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D et e cti o n of v er y  w e a k f or c es a n d pr e cis e  m e as ur e m e nt of ti m e ar e t w o of t h e  m a n y a p pli c ati o ns of

q u a nt u m  m etr ol o g y t o s ci e n c e a n d t e c h n ol o g y.  T o s e ns e a n u n k n o w n p h ysi c al p ar a m et er, o n e pr e p ar es

a n i niti al st at e of a pr o b e s yst e m, all o ws t h e pr o b e t o e v ol v e as g o v er n e d b y a  H a milt o ni a n H f or s o m e

ti m e t, a n d t h e n  m e as ur es t h e pr o b e. If H is k n o w n,  w e c a n esti m at e t b y t his  m et h o d; if t is k n o w n,

w e c a n esti m at e cl assi c al p ar a m et ers o n  w hi c h H d e p e n ds.  T h e a c c ur a c y of a q u a nt u m s e ns or c a n b e

li mit e d b y eit h er i ntri nsi c q u a nt u m n ois e or b y n ois e arisi n g fr o m t h e i nt er a cti o ns of t h e pr o b e  wit h its

e n vir o n m e nt. I n t his  w or k,  w e i ntr o d u c e a n d st u d y a f u n d a m e nt al tr a d e- o ff,  w hi c h r el at es t h e a m o u nt b y

w hi c h n ois e r e d u c es t h e a c c ur a c y of a q u a nt u m cl o c k t o t h e a m o u nt of i nf or m ati o n a b o ut t h e e n er g y

of t h e cl o c k t h at l e a ks t o t h e e n vir o n m e nt. S p e ci fi c all y,  w e c o nsi d er a n i d e ali z e d s c e n ari o i n  w hi c h a

p art y  Ali c e pr e p ar es a n i niti al p ur e st at e of t h e cl o c k, all o ws t h e cl o c k t o e v ol v e f or a ti m e t h at is n ot

pr e cis el y k n o w n, a n d t h e n tr a ns mits t h e cl o c k t hr o u g h a n ois y c h a n n el t o a p art y  B o b.  M e a n w hil e, t h e

e n vir o n m e nt ( E v e) r e c ei v es a n y i nf or m ati o n a b o ut t h e cl o c k t h at is l ost d uri n g tr a ns missi o n.  We pr o v e

t h at  B o b’s l oss of q u a nt u m Fis h er i nf or m ati o n a b o ut t h e el a ps e d ti m e is e q u al t o  E v e’s g ai n of q u a nt u m

Fis h er i nf or m ati o n a b o ut a c o m pl e m e nt ar y e n er g y p ar a m et er.  We als o pr o v e a si mil ar, b ut  m or e g e n er al,

tr a d e- o ff t h at a p pli es  w h e n  B o b a n d  E v e  wis h t o esti m at e t h e v al u es of p ar a m et ers ass o ci at e d  wit h t w o

n o n c o m m uti n g o bs er v a bl es.  We d eri v e t h e n e c ess ar y a n d s u ffi ci e nt c o n diti o ns f or t h e a c c ur a c y of t h e cl o c k

t o b e u n a ff e ct e d b y t h e n ois e,  w hi c h f or m a s u bs et of t h e  K nill- L a fl a m m e err or- c orr e cti o n c o n diti o ns.  A

st at e a n d its l o c al ti m e- e v ol uti o n dir e cti o n, if t h e y s atisf y t h es e c o n diti o ns, ar e s ai d t o f or m a  m etr ol o gi c al

c o d e.  We pr o vi d e a s c h e m e t o c o nstr u ct  m etr ol o gi c al c o d es i n t h e st a bili z er f or m alis m.  We s h o w t h at t h er e

ar e  m etr ol o gi c al c o d es t h at c a n n ot b e  writt e n as a q u a nt u m err or- c orr e cti n g c o d e  wit h si mil ar dist a n c e i n

w hi c h t h e  H a milt o ni a n a cts as a l o gi c al o p er at or, p ot e nti all y o ff eri n g n e w s c h e m es f or c o nstr u cti n g st at es

t h at d o n ot l os e a n y s e nsiti vit y u p o n a p pli c ati o n of a n ois y c h a n n el.  We dis c uss a p pli c ati o ns of t h e tr a d e-

o ff r el ati o n t o s e nsi n g usi n g a q u a nt u m  m a n y- b o d y pr o b e s u bj e ct t o er as ur e or a m plit u d e- d a m pi n g n ois e.

D OI: 1 0. 1 1 0 3/ P R X Q u a nt u m. 4. 0 4 0 3 3 6

I. I N T R O D U C TI O N

Q u a nt u m  m e c h a ni cs pl a c es f u n d a m e nt al li mits o n h o w
w ell  w e c a n  m e as ur e a p h ysi c al q u a ntit y  w h e n usi n g

* p hili p p e.f aist @f u- b erli n. d e

P u blis h e d b y t h e  A m eri c a n  P h ysi c al S o ci et y u n d er t h e t er ms of
t h e Cr e ati v e  C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er distri b uti o n of t his  w or k  m ust  m ai nt ai n attri b uti o n t o t h e
a ut h or(s) a n d t h e p u blis h e d arti cl e’s titl e, j o ur n al cit ati o n, a n d
D OI.

a q u a nt u m s yst e m as a pr o b e [ 1 ]. Q u a nt u m  m etr ol-
o g y is a n a cti v e r es e ar c h ar e a a d dr essi n g h o w p h ysi-
c al q u a ntiti es c a n b e esti m at e d b as e d o n o bs er v ati o ns of
a pr o b e s yst e m [ 2 – 4 ].  As  m et h o ds f or a c c ur at el y c o n-
tr olli n g q u a nt u m s yst e ms st e a dil y a d v a n c e, i n cr e asi n gl y
s o p histi c at e d  m e as ur e m e nt str at e gi es ar e b e c o mi n g f e asi-
bl e [ 5 ,6 ], l e a di n g f or e x a m pl e t o  m or e s e nsiti v e gr a vit a-
ti o n al  w a v e d et e ct ors [7 ], i m pr o v e d fr e q u e n c y st a n d ar ds
[8 ], a n d ultr a- pr e cis e q u a nt u m cl o c ks [9 ].  T h es e t e c h-
n ol o gi c al d e v el o p m e nts a c c e nt u at e t h e n e e d f or a pr e-
cis e t h e or eti c al u n d erst a n di n g of t h e p ot e nti al of q u a nt u m
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m etr ol o g y a n d of t h e ulti m at e li mits o n  m e as ur e m e nt
a c c ur a c y.

F u n d a m e nt al a c c ur a c y li mits i n q u a nt u m  m etr ol o g y c a n
oft e n b e p hr as e d i n t er ms of u n c ert ai nt y r el ati o ns,  w h er ei n
t h e a c c ur a c y of o n e p h ysi c al q u a ntit y tr a d es o ff a g ai nst
t h e a c c ur a c y of a c o m pl e m e nt ar y q u a ntit y. F or e x a m pl e,
a p arti cl e  wit h a d e fi nit e p ositi o n h as a hi g hl y u n c er-
t ai n  m o m e nt u m, a n d vi c e v ers a. S u c h tr a d e- o ffs  m a y b e
c a pt ur e d c o n v e ni e ntl y b y e ntr o pi c u n c ert ai nt y r el ati o ns
[1 0 ,1 1 ].  O n e  m a y e n visi o n a t w o- p art y s c e n ari o,  w h er e t h e
e ntr o pi c u n c ert ai nt y r el ati o n c o n n e cts t h e first p art y’s i g n o-
r a n c e a b o ut a q u a ntit y A wit h t h e s e c o n d p art y’s l a c k of
k n o wl e d g e a b o ut a c o m pl e m e nt ar y q u a ntit y B .  T y pi c all y
t h es e q u a ntiti es ar e v al u es of n o n- c o m m uti n g o bs er v a bl es.

I n t his  w or k,  w e f o c us o n a r el at e d b ut f u n d a m e n-
t all y di ff er e nt t y p e of u n c ert ai nt y r el ati o n.  R at h er t h a n
a tr a d e- o ff b et w e e n t h e v al u es of t w o o bs er v a bl es,  w e
c o nsi d er a n i nf or m ati o n-t h e or eti c tr a d e- o ff b et w e e n ti m e
a n d e n er g y. S p e ci fi c all y,  w e e n visi o n pr e p ari n g a pr o b e
st at e ρ i nit,  w hi c h t h e n e v ol v es f or a ti m e t as d et er mi n e d
b y s o m e  H a milt o ni a n H .  B y  m e as uri n g t h e pr o b e ρ ( t)
at ti m e t,  w e att e m pt t o i nf er t h e v al u e of t [1 2 ].  T h e
ti m e- e n er g y u n c ert ai nt y r el ati o n r el at es t h e a c c ur a c y of
o ur esti m at e of t t o t h e e n er g y fl u ct u ati o ns of t h e pr o b e
st at e ρ ( t) [1 3 ,1 4 ]; a st at e  wit h l ar g er e n er g y fl u ct u ati o ns
e v ol v es  m or e r a pi dl y, all o wi n g t h e el a ps e d ti m e t o b e esti-
m at e d  m or e pr e cis el y.  H er e, t o o, it is h el pf ul t o e n visi o n
t w o p arti es, o n e att e m pti n g t o  m e as ur e ti m e, t h e ot h er
att e m pti n g t o  m e as ur e e n er g y. I n d e e d, s u c h e ntr o pi c ti m e-
e n er g y u n c ert ai nt y r el ati o ns h a v e r e c e ntl y b e e n est a blis h e d
[1 5 ,1 6 ].

F or o ur p ur p os es, a cl o c k is a q u a nt u m s yst e m us e d t o
m e as ur e a ti m e i nt er v al.  T h e cl o c k is i niti ali z e d at s o m e
i niti al ti m e a n d is  m e as ur e d at a l at er ti m e,  wit h t h e ai m
of t h e  m e as ur e m e nt b ei n g t o r e v e al t h e di ff er e n c e i n ti m e
b et w e e n t h e i niti ali z ati o n a n d t h e  m e as ur e m e nt.  We ar e
p arti c ul arl y i nt er est e d i n h o w a n ois e c h a n n el a ff e cts t h e
a c c ur a c y of a cl o c k. F or t h at p ur p os e  w e c o nsi d er t h e f ol-
l o wi n g i d e ali z e d s c e n ari o, i n v ol vi n g t hr e e p arti es r ef err e d
t o as  Ali c e,  B o b, a n d  E v e,  w hi c h is a m e n a bl e t o pr e cis e
m at h e m ati c al a n al ysis (s e e Fi g. 1 ).  Ali c e pr e p ar es a n ois e-
l ess cl o c k i n t h e p ur e st at e v e ct or |ψ i nit , t h e n all o ws t h at
cl o c k t o e v ol v e u ntil s o m e ( a pri ori u n k n o w n) ti m e t.
R at h er t h a n  m e as uri n g t h e cl o c k h ers elf f or t h e p ur p os e
of esti m ati n g t,  Ali c e st o ps t h e e v ol uti o n of t h e cl o c k a n d
s e n ds it t o  B o b t hr o u g h a n ois y q u a nt u m c h a n n el N A → B .
A s  wit h a n y n ois y c h a n n el,  w e c a n r e pr es e nt N A → B a s a n
is o m etri c  m a p fr o m  Ali c e’s s yst e m A t o B E ,  w h er e B is
B o b’s s yst e m a n d E is t h e c h a n n el’s e n vir o n m e nt, aft er
w hi c h E is dis c ar d e d. I n o ur s c e n ari o,  B o b r e c ei v es B a n d
E v e r e c ei v es E .  We  wis h t o st u d y t h e tr a d e- o ff b et w e e n
w h at  B o b c a n l e ar n a b o ut t h e el a ps e d ti m e b y  m e as uri n g
B a n d  w h at  E v e c a n l e ar n a b o ut t h e e n er g y of t h e cl o c k
b y  m e as uri n g E . I nt uiti v el y, s u c h a tr a d e- o ff is e x p e ct e d,
b e c a us e l e a k a g e t o t h e e n vir o n m e nt of i nf or m ati o n a b o ut

Ali c e B o b

E v e

FI G. 1.  A n ois el ess cl o c k is i niti ali z e d b y  Ali c e i n |ψ i nit a n d
e v ol v es f or a ti m e t u n d er t h e  H a milt o ni a n H .  T h e n  Ali c e
s e n ds t h e cl o c k t hr o u g h a n i nst a nt a n e o us n ois y c h a n n el N A → B

t o  B o b,  w h o r e c ei v es t h e st at e ρ B ,  m e as ur es it, a n d esti m at es t.
T h e c o m pl e m e nt ar y c h a n n el N A → E d e s cri b es t h e q u a nt u m i nf or-
m ati o n t h at l e a ks t o t h e e n vir o n m e nt.  E v e r e c ei v es t h e st at e
ρ E = N ( ψ (t)),  m e as ur es, a n d esti m at es t h e e n er g y p ar a m et er of
|ψ ( t) .  O ur  m ai n r es ult d es cri b es t h e tr a d e- o ff b et w e e n  B o b’s
a bilit y t o esti m at e t h e ti m e a n d  E v e’s a bilit y t o esti m at e t h e
e n er g y.

t h e cl o c k’s e n er g y c a us es t h e cl o c k t o d e p h as e i n t h e
e n er g y- ei g e nst at e b asis, o bs c uri n g its e v ol uti o n.

We c o nsi d er t h e s etti n g of l o c al p ar a m et er esti m ati o n.
T his  m e a ns t h at t h e v al u e of a p ar a m et er is alr e a d y a p pr o x-
i m at el y k n o w n, a n d  w e  wis h t o d et er mi n e it t o gr e at er
a c c ur a c y. I n t his s etti n g, t h e o pti m al esti m at e of t h e p ar a m-
et er is d et er mi n e d b y t h e q u a nt u m  Fis h er i nf or m ati o n
( Q FI). F or e x a m pl e, if F Ali c e, t d e n ot es t h e  Q FI of  Ali c e’s
st at e  wit h r es p e ct t o t h e p ar a m et er t, t h e n b y p erf or mi n g
t h e o pti m al  m e as ur e m e nt o n h er st at e,  Ali c e c a n esti m at e
t h e v al u e of t wit h a  m e a n-s q u ar e err or of 1 / F Ali c e, t. F or
t h e p ur p os e of l o c all y esti m ati n g t = t0 + t t o first or d er
i n t, it s u ffi c es t o k n o w t h e q u a nt u m st at e ρ ( t0 ) a n d its
first ti m e d eri v ati v e, a n d i n d e e d t h e  Q FI is d et er mi n e d b y
j ust t h es e q u a ntiti es.

B o b’s n ois y cl o c k, d e gr a d e d b y tr a ns missi o n t hr o u g h
t h e n ois y c h a n n el N A → B , h as a r e d u c e d  Q FI c o m p ar e d
t o  Ali c e’s cl o c k, a n d c orr es p o n di n gl y  B o b’s o pti m al  m e a-
s ur e m e nt yi el ds a l ess a c c ur at e esti m at e of t h e ti m e t t h a n
Ali c e’s.  O n t h e ot h er h a n d,  E v e r e c ei v es t h e st at e of  Ali c e’s
cl o c k aft er tr a ns missi o n t hr o u g h t h e c o m pl e m e nt ar y n ois y
c h a n n el N A → E , t h e c h a n n el o bt ai n e d if B is dis c ar d e d aft er
A is is o m etri c all y  m a p p e d t o B E .  We i m a gi n e t h at  E v e
wis h es t o l e ar n a b o ut t h e e n er g y of  Ali c e’s cl o c k, r at h er
t h a n a b o ut t h e el a ps e d ti m e.  M or e pr e cis el y,  E v e’s g o al is
t o d et er mi n e a n “ e n er g y p ar a m et er ” d e n ot e d η a n d d e fi n e d
i n S e c. II  B,  w hi c h is c o m pl e m e nt ar y t o t h e ti m e t.  B e c a us e
E v e, li k e  B o b, r e c ei v es a st at e of t h e cl o c k d e gr a d e d b y
n ois e, t h e  Q FI of h er st at e  wit h r es p e ct t o η is i n g e n er al
l ess t h a n  Ali c e’s.  O ur  m ai n r es ult is a n e q u alit y r el ati n g
B o b’s  Q FI a b o ut t t o  E v e’s  Q FI a b o ut η gi v e n b y

F B o b, t

F Ali c e, t
+

F E v e, η

F Ali c e, η
= 1. ( 1)

0 4 0 3 3 6- 2



TI M E- E N E R G Y  U N C E R T AI N T Y  R E L A TI O N. . . P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

T his ti m e- e n er g y u n c ert ai nt y r el ati o n, d eri v e d i n S e c. III
a n d  A p p e n di x E usi n g s e mi d e fi nit e pr o gr a m mi n g d u al-
it y, s u bst a nti all y di ff ers fr o m pr e vi o us r es ults [1 2 ,1 7 ,1 8 ] i n
t h at it c h ar a ct eri z es t h e tr a d e- o ff b et w e e n  B o b’s a n d  E v e’s
Q FI, r at h er t h a n t h e tr a d e- o ff b et w e e n t h e i n h er e nt e n er g y
v ari a n c e a n d ti m e u n c ert ai nt y of t h e n ois el ess cl o c k.

Fi g ur e 2 ill ustr at es t h e s etti n g of  E q. ( 1) i n a c o n-
cr et e e x a m pl e.  Ali c e i niti ali z es a si n gl e q u bit i n t h e p ur e
st at e v e ct or | + = (| ↑ + | ↓ ) /

√
2,  w hi c h e v ol v es u n d er

t h e  H a milt o ni a n H = ω Z / 2.  H er e a n d i n t h e f oll o wi n g,
X , Y , Z d e n ot e t h e q u bit P a uli- X , Y , Z o p er at ors, r es p e c-
ti v el y.  T h e q u bit b asis st at es ar e d e n ot e d b y | ↑ , | ↓ f or
c o nsist e n c y  wit h  w hi c h st at e is e x cit e d  wit h r es p e ct t o t h e
H a milt o ni a n H ,  wit h Z | ↑ = | ↑ a n d Z | ↓ =  −| ↓ .  L at er
i n t his  w or k,  w e als o us e t h e alt er n ati v e n ot ati o n |0 ≡ | ↑
a n d |1 ≡ | ↓ w h e n e v er n e c ess ar y t o f a cilit at e t h e r e p-
r es e nt ati o n of st at es of  m ulti pl e q u bits usi n g bit stri n gs
or f or c o nsist e n c y  wit h t h e lit er at ur e o n q u a nt u m err or-
c orr e cti n g c o d es.  At ti m e t = t0 + t, t h e p arti all y d e p h as-
i n g c h a n n el N p = (1 − p )i d + p D Z i s a p pli e d t o  Ali c e’s
q u bit,  w h er e D Z (·) = ↑| (·)| ↑ | ↑ ↑|  + ↓| (·)| ↓ | ↓ ↓| .
We  m a y d es cri b e t his c h a n n el b y s a yi n g t h at t h e e n vir o n-
m e nt ( E v e)  m e as ur es t h e q u bit  wit h pr o b a bilit y p i n t h e
e n er g y- ei g e nst at e b asis (i. e., al o n g t h e Z a xis of t h e  Bl o c h
s p h er e).  T h e p arti al d e p h asi n g att e n u at es t h e t d e p e n d e n c e
of  B o b’s st at e ρ B (t) b y t h e f a ct or 1 − p , hi n d eri n g his a bil-
it y t o esti m at e t h e ti m e.  E q u ati o n ( 1) c a pt ur es t h e tr a d e- o ff
b et w e e n  B o b’s i nf or m ati o n a b o ut t h e ti m e ( pr o p orti o n al
t o 1 − p ) a n d  E v e’s i nf or m ati o n g ai n a b o ut t h e e n er g y
( pr o p orti o n al t o p ).

T h e tr a d e- o ff r el ati o n  E q. ( 1) c a n b e a us ef ul t o ol f or
d eri vi n g u p p er b o u n ds o n  Q FI.  T h e  Q FI f or a  mi x e d st at e
c a n b e tri c k y t o c h ar a ct eri z e i n c as es  w h er e a di a g o n al r e p-
r es e nt ati o n of t h e st at e is n ot e asil y o bt ai n e d.  Al o n g t h es e
li n es, it is us ef ul t o n ot e t h at  Q FI o b e ys a d at a pr o c ess-
i n g i n e q u alit y,  w hi c h e ns ur es t h at, f or a n y st at e ρ a n d a n y
q u a nt u m c h a n n el N , t h e  Q FI of N ( ρ ) is n o l ar g er t h a n t h e
Q FI of ρ [1 9 ].  We c a n i m a gi n e t h at  E v e a p pli es a c h a n-
n el t o h er st at e ρ E , o bt ai ni n g t h e st at e ρ E ,  w hi c h s h e t h e n
m e as ur es f or t h e p ur p os e of esti m ati n g η .  Usi n g t h e d at a
pr o c essi n g i n e q u alit y,  w e c o n cl u d e t h at

F B o b, t

F Ali c e, t
+

F E v e, η

F Ali c e, η
1, ( 2)

w h er e n o w F E v e, η d e n ot es t h e  Q FI of ρ E wit h r es p e ct t o η .
E v e n if t h e  Q FI of ρ E i s di ffi c ult t o c o m p ut e, t h e  Q FI of ρ E

m a y b e e as y t o c o m p ut e if t h e c h a n n el t a ki n g ρ E t o ρ E i s
artf ull y c h os e n; t h e n  E q. ( 2) pr o vi d es a c o m p ut a bl e u p p er
b o u n d o n F B o b, t. F or e x a m pl e, i n t h e c as e  w h er e N A → B i s
a n a m plit u d e d a m pi n g n ois e c h a n n el, a us ef ul u p p er b o u n d
o n  B o b’s  Q FI c a n b e d eri v e d b y a p pl yi n g a c o m pl et el y
d e p h asi n g c h a n n el t o  E v e’s st at e ρ E .  We a p pl y t his i d e a
t o a n Isi n g s pi n c h ai n i n S e c. VIII .

B o b

E v e

Ali c e

O ut c o m e of e n er g y  m e a s ur e m e nt
( wit h pr o b a bilit y p )

FI G. 2. Ill ustr ati o n of  E q. ( 1) f or a si n gl e q u bit s u bj e ct e d t o
p arti al d e p h asi n g.  Ali c e’s cl o c k st at e is i niti ali z e d as | + =

(| ↑ + | ↓ ) /
√

2 a n d e v ol v es a c c or di n g t o t h e  H a milt o ni a n
H = ω Z / 2,  w h er e Z d e n ot es t h e q u bit P a uli- Z o p er at or.  At
ti m e t, t h e c h a n n el N p (·) = (1 − p )(·) + p | ↑ ↑| (·)| ↑ ↑|  +
p | ↓ ↓| (·)| ↓ ↓| is i nst a nt a n e o usl y a p pli e d t o  Ali c e’s cl o c k
st at e. I n e ff e ct,  E v e  m e as ur es t h e e n er g y o bs er v a bl e Z wit h pr o b a-
bilit y p , a n d  B o b r e c ei v es t h e p arti all y d e p h as e d cl o c k.  E q u ati o n
( 1) r el at es  B o b’s r e d u c e d i nf or m ati o n a b o ut t h e el a ps e d ti m e t o
E v e’s i nf or m ati o n g ai n a b o ut t h e cl o c k’s e n er g y.  U nit ar y e v o-
l uti o n i n  E v e’s c o m pl e m e nt ar y e n er g y v ari a bl e η , g e n er at e d b y
a n o pti m al l o c al ti m e-s e nsi n g o bs er v a bl e, r ot at es t h e st at e i nt o
a dir e cti o n t h at is ort h o g o n al t o t h e dir e cti o n of t h e ori gi n al
e v ol uti o n i n ti m e t (s e e S e c. II  B).

O n e c o ns e q u e n c e of  E q. ( 1) is a n e c ess ar y a n d s u ffi-
ci e nt c o n diti o n f or t h e cl o c k’s s e nsiti vit y t o b e u n a ff e ct e d
b y tr a ns missi o n t hr o u g h t h e n ois y c h a n n el N A → B : F B o b, t =
F Ali c e, t if a n d o nl y F E v e, η = 0.  T his c o n diti o n c a n b e us e-
f ull y r est at e d i n t er ms of t h e  Kr a us o p er at ors {E k } of t h e
c h a n n el N A → B .  R e c all t h at  w e ai m t o esti m at e t h e ti m e
t = t0 + t i n t h e s etti n g of l o c al p ar a m et er esti m ati o n,
i. e., t o li n e ar or d er i n t. S u p p os e t h at aft er e v ol uti o n f or
ti m e t0 , t h e st at e of  Ali c e’s cl o c k is |ψ , a n d t h at |ξ =
(H − H ψ )|ψ = P ⊥

ψ H |ψ wit h P ⊥
ψ = 1 − | ψ ψ |. T h e n

t h e c o n diti o n F E v e, η = 0 is e q ui v al e nt t o

ξ |E
†
k E j |ψ + ψ |E

†
k E j |ξ = 0 f or all k , j . ( 3)

I nt uiti v el y,  E q. ( 3) m e a ns t h at t h e a cti o n of t h e c h a n n el o n
t h e cl o c k c a n n ot b e c o nf us e d  wit h g e n ui n e ti m e e v ol uti o n.

E q u ati o n ( 3) m a y b e r e c o g ni z e d as a  w e a k e n e d v er-
si o n of t h e  K nill- L a fl a m m e c o n diti o n f or q u a nt u m err or
c orr e cti o n, t h e n e c ess ar y a n d s u ffi ci e nt c o n diti o n f or t h e
a cti o n of a n ois y c h a n n el o n a n e n c o d e d s u bs p a c e t o
b e r e v ersi bl e b y a s uit a bl e r e c o v er y c h a n n el [ 2 0 ].  T his

c o n diti o n  m a y b e st at e d as L E
†
k E j L ∝ L f or all k

a n d j ,  w h er e L i s t h e pr oj e ct or o nt o t h e e n c o d e d s u b-
s p a c e.  T o  writ e  E q. ( 3) i n a si mil ar f or m, c o nsi d er
t h e t w o- di m e nsi o n al s u bs p a c e s p a n n e d b y t h e  m ut u all y
ort h o g o n al st at e v e ct ors |ψ a n d |ξ ;  w e c all t his t w o-
di m e nsi o n al s p a c e a “ virt u al q u bit. ”  Usi n g t h e n ot ati o n
| + L := | ψ , | − L := |ξ − 1 |ξ , t h e ort h o g o n al pr oj e c-
t or o nt o t h e virt u al q u bit is L = | + +| L + | − −| L ,
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a n d Z L = | + −| L + | − +| L i s t h e l o gi c al Z P a uli o p er-
at or a cti n g o n t h e virt u al q u bit. I n t his l a n g u a g e,  E q. ( 3)
b e c o m es

tr L E
†
k E j L Z L = 0 f or all k , j . ( 4)

T h e c o n diti o n  E q. ( 4) is r e mi nis c e nt of a r e c e ntl y f or m u-
l at e d c o n diti o n f or q u a nt u m c o di n g t o i m pr o v e h o w  m e a-
s ur e m e nt s e nsiti vit y s c al es  wit h i n cr e asi n g s e nsi n g ti m e
[2 1 ,2 2 ]. I n S e c. VII ,  w e e x pl ai n h o w ti m e- c o v ari a nt q u a n-
t u m err or- c orr e cti n g c o d es a ut o m ati c all y f ul fill  E q. ( 3),
pr o vi di n g s o m e si m pl e e x a m pl es. I n p arti c ul ar,  w e c o n-
si d er s pi ns o n a gr a p h  wit h Isi n g or  H eis e n b er g i nt er a cti o ns
a n d c o nstr u ct a st at e v e ct or |ψ t h at f ul fills  E q. ( 3),  w h er e
t h e n ois e  m o d el i n fli cts a si n gl e l o c at e d er as ur e.

We h a v e d eri v e d t h e tr a d e- o ff r el ati o n  E q. ( 1) i n a hi g hl y
i d e ali z e d s etti n g, i n  w hi c h n ois el ess e v ol uti o n of  Ali c e’s
cl o c k is f oll o w e d b y tr a ns missi o n t o  B o b t hr o u g h t h e n ois y
c h a n n el N A → B . F or a n a ct u al cl o c k, t h e n ois e a cts c o n-
ti n u o usl y as t h e cl o c k e v ol v es, r at h er t h a n aft er t h e ti m e
e v ol uti o n is c o m pl et e.  B y f o c usi n g o n t h e i d e ali z e d s et-
ti n g,  w e h a v e b e e n a bl e t o p erf or m a p arti c ul arl y el e g a nt
a n al ysis of t h e ti m e- e n er g y tr a d e- o ff.  B ut i n S e c. VI w e
c o n n e ct o ur r es ults t o t h e  m or e r e alisti c c as e of c o nti n-
u o us  M ar k o vi a n n ois e d es cri b e d b y a  m ast er e q u ati o n i n
Li n d bl a d f or m, n oti n g t h at t h e t w o s etti n gs ar e a ct u all y
e q ui v al e nt, or n e arl y e q ui v al e nt, u n d er c ert ai n c o n diti o ns.
O n e c a n d e c o m p os e t h e  Li n d bl a di a n i nt o a  H a milt o ni a n
p art a n d a n ois e p art t h at c o nt ai ns all t h e j u m p o p er at ors;
if, f or e x a m pl e, t h es e t w o p arts d e fi n e c o m m uti n g c h a n-
n els, t h e n t h e  M ar k o vi a n e v ol uti o n f or ti m e t is e q ui v al e nt
t o  H a milt o ni a n e v ol uti o n f or ti m e t f oll o w e d b y a n ois e
c h a n n el N t.  Ot h er c as es  w h er e t h e  Li n d bl a d e v ol uti o n is
c o m p ati bl e  wit h a tr a d e- o ff r el ati o n of t h e f or m  E q. ( 1) ( at
l e ast t o a g o o d a p pr o xi m ati o n) ar e i d e nti fi e d i n S e c. VI .

Alt h o u g h t h e ti m e- e n er g y tr a d e- o ff pr o vi d e d t h e pri m ar y
m oti v ati o n f or t his  w or k,  w e fi n d t h at a tr a d e- o ff r el ati o n
si mil ar t o  E q. ( 1) c a n b e d eri v e d i n a  m or e g e n er al s etti n g.
S u p p os e t h at A a n d B ar e  H er miti a n o p er at ors, a n d t h at
ψ = | ψ ψ | is a p ur e q u a nt u m st at e.  We  m a y c o nsi d er t h e
“ fl o w ” i n  Hil b ert s p a c e g e n er at e d b y A or b y B . T h at is,
w e c o nsi d er a o n e- p ar a m et er f a mil y of p ur e st at es cl os e
t o ψ , g e n er at e d b y A a n d p ar a m et eri z e d b y a , a n d a o n e-
p ar a m et er f a mil y g e n er at e d b y B a n d p ar a m etri z e d b y b ,
s u c h t h at

∂ a ψ = − i[A , ψ ], ∂ b ψ = − i[B , ψ ]. ( 5)

I n t h e s etti n g of l o c al p ar a m et er esti m ati o n,  w e s u p p os e
t h at  B o b  wis h es t o esti m at e t h e p ar a m et er a a n d  E v e  w a nts
t o esti m at e t h e p ar a m et er b ,  w h er e a a n d b ar e b ot h s m all.
Ali c e’s  Q FI a b o ut a is F Ali c e, a , b ut  B o b r e c ei v es t h e st at e
vi a t h e n ois y c h a n n el N A → B , s o his  Q FI a b o ut a (F B o b, a )
i s i n g e n er al s m all er t h a n  Ali c e’s.  Ali c e’s  Q FI a b o ut b is
F Ali c e, b , b ut  E v e r e c ei v es t h e st at e vi a t h e c o m pl e m e nt ar y

c h a n n el N A → E , s o h er  Q FI a b o ut b (F E v e, b ) is i n g e n er al
s m all er t h a n  Ali c e’s. I n S e c. III w e d eri v e t h e tr a d e- o ff
r el ati o n

F B o b, a

F Ali c e, a
+

F E v e, b

F Ali c e, b
1 + 2 1 −

i[A , B ]
2

ψ

4 σ 2
A σ 2

B

, ( 6)

w h er e σ M := [ M 2
ψ − M 2

ψ ]1 / 2 d e n ot es t h e st a n d ar d
d e vi ati o n of t h e o bs er v a bl e M .  N ot e t h at, i n c o ntr ast t o
E q. ( 1), t his r el ati o n is a n i n e q u alit y r at h er t h a n a n e q u al-
it y. It is r e mi nis c e nt of t h e  R o b erts o n u n c ert ai nt y r el ati o n,
wit h t h e c o m m ut at or q u a ntif yi n g t h e i n c o m p ati bilit y of t h e
o bs er v a bl es A a n d B .

Fi g ur e 3 s u m m ari z es t h e str u ct ur e of t his  w or k a n d pr o-
vi d es a n o v er vi e w of o ur r es ults. I n S e c. II,  w e i ntr o d u c e
t h e s etti n g of l o c al p ar a m et er esti m ati o n, r e c all s o m e us e-
f ul pr o p erti es of t h e  Q FI, d e fi n e t h e e n er g y p ar a m et er η ,
a n d r e vi e w t h e c o n c e pt of a c o m pl e m e nt ar y q u a nt u m c h a n-
n el.  We s k et c h t h e pr o of of t h e tr a d e- o ff r el ati o n  E q. ( 1) a n d
its g e n er ali z ati o n  E q. ( 6) i n S e c. III ( m or e d et ails c a n b e
f o u n d i n  A p p e n di x E ), a n d dis c uss s o m e e x a m pl es i n S e c.
I V.  We us e t h e tr a d e- o ff r el ati o n t o d eri v e u p p er b o u n ds o n
t h e  Q FI i n S e c. V . I n S e c. VI w e dis c uss h o w t h e s etti n g i n
Fi g. 1 is c o n n e ct e d  wit h t h e  m or e r e alisti c s etti n g of c o nti n-
u o us  M ar k o vi a n n ois e. I n S e c. VII w e d eri v e t h e n e c ess ar y
a n d s u ffi ci e nt c o n diti o n  E q. ( 3) f or t h e cl o c k’s s e nsiti vit y
t o b e u n di mi nis h e d b y tr a ns p ort t hr o u g h t h e n ois y c h a n n el
N A → B , a n d dis c uss s o m e of t h e i m pli c ati o ns of t his c o n-
diti o n.  N u m eri c al r es ults f or o ur u p p er b o u n d o n  Q FI i n
m a n y- b o d y s yst e ms ar e r e p ort e d i n S e c. VIII .  We s u m m a-
ri z e a n d c o m m e nt o n o ur r es ults i n S e c. I X.  M a n y f urt h er
d et ails ar e pr es e nt e d i n t h e a p p e n di c es.

II. S E T TI N G

We r e vi e w t h e st a n d ar d s etti n g i n q u a nt u m  m etr ol o g y of
si n gl e- p ar a m et er esti m ati o n.  We t h e n i ntr o d u c e o ur n ois e
m o d el a n d t h e q u a ntiti es t h at ar e r el e v a nt t o f or m ul at e o ur
u n c ert ai nt y r el ati o n.

A.  Q u a nt u m p a r a m et e r esti m ati o n

C o nsi d er a q u a nt u m st at e ρ ( t) t h at d e p e n ds o n a si n gl e
p ar a m et er t.  T h e t as k  w e st u d y is h o w  w ell t h e p ar a m et er
t c a n b e esti m at e d b y p erf or mi n g s uit a bl e  m e as ur e m e nts
( Fi g. 4 ). I n t h e c o nt e xt of t his  w or k, t h e p ar a m et er t is i d e n-
ti fi e d  wit h p h ysi c al ti m e, alt h o u g h t h e r es ults h ol d f or a n y
g e n er al r e al p ar a m et er t h at t h e q u a nt u m st at e  mi g ht d e p e n d
o n.

We c o nsi d er t h e s etti n g of l o c al s e nsiti vit y,  w h er e t h e
g o al of t h e q u a nt u m  m e as ur e m e nt is t o r e fi n e t h e pr e ci-
si o n t o  w hi c h  w e d et er mi n e t h e p ar a m et er if t h e v al u e
of t h e p ar a m et er is alr e a d y k n o w n t o b e cl os e t o a gi v e n
v al u e t0 .  M or e pr e cis el y,  w e s e e k a  m e as ur e m e nt o p er at or
T wit h  mi ni m al v ari a n c e s u c h t h at t h e e x p e ct ati o n v al u e of
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M etr ol o gi c al c o d e s
u si n g t h e st a bili z er

f or m ali s m

Fi s h er
i nf or m ati o n tr a d e- o ff
i n e q u alit y f or a n y t w o

p ar a m et er s

i nfoff
i n eq

Ti m e- e n er g y q u a nt u m  Fi s h er
i nf or m ati o n tr a d e- o ff

Si m pl e e x a m pl e s

M t l i l d

Ti m e- c o v ari a nt c o d e,
e. g., [[ 4, 2, 2]]

r C o d e st at e f or I si n g/
H ei s e n b er g i nt er a cti o n s

e s
er
s
r C d t t f I i /

C o n diti o n s f or z er o
s e n siti vit y l o s s N u m eri c s:

s pi n s  wit h
o n- sit e a m plit u d e d a m pi n g

B o u n d s

§ III

§ I V

§ V

§  VII

I ntr o d u cti o n

C o n cl u si o n s

S etti n g

Ali c e

B o b

E v e

C o nti n u o u s n oi s e s etti n g

§ II

§ I

§ VI

1  Q
u bit

G H Z

D e p h a si n g
n oi s e P arti al

er a s ur e

§ I X

§  VIII

A p p x. J

A p p x. G

A p p x. F

A p p x. C ,D ,E

FI G. 3.  O v er vi e w of o ur  m ai n r es ults a n d str u ct ur e of t his  w or k.

T r e v e als t h e v al u e of t h e p ar a m et er l o c all y ar o u n d t0 t o
first or d er i n dt , i. e.,

T ρ ( t0 + dt ) = t0 + dt + O (dt 2 ). ( 7)

m e a s ur e T t o
e sti m at e

FI G. 4. I n t h e s etti n g of q u a nt u m p ar a m et er esti m ati o n, t h e
t as k is t o i nf er a p ar a m et er t i n a o n e- p ar a m et er f a mil y of st at es
t → ρ ( t) t hr o u g h s uit a bl e  m e as ur e m e nts. F or l o c al p ar a m et er
esti m ati o n,  w e ass u m e t h e v al u e of t h e p ar a m et er is alr e a d y
k n o w n t o li e i n t h e n ei g h b or h o o d of a gi v e n v al u e t0 . T h e
m e as ur e m e nt is r e q uir e d t o r e fi n e t h e p ar a m et er esti m ati o n b y
o pti m all y disti n g uis hi n g ρ ( t0 ) fr o m ρ ( t0 + dt ) t o first or d er i n dt .
T his s etti n g is st a n d ar d i n t h e fi el d of q u a nt u m  m etr ol o g y, a n d
t h e o pti m al s e nsiti vit y is q u a nti fi e d b y a q u a ntit y k n o w n as t h e
Fis h er i nf or m ati o n.

I d e ntif yi n g t h e or d ers i n dt w e s e e t h at  E q. ( 7) is e q ui v al e nt
t o

T ρ ( t0 ) = t0 a n d tr T ∂ tρ ( t0 ) = 1, ( 8)

usi n g t h e n ot ati o n ∂ tρ = ∂ ρ / ∂ t. ( We  writ e a p arti al d eri v a-
ti v e i nst e a d of a t ot al d eri v ati v e i n a nti ci p ati o n of ot h er
v ari a bl es,  w hi c h  will b e i ntr o d u c e d l at er.) I n t h e lit er at ur e,
it is c o m m o n t o r e us e t h e s y m b ol t f or b ot h t h e p ar a m et er
o n  w hi c h ρ d e p e n ds as  w ell as t h e r ef er e n c e v al u e of t h e
p ar a m et er t0 .  We k e e p t h e disti n cti o n f or cl arit y.

H er e,  w e r estri ct e d t h e  m e as ur e m e nt t o b e pr oj e cti v e, as
d es cri b e d b y t h e  H er miti a n o bs er v a bl e T .  A  m or e g e n er al
p ositi v e o p er at or- v al u e d  m e as ur e ( P O V M) d o es n ot o ff er
a n y  m or e s e nsiti vit y i n s e nsi n g t h e p ar a m et er [ 1 ,1 2 ].

A c e ntr al r es ult i n q u a nt u m  m etr ol o g y is t h e q u a nt u m
Cr a m ér- R a o b o u n d,  w hi c h st at es t h at t h e o pti m al s e nsi-
ti vit y t o  w hi c h o n e c a n d et er mi n e t h e p ar a m et er t l o c all y
ar o u n d t0 i s d et er mi n e d b y a q u a ntit y c all e d t h e q u a nt u m
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Fis h er i nf or m ati o n [ 1 ,2 3 ,2 4 ].  T h e q u a nt u m Fis h er i nf or-
m ati o n of t h e st at e ρ ( t0 ) wit h r es p e ct t o a dir e cti o n ∂ tρ ( t0 )
is d e fi n e d as

F ρ ; ∂ tρ = tr ρ R 2 , ( 9)

w h er e R is a n y  H er miti a n o p er at or t h at s ol v es t h e e q u ati o n
1 / 2 ρ , R = 1 / 2 ρ R + R ρ = ∂ tρ , a n d  w h er e t h e q u a nti-
ti es ρ a n d ∂ tρ ar e e v al u at e d at t0 .  T h e  Cr a m ér- R a o b o u n d
c a n b e f or m ul at e d f or o ur p ur p os es as f oll o ws: f or a n y
o bs er v a bl e T t h at s atis fi es  E q. ( 8),  w e  m ust h a v e

(T − t0 )
2

ρ ( t0 )

1

F ρ ( t0 ) ; ∂ tρ ( t0 )
, ( 1 0)

a n d f urt h er m or e, t h e e q u alit y i n  E q. ( 1 0) c a n al w a ys b e
a c hi e v e d b y a s uit a bl e c h oi c e of T .  We r ef er t o a c h oi c e of
T ,  w hi c h is o pti m al i n  E q. ( 1 0) as a n o pti m al l o c al s e nsi n g
o bs er v a bl e f or t .

T h e o p er at or R i n  E q. ( 9) is c all e d a s y m m etri c l o g-
arit h mi c d eri v ati v e .  W h e n ρ a n d ∂ tρ c o m m ut e,  w e c a n
c h o os e R = ρ − 1 ∂ tρ = ( ∂ / ∂ t) l n ρ .  A g e n er al c o nstr u cti o n
of R i n t er ms of a n ei g e n d e c o m p ositi o n of ρ is gi v e n
as f oll o ws [ 2 5 ].  C o nsi d er a n ei g e n b asis {|k } of ρ t h at
s p a ns t h e f ull  Hil b ert s p a c e, s u c h t h at ρ = k λ k |k k | a n d
k = 1, 2, . . . , di m(H ), t h e n

R =

k ,k :
λ k + λ k = 0

2

λ k + λ k
k ∂ tρ k |k k |, ( 1 1)

w h er e t h e s u m r a n g es o v er all p airs of i n di c es k , k e x c e pt
t h os e f or  w hi c h b ot h λ k = 0 a n d λ k = 0.  T h e e x pr essi o n
f or t h e Fis h er i nf or m ati o n b e c o m es F ρ ; ∂ tρ ,  w h er e

F ρ ; ∂ tρ =

k ,k :
λ k + λ k = 0

2

λ k + λ k
k ∂ tρ k

2
. ( 1 2)

T h e s ol uti o n t o t h e a nti c o m m ut at or e q u ati o n 1 / 2 {ρ , R } =
∂ tρ is u ni q u e u p t o tr a nsf or m ati o ns of t h e f or m R →
R + P ⊥

ρ M P ⊥
ρ ,  w h er e M is a n ar bitr ar y  H er miti a n o p er at or,

w h er e P ⊥
ρ = 1 − P ρ , a n d  w h er e P ρ d e n ot es t h e pr oj e ct or

o nt o t h e s u p p ort of ρ . I n t h e e v e nt t h at P ⊥
ρ

d ρ
dt

P ⊥
ρ = 0, t h er e

is n o s ol uti o n f or R . I n s u c h a sit u ati o n, t h e o pti m al esti m a-
ti o n v ari a n c e ( 1 0) is z er o a n d t h e Fis h er i nf or m ati o n is n ot
d e fi n e d; s u c h c as es d o n ot aris e i n t h e s etti n g  w e c o nsi d er
i n t his  w or k.

