ng/Qz + gpsf?s)v Ypiqg = gpzﬁh - EPM‘?P and zp/q = ép}f‘?s -
&p,/q,- The probability density functions of the logical quadrature noise &, and &, are

069 = [ty [t [t oo o €8 (8 — 60 + 0+ ) 4 Rz (3060 + 8+ 500))

o0 00 0 z 2 z 2z,
= [ s [ an [ dpar 2 =Ty (5 222 ) gy (v, -k ZE) 66y~ + Rym )
—00 —00 —0 3 3 3 3 3

n+(1/2))7 00 00 2
Y Z Y Z
=3 e [ [ e (=2 =) (e - F)
n—(1/2)) 7 —00 —00

neL
Vq
X Po xq—g+— 8(& +ny/m),
A/3)H@+1/2))T 00 00
Yo Zp 2yp  zZp
P(&,) = f abcf dyf dzpax____pg(x +___)
’ ; ape—ipvE o ) T (” 3 3) P33
X Po (xp—);—”+—) 8(&p + ni/m). (A4)

This means that after EC and decoding, the logical errors take discrete values of nﬁ ,n € Z. When n takes even numbers,
there is no error, so

2n+(1/2) T 00 00
Prob;(q is correct) = Z f dx, f dy, f dz,
nez Y @n—(1/D)/T -0 -

V¢ Z 2y, z ¥, 2z
ro (a5 = e (et -3 (054 3),

AS
(1/3)2n+(1/ )T o o (A3)
Prob;(p is correct) = Z f dx), f dyp, f dz,
nez, Y (1/3)@n—(1/2) /7 00 —00
_L_Z) Y _ % Yo 2%»)
XP"(x 373 “(”+ 3 3) "(” 373
The final logical error rate is
Proby(logical error) = 1 — Proby (p is correct)Proba(q is correct). (A6)
3. Scheme I11
Similar to scheme 1I, we make use of Eq. (31) to write the logical error as
1
&g =§q + E(Rm(ng —&q) + R /37 (843 — £41)), (A7)

§p =&py +8p, +&py — R\/Z_rr(gpz) - Rm(éps)'
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The probability density functions of the logical quadrature noise &, and &, are

o0 o0 o0 1
0s(&,) = f dt, f i, f 0y o (0o E0)Po By ) (sq—sq. R, — ) + Ry, —sql)))

o0 oo oo
Yg Zq 2y,  zg Ya | 2z
= | ax, | 4 dzgpy (v =2 = 2) ps 21 py (xg -+ 22
f_ qf_m Vg . ZqPo \ Xq 3 3 P (xq+ 3 3)P (xq 3 + 3)

o0

1
x4 (5@' —Xg — _(Vq —R 5z (vg) + 24 — Rzﬁ(zq)))

(ny+(112J)J2_n (nz+(1/2)v 2w
3y Y A O
,,yez mez” (y—(1/2)2 (n.—(1/2))V2%

2
x (g‘? \/_(?Iy +n) +— _Vq zq) (gq Js?_n(ﬂy +n;) — }% + ﬁ) ,

{ny+(1f2))\.-"27r (nz+(1/2))v/ 2
&) = f f
(

nyez nrez ¥ (y—(/2)V2x n—(1/2)v/2%

X Po (Ep))Po (Epy)Po (€, — V270 (n, + 1))

With the logical error distribution, we can calculate

@n+(1/)) VT

Probs(q is correct) = Z f dé; O3(&,),
o Jan-apyE
2n+(1/2) /7
Probs(p is correct) = Z f d&, P3(&p),
o Jan—aE

Probs(logical error) = 1 — Probs(p is correct) Probs

(g is correct).
(A9)

APPENDIX B: ANALYSIS ON THE LOGICAL
GKP-STABILIZER ERROR CORRECTION

In this appendix, we show that if the logical GKP-
stabilizer EC is the last layer, it does not change the final
error rate.

We first establish the following lemma of integral equiv-
alence.

Lemma 1 (equivalence of integrals).—Let f : Vo —
V5, be a function such that n =f(§). Let n; be its com-
ponent and write n; = f; (é‘) Let d¥& = dg; - - - d&)y be the
integration measure and let p(!;) be the probability distri-
bution of the vector €. Then, Vn € Z, the following two

déps

A 2m Ve Z
3 (ny‘}‘nz)_?q__q pa

3

(A8)

integrals are equivalent:

(n+1/2)/7 o .
f dny f P ep @3 —fi®))
(n—1/2)/m
/DT o .
- dn; f Pep @S — fi®)
(n—1/2)y7