We r e vi e w t h e s ol uti o ns t o t h e a nti c o m m ut at or e q u ati o n
1 / 2 {ρ , R } = ∂ tρ i n  A p p e n di x B . I n  A p p e n di x C , t h e
d e fi niti o n a n d el e m e nt ar y pr o p erti es of t h e Fis h er i nf or-
m ati o n ar e r e vi e w e d usi n g si m pl e t e c h ni q u es b as e d o n
s e mi d e fi nit e pr o gr a m mi n g. I n  A p p e n di x D ,  w e r e vi e w a
d eri v ati o n of t h e  Cr a m ér- R a o b o u n d usi n g t h es e  m et h o ds.

O bs er v a bl es T t h at esti m at e t h e ti m e p ar a m et er t wit h a n
a c c ur a c y t h at a c hi e v es t h e  Cr a m ér- R a o b o u n d ( 1 0), i. e., t h e
o pti m al l o c al s e nsi n g o bs er v a bl es, t ur n o ut t o b e t h e pr o-
j e cti v e  m e as ur e m e nts  wit h o ut c o m es ass o ci at e d  wit h t h e
ei g e ns p a c es of a s y m m etri c l o g arit h mi c d eri v ati v e [ 1 ,2 3 ].
S p e ci fi c all y, a n y o pti m al l o c al s e nsi n g o bs er v a bl e f or t is
of t h e f or m

T = t0 +
1

F ρ ; d ρ
dt

R , ( 1 3)

w h er e R is as a b o v e a n y s ol uti o n t o t h e a nti c o m m ut at or
e q u ati o n 1 / 2 {ρ , R } = d ρ / dt (s e e  A p p e n di x D f or a r e vi e w
of t h e pr o of).  D u e t o t h e fr e e d o m i n t h e c h oi c e of R , all
o pti m al l o c al s e nsi n g o bs er v a bl es f or t di ff er b y a t er m of
t h e f or m P ⊥

ρ M P ⊥
ρ w h er e M is a n y  H er miti a n o p er at or.

I n t h e r e m ai ni n g p art of t his s e cti o n,  w e r e vi e w a f e w
pr o p erti es of t h e Fis h er i nf or m ati o n f or l at er us e (s e e
A p p e n di x C f or d et ails). First is a s c ali n g pr o p ert y: if
0 < α 1 a n d β ∈ R ,  w e h a v e

F α ρ ; β ∂ tρ =
β 2

α
F ρ ; ∂ tρ , ( 1 4)

w h er e t h e d e fi niti o n ( 9) is f or m all y e xt e n d e d t o p ositi v e
s e mi d e fi nit e o p er at ors ρ t h at s atisf y tr ρ 1. S e c o n d, i n
c as e t h e st at e ρ a n d d eri v ati v e ∂ tρ c o m m ut e, t h e Fis h er
i nf or m ati o n t a k es t h e si m pl e f or m

[ρ , ∂ tρ ] = 0 ⇒ F ρ ; ∂ tρ = tr ρ − 1 ( ∂tρ )
2 . ( 1 5)

Fi n all y, f or g e n er al ρ , ∂ tρ ,  w e c a n e x pr ess t h e Fis h er i nf or-
m ati o n i n t er ms of a p air of c o n v e x o pti mi z ati o n pr o bl e ms
[2 6 – 2 8 ] as

1

4
F ρ ; ∂ tρ

= m a x
S = S †

tr ( ∂tρ ) S − tr ρ S 2 ( 1 6 a)

= mi n
L ar b.

tr(L † L ) : ρ 1 / 2 L + L † ρ 1 / 2 = ∂ tρ . ( 1 6 b)

T h es e t w o o pti mi z ati o ns c a n b e c ast as s e mi d e fi nit e pr o b-
l e ms t h at ar e d u al t o e a c h ot h er.  T h es e o pti mi z ati o ns ar e
c o n v e ni e nt t o d eri v e b o u n ds o n t h e Fis h er i nf or m ati o n, as
it s u ffi c es t o e x hi bit s uit a bl e c a n di d at es i n  E qs. ( 1 6 a) or
( 1 6 b).

B.  Ti m e a n d e n e r g y p a r a m et e rs of t h e n ois el ess cl o c k

N o w  w e t ur n t o t h e s et u p d e pi ct e d i n Fi g. 1 , i n  w hi c h
Ali c e p oss ess es a n ois el ess q u a nt u m cl o c k,  w hi c h s h e
s e n ds t o  B o b t hr o u g h a gi v e n n ois y c h a n n el. I n t his s u b-
s e cti o n,  w e st u d y  Ali c e’s n ois el ess q u a nt u m cl o c k, a n d i n
t h e f oll o wi n g s u bs e cti o n  w e st u d y t h e e ff e ct of t h e n ois e.
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1.  T h e n ois el ess cl o c k

S u p p os e t h at  Ali c e pr e p ar es a q u a nt u m cl o c k i n a p ur e
st at e li vi n g i n a fi nit e- di m e nsi o n al  Hil b ert s p a c e H A . S h e
l ets it e v ol v e a c c or di n g t o a  H a milt o ni a n H (t), g e n er ati n g
a o n e- p ar a m et er f a mil y of st at e v e ct ors t → | ψ ( t) . T h e
ti m e e v ol uti o n of ψ ( t) = | ψ ( t) ψ ( t)| is g o v er n e d b y t h e
st a n d ar d S c hr ö di n g er ti m e e v ol uti o n

∂ tψ :=
∂ ψ

∂ t
= − i [H , ψ ]. ( 1 7)

We n o w c o m p ut e t h e Fis h er i nf or m ati o n ass o ci at e d  wit h
Ali c e’s cl o c k l o c all y ar o u n d a ti m e of i nt er est t0 , f oll o wi n g
t h e d e fi niti o n ( 9). F or a n y t0 ,  w e c a n c h o os e R = 2 ∂ tψ =
− 2 i[H , ψ ], b e c a us e {∂ tψ , ψ } = ∂ t( ψ 2 ) = ∂ tψ .  Ali c e’s
Fis h er i nf or m ati o n F Ali c e, t f or t h e e v ol uti o n |ψ ( t) at t h e
ti m e of i nt er est t0 i s t h er ef or e gi v e n b y

F Ali c e, t := F ψ ; − i[H , ψ ] = 4 σ 2
H , ( 1 8)

w h er e ψ a n d H ar e e v al u at e d at ti m e t0 , a n d  w h er e a g ai n,
w e d e n ot e b y σ M = [ M 2

ψ − M 2
ψ ]1 / 2 t h e st a n d ar d d e vi-

ati o n of a n o bs er v a bl e M .  Alt er n ati v e e x pr essi o ns of t h e
st a n d ar d d e vi ati o n ar e gi v e n b y

σ 2
M = (M − M )2 = − [M , ψ ]2 , ( 1 9)

writi n g M := M ψ f or br e vit y.
Ar o u n d t h e p oi nt t0 , a n y o pti m al l o c al s e nsi n g o bs er v-

a bl e f or t t a k es t h e f or m gi v e n b y  E q. ( 1 3),  w hi c h  w e c a n
r e writ e i n t his c o nt e xt as

T = t0 −
i[H , ψ ]

2 σ 2
H

+ P ⊥
ψ M P ⊥

ψ , ( 2 0)

w h er e M is a n y  H er miti a n o p er at or. I n t h e c as e  w h er e H
is ti m e i n d e p e n d e nt, t h e n F Ali c e, t d o es n ot d e p e n d o n t h e
ti m e of i nt er est t0 , b ut t h e o pti m al s e nsi n g o bs er v a bl e T
d e p e n ds o n t0 n ot o nl y dir e ctl y b ut als o i n dir e ctl y t hr o u g h
ψ a n d ∂ tψ . I n t h e f oll o wi n g,  w e fi x t0 a n d  w e c o nsi d er o nl y
t h e e v ol uti o n |ψ ( t) l o c all y at t0 . F urt h er m or e,  w e us e t h e
s h ort h a n d |ψ := | ψ ( t0 ) .

2.  T h e e n er g y p ar a m et er

T h e o pti m al l o c al ti m e-s e nsi n g o bs er v a bl e T i n  E q. ( 2 0),
b ei n g a  H er miti a n o p er at or, c a n b e us e d t o g e n er at e a dif-
f er e nt e v ol uti o n i n a n alt er n ati v e dir e cti o n i n t h e s p a c e of
q u a nt u m st at es. I n o ur s et u p,  w e d e fi n e η 0 = H ψ a n d
w e c o nsi d er a n y f a mil y of st at e v e ct ors η → | ψ ( η ) s u c h
t h at |ψ ( η = η 0 ) = | ψ = | ψ ( t = t0 ) a n d s u c h t h at at t h e
p oi nt |ψ ( η = η 0 ) w e h a v e

∂ η ψ = i[T , ψ ]. ( 2 1)

T his e v ol uti o n c a n b e i nt er pr et e d as a S c hr ö di n g er
e q u ati o n  wit h t h e e ff e cti v e  H a milt o ni a n − T .  A n e x a m pl e

g ee n e rat e d
b yy g e n e rata e d

b y

es e n s e
wit hit h

s e n s e
w it h

FI G. 5.  We d e fi n e a p ar a m et er η t h at is c o m pl e m e nt ar y t o ti m e
e v ol uti o n a n d t h at r e pr es e nts t h e e n er g y of t h e st at e.  C o nsi d er
a q u a nt u m cl o c k  m o d el e d as a p ur e st at e ψ e v ol vi n g a c c or d-
i n g t o t h e S c hr ö di n g er e q u ati o n ∂ tψ = − i[H , ψ ],  w h er e H is t h e
H a milt o ni a n.  L o c all y ar o u n d t0 , t h e o bs er v a bl e T t h at o pti m all y
disti n g uis h es t h e n ei g h b ori n g st at es ψ ( t0 ) a n d ψ ( t0 + dt ) d e fi n es
a n o pti m al l o c al ti m e-s e nsi n g o bs er v a bl e . T is t h e r el e v a nt  m e a-
s ur e m e nt t o c arr y o ut t o o pti m all y r e a d o ut t h e i nf or m ati o n a b o ut
ti m e st or e d i n t h e q u a nt u m cl o c k.  We n o w c o nsi d er l o c all y
ar o u n d ψ ( t0 ) t h e dir e cti o n i n st at e s p a c e d e fi n e d b y ∂ η ψ =
i[T , ψ ], i. e., a S c hr ö di n g er-t y p e e v ol uti o n  wit h − T pl a yi n g t h e
r ol e of a n e ff e cti v e  H a milt o ni a n. It t ur ns o ut t h at t h e o pti m al
esti m ati o n pr o c e d ur e f or t h e p ar a m et er η is t o  m e as ur e H its elf.
T h er ef or e, t h e p ar a m et er η r e pr es e nts t h e e n er g y of ψ ( η ) . T h e
p ar a m et ers t a n d η ar e, t h er ef or e, c o m pl e m e nt ar y t o e a c h ot h er i n
t h e s e ns e t h at t h e g e n er at or ass o ci at e d  wit h o n e p ar a m et er o pti-
m all y disti n g uis h es n ei g h b ori n g v al u es of t h e ot h er p ar a m et er
a n d vi c e v ers a .

of s u c h a n e v ol uti o n is

|ψ ( η ) = e i T( η − η 0 ) |ψ . ( 2 2)

I nt er esti n gl y, t h e e v ol uti o n g e n er at e d i n t his  w a y l o c all y
ar o u n d |ψ t ur ns o ut t o b e c o m pl e m e nt ar y t o ti m e e v ol u-
ti o n i n t h e s e ns e t h at  w e c a n d eri v e a  m e a ni n gf ul u n c er-
t ai nt y r el ati o n a n d t h at t h e p ar a m et er η c a n b e i d e nti fi e d
wit h t h e a v er a g e e n er g y of t h e st at e v e ct or |ψ ( η ) (s e e
Fi g. 5 ).

M or e f or m all y a n d t o cl arif y t h e d e p e n d e n ci es of |ψ
o n t a n d η ,  w e c o nsi d er a t w o- p ar a m et er f a mil y of st at e
v e ct ors (t, η ) → | ψ ( t, η ) wit h |ψ ( t0 , η 0 ) = | ψ a n d s u c h
t h at at t h e p oi nt (t0 , η 0 ) w e h a v e

∂ tψ ( t0 , η 0 ) = − i[H , ψ ], ∂ η ψ ( t0 , η 0 ) = i[T , ψ ], ( 2 3)

w h er e T is gi v e n b y  E q. ( 2 0). F or e x a m pl e,  w e c o ul d
c h o os e

|ψ ( t, η ) = e x p − i[(t − t0 )H − ( η − η 0 )T ] |ψ . ( 2 4)

U nl ess i n di c at e d ot h er wis e, t h e st at e v e ct or |ψ a n d t h e
c orr es p o n di n g d eri v ati v es ∂ tψ , ∂ η ψ ar e h e n c ef ort h i m pli c-
itl y e v al u at e d at (t0 , η 0 ).  We us e t h e s h ort h a n ds |ψ ( t) :=
|ψ ( t, η 0 ) a n d |ψ ( η ) := | ψ ( t0 , η ) t o d e n ot e t h e r es p e c-
ti v e e v ol uti o ns a c c or di n g t o t a n d η i n  w hi c h t h e ot h er
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p ar a m et er is fi x e d t o η 0 or t0 , r es p e cti v el y; t h e n a m e of
t h e ar g u m e nt (t or η ) d et er mi n es  w hi c h e v ol uti o n is  m e a nt.

L et us r e- e x pr ess t h e d eri v ati v e ∂ η ψ of ψ = | ψ ψ | i n
t er ms of t h e  H a milt o ni a n.  Usi n g  E q. ( 2 0),  w e h a v e

∂ η ψ = i T , ψ =
1

2 σ 2
H

[H , ψ ], ψ . ( 2 5)

A bri ef c o m p ut ati o n r e v e als t h at [H , ψ ], ψ = H ψ +
ψ H − 2 H ψ = { H − H , ψ } a n d t h er ef or e

∂ η ψ =
1

2 σ 2
H

H − H , ψ . ( 2 6)

Ali c e’s Fis h er i nf or m ati o n  wit h r es p e ct t o t h e p ar a m et er η
is gi v e n b y t h e s a m e e x pr essi o n as  E q. ( 1 8), b ut  wit h H
a n d t r e pl a c e d b y − T a n d η , t o g et

F Ali c e, η := F ψ ; i[T , ψ ] = 4 σ 2
T =

1

σ 2
H

, ( 2 7)

w h er e t h e l ast e q u alit y f oll o ws fr o m

σ 2
T = (T − t0 )

2 =
− [H , ψ ]2

4 σ 4
H

=
1

4 σ 2
H

. ( 2 8)

T o j ustif y t h at t h e p ar a m et er η i n t h e e v ol uti o n ( 2 1) c a n
b e ass o ci at e d  wit h t h e e n er g y of t h e st at e v e ct or l o c all y
ar o u n d |ψ ,  w e c o m p ut e t h e o pti m al s e nsi n g o bs er v a bl e
f or η a n d s h o w t h at it is t h e  H a milt o ni a n H its elf ( u p
t o t er ms l yi n g o utsi d e of t h e s u p p ort of ψ ).  T h e o pti-
m al l o c al-s e nsi n g o bs er v a bl e t h at disti n g uis h es ψ ( η ) fr o m
ψ ( η + d η ) is gi v e n b y  E q. ( 1 3), b ut  wit h t h e p ar a m et er
t r e pl a c e d b y t h e p ar a m et er η .  Usi n g  E q. ( 2 6), o bs er v e
t h at t h e o p er at or R = (H − H ) / σ 2

H s ol v es t h e e q u ati o n
{ψ , R }/ 2 = ∂ η ψ . Fr o m E q. ( 1 3) a n d s u bstit uti n g t b y η , w e
s e e t h at t h e o pti m al l o c al-s e nsi n g o bs er v a bl e f or η is si m-
pl y η 0 + H − H = H .  T h at is, t h e o pti m al  m e as ur e m e nt
disti n g uis hi n g |ψ ( η 0 ) fr o m |ψ ( η 0 + d η ) is t h e  H a mil-
t o ni a n H its elf, u p t o a t er m P ⊥

ψ M P ⊥
ψ f or a n y  H er miti a n

M . [ Alt er n ati v el y, t h e s a m e c o n cl usi o n  w o ul d h a v e b e e n
r e a c h e d h a d  w e st art e d fr o m  E q. ( 2 0) wit h t, H r e pl a c e d
b y η , − T .  A  m or e d et ail e d c o m p ut ati o n is pr o vi d e d i n
A p p e n di x D .]  T h er ef or e, t h e p ar a m et er η d es cri b es a n e v o-
l uti o n al o n g  w hi c h, l o c all y ar o u n d |ψ ,  w e h a v e η 0 + d η =
H ψ ( η 0 + d η ) . I n t his s e ns e, η r e pr es e nts t h e e n er g y of t h e

pr o b e |ψ ( η ) l o c all y ar o u n d η 0 .
T o s u m m ari z e, t h e e v ol uti o n of ψ ( t) = | ψ ( t) ψ ( t)| is

g e n er at e d b y t h e  H a milt o ni a n H ; n e ar b y st at es ψ ( t0 ) a n d
ψ ( t0 + dt ) ar e o pti m all y disti n g uis h e d b y a l o c al ti m e-
s e nsi n g o bs er v a bl e T .  T h e c o m pl e m e nt ar y e v ol uti o n ψ ( η )
is o n e t h at i n v erts t h e r ol es of H a n d T : t h e e v ol uti o n ψ ( η )
is g e n er at e d b y T , a n d H is t h e o p er at or t h at o pti m all y
disti n g uis h es n ei g h b ori n g st at es ψ ( η 0 ) a n d ψ ( η 0 + d η ) .

3. Si n gl e- q u bit e x a m pl e

C o nsi d er a q u bit i niti ali z e d i n t h e st at e v e ct or |ψ i nit =
| + ,  w h er e | ± = [| ↑ ± | ↓ ]/

√
2, a n d l et t h e q u bit e v ol v e

a c c or di n g t o t h e  H a milt o ni a n H = ω Z / 2 (i. e.,  Ali c e’s s ys-
t e m i n Fi g. 2 ).  T h e ti m e e v ol uti o n of t h e cl o c k is gi v e n b y
|ψ ( t) = U t| + ,  w h er e U t = e − i Ht;  w e s e e t h at

|ψ ( t) =
1

√
2

e − iω t
2 | ↑ + e

iω t
2 | ↓

= c os
ω t

2
| + − i si n

ω t

2
| − . ( 2 9)

It is als o c o n v e ni e nt t o n ot e t h at

ψ ( t) = U t| + +| U
†
t =

1

2
+

1

2
U tX U

†
t ( 3 0 a)

=
1

2
+

1

2
c os ( ω t) X + si n( ω t) Y , ( 3 0 b)

usi n g t h e i d e ntit y | + +|  = [1 + X ]/ 2 al o n g  wit h
e − i a ZX e i a Z = c os (2 a ) X + si n(2 a ) Y .  T h e ti m e d eri v ati v e
of t h e st at e is

∂ tψ ( t) = − i[H , ψ ( t)] = −
iω

2
Z , U t| + +| U

†
t

= −
iω

2
U t Z ,

1 + X

2
U

†
t

=
ω

2
U tY U

†
t ( 3 1 a)

=
ω

2
c os ( ω t) Y − si n( ω t) X , ( 3 1 b)

usi n g e − i a ZYe i a Z = c os (2 a ) Y − si n (2 a ) X .  T h e e x pr es-
si o ns ( 3 0 a) a n d ( 3 1 a) m a nif est t h e f a ct t h at t h e st at e a n d
t h e d eri v ati v e e v ol v e i n ti m e b y r ot ati o n ar o u n d t h e Z
a xis of t h e  Bl o c h s p h er e,  w h er e as  w e c a n r e a d o ut fr o m
t h e e x pr essi o ns ( 3 0 b) a n d ( 3 1 b) t h e i nf or m ati o n a b o ut t h e
ti m e e v ol uti o n of t h e c o m p o n e nts of t h e  Bl o c h v e ct or.  T h e
a v er a g e e n er g y H ψ ( t) i s

H ψ ( t) = tr U t| + +| U
†
t

ω Z

2
= 0 ( 3 2)

f or all t, n oti n g t h at U t c o m m ut es  wit h Z a n d t h at
+| Z | + = 0.  T h e e n er g y’s st a n d ar d d e vi ati o n at ti m e t is

t h e n

σ 2
H = H 2

ψ ( t)
=

ω 2

4
, ( 3 3)

n oti n g t h at Z 2 = 1 .
We n o w c o m p ut e t h e ti m e s e nsiti vit y a n d t h e o pti m al

ti m e-s e nsi n g o bs er v a bl e l o c all y ar o u n d a gi v e n ti m e t0 . We
writ e |ψ = | ψ ( t0 ) f or s h ort.  T h e o pti m al ti m e-s e nsi n g
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o bs er v a bl e is gi v e n b y  E q. ( 2 0),  w hi c h  w e c a n c o m p ut e
as (i g n ori n g t h e d e gr e e of fr e e d o m P ⊥

ψ M P ⊥
ψ ),

T − t0 =
1

2 σ 2
H

∂ tψ ( t0 ) =
1

ω
U t0 Y U

†
t0

=
1

ω
c os ( ω t0 ) Y − si n( ω t0 ) X . ( 3 4)

T h e o pti m al s e nsi n g o bs er v a bl e T is t h er ef or e ali g n e d  wit h
t h e dir e cti o n o n t h e  Bl o c h s p h er e t h at is t a n g e nt t o t h e
st at e’s e v ol uti o n.

We n o w d et er mi n e t h e p ar a m et er η . It is g e n er at e d b y
T as p er  E q. ( 2 1), a n d  w e c a n c o m p ut e t h e ass o ci at e d
d eri v ati v e usi n g  E q. ( 2 6) as

{H − H , ψ } =
ω

2
Z ,

1 + X

2
=

ω

2
Z , ( 3 5)

∂ η ψ =
1

2 σ 2
H

ω

2
Z =

Z

ω
, ( 3 6)

r e c alli n g t h at t h e P a uli  m atri c es al o n g di ff er e nt dir e cti o ns
a nti c o m m ut e.  T h e dir e cti o n ass o ci at e d  wit h t h e η p ar a m e-
t er is ali g n e d  wit h t h e Z a xis of t h e  Bl o c h s p h er e ( Fi g. 2 ),
w hi c h is t h e dir e cti o n i n  w hi c h t h e  H a milt o ni a n is ori e nt e d.

We c a n n o w c o m p ut e t h e s e nsiti viti es  wit h r es p e ct t o t
a n d η usi n g  E qs. ( 1 8) a n d ( 2 7) as

F Ali c e, t = 4 σ 2
H = ω 2 , F Ali c e, η =

1

σ 2
H

=
4

ω 2
. ( 3 7)

Fi n all y,  w e c a n c h e c k t h at H is a n o pti m al l o c al-s e nsi n g
o bs er v a bl e f or η . First o bs er v e  wit h η 0 = H ψ = 0 t h at

H ψ ( t0 ,η 0 + d η ) = d η tr H ∂ η ψ = d η , ( 3 8)

usi n g  E q. ( 3 6) al o n g  wit h Z 2 = 1 .  H e n c e, H s atis fi es t h e
c o n diti o n ( 7) f or t h e p ar a m et er η .  T h e v ari a n c e of t his
o bs er v a bl e  w as c o m p ut e d a b o v e as

(H − H )2 = σ 2
H =

ω 2

4
=

1

F Ali c e, η
, ( 3 9)

a n d t h er ef or e H als o s at ur at es t h e  Cr a m ér- R a o b o u n d. It is
a n o pti m al l o c al-s e nsi n g o bs er v a bl e.

C.  T h e n ois y c h a n n el a n d t h e e n vi r o n m e nt

1.  T h e n ois y cl o c k

S u p p os e t h at  Ali c e s e n ds t h e cl o c k fr o m its n ois el ess
e n vir o n m e nt t o a r e c ei v er  B o b t hr o u g h a n ois y c h a n n el
N A → B ( Fi g. 1 ).  B o b h as a c c ess t o t h e n ois y cl o c k st at e

ρ B (t) = N A → B ( ψ (t)). ( 4 0)

We c o nsi d er t h e s e nsiti vit y of  B o b’s cl o c k l o c all y ar o u n d
t0 , i. e.,  w e as k h o w  w ell  B o b c a n disti n g uis h ρ B (t0 ) fr o m

ρ B (t0 + dt ).  We ass u m e t h at t h e n ois y c h a n n el N A → B d o es
n ot d e p e n d o n t.  T his s etti n g is n o nst a n d ar d i n t h e c o nt e xt
of q u a nt u m  m etr ol o g y.  Us u all y, o n e c o nsi d ers a q u a nt u m
cl o c k t h at is e x p os e d t o c o nti n u o us n ois e as it e v ol v es
i n ti m e i nst e a d of t h e n ois e b ei n g a p pli e d s e p ar at el y a n d
i nst a nt a n e o usl y aft er t h e s yst e m h as e v ol v e d u nit aril y f or
a gi v e n a m o u nt of ti m e.  T his alt er n ati v e s etti n g r e pr es e nts
t h e sit u ati o n  w h er e  Ali c e  w o ul d li k e t o s e n d a q u a nt u m
r ef er e n c e fr a m e t o  B o b o v er a n ois y c h a n n el [2 9 ].  We
d ef er t h e dis c ussi o n of t h e c o n n e cti o ns b et w e e n t h es e t w o
s etti n gs t o S e c. VI .

L o c all y ar o u n d t0 ,  B o b’s o pti m al s e nsiti vit y is gi v e n vi a
t h e  Cr a m ér- R a o b o u n d ( 1 0) b y  B o b’s Fis h er i nf or m ati o n
wit h r es p e ct t o ti m e,

F B o b, t := F ρ B (t0 ) ; ∂ tρ B (t0 ) . ( 4 1)

We  m a y f urt h er m or e e x pr ess ρ B a n d ∂ tρ B a s

ρ B = N A → B ( ψ ),

∂ tρ B = N A → B ∂ tψ = N A → B − i[H , ψ ] .
( 4 2)

D et er mi ni n g F B o b, t i n pri n ci pl e r e q uir es t h e us a g e of a g e n-
er al e x pr essi o n of t h e Fis h er i nf or m ati o n f or  mi x e d st at es
s u c h as  E q. ( 9) or  E q. ( 1 2),  w hi c h c a n b e si g ni fi c a ntl y
m or e c u m b ers o m e t o  m a ni p ul at e as o p p os e d t o c o m p uti n g
t h e v ari a n c e of t h e  H a milt o ni a n i n t h e c as e of a p ur e-st at e
e v ol uti o n.

2.  T h e e n vir o n m e nt

A n y q u a nt u m c h a n n el N A → B c a n b e e x pr ess e d as a
u nit ar y e v ol uti o n o v er a l ar g er s yst e m,  w h er e t h e e n vi-
r o n m e nt is i niti ali z e d i n a p ur e st at e.  T his c o nstr u cti o n is
k n o w n as a Sti n es pri n g dil ati o n.  T h e i niti al p ur e st at e of
t h e e n vir o n m e nt c a n b e c o ntr a ct e d  wit h t h e gl o b al u nit ar y
t o gi v e a  m or e c o n cis e d es cri pti o n of t h e Sti n es pri n g dil a-
ti o n i n t er ms of a n is o m etr y A → B E .  M or e pr e cis el y, a n y
q u a nt u m c h a n n el N A → B c a n b e  writt e n as

N A → B (·) = trE V A → B E (·) V † , ( 4 3)

w h er e E is a s uit a bl e e n vir o n m e nt s yst e m, a n d  w h er e
V A → B E i s a n is o m etr y  m a p pi n g st at es of A i nt o B ⊗ E .

T h e s yst e m E ,  w hi c h  w e c all  E v e, r e pr es e nts t h e q u a n-
t u m i nf or m ati o n t h at is dis c ar d e d b y t h e c h a n n el N A → B .
I nst e a d,  w e c a n c o nsi d er a q u a nt u m c h a n n el t h at d es cri b es
w h at  E v e g ets if  B o b’s s yst e m B is dis c ar d e d.  B y tr a ci n g
o ut B i nst e a d of E i n  E q. ( 4 3) w e o bt ai n t h e c o m pl e m e nt ar y
c h a n n el ,

N A → E (·) = trB V A → B E (·) V † . ( 4 4)
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If  w e  writ e t h e n ois y c h a n n el i n a n o p er at or-s u m r e pr es e n-
t ati o n  wit h  Kr a us o p er at ors {E k } as

N (·) =
k

E k (·)E
†
k , ( 4 5)

w e  m a y  writ e a c orr es p o n di n g c o m pl e m e nt ar y c h a n n el as

N (·) =

k ,k

tr E
†
k E k (·) |k k |E , ( 4 6)

f or s o m e ort h o n or m al b asis {|k } o n t h e e n vir o n m e nt s ys-
t e m E .  T h e c o m pl e m e nt ar y c h a n n el is u ni q u e u p t o a
p arti al is o m etr y o n t h e e n vir o n m e nt s yst e m.

O ur  m ai n r es ult i n v ol v es  E v e’s s e nsiti vit y t o t h e η
p ar a m et er of t h e st at e t h at s h e o bt ai ns if  Ali c e’s q u a nt u m
cl o c k is s e nt t o E vi a t h e c o m pl e m e nt ar y c h a n n el.  N a m el y,
w e d e fi n e

ρ E ( η ) = N A → E ( ψ ( η )). ( 4 7)

R e c alli n g  E q. ( 2 6),  w e h a v e

∂ η ρ E =
1

2 σ 2
H

N A → E ({H − H , ψ }). ( 4 8)

As f or ψ , ∂ tψ , a n d ∂ η ψ , t h e st at es ρ B , ρ E a n d t h e d eri v a-
ti v es ∂ tρ B , ∂ η ρ E ar e i m pli citl y e v al u at e d at (t0 , η 0 ) u nl ess

s p e ci fi e d ot h er wis e.  We als o a b br e vi at e N A → B a n d N A → B

b y N a n d N f or c o n v e ni e n c e a n d  w h e n e v er it is u n a m-
bi g u o us t o d o s o.

III.  BI P A R TI T E  U N C E R T AI N T Y  R E L A TI O N  F O R
T H E  FI S H E R I N F O R M A TI O N

A.  E q u alit y  Fis h e r i nf o r m ati o n t r a d e- o ff f o r ti m e a n d
e n e r g y a n d e x p r essi o n f o r s e nsiti vit y l oss

S e n di n g  Ali c e’s cl o c k t o  B o b t hr o u g h t h e n ois y c h a n n el
N A → B r e d u c es t h e cl o c k’s s e nsiti vit y t o t h e ti m e p ar a m et er
t.  O n t h e ot h er h a n d, s e n di n g t h e cl o c k t o  E v e t hr o u g h t h e
c o m pl e m e nt ar y c h a n n el N A → E e n a bl es  E v e t o g ai n s e n-
siti vit y  wit h r es p e ct t o t h e e n er g y p ar a m et er η .  O ur  m ai n
r es ult c h ar a ct eri z es h o w t h es e t w o e ff e cts ar e r el at e d.

T h e or e m 1 ( Bi p artit e ti m e- e n er g y u n c ert ai nt y r el a-
ti o n). —S u p p os e  Ali c e pr e p ar es a pr o b e i n a q u a nt u m st at e
v e ct or |ψ a n d c o nsi d er t h e l o c al p ar a m et ers t, η d e fi ni n g
dir e cti o ns i n st at e s p a c e g e n er at e d b y H a n d T a n d c e nt er e d
at |ψ = | ψ ( t0 , η 0 ) as i n  E q. ( 2 3).  Ali c e s e n ds h er pr o b e t o
B o b t hr o u g h a c h a n n el N A → B ; l et  E v e r e pr es e nt t h e o ut p ut
of t h e c orr es p o n di n g c o m pl e m e nt ar y c h a n n el N A → E ( s e e
Fi g. 1 ).  T h e n

F B o b, t

F Ali c e, t
+

F E v e, η

F Ali c e, η
= 1, ( 4 9)

pr o vi d e d t h e r a n k of N ( ψ (t)) d o es n ot c h a n g e at t0 .

R e c alli n g  E qs. ( 1 8) a n d ( 2 7), o ur u n c ert ai nt y r el ati o n is
e q ui v al e ntl y st at e d as

F B o b, t

4 σ 2
H

+ σ 2
H F E v e, η = 1. ( 5 0)

Usi n g t h e  Cr a m ér- R a o b o u n d ( 1 0) w e c a n r el at e t h e o pti-
m al s e nsi n g a c c ur a ci es δ t2B o b, est , δ η 2

E v e, est a s s o ci at e d
wit h t h e p ar a m et ers t, η o n  B o b a n d  E v e’s s yst e ms,

1

4 σ 2
H

1

δ t2B o b, est

+
1

4 σ 2
T

1

δ η 2
E v e, est

1, ( 5 1)

n oti n g t h at e q u alit y c a n b e a c hi e v e d  wit h s e nsi n g str at e gi es
t h at s at ur at e t h e  Cr a m ér- R a o b o u n d pr o vi d e d t h e r a n k of
N ( ψ (t)) d o es n ot c h a n g e at t = t0 .

A pr o of of  T h e or e m 1 pr o c e e ds b y  writi n g t h e Fis h er
i nf or m ati o n o n  B o b’s e n d, i. e., aft er t h e a p pli c ati o n of t h e
n ois e c h a n n el, i n t er ms of t h e  B ur es  m etri c.  T h e e n vi-
r o n m e nt  E v e is i ntr o d u c e d as t h e p urif yi n g s p a c e o v er
w hi c h t h e fi d elit y is c o m p ut e d vi a  U hl m a n n’s t h e or e m.
T h e r es ulti n g e x pr essi o n is e x pr ess e d as a s e mi d e fi nit e
pr o gr a m as i n  R efs. [ 3 0 ,3 1 ]; s uit a bl y  m a ni p ul ati n g t h e c or-
r es p o n di n g d u al pr o bl e m yi el ds t h e r el ati o n ( 4 9).  T h e f ull
pr o of is pr o vi d e d i n  A p p e n di x E .  We als o pr o vi d e a n alt er-
n ati v e pr o of usi n g a s e mi d e fi nit e c h ar a ct eri z ati o n of t h e
Fis h er i nf or m ati o n.

T h e c o n diti o n t h e r a n k of N ( ψ (t)) d o es n ot c h a n g e
l o c all y at t h e ti m e t0 e ns ur es t h at  w e a v oi d e d g e c as es
w h er e t h e c orr es p o n d e n c e b et w e e n t h e Fis h er i nf or m ati o n
a n d t h e  B ur es  m etri c is i n c o m pl et e [ 3 2 – 3 4 ]. I n e d g e c as es
w h er e t his c o n diti o n is vi ol at e d, t h e u n c ert ai nt y r el ati o n
( 4 9) c a n b e s h o w n t o h ol d as a n i n e q u alit y i nst e a d of a n
e q u alit y (s e e b el o w a n d  A p p e n di x E ).  T h e n o r a n k c h a n g e
c o n diti o n is t y pi c all y ass o ci at e d  wit h sit u ati o ns  w h er e t h e
q u a nt u m Fis h er i nf or m ati o n is dis c o nti n u o us. I n s u c h c as es
its o p er ati o n al r el e v a n c e c a n b e q u esti o n e d;  w e f urt h er dis-
c uss t h es e p oi nts b el o w i n t h e c o nt e xt of i n d e p e n d e nt a n d
i d e nti c all y distri b ut e d (II D) n ois e as  w ell as i n  A p p e n di x F .

T h e c o n diti o n t h at t h e r a n k of N ( ψ (t)) d o es n ot c h a n g e
at t = t0 i s f or m ali z e d b y r e q uiri n g t h at f or a n y ei g e n-
v al u e p k (t) of N ( ψ (t)) s u c h t h at p k (t0 ) = 0  w e als o h a v e
∂ 2

t p k (t0 ) = 0.  T his  m or e pr e cis e f or m ul ati o n is t h e f or m of
t h e ass u m pti o n t h at is us e d i n t h e pr o of.  O bs er v e t h at a n y
ei g e n v al u e p k (t) of N ( ψ (t)) t h at s atis fi es p k (t0 ) = 0 n e c-
ess aril y als o s atis fi es ∂ tp k (t0 ) = 0, si n c e t h e v al u e z er o is
n e c ess aril y a  mi ni m u m f or p k (t).

A n ot h er e q ui v al e nt f or m of o ur u n c ert ai nt y r el ati o n
( 4 9) is o n e t h at q u a nti fi es dir e ctl y t h e di ff er e n c e b et w e e n
t h e s e nsiti vit y of t h e n ois el ess cl o c k a n d t h e r es ulti n g
s e nsiti vit y o n  B o b’s e n d.  L et us d e fi n e

F B o b, t = F Ali c e, t − F B o b, t = 4 σ 2
H − F B o b, t. ( 5 2)
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A f e w si m pl e al g e br ai c  m a ni p ul ati o ns of  E q. ( 4 9) l e a d t o

F Ali c e, t − F B o b, t =
F Ali c e, t

F Ali c e, η
F E v e, η , ( 5 3)

w hi c h gi v es us a n e x pr essi o n f or F B o b, t.  We c a n f ur-
t h er s p ell o ut t his e x pr essi o n usi n g  E qs. ( 1 8) a n d ( 2 7)
al o n g  wit h si m pl e s c ali n g pr o p erti es t h at f oll o w fr o m t h e
d e fi niti o n of t h e Fis h er i nf or m ati o n t o fi n d

F B o b, t = (2 σ 2
H ) 2 F E v e, η = F ρ E ; 2σ 2

H ∂ η ρ E

= F ρ E ; N ({ H̄ , ψ }) , ( 5 4)

w h er e  w e h a v e us e d  E q. ( 4 8) i n t h e l ast e q u alit y.
S u m m ari zi n g t h e a b o v e ar g u m e nt,  w e o bt ai n a n alt er n a-

ti v e f or m of  T h e or e m 1 as a n e x pr essi o n f or t h e s e nsiti vit y
l oss F B o b, t i n t er ms of t h e Fis h er i nf or m ati o n t h at  E v e
o bt ai ns  wit h r es p e ct t o a dir e cti o n ass o ci at e d  wit h t h e
a nti c o m m ut at or of H a n d ψ .

C or oll ar y 1 ( E x pr essi o n f or  B o b’s s e nsiti vit y l oss vi a
E v e). — c o nsi d er t h e s etti n g of  T h e or e m 1 a n d ass u m e t h at
t h e r a n k of N ( ψ (t)) d o es n ot c h a n g e l o c all y at t0 . T h e n

F B o b, t = F N ( ψ ) ; N ({ H̄ , ψ }) , ( 5 5)

w h er e F B o b, t = F Ali c e, t − F B o b, t a n d  w h er e  w e r e c all t h e
s h ort h a n d H̄ = H − H .  As a c o ns e q u e n c e,

F B o b, t = 4 σ 2
H − F N ( ψ ) ; N ({ H̄ , ψ }) . ( 5 6)

T w o e xtr e m e c as es c a n r e a dil y b e i d e nti fi e d.  O n e is
w h er e t h er e is n o n ois e a n d N = i d is t h e i d e ntit y pr o-
c ess; i n t his c as e, t h e c o m pl e m e nt ar y c h a n n el is a c h a n n el
t h at o ut p uts a c o nst a nt st at e r e g ar dl ess of t h e i n p ut, N (·) =
tr(·) τE f or s o m e st at e τ E . I n t his c as e  E v e o bt ai ns n o i nf or-
m ati o n a b o ut t h e pr o b e’s e n er g y,  w hi c h c a n b e s e e n i n
o ur f or m alis m b y t h e f a ct t h at N ({ H̄ , ψ }) = 0 a n d t h er e-
f or e F B o b, t = 0. I n t h e o p p osit e e xtr e m e c as e, t h e n ois e
d estr o ys its i n p ut e ntir el y a n d s e n ds it t o t h e e n vir o n m e nt,
wit h c orr es p o n di n gl y N = i d. I n t his c as e,  E v e h as  m a x-
i m al s e nsiti vit y t o t h e η p ar a m et er, F E v e, η = F Ali c e, η , a n d
t h er ef or e F B o b, t = 0 a n d F B o b, t = 4 σ 2

H .

B.  T r a d e- o ff r el ati o n i n t e r ms of a vi rt u al q u bit

I n t his s e cti o n  w e si m plif y t h e s etti n g r e q uir e d t o pr o-
d u c e t h e r el ati o n i n  T h e or e m 1, i n a n e ff ort t o i d e ntif y t h e
f u n d a m e nt al c o n c e pts r e q uir e d f or o ur u n c ert ai nt y r el ati o n
t o h ol d. It t ur ns o ut t h at  T h e or e m 1 c a n b e r e p hr as e d as a n
u n c ert ai nt y r el ati o n b et w e e n  B o b a n d  E v e disti n g uis hi n g
st at es, r es p e cti v el y, al o n g t h e Y a n d Z P a uli dir e cti o ns of
a virt u al q u bit s p a c e,  w hi c h i n t h e s etti n g of  T h e or e m 1 is
d e fi n e d b y t h e cl o c k st at e v e ct or |ψ a n d its i m a g e H |ψ
u n d er a p pli c ati o n of t h e  H a milt o ni a n.

C o nsi d er t h e s u bs p a c e of  Ali c e’s  Hil b ert s p a c e s p a n n e d
b y t h e pr o b e st at e |ψ a n d its ti m e d eri v ati v e ∝ H |ψ .  T his

s u bs p a c e d e fi n es a virt u al q u bit.  We c h o os e t o i d e ntif y t h e
pr o b e st at e  wit h t h e + 1 P a uli- X ei g e n v e ct or. It t ur ns o ut
t h at o ur u n c ert ai nt y r el ati o n a d mits a r est at e m e nt as a r el a-
ti o n b et w e e n t h e s e nsiti vit y t h at  B o b a n d  E v e c a n a c hi e v e
wit h r es p e ct t o P a uli- Y a n d l o gi c al P a uli- Z dir e cti o ns of t h e
virt u al q u bit.  M or e pr e cis el y,  w e first d e fi n e

|ξ = P ⊥
ψ H |ψ = H − H |ψ = H̄ |ψ , ( 5 7)

r e c alli n g P ⊥
ψ = 1 − ψ .  T h e n or m of |ξ s atis fi es

|ξ
2

= ξ |ξ = σ 2
H . ( 5 8)

H er e,  w e ass u m e t h at |ξ = 0, ot h er wis e t h e pr o b e d o es n ot
e v ol v e i n ti m e a n d all t h e t er ms i n o ur u n c ert ai nt y r el ati o n
ar e tri vi all y z er o.  We c a n  writ e t h e f oll o wi n g d eri v ati v es i n
t er ms of |ξ :

∂ tψ = − i[H̄ , ψ ] = − i |ξ ψ | − |ψ ξ | , ( 5 9 a)

2 σ 2
H ∂ η ψ = { H̄ , ψ } = |ξ ψ | + |ψ ξ |. ( 5 9 b)

A n ort h o n or m al b asis of t h e virt u al q u bit c a n b e c h os e n as

| + L = | ψ , | − L =
1

σ H
|ξ . ( 6 0)

As t h e l o gi c al c o m p ut ati o n al b asis of t h e virt u al q u bit,  w e
c h o os e

|0 L =
1

√
2

| + L + | − L , |1 L =
1

√
2

| + L − | − L .

( 6 1)

T his c h oi c e of b asis is  m oti v at e d t o  m at c h t h e q u bit o p er a-
t ors of a si n gl e s pi n- 1/ 2 p arti cl e pr e p ar e d i n t h e + X ei g e n-
st at e a n d e v ol vi n g a c c or di n g t o a  m a g n eti c fi el d p oi nti n g
al o n g t h e Z a xis.

C o nsi d er t h e l o gi c al P a uli- X , Y a n d Z o p er at ors d e fi n e d
as us u al  wit h r es p e ct t o t h e b asis ( 6 1).  T h e y ar e e x pr ess e d
i n t h e | ± L b asis as

X L = | + +| L − | − −| L , ( 6 2 a)

Y L = − i| − +| L + i| + −| L , ( 6 2 b)

Z L = | − +| L + | + −| L , ( 6 2 c)

wit h f urt h er m or e

Y L =
− i

σ H
[H̄ , ψ ], Z L =

1

σ H
{ H̄ , ψ }. ( 6 3)

We s e e t h at t h e l o gi c al P a uli- Y a n d P a uli- Z o p er at ors ar e
p ar all el t o t h e e v ol uti o n, r es p e cti v el y, al o n g t a n d al o n g
η l o c all y at |ψ = | ψ ( t0 , η 0 ) , as  w e r e c all  E q. ( 5 9).  O ur
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u n c ert ai nt y r el ati o n c a n b e st at e d i n t er ms of a  m etr ol o gi c al
l o gi c al q u bit as f oll o ws.

T h e or e m 2 ( U n c ert ai nt y r el ati o n f or t h e  m etr ol o gi c al
l o gi c al q u bit). —l et A , B , a n d E b e fi nit e- di m e nsi o n al q u a n-
t u m s yst e ms.  L et N A → B b e a c o m pl et el y p ositi v e, tr a c e
n o ni n cr e asi n g  m a p.  L et V A → B E b e s u c h t h at N A → B (·) =
trE V (·)V † a n d V † V 1 , i. e., V is a Sti n es pri n g dil ati o n

of N .  C o nsi d er t h e c o m pl e m e nt ar y c h a n n el N A → E (·) =
trB V (·)V † . L et | ± L b e a n y t w o ort h o g o n al a n d n or m al-
i z e d st at e v e ct ors o n s yst e m A , a n d l et X L , Y L , Z L b e d e fi n e d
vi a  E q. ( 6 2). If (P ⊥

ρ B
⊗ P ⊥

ρ E
)V | − L = 0, t h e n

F N ( ψ ) ; N (Y L ) + F N ( ψ );

N (Z L ) = 4 −| N † (1 )| − L . ( 6 4)

If (P ⊥
ρ B

⊗ P ⊥
ρ E

)V | − L = 0, t h e n  w e h a v e t h e i n e q u alit y

F N ( ψ ) ; N (Y L ) + F N ( ψ ) ;

N (Z L ) 4 −| N † (1 )| − L . ( 6 5)

T h e a b o v e t h e or e m pr o vi d es a  m or e f or m al st at e m e nt
t h at g e n er ali z es t h e e arli er st at e m e nt  T h e or e m 1 t o tr a c e-
n o n-i n cr e asi n g  m a ps a n d t o s u b n or m ali z e d st at es.  T h e
m etr ol o gi c al q u bit c o nstr u cti o n als o pr o vi d es a cl e ar er
m at h e m ati c al pi ct ur e of t h e s y m m etri c r ol e of  B o b a n d
E v e i n o ur u n c ert ai nt y r el ati o n:  B o b a n d  E v e c a n b e
i nt er c h a n g e d (i. e., N ↔ N ) pr o vi d e d  w e c orr es p o n di n gl y
i nt er c h a n g e |ξ ↔ i|ξ . F or a st at e v e ct or |ψ e v ol vi n g
wit h r es p e ct t o a  H a milt o ni a n H̄ , t h e st at e |ξ = H̄ |ψ is
t h e d eri v ati v e of |ψ wit h r es p e ct t o ti m e, a n d i|ξ c a n
b e t h o u g ht of t h e d eri v ati v e of |ψ wit h r es p e ct t o i m a g-
i n ar y ti m e.  T h e s y m m etr y i n  T h e or e m 2 b et w e e n  B o b a n d
E v e,  w hi c h i n v ol v es t h e i nt er c h a n g e |ξ ↔ i|ξ , is r e pr o-
d u c e d at t h e l e v el of t h e p ar a m et ers t a n d η b y c h o osi n g
η t o p ar a m etri z e t h e o n e-f a mil y p ar a m et er of st at e v e ct ors
|ψ ( η ) i n  E q. ( 2 1) g o v er n e d b y t h e i m a gi n ar y-ti m e e v o-
l uti o n ( 2 4).  T h e f ull pr o of of  T h e or e m 2 is pr o vi d e d i n
A p p e n di x E 2 .

I n  T h e or e m 2 a di ff er e nt c o n diti o n is st at e d f or e q u alit y
as i n  T h e or e m 1,  w h er e  w e r e q uir e t h e r a n k of N ( ψ (t))
n ot t o c h a n g e.  T h es e c o n diti o ns t ur n o ut t o b e e q ui v al e nt,
as s h o w n i n t h e f oll o wi n g pr o p ositi o n.  We d ef er t h e pr o of
t o  A p p e n di x E 2 .

Pr o p ositi o n 1 ( C o n diti o ns f or e q u alit y i n t h e u n c ert ai nt y
r el ati o n). — l et {E k } b e a s et of  Kr a us o p er at ors f or N A → B

a n d V A → B E b e a Sti n es pri n g dil ati o n of N .  T h e f oll o wi n g
c o n diti o ns ar e e q ui v al e nt:

( a) (P ⊥
ρ B

⊗ P ⊥
ρ E

) V |ξ = 0;
( b) ρ B (t) d o es n ot c h a n g e r a n k as a f u n cti o n of t l o c all y

at t h e p oi nt t0 ;
( c) f or a n y li n e ar c o m bi n ati o n E = c k E k ( wit h c k ∈

C ) s u c h t h at E |ψ = 0, t h e n P ⊥
ρ B

E |ξ = 0.

I n p arti c ul ar, it s u ffi c es t h at eit h er ρ B = N ( ψ ) or ρ E =
N ( ψ ) h as f ull r a n k t o e ns ur e t h at t h es e c o n diti o ns ar e s at-
is fi e d, a n d t h er e b y t h at o ur u n c ert ai nt y r el ati o n h ol ds  wit h
e q u alit y [ E q. ( 6 4)].

As a c o ns e q u e n c e, t h e sit u ati o ns f or  w hi c h t h e c o n-
diti o ns ( 1) d o n ot h ol d, a n d c orr es p o n di n gl y f or  w hi c h
o ur u n c ert ai nt y r el ati o n d o es n ot n e c ess aril y h ol d  wit h
e q u alit y, ar e e d g e c as es t h at c a n b e i n fi nit esi m all y p er-
t ur b e d i nt o sit u ati o ns  w h er e t h e c orr es p o n di n g c o n diti o ns
h ol d. I n d e e d, o n e c a n  mi x N wit h a n i n fi nit esi m al a m o u nt
of d e p ol ari zi n g n ois e t o e ns ur e t h at  B o b’s st at e is f ull
r a n k, a n d t h er ef or e t o e ns ur e t h at e q u alit y h ol ds i n o ur
u n c ert ai nt y r el ati o n.

C.  G e n e r al u n c e rt ai nt y r el ati o n f o r a n y t w o
p a r a m et e rs

T h e u n c ert ai nt y r el ati o n b et w e e n p ositi o n a n d  m o m e n-
t u m c a n b e g e n er ali z e d t o a n y ar bitr ar y p air of o bs er v a bl es.
T h e  R o b erts o n u n c ert ai nt y r el ati o n st at es t h at f or a n y t w o
o bs er v a bl es A , B ,  w e h a v e

σ A σ B
1

2
i[A , B ] . ( 6 6)

I n t h e s a m e s pirit,  w e d eri v e a g e n er ali z ati o n of ( 4 9) t h at
is v ali d f or a n y t w o o bs er v a bl es. S u p p os e  Ali c e pr e p ar es a
p ur e st at e ψ t h at c a n e v ol v e al o n g t w o p ossi bl e dir e cti o ns
∂ a ψ a n d ∂ b ψ , a n d s e n ds t h e st at e t hr o u g h t h e n ois y c h a n n el
N t o  B o b as i n Fi g. 1 .  We ass u m e t h at t h e dir e cti o ns al o n g
a , b ar e g e n er at e d b y t w o  H er miti a n o p er at ors A , B a cti n g
o n ψ = | ψ ψ | as

∂ a ψ = − i[A , ψ ], ∂ b ψ = − i[B , ψ ]. ( 6 7)

B o b is t as k e d  wit h esti m ati n g a d e vi ati o n l o c all y t o first
or d er ar o u n d N ( ψ ) i n t h e a dir e cti o n,  w h er e as  E v e tri es
t o disti n g uis h N ( ψ ) fr o m n ei g h b ori n g st at es al o n g t h e b
dir e cti o n.  T h e p ar a m et ers a , b ar e a n al o g o us t o t h e p ar a m-
et ers t, η c o nsi d er e d a b o v e, b ut t h e t w o dir e cti o ns ∂ a ψ , ∂ b ψ
c a n b e ar bitr ar y.

T h e or e m 3 ( Bi p artit e u n c ert ai nt y r el ati o n f or a n y t w o
p ar a m et ers). — l et ψ b e a st at e v e ct or a n d s u p p os e t h at
A , B ar e t w o  H er miti a n o p er at ors t h at g e n er at e e v ol uti o ns
l o c all y at ψ i n dir e cti o ns ∂ a ψ , ∂ b ψ vi a ( 6 7). S u p p os e  w e
a p pl y a n ois y c h a n n el as d e pi ct e d i n Fi g. 1 . T h e n

F B o b, a

F Ali c e, a
+

F E v e, b

F Ali c e, b
1 + 2 1 −

i[A , B ]
2

4 σ 2
A σ 2

B

, ( 6 8)

w h er e

F Ali c e, a = F ψ ; ∂ a ψ , F B o b, a = F N ( ψ ) ; N ( ∂a ψ ) ,

F Ali c e, b = F ψ ; ∂ b ψ , F E v e, b = F N ( ψ ) ; N ( ∂b ψ ) .
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F urt h er m or e, ass u m e t h at N [ψ ( a )] d o es n ot c h a n g e r a n k
l o c all y a n d t h at

N − i B / σ B , ψ = ± N (A − A ) / σA , ψ . ( 6 9)

T h e n

F B o b, a

F Ali c e, a
+

F E v e, b

F Ali c e, b
= 1. ( 7 0)

T h e pr o of of t his st at e m e nt is pr es e nt e d i n  A p p e n di x E 4 .
T h e ar g u m e nt of t h e s q u ar e r o ot i n  E q. ( 6 8) n e v er b e c o m es
n e g ati v e, t h a n ks t o t h e  R o b erts o n u n c ert ai nt y r el ati o n ( 6 6)
f or A a n d B .  T h e pr o of  w e pr es e nt i n  A p p e n di x E 4 c o n-
si d ers i n f a ct a  m or e g e n er al st at e m e nt i n  w hi c h t h e t w o
si d es of  E q. ( 6 9) ar e pr o p orti o n al t o o n e a n ot h er r at h er t h a n
di ff eri n g o nl y b y a si g n.

We c a n i d e ntif y t w o e xtr e m e c as es of i nt er est t o g ai n
s o m e i nt uiti o n f or t h e r el ati o n ( 6 8). First c o nsi d er A , B
t o b e t w o c o m pl e m e nt ar y o bs er v a bl es i n t h e s e ns e t h at
t h e y s at ur at e t h e  R o b erts o n i n e q u alit y ( 6 6).  C o nsi d er, f or
i nst a n c e, t h e P a uli-Y a n d t h e P a uli- Z o p er at ors o n a q u bit.
I n t his c as e t h e ri g ht- h a n d si d e of t h e i n e q u alit y ( 6 8) e q u als
o n e.  T h er e is a tr a d e- o ff b et w e e n t h e s e nsiti vit y l oss es
ass o ci at e d  wit h  B o b s e nsi n g al o n g t h e N ( ∂a ψ ) dir e cti o n
a n d  E v e s e nsi n g al o n g t h e N ( ∂b ψ ) dir e cti o n, as b ot h t er ms
o n t h e l eft- h a n d si d e of  E q. ( 6 8) c a n n ot si m ult a n e o usl y
b e e q u al t o o n e.  O n t h e ot h er h a n d,  w e c a n c o nsi d er t w o
H er miti a n g e n er at ors A , B t h at c o m m ut e. ( P er h a ps A , B a ct
o n di ff er e nt s u bs yst e ms of  Ali c e’s n ois el ess cl o c k.) I n t his
c as e, t h e ri g ht- h a n d si d e of  E q. ( 6 8) e v al u at es t o t h e c o n-
st a nt 3.  O ur u n c ert ai nt y r el ati o n n o l o n g er pr es e nts a n y
o bstr u cti o n t o b ot h  B o b a n d  E v e s e nsi n g al o n g t h e r es p e c-
ti v e dir e cti o ns a , b as  w ell as  Ali c e c o ul d, as t h er e is r o o m
f or b ot h t er ms o n t h e l eft- h a n d si d e of  E q. ( 6 8) t o b e e q u al
t o o n e.  T his is t h e c as e, f or i nst a n c e, if A , B a ct o n di ff er e nt
s u bs yst e ms of  Ali c e’s cl o c k, a n d t h e r es p e cti v e s u bs ys-
t e ms ar e s e nt t o  B o b a n d  E v e vi a t h e n ois y c h a n n el a n d
its c o m pl e m e nt ar y c h a n n el.

We c a n r e c o v er o ur  T h e or e m 1 if  w e c o nsi d er t h e t w o
g e n er at ors A = H a n d B = − T ,  wit h H , T d e fi n e d i n S e c.
II  B, l e a di n g t o ∂ a ψ = ∂ tψ a n d ∂ b ψ = ∂ η ψ .  T o s e e t his,  w e
first c o m p ut e

i[H , T ] =
1

2 σ 2
H

i[H , − i[H , ψ ]]

=
1

2 σ 2
H

2 H 2 − 2 H 2 = 1. ( 7 1)

Usi n g  E q. ( 2 7) w e f urt h er s e e t h at 4 σ 2
H σ 2

T = 1.  T h er ef or e,
t h e s q u ar e r o ot o n t h e ri g ht- h a n d si d e of  E q. ( 6 8) v a nis h es
a n d t h e e ntir e ri g ht- h a n d si d e of t h e i n e q u alit y e v al u-
at es t o t h e c o nst a nt 1.  Wit h t h e i d e nti fi c ati o ns F Ali c e, t =
F Ali c e, a , F B o b, t = F B o b, a , F Ali c e, η = F Ali c e, b , F E v e, η = F E v e, b ,
w e r e c o v er t h e e x pr essi o n ( 4 9) wit h a n i n e q u alit y i nst e a d

of a n e q u alit y. I n t his c as e, t h e a d diti o n al c o n diti o n ( 6 9)
is i n f a ct als o s atis fi e d, si n c e i[T , ψ ] ∝ { H − H , ψ } [ cf.
E qs. ( 2 5) a n d ( 2 6)].  We t h us f ull y r e c o v er t h e e q u alit y
st at e m e nt of  T h e or e m 1 s u bj e ct t o o ur a d diti o n al c o n diti o n
o n t h e a bs e n c e of a r a n k c h a n g e of t h e n ois y st at e.

T h e str at e g y of t h e pr o of of  T h e or e m 3 ( A p p e n di x E 4 )
is t o first a p pl y o ur  m ai n u n c ert ai nt y r el ati o n ( T h e or e m 2)
b et w e e n  B o b’s s e nsiti vit y t o t h e p ar a m et er a a n d  E v e’s
s e nsiti vit y t o a p ar a m et er c t h at is c o m pl e m e nt ar y t o a
usi n g t h e c o nstr u cti o n i n S e c. II  B a n d Fi g. 5 i d e ntif y-
i n g t → a , η → c .  We t h e n a p pl y a g e n er al b o u n d r el ati n g
t h e q u a nt u m Fis h er i nf or m ati o n  wit h r es p e ct t o t w o ar bi-
tr ar y e v ol uti o n dir e cti o ns ( Pr o p ositi o n 1 6 i n  A p p e n di x C )
t o b o u n d t h e di ff er e n c e b et w e e n  E v e’s s e nsiti vit y t o t h e
p ar a m et ers b a n d c .

O n e  mi g ht h a v e ass u m e d t h at t h e e q u alit y ( 7 0) c a n o nl y
b e a c hi e v e d if t h e p ar a m et ers a , b ar e c o m pl e m e nt ar y i n
t h e s e ns e of Fi g. 5 .  Yet it s u ffi c es f or t his pr o p ert y t o h ol d
o n t h e s u p p ort of t h e c o m pl e m e nt ar y c h a n n el, as s e e n i n
t h e c o n diti o n ( 6 9).  As a si m pl e e xtr e m e e x a m pl e, c o nsi d er
N = i d a n d N (·) = tr(·) τ is a c o nst a nt c h a n n el pr e p ari n g
s o m e fi x e d q u a nt u m st at e τ .  T h e n o ur u n c ert ai nt y r el a-
ti o n e q u alit y ( 7 0) n e c ess aril y h ol ds f or a n y p ar a m et ers a , b ,
si n c e  E v e’s s e nsiti vit y t o a n y p ar a m et er b is z er o a n d  B o b’s
s e nsiti vit y t o a n y p ar a m et er a is e q u al t o  Ali c e’s.  T his
e x a m pl e als o ill ustr at es h o w t h e ri g ht- h a n d si d e of  E q. ( 6 8)
s h o ul d n e c ess aril y b e i m pr o v e d t o d e p e n d o n t h e c h a n n el
N if  w e  w a nt e d t h e i n e q u alit y t o b e ti g ht f or a fi x e d N .
S u c h a n i m pr o v e m e nt c a n b e o bt ai n e d fr o m o ur pr o of i n
A p p e n di x E 4 .

We f urt h er m or e pr o vi d e a pr o of t h at t h e g e n er al u n c er-
t ai nt y r el ati o n ( 6 8) als o h ol ds i n i n fi nit e- di m e nsi o n al
Hil b ert s p a c es, a n d e v e n f or u n b o u n d e d o p er at ors.  T h e
d et ails of t his pr o of ar e gi v e n i n  A p p e n di x F .  T h e pr o of
pr o c e e ds b y c o nsi d eri n g a li miti n g c as e of t h e fi nit e-
di m e nsi o n al s etti n g f or l ar g er a n d l ar g er s yst e m si z es,  wit h
a d diti o n al c ar e gi v e n t o t h e d e fi niti o n of t h e Fis h er i nf or-
m ati o n i n t h e i n fi nit e- di m e nsi o n al c as e a n d t o t h e f a ct t h at
t h e c o nsi d er e d o p er at ors ar e n ot n e c ess aril y b o u n d e d.

It is e x p e ct e d t h at t h e b o u n d ( 6 8) c a n b e f urt h er ti g ht-
e n e d f or o bs er v a bl es t h at d o n ot s at ur at e t h e  R o b erts o n
b o u n d. F or i nst a n c e, c o nsi d er t w o i n d e p e n d e nt s yst e ms i n
a p ur e t e ns or pr o d u ct st at e,  wit h o n e s yst e m e v ol vi n g  wit h
a p ar a m et er t a n d t h e ot h er  wit h z : if  w e h a n d t h e first
s yst e m t o  B o b a n d t h e s e c o n d t o  E v e, t h e n t h er e is n o
s e nsiti vit y l oss f or eit h er p arti es a n d t h e s u m of t h e Fis h er
i nf or m ati o n r ati os s h o ul d b e 2.  B ut t h e ri g ht- h a n d si d e of
o ur b o u n d is 3.

I V.  A S E L E C TI O N  O F  E X A M P L E S

We n o w e x pl or e s o m e e x a m pl es ill ustr ati n g t h e a p pli c a-
ti o n of o ur  m ai n r es ults.
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A. Si n gl e q u bit s u bj e ct t o p a rti al d e p h asi n g

C o nsi d er t h e s et u p i n Fi g. 2 a n d d es cri b e d i n S e c. II  B,
i n  w hi c h  Ali c e pr e p ar es a p ur e q u bit i n t h e | + st at e v e ct or
a n d l ets it e v ol v e a c c or di n g t o t h e  H a milt o ni a n H = ω Z / 2.
At ti m e t, t h e q u bit is i n t h e st at e ψ ( t) gi v e n i n  E q. ( 3 0) a n d
its d eri v ati v e ∂ tψ is gi v e n b y  E q. ( 3 1).

S u p p os e t h at at ti m e t0 w e a p pl y t h e p arti all y d e p h asi n g
n ois y c h a n n el

N p = (1 − p ) i d + p D Z , ( 7 2)

w h er e

D Z (·) = ↑|·| ↑ | ↑ ↑|  + ↓|·| ↓ | ↓ ↓| . ( 7 3)

I n t h e f oll o wi n g,  w e  will v erif y t h at o ur u n c ert ai nt y r el a-
ti o n h ol ds i n t his s etti n g, b y first c o m p uti n g dir e ctl y  B o b’s
Fis h er i nf or m ati o n  wit h r es p e ct t o t, a n d t h e n c o m p uti n g
E v e’s Fis h er i nf or m ati o n  wit h r es p e ct t o η .

1.  Dir e ct c o m p ut ati o n of  F B o b, t

U si n g D Z (X ) = 0 = D Z (Y ) w e fi n d fr o m  E q. ( 3 0 b) t h at
B o b r e c ei v es t h e st at e

ρ B (t0 ) =
1

2

1 (1 − p ) e − iω t0

(1 − p ) e iω t0 1
. ( 7 4)

Usi n g  E q. ( 3 0 a) al o n g  wit h t h e f a ct t h at t h e s u p er o p er at or
a cti o n of U t = e − i Ht a n d N p c o m m ut e a n d t h at N p (X ) =
(1 − p ) X ,  w e c a n alt er n ati v el y  writ e  B o b’s st at e as

ρ B (t0 ) = U t0

1 + (1 − p ) X

2
U

†
t0

= 1 −
p

2
+ t0 + t0 +

p

2
− t0 − t0 , ( 7 5)

d e fi ni n g t h e r ot at e d b asis st at e v e ct ors | ±t := U t| ± . F or
t h e ti m e d eri v ati v e, usi n g  E q. ( 3 1 a) al o n g  wit h N p (Y ) =
(1 − p ) Y w e fi n d

∂ tρ B (t0 ) = N p ∂ tψ ( t0 ) =
ω

2
(1 − p ) U t0 Y U

†
t0
. ( 7 6)

We  m a y c o m p ut e t h e Fis h er i nf or m ati o n  wit h t h e f or-
m ul a ( 1 2), usi n g t h e ei g e n d e c o m p ositi o n of ρ B (t0 ) gi v e n
b y  E q. ( 7 5)

F B o b, t =
ω 2

4
(1 − p )2 1

1 − p / 2
| +| Y | + |2

+ 2 | +| Y | − |2 + 2 | −| Y | + |2

+
1

p / 2
| −| Y | − |2

= ω 2 (1 − p )2 , ( 7 7)

usi n g +| Y | − = +| Y Z | + = i +| X | + = i a n d
+| Y | + = 0 = −| Y | − .

R e c alli n g  E q. ( 3 7), t h e r ati o of t h e Fis h er i nf or m ati o n of
t h e n ois y v ers us t h e n ois el ess cl o c k is

F B o b, t

F Ali c e, t
= (1 − p )2 . ( 7 8)

2.  C o m p ut ati o n of  F E v e, η

N o w  w e t ur n t o  E v e’s pi ct ur e.  We st art  wit h c o m p ut-
i n g a c o m pl e m e nt ar y c h a n n el t o N p .  We c a n us e  E q. ( 4 6)
f or t his e ff e ct fr o m a n y  Kr a us r e pr es e nt ati o n of N p . It is
us ef ul t o c h o os e a r e pr es e nt ati o n  wit h t h e f e w est p ossi-
bl e  Kr a us o p er at ors t o si m plif y o ur c o m p ut ati o n of F E v e, η .
Fr o m  E q. ( 7 2), a n d usi n g D Z (·) = 1 (·)1 / 2 + Z (·)Z / 2 w e
c a n r e a d o ff a r e pr es e nt ati o n of N p wit h t h e t w o  Kr a us
o p er at ors

E
(p )
0 = 1 −

p

2
1 , E

(p )
1 =

p

2
Z . ( 7 9)

T h e c o m pl e m e nt ar y c h a n n el c o nstr u ct e d vi a  E q. ( 4 6) t a k es
t h e f or m

N p (·) =

⎡

⎣
1 − p

2
tr(·) p

2
1 − p

2
tr[Z (·)]

p
2

1 − p
2

tr[Z (·)] p
2

tr(·)

⎤

⎦ .

( 8 0)

H e n c e  E v e’s st at e is

ρ E (t0 ) = N p ψ ( t0 ) =
1 − p

2
0

0 p
2

. ( 8 1)

T h e d eri v ati v e i n t h e η dir e cti o n is gi v e n b y t h e i m a g e of
E q. ( 3 6) u n d er N p , n a m el y

∂ η ρ E (t0 ) = N p ∂ η ψ ( t0 ) =
2

ω

p

2
1 −

p

2
X . ( 8 2)

We  m a y n o w dir e ctl y c o m p ut e F E v e, η u si n g  E q. ( 1 2),

F E v e, η =
4

ω 2

p

2
1 −

p

2
0 + 2 + 2 + 0

=
4

ω 2
2 p − p 2 . ( 8 3)

Usi n g  E q. ( 3 7) w e fi n d t h at t h e r ati o of  E v e’s Fis h er i nf or-
m ati o n t o  Ali c e’s Fis h er i nf or m ati o n  wit h r es p e ct t o η
is

F E v e, η

F Ali c e, η
= 2 p − p 2 = 1 − (1 − p )2 . ( 8 4)

T h e f a ct t h at  E qs. ( 7 8) a n d ( 8 4) s u m t o u nit y is a  m a nif es-
t ati o n of  T h e or e m 1 i n t h e pr es e nt s etti n g.
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C o nsi d er n o w o ur Fis h er i nf or m ati o n l oss f or m ul a ( 5 5).
Usi n g  E q. ( 3 5) a n d H̄ = H − H = H w e h a v e

N p { H̄ , ψ } =
ω

2
N p Z = ω

p

2
1 −

p

2
X . ( 8 5)

T h e n  w e c a n c o m p ut e F ρ E ; N p { H̄ , ψ } usi n g  E q. ( 1 2)
as

F ρ E ; N p { H̄ , ψ } = ω 2 2 p − p 2 . ( 8 6)

We c a n t h e n v erif y t h at t h e di ff er e n c e i n Fis h er i nf or m ati o n
b et w e e n t h e n ois el ess cl o c k a n d t h e n ois y cl o c k is i n d e e d

F B o b, t = F Ali c e, t − F B o b, t = ω 2 1 − (1 − p )2

= F ρ E ; N p { H̄ , ψ } . ( 8 7)

B. Si n gl e q u bit s u bj e ct t o c o m pl et e d e p h asi n g al o n g a
t r a ns v e rs al a xis

N o w  w e c o nsi d er a v ari a nt of t h e a b o v e si n gl e- q u bit
e x a m pl e:  w e r e pl a c e t h e n ois y c h a n n el b y a c o m pl et e
d e p h asi n g al o n g t h e X a xis ( Fi g. 6 ).  T h e q u bit is i niti al-
i z e d i n t h e st at e v e ct or |ψ i nit = | + ,  w h er e | ± = [| ↑ ±
| ↓ ]/

√
2,  wit h a  H a milt o ni a n H = ω /( 2 )Z .  Aft er a ti m e

t, t h e st at e is gi v e n b y  E q. ( 2 9) a n d at all ti m es  w e h a v e
H ψ ( t) = 0 a n d σ 2

H = ω 2 / 4.  At ti m e t ≈ t0 t h e cl o c k is
c o m pl et el y d e p h as e d i n t h e X b asis, as d es cri b e d b y t h e
n ois y c h a n n el

D X (·) = +|·| + | + +|  + −|·| − | − −| . ( 8 8)

T his c o m pl et el y d e p h asi n g  m a p a cts o n t h e P a uli o p er a-
t or b asis as D X (1 ) = 1 , D X (X ) = X , a n d D X (Y ) = 0 =
D X (Z ).  B o b r e c ei v es t h e d e nsit y  m atri x

ρ B = c os 2 ω t

2
| + +|  + si n 2 ω t

2
| − −| . ( 8 9)

N o w t h e c o m pl e m e nt ar y c h a n n el of D X i s a g ai n D X =
D X , a n d s o  E v e g ets t h e s a m e d e nsit y  m atri x as  B o b.

1.  C o m p ut ati o n of  F E v e, η

R e c alli n g  E q. ( 3 5), w e fi n d

D X ({H − H , ψ }) =
ω

2
D X (Z ) = 0, ( 9 0)

b e c a us e D X m a ps t h e P a uli- Y a n d P a uli- Z o p er at ors t o
z er o.  T h er ef or e,  E v e o bt ai ns z er o i nf or m ati o n a b o ut η , i. e.,
F E v e, η = 0.  T h er ef or e, t h er e is n o s e nsiti vit y l oss f or  B o b
r e g ar dl ess of t h e ti m e t ≈ t0 at  w hi c h t h e n ois y c h a n n el
is a p pli e d, as l o n g as t h e r a n k of ρ B (t0 ) d o es n ot c h a n g e
l o c all y at t0 .  T h e st at e ρ B c h a n g es r a n k  w h e n e v er eit h er
t er m of  E q. ( 8 9) v a nis h es, i. e.,  w h e n t0 i s a  m ulti pl e of

XXXXX Y

ZZZZ B o b

E v e

Ali c e

o ut c o m e of P a uli- X
m e a s ur e m e nt

FI G. 6. Si n gl e- q u bit pr o b e e v ol vi n g a c c or di n g t o t h e  H a mil-
t o ni a n H = ω Z / 2 a n d s u bj e ct t o c o m pl et e d e p h asi n g al o n g t h e
X dir e cti o n at ti m e cl os e t o t0 . F or al m ost e v er y t0 , t h e n ois y
pr o b e r e m ai ns  m a xi m all y s e nsiti v e t o ti m e t o first or d er ar o u n d
t0 .  T his pr o p ert y  mi g ht s o u n d s ur prisi n g, b e c a us e  B o b’s st at e c a n
b e v er y  mi x e d. I n t h e p uri fi e d pi ct ur e,  E v e is gi v e n t h e o ut c o m e
of a  m e as ur e m e nt of  Ali c e’s st at e al o n g t h e X a xis.  O bs er v e t h at
i n c o ntr ast t o t h e s etti n g i n Fi g. 2 , t his i nf or m ati o n d o es n ot r e v e al
a n y i nf or m ati o n a b o ut t h e e n er g y of  Ali c e’s st at e.

π / ω .  At t h os e dis cr et e p oi nts,  w e hit t h e e d g e c as es  w h er e
o ur  m ai n u n c ert ai nt y r el ati o n d o es n ot h ol d  wit h e q u alit y
a n d  w e c a n n ot d e d u c e t h at  B o b h as  m a xi m al s e nsiti vit y at
t h os e p oi nts.  H o w e v er, at all ot h er p oi nts t0 t h e cl o c k d o es
n ot l os e a n y s e nsiti vit y  w h e n s e nt t o  B o b.

T h e s a m e c o n cl usi o ns a p pl y f or a n y n ois y c h a n n el t h at
is a c o m pl et e d e p h asi n g o p er ati o n al o n g a n a xis t h at li es i n
t h e e q u at ori al pl a n e, b y r ot ati o n al s y m m etr y of t h e pr o b-
l e m ar o u n d t h e Z a xis. ( A n y a xis i n t h e e q u at ori al pl a n e c a n
b e d es cri b e d as a r ot ati o n of t h e X a xis t h at is e q ui v al e nt
t o a ti m e e v ol uti o n of t h e s yst e m f or s o m e gi v e n ti m e t∗ .
B e c a us e t h e Fis h er i nf or m ati o n is i n v ari a nt u n d er u nit ar y
tr a nsf or m ati o ns, t h e c al c ul ati o n of  B o b’s Fis h er i nf or m a-
ti o n of t his q u bit aft er c o m pl et e d e p h asi n g al o n g t h at gi v e n
a xis at ti m e t0 i s e q ui v al e nt t o c al c ul ati n g t h e Fis h er i nf or-
m ati o n aft er a c o m pl et e d e p h asi n g al o n g t h e X a xis at t h e
ti m e t0 → t0 − t∗ .)

2.  C h e c k b y dir e ct c o m p ut ati o n of  F B o b, t

We n o w c o m p ut e F B o b, t = F ρ B ; D Z ( ∂tψ ) dir e ctl y,
b y usi n g t h e d e fi niti o n of t h e Fis h er i nf or m ati o n. Fr o m
E q. ( 3 1 b) w e fi n d

D X ( ∂tψ ) = −
ω

2
si n( ω t0 ) X . ( 9 1)

If si n( ω t0 ) = 0,  w hi c h h a p p e ns  w h e n t0 i s a  m ulti pl e of
π / ω ,  w e fi n d t h at  B o b’s st at e is l o c all y st ati o n ar y a n d  B o b
h as n o s e nsiti vit y t o first or d er i n t. ( F or t his dis cr et e s et
of p oi nts o n e c o ul d ar g u e t h at t h e Fis h er i nf or m ati o n n o
l o n g er r e pr es e nts t h e r el e v a nt s e nsiti vit y f or  B o b, si n c e t h e
e v ol uti o n s h o ul d b e c o nsi d er e d t o its l e a di n g or d er — h er e
t h e s e c o n d or d er — a n d n o l o n g er o nl y t o first or d er.)
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We n o w c o m p ut e F B o b, t f or all ti m es t0 w h er e si n ( ω t0 ) =
0.  O bs er v e t h at ρ B a n d D X ( ∂tψ ) c o m m ut e.  Usi n g  E q. ( 1 5)
a n d X 2 = 1 , w e fi n d

F B o b, t =
ω 2

4
si n 2 ( ω t0 ) tr ρ − 1

B = ω 2 si n
ω t0

2
c os

ω t0

2

2

×
1

c os 2 ω t0
2

+
1

si n 2 ω t0
2

= ω 2 , ( 9 2)

usi n g si n ( ω t0 ) = 2 si n ( ω t0 / 2 ) c os ( ω t0 / 2 ) i n t h e s e c o n d
e q u alit y.

O v er all,  w e s e e t h at  B o b still h as  m a xi m al s e nsiti vit y
e v e n aft er a p pli c ati o n of t h e c o m pl et el y d e p h asi n g c h a n-
n el al o n g t h e tr a ns v ers al X a xis, f or all ti m es e x c e pt f or
t h e dis cr et e s et of ti m es t0 w h er e t h e r a n k of ρ B c h a n g es.
T his c o n cl usi o n  m at c h es o ur e arli er c o n cl usi o ns o bt ai n e d
vi a c o nsi d er ati o ns fr o m  E v e’s p ers p e cti v e ( e x c e pt f or a
dis cr et e s et of ti m es t0 ).

It  mi g ht a p p e ar c o u nt eri nt uiti v e t h at  B o b’s st at e still h as
as hi g h a s e nsiti vit y as  Ali c e’s n ois el ess st at e f or al m ost
all t0 , es p e ci all y as  B o b’s st at e c a n g et ar bitr aril y  mi x e d.
I n d e e d, ρ B c oi n ci d es  wit h t h e  m a xi m all y  mi x e d st at e f or
ti m es t0 t h at ar e  mi d p oi nts b et w e e n t h e  m ulti pl es of π / ω .
H o w e v er,  w e s e e t h at ρ B (t) still v ari es  wit h t s u ffi ci e ntl y t o
e n a bl e o pti m al dis cri mi n ati o n of n e ar b y st at es t o first or d er
ar o u n d t0 .

C.  P r o b e i n a  G H Z st at e  wit h o n e p a rti al e r as u r e

C o nsi d er as i niti al st at e a n n - p art y  G H Z st at e v e ct or,

|G H Z =
1

√
2

| ↑ · · ·  ↑ + | ↓ · · ·  ↓ , ( 9 3)

a n d l et t h e s yst e m e v ol v e a c c or di n g t o t h e l o c al  H a mil-
t o ni a n H = i ( ω /2 )Z (i) w h er e Z (i) d e n ot es t h e P a uli- Z
o p er at or a cti n g o n t h e it h sit e. S u p p os e t h at t h e first q u bit
is l ost  wit h pr o b a bilit y p .  T his is r e pr es e nt e d b y t h e n ois y
c h a n n el

N (·) = p |φ ⊥ φ ⊥ | ⊗ tr1 (·) + (1 − p ) (·), ( 9 4)

w h er e tr 1 tr a c es o ut t h e first q u bit a n d  w h er e |φ ⊥ i s a st at e
v e ct or i n a n e w, ort h o g o n al di m e nsi o n t h at h as n o o v erl a p
wit h t h e i n p ut st at e.  A Sti n es pri n g dil ati o n of t h e first t er m
i n N is d es cri b e d as gi vi n g t h e first q u bit of  Ali c e’s s ys-
t e m t o  E v e, a n d t h e r e m ai ni n g q u bits t o  B o b; a n y  missi n g
q u bits o n eit h er  B o b or  E v e’s si d e is r e pl a c e d b y |φ ⊥ . T h e
c o m pl e m e nt ar y c h a n n el c a n t h us b e c o m p ut e d as

N (·) = p tr2 ...n (·) + (1 − p ) tr(·) |φ ⊥ φ ⊥ |. ( 9 5)

We c o m p ut e t h e s e nsiti vit y l oss ass o ci at e d  wit h t h e n ois e
a c c or di n g t o  E q. ( 5 5).  We h a v e

H |ψ =
n ω

2
√

2
| ↑ · · ·  ↑ − | ↓ · · ·  ↓ = P ⊥

ψ H |ψ , ( 9 6)

n oti n g t h at H |ψ is alr e a d y ort h o g o n al t o |ψ si n c e
H ψ = 0.  T h e o pti m al n ois el ess s e nsiti vit y is

F Ali c e, t = 4 σ 2
H = 4 ψ |H 2 |ψ = n 2 ω 2 , ( 9 7)

e x hi biti n g t h e e x p e ct e d  H eis e n b er g s c ali n g f or o pti m all y
e nt a n gl e d pr o b e st at es.  We  writ e {ψ , H̄ } = P ⊥

ψ H ψ +
h. c. = σ H Z L ,  wit h Z L d e fi n e d i n  E q. ( 6 3).  T h e l o c al r e d u c e d
o p er at or of {ψ , H̄ } o n a si n gl e sit e is

tr\ i({ψ , H̄ }) =
n ω

4
| ↑ ↑|  −

n ω

4
| ↓ ↓|  + h. c. =

n ω

2
Z (i) ,

( 9 8)

w h er e tr \ i d e n ot es t h e p arti al tr a c e o v er all s u bs yst e ms
e x c e pt t h e it h s u bs yst e m.  N oti n g t h at tr({ψ , H̄ }) = 0,  w e
o bt ai n

N ({ψ , H̄ }) = p
n ω

2
Z . ( 9 9)

O n t h e ot h er h a n d, t h e r e d u c e d st at e of ψ o n a si n gl e sit e
is si m pl y t h e  m a xi m all y  mi x e d st at e 1 2 / 2 a n d t h us

ρ E = N ( ψ ) = p
1 2

2
+ (1 − p ) |φ ⊥ φ ⊥ |. ( 1 0 0)

As ρ E a n d N ({ψ , H̄ }) c o m m ut e,  w e c a n us e  E q. ( 1 5) t o
s e e t h at

F B o b, t = tr
2

p
p

n ω

2
Z

2

= p n 2 ω 2 . ( 1 0 1)

If p = 1,  E v e is  m a xi m all y dist ur bi n g a n d c o m pl et el y
bl o c ks  B o b’s a bilit y t o  m e as ur e ti m e, if p = 0 t h er e is n o
s e nsiti vit y l oss.  A n y v al u e i n b et w e e n i nt er p ol at es b et w e e n
t h es e t w o c as es.

N ot e t h at  w hil e it  mi g ht a p p e ar h er e t h at  H eis e n b er g
s c ali n g ( F B o b, t ∝ n 2 ) is a c hi e v e d f or p > 0, t his is a n arti-
f a ct of t h e l a c k of s c ali n g i n n of o ur c h oi c e of n ois y
c h a n n el a n d d o es n ot c o ntr a di ct t h e fi n di n gs of, e. g.,  R ef.
[2 2 ,3 1 ].

D.  Esti m ati n g a si g n al  H a milt o ni a n t e r m

I n t his s u bs e cti o n,  w e bri e fl y c o m m e nt o n t h e c as e
w h er e t h e p ar a m et er t o esti m at e is n ot ti m e t its elf, b ut a
p ar a m et er f i n t h e  H a milt o ni a n t h at i n fl u e n c es ti m e e v ol u-
ti o n. I n ot h er  w or ds,  w e n o w a c c o u nt f or p ossi bl e ot h er
t er ms i n t h e  H a milt o ni a n t h at c o ntri b ut e t o ti m e e v ol u-
ti o n b ut t h at r e v e al n ot hi n g a b o ut t h e p ar a m et er of i nt er est.
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We ass u m e t h at t h e n ois el ess pr o b e e v ol v es a c c or di n g t o a
H a milt o ni a n

H f = H 0 + f G, ( 1 0 2)

w h er e H 0 d o es n ot d e p e n d o n f , a n d  w h er e H 0 a n d G ar e
ti m e i n d e p e n d e nt.  R ef er e n c es [3 5 ,3 6 ] h a v e d et er mi n e d t h at
t h e Fis h er i nf or m ati o n  wit h r es p e ct t o f t h at o n e a c hi e v es
b y i niti ali zi n g t h e s yst e m i n s o m e i niti al st at e v e ct or |ψ 0

a n d l etti n g t h e s yst e m e v ol v e a c c or di n g t o H f f or s o m e
fi x e d ti m e T . L et U f (T ) = e − i Hf T b e t h e ti m e- e v ol uti o n
o p er at or, a n d d e fi n e |ψ f = U f (T )|ψ 0 .  T h e q u esti o n is,
h o w  m u c h s e nsiti vit y d o es t h e f a mil y of st at e v e ct ors f →
|ψ f o ff er  wit h r es p e ct t o f ?  T h e d eri v ati v e r el e v a nt f or
t h e Fis h er i nf or m ati o n is gi v e n b y [3 6 ]

∂ f ψ f = − i[K f , ψ f ], ( 1 0 3)

w h er e

K f = − i U− 1
f

d U f

df
= T

∞

k = 0

(− i T)k

(k + 1 )!
a d k

H f
G , ( 1 0 4)

w h er e a d M (G ) := [M , G ] a n d

a d k
M (G ) := [M , [M , . . . , [M , G ]] ( 1 0 5)

is t h e k t h c o m m ut at or of M wit h G .  T h e o p er at or K f c a n
b e t h o u g ht of as a n e ff e cti v e “ H a milt o ni a n ” f or t h e p ar a m-
et er f , dri vi n g a n “ e v ol uti o n ” i n |ψ f wit h r es p e ct t o f
a c c or di n g t o  E q. ( 1 0 3).