+ R (i) (B1)
Proof—Integrating against d&;, the claimed equivalence
in Eq. (B1) is transformed into

f PepE) = f ), (B2)
4] ¥y

where = 1) € (n— 1/2) /7, (n+ 1/2)/m)} and

=E1® — Rf(f(é))E[(H—1/2)\/_ (n+1/2)y/m)}.
It is sufficient to show that Vi=V,. Vi CVy is

obvious. On the other hand, if fi§) — R z(fi€)) €

[(n—1/2)/, (n +1/2)y/7), since fi(§) — R =z (fi(£)) is
an integer multiple of V7T, we must hfve fi(€) —
R z(fi(§)) = ny/m. By definition, R &(fi(§)) € [-1/2
Jm,1/2,/7), therefore we have fiE) = nymw+R ;&
(fi®)) € [(n— 1/2)y/7,(n + 1/2)/7). So V2 C V1, and
V1 = V3. Hence we prove Eq. (B1). [ |

We now investigate the cases of schemes Il and III. In
scheme II, if we only do the first round of EC, the final
error distribution is &gpa = Aench—IE [cf. Equation (17)].
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If we only focus on the position and momentum errors of
the logical modes, we subtract the corresponding rows and

obtain é}ﬁ}){ll, = Ang ._5" In scheme II, the final error after
two rounds of EC is ]éq. (24). Again, focusing on the errors
of logical modes, we have

- . 1 .
gé‘z’:‘l’f =4, (Pz“ll‘f’: - (AEP‘AJ{])T (AEPj_lAg) Rﬁ(Anglg))

:AZPjIE—R\/,—[(AszIE:’)_ (B3)
Comparing ‘_éighe)l]f and ‘_ége)ﬂ,f with Eq. (B1), we see that

f (._é) = Ang‘ § Recall that for the position or momentum
error of the j th logical mode, its correct rate can be written

as
(2n41/2) /7 5 .
T g [ @
o Jan-1/2)y7
- (&) . (B4)
“lipla
Therefore, summing over all the even integers in Eq. (B1)

using either 5121:,;, ; or }2” produces the same result. This

means that the correct rate of each logical mode does not
change after the second round of logical GKP-stabilizer
EC.

For scheme 111, as discussed in Sec. IV C, if we stop after
only the first layer, the errors on the logical modes are [see

Eq. (27)]

gf(ugl,l =4 —E) = Ak —AZAg(Ag,A;)_lRm(Agé").
(B5)

After applying layer 2, the final errors on the logical modes
are as shown in Eq. (31). We repeat it below:

gf(lﬂl,l = A)(E — E]) = Az — AT (4341)7'7

— Rz - A[(:4))7'2)), (B6)
wherez =R m(ﬁigé’). Now, again comparing 5121:,;, I _’ﬁ;w

and Eq.(BI), it is easy to see that in the case of scheme
ILf () = A8 — 4,45 (4345) 'R /37 (43). Applying the
same argument as in scheme I , we see that for scheme III,
the second layer of logical GKP EC does not change the
correct rate of each logical mode either.

Although the above discussion focuses on the position
or momentum error of a single mode, it is not difficult to
see that the error rate on a multimode code subspace should
be unchanged in the setting of this appendix.

APPENDIX C: NUMERICAL SIMULATIONS
1. Methods

In this appendix, we discuss how to numerically simu-
late different EC schemes using the Monte Carlo method.

The method consists of two steps and is repeated M
times:

(1) Initialization. First, we initialize two vectors to store
the displacement noise vector [see Eqs. (8) and
(9)] acting on code-word qubits, i.e., the vector
(§;|§;) consisting of two n-dimensional vectors §;

and E;"; The displacement error acting on the code-
word qubits is characterized by the 2n-dimensional
covariance matrix o.

(2) Error correction. The EC procedure uses the update
rules that we discuss in Sec. 1V, resulting in the
residual noise vector E;’ﬁ,.a].

After EC, we decode the error-corrected quadrature
and obtain the final residual noise vector &gpa (23).
If 3ie{l,2,...,k}, such that Ry 7(§,) = (/7/2) or
Ry =& p) = (/7 /2), then there is an error and we update
the error rate accordingly:
. . 1 :
logical error rate < logical error rate + iR (C1)
After completing the above M times, we call the resulting
value the empirical logical error rate pepp.
For the error of the Monte Carlo simulations, we regard
the sampling process as a binomial distribution: the actual

logical error rate is p for each sample, where p depends on
the decoding scheme. The binomial distribution is

Prob(no logical error) = Prob(x =0) =1 —p, 2
)
Prob(logical error) = Prob(x = 1) = p, '

where x is the frequency of logical error. We define the
empirical logical rate pemp as

M
Lzt ¥ _ Nemor

= = Pemps C3
M M Pemp (C3)

where Ny, is the number of samples with logical errors.
If we take M independent and identical samples, the

probability of obtaining an empirical logical error rate pemp

is

(C4)

Neror\ M—N,
error 1 _ error |
( M )p (I-p)

The central limit theorem tells us that the mean value of x
will converge to p and the variance of x/M will converge
to p(1 — p)/M when M — 00. Hence, we plot error bars
of size :I:\/ Pemp (1 — Pemp) /M for the numerical studies in
the next section.