If  w e s e n d t his pr o b e st at e t hr o u g h a n ois y c h a n n el f ol-
l o wi n g t h e s etti n g i n Fi g. 1 , t h e n o ur u n c ert ai nt y r el ati o n
c a n b e a p pli e d,  w h er e t h e c o m pl e m e nt ar y p ar a m et er e v ol u-
ti o n is g e n er at e d b y t h e o p er at or L = − i[K f , ψ f ]/( 2 σ 2

K f
).

T h at is,  B o b’s s e nsiti vit y t o f tr a d es o ff  wit h  E v e’s s e nsi-
ti vit y t o t h e p ar a m et er g e n er at e d b y L .

E. S y m m et ri c c o d es a g ai nst e r as u r es vi a
s u p e r p ositi o ns of  Di c k e st at es

B as e d o n t h e r el e v a n c e of  Di c k e st at es f or  m etr ol o g y
[3 7 – 4 1 ] a n d f or q u a nt u m err or c orr e cti o n [4 2 – 4 4 ],  w e c a n
as k  w h et h er o ur u n c ert ai nt y r el ati o n c a n g ui d e a s e ar c h
f or g o o d cl o c k st at es.  T o e ns ur e g o o d s e nsiti vit y e v e n i n
t h e n ois el ess s etti n g,  w e s e e k pr o b e st at es  wit h a l ar g e
s pr e a d o v er e n er g y ei g e nst at es. S o  w e c o nsi d er a g e n er al
s u p er p ositi o n of  Di c k e st at es c orr es p o n di n g t o di ff er e nt
n u m b ers of e x cit ati o ns.  We n ot e a n i m p ort a nt cl ass of
p er m ut ati o n-i n v ari a nt c o d es ar e t h os e d e v el o p e d i n  R efs.
[4 1 ,4 2 ].

C o nsi d er t h e n -s pi n n o ni nt er a cti n g  H a milt o ni a n H =
n
i= 1 ( ω /2 ) Z (i) .  A  Di c k e st at e is a n ei g e nst at e of H t h at

is s y m m etri c u n d er p er m ut ati o ns of t h e sit es.  C o nsi d er t h e
Di c k e st at e

|h n
q :=

n

q

− 1 / 2

s i= ± 1
s i= n − 2 q

|s 1 . . . s n , ( 1 0 6)

w h er e s i = ± 1 r e pr es e nts t h e ei g e nst at es of Z a n d  w h er e
q = 0, . . . , n .  We c o nstr u ct o ur pr o b e st at es as a s u p er p o-
siti o n of  Di c k e st at es of di ff er e nt v al u es of q . I n g e n er al,
s u c h a st at e v e ct or c a n b e  writt e n as

|ψ =

n

q = 0

ψ q |h
n
q , ( 1 0 7)

f or s o m e ar bitr ar y c o m pl e x a m plit u d es {ψ q } t h at s atisf y

q |ψ q |
2 = 1.

As a n ois e  m o d el,  w e ass u m e t h at k s yst e ms c h os e n at
r a n d o m ar e e ntir el y er as e d.  B e c a us e t h e pr o b e st at e is c o m-
pl et el y s y m m etri c, it d o es n ot  m att er  w hi c h s u bs yst e ms ar e
er as e d;  w e  m a y ass u m e t h at t h e first k sit es ar e er as e d.  T h e
c o m pl e m e nt ar y c h a n n el t o t h e er as ur e of k s u bs yst e ms is a
c h a n n el t h at pr o vi d es t h os e l ost s u bs yst e ms t o  E v e,

N (·) = trk + 1 ...n (·), ( 1 0 8)

w h er e tr k + 1 ...n d e n ot es t h e p arti al tr a c e o v er sit es k + 1 t o
n .

We c o m p ut e n u m eri c al v al u es f or t h e q u a ntiti es F B o b, t

a n d 4 σ 2
H , e n a bli n g us t o i nf er F B o b, t.  C o nsi d er t h e pr o b e

st at e v e ct or c o nsisti n g of a n e v e n s u p er p ositi o n of t w o
Di c k e st at es  wit h ass o ci at e d p ar a m et ers q 1 , q 2

|ψ = [|h n
q 1

+ | h n
q 2

]/
√

2. ( 1 0 9)

T h e s e nsiti vit y of t his pr o b e st at e f or n = 1 0 0 a n d s u b-
j e ct t o k = 9 er as ur es is pl ott e d as a f u n cti o n of q 1 , q 2 i n
Fi g. 7 ( wit h ω / 2 = 1).  T h e s e nsiti vit y F B o b, t i s o bt ai n e d
b y c o m p uti n g F B o b, t a n d σ 2

H vi a  E q. ( 5 2).  O n t h e o n e
h a n d, o ur tr a d e- o ff r el ati o n f a cilit at es t h e c al c ul ati o n of
t h e r e m ai ni n g Fis h er i nf or m ati o n aft er t h e er as ur es.  O n t h e
ot h er h a n d, t h e tr a d e- o ff r el ati o n e x pl ai ns t h at t h e hi g h s e n-
siti vit y l oss e x p eri e n c e d f or st at es  wit h a br o a d s pr e a d i n
e n er g y ( q 1 → 0 a n d q n → n ) is dir e ctl y r el at e d t o t h e f a ct
t h at t h e e n vir o n m e nt c a n  w ell i nf er t h e e n er g y of t h e st at e
fr o m f e w-sit e r e d u c e d st at es.

B e c a us e t h e n ois e is l o c al, n u m eri c al c o m p ut ati o ns o nl y
h a v e t o t a k e pl a c e o n a s m all er s yst e m r e pr es e nti n g t h e
l o c al d e gr e es of fr e e d o m.  B e c a us e of p er m ut ati o n s y m-
m etr y gl o b all y a n d als o l o c all y (t h e r e d u c e d st at e als o
li v es i n t h e l o c al s y m m etri c s u bs p a c e), o ur c o m p ut ati o ns
r u n o n k + 1 di m e nsi o ns a n d n ot o n t h e f ull (n + 1 )-
di m e nsi o n al s y m m etri c s u bs p a c e.  We  will r et ur n t o t h e
e x a m pl e of p er m ut ati o n-i n v ari a nt st at es o n n s pi ns i n S e c.
VIII ,  w h er e  w e c o nsi d er a n II D a m plit u d e- d a m pi n g n ois e
m o d el i nst e a d of er as ur es.
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FI G. 7. Fis h er i nf or m ati o n of a n e v e n s u p er p ositi o n of t w o
Di c k e st at es of  m a g n eti z ati o ns m 1 = n − 2 q 1 a n d m 2 = n − 2 q 2

o n a n -sit e n o ni nt er a cti n g s pi n c h ai n  wit h l o c al t er ms H i =
( ω /2 )Z .  A g o o d pr o b e st at e h as m 1 , m 2 f ar fr o m o n e a n ot h er
(f or a l ar g e e n er g y s pr e a d), b ut als o f ar fr o m t h e e d g es − n a n d
n (t o a v oi d d e c o h er e n c e c a us e d b y t h e er as ur es).  H er e  w e s et
n = 1 0 0 t ot al s pi ns, ω / 2 = 1, a n d k = 9 s pi ns ar e l ost t o t h e e n vi-
r o n m e nt.  O ur tr a d e- o ff r el ati o n f a cilit at es t h e c al c ul ati o n of t h e
Fis h er i nf or m ati o n pl ott e d a b o v e. It als o gi v es a n i nt er pr et ati o n
of t h e l oss i n s e nsiti vit y  wit h r es p e ct t o t h e n ois el ess c as e ( w h er e
t h e  G H Z st at e m 1 = − m 2 = ± n w o ul d b e o pti m al; l eft m ost a n d
ri g ht m ost e d g es of t h e pl ot) as t h e s e nsiti vit y t h at  E v e g ai ns  wit h
r es p e ct t o t h e e n er g y of t h e st at e.

V.  B O U N D S  O N  T H E  FI S H E R I N F O R M A TI O N

B e c a us e it  mi g ht n ot al w a ys b e si m pl e t o c o m p ut e t h e
Fis h er i nf or m ati o n tr a d e- o ff q u a ntit y F B o b, t i n  E q. ( 5 5),
w e pr o vi d e a f e w b o u n ds t h at  mi g ht b e a p pli c a bl e t o di ff er-
e nt s etti n gs, a n d t h at a v oi d t h e c al c ul ati o n of t h e s y m m etri c
l o g arit h mi c d eri v ati v e o n  E v e’s s yst e m.

A.  U p p e r b o u n d o n  B o b’s s e nsiti vit y b y p ost p r o c essi n g
E v e’s s yst e m

A us ef ul b o u n d f or t h e Fis h er i nf or m ati o n is t h e d at a
pr o c essi n g i n e q u alit y [ 1 9 ].  T h e i n e q u alit y st at es t h at f or
a n y ρ ( t), a n d f or a n y t-i n d e p e n d e nt c o m pl et el y p ositi v e,
tr a c e- n o n-i n cr e asi n g  m a p E , t h e s e nsiti vit y aft er a p pli c a-
ti o n of t h e c h a n n el c a n o nl y d e cr e as e:

F ( ρ (t)) F (E ( ρ (t))). ( 1 1 0)

A tr a c e- n o n-i n cr e asi n g  m a p c a n b e us e d t o d es cri b e o nl y
a s u bs p a c e of i nt er est of a l ar g er  Hil b ert s p a c e  w hil e
a c c o u nti n g f or l e a k a g e o utsi d e of t h at s u bs p a c e.

C o nsi d er o ur s et u p  wit h  Ali c e,  B o b, a n d  E v e as i n Fi g. 1 .
S u p p os e n o w t h at  E v e s e n ds h er st at e t o a n ot h er a g e nt,
E v e , t hr o u g h a tr a c e- n o n-i n cr e asi n g, c o m pl et el y p ositi v e
m a p N as d e pi ct e d i n Fi g. 8( a) .  T h e d at a- pr o c essi n g
i n e q u alit y e ns ur es t h at F E v e, η F E v e ,η .  C o m bi ni n g t his

E v e0

B o b

B o b

E v e

E v e

E v e '

( a)

( b)

Ali c e

Ali c e

FI G. 8.  C o m bi ni n g o ur u n c ert ai nt y r el ati o n  wit h t h e d at a pr o-
c essi n g i n e q u alit y f or t h e Fis h er i nf or m ati o n yi el ds n e w b o u n ds
f or t h e Fis h er i nf or m ati o n. ( a) S u p p os e  E v e a p pli es a s uit a bl y
c h os e n  m a p N t o h er s yst e m, r es ulti n g i n a s yst e m  w e d e n ot e
b y  E v e , o n  w hi c h t h e s e nsiti vit y t o e n er g y  mi g ht b e si g ni fi-
c a ntl y e asi er t o c o m p ut e.  E v e c a n o nl y h a v e a  w ors e s e nsiti vit y
t o e n er g y t h a n  E v e, s o o ur u n c ert ai nt y r el ati o n gi v es a n u p p er
b o u n d t o  B o b’s s e nsiti vit y t o ti m e. ( b) S u p p os e t h at  E v e’s o ut-
p ut c a n b e  writt e n as a c o m p ositi o n of t w o  m a ps N 0 a n d N
vi a a n i nt er m e di at e s yst e m  E v e 0 .  T h e n  w e o bt ai n a l o w er b o u n d
o n  B o b’s s e nsiti vit y t o ti m e b y c o m p uti n g  E v e 0 ’ s s e nsiti vit y t o
e n er g y.

wit h o ur u n c ert ai nt y r el ati o n ( 4 9) yi el ds

F B o b, t

F Ali c e, t
+

F E v e ,η

F Ali c e, η
1. ( 1 1 1)

We c a n als o o bt ai n t his i n e q u alit y b y st arti n g fr o m t h e
q u a nt u m Fis h er i nf or m ati o n l oss o n  B o b’s e n d,  E q. ( 5 5),

F B o b, t = F ρ E ; N ({ H̄ , ψ })

F N ( ρE ) ; N N ({ H̄ , ψ }) , ( 1 1 2)

w hi c h i n t ur n pr o vi d es a n u p p er b o u n d o n  B o b’s Fis h er
i nf or m ati o n vi a  E q. ( 5 2) as

F B o b, t 4 σ 2
H − F N ( ρE ) ; N N ({ H̄ , ψ }) . ( 1 1 3)

B y c h o osi n g t h e  m a p N s uit a bl y, o n e c a n p ot e nti all y
si g ni fi c a ntl y si m plif y t h e c o m p ut ati o n of t h e Fis h er i nf or-
m ati o n. F or i nst a n c e, N c a n b e a d e p h asi n g  m a p t h at
e ns ur es t h at N ( ρE ) a n d N (N {ψ , H }) c o m m ut e, t h er e-
f or e e n a bli n g t h e us e of  E q. ( 1 5) a n d r e m o vi n g t h e n e c es-
sit y of c o m p uti n g t h e s y m m etri c l o g arit h mi c d eri v ati v e.
Alt er n ati v el y N c a n b e c h os e n t o e nf or c e s o m e s y m m etr y
t h at  mi g ht b e c o n v e ni e nt f or t h e c o m p ut ati o n of t h e Fis h er
i nf or m ati o n.

T h e b o u n d ( 1 1 3) c a n b e s p ell e d o ut i n t h e c as e of II D
n ois e o n a  m a n y- b o d y pr o b e st at e.  C o nsi d er a si n gl e-
sit e n ois y c h a n n el N 1 wit h  Kr a us o p er at ors {E x } f or x =
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0, . . . , m − 1.  T h e f ull n ois y c h a n n el is N = N ⊗ n
1 . Its

Kr a us o p er at ors ar e E x ,  w h er e x = (x 1 , . . . , x n ) is a c oll e c-
ti o n of i n di c es x i = 0, . . . , m − 1 i n di c ati n g  w hi c h  Kr a us
o p er at or is a p pli e d o n t h e it h sit e

E x =

n

i= 1

E x i . ( 1 1 4)

T h e c o m pl e m e nt ar y c h a n n el N c a n t h e n b e  writt e n i n
t er ms of t h e  Kr a us o p er at ors of N as

N (·) =

x ,x

tr E
†
x E x (·) |x x |, ( 1 1 5)

w h er e {|x } is a b asis of t h e  Hil b ert s p a c e of E .
C o m p uti n g t h e Fis h er i nf or m ati o n a n al yti c all y o n t h e

o ut p ut of eit h er N or N mi g ht n ot b e str ai g htf or w ar d if
t h e st at e a n d its d eri v ati v e ar e  m a p p e d t o o p er at ors  w h os e
ei g e n b as es ar e n ot ali g n e d i n a n y o b vi o us  w a y,  w hi c h
w o ul d c o m pli c at e t h e c al c ul ati o n of t h e s y m m etri c l o g-
arit h mi c d eri v ati v e  w h e n c o m p uti n g t h e e x pr essi o n ( 5 5).
H er e,  w e s e e t h at b y c o m pl et el y d e p h asi n g t h e o ut p ut of
N i n t h e c o m p ut ati o n al b asis, a n d pr oj e cti n g o nt o t h e
s u bs p a c e of t h e e n vir o n m e nt ass o ci at e d  wit h l o w- w ei g ht
Kr a us o p er at ors of N ,  w e o bt ai n a l o w er b o u n d o n F B o b, t

w hi c h tr a nsl at es i nt o a u p p er b o u n d o n F B o b, t t h at is e as y t o
c o m p ut e.  H er e,  w e ass u m e t h at t h e first  Kr a us o p er at or E 0

i s cl os e t o t h e i d e ntit y a n d t h at t h e ot h er  Kr a us o p er at ors
r e pr es e nt “j u m p t er ms. ”  We  m e a n b y “ w ei g ht ” t h e n u m b er
of  Kr a us o p er at ors t h at ar e j u m p t er ms.

We n o w c h o os e a s uit a bl e c o m pl et el y p ositi v e, tr a c e-
n o n-i n cr e asi n g  m a p N i n or d er t o us e  E q. ( 1 1 3) t o o bt ai n
a n u p p er b o u n d o n t h e Fis h er i nf or m ati o n at  B o b’s e n d.
I n t h e f oll o wi n g,  w e ass u m e t h at m = 2, b ut t h e ar g u-
m e nt g e n er ali z es str ai g htf or w ar dl y t o n ois y c h a n n els t h at
h a v e  m or e  Kr a us o p er at ors.  We d esi g n t h e  m a p s u c h
t h at it (i) c o m pl et el y d e p h as es t h e e n vir o n m e nt s yst e m i n
t h e c o m p ut ati o n al b asis, a n d (ii) pr oj e cts its i n p ut o nt o
t h e s u bs p a c e ass o ci at e d  wit h b asis v e ct ors |x wit h s m all
H a m mi n g  w ei g ht |x |. Fi x k > 0 a n d l et

N (·) =
x : |x | k

|x x | (·) |x x |. ( 1 1 6)

T h e n  w e c a n s e e t h at

N ◦ N (·) =
x : |x | k

tr E †
x E x (·) |x x |. ( 1 1 7)

T h e u p p er b o u n d o n  B o b’s Fis h er i nf or m ati o n  wit h r es p e ct
t o ti m e c o m es fr o m  E q. ( 1 1 3). St arti n g fr o m  E q. ( 1 1 2)
a n d si n c e t h e t w o ar g u m e nts of t h e Fis h er i nf or m ati o n

c o m m ut e,  w e c a n us e  E q. ( 1 5) t o fi n d

F B o b, t tr N ◦ N ( ψ )
− 1

N ◦ N ({ψ , H̄ })
2

=
x : |x | k

2 R e ψ |H̄ E
†
x E x |ψ

2

tr(E
†
x E x ψ )

, ( 1 1 8)

w h er e  w e h a v e us e d t h e f a ct t h at t h e o ut p ut of N ◦ N
is di a g o n al i n t h e c o m p ut ati o n al b asis.  T h e c o m pl et el y
d e p h asi n g c h a n n el e ns ur es t h at t h e e x pr essi o n ( 1 1 8) is a
cl assi c al Fis h er i nf or m ati o n,  w hi c h is e asi er t o c o m p ut e
t h a n t h e q u a nt u m Fis h er i nf or m ati o n i n  w hi c h t h e st at e a n d
t h e d eri v ati v e d o n ot c o m m ut e.

T h e n u m b er of t er ms i n t h e a b o v e s u m,  w hi c h c or-
r es p o n ds t o t h e di m e nsi o n of t h e s u bs p a c e ass o ci at e d
wit h b asis v e ct ors |x s atisf yi n g |x | k , is gi v e n b y
n
k

+ n
k − 1

+ · · · + n
0

= O (n k ). F or fi x e d k , t his n u m b er
s c al es p ol y n o mi all y i n n .  T h e c o m pl e xit y of c o m p uti n g
t h e n u m er at or a n d d e n o mi n at or i n  E q. ( 1 1 8) als o s c al es
o nl y p ol y n o mi all y i n n as l o n g as |ψ a n d H̄ |ψ c a n
b e e x pr ess e d usi n g a r e pr es e nt ati o n t h at e n a bl es e ffi ci e nt
c o m p ut ati o n of l o c al e x p e ct ati o n v al u es, s u c h as a s u p er p o-
siti o n of a c o nst a nt n u m b er of c o m p ut ati o n al b asis v e ct ors,
or alt er n ati v el y as  m atri x- pr o d u ct st at es [ 4 5 ].  We dis c uss
b el o w t h e c as e of II D a m plit u d e d a m pi n g n ois e,  w h er e
n u m eri c al e vi d e n c e i n di c at es t h at f or s m all v al u es of p
(s a y p 0. 1), e v e n f or n = 5 0 it c a n s u ffi c e t o s et k = 4 t o
o bt ai n  m e a ni n gf ul b o u n ds (s e e S e c. VIII ).

B.  L o w e r b o u n d o n  B o b’s  Fis h e r i nf o r m ati o n b y
p r e p r o c essi n g  E v e’s s yst e m

L et us r et ur n t o t h e ori gi n al s etti n g  wit h  Ali c e,  B o b, a n d
E v e as i n Fi g. 1 . S u p p os e n o w t h at  w e c a n fi n d a c o m-
pl et el y p ositi v e, tr a c e- pr es er vi n g  m a p N 0 a n d a c o m pl et el y
p ositi v e, tr a c e- n o n-i n cr e asi n g N s u c h t h at N = N ◦ N 0 .
T h at is,  w e s u p p os e t h at  E v e g ets h er st at e t hr o u g h a n
i nt er m e di ar y,  w hi c h  w e c all  E v e0 a s s h o w n i n Fi g. 8( b) .
T h e d at a- pr o c essi n g i n e q u alit y n o w t ells us t h at F E v e, η

F E v e 0 ,η .  C o m bi ni n g t his  wit h o ur u n c ert ai nt y r el ati o n gi v es
us

F B o b, t

F Ali c e, t
+

F E v e 0 ,η

F Ali c e, η
1. ( 1 1 9)

A  m or e e x pli cit b o u n d o n F B o b, t c a n b e o bt ai n e d st arti n g
fr o m  E q. ( 5 5) a n d  writi n g

F B o b, t = F ρ E ; N ({ H̄ , ψ })

= F N (N 0 ( ψ )) ; N (N 0 ({ H̄ , ψ }))

F N 0 ( ψ ) ; N 0 ({ H̄ , ψ }) . ( 1 2 0)
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We pr es e nt t w o si m pl e e x a m pl e us es of t his t y p e of b o u n d.
T h e first e x a m pl e a p pli es t o p er m ut ati o n-i n v ari a nt s ys-
t e ms.  T h e s e c o n d e x a m pl e a p pli es t o t h e s etti n g  w h er e
E v e’s st at e is r e as o n a bl y cl os e t o b ei n g di a g o n al.

1.  P er m ut ati o n-i n v ari a nt s yst e m

C o nsi d er a p er m ut ati o n-i n v ari a nt cl o c k st at e ψ a n d
H a milt o ni a n H . If t h e n ois e N a cts o nl y l o c all y o n at
m ost k k n o w n sit es ( or k / 2 u n k n o w n sit es), t h e n N c a n b e
writt e n as t h e c o m p ositi o n of a c h a n n el t h at tr a c es o ut all
b ut k sit es, a n d a n ot h er c h a n n el t h at c o m pl et es t h e i m pl e-
m e nt ati o n of N .  T o s e e t his, o bs er v e t h at  w e c a n  writ e
N (·) = j ,j tr E

†
j E j (·) |j j |,  w h er e {E j } ar e t h e  Kr a us

o p er at ors of N .  B y ass u m pti o n, E
†
j E j a cts n o ntri vi all y

o n at  m ost k sit es.  T h er ef or e, t h e e x pr essi o n tr E
†
j E j (·)

d e p e n ds o nl y o n t h e k -sit e r e d u c e d st at e of t h e i n p ut.  T h e
f ull c o m pl e m e nt ar y c h a n n el c a n b e  writt e n as t h e c o m p osi-
ti o n of a c h a n n el t h at tr a c es all b ut k sit es, a n d t h e c h a n n el
ρ k → j ,j tr(E

†
j E j ρ k ) |j j | ( w h er e h er e  w e r e us e t h e

n ot ati o n E
†
j E j t o d e n ot e t h e a cti o n of t h os e o p er at ors

o n o nl y t h e k sit es  w h er e eit h er o p er at or a cts n o ntri v-
i all y).  T h er ef or e, t h e s e nsiti vit y l oss F B o b, t c a n b e u p p er
b o u n d e d, f or a n y n ois y c h a n n el c o nsisti n g of  Kr a us o p er a-
t ors of  w ei g ht at  m ost k / 2, b y t h e s e nsiti vit y l oss ass o ci at e d
wit h k l o c at e d er as ur es.

2. If  E v e’s st at e is n e arl y di a g o n al

C o m p uti n g us ef ul e x pr essi o ns of t h e Fis h er i nf or m a-
ti o n  w h e n a di a g o n al r e pr es e nt ati o n of t h e st at e is n ot
k n o w n c a n b e tri c k y.  T h e i d e a if ρ E i s r e as o n a bl y cl os e t o
b ei n g di a g o n al is t o h o p e t h at o n e c a n ess e nti all y n e gl e ct
t h e o ff- di a g o n al el e m e nts of ρ E a n d still o bt ai n a g o o d
a p pr o xi m ati o n of t h e Fis h er i nf or m ati o n vi a t h e f or m ul a
( 1 2).

S u p p os e  w e fi n d a n i n v erti bl e  m atri x A ( wit h h o p ef ull y
A ≈ 1 ) a n d a di a g o n al  m atri x τ = di a g ( τ0 , . . . , τ d E ) 0
s u c h t h at

ρ E = A τ A † . ( 1 2 1)

S u c h a  m atri x is gi v e n, f or i nst a n c e, b y t h e  L D L T a n d
C h ol es k y d e c o m p ositi o n of ρ E . [ T h e ei g e n d e c o m p ositi o n
of ρ E als o gi v es s u c h a  m atri x A , b ut if  w e c a n c o m p ut e a n
ei g e n d e c o m p ositi o n o n e  mi g ht as  w ell us e  E q. ( 1 2) t o c o m-
p ut e t h e Fis h er i nf or m ati o n dir e ctl y.]  N o w  w e d e c o m p os e
N b y i n cl u di n g a s c ali n g f a ct or α as

α N = N ◦ N 0 , ( 1 2 2)

wit h α = A − 2 A − 1 − 2 a n d  wit h t h e t w o c o m pl et el y
p ositi v e, tr a c e- n o n-i n cr e asi n g  m a ps

N 0 (·) =
1

A − 1 2
A − 1 N (·) A − † , ( 1 2 3)

N (·) =
1

A 2
A (·) A † . ( 1 2 4)

If A is cl os e t o 1 t h e n  w e h a v e α ≈ 1.  R e c alli n g t h e s c ali n g
pr o p ert y ( 1 4) of t h e q u a nt u m Fis h er i nf or m ati o n,  w e fi n d

F B o b, t

= F ρ E ; N ({ H̄ , ψ })

=
1

α
F α N ( ψ ) ; α N ({ H̄ , ψ })

1

α
F N 0 ( ψ ) ; N 0 ({ H̄ , ψ })

=
1

α
F

1

A − 1 2
τ ;

1

A − 1 2
A − 1 N { H̄ , ψ } (A − 1 ) †

= A 2 F τ ; A − 1 N { H̄ , ψ } (A − 1 ) † . ( 1 2 5)

I n t h e l ast e x pr essi o n, t h e Fis h er i nf or m ati o n is e v al u-
at e d o n a st at e t h at is di a g o n al, s o o n e c a n dir e ctl y us e
E q. ( 1 2). F urt h er m or e, if A is d et er mi n e d b y a  L D L T a n d
C h ol es k y d e c o m p ositi o n t h e n it is l o w er tri a n g ul ar a n d its
i n v ers e c a n b e c o m p ut e d e ffi ci e ntl y ( m atri x  m ulti pli c ati o n
of t h e i n v ers e  wit h a n ot h er  m atri x c a n b e d o n e b y f or w ar d
s u bstit uti o n).

C.  B o u n d i n t e r ms of  E v e’s a c c ess t o t h e p r o b e’s
e n e r g y

I n t his s e cti o n, a f urt h er b o u n d o n  B o b’s s e nsiti vit y t o
ti m e is pr es e nt e d,  w hi c h is gi v e n i n t er ms of h o w  w ell  E v e
c a n a p pr o xi m at e a  m e as ur e m e nt of e n er g y o n t h e n ois e-
l ess cl o c k st at e.  T h e pr o p erti es t h at  E v e c a n  m e as ur e o n
t h e n ois el ess pr o b e ar e gi v e n b y t h e a dj oi nt of t h e c o m pl e-
m e nt ar y c h a n n el:  E v e a p pl yi n g a n o p er at or W o n h er s ys-
t e m c a n e q ui v al e ntl y b e d es cri b e d as t h e o p er at or N † (W )
b ei n g a p pli e d o nt o  Ali c e’s s yst e m, b e c a us e tr N ( ψ ) W =

tr ψ N † (W ) .  O n e  m e as ur e of h o w  w ell  E v e c a n a p pr o x-
i m at e a  m e as ur e m e nt of t h e  H a milt o ni a n ar o u n d |ψ wit h
a n o bs er v a bl e S o n h er s yst e m is t h e  mi ni m u m r o ot- m e a n-

s q u ar e d err or  mi n S = S † N † (S ) − H
2

ψ

1 / 2
. It t ur ns o ut

t h at t h e  mi ni m u m s q u ar e of t his q u a ntit y is a l o w er b o u n d
t o  B o b’s Fis h er i nf or m ati o n t o ti m e

F B o b, t mi n
S = S †

4 N † (S ) − H
2

ψ
. ( 1 2 6)

W hil e t his b o u n d is a est h eti c all y i nt er esti n g, fi n di n g t h e
o pti m al S i n t his e x pr essi o n is n ot si g ni fi c a ntl y e asi er t h a n
dir e ctl y s ol vi n g t h e s e mi d e fi nit e pr o gr a m ( 1 6 a). F urt h er-
m or e, a c a n di d at e f or S i n  E q. ( 1 6 a) i m m e di at el y pr o vi d es
a n u p p er b o u n d o n F B o b ,  w h er e as a c a n di d at e i n  E q. ( 1 2 6)
d o es n ot pr o vi d e a n y us ef ul b o u n d o n F B o b b e c a us e of t h e
dir e cti o n of t h e i n e q u alit y.

0 4 0 3 3 6- 2 0



TI M E- E N E R G Y  U N C E R T AI N T Y  R E L A TI O N. . . P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

T h e b o u n d ( 1 2 6) is pr o v e n as f oll o ws. St arti n g fr o m
E q. ( 5 6) a n d usi n g  E q. ( 1 6 a),

1

4
F B o b, t

= mi n
S = S †

H̄ 2 − tr ψ H̄ , N † (S ) + N † (S 2 )

mi n
S = S †

H̄ 2 − H̄ , N † (S ) + [N † (S )]2

= mi n
S = S †

( H̄ − N † (S ))2 , ( 1 2 7)

w h er e  w e h a v e us e d N † (S 2 ) [N † (S )]2 ( s e e  C or oll ar y
2 i n  A p p e n di x A ). Fi n all y,  w e c a n r e pl a c e H̄ b y H i n
E q. ( 1 2 7) b e c a us e a n y s hifts of H̄ b y t h e i d e ntit y c a n b e
c a n c el e d o ut b y c orr es p o n di n g s hifts of S b y t h e i d e ntit y.

D. If  E v e c a n  m e as u r e t h e p r o b e’s e n e r g y al m ost
p e rf e ctl y

If  E v e h as ( a p pr o xi m at e) a c c ess t o t h e e n er g y of t h e
pr o b e st at e, t h e n t his ( a p pr o xi m at el y) kills s e nsiti vit y
o n  B o b’s e n d. S u p p os e  w e c a n fi n d a n o bs er v a bl e S
o n  E v e’s s yst e m s u c h t h at N † (S ) − H̄ H̄ δ a n d
N † (S 2 ) − H̄ 2 H̄ 2 δ . T h e n

F B o b, t 1 2 δ H̄ 2 . ( 1 2 8)

T o s h o w t his i n e q u alit y,  w e first  writ e = N † (S ) − H̄
a n d = N † (S 2 ) − H̄ 2 ,  wit h H̄ δ a n d
H̄ 2 δ .  T h e n, fr o m  E q. ( 5 6) a n d usi n g  E q. ( 1 6 a) w e o bt ai n

1

4
F B o b, t

= mi n
S = S †

H̄ 2 − tr ψ , H̄ N † (S ) + N † (S 2 )

mi n
S = S †

− tr ψ , H̄ + tr ψ

2 H̄ + 3 δ H̄ 2 . ( 1 2 9)

E.  Cl o c k s e nsiti vit y l oss f o r  w e a k II D n ois e

H er e,  w e c o nsi d er a n n -sit e s yst e m s u bj e ct t o  w e a k
II D n ois e,  w h er e e a c h sit e is a ff e ct e d b y a n ois y c h a n-
n el N s u c h t h at N → i d if → 0.  Cl e arl y f or = 0
t h er e is n o s e nsiti vit y l oss. F or a gi v e n cl o c k st at e a n d
H a milt o ni a n,  w e d e v el o p a s et of t o ols t o u n d erst a n d a n d
d et er mi n e t o  w hi c h or d er m i n t h e Fis h er i nf or m ati o n l oss
is s u p pr ess e d, F B o b, t = O ( m ).

T h e q u esti o n is p artl y  m oti v at e d b y a si mil ar q u esti o n i n
t h e c o nt e xt of q u a nt u m err or c orr e cti o n.  A q u a nt u m err or-
c orr e cti n g c o d e of dist a n c e d c a n c orr e ct a n y (d − 1 ) /2
ar bitr ar y si n gl e-sit e err ors. I n t h e c as e of a  w e a k II D n ois y
c h a n n el N ⊗ n a ff e cti n g t h e n sit es, a  w ei g ht-[ (d − 1 ) /2]
err or h a p p e ns  wit h pr o b a bilit y of or d er O ( (d − 1 ) /2 ) if  w e

ass u m e t h at a si n gl e-sit e err or h a p p e ns  wit h pr o b a bilit y
O ( ).  T his  m e a ns t h at t h e c h a n c e of a n u n c orr e ct a bl e err or
o c c urri n g is u p p er b o u n d e d b y O ( (d − 1 ) /2 ). I n t his s c e n ari o,
w e s e e t h at t h e hi g h er t h e dist a n c e of t h e c o d e, t h e b ett er
r o b ust n ess is a c hi e v e d a g ai nst  w e a k II D n ois e. I n t h e c o n-
t e xt of q u a nt u m  m etr ol o g y,  w e as k t h e f oll o wi n g a n al o g o us
q u esti o n: c a n  w e d et er mi n e t h e r o b ust n ess of t h e s e nsiti v-
it y of t h e cl o c k t o ti m e  w h e n a ff e ct e d b y a  w e a k II D n ois y
c h a n n el, a f u n cti o n of a c ert ai n f e at ur e ( a n al o g o us t o t h e
c o d e dist a n c e) of t h e cl o c k st at e, t h e  H a milt o ni a n, a n d t h e
n ois y c h a n n el ?

T h er e d o es n ot a p p e ar t o b e a n y o b vi o us pr o p ert y of
t h e s et u p ( a n al o g o us t o t h e c o d e dist a n c e) t h at i m m e di-
at el y d et er mi n es t h e or d er m i n t h e Fis h er i nf or m ati o n l oss

F B o b, t = O ( m ). I nst e a d,  w e e x pl ai n a g e n er al pr o c e d ur e
f or h o w t o o bt ai n a b o u n d o n m w h e n gi v e n a  w e a k II D
n ois y c h a n n el, a cl o c k st at e a n d a  H a milt o ni a n.

T h e si m pl est c as e pr es e nts its elf if t h e c o m pl e m e nt ar y
c h a n n el N ⊗ n m a ps t h e cl o c k st at e ψ o nt o a f ull-r a n k st at e
ρ E = p x |x x |E t h at is di a g o n al i n t h e t e ns or pr o d u ct
c o m p ut ati o n al b asis o n E . ( T his is e q ui v al e nt t o all v e c-
t ors {E x |ψ }x b ei n g ort h o g o n al o n  B o b’s s yst e m.) I n s u c h a
c as e  w e c a n us e  E q. ( 1 2) t o e x pr ess t h e Fis h er i nf or m ati o n
l oss as

F B o b, t =

x ,x

2

p x + p x
x |N ⊗ n { H̄ , ψ })|x

2

=

x ,x

O ( 2 q x ,x )

( mi n (r x ,r x ) )

= O ( m ) ( 1 3 0)

d e fi ni n g r x a n d q x ,x vi a p x = ( rx ) a n d x |N ⊗ n { H̄ , ψ })

|x = O ( q x ,x ), a n d  wit h

m = mi n
x ,x :

r x r x

2 q x ,x − r x . ( 1 3 1)

As  w e c a n s e e a b o v e, it is n ot o b vi o us  w hi c h x , x mi n-
i mi z es t h e e x pr essi o n i n t h e e x p o n e nt a b o v e.  O n e  mi g ht
h a v e e x p e ct e d t h at e v e nts x w h os e pr o b a bilit y of o c c ur-
ri n g v a nis h f ast er t h a n ot h er e v e nts (l ar g e r x c o m p ar e d t o
ot h er r x ) ar e l ess r el e v a nt a n d  w o ul d n ot c o ntri b ut e si g nif-
i c a ntl y t o t h e Fis h er i nf or m ati o n l oss.  H o w e v er, t his is n ot
t h e c as e; t er ms  wit h hi g h r x , r x c a n c o ntri b ut e t o l e a di n g
or d er t o t h e s e nsiti vit y l oss if t h e c orr es p o n di n g t er m q x ,x

i s s u ffi ci e ntl y s m all. If t h e st at e ρ E i s n ot di a g o n al, t h e n it is
u n cl e ar  w h et h er or n ot o n e c a n e asil y d et er mi n e t h e or d er
of t h e Fis h er i nf or m ati o n l oss.

0 4 0 3 3 6- 2 1



P HI LI P P E F AI S T et al. P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

VI.  C L O C K S E N SI TI VI T Y I N  T H E  P R E S E N C E  O F
C O N TI N U O U S  N OI S E

T h e s etti n g pr es e nt e d i n Fi g. 1 is n o nst a n d ar d i n  m etr ol-
o g y, b e c a us e i n t y pi c al s etti n gs t h e n ois e a n d t h e si g n al
b ot h g et i m pri nt e d o n t h e st at e i n t h e s a m e p h ysi c al ti m e-
e v ol uti o n pr o c ess. It is  m or e c o m m o n t o c o nsi d er, f or
i nst a n c e, a  Li n d bl a di a n  m ast er e q u ati o n t h at g o v er ns t h e
ti m e e v ol uti o n of t h e cl o c k st at e,  wit h t er ms t h at e n c o d e
a n y n ois e pr o c ess es vi a j u m p o p er at ors.

H er e  w e c o nsi d er t h e sit u ati o n  w h er e t h e n ois e is
d es cri b e d b y a  Li n d bl a di a n  m ast er e q u ati o n.  U n d er s uit-
a bl e c o n diti o ns,  w e c a n d e c o m p os e t h e ti m e e v ol uti o n i nt o
a p ur e u nit ar y e v ol uti o n f oll o w e d b y s o m e e ff e cti v e n ois y
c h a n n el, a n d t h e ti m e d e p e n d e n c e of t h e e ff e cti v e n ois y
c h a n n el c a n b e n e gl e ct e d. I n t his c as e o ur  T h e or e m 1
c a n b e a p pli e d t o c o m p ut e t h e s e nsiti vit y l oss aft er s o m e
ti m e t0 .

O n e c a n f oll o w a si mil ar pr o c e d ur e i n t h e s etti n g  w h er e
t h e g o al is t o d et er mi n e a n u n k n o w n p ar a m et er i n t h e
H a milt o ni a n  w h e n t h e o v er all e v ol uti o n is g o v er n e d b y
a  Li n d bl a di a n  m ast er e q u ati o n.  T h e f ull d eri v ati o n is pr e-
s e nt e d i n  A p p e n di x G .  We c a n c arr y o ut a si mil ar d e c o m-
p ositi o n i n t h e c as e of a cl o c k s e nsi n g a n u n k n o w n p ar a m-
et er i n t h e  H a milt o ni a n,  w hil e s u bj e ct t o c o nti n u o us n ois e
d es cri b e d b y a  Li n d bl a d e v ol uti o n.

A.  D e c o m p osi n g a  Li n d bl a di a n e v ol uti o n of a cl o c k
i nt o a p u r e u nit a r y ti m e e v ol uti o n a n d a n

i nst a nt a n e o us n ois y c h a n n el

C o nsi d er a cl o c k i niti ali z e d at ti m e t = 0 i n t h e st at e v e c-
t or |ψ i nit . S u p p os e t h at t h e d y n a mi cs ρ ( t) of t h e cl o c k ar e
gi v e n b y t h e  Li n d bl a d  m ast er e q u ati o n

∂ tρ = L t ot[ρ ], ( 1 3 2 a)

w h er e

L t ot = L 0 + L 1 , L 0 ( ρ ) = − i[H , ρ ], ( 1 3 2 b)

L 1 ( ρ ) =
j

L j ρ L
†
j −

1

2
L

†
j L j , ρ . ( 1 3 2 c)

H er e  w e ass u m e t h at t h e o p er at ors H a n d L j ar e ti m e
i n d e p e n d e nt.  T h e e v ol uti o n u p t o a ti m e t is gi v e n b y t h e
c o m pl et el y p ositi v e, tr a c e- pr es er vi n g  m a p

E t = e t(L 0 + L 1 ) . ( 1 3 3)

T h e e v ol uti o n dri v e n b y t h e  H a milt o ni a n p art L 0 of t h e
d y n a mi cs c a n b e  writt e n as e tL 0 (·) = e − i Ht (·) e i Ht.

We  w o ul d li k e t o c o m p ut e t h e s e nsiti vit y of t h e cl o c k
at a gi v e n ti m e t0 ,  m e a ni n g t h at t h e r el e v a nt q u a ntit y t o

c o m p ut e is t h e Fis h er i nf or m ati o n

F cl o c k, t(t0 ) = F ρ ( t0 ) ; ∂ tρ ( t0 ) . ( 1 3 4)

We c a n d e c o m p os e t h e e v ol uti o n E t a s first a u nit ar y
e v ol uti o n a c c or di n g t o H f or a ti m e t f oll o w e d b y t h e
i nst a nt a n e o us a p pli c ati o n of a n e ff e cti v e n ois y c h a n n el N t.
D e fi n e

N t = E t e
− tL 0 = e t(L 0 + L 1 ) e − tL 0 . ( 1 3 5)

H er e, e − tL 0 i s t h e i n v ers e of t h e u nit ar y e v ol uti o n e tL 0 . B y
c o nstr u cti o n, if  w e a p pl y N t aft er a p pl yi n g e tL 0 , t h e n t h e
o v er all e ff e ct is t h e s a m e as l etti n g t h e s yst e m e v ol v e f or
ti m e t u n d er t h e f ull  Li n d bl a di a n d y n a mi cs L 0 + L 1 :

E t = N t e
tL 0 . ( 1 3 6)

A n alt er n ati v e e x pr essi o n f or N t i s o bt ai n e d fr o m  E q. ( 1 3 5)
usi n g t h e  B a k er- C a m p b ell- H a us d or ff f or m ul a,

N t = e tL 1 − t2

2 [L 1 ,L 0 ]+ .... ( 1 3 7)

O bs er v e t h at if [ L 1 , L 0 ] = 0, t h e n  w e si m pl y h a v e N t =
e tL 1 .  T his sit u ati o n is k n o w n as p h as e- c o v ari a nt d y n a mi cs
( cf., e. g.,  R efs. [4 6 ,4 7 ]).  T his is t h e c as e if [L j , H ] = 0 f or
all j u m p o p er at ors L j . I n ot h er c as es, t h e  m a p c a n b e d et er-
mi n e d fr o m  E q. ( 1 3 5) dir e ctl y if t h e s u p er o p er at or E t c a n
b e c o m p ut e d.

L et us i ntr o d u c e t h e f a mil y of st at es ψ ( t) = e − i Ht ψ i nit e
i Ht

a s s o ci at e d  wit h t h e ( fi ctiti o us) p ur e u nit ar y e v ol uti o n of
ψ i nit if  w e arti fi ci all y t ur n o ff t h e n ois e t er ms.

T h e d eri v ati v e of t h e q u a nt u m st at e ρ ( t) = E t( ψi nit) c a n
t h e n b e  writt e n as

∂ tρ ( t) = ∂ t N t ψ ( t) = N t ∂ tψ ( t) + ∂ tN t ψ ( t) .

( 1 3 8)

T h er ef or e, t h e d eri v ati v e of t h e n ois y st at e c a n b e d e c o m-
p os e d i nt o a s u m of t w o t er ms, t h e first ass o ci at e d  wit h
t h e u nit ar y d y n a mi cs ψ ( t), a n d t h e ot h er ass o ci at e d  wit h
t h e ti m e d e p e n d e n c e of t h e e ff e cti v e n ois y c h a n n el N t.
Pl u g gi n g i nt o  E q. ( 1 3 4), t his gi v es us

F cl o c k, t = F N ( ψ ) ; N ( ∂tψ ) + ∂ tN ( ψ ) , ( 1 3 9)

w h er e n o w F cl o c k, t, N , ∂ tN , ψ , a n d ∂ tψ ar e all i m pli citl y
e v al u at e d at t0 .

I n t h e f oll o wi n g,  w e c o nsi d er s etti n gs  w h er e t h e l o c al
ti m e d e p e n d e n c e of t h e st at e d u e t o t h e ti m e d e p e n d e n c e
of t h e e ff e cti v e n ois y c h a n n el t er ms c a n b e n e gl e ct e d  w h e n
c o m p uti n g F cl o c k, t. ( We  will st u d y i n gr e at er d e pt h b el o w
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w h e n e x a ctl y t his sit u ati o n aris es.) I n ot h er  w or ds, f or n o w
w e ass u m e t h at

F cl o c k, t ≈ F N ( ψ ) ; N ( ∂tψ ) = : F cl o c k, U, t. ( 1 4 0)

E x p a n di n g ∂ tψ ,  w e o bt ai n

F cl o c k, U, t = F N ( ψ ) ; N (− i[H , ψ ]) . ( 1 4 1)

T his q u a ntit y is  w h at  w e d e fi n e d as F B o b, t i n t h e c o nt e xt of
o ur  m ai n u n c ert ai nt y r el ati o n.

T h e c o m pl e m e nt ar y c h a n n el N t0 i s dir e ctl y d et er mi n e d
b y t h e c o m pl e m e nt ar y c h a n n el of t h e o v er all e v ol uti o n u p
t o t h at ti m e E t0 , si n c e t h e t w o c h a n n els di ff er o nl y b y a
u nit ar y e v ol uti o n e − t0 L 0 o n t h eir i n p ut:

N t = E t e
− t0 L 0 . ( 1 4 2)

T his  m e a ns t h at t h e Fis h er i nf or m ati o n o n  E v e’s e n d  wit h
r es p e ct t o t h e c o m pl e m e nt ar y dir e cti o n c a n b e e x pr ess e d
e ntir el y i n t er ms of t h e c o m pl e m e nt ar y c h a n n el E t0 t o t h e
e ntir e e v ol uti o n u p t o ti m e t0 :

F cl o c k, U, t = F E t0 ( ψ i nit) ; E t0 { H̄ , ψ i nit} , ( 1 4 3)

wit h H̄ = H − H ψ ( t0 ) , a n d  T h e or e m 1 st at es t h at

F cl o c k, U, t = 4 σ 2
H − F cl o c k, U, t. ( 1 4 4)

N o w  w e t ur n t o dis c ussi n g  w h e n t h e a p pr o xi m ati o n ( 1 4 0)
is a r e as o n a bl e ass u m pti o n, b y c h ar a ct eri zi n g t h e err or
i n d u c e d o n t h e Fis h er i nf or m ati o n. First of all, t h e a p pr o x-
i m ati o n is e x a ct i n t h e c as e of p h as e- c o v ari a nt d y n a mi cs,
w h er e [ L 1 , L 0 ] = 0 ( e. g.,  R efs. [ 4 6 ,4 7 ]). I n ot h er s etti n gs,
w e c a n us e a c o nti n uit y b o u n d of t h e Fis h er i nf or m ati o n i n
its s e c o n d ar g u m e nt ( Pr o p ositi o n 1 7 i n  A p p e n di x C ) t o tr y
t o g et a h a n dl e o n t h e err or t er ms i n v ol v e d i n t h e a p pr o x-
i m ati o n ( 1 4 0).  D e n ot e b y δ t h e err or i n t h e a p pr o xi m ati o n
( 1 4 0),

δ = F cl o c k, t − F cl o c k, U, t, ( 1 4 5)

t h e n  w e h a v e

|δ | F ρ ; ( ∂tN )( ψ )

+ F ρ ; ( ∂tN )( ψ ) F cl o c k, U, t
1 / 2 . ( 1 4 6)

T h at is, t h e r el ati v e err or i n t h e a p pr o xi m ati o n ( 1 4 0) is
d e m o nstr a bl y s m all if F ρ ; ( ∂tN )( ψ ) is  m u c h s m all er
t h a n F cl o c k, U, t.  We c a n r e writ e t his t er m usi n g ( 1 3 8) as

( ∂tN )( ψ ) = ∂ tρ ( t) − N t(− i[H , ψ ( t)])

= L t ot[ρ ( t)] − E t(− i[H , ψ 0 ]). ( 1 4 7)

T h e a b o v e e x pr essi o n is gi v e n i n t er ms of t h e  Li n d bl a-
di a n  m a p a n d t h e o v er all e v ol uti o n  m a p, a n d c a n ai d i n

d et er mi ni n g a n a n al yti c al or n u m eri c al u p p er b o u n d t o
t h e q u a ntit y F ρ ; ( ∂tN )( ψ ) . I n  A p p e n di x G ,  w e st u d y
t w o si n gl e- q u bit e x a m pl es t h at ar e s u bj e ct t o c o nti n u o us
d e p h asi n g al o n g v ari o us a x es i n or d er t o ill ustr at e t h e c o n-
n e cti o ns b et w e e n t h e  Li n d bl a di a n s etti n g a n d t h e s etti n g i n
Fi g. 1 .

VII.  E R R O R- C O R R E C TI O N  C O N DI TI O N S  F O R
Z E R O S E N SI TI VI T Y  L O S S

T h e u n c ert ai nt y r el ati o n ( 5 5) e n a bl es us t o pr o vi d e a
c h ar a ct eri z ati o n of  w h e n t h e n ois e r e d u c es a pr o b e’s s e nsi-
ti vit y t o ti m e. I n t his s e cti o n,  w e st u d y t h e sit u ati o n  w h er e
t h e s e nsiti vit y l oss F B o b, t i ntr o d u c e d i n  E q. ( 5 2) is e q u al
t o z er o.  T his is a sit u ati o n  w h er e t h e pr o b e is c h os e n cl e v-
erl y e n o u g h s u c h t h at t h e n ois e h as n o e ff e ct o n s e nsiti vit y.
T h e  m ai n c o ntri b uti o n of t his s e cti o n is a s et of n e c es-
s ar y a n d s u ffi ci e nt c o n diti o ns f or F B o b, t = 0,  w hi c h b e ar
r es e m bl a n c e t o t h e  K nill- L a fl a m m e c o n diti o ns f or q u a n-
t u m err or c orr e cti o n [2 0 ] a n d  w hi c h ar e cl os el y r el at e d t o
t h e  H a milt o ni a n- n ot-i n- Li n d bl a d-s p a n c o n diti o n of  R efs.
[2 1 ,2 2 ].

A.  C o n diti o ns f o r z e r o s e nsiti vit y l e a k a g e

I n t h e f oll o wi n g,  w e s u p p os e t h at o ur u n c ert ai nt y r el a-
ti o n h ol ds  wit h e q u alit y, i. e., t h at t h e c o n diti o ns gi v e n i n
Pr o p ositi o n 1 h ol d.  R e c all t h e e x pr essi o n f or t h e Fis h er
i nf or m ati o n l oss o n  B o b’s e n d ( 5 5), a n d c o nsi d er t h e
e x pr essi o n ( 1 6 b) f or t h e Fis h er i nf or m ati o n. If F B o b, t =
0, t h e n t h er e e xists a n o p er at or L s u c h t h at tr (L † L ) = 0
a n d ρ 1 / 2 L + L † ρ 1 / 2 = N ({ψ , H̄ }); t h e f or m er c o n diti o n
i m pli es L = 0 a n d t h us t h e l att er i m pli es N ({ψ , H̄ }) = 0.
T h er ef or e,  w e s e e t h at F B o b, t = 0 if a n d o nl y if

N ({ψ , H̄ }) = 0, ( 1 4 8)

i. e., {ψ , H̄ } m ust li e i n t h e k er n el of t h e s u p er o p er at or N .
It is i nstr u cti v e t o r e writ e t his c o n diti o n i n t er ms of t h e
“ virt u al q u bit ” i ntr o d u c e d i n S e c. III  B.  Wit h Z L d e fi n e d i n
E q. ( 6 2), t h e n  E q. ( 1 4 8) b e c o m es

N (Z L ) = 0. ( 1 4 9)

Alt er n ati v el y, t h e a b o v e c o n diti o n is e q ui v al e nt t o r e q uir-
i n g t h at f or all o p er at ors O ,

tr N † (O ) Z L = 0, ( 1 5 0)

m e a ni n g t h at err or o p er ati o ns of t h e f or m N † (O ) s h o ul d
n ot h a v e a n y o v erl a p  wit h t h e “l o gi c al ” Z L o p er at or o n t h e
q u bit s u bs p a c e.

S o t h e t as k of fi n di n g pr o b e st at es t h at p erf e ctl y c o u nt er
t h e n ois y c h a n n el N c a n b e f or m ul at e d as e ns uri n g t h e l o g-
i c al Z P a uli o p er at or i n t h e l o gi c al q u bit s u bs p a c e s p a n n e d
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b y | + = | ψ a n d | − ∝ | ξ = P ⊥
ψ H |ψ is i n t h e k er n el of

t h e c o m pl e m e nt ar y c h a n n el t o t h e n ois y c h a n n el.
N ot e t h at si m pl y l o o ki n g f or z er o s e nsiti vit y l oss is n ot

s u ffi ci e nt t o fi n d t h e b est pr o b e st at es;  w e still n e e d t o  m a k e
s ur e t h at |ψ h as as l ar g e e n er g y v ari a n c e as p ossi bl e t o
e ns ur e g o o d s e nsiti vit y.

A n alt er n ati v e r e pr es e nt ati o n of t h e z er o s e nsiti vit y l oss
c o n diti o n c a n b e o bt ai n e d if  w e c o nsi d er a n o p er at or-s u m
r e pr es e nt ati o n of t h e n ois y c h a n n el i n t er ms of  Kr a us o p er-
at ors {E k } as i n  E q. ( 4 5).  T h e c o n diti o n ( 1 4 8) is t h e n
e q ui v al e nt t o t h e c o n diti o n

ψ | E
†
k E k |ξ + ξ | E

†
k E k |ψ = 0 f or all k , k . ( 1 5 1)

T h es e  m a y b e i nt er pr et e d as  K nill- L a fl a m m e-li k e c o n-
diti o ns f or o pti m al s e nsiti vit y.  W h er e as f or a tr a diti o n al
q u a nt u m err or- c orr e cti n g c o d e,  w e r e q uir e a n y t w o c o d e

w or ds |ψ i , |ψ j t o s atisf y ψ i|E
†
k E k |ψ j ∝ δ i,j , h er e  w e

r e q uir e t h at t h e err or o p er at or E
†
k E k c a n n ot  m a p t h e st at e

|ψ o nt o t h e v e ct or |ξ , or at l e ast n ot i n a  w a y t h at is n ot
s uit a bl y a ntis y m m etri c.  T h e  w eir d a ntis y m m etri z ati o n i n
E q. ( 1 5 1) c a n b e e x pr ess e d i n a  m or e el e g a nt f or m if  w e
s wit c h b a c k t o t h e pi ct ur e of t h e l o gi c al q u bit s p a n n e d b y
|ψ a n d |ξ .  A n al o g o usl y t o  E q. ( 1 4 9),  w e  m a y r e writ e t h e
c o n diti o n ( 1 5 1) as

tr Z L L E k E k L = 0, ( 1 5 2)

w h er e L = | + +| L + | − −| L i s t h e pr oj e ct or o nt o t h e
virt u al q u bit s u bs p a c e s p a n n e d b y |ψ a n d |ξ .  T h e f ull
K nill- L a fl a m m e c o n diti o ns a p pli e d t o t h e s u bs p a c e L

w o ul d r e q uir e L E k E k L ∝ L .  T h e c o n diti o n ( 1 5 2) is
si m pl y a  w e a k er c o n diti o n  w h er e o nl y t h e c orr es p o n di n g
pr oj e cti o n o nt o t h e l o gi c al P a uli o p er at or Z L i s c o nsi d er e d
a n d  w h er e t h e pr oj e cti o n o nt o t h e ot h er P a uli o p er at ors is
u n c o nstr ai n e d.

T h e f or m ( 1 5 2) als o h el ps cl arif y t h at f or z er o s e nsi-
ti vit y l oss, t h e t er ms i n  E q. ( 1 5 1) n e e d n ot v a nis h i n di-
vi d u all y. I n d e e d, o nl y t h e  Hil b ert- S c h mi dt pr oj e cti o n of

L E k E k L o nt o Z L i s r e q uir e d t o v a nis h, a n d n ot i n pri n-
ci pl e o n Y L or X L .  A n e x a m pl e b el o w i n S e c. VII  H 1 ,
c o nsisti n g of a si n gl e- q u bit s u bj e ct t o tr a ns v ers al n ois e,
will ill ustr at e t his p oi nt.

T h e c o n diti o ns ( 1 5 2) ar e r e mi nis c e nt of q u a nt u m err or
c orr e cti o n f or o p er at or al g e br as,  w h er e  w e r e q uir e a c o d e
t o pr es er v e t h e o ut c o m es of a n y o p er at or i n a gi v e n al g e br a
[4 8 – 5 0 ]. I n f a ct, if t h e al g e br a ass o ci at e d  wit h a n y c h oi c e
of o pti m al s e nsi n g o p er at or of t h e f or m ( 2 0) is pr es er v e d,
t h e n o ur c o n diti o ns ( 1 5 2) ar e s atis fi e d. I n d e e d, s u p p os e
t h at [T , N † (W )] = 0 f or a n y o p er at or W o n  E v e a n d f or
a fi x e d c h oi c e of M i n  E q. ( 2 0),  m e a ni n g t h at t h e  A b eli a n
al g e br a g e n er at e d b y T is c orr e ct a bl e [4 8 – 5 0 ].  T h e n t a ki n g
t h e e x p e ct ati o n v al u e · ψ of t his c o m m ut at or  w e fi n d 0 =

[T , N † (W )] = tr [ψ , T ] N † (W ) ∝ tr Z L N † (W ) , usi n g

E q. ( 2 5),  w hi c h h ol ds f or all W , a n d t h er ef or e o ur  K nill-
L a fl a m m e-li k e c o n diti o n ( 1 5 0) h ol ds.  T h e c o n v ers e i m pli-
c ati o n is u n cl e ar, i n p art b e c a us e t h e o pti m al s e nsi n g
o p er at or is n ot u ni q u e a n d di ff er e nt c h oi c es c a n g e n er at e
di ff er e nt al g e br as.

T h e c o n diti o ns ( 1 5 1) ar e a ct u all y ti g htl y r el at e d t o t h e
H a milt o ni a n- n ot-i n- Kr a us-s p a n c o n diti o n of  R efs. [ 2 1 ,2 2 ,
3 0 ,3 1 ,5 1 – 5 3 ].  T h er e, it  w as s h o w n t h at t h er e e xists a
cl o c k st at e v e ct or |ψ t h at a c hi e v es  H eis e n b er g s c ali n g
i n t h e pr es e n c e of n ois e usi n g q u a nt u m err or c orr e c-
ti o n if a n d o nl y if t h e  H a milt o ni a n si g n al t er m is n ot
i n t h e li n e ar s p a n of t h e  Li n d bl a d n ois e o p er at ors.  H er e
w e ar g u e t h at t h e  H a milt o ni a n- n ot-i n- Kr a us-s p a n c o n di-
ti o n is i n f a ct e q ui v al e nt t o t h e e xist e n c e of a st at e |ψ
t h at s atis fi es o ur z er o s e nsiti vit y-l oss c o n diti o ns ( 1 5 1). (I n
o ur s etti n g, t h e cl o c k st at e v e ct or |ψ is a gi v e n fi x e d
st at e.)  As  w e h a v e a dis cr et e n ois y c h a n n el,  w e c o nsi d er
t h e  Kr a us o p er at ors {E k } of t h e n ois y c h a n n el i nst e a d

of  Li n d bl a d o p er at ors. If H = α k ,k E
†
k E k , a n d s u p p os-

i n g t h e c o n diti o ns ( 1 5 1) ar e s atis fi e d f or s o m e |ψ , t h e n
b y t a ki n g a li n e ar c o m bi n ati o n α k ,k of t h e c o n diti o ns
( 1 5 1) w e o bt ai n 0 = 2 ψ |H P ⊥

ψ H |ψ = 2 σ 2
H ; t h er ef or e t h e

c o n diti o ns ( 1 5 1) c a n n ot b e s atis fi e d b y a n y ψ t h at h as
n o n z er o e n er g y v ari a n c e.  C o n v ers el y,  w e k n o w (s e e, e. g.,
R efs. [ 2 1 ,2 2 ,5 2 ]) t h at if t h e  H a milt o ni a n is n ot i n t h e
s p a n of t h e n ois y c h a n n el’s  Kr a us o p er at ors, t h e n t h er e
is a c o d e s p a c e , p ossi bl y i n v ol vi n g a n a n cill a s yst e m,

wit h E
†
k E k = c k ,k s u c h t h at [ , H ] = 0 (i. e., is

s p a n n e d b y a s u bs et of e n er g y ei g e n v e ct ors) a n d s u c h
t h at c o nt ai ns a st at e v e ct or |ψ wit h n o n z er o e n er g y

v ari a n c e; t h e n f or a n y k , k w e h a v e ψ |E
†
k E k P

⊥
ψ H |ψ =

ψ | E
†
k E k P

⊥
ψ H |ψ = ψ | E

†
k E k P ⊥

ψ H |ψ = c k ,k ψ |

P ⊥
ψ H |ψ = 0 usi n g t h e f a ct t h at [ P ⊥

ψ , ] = [H , ] = 0, s o
t h e c o n diti o ns ( 1 5 1) ar e s atis fi e d.  T h er ef or e, if t h e  H a mil-
t o ni a n is n ot i n t h e s p a n of t h e  Kr a us o p er at ors, t h e n t h er e
e xists a cl o c k st at e v e ct or |ψ t h at s u ff ers n o s e nsiti vit y
l oss aft er b ei n g e x p os e d t o t h e n ois e l o c all y at t0 .  T his st at e
is c o nstr u ct e d i n t h e a b o v e  m e nti o n e d r ef er e n c es usi n g a
q u a nt u m err or- c orr e cti n g c o d e.

We c a n as k  w h et h er t h er e is a r el ati o n b et w e e n o ur c o n-
diti o ns f or n o s e nsiti vit y l oss a n d  w h e n t h e s e nsiti vit y c a n
a c hi e v e  H eis e n b er g s c ali n g i n t h e s yst e m si z e [ 2 ].  T h e
H eis e n b er g s c ali n g r ef ers t o sit u ati o ns  w h er e F B o b, t s c al es
li k e n 2 ,  w h er e n is t h e n u m b er of s yst e ms t h at ar e j oi ntl y
pr e p ar e d i n t h e cl o c k st at e v e ct or |ψ n . (If n o e nt a n gl e m e nt
is pr es e nt b et w e e n t h e n s yst e ms, t h e b est s c ali n g t h at c a n
b e a c hi e v e d is F B o b, t ∝ n .)  We ass u m e t h at t h e cl o c k st at e
v e ct or |ψ n h as a v ari a n c e t h at s c al es q u a dr ati c all y i n n ,
i. e., [σ H ( ψn )]

2 ∝ n 2 , as ot h er wis e e v e n t h e n ois el ess cl o c k
d o es n ot a c hi e v e  H eis e n b er g s c ali n g. S u p p os e t h e c o n-
diti o ns ( 1 5 1) ar e s atis fi e d: t h e n F B o b, t = 4[ σ H ( ψn )]

2 ∝ n 2

a s t h er e is n o s e nsiti vit y l oss, a n d t h e Fis h er i nf or m a-
ti o n dis pl a ys  H eis e n b er g s c ali n g.  O n t h e ot h er h a n d, e v e n
if t h er e is s o m e l oss of s e nsiti vit y d u e t o t h e n ois e, t h e
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H eis e n b er g s c ali n g  mi g ht s ur vi v e. S u p p os e, f or e x a m pl e,
t h at  w e c o nsi d er t w o i n d e p e n d e nt o n e- di m e nsi o n al s pi n
c h ai ns, e a c h c o nsisti n g of n / 2 sit es t h at ar e pr e p ar e d i n a
G H Z st at e a n d t h at e v ol v e a c c or di n g t o a n o n-sit e Z H a mil-
t o ni a n.  B ot h s pi n c h ai ns ar e i n d e p e n d e nt pr o b es  w h os e
s e nsiti vit y e a c h s c al es as a p pr o xi m at el y n 2 , a n d t h er e-
f or e t h e o v er all pr o b e st at e e x hi bits  H eis e n b er g s c ali n g.
N o w c o nsi d er t h e n ois y c h a n n el t h at er as es o n e of t h e
s pi n c h ai ns.  H alf t h e s e nsiti vit y is l ost; b e c a us e t h er e is
s e nsiti vit y l oss o ur  K nill- L a fl a m m e-li k e c o n diti o ns c a n-
n ot b e s atis fi e d.  H o w e v er, t h e si n gl e s pi n c h ai n t h at is l eft
f or  B o b still e x hi bits  H eis e n b er g s c ali n g.  T his s h o ws t h at
H eis e n b er g s c ali n g is g u ar a nt e e d if t h e e n vir o n m e nt h as
z er o s e nsiti vit y t o e n er g y ( a n d t h e n ois el ess pr o b e its elf
h as  H eis e n b er g s c ali n g), b ut t h at t h er e ar e als o sit u ati o ns
w h er e t h e e n vir o n m e nt i n d u c es s e nsiti vit y l oss  wit h o ut
hi n d eri n g t h e  H eis e n b er g s c ali n g of t h e pr o b e. I n t h e l a n-
g u a g e of  R efs. [ 2 1 ,2 2 ], t his c orr es p o n ds t o a  H a milt o ni a n
t h at  mi g ht h a v e b ot h a p ar all el c o m p o n e nt t o t h e si g n al as
w ell as a p er p e n di c ul ar c o m p o n e nt t h at c a n b e e x pl oit e d
t o a c hi e v e  H eis e n b er g s c ali n g.  We s e e t h at z er o s e nsiti v-
it y l oss i m pli es  H eis e n b er g s c ali n g f or a f a mil y of st at e
v e ct ors |ψ t h at ar e s u ffi ci e ntl y e nt a n gl e d.  B ut t h er e ar e
st at es t h at a c hi e v e t h e  H eis e n b er g s c ali n g e v e n if s o m e
s e nsiti vit y is l ost d u e t o t h e n ois e.

W h e n t h e z er o s e nsiti vit y l oss c o n diti o ns ( 1 4 8) h ol d,
t h e n b y d e fi niti o n t h er e  m ust e xist a s e nsi n g o bs er v a bl e f or
B o b t o esti m at e t h e p ar a m et er t,  w h os e s e nsiti vit y  m at c h es
t h at of  Ali c e.  We c a n e xtr a ct t his o pti m al s e nsi n g o bs er v-
a bl e fr o m o ur t e c h ni c al a n al ysis usi n g s e mi d e fi nit e pr o-
gr a m mi n g (s e e  A p p e n di x E 2 ).  N a m el y, i n  A p p e n di x E 3
w e s h o w t h at if t h e z er o s e nsiti vit y-l oss c o n diti o ns h ol d,
t h e n t h e o p er at or iρ N (|ξ ψ |) is  H er miti a n. F urt h er m or e,
t h e o p er at or

R B = − 2 iN (|ξ ψ |) ρ − 1 + 2 iρ − 1 N (|ψ ξ |)P ⊥
ρ ( 1 5 3)

is als o  H er miti a n a n d s atis fi es 1/ 2 {R B , ρ B } = N (Y L ), i. e.,
w e o bt ai n a n e x pli cit e x pr essi o n of t h e s y m m etri c l o g-
arit h mi c d eri v ati v e o n  B o b’s e n d.  T h e o pti m al s e nsi n g
o bs er v a bl e o n  B o b’s s yst e m is t h e n gi v e n vi a  E q. ( 1 3)
as T b = [F B o b, t]

− 1 R B + t0 .  T h at is,  w h e n a cl o c k st at e a n d
ass o ci at e d  H a milt o ni a n f ul fill t h e  m etr ol o gi c al c o d e c o n-
diti o ns f or a gi v e n n ois e c h a n n el,  w e o bt ai n a n e x pli cit
e x pr essi o n f or t h e o pti m al  m e as ur e m e nt o n  B o b’s e n d.

B.  M et r ol o gi c al c o d es a n d  m et r ol o gi c al dist a n c e

We n o w i ntr o d u c e t h e c o n c e pt of a m etr ol o gi c al c o d e.
T h e i d e a is t o st u d y t h e q u bit s p a c e s p a n n e d b y t h e v e ct ors
|ψ a n d |ξ = H̄ |ψ = H − H |ψ . If t h e st at e l os es
n o s e nsiti vit y u p o n t h e a cti o n of a n ois y c h a n n el, o n e c o ul d
e x p e ct t h es e st at es t o s p a n s o m e ki n d of q u a nt u m err or-
c orr e cti n g c o d e s p a c e.  We c a n s e e t h at t h e y d o n ot n e c es-
s aril y f or m a f ull err or- c orr e cti n g c o d e as f oll o ws.  C o n-
si d er t h e si n gl e- q u bit st at e |ψ = | + = |0 + | 1 /

√
2

e v ol vi n g u n d er t h e  H a milt o ni a n H = ω σ Z / 2,  w hi c h  w e
e x p os e t o a n err or c h a n n el  w h os e  Kr a us o p er at ors ar e pr o-
p orti o n al t o 1 a n d X .  We s e e t h at t h e c o n diti o n ( 1 5 1) is
s atis fi e d, gi v e n t h at |ξ = | − = |0 − | 1 /

√
2 is ort h o g-

o n al t o | + a n d t h at | + is a n ei g e nst at e of b ot h 1 a n d
X .  Yet a q u a nt u m st at e st or e d o n t his q u bit  w o ul d b e
c orr u pt e d b y t h e n ois e, as t h e bit fli ps  w o ul d b e u n c or-
r e ct a bl e.  We i d e ntif y a c o n c e pt t h at is  w e a k er t h a n a f ull
err or- c orr e cti n g c o d e,  w hi c h a p pli es pr e cis el y t o st at es t h at
s atisf y t h e c o n diti o n ( 1 5 1).  H er e,  w e ass u m e t h at t h e s et-
ti n g is s p e ci fi e d as a p air of ort h o g o n al st at es |ψ , |ξ ,
w h er e b y |ξ is pr es u m a bl y o bt ai n e d fr o m a  H a milt o ni a n H
as |ξ = H − H |ψ . S p e cif yi n g t h e f ull  H a milt o ni a n is
n ot n e c ess ar y as t h e r el e v a nt q u a nt u m Fis h er i nf or m ati o n
q u a ntiti es c a n b e f ull y e x pr ess e d o nl y i n t er ms of |ψ , |ξ .

M et r ol o gi c al c o d e . L et E b e a n y s et of o p er at ors.  We
s a y t h at t h e st at e v e ct ors |ψ a n d |ξ f or m a m etr ol o gi c al
c o d e a g ai nst t h e err ors E if f or all E , E ∈ E ,  w e h a v e

tr E † E |ξ ψ | + |ψ ξ | = 0. ( 1 5 4)

As a c o ns e q u e n c e of t h e z er o s e nsiti vit y l oss c o n diti o n
( 1 5 1), a  m etr ol o gi c al c o d e pr e v e nts s e nsiti vit y l oss a g ai nst
a n y n ois e c h a n n el  w h os e  Kr a us o p er at ors ar e li n e ar c o m-
bi n ati o ns of el e m e nts i n E ( as l o n g as t h e c o n diti o ns of
Pr o p ositi o n 1 ar e s atis fi e d).

A n at ur al cl ass of err ors t o c o nsi d er is t h e s et of all
o p er at ors t h at a ct o n o nl y a s u bs et of n c o m p o n e nts of a
c o m p osit e q u a nt u m s yst e m A = A 1 ⊗ A 2 ⊗ · · · ⊗ A n . T h e
w ei g ht w gt (O ) of a n o p er at or O a cti n g o n t h e n s yst e ms is
d e fi n e d as t h e n u m b er of s yst e ms o n  w hi c h O a cts n o ntri v-
i all y. S p e ci fi c all y, if O is e x p a n d e d i n t h e P a uli o p er at or
b asis ( or i n a n y t e ns or b asis usi n g a si n gl e-sit e o p er at or
b asis t h at i n cl u d es t h e i d e ntit y  m atri x), all n o ni d e ntit y el e-
m e nts i n t e ns or pr o d u cts of b asis o p er at ors t h at a p p e ar i n
t h e d e c o m p ositi o n of O m ust b e s u p p ort e d o n a fi x e d s et of
w gt (O ) sit es.  E q ui v al e ntl y, t h e e x p e ct ati o n v al u e of O o n
a n y st at e c a n b e c o m p ut e d e x a ctl y e v e n aft er tr a ci n g o ut all
b ut a gi v e n s et of  w gt (O ) sit es.

We s a y t h at t h e p air of st at e v e ct ors |ψ a n d |ξ f or m
a m etr ol o gi c al c o d e of dist a n c e d m if it is a  m etr ol o gi c al
c o d e a g ai nst all o p er at ors of  w ei g ht at  m ost d m − 1; i n
ot h er  w or ds, f or all o p er at ors O s atisf yi n g  w gt (O ) < d m ,
w e h a v e

tr O |ξ ψ | + |ψ ξ | = 0. ( 1 5 5)

M etr ol o gi c al c o d es of dist a n c e d m h a v e t h e pr o p ert y t h at
f or a n y n ois e c h a n n el N w h os e  Kr a us o p er at ors {E k }

ar e s u c h t h at  w gt (E
†
k E k ) < d m f or all k , k , t h e ass o ci-

at e d s e nsiti vit y l oss is z er o ( as l o n g as Pr o p ositi o n 1 is
s atis fi e d).

M etr ol o gi c al c o d es ar e, r o u g hl y s p e a ki n g, i n b et w e e n
cl assi c al a n d q u a nt u m c o d es.  O n o n e h a n d, t h e y ar e
n ot f ull- bl o w n cl assi c al c o d es b e c a us e c o n diti o n ( 1 5 5)
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r e q uir es pr ot e cti o n a g ai nst b ot h X - a n d Z -t y p e p h ysi-
c al n ois e.  B e c a us e of t his, t h e p air |ψ ∝ | 0 n + | 1 n a n d
|ξ ∝ | 0 n − | 1 n of  G H Z st at es is n ot a  m etr ol o gi c al c o d e
of n o ntri vi al dist a n c e b e c a us e si n gl e- q u bit Z err ors c a us e
a l o gi c al- X err or, t h er e b y vi ol ati n g  E q. ( 1 5 5).  O n t h e
ot h er h a n d,  m etr ol o gi c al c o d es ar e n ot f ull- bl o w n q u a nt u m
c o d es b e c a us e t h e s e nsiti vit y c o n diti o ns s a y n ot hi n g a b o ut
ot h er t y p es of l o gi c al n ois e. I n ot h er  w or ds, n ois e c a n c a us e
l o gi c al-Y a n d l o gi c al- Z err ors f or a  m etr ol o gi c al c o d e, b ut
n ot f or a b o n a- fi d e err or- c orr e cti n g c o d e.

C.  U n c e rt ai nt y r el ati o n e q u alit y a n d c o n diti o ns f o r
m et r ol o gi c al c o d es

I n or d er t o d e d u c e fr o m  E v e’s l a c k of s e nsiti vit y t o
e n er g y t h at  B o b l os es n o s e nsiti vit y t o ti m e, it is n e c ess ar y
t o e ns ur e t h at t h e c o n diti o ns of Pr o p ositi o n 1 h ol d.  W h e n
w e pr es e nt e d Pr o p ositi o n 1,  w e alr e a d y n ot e d t h at t h e sit u a-
ti o ns  w h er e t h es e c o n diti o ns ar e n ot s atis fi e d ar e e d g e c as es
t h at c a n b e p ert ur b e d a w a y.  H er e,  w e str e n gt h e n t his st at e-
m e nt f or  m etr ol o gi c al c o d es: if a  m etr ol o gi c al c o d e f or a
gi v e n n ois e c h a n n el h a p p e ns n ot t o s atisf y t h e c o n diti o ns of
Pr o p ositi o n 1, t h e n t h e n ois e c h a n n el c a n b e i n fi nit esi m all y
p ert ur b e d t o o bt ai n a sit u ati o n f or  w hi c h t h es e c o n diti o ns
h ol d, a n d f urt h er m or e, t h e z er o s e nsiti vit y l oss c o n diti o ns
( 1 4 8) ar e pr es er v e d.

Pr o p ositi o n 2 ( P ert ur b ati o n b o u n d f or n ois e c h a n-
n els c o nsist e nt  wit h a  m etr ol o gi c al c o d e). — L et V A → B E

b e a n is o m etr y, l et |ψ A , |ξ A wit h ψ |ξ A = 0 a n d l et
N (·) = trE V (·) V † , N (·) = trB V (·) V † . S u p p os e t h at

N (|ξ ψ | + |ψ ξ |) = 0.  We f urt h er m or e ass u m e t h at
t h er e e xists a u nit ar y o p er at or G B a cti n g o n t h e s yst e m
B wit h t h e pr o p erti es t h at 0 = P ρ B G B P ρ B = P ζ B G B P ζ B =
P ρ B G B P ζ B = P ζ B G B P ρ B ,  w h er e ζ B = N (|ξ ξ |).  T h e n,
f or a n y > 0, t h er e e xists a n is o m etr y V A → B E wit h
V − V s u c h t h at

P ⊥
ρ B

⊗ P ⊥
ρ E

V |ξ = 0 ; a n d ( 1 5 6 a)

N |ξ ψ | + |ψ ξ | = 0, ( 1 5 6 b)

w h er e ρ B = trE V ψ V † , ρ E = trB V ψ V † , a n d N (·) =

trB V (·) V † .
T h e pr o of is pr es e nt e d as Pr o p ositi o n 2 2 i n  A p p e n di x H .

N ot e t h at t h e e xist e n c e of s u c h a n o p er at or G B c a n al w a ys
b e e ns ur e d b y a u g m e nti n g t h e B s yst e m t o i n cl u d e a q u bit,
w hi c h N pr e p ar es i n a fi x e d p ur e st at e v e ct or |0 f or all
i n p uts.  T h e o p er at or G B c a n b e c h os e n t o fli p t h e q u bit t o
|1 .  T h e a d diti o n al q u bit c a n r e pr es e nt a n a d diti o n al “f ail-
ur e ” fl a g s u c h as, f or i nst a n c e, a n a d diti o n al p h ot o n t h at is
e mitt e d at t h e o ut p ut of t h e n ois e pr o c ess.

D. S e nsiti vit y l oss of  m et r ol o gi c al c o d es u n d e r  w e a k
II D n ois e

1. S e nsiti vit y l oss u n d er  w e a k II D n ois e

If  w e e n c o d e a l o gi c al q u a nt u m st at e usi n g a q u a nt u m
err or- c orr e cti n g c o d e of a dist a n c e d , a n d e a c h sit e h as
a s m all pr o b a bilit y O ( ) of i n c urri n g a n err or, t h e n  w e
k n o w t h at t h e err ors t h at t h e c o d e c a n n ot c orr e ct o c c ur  wit h
pr o b a bilit y at  m ost O ( d / 2 ). I n t ur n, t his i m pli es t h at t h e
i n fi d elit y of r e c o v er y of t h e l o gi c al i nf or m ati o n als o s c al es
as O ( c d ) wit h a c o nst a nt c d e p e n di n g o n  w hi c h c o n v e n-
ti o n f or t h e i n fi d elit y  m e as ur e  w e c h o os e. It is t h e n n at ur al
t o c o nj e ct ur e t h at if |ψ a n d |ξ f or m a  m etr ol o gi c al c o d e
of  m etr ol o gi c al dist a n c e d m , t h e n t h e l oss i n Fis h er i nf or-
m ati o n  m ust si mil arl y b e u p p er b o u n d e d b y O ( c d m ), f or
s o m e u ni v ers al c o nst a nt c .

I nt er esti n gl y, t h e or d er of t h e Fis h er i nf or m ati o n l oss i n
is n ot dir e ctl y r el at e d t o t h e  m etr ol o gi c al dist a n c e of a

m etr ol o gi c al c o d e. I n f a ct, t h er e ar e e x a m pl es of  m etr ol o g-
i c al c o d es  wit h l ar g e  m etr ol o gi c al dist a n c e, b ut f or  w hi c h
t h e Fis h er i nf or m ati o n l oss is al w a ys of or d er .  T his
b e h a vi or a p p e ars t o c o ntr a di ct t h e e x p e ct ati o n t h at e v e nts
of v a nis hi n g pr o b a bilit y s h o ul d n ot si g ni fi c a ntl y i n fl u e n c e
o bs er v a bl e pr o p erti es of t h e s yst e m (s u c h as its s e nsiti v-
it y t o ti m e).  A n e x pl a n ati o n st e ms fr o m t h e f a ct t h at t h e
o p er ati o n al i nt er pr et ati o n of t h e Fis h er i nf or m ati o n vi a t h e
Cr a m ér- R a o b o u n d i n v ol v es a n i m pli cit a v er a gi n g of t h e
err or o v er i n fi nit el y  m a n y s a m pl es. It  mi g ht t ur n o ut i n
t h e pr es e nt c as e t h at e v e nts  wit h v a nis hi n g pr o b a bilit y c a n
c o ntri b ut e n o n- n e gli gi bl y t o t h e q u a nt u m Fis h er i nf or m a-
ti o n.  T o r e m e d y t his iss u e, it  w o ul d b e d esir a bl e t o c o nsi d er
a  m e as ur e of s e nsiti vit y t h at a c c o u nts f or fi nit e d at a a c q ui-
siti o n.  O n e s u c h  m e as ur e h as b e e n p ut f or w ar d i n  R ef. [ 5 4 ].
We r ef er t o  A p p e n di x I f or a  m or e d et ail e d dis c ussi o n.

E.  Cl o c k st at es f r o m ti m e- c o v a ri a nt q u a nt u m
e r r o r- c o r r e cti n g c o d es

H er e,  w e e x pl or e a si m pl e  m et h o d t o c o nstr u ct st at es
t h at s atisf y t h e z er o s e nsiti vit y-l oss c o n diti o n, usi n g ti m e-
c o v ari a nt q u a nt u m err or- c orr e cti n g c o d es.  A c o d e is s ai d t o
b e ti m e- c o v ari a nt c o d e  wit h r es p e ct t o a gi v e n  H a milt o ni a n
H if H ( a n d h e n c e als o ti m e e v ol uti o n g e n er at e d b y H ) is
a n o ntri vi al l o gi c al o p er at or. I n t h e f oll o wi n g, P a uli o p er-
at ors X , Y , Z c arr y a n i n d e x i n di c ati n g t h e q u bit o n  w hi c h
t h e o p er at or a cts.  T his str at e g y is t h e o n e p urs u e d b y, e. g.,
R efs. [ 2 2 ,5 1 – 5 3 ].

1.  F o ur n e ar est- n ei g h b or i nt er a cti n g q u bits i n a s q u ar e
p att er n

As a  w ar m- u p e x a m pl e,  w e first c o nsi d er h o w t o l e v er-
a g e t h e [[ 4, 2, 2]] c o d e f or q u a nt u m  m etr ol o g y  wit h a
H a milt o ni a n o n f o ur q u bits  wit h Z Z i nt er a cti o ns arr a n g e d
i n a s q u ar e p att er n.  C o nsi d er f o ur q u bits arr a n g e d i n a
s q u ar e as d e pi ct e d i n Fi g. 9 .  T h e  H a milt o ni a n is d e fi n e d
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( a) ( b)

1

3

2

4

FI G. 9.  M etr ol o g y  wit h i nt er a cti n g q u bits. ( a)  C o nsi d er f o ur
q u bits i n a s q u ar e  wit h n e ar est- n ei g h b or Z Z Isi n g i nt er a cti o ns
( alt er n ati v el y  wit h a d diti o n al X X a n d Y Y i nt er a cti o ns).  A cl o c k
st at e  wit h  m a xi m al s e nsiti vit y a n d z er o s e nsiti vit y l oss u n d er
a si n gl e l o c at e d er as ur e c a n b e o bt ai n e d vi a t h e ti m e- c o v ari a nt
[[ 4, 2, 2]] c o d e. ( b)  We c a n e xt e n d t h e c o nstr u cti o n b as e d o n t h e
[[ 4, 2, 2]] c o d e t o a n y n u m b er of q u bits i nt er a cti n g  wit h r es p e ct
t o a n y gr a p h of Z Z i nt er a cti o ns ( alt er n ati v el y  wit h a d diti o n al X X
a n d Y Y i nt er a cti o ns),  w hil e o ff eri n g pr ot e cti o n a g ai nst a si n gl e
l o c at e d er as ur e.

b y pl a ci n g a Z Z i nt er a cti o n o n e a c h si d e of t h e s q u ar e,

H = ω Z 1 Z 2 + Z 1 Z 3 + Z 2 Z 4 + Z 3 Z 4 . ( 1 5 7)

T h e [[ 4, 2, 2]] c o d e [ 5 5 ,5 6 ] h as st a bili z ers X 1 X 2 X 3 X 4 a n d
Z 1 Z 2 Z 3 Z 4 .  T h e l o gi c al o p er at ors X 1 , Z 1 a n d X 2 , Z 2 f or t h e
first a n d s e c o n d l o gi c al q u bits ar e X 1 = X 1 X 3 , X 2 = X 1 X 2 ,
Z 1 = Z 1 Z 2 , a n d Z 2 = Z 1 Z 3 .

O bs er v e t h at t h e  H a milt o ni a n is a l o gi c al o p er at or: t h e
s e c o n d a n d f o urt h t er ms i n  E q. ( 1 5 7) h a v e t h e s a m e a cti o n
o n t h e c o d e s p a c e as t h e first a n d t hir d t er ms, r es p e cti v el y,
b e c a us e t h e y di ff er o nl y b y t h e st a bili z er Z 1 Z 2 Z 3 Z 4 .  W h e n
a cti n g o n t h e c o d e s p a c e,  w e h a v e

H = 2 ω Z 1 + Z 2 . ( 1 5 8)

L et us c h o os e t h e cl o c k st at e as a l o gi c al st at e  wit h t h e
l ar g est p ossi bl e e n er g y s pr e a d u n d er t his  H a milt o ni a n,

|ψ =
1

√
2

|0 0 + | 1 1 , ( 1 5 9)

w h er e |0 0 a n d |1 1 r ef er t o l o gi c al st at e v e ct ors  wit h
t h e first a n d s e c o n d l o gi c al q u bits i n t h e gi v e n l o gi c al
c o m p ut ati o n al b asis st at es.