2. More numerical results

Figure 7 shows the numerical simulation of schemes
I and III for five-qubit and seven-qubit repetition codes.
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10-1 _:_.__-_—_:‘_:'7
{,_:;:::-’f; cx k%
1072 ==  xx%"
o - x*
4@' 10—3 K
210
L]
8107
2 —— Five-qubit scheme |
Z10°® .
—— Seven-qubit scheme |
10-7 » Five-gubit scheme Il
& Seven-qubit scheme Il
10-¢

0.15 0.20 0.25 0.30 0.35 0.40

FIG. 7. A comparison between schemes I and III for five-qubit
and seven-qubit repetition codes. The result for scheme I is cal-
culated analytically, while the result for scheme III is obtained
by Monte Carlo simulation.

Due to the limitations of numerical simulation, we do
not include the simulation of scheme III for o < 0.18. In
these codes, under the assumption of our unbiased noise
model, the final logical error is mostly due to the phase
error of 1 bit in both schemes. Therefore, we expect that
the crossover of the logical error rates between the two
schemes will happen at roughly the same o, regardless of
the number of physical modes.

Figure 8 demonstrates the changing of the logical error
rates with respect to the shape of the GKP lattice. The
parameter a is defined so that the squeezing changes p —
Jap and § — (1/4/a)q. Correspondingly, the period in
g is multiplied by ./, while the period in p is multi-
plied by 1/./a. This shows that the distinguishability of
the syndrome measurements can be improved by applying
squeezing to GKP modes.

APPENDIX D: QUDIT VERSION OF
GKP-STABILIZER CODES

In this appendix, we demonstrate the qudit version of
the GKP-stabilizer code. Here, we define the qudit Pauli
matrices to be

d—1 d—1
X=Y"li+0Gl, Z=) o)l

(D1)
j=0 j=0
where @ = ¢7/?. We define the CNOT gate to be
CNOTy2 |x) ® |y) = k) @ |(x +y) mod d). (D2)

Here, we use the two-mode GKP-repetition code [45] that
encodes the logical information of a data qudit into a two-
qudit system as an example. Let the quantum state of the
data qubit be |{) = Zf;é |x), where |x) is the eigenstate
of Z with eigenvalue o".

(@,
o [ ————
0=0.30
_ 8l|— @=035
o — 0=0.40

Pemp/Pemp (a
o~

0 —
0.6 0.8 1.0 1.2 1.4
a
(b)
3.0 — 0=0.25
o=0.30
—— 0=0.35
T &3 — 0=0.40
_t_s_
= 2.0
E
Q
E 15
(=}
1.0 - — —
0.6 0.8 1.0 1.2 1.4

FIG. 8. The performance of schemes I and III for rectangle
GKRP lattices. (a) Simultaneous squeezing of all the modes p —
Jap, § — (1//a)g for scheme L. (b) Squeezing of only the
auxiliary mode p — /ap, § — (1/,/@)g for scheme IIl. The
vertical axis in both subplots reflects the ratio of the logical error
rate to the logical error rate of the unsqueezed (@ = 1) scenario.

The auxiliary qudit is initialized to a canonical qudit-
GKP state

dfr—1

1
IGKPqui = —== > lrm), (D3)
m=0

which is stabilized by X" and Z". The second stabi-
lizer implies an additional condition that (2nr?/d) mod
2 = 0.

Similar to the regular two-mode canonical GKP-
repetition code, the encoding circuit is a CNOTy_, »:

d—1dfr—1

CNOT|_,3 |¥) ® |GKP) g4t = Z Z

x=0 m=0

¥ (x)
ﬁ |x) [rm +x).
(D4)

We then apply additive Pauli error X|'Z['X,?Z?,
where aj, c¢), a;, and ¢p are IID zero-mean random
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variables:
d—1d/r—1
a a ¥ (x)
|®) = X" Z}' X, 2 Z,2 |x) |rm + x)

1“1 42 & ; Hg ar

| d—1d/r—1
— Z Z eiw[(m+x)62+xcl]w(x) |x +a])
v d/?' x=0 m=0
[rm + x + a3) (D5)

We then apply the decoding circuit

d—1
CNOTI_)Z |®) = (Zeimx(cw-’-‘z)w(x) |x +ﬂl))

x=0
dfr—1 eia)mlcz
ﬂ;} NeiG lrm + a; —ﬂl))
= (" 27 1)) (6527 257 IGKP) ).

(D6)

Since the code distance of the ancilla is r, if |a; — aq|
and |cp| are smaller than r/2, then we can extract the
a; —ay and ¢; by measuring the stabilizer of auxiliary
qudit (X and Z3). Hence we can correct the X error act-
ing on the data qudit by applying EC Z; X ](”2)(“2 ~*) By
assuming that a; — a; and ¢; lie in the unambiguously dis-
tinguishable range [—r/2,r/2], this error-correcting code
can reduce the variance of the X error acting on the data
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