N o w  w e c h e c k o ur  K nill- L a fl a m m e-li k e c o n diti o n.  H a v-
i n g dist a n c e 2, t h e c o d e c a n c orr e ct a si n gl e er as ur e
at a k n o w n l o c ati o n.  Cr u ci all y, t h e o p er at or |ξ = (H −
H )|ψ = 2 ω [|0 0 − | 1 1 ]/

√
2 is still i n t h e c o d e s p a c e

b e c a us e H is a l o gi c al o p er at or.  T h e n fr o m t h e  K nill-
L a fl a m m e c o n diti o ns  w e k n o w t h at ξ |O i|ψ = 0 f or a n y
si n gl e-sit e o p er at or O i, b e c a us e |ξ a n d |ψ ar e ort h o g o n al
v e ct ors i n t h e c o d e s p a c e, a n d h e n c e o ur c o n diti o ns ( 1 5 1)
ar e s atis fi e d f or si n gl e l o c at e d err ors.

If  w e h a v e s o m e fr e e d o m i n e n gi n e eri n g o ur  H a milt o-
ni a n, t h er e ar e ot h er c h oi c es of l o gi c al o p er at ors t o us e i n
t h e  H a milt o ni a n t h at  w o ul d a c hi e v e a si mil ar s e nsiti vit y

w hil e als o o ff eri n g pr ot e cti o n a g ai nst si n gl e l o c at e d er a-
s ur es. F or i nst a n c e,  w e c o ul d i g n or e t h e s e c o n d l o gi c al
q u bit ( or tr e at it as a g a u g e q u bit) a n d t h e  H a milt o ni a n
c o ul d b e c h os e n t o a ct o nl y o n sit es 1 a n d 2 as H =
2 ω Z 1 = 2 ω Z 1 Z 2 .

We s e e t h at t h e pr o b e st at e ( 1 5 9) d o es n ot l os e a n y s e n-
siti vit y t o ti m e if a s yst e m is er as e d at a k n o w n l o c ati o n.
T h e v ari a n c e of |ψ is gi v e n b y

σ 2
H = ψ |H 2 |ψ = 1 6 ω 2 . ( 1 6 0)

B e c a us e  w e h a v e n ot s p e ci fi e d h o w t his  m o d el s c al es  wit h
n ,  w e c a n n ot t al k y et a b o ut a c hi e vi n g  H eis e n b er g s c ali n g.

I n t his e x a m pl e, t h e s e nsiti vit y is i n f a ct as g o o d as y o u
c a n g et  wit h o ut a n y n ois e at all, f or a n y pr o b e st at e: t h e
st at e ( 1 5 9) is a s u p er p ositi o n b et w e e n t w o st at es t h at h a v e
e xtr e m al ei g e n v al u es  wit h r es p e ct t o H ,  w hi c h is o pti m al
i n t h e a bs e n c e of n ois e.  W h at is s p e ci al a b o ut t h e st at e
v e ct or |ψ is t h at it r et ai ns its s e nsiti vit y e v e n aft er a si n-
gl e l o c at e d err or,  w hi c h is n ot i n g e n er al t h e c as e of ot h er
pr o b e st at es t h at  w o ul d b e o pti m al i n t h e n ois el ess s etti n g.
F or i nst a n c e, t h e st at e v e ct or |0 0 0 0 + | 0 1 1 0 /

√
2 h as

t h e s a m e s e nsiti vit y as |ψ if n o n ois e is a p pli e d, b ut it
d o es n ot s atisf y o ur c o n diti o ns ( 1 5 1) a n d s o is s u bj e ct t o
s e nsiti vit y l oss u n d er si n gl e-sit e err ors.

T h e a b o v e c o nstr u cti o n c a n als o b e a p pli e d if  w e i n cl u d e
X X a n d Y Y i nt er a cti o ns b et w e e n t h e n ei g h b ori n g q u bits o n
t o p of t h e e xisti n g Z Z i nt er a cti o ns ( e n a bli n g us t o  m o d el,
e. g.,  H eis e n b er g i nt er a cti o ns):

H = ω
i,j

s x X iX j + s y Y iY j + Z iZ j , ( 1 6 1)

wit h t h e a d diti o n al c o u pli n g c o nst a nts s x , s y all o wi n g
f or s o m e a nis otr o p y i n t h e i nt er a cti o n str e n gt hs. I n t his
c as e, t h e i nt er a cti o n t er ms ar e a g ai n all l o gi c al o p er a-
t ors,  w hi c h c a n b e s e e n fr o m t h e f a ct t h at X 1 X 2 X 3 X 4 a n d
Y 1 Y 2 Y 3 Y 4 = (X 1 X 2 X 3 X 4 )(Z 1 Z 2 Z 3 Z 4 ) ar e st a bili z ers.  O ur
z er o s e nsiti vit y-l oss c o n diti o ns ar e t h er ef or e still s atis-
fi e d.  T o c o m p ut e t h e v ari a n c e of |ψ u n d er t his n e w
H a milt o ni a n,  w e n e e d t o d et er mi n e t h e a cti o n of t h e a d di-
ti o n al t er ms o n |ψ . T h e X t er ms gi v e us a g ai n X 1 +
X 2 w h e n a cti n g o n t h e c o d e s p a c e f oll o wi n g t h e s a m e
ar g u m e nt as f or t h e Z t er ms.  N o w |ψ is a  m a xi m all y
e nt a n gl e d st at e v e ct or b et w e e n t h e t w o l o gi c al q u bits, s atis-

f yi n g (A 1 ⊗ 1 )|ψ = (1 1 ⊗ A
T

2 )|ψ w h er e (·)T d e n ot es t h e
m atri x tr a ns p os e i n t h e (l o gi c al) c o m p ut ati o n al b asis, a n d
w h er e A i i s a l o gi c al o p er at or a cti n g o n t h e it h l o gi c al q u bit.
F or t h e Y t er ms,  w e t h e n fi n d

Y 1 Y 2 |ψ = − X 2 Z 1 |ψ = − Z 1 X 1 |ψ = iY 1 |ψ ,

Y 1 Y 3 |ψ = − X 1 Z 2 |ψ = − X 1 Z 1 |ψ = − iY 1 |ψ ,

Y 2 Y 4 |ψ = Y 1 Y 3 |ψ = − iY 1 |ψ ,

Y 3 Y 4 |ψ = Y 1 Y 2 |ψ = iY 1 |ψ .

( 1 6 2)
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T h us t h e s u m of all f o ur Y i nt er a cti n g t er ms v a nis h es  w h e n
a p pli e d o nt o |ψ .  T h e v ari a n c e of H is h e n c e gi v e n b y

H |ψ = 2 ω Z 1 + Z 2 + s x X 1 + X 2 |ψ

= 4 ω Z 1 + s x X 1 |ψ , ( 1 6 3)

usi n g t h e f a ct t h at |ψ is a  m a xi m all y e nt a n gl e d st at e
v e ct or b et w e e n t h e t w o l o gi c al q u bits, a n d

σ 2
H = ψ |H 2 |ψ = 4 ω 2 1 + s 2

x . ( 1 6 4)

T h e i n cr e as e i n t h e v ari a n c e σ 2
H w h e n  w e s wit c h o n

tr a ns v ers al i nt er a cti o ns c a n b e si m pl y ass o ci at e d  wit h t h e
i n cr e as e d n or m of t h e  H a milt o ni a n.  H a d  w e d e fi n e d t h e
cl o c k st at e ( 1 5 9) wit h a − 1 r el ati v e p h as e, t h e n t h e Y Y
t er ms  w o ul d c o ntri b ut e i nst e a d of t h e X X t er ms a n d  w e
w o ul d g et σ 2

H = 4 ω 2 1 + s 2
y .

2.  Ti m e- c o v ari a nt c o d es l e a d t o st at es  wit h n o s e nsiti vit y
l oss

T h e c o nstr u cti o n a b o v e b as e d o n t h e [[ 4, 2, 2]] c o d e
e x pl oit e d a k e y pr o p ert y of t h at c o d e  wit h r es p e ct t o t h e
H a milt o ni a n, n a m el y ti m e c o v ari a n c e [4 4 ,5 7 – 6 0 ].  A ti m e-
c o v ari a nt c o d e  wit h r es p e ct t o a gi v e n  H a milt o ni a n H
is a c o d e f or  w hi c h t h e ti m e e v ol uti o n g e n er at e d b y H
is a ( n o ntri vi al) l o gi c al o p er at or. If  w e c a n fi n d a ti m e-
c o v ari a nt c o d e  wit h r es p e ct t o t h e s yst e m’s  H a milt o ni a n,
t h e n t h e cl o c k st at e c a n b e c h os e n t o li e  wit hi n t h e c o d e
s p a c e, s o t h at err ors t h at a ff e ct it c a n b e c orr e ct e d, all  w hil e
e v ol vi n g n o ntri vi all y i n ti m e a n d t h us s er vi n g as a cl o c k.

H o w e v er, t h er e ar e c o nstr ai nts o n t h e p ossi bilit y of c o n-
str u cti n g ti m e- c o v ari a nt c o d es.  C o nsi d er a  H a milt o ni a n
t h at is a s u m of t er ms of  w ei g ht at  m ost k ,  w hi c h  w e c all
a k-l o c al  H a milt o ni a n .  A n y c o d e t h at c a n c orr e ct u p t o k
ar bitr ar y err ors at k n o w n l o c ati o ns c a n n ot b e ti m e c o v ari-
a nt  wit h r es p e ct t o a k -l o c al  H a milt o ni a n, b e c a us e t h e
H a milt o ni a n  w o ul d b e a s u m of c orr e ct a bl e t er ms t h at c a n-
n ot h a v e a n o ntri vi al a cti o n t h at pr es er v es t h e c o d e s p a c e.
O n t h e ot h er h a n d, p h ysi c al s yst e ms li k e s pi n c h ai ns a n d
t h e a nti- d e Sitt er – c o nf or m al fi el d t h e or y ( A d S- C F T) c or-
r es p o n d e n c e as a  m o d el f or q u a nt u m gr a vit y o ff er n at ur al
e x a m pl es of ti m e- c o v ari a nt c o d es t h at c a n a p pr o xi m at el y
c orr e ct a g ai nst l o w- w ei g ht err ors [ 4 3 ].  T h e a b o v e e x a m pl e
usi n g t h e [[ 4, 2, 2]] c o d e is a c o n cr et e c as e of a ti m e-
c o v ari a nt c o d e  wit h r es p e ct t o a 2-l o c al  H a milt o ni a n a n d
w hi c h c a n c orr e ct a si n gl e er as ur e at a k n o w n l o c ati o n.

We c a n s e e t h at  w h e n e v er  w e c a n fi n d a ti m e- c o v ari a nt
c o d e  wit h r es p e ct t o a gi v e n  H a milt o ni a n, t h e n  w e c a n c o n-
str u ct fr o m t h e c o d e a cl o c k st at e  wit h z er o s e nsiti vit y l oss.
C o nsi d er a c o d e s p a c e a n d s u p p os e t h at t h e  H a milt o-
ni a n H is a n o ntri vi al l o gi c al o p er at or.  We c a n c h o os e |ψ
t o b e a n y l o gi c al st at e v e ct or t h at h as n o n z er o v ari a n c e
wit h r es p e ct t o H . L et |ξ = (H − H )|ψ , n oti n g t h at |ξ

li es i n t h e c o d e s p a c e.  D e n oti n g b y {E k } t h e  Kr a us o p er a-

t ors of N ,  w e s e e t h at ψ |E
†
k E k |ξ ∝ ψ |ξ = 0 fr o m t h e

K nill- L a fl a m m e c o n diti o ns of t h e c o d e, a n d t h er ef or e t h e
c o n diti o ns ( 1 5 1) ar e s atis fi e d.  T h er ef or e, t h e f oll o wi n g c a n
b e o bs er v e d.

O bs er v ati o n 1 ( Cl o c k st at e fr o m a ti m e- c o v ari a nt
c o d e). — L et b e t h e pr oj e ct or o nt o a c o d e s p a c e t h at
c orr e cts err ors of t h e err or c h a n n el N .  Ass u m e t h at t h e
c o d e is ti m e c o v ari a nt  wit h r es p e ct t o t h e  H a milt o ni a n H .
T h e n a n y l o gi c al st at e v e ct or |ψ a n d ass o ci at e d |ξ =
(H − H )|ψ s atisf y t h e c o n diti o ns ( 1 5 1). F urt h er m or e, if

d e fi n es a [[ n , 1, d ]] q u a nt u m c o d e, t h e n |ψ a n d P ⊥
ψ H |ψ

d e fi n e a  m etr ol o gi c al c o d e of  m etr ol o gi c al dist a n c e d .
T h at is, a n y l o gi c al st at e of t h e c o d e s atis fi es o ur  K nill-

L a fl a m m e-li k e c o n diti o ns f or z er o s e nsiti vit y l oss.  T h e
s e nsiti vit y is  m a xi mi z e d b y pi c ki n g t h e st at e  wit h t h e
l ar g est e n er g y v ari a n c e.

If  w e ar e gi v e n a n - a p pr o xi m at e q u a nt u m err or-
c orr e cti n g c o d e t h at is ti m e- c o v ari a nt, t h at is, if t h e err or-
c orr e cti o n pr o c e d ur e is all o w e d t o f ail  wit h s o m e pr o b-
a bilit y > 0, t h e n  w e c a n still us e a st at e l yi n g i n t h e
c o d e s p a c e t o c o nstr u ct a cl o c k st at e  wit h littl e s e nsiti v-
it y l oss.  A p pr o xi m at e q u a nt u m err or- c orr e cti n g c o d es c a n
b e c h ar a ct eri z e d b y t h e f a ct t h at t h e c h a n n el t h at  m a ps
t h e c o d e s p a c e t o t h e e n vir o n m e nt, N ( (·) ), is cl os e
t o a c o nst a nt c h a n n el t h at al w a ys o ut p uts a fi x e d st at e
[6 1 ,6 2 ]. S p e ci fi c all y, N ( (X ) ) ≈ tr(X ) τE f or all X ,
f or s o m e fi x e d st at e τ E . If  w e pi c k a l o gi c al st at e v e c-
t or |ψ wit h n o n z er o e n er g y v ari a n c e, t h e n  w e h a v e t h at
{ψ , H̄ } = {ψ , H̄ } i s a l o gi c al o p er at or a n d t h er ef or e
N {ψ , H̄ } = N {ψ , H̄ } ≈ tr {ψ , H̄ } τ E = 0 si n c e

H̄ = 0.  T h er ef or e, F B o b, t i n  E q. ( 5 5) s atis fi es F B o b, t ≈
0, a n d F B o b, t ≈ F Ali c e, t = 4 σ 2

H .  T his c h oi c e of a cl o c k st at e
is h e n c e e x p e ct e d t o l os e littl e s e nsiti vit y u n d er a cti o n
of t h e n ois y c h a n n el.  D eri vi n g a u ni v ers al q u a ntit ati v e
b o u n d o n F B o b, t i n t his s c e n ari o i n t er ms of d o es n ot
a p p e ar e as y. I n s u c h a s c e n ari o, a dir e ct us e of o ur u n c er-
t ai nt y r el ati o n ( 4 9) [ or of a c orr es p o n di n g b o u n d s u c h as
E q. ( 1 2 0)] s e e ms li k el y t o b e t h e  m ost str ai g htf or w ar d
w a y t o o bt ai n us ef ul q u a ntit ati v e e x pr essi o ns f or F B o b, t

i n t h e c as e  w h er e t h e cl o c k st at e is pr e p ar e d usi n g a n
a p pr o xi m at e err or- c orr e cti n g c o d e.

F.  Cl o c k st at e f o r i nt e r a cti n g  m a n y- b o d y s yst e ms

C o nsi d er n o w a n ar bitr ar y i nt er a cti o n gr a p h,  w h er e e a c h
v ert e x is ass o ci at e d  wit h a si n gl e q u bit [ Fi g. 9( b) ] a n d
c o nsi d er t h e  H a milt o ni a n

H =
J

2
i,j

Z iZ j + s x X iX j + s y Y iY j , ( 1 6 5)

w h er e t h e s u m r a n g es o v er all gr a p h v erti c es i, j t h at ar e
c o n n e ct e d b y a n e d g e, a n d  w h er e s x , s y ar e ar bitr ar y r e al
c o e ffi ci e nts. (I n f a ct, t h e c o e ffi ci e nts s x , s y m a y als o v ar y
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f or e a c h p air of sit es i, j , t h o u g h  w e o mit t h e d e p e n-
d e n c e h er e f or cl arit y.)  We r e c o v er t h e Isi n g  m o d el  wit h
s x = s y = 0 a n d t h e  H eis e n b er g  m o d el  wit h s x = s y = 1.
We d e n ot e b y m t h e n u m b er of e d g es i n t h e gr a p h,  w hi c h
is als o t h e n u m b er of t er ms i n t h e s u m.

We d e fi n e t h e cl o c k-st at e v e ct or |ψ as f oll o ws.  D e n ot e
b y |0 n a n d |1 n t h e all- z er o a n d t h e all- o n e st at e.  C h o os e
a n y bit stri n g x a n d l et |x b e t h e c orr es p o n di n g s pi n c o n-
fi g ur ati o n,  w h er e e a c h bit c orr es p o n ds t o o n e of t h e q u bit
b asis v e ct ors o n t h e c orr es p o n di n g v ert e x.  We ass u m e t h at
x vi ol at es a n u m b er c o ut of t h e m p ossi bl e Z Z -i nt er a cti o n
t er ms, i. e.,  w e d e n ot e b y c t h e n u m b er of p airs of bits
i n x t h at di ff er a n d t h at ar e c o n n e ct e d b y a n e d g e i n t h e
gr a p h. (It  mi g ht n ot b e p ossi bl e t o vi ol at e all t h e i nt er a cti o n
t er ms si m ult a n e o usl y, as t h e gr a p h  mi g ht b e fr ustr at e d.)  A n
ass u m pti o n  w e  will n e e d l at er is t h at t h e bit stri n gs 0 n , 1n ,
a n d x all di ff er o n at l e ast f o ur sit es.  N o w d e fi n e

|ψ =
1

2
|0 n + | 1 n + | x + | x , ( 1 6 6)

w h er e t h e bit stri n g x is o bt ai n e d b y fli p pi n g all t h e bits of
x .  We t h e n h a v e

H |ψ =
J

4
m |0 n + m |1 n + (m − 2 c )|x + (m − 2 c )|x

+
J

2
i,j

s x X iX j + s y Y iY j |ψ . ( 1 6 7)

T h e X X a n d Y Y o p er at ors a p pli e d o n |ψ g e n er at e t er ms
ass o ci at e d  wit h n e w bit stri n gs  w h er e, e a c h ti m e, t w o bits
ar e fli p p e d a n d a p ossi bl e p h as e is a c q uir e d.  T h es e n e w
c o n fi g ur ati o ns ar e all ort h o g o n al t o |0 n , |1 n , |x , a n d |x
t h a n ks t o o ur ass u m pti o n t h at t h e c h os e n c o n fi g ur ati o ns
di ff er o n at l e ast f o ur sit es. S o  w e h a v e

H ψ =
J

8
2 × m + 2 × (m − 2 c ) =

J

2
(m − c ). ( 1 6 8)

Wit h H̄ = H − J / 2 (m − c )1 a n d |ξ = H̄ |ψ ,  w e s e e t h at

|ξ =
J

4
c |0 n + c |1 n − c |x − c |x ]

+
J

2
i,j

s x X iX j + s y Y iY j |ψ . ( 1 6 9)

T o c h e c k t h e z er o s e nsiti vit y-l oss c o n diti o ns ( 1 4 8), w e
c o m p ut e t h e f oll o wi n g e x pr essi o n f or a n y si n gl e-sit e o p er-
at or O i,

ψ |O i|ξ =
J

8
c 0 |O i|0 + c 1 |O i|1

− c x i|O i|x i − c x i|O i|x i

+
J

2
i,j

ψ |O i s x X iX j + s y Y iY j |ψ

=
J

8
c tr(O i) − c tr(O i) + 0 = 0, ( 1 7 0)

w h er e x i (r es p e cti v el y x i) d e n ot e t h e v al u e of t h e it h bit
i n x (r es p e cti v el y, x ).  T h e t er ms c orr es p o n di n g t o X X a n d
Y Y i nt er a cti o ns v a nis h b e c a us e all c o n fi g ur ati o ns 0n , 1n ,
x , a n d x di ff er o n at l e ast f o ur sit es, a n d X X a n d Y Y fli p
t w o bits of t h e b asis v e ct or st at e o n  w hi c h t h e y ar e a p pli e d
( wit h a p ossi bl e p h as e).  T h er ef or e, t h e z er o s e nsiti vit y-l oss
c o n diti o ns ( 1 5 1) ar e s atis fi e d, a n d t h e cl o c k st at e c a n s u ff er
a si n gl e l o c at e d er as ur e  w hil e r et ai ni n g f ull s e nsiti vit y.

T h e e n er g y v ari a n c e of t h e pr o b e st at e is gi v e n b y

σ 2
H = ψ |(H − H )2 |ψ = ξ |ξ

=
1

4
J 2 c 2 + (c o ntri b. fr o m X X / Y Y t er ms). ( 1 7 1)

T h e c o ntri b uti o n fr o m X X a n d Y Y t er ms is z er o if t h e c o n-
fi g ur ati o ns 0 n , 1n , x , x all di ff er o n at l e ast fi v e sit es ( or i n
t h e c as e of Isi n g i nt er a cti o ns  wit h s x = s y = 0).

T h e q u esti o n of  w h et h er t his a c hi e v es n 2 s c ali n g
d e p e n ds o n h o w  w e c h o os e t h e gr a p h a n d t h e stri n g x t o
gr o w  wit h n . I n t h e c as e of a s q u ar e l atti c e  wit h n e ar est-
n ei g h b or i nt er a cti o ns,  w e h a v e t h at t h e n u m b er of e d g es
s c al es li k e t h e n u m b er of v erti c es ( m ∼ 2 n ) a n d  w e c a n
si m ult a n e o usl y vi ol at e all Z Z i nt er a cti o n t er ms b y c h o os-
i n g a n alt er n ati n g c o n fi g ur ati o n of 0’s a n d 1’s. I n t his
c as e σ 2

H ∼ J 2 n 2 , a c hi e vi n g  H eis e n b er g s c ali n g. F or ot h er
gr a p hs, t h e q u esti o n of  w h et h er σ 2

H ∼ n 2 i s d et er mi n e d b y
h o w t h e n u m b er of e d g es s c al es  wit h t h e n u m b er of v er-
ti c es i n t h e gr a p h, a n d h o w  m a n y of t h os e Z Z -i nt er a cti o n
t er ms c a n b e si m ult a n e o usl y vi ol at e d. If t h er e is a li n e ar
r el ati o ns hi p b et w e e n t h es e q u a ntiti es t h e n  H eis e n b er g s c al-
i n g is a c hi e v e d, n oti n g t h at o nl y a si n gl e err or at a k n o w n
l o c ati o n c a n b e i n c urr e d  wit h o ut s e nsiti vit y l oss.

G.  M et r ol o gi c al c o d es f r o m st a bili z e r c o d es

I n t his s e cti o n,  w e pr es e nt a g e n er al s c h e m e t o c o n-
str u ct  m etr ol o gi c al c o d es b as e d o n t h e st a bili z er f or m alis m
[6 3 ] a n d st u d y s o m e si m pl e e x a m pl es.  We s h o w t h at
o ur c o nstr u cti o n is stri ctl y  m or e g e n er al t h a n c o nstr u cti n g
ti m e- c o v ari a nt err or- c orr e cti n g c o d es.  O ur ai m is t o st u d y
a n d ill ustr at e o ur g e n er al c o nstr u cti o n; t h e  H a milt o ni a ns i n
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o ur e x a m pl es ar e n ot i nt e n d e d as pr a cti c al s c h e m es t o b e
e n gi n e er e d  wit h n e ar-t er m t e c h n ol o g y.

C o nsi d er t h e P a uli gr o u p G n o n n q u bits, d e fi n e d as
c o m prisi n g all t e ns or pr o d u ct o p er at ors o n n q u bits of
si n gl e-sit e P a uli o p er at ors a n d t h e i d e ntit y o p er at or,  wit h
all p ossi bl e pr ef a ct ors ± 1 a n d ± i [6 3 ].  C o nsi d er a s u b-
gr o u p S ⊂ G n pr es e nt e d as S = S 1 , . . . , S wit h i n d e p e n-
d e nt c o m m uti n g g e n er at ors S 1 , . . . , S s u c h t h at − 1 ∈ S .
T h e n or m aliz er of S i n G n i s N (S ) = { E ∈ G n : ∀ g ∈
S , E g E † ∈ S }.  A st at e is s ai d t o b e st a biliz e d b y S if it
li es i n t h e si m ult a n e o us + 1 ei g e ns p a c e of all S ∈ S ; t h e
el e m e nts of S ar e c all e d st a biliz ers .  T h e c o d e s p a c e ass o-
ci at e d  wit h t h e P a uli st a bili z er gr o u p S is t h e s u bs p a c e
s p a n n e d b y all st at es t h at ar e st a bili z e d b y S . If E ⊂ G n

i s a s et of err or o p er at ors s u c h t h at f or all E , E ∈ E eit h er
E † E /∈ N (S ) or E † E li es i n S u p t o a p h as e, t h e n a f u n-
d a m e nt al t h e or e m of q u a nt u m err or- c orr e cti o n st at es t h at
t h e s u bs p a c e of all c o m m o n + 1 ei g e nst at es of t h e o p er a-
t ors {S i} f or ms a c o d e s p a c e t h at c a n c orr e ct a n y err or i n
E .  O n e d e fi n es t h e dist a n c e d of t h e c o d e as t h e  mi ni m al
w ei g ht of a n el e m e nt i n N (S ) \ S , i. e., of a n o ntri vi al l o g-
i c al o p er ati o n.  T h e n, t h e c o d e c a n c orr e ct a n y t err ors at
u n k n o w n l o c ati o ns as l o n g as 2 t + 1 d .

As a si m pl e e x a m pl e, c o nsi d er t h e n - q u bit  G H Z st at e
v e ct or |ψ = | ↑n + | ↓ n /

√
2 a n d t h e  H a milt o ni a n H =

n
j = 1 Z j .  We h a v e |ξ ∝ | ↑n − | ↓ n /

√
2. S u p p os e o ur

err or  m o d el c o nsists of a n ar bitr ar y n u m b er of X err ors.
Fr o m  E q. ( 1 5 1), si n c e a cti n g  wit h X o p er at ors o n |ψ c a n
n e v er g e n er at e a n y o v erl a p  wit h |ξ ,  w e s e e t h at |ψ , |ξ
f or m a  m etr ol o gi c al c o d e a g ai nst a n y n u m b er of X err ors.
We n o w pr es e nt a n o v er vi e w of o ur pr o c e d ur e usi n g t his
e x a m pl e. I n o ur pr o c e d ur e,  w e first fi n d a s et {S i} of i n d e-
p e n d e nt c o m m uti n g P a uli o p er at ors t h at st a bili z e |ψ . We
fi x a s et of err or o p er at ors E ,  w hi c h  w e c h o os e i n o ur
e x a m pl e t o c o nsist of all n - q u bit P a uli o p er at ors t h at ar e
a pr o d u ct of o nl y 1 ’s a n d X ’s. S u p p os e t h at  w e ar e gi v e n
a n o p er at or H wit h t h e f oll o wi n g pr o p ert y: f or a n y o p er a-
t ors E , E ∈ E , t h er e e xists a S ∈ S s u c h t h at {H , S } = 0
a n d [ E † E , S ] = 0.  T h e st at e v e ct or |ψ is st a bili z e d b y
t h e c h oi c e of c o m m uti n g P a uli o p er at ors Z 1 Z 2 , Z 2 Z 3 , . . . ,
Z n − 1 Z n , X ⊗ n .  M ulti pl yi n g all b ut t h e l ast st a bili z er b y X ⊗ n ,
w e o bt ai n t h e f oll o wi n g c h oi c e of i n d e p e n d e nt st a bili z er
g e n er at ors:

− Y 1 Y 2 X 3 X 4 . . . X n , − X 1 Y 2 Y 3 X 4 . . . X n , . . . ,

− X 1 . . . X n − 2 Y n − 1 Y n , X ⊗ n . ( 1 7 2)

F or a n y sit e j , t h e o p er at or Z j a nti c o m m ut es  wit h all t h e
a b o v e st a bili z er g e n er at ors.  O ur str u ct ur al c o nstr ai nt t ur ns
o ut t o a p pl y i n t his c as e; it  will b e d et ail e d l at er.  O ur
c o nstr u cti o n t h e n i m pli es t h at t h e p air (|ψ , H |ψ ) is a
m etr ol o gi c al c o d e.  H er e, |ξ = H |ψ is i n f a ct t h e st at e
v e ct or t h at is st a bili z e d b y all t h e o p er at ors { −S i}.

1. St at e m e nt of t h e c o nstr u cti o n

O ur c o nstr u cti o n is gi v e n b y t h e f oll o wi n g t h e or e m.
T h e or e m 4 ( M etr ol o gi c al c o d es fr o m st a biliz er st at es). —

l et S ⊂ G n b e a n a b eli a n s u b gr o u p of t h e P a uli gr o u p  wit h
− 1 /∈ S , a n d l et |ψ b e st a bili z e d b y S . L et H b e a n y  H er-
miti a n o p er at or s u c h t h at H |ψ = 0 a n d l et E ⊂ G n b e a n y
s et of P a uli err or o p er at ors.  Ass u m e t h at f or all E , E ∈ E ,
t h er e e xists S ∈ S s u c h t h at {H , S } = 0 a n d [ E † E , S ] = 0.
T h e n |ψ , H |ψ f or m a  m etr ol o gi c al c o d e a g ai nst E .

We r e c all t h e d e fi niti o n of a  m etr ol o gi c al c o d e as s at-
isf yi n g t h e c o n diti o n ( 1 5 4).  O n t h e ot h er h a n d, a d e fi ni n g
pr o p ert y of a ti m e- c o v ari a nt c o d e (r e c all d e fi niti o n i n S e c.
VII  E ) is t h at t h e  H a milt o ni a n H m ust b e a l o gi c al o p er-
at or, a n d t h us, f or a st a bili z er c o d e,  m ust c o m m ut e  wit h
all t h e st a bili z ers of t h e c o d e.  T his is n ot i n c o ntr a di c-
ti o n  wit h  T h e or e m 4 si n c e t h e st a bili z er gr o u p S i n t h e
t h e or e m is n ot n e c ess aril y t h at of t h e c o d e f or  w hi c h H is
a l o gi c al o p er at or.  B el o w,  w e pr es e nt e x a m pl es of  m etr o-
l o gi c al c o d es; s o m e ar e err or- c orr e cti n g ti m e- c o v ari a nt
c o d es i n dis g uis e, y et ot h ers c a n n ot b e  writt e n as a ti m e-
c o v ari a nt err or- c orr e cti n g c o d e  wit h si mil ar dist a n c e as t h e
m etr ol o gi c al c o d e.

Pr o of. — First, l et S 0 ∈ S wit h {H , S 0 } = 0; s u c h a st a bi-
li z er  m ust e xist fr o m o ur ass u m pti o n.  We t h e n h a v e

ψ |H |ψ = ψ |H S 0 |ψ = − ψ |S 0 H |ψ = − ψ |H |ψ
( 1 7 3)

a n d t h us H ψ = 0.  L et

|ξ = H |ψ , ( 1 7 4)

wit h ξ |ψ = 0 a ut o m ati c all y s atis fi e d.  L et E , E ∈ E . We
n e e d t o s h o w t h at  E q. ( 1 5 4) h ol ds. Fr o m o ur ass u m pti o n
t h er e e xists a n S ∈ S wit h {H , S } = 0 a n d [ E † E , S ] = 0.
We h a v e

ξ |E † E |ψ = ψ |H E † E S |ψ

= − ψ |S H E † E |ψ

= − ξ |E † E |ψ , ( 1 7 5)

a n d t h us ξ |E † E |ψ = 0, c o n fir mi n g t h at  E q. ( 1 5 4) h ol ds
a n d t h at |ψ , |ξ i n d e e d c o nstit ut e a  m etr ol o gi c al c o d e
a g ai nst E .

I n t h e r e m ai n d er of t his s e cti o n  w e r e vi e w s o m e e x a m-
pl es of c o d es r es ulti n g fr o m t h e c o nstr u cti o n of  T h e or e m
4.  We b e gi n b y c o n n e cti n g o ur c o nstr u cti o n  wit h err or-
c orr e cti n g c o d es i n  w hi c h t h e  H a milt o ni a n is a n o ntri v-
i al l o gi c al o p er at or, i. e., ti m e- c o v ari a nt err or- c orr e cti n g
c o d es.  We pr es e nt a n e x a m pl e of a ti m e- c o v ari a nt c o d e
b as e d o n t h e s e v e n- q u bit St e a n e c o d e, a n d  w e t h e n s h o w
t h at all ti m e- c o v ari a nt err or- c orr e cti n g c o d es ar e s p e ci al
c as es of  T h e or e m 4.  We t h e n s h o w t h at t h er e ar e  m etr o-
l o gi c al c o d es t h at c a n n ot b e f or m ul at e d i n t er ms of a c or-
r es p o n di n g ti m e- c o v ari a nt err or- c orr e cti n g c o d e; i n ot h er
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w or ds, t h er e ar e s c h e m es t h at e n a bl e t h e c o m m u ni c ati o n
of a cl o c k st at e t hr o u g h a n ois y c h a n n el t h at a c hi e v e z er o
s e nsiti vit y l oss  wit h o ut h a vi n g t o c o nstr u ct a f ull q u a nt u m
err or- c orr e cti n g c o d e.

2.  E x a m pl e b as e d o n t h e [[ 7, 1, 3]] St e a n e c o d e

As a n e x a m pl e of a ti m e- c o v ari a nt c o d e,  w e c o nsi d er a n
e x a m pl e d eri vi n g fr o m t h e St e a n e st a bili z er c o d e [ 6 4 ].  T h e
l att er is gi v e n b y t h e f oll o wi n g g e n er at ors a n d l o gi c al X , Z
o p er at ors:

Ŝ 1 = X 4 X 5 X 6 X 7 ,

Ŝ 2 = X 2 X 3 X 6 X 7 ,

Ŝ 3 = X 1 X 3 X 5 X 7 ,

Ŝ 4 = Z 4 Z 5 Z 6 Z 7 ,

Ŝ 5 = Z 2 Z 3 Z 6 Z 7 ,

Ŝ 6 = Z 1 Z 3 Z 5 Z 7 ,

X = X 1 X 2 X 3 X 4 X 5 X 6 X 7 ,

Z = Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 .

( 1 7 6)

L et |ψ = | + b e t h e st at e v e ct or i n t h e l o gi c al s p a c e ass o-
ci at e d  wit h t h e + 1 l o gi c al ei g e ns p a c e of t h e X o p er at or,
a n d c o nsi d er t h e  H a milt o ni a n

H = Z Ŝ 4 = Z 1 Z 2 Z 3 . ( 1 7 7)

T h e  H a milt o ni a n is a l o gi c al o p er at or, b ei n g st a bili z er-
e q ui v al e nt t o t h e l o gi c al Z o p er at or, a n d r ot at es t h e st at e
v e ct or |ψ t o |ξ = H |ψ = | − . ( T h e a b o v e c h oi c e of H
w as pr ef err e d t o t h e c h oi c e H = Z b e c a us e it h as l o w er
w ei g ht.)  T h e c o d e is t h er ef or e ti m e c o v ari a nt  wit h r es p e ct
t o t h e a cti o n of H , a n d  w e f or t his r e as o n alr e a d y k n o w
t h at it is a  m etr ol o gi c al c o d e of  m etr ol o gi c al dist a n c e 3.  T o
ill ustr at e o ur c o nstr u cti o n,  w e e x pl ai n h o w t h e s a m e c o n-
cl usi o n c a n b e r e a c h e d b y a p pl yi n g  T h e or e m 4.  We n o w
d e fi n e a s et of st a bili z er g e n er at ors t h at s er v e t o d e fi n e t h e
st at e v e ct or |ψ of t h e r es ulti n g  m etr ol o gi c al c o d e.  T h e
n e w st a bili z er g e n er at ors {S i} ar e o bt ai n e d b y  m ulti pl yi n g

e a c h of t h e Ŝ i b y X , all  w hil e i n cl u di n g X its elf, as

S 1 = X Ŝ 1 = X 1 X 2 X 3 ,

S 2 = X Ŝ 2 = X 1 X 4 X 5 ,

S 3 = X Ŝ 3 = X 2 X 4 X 6 ,

S 4 = X Ŝ 4 = X 1 X 2 X 3 Y 4 Y 5 Y 6 Y 7 ,

S 5 = X Ŝ 5 = X 1 Y 2 Y 3 X 4 X 5 Y 6 Y 7 ,

S 6 = X Ŝ 6 = Y 1 X 2 Y 3 X 4 Y 5 X 6 Y 7 ,

S 7 = X = X 1 X 2 X 3 X 4 X 5 X 6 X 7 .

( 1 7 8)

O n e c a n v erif y t h at H a nti c o m m ut es  wit h e a c h S i list e d
a b o v e. ( F or t h e a p pli c ati o n of  T h e or e m 4, it is c o n v e ni e nt
t o us e a c h oi c e of st a bili z er g e n er at ors t h at a nti c o m m ut e
wit h H .)  L et E b e t h e s et of all si n gl e-sit e o p er at ors. F or
a n y E , E ∈ E ,  w e  will s h o w t h at t h er e is a S ∈ S wit h
{H , S } = 0 a n d [ E † E , S ] = 0. If o n e of t h e S i h as s u p p ort
o utsi d e of t h at of E † E , it  will d o t h e j o b.  Alt er n ati v el y,
a n y pr o d u ct of a n o d d n u m b er of t h e S i will als o d o, f or
i nst a n c e,

S 1 S 2 S 3 = X 3 X 5 X 6 ,

S 1 S 2 S 7 = X 1 X 6 X 7 ,

S 2 S 3 S 7 = X 3 X 4 X 7 .

( 1 7 9)

O n e c a n v erif y t h at f or a n y t w o a m o n g t h e s e v e n sit es, at
l e ast o n e o p er at or a m o n g S 1 , S 2 , S 3 , S 1 S 2 S 3 , S 1 S 2 S 7 , S 2 S 3 S 7

h a s its s u p p ort o utsi d e of t h os e t w o sit es. Si n c e t h es e o p er-
at ors all a nti c o m m ut e  wit h H ,  w e h a v e t h at f or all E , E ∈
E , t h er e is a S ∈ S 1 , . . . , S 7 s u c h t h at [ E † E , S ] = 0 a n d
{S , H } = 0. Fr o m  T h e or e m 4,  w e s e e t h at |ψ a n d |ξ =
H |ψ m ust f or m a  m etr ol o gi c al c o d e a g ai nst E , a n d is
t h er ef or e a  m etr ol o gi c al c o d e  wit h  m etr ol o gi c al dist a n c e 3.

3.  Ti m e- c o v ari a nt c o d es

I n t his p ar a gr a p h,  w e s h o w t h at t h e ass u m pti o ns of
T h e or e m 4 ar e i n f a ct al w a ys s atis fi e d f or ti m e- c o v ari a nt
st a bili z er c o d es li k e t h e s e v e n- q u bit St e a n e c o d e e x a m pl e
a b o v e.

L et ˆS = Ŝ 1 , . . . , Ŝ b e a st a bili z er c o d e  wit h a n o n-
tri vi al l o gi c al o p er at or Z . L et X b e a l o gi c al o p er a-
t or t h at a nti c o m m ut es  wit h Z , a n d d e fi n e t h e st a bili z er
gr o u p S = X Ŝ 1 , X Ŝ 2 , . . . , X Ŝ , X .  O bs er v e t h at Z a nti-
c o m m ut es  wit h all t h e c h os e n g e n er at ors f or S . ( S u c h a n
o p er at or X m ust al w a ys e xist, cf. e. g., [ 6 3 , Pr o p ositi o n
1 0. 4].)

We s h o w t h e f oll o wi n g: f or a n y P a uli o p er at or A /∈

N ( ˆS ) \ ˆS , t h er e e xists S ∈ S s u c h t h at [ S , A ] = 0 a n d
{S , Z } = 0.  T his pr o p ert y i m pli es t h at f or a gi v e n s et of

err ors E t h at ar e c orr e ct a bl e f or ˆS , i. e., if  w e h a v e E † E /∈

N ( ˆS ) \ ˆS f or all E , E ∈ E , t h e n t h e c o n diti o ns of  T h e or e m
4 ar e s atis fi e d,  w h er e t h e  H a milt o ni a n is H = Z̄ .

S u p p os e first t h at A ∈ ˆS ⊂ S . T h e n A c o m m ut es  wit h
all st a bili z ers i n S , i n cl u di n g X ,  w hi c h a nti c o m m ut es

wit h Z .  N o w s u p p os e t h at A ∈ G n a n d A /∈ N ( ˆS ), i. e.,

t h er e is a Ŝ ∈ ˆS wit h {A , Ŝ } = 0. If [ A , X ] = 0, t h e n t h e
c h oi c e S = X ∈ S s atis fi es [ S , A ] = 0 a n d {S , Z } = 0. If,

i nst e a d,  w e h a v e {A , X } = 0,  w e c a n s et S = X Ŝ t o fi n d

S Z = X Ŝ Z = X Z Ŝ = − Z X Ŝ = − Z S a n d A S = A X Ŝ =
− X A Ŝ = X Ŝ A = S A , a n d t h us {S , Z } = 0 a n d [ S , A ] = 0
as r e q uir e d.
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4.  E x a m pl e: a [[ 4, 2, 2]] c o d e st at e  wit h a n a u xili ar y
q u bit

W h er e as i n t h e e arli er s e v e n- q u bit St e a n e c o d e e x a m pl e
t h e st at e v e ct ors |ψ a n d |ξ b ot h li e  wit hi n a s u bs p a c e
of a dist a n c e d = 3 c o d e, t h e f oll o wi n g e x a m pl e ill us-
tr at es a sit u ati o n i n  w hi c h |ψ a n d |ξ c a n n ot b e c o nt ai n e d
i n a c o d e s p a c e t h at c a n c orr e ct t h e s a m e err ors a g ai nst
w hi c h t h e st at es f or m a  m etr ol o gi c al c o d e. I n ot h er  w or ds,
T h e or e m 4 c a n b e us e d t o c o nstr u ct  m etr ol o gi c al c o d es
t h at c a n n ot b e f or m ul at e d as ti m e- c o v ari a nt q u a nt u m err or-
c orr e cti n g c o d es  wit h r es p e ct t o t h e s a m e err ors.  C o nsi d er
t h e fi v e- q u bit P a uli o p er at ors

S 1 = X 1 X 2 ,

S 2 = X 3 X 4 ,

S 3 = X 1 X 3 ,

S 4 = X 5 ,

S 5 = Z 1 Z 2 Z 3 Z 4 .

( 1 8 0)

We c a n s e e t h at t h e st a bili z er gr o u p S = S 1 , . . . , S 5 i s
g e n er at e d b y

(i) t h e st a bili z ers f or t h e [[ 4, 2, 2]] c o d e o n t h e first f o ur
q u bits ( Z 1 Z 2 Z 3 Z 4 = S 5 a n d X 1 X 2 X 3 X 4 = S 1 S 2 );

(ii) t h e l o gi c al X o p er at ors of t h e first a n d s e c o n d l o g-
i c al q u bits of t h at [[ 4, 2, 2]] c o d e (X 1 X 3 = S 3 a n d
X 1 X 2 = S 1 ); a n d

(iii) a n i n d e p e n d e nt st a bili z er fi xi n g t h e st at e of t h e fift h
q u bit ( X 5 = S 4 ).

We c h o os e t h e  H a milt o ni a n

H = Y 1 Z 4 Y 5 . ( 1 8 1)

T h e  H a milt o ni a n c a n b e  writt e n as a pr o d u ct of t hr e e t er ms:
a l o gi c al Z o p er at or o n b ot h l o gi c al q u bits of t h e [[ 4, 2, 2]]
c o d e ( Z 1 Z 4 ), a Y o p er ati o n o n t h e fift h p h ysi c al q u bit, a n d
a si n gl e X 1 o n t h e first p h ysi c al q u bit.  T h e  H a milt o ni a n is
n ot a l o gi c al o p er at or of t h e [[ 4, 2, 2]] c o d e.  Als o, a s uit a bl e
p er m ut ati o n of t h e q u bits  w o ul d  m a k e H g e o m etri c all y
l o c al, s h o ul d t his pr o p ert y b e d esir e d.

We c a n v erif y t h at H a nti c o m m ut es  wit h e a c h of t h e
st a bili z ers S 1 , . . . , S 5 . F urt h er m or e, f or a n y t w o sit es i, j ,
o n e of t h e S k a cts as t h e i d e ntit y o n t h e sit es i, j ; t h er ef or e,
f or a n y t w o-sit e o p er at or A , t h er e al w a ys e xists a st a bili z er
S wit h [ S , A ] = 0 a n d {S , H } = 0.  We c a n a p pl y  T h e or e m
4 t o d e d u c e t h at |ψ , |ξ d e fi n e a dist a n c e- 3  m etr ol o gi c al
c o d e.

T h e st at e v e ct or |ψ c a n b e e x pr ess e d i n t er ms of t h e
l o gi c al + 1 X ei g e n v e ct ors |+ + of t h e [[ 4, 2, 2]] c o d e, a n d

i n t er ms of t h e | ± i p h ysi c al st at e v e ct ors, as

|ψ = | + + 1 2 3 4 ⊗ | + 5

=
1

√
2

| + + + + + + | − − − − + . ( 1 8 2)

R e c alli n g Y | ± =  ∓ i| ∓ a n d Z | ± = | ∓ , w e fi n d

|ξ = H |ψ =
1

√
2

−| −  +  + − − + | + − −  +  −

=
1

√
2

| + − − + − | −  +  + − ⊗ | − 5 .

( 1 8 3)

We s e e t h at

ψ |X 5 |ψ = 1, ξ |X 5 |ξ = − 1, ( 1 8 4)

s o it is n ot p ossi bl e f or |ψ , |ξ t o li e i n t h e c o d e s p a c e of
a dist a n c e d = 3 q u a nt u m err or- c orr e cti n g c o d e.

T his e x a m pl e s h o ws t h at  m etr ol o gi c al c o d es ar e a
cl ass of c o d es t h at is br o a d er t h a n tr a diti o n al err or-
c orr e cti o n c o d es as t h er e ar e c ert ai n err ors t h at t h e f or m er
d o es n ot h a v e t o c o m pl et el y c orr e ct.  M etr ol o gi c al c o d es
mi g ht t h er ef or e o ff er a d diti o n al p ossi biliti es t o fi n d n ois e-
r esili e nt s c h e m es f or c o m m u ni c ati n g cl o c k st at es a cr oss a
n ois e c h a n n el.

5.  M etr ol o gi c al t ori c c o d e

A f urt h er e x a m pl e a p pli c ati o n of  T h e or e m 4 is b as e d
o n Kit a e v’s t ori c c o d e [6 5 ,6 6 ].  We c o nsi d er a t w o-
di m e nsi o n al s q u ar e l atti c e of di m e nsi o n L × L t h at  wr a ps
ar o u n d a t or us.  We d e fi n e st ar o p er at ors A x a n d pl a q u ett e
o p er at ors B x a s d e pi ct e d i n Fi g. 1 0( a) ,  w h er e x r a n g es o v er
all p airs of t h e l atti c e c o or di n at es.

First,  w e c a n al w a ys us e t h e t ori c c o d e t o f or m a ti m e-
c o v ari a nt c o d e, b y c h o osi n g a st at e v e ct or |ψ i n t h e c o d e
s p a c e (f or i nst a n c e, |+ + ), a n d c h o osi n g t h e  H a milt o ni a n
t o b e a l o gi c al o p er at or (f or i nst a n c e, Z 1 + Z 2 ).  T his c o d e
b ei n g b y c o nstr u cti o n ti m e c o v ari a nt, it is n e c ess aril y a
m etr ol o gi c al c o d e  wit h dist a n c e e q u al t o t h e l atti c e si d e
l e n gt h L .

F or t h e s a k e of t h e e x a m pl e,  w e c o nstr u ct h er e a  m etr o-
l o gi c al c o d e fr o m t h e t ori c c o d e t h at c a n n ot b e  writt e n as
a ti m e- c o v ari a nt err or- c orr e cti n g c o d e of si mil ar dist a n c e.
O ur e x a m pl e is  m e a nt t o (i) ill ustr at e o ur c o nstr u cti o n as
c o m bi ni n g st at es t h at li e eit h er i n t h e si m ult a n e o us + 1 or
si m ult a n e o us − 1 ei g e ns p a c es of all t h e st a bili z er g e n er-
at ors of s o m e gi v e n st a bili z er c o d e, (ii) f ur nis h a n ot h er
e x a m pl e of a  m etr ol o gi c al c o d e t h at c a n n ot b e p hr as e d i n
t er ms of a ti m e- c o v ari a nt err or- c orr e cti n g c o d e  wit h si mi-
l ar dist a n c e, a n d (iii) ill ustr at e h o w a  m etr ol o gi c al c o d e c a n
b e a t erri bl e q u a nt u m err or- c orr e cti n g c o d e — a n y si n gl e
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FI G. 1 0.  M etr ol o gi c al c o d e b as e d o n t h e t ori c c o d e. ( a) St ar
(A x ) a n d pl a q u ett e (B x ) o p er at ors g e n er at e t h e st a bili z er gr o u p
of t h e t ori c c o d e,  w h er e x is a p air of i nt e g er c o or di n at es o n t h e
t w o- di m e nsi o n al l atti c e.  T w o e n c o d e d l o gi c al q u bits h a v e l o gi-
c al P a uli o p er at ors X 1 , Z 1 , X 2 , Z 2 c orr es p o n di n g t o stri n gs of
p h ysi c al P a uli X or Z o p er at ors t h at  wr a p ar o u n d t h e t or us. ( b) I n
o ur  m etr ol o gi c al c o d e e x a m pl e b as e d o n t h e t ori c c o d e,  w e  m a p a
st at e fr o m t h e t ori c c o d e t o a st at e of a r el at e d c o d e,  w hi c h  w e c all
t h e a ntit ori c c o d e .  T h e a ntit ori c c o d e is t h e s u bs p a c e st a bili z e d
b y all t h e o p er at ors { −A x } a n d { −B x }.  Ass u mi n g t h e l atti c e si d e
l e n gt h is e v e n, t h e d e pi ct e d o p er at or H a nti c o m m ut es  wit h all
st ar a n d pl a q u ett e o p er at ors,  m e a ni n g t h at it  m a ps a l o gi c al st at e
of t h e t ori c c o d e t o a l o gi c al st at e of t h e a ntit ori c c o d e. Pi c ki n g
|ψ i n t h e c o d e s p a c e of t h e t ori c c o d e a n d c h o osi n g t h e d e pi ct e d
o p er at or H as t h e c orr es p o n di n g  H a milt o ni a n yi el ds a n e x a m-
pl e of a dist a n c e- (L 2 ) m etr ol o gi c al c o d e. I nt er esti n gl y, t his
m etr ol o gi c al c o d e c a n n ot b e p hr as e d i n t er ms of a ti m e- c o v ari a nt
err or- c orr e cti n g c o d e of si mil ar dist a n c e, si n c e |ψ a n d H |ψ c a n
b e disti n g uis h e d b y  m e as uri n g a si n gl e st ar or pl a q u ett e o p er at or.
T his e x a m pl e s h o ws t h at t h er e ar e a d diti o n al p ossi bl e s c h e m es
f or s e n di n g a cl o c k st at e t hr o u g h a n ois y c h a n n el  wit h o ut a n y
s e nsiti vit y l oss,  wit h o ut r es orti n g t o a ti m e- c o v ari a nt q u a nt u m
err or- c orr e cti n g c o d e.

pl a q u ett e or st ar o p er at or a cts n o ntri vi all y o n t h e s u b-
s p a c e s p a n n e d b y t h e st at e a n d its ti m e- e v ol uti o n st at e.  O ur
e x a m pl e is  m or e of a c o n c e pt u al ill ustr ati o n t h a n a pr a c-
ti c al pr o p os al, as it r e q uir es a  H a milt o ni a n t h at is hi g hl y
n o nl o c al.

T o b ett er e x pl ai n o ur e x a m pl e,  w e first d e fi n e t h e a nti-
t ori c c o d e as t h e c o d e  w h os e c o d e s p a c e is st a bili z e d b y all
n e g ati v e st ar − A x a n d n e g ati v e pl a q u ett e o p er at ors − B x .
B ei n g e q ui v al e nt t o t h e st a n d ar d t ori c c o d e, t h e a ntit ori c
c o d e als o h as dist a n c e L a n d  w e c a n s e e it als o h as t h e
l o gi c al o p er at ors X 1 , X 2 , Z 1 , Z 2 d e fi n e d as f or t h e t ori c
c o d e.

As t h e st at e v e ct or |ψ of o ur  m etr ol o gi c al c o d e,  w e
si m pl y c h o os e a l o gi c al st at e v e ct or of t h e t ori c c o d e;  w e
c a n c o n v e nti o n all y fi x it t o b e |0 0 t ori c st a bili z e d b y Z 1 , Z 2

al o n g  wit h all t h e t ori c c o d e st a bili z ers {A x } a n d {B x }. F or
t h e  H a milt o ni a n  w e c h o os e a n o p er at or H t h at a nti c o m-
m ut es  wit h all st ar a n d all pl a q u ett e o p er at ors. S u c h a n
o p er at or is d e pi ct e d i n Fi g. 1 0( b) ;  w e ass u m e f or c o n v e-
ni e n c e t h at L is e v e n.  T h e o p er at or H h as t h e pr o p ert y t h at

it  m a ps a c o d e  w or d of t h e t ori c c o d e (i. e., a st at e v e ct or |ψ
s atisf yi n g A x |ψ = | ψ = B x |ψ ) t o a c o d e  w or d of t h e
a ntit ori c c o d e ( w e h a v e A x H |ψ = − H A x |ψ = − H |ψ
a n d si mil arl y f or B x ).  We c a n v erif y t h at t h e ass u m pti o ns
of  T h e or e m 4 ar e s atis fi e d.  T h e o p er at or H a nti c o m m ut es
wit h o ur c h oi c e of st a bili z er g e n er at ors f or |ψ .  Als o, f or
a n y o p er at or O of  w ei g ht < L 2 / 4, t h er e  m ust b e a st ar or
pl a q u ett e o p er at or t h at h as disj oi nt s u p p ort  wit h, a n d t h er e-
f or e c o m m ut es  wit h, O . [I n d e e d, t h er e ar e (L / 2 )2 disj oi nt
pl a q u ett e o p er at ors t h at c o v er all q u bits; a n o p er at or t h at
h as o v erl a p pi n g s u p p ort  wit h all pl a q u ett e o p er at ors  m ust
t h er ef or e h a v e s u p p ort o n o n e q u bit i n e a c h pl a q u ett e.  T h e
b o u n d c a n pr es u m a bl y b e i m pr o v e d b y a c c o u nti n g f or t h e
st ar o p er at ors as  w ell.]  As a c o ns e q u e n c e of  T h e or e m 4, t h e
st at e v e ct ors (|ψ , |ξ = H |ψ ) f or m a  m etr ol o gi c al c o d e
of dist a n c e L 2 / 4.

Is t h e s p a c e s p a n n e d b y (|ψ , |ξ ) s e cr etl y a c o d e s p a c e
of a si mil ar- dist a n c e c o d e i n  w hi c h H a cts as a l o gi-
c al o p er at or ?  We c a n r ul e o ut t his p ossi bilit y b e c a us e t h e
st at e v e ct ors |ψ a n d |ξ c a n e asil y b e disti n g uis h e d b y
m e as uri n g a n y si n gl e st ar or pl a q u ett e o p er at or, r e c all-
i n g t h at A x |ψ = B x |ψ = | ψ b ut t h at A x |ξ = B x |ξ =
−| ξ .  T h e e n vir o n m e nt o nl y h as t o  m e as ur e a  w ei g ht- 4
o p er at or t o d et er mi n e  w h et h er |ψ or |ξ w as e n c o d e d.

6. Si m ult a n e o us + 1 ei g e ns p a c e a n d si m ult a n e o us − 1
ei g e ns p a c e of st a biliz ers

T h e i nt uiti o n b e hi n d t h e c o nstr u cti o n i n  T h e or e m 4
is t h at if  w e c a n c h o os e |ψ t o b e st a bili z e d b y S =
S 1 , . . . , S , t h e n  w e  mi g ht  w a nt t o pi c k |ξ t o b e

st a bili z e d b y t h e cl os el y r el at e d st a bili z er gr o u p S =
− S 1 , . . . , − S .  T his i d e a  w as alr e a d y ill ustr at e d b y t h e

e x a m pl e a b o v e b as e d o n t h e t ori c c o d e,  w h er e t h e  H a mil-
t o ni a n  m a ps a c o d e  w or d of t h e t ori c c o d e t o a c o d e  w or d
of t h e a ntit ori c c o d e.  We n o w s h o w i n g e n er al t h at s u c h a
c o nstr u cti o n is a s p e ci al c as e of  T h e or e m 4.

L et S = S 1 , . . . , S b e a s u b gr o u p of t h e P a uli
gr o u p  wit h − 1 /∈ S ,  w h er e S 1 , . . . , S ar e a c h oi c e of
i n d e p e n d e nt c o m m uti n g st a bili z er g e n er at ors.  L et S =
− S 1 , . . . , − S . L et E d e n ot e a n y s et of P a uli o p er at ors

wit h t h e f oll o wi n g pr o p ert y: f or a n y E , E ∈ E , t h er e e xists
S ∈ S s u c h t h at − S ∈ S a n d s u c h t h at [ E † E , S ] = 0.

T h e t w o st a bili z er gr o u ps S , S s h ar e  m a n y st a bili z ers,
i n cl u di n g S 1 S 2 , S 1 S 3 , . . . , S 1 S .  We c a n pi c k a P a uli o p er-
at or H s u c h t h at H a nti c o m m ut es  wit h S 1 a n d s u c h t h at H
c o m m ut es  wit h e a c h of t h e o p er at ors S 1 S 2 , S 1 S 3 , . . . , S 1 S
(s e e, e. g.,  R ef. [6 3 , Pr o p ositi o n 1 0. 4]).  O bs er v e t h at f or all
i = 2, . . . , ,  w e h a v e

H S i = H S 2
1 S i = − S 1 H S 1 S i = − S 2

1 S iH = − S iH ( 1 8 5)

a n d t h us  w e h a v e t h at {H , S i} = 0 f or all i = 1, . . . , . S u p-
p os e |ψ is st a bili z e d b y S . T h e n H |ψ is st a bili z e d b y S ,
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si n c e

S iH |ψ = − H S i|ψ = − H |ψ . ( 1 8 6)

F urt h er m or e, s u p p osi n g E , E ∈ E , b y ass u m pti o n  w e
h a v e S ∈ S s u c h t h at − S ∈ S a n d s u c h t h at [ E † E , S ] =
0.  We c a n  writ e S = S i1 S i2 · · · S im i n t er ms of o ur
c h oi c e of i n d e p e n d e nt g e n er at ors S i a b o v e.  Writi n g − S =
(− 1 )m + 1 (− S i1 )(− S i2 ) · · · (− S im ),  w e s e e t h at m m ust b e
o d d, as ot h er wis e,  w e  w o ul d h a v e

− S = (− 1 )(− S i1 )(− S i2 ) · · · (− S im ) /∈ S . ( 1 8 7)

T his o bs er v ati o n i m pli es t h at {H , S } = 0, b e c a us e  w e c a n
a nti c o m m ut e H t hr o u g h t h e pr o d u ct of a n o d d n u m b er of
S i’ s.  T h er ef or e t h er e e xists S ∈ S s u c h t h at [ E † E , S ] =
0 a n d {H , S } = 0.  At t his p oi nt, all t h e ass u m pti o ns of
T h e or e m 4 ar e s atis fi e d, i m pl yi n g t h at |ψ , H |ψ f or m a
m etr ol o gi c al c o d e t h at c a n pr ot e ct a g ai nst t h e err or s et E .

H.  F u rt h e r e x a m pl es of  m et r ol o gi c al c o d es

We n o w pr es e nt t w o a d diti o n al e x a m pl es of st at e v e c-
t ors |ψ , |ξ t h at s atisf y t h e z er o s e nsiti vit y l oss c o n diti o ns
( 1 5 2).  T h es e  m etr ol o gi c al c o d es s er v e t o ill ustr at e t h e
s e ns e i n  w hi c h t h e c o n diti o ns ( 1 5 2) ar e  w e a k er t h a n t h e
c o n diti o ns f or q u a nt u m err or c orr e cti o n.

1. Si n gl e- q u bit s u bj e ct t o c o m pl et e  X / Y d e p h asi n g

C o nsi d er t h e q u bit e x a m pl e st u di e d i n S e c. I V  B,  w h er e
t h e cl o c k st at e v e ct or | + e v ol v es a c c or di n g t o H = ω Z / 2
a n d is e x p os e d t o c o m pl et e d e p h asi n g al o n g t h e X a xis
ar o u n d a gi v e n ti m e t0 . Fr o m E q. ( 9 0) w e i m m e di at el y s e e
t h at t h e z er o s e nsiti vit y l oss c o n diti o n ( 1 4 8) is s atis fi e d f or
all t0 . I n t his s etti n g, t h e cl o c k st at e l os es n o s e nsiti vit y
aft er c o m pl et e d e p h asi n g i n t h e X a xis f or a n y t0 ,  wit h
t h e e x c e pti o n of p ossi bl e dis cr et e p oi nts  w h er e t h e r a n k
of ρ B (t) c h a n g es (s e e S e c. I V  B).

Alt er n ati v el y o n e c o ul d als o c h e c k t h e f or m ( 1 5 1) of t h e
z er o s e nsiti vit y-l oss c o n diti o ns. F or a n y t0 , w e h a v e fr o m
E q. ( 2 9) t h at

|ξ ( t0 ) = H |ψ ( t0 )

=
ω

2
c os

ω t0

2
| − − i si n

ω t0

2
| + . ( 1 8 8)

At t his p oi nt,  w e c a n c o m p ut e

ψ || + +|| ξ + ξ || + +|| ψ

=
ω

2
− i c os

ω t0

2
si n

ω t0

2
+ i si n

ω t0

2
c os

ω t0

2

= 0, ( 1 8 9)

a n d si mil arl y f or ψ || − −|| ξ + ξ || − −|| ψ = 0,
s h o wi n g t h at  E q. ( 1 5 1) ar e s atis fi e d f or all t0 .

A n i nt er esti n g as p e ct of t his e x a m pl e is t h at t h er e e xists
n o r e c o v er y o p er ati o n t h at c a n r est or e t h e n ois el ess cl o c k
st at e v e ct or |ψ ( t0 + dt ) a c c ur at el y t o first or d er i n dt . L et
us c o nsi d er f or si m pli cit y t h e p oi nt t0 = π /( 2 ω ) .  Usi n g
E qs. ( 2 9), ( 3 1), a n d ( 8 9),  w e h a v e at t h at p oi nt

ψ ( t0 ) = | + i + i|, ρ B (t0 ) =
1

2
,

∂ tψ ( t0 ) = −
ω

2
X , D X ( ∂tψ ( t0 )) = −

ω

2
X ,

( 1 9 0)

w h er e | +i := | ↑ + i| ↓ /
√

2.  We s e e k a c o m pl et el y
p ositi v e, tr a c e- pr es er vi n g  m a p R e c s u c h t h at R e c ( ρB (t0 +
dt )) = ψ ( t0 + dt ) + O (dt 2 ),  w hi c h  m e a ns t h at

R e c
1

2
= | + i + i| , R e c (X ) = X . ( 1 9 1)

T h er e is n o c o m pl et el y p ositi v e  m a p t h at s atis fi es t h es e
c o nstr ai nts. If t h er e  w as s u c h a R e c m a p, t h e n  w e
w o ul d h a v e R e c (| + +| ) = R e c (1 / 2 ) + R e c (X / 2 ) =
| +i + i| + X / 2 = 1 / 2 + Y / 2 + X / 2.  O n e c a n e asil y
c h e c k t h at t h e fi n al e x pr essi o n h as a n e g ati v e ei g e n v al u e,
c o ntr a di cti n g t h e r e q uir e m e nt t h at R e c b e c o m pl et el y p os-
iti v e.  We c o n cl u d e t h at i n g e n er al, a  m etr ol o gi c al c o d e
d o es n ot n e c ess aril y c o m e  wit h a r e c o v er y o p er ati o n t h at
e n a bl es a n a g e nt t o r e c o v er t h e n ois el ess cl o c k st at e, e v e n
if t h e a g e nt c a n s e ns e t h e p ar a m et er t o t h e s a m e pr e cisi o n
as b ef or e t h e a p pli c ati o n of t h e n ois e.

2.  A s u p er p ositi o n of a si m pl e st at e a n d a g e n eri c p ur e
st at e

C o nsi d er a o n e- di m e nsi o n al c h ai n of n q u bits.  C o nsi d er
a g e n eri c p ur e st at e v e ct or |χ , c h os e n, f or i nst a n c e, r a n-
d o ml y fr o m t h e  H a ar  m e as ur e o n t h e n - q u bit s yst e m. F or a
gi v e n d m > 0, l et us p ert ur b t h e st at e v e ct or |χ t o | ˜χ b y
pr oj e cti n g it o nt o t h e s u bs p a c e of all c o m p ut ati o n al b asis
st at es t h at d o n ot c o nt ai n f e w er t h a n a n u m b er d m of 1’s,

| ˜χ = ˜ |χ , ˜ =
|x | d m

|x x |. ( 1 9 2)

If |χ is g e n eri c i n s o m e s uit a bl e s e ns e ( e. g., c h os e n  H a ar
r a n d o ml y), t h e n | ˜χ ≈ | χ a n d | ˜χ ≈ 1.  T h e pr es e nt
e x a m pl e  m etr ol o gi c al c o d e is c o nstr u ct e d b y pi c ki n g
|ψ = | 0 n ,  w hi c h is t h e c o m p ut ati o n al b asis all- z er o st at e,
a n d |ξ = | ˜χ − 1 | ˜χ ≈ | χ .

We pr o c e e d t o c h e c k t h at t h e z er o s e nsiti vit y l oss c o n-
diti o ns ( 1 4 8) ar e s atis fi e d as l o n g as o p er at ors of t h e

f or m E
†
k E k h a v e  w ei g ht at  m ost d m − 1. If μ ⊂ { 1, . . . , n }

d e n ot es a s u bs et of at  m ost |μ | = d m − 1 s yst e ms, t h e n t h e
r e d u c e d o p er at or of | ˜χ 0 n | o n t h e sit es l a b el e d b y μ c a n
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b e  writt e n as

tr\ μ | ˜χ 0 n | = (1 d m ⊗ 0 n − d m |) | ˜χ 0 d m | = 0, ( 1 9 3)

b e c a us e | ˜χ h as n o o v erl a p  wit h bit stri n gs t h at h a v e (n −
d m ) or  m or e z er os.  H e n c e,

tr\ μ |ψ ξ | + |ξ ψ | = 0. ( 1 9 4)

F or a n y o p er at or O of  w ei g ht  w gt (O ) < d m , t h e c o n diti o n
( 1 5 5) is t h us s atis fi e d a n d |ψ , |ξ f or m a  m etr ol o gi c al c o d e
of dist a n c e d m .

A n i nt er esti n g o bs er v ati o n is t h at t his c o d e d o es n ot
f or m a q u a nt u m err or- c orr e cti n g c o d e i n t h e us u al s e ns e.
T h e r e as o n is t h at t h e e n vir o n m e nt, b y r e c ei vi n g a f e w
sit es, c a n t ell t h e di ff er e n c e b et w e e n  w h et h er t h e st at e v e c-
t or |ψ or t h e st at e v e ct or |ξ w as pr e p ar e d.  M or e pr e cis el y,
t h e e n vir o n m e nt c a n t est  w h et h er t h e r e c ei v e d q u bits ar e all
i n t h e st at e v e ct or |0 . If t his is t h e c as e, it is  m u c h  m or e
li k el y t h at t h e ori gi n al st at e v e ct or  w as |ψ a n d n ot |ξ , as
l o n g as tr\ ν ( χ̃ ) i s s u ffi ci e ntl y disti n ct fr o m |0 0 |ν ( w hi c h
is t h e c as e f or a  H a ar-r a n d o m st at e).

F or s o m e c h oi c es of |χ , t h e  m etr ol o gi c al c o d e c a n b e
i nt er pr et e d as a q u a nt u m err or- c orr e cti n g c o d e t h at pr ot e cts
o nl y a g ai nst c ert ai n t y p es of err ors. F or i nst a n c e,  w e c a n
c h o os e |χ = | 1 ⊗ n i n t h e a b o v e a n d o ur c o n cl usi o ns still
h ol d; t his c h oi c e c orr es p o n ds t o a cl assi c al r e p etiti o n c o d e
t h at c a n c orr e ct bit fli ps b ut  w hi c h is v ul n er a bl e t o p h as e
fli ps.

Yet, t h er e ar e c h oi c es of |χ f or  w hi c h t his i nt er pr et a-
ti o n a p p e ars  m or e pr o bl e m ati c.  C o nsi d er f or i nst a n c e t h e
c h oi c e |χ = | + ⊗ n . Fr o m t h e a b o v e ar g u m e nt  w e h a v e
t h at |ψ = | 0 ⊗ n a n d |ξ ≈ | + ⊗ n f or m a g ai n a  m etr ol o gi-
c al c o d e.  A g ai n, t h e e n vir o n m e nt c a n disti n g uis h |ψ fr o m
|ξ wit h a c c ess o nl y t o a f e w sit es.  H er e, t h e e n vir o n m e nt
c a n us e eit h er a n X or a Z m e as ur e m e nt t o (i m p erf e ctl y)
disti n g uis h b et w e e n t h e t w o st at e v e ct ors |0 a n d | + .
It is h e n c e n ot o b vi o us h o w t o i nt er pr et t his c o d e as a n
err or- c orr e cti n g c o d e t h at is t ail or e d t o bi as e d n ois e.

W hil e t his e x a m pl e  mi g ht ill ustr at e t h e c o n c e pt u al
di ff er e n c es b et w e e n q u a nt u m err or- c orr e cti n g c o d es a n d
m etr ol o gi c al c o d es,  w e e x p e ct t his c o nstr u cti o n of a  m etr o-
l o gi c al c o d e t o b e of li mit e d pr a cti c al us e as it  w o ul d
r e q uir e a  H a milt o ni a n t h at is e xtr e m el y n o nl o c al.

VIII.  M A N Y- B O D Y S Y S T E M S U B J E C T  T O II D
A M P LI T U D E  D A M PI N G  N OI S E

I n t his s e cti o n  w e c o nsi d er a s yst e m c o nsisti n g of n s pi n-
1 / 2 p arti cl es e v ol vi n g u n d er a  m a n y- b o d y  H a milt o ni a n H
t h at is eit h er n o ni nt er a cti n g or t h at h as Isi n g i nt er a cti o n
t er ms.  T h e s yst e m is e x p os e d t o II D a m plit u d e d a m pi n g
n ois e. First,  w e c o nsi d er a n o ni nt er a cti n g  H a milt o ni a n  wit h
a n o n-sit e  m a g n eti c fi el d, a n d i n t h e s e c o n d p art of t his
s e cti o n  w e c o nsi d er a  H a milt o ni a n  wit h Isi n g i nt er a cti o ns.

We c o nsi d er a n II D a m plit u d e d a m pi n g n ois e  m o d el,
m e a ni n g t h at e a c h sit e is i n d e p e n d e ntl y e x p os e d t o t h e
n ois y c h a n n el

N (p )
A D (·) = E

(p )
0 (·) E

(p ) †
0 + E

(p )
1 (·) E

(p ) †
1 ,

E
(p )
0 =

√
1 − p 0
0 1

, E
(p )
1 =

0 0
√

p 0
,

( 1 9 5)

sti c ki n g t o t h e c o n v e nti o n t h at t h e first b asis v e ct or is | ↑
a n d t h e s e c o n d o n e is | ↓ .  T h e a m plit u d e- d a m pi n g n ois e is
oft e n als o c all e d t h e s p o nt a n e o us e missi o n c h a n n el.

As i n Fi g. 1 , t h e s yst e m is i niti ali z e d i n a st at e |ψ i nit a n d
e v ol v es a c c or di n g t o H ; at ti m e t0 w e a p pl y t h e n ois y c h a n-

n el [ N (p )
A D ]⊗ n t o o bt ai n  B o b’s st at e.  We s e e k t o c h ar a ct eri z e

t h e Fis h er i nf or m ati o n of  B o b’s st at e  wit h r es p e ct t o ti m e.
I n t his s e cti o n,  w e pr es e nt si m pl e n u m eri c al c o m p ut a-

ti o ns of t h e u p p er b o u n d ( 1 1 8) f or II D a m plit u d e d a m p-
i n g n ois e f or di ff er e nt cl o c k st at es. I n t h e first p art of
t his s e cti o n,  w e s u p p os e t h e s pi ns ar e e x p os e d t o a u ni-
f or m e xt er n al  m a g n eti c fi el d ali g n e d al o n g t h e Z a xis.  We
pr es e nt n u m eri c al c al c ul ati o ns of  B o b’s Fis h er i nf or m ati o n
a n d o ur l o w er b o u n d ( 1 1 8) f or a c h oi c e of cl o c k st at es, a n d
w e n u m eri c all y o pti mi z e t h e i niti al st at e t o a c hi e v e b et-
t er o ut p ut s e nsiti vit y. I n t h e s e c o n d p art of t his s e cti o n,  w e
pl a c e t h e s pi ns o n a 1 D c h ai n  wit h str o n g Isi n g i nt er a cti o ns.
We pr es e nt n u m eri c al c al c ul ati o ns of  B o b’s Fis h er i nf or-
m ati o n a n d o ur l o w er b o u n d ( 1 1 8) f or a c h oi c e of cl o c k
st at es;  w e n u m eri c all y s h o w t h at t h e s e nsiti vit y l oss f or t h e
m etr ol o gi c al c o d e st at e gi v e n i n  E q. ( 1 6 6) is s u p pr ess e d t o
first or d er i n t h e a m plit u d e d a m pi n g p ar a m et er.

A.  N o ni nt e r a cti n g  H a milt o ni a ns

T h e s yst e m of n s pi ns is ass u m e d t o e v ol v e u n d er t h e
H a milt o ni a n

H =

n

i= 1

ω

2
Z i. ( 1 9 6)

We c o m p ut e  B o b’s Fis h er i nf or m ati o n  wit h r es p e ct t o ti m e
of a s el e cti o n of st at es aft er e x p os ur e t o t h e c h a n n el N =

[N (p )
A D ]⊗ n . First  w e c o nsi d er t h e  G H Z st at e,  w hi c h h as t h e

o pti m al s e nsiti vit y if n o n ois e is pr es e nt:

|ψ G H Z =
1

√
2

| ↑ ↑ · · ·  ↑ + | ↓ ↓ · · ·  ↓ . ( 1 9 7)

T h e  G H Z st at e s atis fi es

F Ali c e, t[ψ G H Z ] = 4 H 2
G H Z = n 2 ω 2 . ( 1 9 8)

We c a n als o c o nsi d er t h e pr o d u ct st at e v e ct or of all s pi ns
p oi nti n g i n t h e + X dir e cti o n,

|ψ + = | + ⊗ n =
1

√
2 n

| ↑ + | ↓
⊗ n

. ( 1 9 9)
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T h e n

F Ali c e, t[ψ + ] = 4 H 2
+ = n ω 2 . ( 2 0 0)

O ur u p p er b o u n d ( 1 1 8) o n  B o b’s Fis h er i nf or m ati o n f or
t h es e st at es is pr es e nt e d f or n = 1 2 a n d f or n = 5 0 i n
Fi g. 1 1 . I n Fi gs. 1 1( a) a n d 1 1( b) ar e als o d e pi ct e d a n
a d h o c l o w er b o u n d f or t h e st at e v e ct ors |ψ G H Z a n d
| +n f or t h e s a m e v al u es of n a n d ω .  We c a n s e e t h at
f or o ur c h oi c e of t h e a m plit u d e d a m pi n g n ois e  m o d el
a n d at l e ast f or o ur c h oi c e of st at es, t h e u p p er b o u n d
o n F B o b, t pr o vi d e d b y  E q. ( 1 1 8) is r e as o n a bl y ti g ht f or
k = n .  T h e i ns et of Fi g. 1 1( a) d e pi cts t h e s a m e b o u n d
f or di ff er e nt c h oi c es of t h e v al u e k = 1, 4, 8, 1 2.  R e c all
t h at t h e b o u n d i n cl u d es a pr oj e cti o n o nt o  E v e’s s u b-
s p a c e ass o ci at e d  wit h err or o p er at ors of  w ei g ht at  m ost
k .  T h e pr o b a bilit y t h at t his pr oj e cti o n f ails is t h e t ot al
pr o b a bilit y of o bs er vi n g a n err or  wit h  w ei g ht gr e at er
t h a n k ; t his pr o b a bilit y is of t h e or d er of p k + 1 . I n t h e
i ns et of Fi g. 1 1( a) , f or k = 1, 4, 8  w e dis pl a y gr a y li n es
i d e ntif yi n g t h e v al u es of p f or  w hi c h p k + 1 = 1 0 − 3 .  Val-
u es of p b e y o n d t h e c orr es p o n di n g gr a y li n e r e pr es e nt

sit u ati o ns i n  w hi c h t h e pr oj e cti o n is e x p e ct e d t o f ail
wit h pr o b a bilit y gr e at er t h a n t h e or d er of a p pr o xi m at el y
1 0 − 3 .  H er e,  w e s e e t h at o ur b o u n d is i n d e e d r e as o n-
a bl y ti g ht u p u ntil t h e c orr es p o n di n g v al u e of p . I n t h e
i ns et of Fi g. 1 1( b) ,  w e d et er mi n e  m or e pr e cis el y t h e
t ot al  w ei g ht of t h e e v e nts n e gl e ct e d b y i g n ori n g  Kr a us
o p er at ors of  w ei g ht gr e at er t h a n k .  N a m el y, f or k =
1, 2, 5, 1 0,  w e c o m p ut e t h e s m all est v al u e of p f or  w hi c h

|x |> k tr E
†
x E x |ψ G H Z ψ G H Z | > 1 0 − 3 .  We s e e t h at t h es e

v al u es of p c orr es p o n d a p pr o xi m at el y t o  w h er e o ur u p p er
b o u n d ( 1 1 8) f ails t o a c c ur at el y pr e di ct t h e v al u e of t h e
q u a nt u m Fis h er i nf or m ati o n o n t h e st at e v e ct or |ψ G H Z .

We c a n as k,  w hi c h st at e v e ct or |ψ h as t h e b est s e n-
siti vit y aft er a p pli c ati o n of t h e n ois y c h a n n el f or a gi v e n
v al u e of p ?  H er e  w e us e t h e u n d erst a n di n g br o u g ht b y
o ur  m ai n Fis h er i nf or m ati o n tr a d e- o ff r el ati o n. I n t his c as e,
E v e r e c ei v es a n y p h ot o ns e mitt e d b y s p o nt a n e o us e mis-
si o n,  w hi c h t ell h er e x a ctl y  w hi c h sit es s u ff er e d a d e c a y.
As a c o ns e q u e n c e, if  E v e o bs er v es a n u m b er k of p h o-
t o ns, t h e n s h e c a n s af el y g u ess t h at t h e e n er g y of  Ali c e’s
st at e  m ust h a v e b e e n at l e ast t h e e n er g y c orr es p o n di n g t o k
e x cit ati o ns.  E v e h as t h er ef or e o bt ai n e d i nf or m ati o n a b o ut

F B
o
b,

t

p

k = 1
k = 4
k = 8

k = 1 2

j = 3 ,6 ,9

F
B
o
b,

t

p

k = 1
k = 2
k = 5

k = 1 0

k = 5 0

j = 1 0 , 2 0 ,
3 0 , 4 0

( a) ( b)

FI G. 1 1.  Q u a nt u m Fis h er i nf or m ati o n of a s yst e m of n s pi n- 1 / 2 p arti cl es  wit h t h e  H a milt o ni a n H = i ω Z i/ 2 ( wit h ω = 2) aft er
t h e a p pli c ati o n of a n a m plit u d e d a m pi n g c h a n n el of p ar a m et er p o n all sit es. ( a)  H er e n = 1 2. S oli d li n es d e pi ct o ur u p p er b o u n d ( 1 1 8)
wit h k = n = 1 2 f or t h e st at e v e ct ors |ψ G H Z (r e d), | +n ( bl u e), a n d |ψ u nif ( gr e e n),  w hi c h ar e d e fi n e d i n t h e  m ai n t e xt, as  w ell as f or
t h e f a mil y of st at es c orr es p o n di n g t o a n e v e n s u p er p ositi o n of t h e  m ost e x cit e d st at e a n d a s y m m etri c st at e ( Di c k e st at e) |h n

j wit h
a fi x e d n u m b er n − j of e x cit ati o ns (s h a d es of or a n g e)  wit h j = 3, 6, 9.  D ott e d li n es ar e c orr es p o n di n g a d h o c l o w er b o u n ds f or t h e
st at e v e ct ors |ψ G H Z a n d | +n ( s e e  m ai n t e xt).  D as h- d ott e d li n es ar e t h e c orr es p o n di n g e x a ct v al u es of t h e q u a nt u m Fis h er i nf or m ati o n,
w hi c h c a n still b e dir e ctl y c o m p ut e d f or n = 1 2.  T h e c ur v es c orr es p o n di n g t o t h e s u p er p ositi o ns of p airs of  Di c k e st at es ill ustr at e
sit u ati o ns  w h er e t h e u p p er b o u n d is n ot ti g ht.  T h e i ns et d e pi cts o ur u p p er b o u n d ( 1 1 8) f or di ff er e nt v al u es of k = 1, 4, 8, 1 2 f or t h e st at e
v e ct ors |ψ G H Z , | +n a n d |ψ u nif .  T h e v al u e of k c orr es p o n ds t o a pr oj e cti o n o nt o t h e s u bs p a c e o n  E v e’s s yst e m ass o ci at e d  wit h err ors
of  w ei g ht l ess t h a n or e q u al t o k ,  w hi c h is i n cl u d e d i n o ur b o u n d ( 1 1 8).  T h e t hr e e v erti c al gr a y li n es i n di c at e v al u es of p f or  w hi c h
p k + 1 = 1 0 − 3 f or k = 1, 4, 8; t h es e li n es r o u g hl y i n di c at e t h e v al u es of p b e y o n d  w hi c h t h e t his pr oj e cti o n is e x p e ct e d t o f ail  wit h a
pr o b a bilit y e x c e e di n g a p pr o xi m at el y 1 0 − 3 . I n d e e d, f or o ur c h oi c e of n ois y c h a n n el a n d st at es, o ur b o u n d ( 1 1 8) f or e a c h k is r e as o n a bl y
ti g ht u p u ntil v al u es of p f or  w hi c h p k + 1 i s n o l o n g er n e gli gi bl y s m all. ( b)  T h e s a m e c o m p ut ati o ns ar e r e p e at e d f or n = 5 0 a n d ω = 2.
S oli d li n es d e pi ct o ur u p p er b o u n d  wit h k = n f or t h e s a m e st at es as i n ( a), a n d d ott e d li n es d e pi ct a n a d h o c l o w er b o u n d f or | +n a n d
|ψ G H Z .  T h e r e d v erti c al li n es i n t h e i ns et d e pi ct v al u es f or p f or  w hi c h t h e t ot al  w ei g ht of t h e II D a m plit u d e- d a m pi n g  Kr a us o p er at ors
E x wit h |x | > k e x c e e ds 1 0 − 3 f or k = 1, 2, 5, 1 0  w h e n a p pli e d o nt o t h e  G H Z i n p ut st at e v e ct or |ψ G H Z .  T h es e v al u es of p ar e  w h er e
o ur u p p er b o u n d ( 1 1 8) f or t h e c orr es p o n di n g k v al u e is e x p e ct e d t o n o l o n g er b e a c c ur at e.
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t h e e n er g y of  Ali c e’s st at e.  T his o bs er v ati o n pr o vi d es a
si m pl e e x pl a n ati o n f or  w h y t h e  G H Z st at e h as a hi g h Fis h er
i nf or m ati o n l oss e v e n f or s m all v al u es of p :  w h e n  Ali c e
e x p os es a  G H Z st at e t o t h e n ois e, t h e n  E v e c a n esti m at e t h e
e n er g y of  Ali c e’s  G H Z st at e b y n oti n g  w h et h er or n ot s h e
o bs er v es a p h ot o n. If  E v e o bs er v es e v e n a si n gl e p h ot o n,
t h e n s h e c a n s af el y g u ess t h e e n er g y ass o ci at e d  wit h t h e
all- e x cit e d st at e, a n d if s h e o bs er v es n o d e c a y, s h e g u ess es
t h e e n er g y of t h e gr o u n d st at e. [ H er g u ess is  wr o n g  wit h
pr o b a bilit y (1 − p )n , c orr es p o n di n g t o t h e pr o b a bilit y of
t h e all- e x cit e d st at e s u ff eri n g n o d e c a y.]  O ur tr a d e- o ff r el a-
ti o n t h us t ells us t h at  w e s e e k a st at e  wit h a l ar g e e n er g y
s pr e a d, b ut f or  w hi c h a d e c a y  w o ul d n ot b etr a y t h e v al u e
of t h e t ot al e n er g y of t h e st at e.  As t h e e ff e ct of t h e d e c a y
b e c o m es  m or e si g ni fi c a nt  wit h i n cr e asi n g p , s o m e of t h e
e n er g y s pr e a d is s a cri fi c e d i n or d er t o  m a k e t h e st at e  m or e
r esili e nt t o  E v e’s pr o b e.

H er e  w e c o nsi d er st at es t h at ar e i n v ari a nt u n d er p er m u-
t ati o ns of t h e n s pi ns,  m oti v at e d b y t h e f a ct t h at t h e  H a mil-
t o n a n is p er m ut ati o n i n v ari a nt (s e e als o  R efs. [4 1 ,4 2 ]).
T h es e st at es li v e i n t h e s y m m etri c s u bs p a c e a n d c a n b e
writt e n i n t h e b asis of  Di c k e st at es of t h e s y m m etri c s u b-
s p a c e.  A  Di c k e st at e is a p er m ut ati o n-i n v ari a nt st at e  wit h
a fi x e d n u m b er of e x cit ati o ns.  M or e s p e ci fi c all y, f or q =
0, . . . , n w e d e fi n e

|h n
q =

n

q

− 1 / 2

|x | =q

|x , ( 2 0 1)

w h er e t h e s u m r a n g es o v er all stri n gs x wit h x i = ↑ , ↓ , a n d
w h er e |x | d e n ot es t h e n u m b er of sit es i w h er e x i = ↓ . I n t h e
st a n d ar d b asis {|0 = | ↑ , |1 = | ↓ } f or s pi n- 1/ 2 p arti cl es,
t h e v al u e |x | is t h e  H a m mi n g  w ei g ht of t h e c orr es p o n di n g
c o m p ut ati o n al b asis st at e x .

A g e n er al p ur e s y m m etri c st at e v e ct or c a n t h er ef or e b e
writt e n as

|ψ =

n

q = 0

ψ q |h n
q . ( 2 0 2)

We c o nsi d er s y m m etri c st at es f or c o n v e ni e n c e, alt h o u g h
t h e o pti m al st at e i n s u c h s etti n gs n e e d n ot b e s y m m etri c
[6 7 ].

We c a n c o nsi d er a n e v e n s u p er p ositi o n of t w o  Di c k e
st at es ( as i n S e c. I V  E).  N a m el y, f or 0 q 1 , q 2 n w e
c o nsi d er t h e st at e v e ct or

|ψ q 1 ;q 2
=

1
√

2
|h n

q 1
+ | h n

q 2
. ( 2 0 3)

O ur u p p er b o u n d o n t h e s e nsiti vit y of t h e st at e v e ct or
|ψ q 1 ;q 2

f or all q 1 , q 2 i s d e pi ct e d i n Fi g. 1 2 f or n = 5 0 a n d
t h e v al u es of p = 0. 0 1, 0. 0 5, 0. 1, 0. 2 5. I n c o ntr ast t o t h e
c as e of er as ur es ( S e c. I V  E), t h e st at es a m o n g t his f a m-
il y  w h er e o ur b o u n d is l ar g e h a v e o n e of t h e t er ms b ei n g

cl os e t o t h e  m a xi m all y e x cit e d st at e ( q 1 = 0 or q 2 = 0).
[ T h e b o u n d is n ot n e c ess aril y e x p e ct e d t o b e ti g ht, i n li g ht
of t h e g a p t h at is a p p ar e nt f or n = 1 2 i n Fi g. 1 1( a) b et w e e n
o ur b o u n d a n d t h e e x a ct v al u e of t h e q u a nt u m Fis h er i nf or-
m ati o n.  T h e dis c ussi o n t h at f oll o ws ai ms t o i d e ntif y st at es
t h at c a n p ot e nti all y h a v e hi g h s e nsiti vit y,  w hil e r uli n g o ut
st at es t h at ar e c ert ai n t o h a v e l o w s e nsiti vit y.]  T his pr o p-
ert y c a n a g ai n b e u n d erst o o d fr o m o ur tr a d e- o ff r el ati o n. I n
t h e c as e of er as ur es,  E v e r e c ei v es t h e e ntir e r e d u c e d st at e
of t h e s yst e ms t h at h a v e b e e n l ost. If q 1 = 0 or q 2 = 0, t h e n
t h e r e d u c e d st at e o n e a c h s u bs yst e m is t h e p ur e st at e v e ct or
| ↑ ; si n c e it is a p ur e st at e, it is e asi er f or  E v e t o disti n g uis h
it fr o m t h e r e d u c e d st at e of t h e ot h er  Di c k e st at e v e ct or
|h n

q 2
. I n t h e c as e of a m plit u d e d a m pi n g,  E v e k n o ws o nl y

w h et h er a d e c a y h a p p e n e d or n ot o n e a c h sit e a n d s h e c a n-
n ot a c c ess t h e f ull r e d u c e d st at e.  A n alt er n ati v e p hr asi n g of
t his ar g u m e nt is t o e x pr ess er as ur es as a r a n d o m o p er ati o n
X , Y , Z a p pli e d o nt o e a c h sit e; e q ui v al e ntl y, a r a n d o m o p er-
ati o n fr o m t h e s et {σ + , σ − , Z } is a p pli e d o n e a c h sit e,  w h er e
σ ± = [X ± i Y]/

√
2 ar e t h e cr e ati o n a n d a n ni hil ati o n o p er-

at ors of t h e q u bit e x cit ati o n o n a s p e ci fi c sit e. I n t h e c as e
of a m plit u d e d a m pi n g, t h e  Kr a us o p er at ors h a v e n o o v er-
l a p  wit h σ + ,  m e a ni n g t h at p h ysi c all y, t h er e is n o e v e nt i n
w hi c h e x cit ati o ns ar e cr e at e d i n t h e s yst e m. S u c h e v e nts,
h o w e v er, h a p p e n i n t h e c as e of er as ur es. If  E v e r e c ei v es
t h e i nf or m ati o n t h at k s u c h e v e nts h a v e o c c urr e d, s h e c a n
s af el y ass ert t h at t h e e n er g y of  Ali c e’s st at e c o ul d n ot h a v e
e x c e e d e d t h e e n er g y of t h e st at e t h at c a n still a c c o m m o d at e
k f urt h er e x cit ati o ns.  T h us, t h e st at e q 1 = 0 c a n e asil y b e
r ul e d o ut b y  E v e i n t h e c as e of er as ur es if s h e r e c ei v es a
r e p ort of e v e n a si n gl e σ + e v e nt.

A n ot h er i nt er esti n g c h oi c e of st at e is t h e u nif or m s u p er-
p ositi o n of all  Di c k e st at es, gi vi n g ris e t o

|ψ u nif =
1

√
n + 1

n

q = 0

|h n
q . ( 2 0 4)

T h e i nt uiti v e r e as o n  w e e x p e ct t his st at e t o a c hi e v e a
g o o d s e nsiti vit y aft er t h e n ois e is t h at if  E v e o bs er v es
e mitt e d p h ot o ns, s h e g ai ns c o m p ar ati v el y littl e i nf or m a-
ti o n a b o ut t h e e n er g y of  Ali c e’s st at e as o p p os e d t o if t h e
st at e is a s u p er p ositi o n of f e w s p a c e d- o ut  Di c k e st at es.  T h e
Fis h er i nf or m ati o n of t his st at e aft er t h e a p pli c ati o n of t h e
a m plit u d e d a m pi n g n ois y c h a n n el is d e pi ct e d i n Fi g. 1 1 .

A  m or e s yst e m ati c, n u m eri c al o pti mi z ati o n of F B o b, t b y
v ar yi n g  Ali c e’s st at e usi n g di ff er e nt  A ns ät z e f or t h e c o ef-
fi ci e nts {ψ q } i n di c at e t h at t h e Fis h er i nf or m ati o n o bt ai n e d
b y st at es of t h e f or m ( 2 0 3) c a n b e  m ar gi n all y e x c e e d e d f or
s p e ci fi c v al u es of p b y st at es f or  w hi c h t h e a m plit u d es {ψ q }
ar e c o n c e ntr at e d ar o u n d t w o v al u es q 1 = 0 a n d s o m e v al u e
q 2 , b ut  wit h s o m e br o a d e ni n g t o i n cl u d e s o m e  w ei g ht o n
n ei g h b ori n g  Di c k e st at es t o q 2 . I nt er esti n gl y, t h er e a p p e ars
t o b e  m a n y st at es  wit h v er y di ff er e nt pr o fil es of {ψ q } t h at
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FI G. 1 2.  U p p er b o u n d ( 1 1 8) o n t h e q u a nt u m Fis h er i nf or m a-
ti o n of a s u p er p ositi o n of t w o  Di c k e st at es o n n = 5 0 s pi n- 1 / 2
p arti cl es aft er b ei n g e x p os e d t o II D a m plit u d e- d a m pi n g n ois e.
A  Di c k e st at e  wit h q e x cit ati o ns is a n e v e n s u p er p ositi o n of all
st at es  wit h e x a ctl y q e x cit ati o ns. F or e a c h q 1 , q 2 , t h e c o nsi d er e d
st at e is a n e v e n s u p er p ositi o n of t h e t w o  Di c k e st at es  wit h a n u m-
b er q 1 a n d q 2 of d o w n w ar ds- p oi nti n g s pi ns, r es p e cti v el y.  E a c h
pl ot c orr es p o n ds t o a di ff er e nt v al u e of t h e si n gl e-sit e a m plit u d e-
d a m pi n g n ois e p ar a m et er p .  O ur b o u n d att ai ns its  m a xi m u m
o n t his f a mil y of st at es ( bl a c k cr oss es) f or st at es t h at ar e a n
e v e n s u p er p ositi o n of t h e hi g h est e x cit e d st at e a n d of a  w e a kl y
e x cit e d  Di c k e st at e t h at is s e p ar at e d fr o m t h e gr o u n d st at e.  T his
s e p ar ati o n hi n d ers  E v e fr o m a c c ur at el y g u essi n g t h e e n er g y of
Ali c e’s st at e,  w hi c h vi a o ur tr a d e- o ff r el ati o n i m pr o v es t h e st at e’s
s e nsiti vit y aft er a p pli c ati o n of t h e n ois y c h a n n el.  T h e b o u n d is
c o m p ut e d  wit h k = n = 5 0.

a c hi e v e a v er y si mil ar s e nsiti vit y aft er t h e a p pli c ati o n of
t h e n ois y c h a n n el.

O n e p arti c ul ar s u c h st at e is t h e st at e v e ct or |ψ h alf- G a uss

of t h e f or m ( 2 0 2) w h er e t h e ψ q c o e ffi ci e nts ar e a h alf-
G a ussi a n c e nt er e d o n t h e all- e x cit e d st at e as

|ψ h alf- G a uss =
q

ψ q |h n
q , ψ q =

1

c
e

−
(q / n )2

2 w 2 , ( 2 0 5)

w h er e c is d et er mi n e d fr o m t h e n or m ali z ati o n c o n diti o n.
E m piri c all y,  w e fi n d t h at t his st at e  wit h a v al u e of w = 0. 4
yi el ds a s e nsiti vit y aft er a p pli c ati o n of t h e n ois y c h a n n el
t h at is c o m p etiti v e  wit h r es p e ct t o t h e ot h er st u di e d st at es.
T h e h alf- G a ussi a n s pr e a ds o v er t h e e ntir e  Di c k e b asis.

T h e a m plit u d e of t h e gr o u n d st at e is ψ n = e − 1 /( 2 w 2 ) ψ 0 ≈
0. 0 4 ψ 0 .  H er e a g ai n, t h e st at e v e ct or |ψ h alf- G a uss b al a n c es
a br o a d s pr e a d i n e n er g y v al u es  w hil e still pr e v e nti n g  E v e
fr o m e asil y fi n di n g o ut t h e e n er g y of  Ali c e’s st at e.

F or o ur n u m eri c al c al c ul ati o ns,  w e e m pl o y e d t h e st a n-
d ar d P yt h o n N u m P y a n d S ci P y t o ol b o x es al o n g  wit h
Q u Ti p [6 8 ,6 9 ].  T h e p er m ut ati o n i n v ari a n c e of o ur s et-
ti n g gr e atl y si m pli fi es t h e c al c ul ati o n of t er ms of t h e f or m

tr E
†
x E x ψ a n d tr E

†
x E x { H̄ , ψ } b e c a us e E x i s a t e ns or

pr o d u ct of si n gl e-sit e o p er at ors. Si mil arl y, t h e r e d u c e d
o p er at or o n a gi v e n n u m b er k of sit es of a n y o p er at or a ct-
i n g o n t h e s y m m etri c s u bs p a c e c a n b e c o m p ut e d e asil y b y
c o m bi n at ori al c o nsi d er ati o ns i n a b asis of t h e s y m m etri c
s u bs p a c e [ 4 1 – 4 3 ].  E v e n f or n = 5 0, o ur pi n c h e d b o u n d
is e as y t o c o m p ut e e v e n f or k ∼ n i n t h e p er m ut ati o n-
i n v ari a nt s etti n g: t o d et er mi n e t h e di a g o n al  m atri x el e-
m e nts ass o ci at e d  wit h N ( ψ ) a n d N ({ H̄ , ψ }), it s u ffi c es t o

c o m p ut e t er ms of t h e f or m tr E
†
x E x ψ a n d tr E

†
x E x { H̄ , ψ }

f or o p er at ors E x of t h e f or m E ⊗ w
1 ⊗ E ⊗ (n − w )

0 (t h e ot h er
t er ms ar e d et er mi n e d b y s y m m etr y).

B. St r o n gl y i nt e r a cti n g Isi n g  H a milt o ni a n  wit h a n ois y
c h a n n el

C o nsi d er a o n e- di m e nsi o n al s pi n c h ai n  wit h n e ar est-
n ei g h b or Z Z c o u pli n gs,  wit h t h e  H a milt o ni a n

H =

n − 1

j = 1

J

2
Z j Z j + 1 . ( 2 0 6)

O ur u p p er b o u n d o n  B o b’s s e nsiti vit y t o ti m e, c o m p ut e d
usi n g t h e e x pr essi o n ( 1 1 8) f or v ari o us st at es, is pl ott e d
i n Fi g. 1 3 f or n = 1 2 a n d n = 5 0,  wit h J = 2 i n b ot h
pl ots.  We first c o nsi d er t h e st at e v e ct or c orr es p o n di n g t o
a n e v e n s u p er p ositi o n of a f err o m a g n eti c all- z er o st at e a n d
a n a ntif err o m a g n eti c st at e v e ct or

|ψ F- A F =
1

√
2

| ↓ ↓ ↓ ↓ . . . + | ↓ ↑ ↓ ↑ . . . . ( 2 0 7)

Si n c e | ↓ ↓ ↓ ↓ . . . a n d | ↓ ↑ ↓ ↑ . . . ar e e n er g y ei g e n v e c-
t ors of r es p e cti v e e n er gi es ω ( n − 1 ) a n d − ω ( n − 1 ), w e
s e e t h at t h e st at e v e ct or |ψ F − A F h a s e n er g y v ari a n c e
σ 2

H ( ψF- A F ) = ω 2 (n − 1 )2 . F or c o m p aris o n,  w e c o m p ut e t h e
tr u e v al u es of t h e Fis h er i nf or m ati o n (f or n = 1 2), pl ott e d
as d as h e d li n es i n Fi g. 1 3( a) , as  w ell as a n a d h o c l o w er
b o u n d, pl ott e d as d ott e d li n es.  As c a n b e s e e n i n Fi g. 1 3 ,
o ur u p p er b o u n d yi el ds ti g ht b o u n ds o n t h e ti m e s e nsiti v-
it y of t h e  m a n y- b o d y i nt er a cti n g pr o b e, as  wit n ess e d b y its
pr o xi mit y t o t h e tr u e v al u e a n d t o t h e a d h o c l o w er b o u n d,
pr o vi d e d p is n ot t o o l ar g e a n d k c a n b e t a k e n t o b e l ar g e
e n o u g h.

T h e n e xt pr o b e st at e v e ct or  w e c o nsi d er is

|ψ c o d e- F- A F =
1

2
| ↓ ↓ ↓ ↓ . . . + | ↑ ↑ ↑ ↑ . . .

+ | ↓ ↑ ↓ ↑ . . . + | ↑ ↓ ↑ ↓ . . . ]. ( 2 0 8)

T h e st at e v e ct or |ψ c o d e- F- A F i s t h e st at e ( 1 6 6) usi n g t h e
a ntif err o m a g n eti c c o n fi g ur ati o n as t h e bit stri n g x .  R e c all
t h at t his st at e s atis fi es o ur  K nill- L a fl a m m e-li k e c o n diti o ns
f or a si n gl e l o c at e d err or.  H er e  w e st u d y h o w t his st at e’s

0 4 0 3 3 6- 3 8



TI M E- E N E R G Y  U N C E R T AI N T Y  R E L A TI O N. . . P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

A m plit u d e- d a m pi n g p ar a m et er p

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

F B
o
b
(t

) 
u
p
pe

r 
b
o
u
n
d 
(n
 
= 

12
)

0. 0 0 0. 0 2 0. 0 4 0. 0 6 0. 0 8 0. 1 0

A m plit u d e- d a m pi n g p ar a m et er p

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

F B
o
b
(t

) 
u
p
pe

r 
b
o
u
n
d 
(n

 =
 5

0)k = 1
k = 1

k = 4

k = 4

k = 1
k = 1

k = 1
k = 8

k =
6, 7, 8

k = 8

( b)( a)

FI G. 1 3.  N u m eri c al c al c ul ati o n of t h e u p p er b o u n d o n t h e s e nsiti vit y of a  m a n y- q u bit st at e aft er II D a m plit u d e- d a m pi n g n ois e,
f or di ff er e nt st at es e v ol vi n g a c c or di n g t o t h e o n e- di m e nsi o n al Isi n g  H a milt o ni a n H = j (J / 2 ) Z j Z j + 1 . ( a)  U p p er b o u n d o n  B o b’s
Fis h er i nf or m ati o n F B o b (t) f or n = 1 2 q u bits as a f u n cti o n of a m plit u d e- d a m pi n g p ar a m et er p , f or t h e st at e |ψ F- A F ,  w hi c h is a n e v e n
s u p er p ositi o n of a f err o m a g n et st at e a n d a n a ntif err o m a g n et st at e (i n r e d), f or |ψ c o d e- F- A F ,  w hi c h s atis fi es o ur  K nill- L a fl a m m e-li k e
c o n diti o ns f or a si n gl e l o c at e d err or (i n gr e e n), a n d f or t h e s pi n- c o h er e nt st at e v e ct or | + ⊗ n w h er e | + is t h e + 1 ei g e n v e ct or of X (i n
bl u e). S pi n- c o h er e nt st at es ar e t y pi c all y us e d i n n o n- q u a nt u m- e n h a n c e d  m etr ol o g y. F or e a c h st at e, b o u n ds ar e s h o w n f or v ari o us v al u es
of k , w h er e k is a p ar a m et er i n t h e a d diti o n al n ois y c h a n n el a cti n g o n  E v e’s s yst e m,  w hi c h is us e d t o d eri v e t h e u p p er b o u n d; b o u n ds
wit h l ar g er v al u es of k ar e h ar d er t o c o m p ut e b ut ar e ti g ht er.  T h e u p p er b o u n ds c a n i n cr e as e a g ai n f or p 0. 4 b e c a us e t h e b o u n d
a c c o u nts o nl y f or l o w- w ei g ht  Kr a us o p er at ors, a n d hi g h er- w ei g ht err ors c a n n ot b e i g n or e d i n t his r e gi m e.  D as h e d c ur v es i n di c at e t h e
tr u e Fis h er i nf or m ati o n v al u es, d et er mi n e d b y dir e ct c o m p ut ati o n, a n d t h e d ott e d li n es ar e l o w er b o u n ds ass o ci at e d  wit h |ψ F- A F a n d
|ψ c o d e- F- A F .  T h e r e d c ur v es f or k = 6, 7, 8, t h e ass o ci at e d tr u e v al u e, a n d t h e l o w er b o u n d a p p e ar s u p eri m p os e d. ( b)  U p p er b o u n ds
f or t h e st at es |ψ F- A F a n d |ψ c o d e- F- A F f or n = 5 0 q u bits, e nl ar g e m e nt of l o w v al u es of p .  D ott e d li n es ar e l o w er b o u n ds o n t h e Fis h er
i nf or m ati o n f or t h es e st at es.  C o m p uti n g t h e tr u e v al u es of t h e Fis h er i nf or m ati o n i n t his r e gi m e  w o ul d r e q uir e  m or e a d v a n c e d  m et h o ds,
s u c h as t e ns or n et w or ks [ 2 8 ].

s e nsiti vit y is a ff e ct e d  w h e n e x p os e d t o II D a m plit u d e-
d a m pi n g n ois e.  O ur u p p er b o u n d o n  B o b’s Fis h er i nf or-
m ati o n vi a  E q. ( 1 1 8) is pl ott e d i n Fi g. 1 3 f or n = 1 2 a n d
n = 5 0, al o n gsi d e t h at of |ψ F- A F .  T h e pr o b e st at e r e m ai ns
al m ost  m a xi m all y s e nsiti v e  w h e n p is s m all, i n c o ntr ast t o
t h e pr o b e |ψ F- A F ,  w hi c h i m m e di at el y l os es s e nsiti vit y at
w h at a p p e ars t o b e a li n e ar r at e  wit h p .  T his is a  m a nif es-
t ati o n of t h e f a ct t h at t h e s e nsiti vit y of t h e pr o b e st at e is
u n a ff e ct e d b y a si n gl e err or, a n d o nl y i n t h e e v e nt t h at t w o
si m ult a n e o us err ors o c c ur d o es t h e s e nsiti vit y d e cr e as e.

Fi n all y,  w e c o nsi d er f or c o m p aris o n t h e n at ur al pr o b e
st at e gi v e n b y a n e ns e m bl e of i n d e p e n d e nt s pi ns, e a c h
p oi nti n g i n t h e X dir e cti o n

| +n = | + ⊗ | + ⊗ · · ·  ⊗ | + , ( 2 0 9)

w h er e | + = [| ↑ + | ↓ ]/
√

2 is t h e + 1 ei g e n v e ct or of X .
O ur u p p er b o u n d c o m p ut e d f or t h e s pi n- c o h er e nt st at e v e c-
t or | +n i s pl ott e d i n bl u e i n Fi g. 1 3 .  We c a n s e e t h at t his
pr o b e st at e p erf or ms si g ni fi c a ntl y  w ors e t h a n t h e e nt a n gl e d
pr o b e st at es f or p 0. 4.  T his is e x p e ct e d, si n c e s u c h a
pr o b e’s n ois el ess s e nsiti vit y s c al es o nl y li n e arl y i n n , as
o p p os e d t o t h e q u a dr ati c s c ali n g of t h e s e nsiti vit y of t h e

|ψ F- A F a n d |ψ c o d e- F- A F pr o b e st at es.  H o w e v er, t h e r o b ust-
n ess of t h e s pi n- c o h er e nt st at e t o t h e n ois e is si g ni fi c a nt.  At
l ar g er v al u es of t h e a m plit u d e d a m pi n g p ar a m et er (p ∼ 0. 5
f or n = 1 2), t h e ot h er pr o b e st at es h a v e all b ut l ost t h eir
a d v a nt a g e i n s e nsiti vit y.

F or o ur n u m eri c al c al c ul ati o ns,  w e e m pl o y e d t h e st a n-
d ar d P yt h o n N u m P y a n d S ci P y t o ol b o x es al o n g  wit h
Q u Ti p [6 8 ,6 9 ].  O ur s o ur c e c o d e is p u blis h e d o n Git h u b
[7 0 ].  T o c o m p ut e t h e tr a c e t er ms i n  E q. ( 1 1 8) w e e x pr ess
|ψ a n d H̄ |ψ as s u p er p ositi o ns of a s m all n u m b er of c o m-
p ut ati o n al b asis v e ct ors o v er t h e n sit es.  T h e tr a c es t h e n
f a ct ori z e i nt o t e ns or f a ct ors e n a bli n g t h eir e ffi ci e nt c o m-
p ut ati o n. F or t h e s pi n- c o h er e nt st at e  w e  w or k  wit h t h e
l o c al X b asis i nst e a d of t h e Z b asis, s u c h t h at t h e s pi n-
c o h er e nt st at e b e c o m es a b asis st at e i n t his pi ct ur e.  T h e
dir e ct c o m p ut ati o n of t h e Fis h er i nf or m ati o n is p erf or m e d
vi a a n ei g e n v al u e d e c o m p ositi o n of t h e f ull n - b o d y n ois y
pr o b e st at e ρ B t o tr a nsf or m t h e a nti c o m m ut at or e q u ati o n
1 / 2 ρ B , R = N (− i[H , ψ ]) i n a b asis  w h er e ρ B i s di a g-
o n al, a n d t h e n s ol vi n g el e m e nt wis e t o d et er mi n e R . T h e
a d h o c l o w er b o u n d is c o m p ut e d b y n u m eri c all y s ol vi n g
t h e s y m m etri c l o g arit h mi c d eri v ati v e i n a r estri ct e d s u b-
s p a c e c o nsisti n g of t h e c o m p ut ati o n al b asis v e ct ors t h at
a p p e ar i n t h e d e c o m p ositi o n of t h e pr o b e st at e a n d t h os e bit
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stri n gs t h at ar e cl os e b y i n  H a m mi n g dist a n c e.  T h e r es ult-
i n g v al u e is g u ar a nt e e d t o b e a l o w er b o u n d, b e c a us e t h e
m a p t h at pr oj e cts t h e st at e d o w n t o a n y s u bs p a c e of t h e
st at e s p a c e is a tr a c e- n o n-i n cr e asi n g, c o m pl et el y p ositi v e
m a p f or  w hi c h o n e c a n a p pl y t h e d at a- pr o c essi n g i n e q u al-
it y s atis fi e d b y t h e Fis h er i nf or m ati o n [1 9 ] (s e e Pr o p ositi o n
1 3 i n  A p p e n di x C f or d et ails). It is li k el y t h e q u a nt u m
Fis h er i nf or m ati o n i n t his s etti n g c a n als o b e c o m p ut e d
b as e d o n e xisti n g t e c h ni q u es, s u c h as t h os e i ntr o d u c e d i n
R efs. [ 2 1 ,3 1 ,5 3 ,7 1 ].

I X.  C O N C L U SI O N S  A N D  O U T L O O K

O ur r es ults pr es e nt a n e w p ar a di g m f or c h ar a ct eri zi n g
t h e s e nsiti vit y of a q u a nt u m cl o c k or s e ns or  w h e n e x p os e d
t o n ois e, b y est a blis hi n g a q u a ntit ati v e tr a d e- o ff b et w e e n
t h e q u a nt u m Fis h er i nf or m ati o n of t h e n ois y s yst e m  wit h
r es p e ct t o t h e p ar a m et er of i nt er est a n d t h e q u a nt u m Fis h er
i nf or m ati o n t h at t h e e n vir o n m e nt a c q uir es  wit h r es p e ct t o a
c o m pl e m e nt ar y p ar a m et er. I nf or m ati o n tr a d e- o ffs ar e i nt er-
esti n g b e c a us e t h e y r e v e al pr o p erti es of t h e  m at h e m ati c al
str u ct ur e of q u a nt u m t h e or y,  w hi c h i n t ur n d et er mi n e  w h at
t as ks c a n b e a c c o m plis h e d  wit hi n t h e l a ws of q u a nt u m
m e c h a ni cs.  H er e, o ur r es ults pr o vi d e a g ui di n g pri n ci pl e
f or fi n di n g n ois e-r esili e nt cl o c k st at es: i n or d er t o a v oi d
s e nsiti vit y l oss d u e t o t h e a p pli c ati o n of a n ois e c h a n n el,
cl o c k st at es s h o ul d hi d e t h eir e n er g y fr o m t h e e n vir o n m e nt.

E n er g y-ti m e u n c ert ai nt y r el ati o ns h a v e hist ori c all y b e e n
h ar d er t o f or m ul at e t h a n p ositi o n- m o m e nt u m-t y p e u n c er-
t ai nt y pri n ci pl es, b e c a us e t h er e is n o gl o b al ti m e o bs er v-
a bl e i n q u a nt u m  m e c h a ni cs i n t h e s a m e s e ns e as t h er e is
a p ositi o n o bs er v a bl e.  O ur  w or k c o ntri b ut es a n a d diti o n al
t y p e of ti m e- e n er g y u n c ert ai nt y r el ati o n, c o m pl e m e nt-
i n g e xisti n g u n c ert ai nt y r el ati o ns s u c h as  M a n d elst a m m-
T a m m-t y p e u n c ert ai nt y r el ati o ns [ 1 3 ], Fis h er- b as e d u n c er-
t ai nt y r el ati o ns  wit h a si n gl e s yst e m [1 2 ], a n d e ntr o pi c
u n c ert ai nt y r el ati o ns [ 1 5 ].  O ur r el ati o n e x pl oits a t y p e of
c o m pl e m e nt arit y b et w e e n t h e l o c al o pti m al s e nsi n g o p er-
at or f or ti m e a n d t h e  H a milt o ni a n ( Fi g. 5 ), i n t h e s a m e
s pirit as u n c ert ai nt y r el ati o ns d eri v e d i n  R efs. [ 1 ,1 2 ].  O ur
r el ati o n f urt h er m or e c o n n e cts t h e esti m ati o n c a p a biliti es
of t w o disti n ct p arti es ( B o b a n d  E v e); i n t his s e ns e o ur
r es ults c a n b e s e e n as a Fis h er i nf or m ati o n c o u nt er p art of
t h e e ntr o pi c u n c ert ai nt y r el ati o ns f or ti m e a n d e n er g y [1 5 ].

A. S u m m a r y a n d dis c ussi o n

A n o v er vi e w of t h e r es ults pr es e nt e d i n t his  w or k c a n b e
f o u n d i n Fi g. 3 .

1.  Ti m e- e n er g y s e nsiti vit y tr a d e- o ff

O ur  m ai n r es ult is a q u a ntit ati v e ti m e- e n er g y s e nsiti vit y
tr a d e- o ff r el ati o n i n t h e s etti n g of Fi g. 1 . If a q u a nt u m s ys-
t e m is s u bj e ct e d t o a n i nst a nt a n e o us n ois y c h a n n el, t h e n
t h e l oss i n s e nsiti vit y t o ti m e tr a d es o ff e x a ctl y  wit h t h e

e n vir o n m e nt’s a bilit y t o s e ns e t h e e n er g y of t h e s yst e m as
l ai d o ut i n  E q. ( 1).

T h e s etti n g of o ur u n c ert ai nt y r el ati o n ( Fi g. 1 ) is u n c o n-
v e nti o n al f or q u a nt u m  m etr ol o g y: a q u a nt u m cl o c k us u all y
a c c u m ul at es n ois e c o nti n u o usl y as ti m e e v ol v es,  m u c h
li k e a q u a nt u m pr o b e us u all y a c c u m ul at es n ois e c o nti n u-
o usl y  w hil e s e nsi n g a n u n k n o w n p ar a m et er.  O ur s etti n g is
i nst e a d t h e c o m m u ni c ati o n s c e n ari o st u di e d i n  R ef. [2 9 ]:
Ali c e p oss ess es a n ois el ess q u a nt u m cl o c k t h at alr e a d y
e n c o d es s o m e ti m e v al u e, a n d s h e s e n ds it t o  B o b o v er
a n ois y c o m m u ni c ati o n c h a n n el. I n t his alt er n ati v e s et-
ti n g o n e c a n a n al y z e t h e q u a nt u m i nf or m ati o n t h at l e a ks
t o t h e e n vir o n m e nt,  w hi c h is  m or e c h all e n gi n g t o d o if  w e
c o nsi d er c o nti n u o us n ois e.

A n a p p e ali n g f e at ur e of o ur tr a d e- o ff r el ati o n is t h at
B o b’s ti m e s e nsiti vit y a n d  E v e’s s e nsiti vit y t o e n er g y ar e
rel at e d b y a n e q u alit y.  C o n cr et el y, t his f e at ur e  m e a ns t h at
n ot o nl y d o es a g ai n i n e n er g y s e nsiti vit y i m pl y a ti m e
s e nsiti vit y l oss b y  B o b, b ut als o a l oss i n ti m e s e nsiti vit y
f or  B o b a ut o m ati c all y i m pli es a g ai n i n e n er g y s e nsiti v-
it y b y  E v e. I n c o ntr ast, u n c ert ai nt y r el ati o ns i n q u a nt u m
m e c h a ni cs oft e n r el at e t w o o bs er v a bl e u n c ert ai nti es or
t w o e ntr o pi c q u a ntiti es vi a a n i n e q u alit y. F or i nst a n c e, a
S c hr ö di n g er p arti cl e i n o n e di m e nsi o n t h at h as a l ar g e v ari-
a n c e i n t h e  m o m e nt u m o bs er v a bl e n e e d n ot h a v e a n arr o w
v ari a n c e i n t h e p ositi o n o bs er v a bl e.

O ur r es ults f urt h er m or e h ol d f or a n ar bitr ar y p ur e pr o b e
st at e v e ct or |ψ a n d  H a milt o ni a n H .  We e v a d e t h e q u es-
ti o n of f or m all y o pti mi zi n g o v er t h e pr o b e st at e v e c-
t or |ψ its elf — a c e ntr al q u esti o n i n q u a nt u m  m etr ol o g y
t h at  m a n y c o ntri b uti o ns o n usi n g q u a nt u m err or c orr e c-
ti o n f or  m etr ol o g y a d dr ess [2 1 ,2 2 ,5 2 ,7 2 ,7 3 ] — b y i d e ntif y-
i n g i nst e a d  w h at f e at ur es a pr o b e st at e v e ct or |ψ m ust
e x hi bit t o a v oi d b ei n g a ff e ct e d b y t h e n ois e.  T h e alt er n a-
ti v e e x pr essi o n of t h e Fis h er i nf or m ati o n o bt ai n e d b y o ur
tr a d e- o ff r el ati o n c a n p ot e nti all y f a cilit at e t h e c o m p ut a-
ti o n of t h e Fis h er i nf or m ati o n  w h e n o pti mi zi n g t h e cl o c k
or pr o b e st at e, p ot e nti all y i m pr o vi n g st at e o pti mi z ati o n
s c h e m es s u c h as t h os e i n  R efs. [ 6 7 ,7 4 ] i n t h e pr es e n c e of
n ois e.  O ur tr a d e- o ff r el ati o n als o o ff ers a g ui d eli n e t o s e e k
g o o d cl o c k st at es, es p e ci all y i n s etti n gs  w h er e it  mi g ht n ot
b e p ossi bl e t o r eli a bl y pr e p ar e t h e pr o b e st at e t h at h as t h e
a bs ol ut e b est s e nsiti vit y: n ois e-r esili e nt cl o c k st at es n e e d
t o hi d e t h eir e n er g y fr o m t h e e n vir o n m e nt.

I m p ort a ntl y, it is n ot n e c ess aril y t h e pr o b e st at e  w hi c h
is l e ast a ff e ct e d b y t h e n ois e t h at is t h e  m ost s e nsi-
ti v e.  A n ot h er st at e  mi g ht e x hi bit a b ett er s e nsiti vit y aft er
t h e n ois y c h a n n el, e v e n if its s e nsiti vit y l oss is gr e at er,
b y e ns uri n g t h at it is i niti all y s u ffi ci e ntl y  m or e s e nsi-
ti v e.  As a n e xtr e m e c as e, t his p oi nt is ill ustr at e d b y t h e
gr o u n d st at e of a q u bit a ff e ct e d b y a m plit u d e- d a m pi n g
n ois e; t h e gr o u n d st at e tri vi all y r e m ai ns u n a ff e ct e d b y
t h e n ois e b ut h as n o s e nsiti vit y,  w h er e as t h e + X ei g e n-
st at e h as a b ett er s e nsiti vit y, e v e n if it is a ff e ct e d b y t h e
n ois e.
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A k e y t e c h ni q u e i n o ur a p pr o a c h is t h e f or m ul ati o n
of t h e q u a nt u m Fis h er i nf or m ati o n as a s e mi d e fi nit e pr o-
gr a m [ 2 6 ,2 8 ] (s e e  A p p e n di x C ). S e mi d e fi nit e pr o gr a m-
mi n g o ff ers a v ers atil e t o ol b o x i n  w hi c h a n alt er n at e
e x pr essi o n f or a n o pti mi z ati o n ( k n o w n as d u al pr o bl e m )
c a n b e d eri v e d a n d b o u n ds o n s u c h o pti mi z ati o ns c a n
b e pr o v e n  m or e e asil y [ 7 5 ,7 6 ].  T h e t e c h ni c al pr o of of
o ur  m ai n tr a d e- o ff r es ult ( A p p e n di x E 2 ) o ff ers a d diti o n al
i nsi g ht i nt o t h e  m e a ni n g of t h e d u al pr o bl e m ass o ci at e d
wit h t h e s e mi d e fi nit e pr o gr a m mi n g f or m ul ati o n of t h e
q u a nt u m Fis h er i nf or m ati o n.

2.  T h e s etti n g of c o nti n u o us n ois e

I n c ert ai n s p e ci fi c s etti n gs, t h e s et u p i n Fi g. 1 r e m ai ns
a g o o d a p pr o xi m ati o n of a q u a nt u m cl o c k e x p os e d t o c o n-
ti n u o us n ois e d es cri b e d b y a  Li n d bl a di a n  m ast er e q u ati o n
(s e e S e c. VI ).  A s u ffi ci e nt c o n diti o n t h at g u ar a nt e es t h e
a c c ur a c y of t his a p pr o xi m ati o n is t o e ns ur e, o n o n e h a n d,
t h at t h e  H a milt o ni a n p art L 0 of t h e e v ol uti o n c o m m ut es
( as a s u p er o p er at or)  wit h t h e n ois e p art L 1 of t h e  Li n d-
bl a di a n t h at c o nt ai ns all t h e n ois e o p er at ors, a n d, o n t h e
ot h er h a n d, t h at t h e ti m e d eri v ati v e of t h e st at e is pri m ar-
il y dri v e n b y t h e  H a milt o ni a n a n d n ot b y t h e n ois e.  M or e
pr e cis el y, i n t h e n ot ati o n of S e c. VI , t h e s u ffi ci e nt c o n-
diti o n c o nsists i n c h e c ki n g t h at [ L 0 , L 1 ] = 0 as w ell as
e ns uri n g t h at ∂ tN c o ntri b ut es o nl y a n e gli gi bl e p art of t h e
Fis h er i nf or m ati o n F ρ ; ∂ tρ [f or  w hi c h a ri g or o us b o u n d
c a n, f or i nst a n c e, b e c o m p ut e d i n  E q. ( 1 4 6)].  T h e s e c o n d
c o n diti o n is r ar el y e x p e ct e d t o b e vi ol at e d, as s e ns ors ar e
t y pi c all y d esi g n e d t o h a v e t h eir si g n al i m pri nt e d o n t h eir
st at e t hr o u g h t h eir  H a milt o ni a n e v ol uti o n; n ois e is us u all y
a d e gr a di n g pr o c ess a n d is t y pi c all y n ot t h e  m e c h a nis m
b y  w hi c h t h e si g n al is a c q uir e d. If t h e  H a milt o ni a n of a
m a n y- b o d y s yst e m c o nsists o nl y of si n gl e-sit e Z t er ms,
t h e n b ot h II D d e p h asi n g n ois e a n d II D a m plit u d e- d a m pi n g
n ois e c o m m ut e ( as a s u p er o p er at or)  wit h t h e  H a milt o ni a n
p art of t h e  Li n d bl a di a n. F urt h er m or e if t h e  H a milt o ni a n
H c o m m ut es  wit h t h e i n di vi d u al  Li n d bl a d j u m p o p er a-
t ors, t h e n t h e c orr es p o n di n g e v ol uti o ns als o c o m m ut e as
s u p er o p er at ors; t his is t h e c as e, f or i nst a n c e, if H c o nsists
of ar bitr ar y- w ei g ht t er ms c o nt ai ni n g o nl y Z o p er at ors a n d
i n t h e pr es e n c e of II D d e p h asi n g n ois e. I n t h e c as e  w h er e
[L 0 , L 1 ] = 0 t h e s etti n g c a n still f or m all y b e  m a p p e d o nt o
t h e s etti n g of Fi g. 1 , b y d e fi ni n g t h e e ff e cti v e n ois e as t h e
f ull e v ol uti o n  m a p  wit h a u nit ar y a p pli e d o n t h e i n p ut, as
l o n g as t h e ti m e d e p e n d e n c e of t h e e ff e cti v e n ois y c h a n-
n el c a n b e n e gl e ct e d. I n t his c as e, d et er mi ni n g t h e e ff e cti v e
n ois y c h a n n el i n g e n er al  mi g ht b e di ffi c ult.

3.  Tr a d e- o ff  wit h g e n er aliz e d p ar a m et ers

T h e tr a d e- o ff r el ati o n f or ti m e a n d e n er g y c a n b e
e xt e n d e d t o ot h er p ar a m et er e v ol uti o ns. First of all, t h er e
is a c h oi c e i n h o w ψ e v ol v es al o n g t h e t a n d η p ar a m e-
t ers: a n y c h oi c e of |ψ ( t, η ) s u c h t h at  E q. ( 2 3) is s atis fi e d

at (t0 , η 0 ) ( b ut n ot n e c ess aril y at ot h er e v e n n ei g h b or-
i n g p oi nts) l e a ds t o t h e s a m e Fis h er i nf or m ati o n q u a n-
titi es F Ali c e, t, F Ali c e, η , F B o b, t, a n d F E v e, η , s o o ur tr a d e- o ff
r el ati o n dir e ctl y a p pli es.  A n alt er n ati v e c h oi c e f or t h e η
p ar a m et er is a n e v ol uti o n g e n er at e d b y t h e  Li n d bl a di a n

m ast er e q u ati o n ∂ η ψ = L [ψ ]  wit h L [ρ ] = k L k ρ L
†
k −

{L
†
k L k , ρ }/ 2 ,  w h er e L k = σ − 1

H

√
(e k + c )|ψ e k |,  w h er e

{|e k } ar e ei g e n v e ct ors of t h e  H a milt o ni a n,  w h er e H =
e k |e k e k |, a n d  w h er e c 0 is c h os e n l ar g e e n o u g h s u c h

t h at e k + c 0 f or all k . ( We h a v e t h e o p p osit e si g n f or
∂ η ψ , b ut t his c a n b e c orr e ct e d b y r e d e fi ni n g η → − η ,
a n d t his d o es n ot i m p a ct t h e Fis h er i nf or m ati o n.)  We c a n
c h e c k t h at t his c h oi c e of ∂ η ψ s atis fi es  E q. ( 2 6) at (t0 , η 0 ),
a n d t h er ef or e als o  E q. ( 2 3).  A n ot h er i nt er esti n g c h oi c e

f or ψ ( t, η ) is t o s et |ψ ( t0 , η ) = e ( η− η 0 ) H̄ /( 2 σ 2
H ) |ψ ( t0 , η 0 )

f or η i n a n ei g h b or h o o d of η 0 , r e c alli n g H̄ = H − H ψ .
A g ai n,  w e s e e t h at  E q. ( 2 6) is s atis fi e d.  T his e v ol uti o n
is n o n u nit ar y, b ut o n e c a n c h e c k t h at it d o es pr es er v e
t h e tr a c e of ψ l o c all y t o first or d er at η 0 :  w e h a v e
∂ η tr( ψ )

η 0
= tr { H̄ , ψ } = 0.  Eit h er of t h es e c h oi c es of

e v ol uti o n  mi g ht b e r el e v a nt d e p e n di n g o n t h e s p e ci fi c
a p pli c ati o n, t h o u g h  w e e x p e ct t h e pri m ar y a p pli c ati o n of
o ur tr a d e- o ff r el ati o n is t o h el p c h ar a ct eri z e  B o b’s Fis h er
i nf or m ati o n t o ti m e, i n  w hi c h c as e t h e s p e ci fi c c h oi c e of
h o w t h e cl o c k st at e is st at e d t o e v ol v e al o n g η mi g ht n ot b e
i m p ort a nt.

T h e tr a d e- o ff r el ati o n c a n f urt h er b e e xt e n d e d t o a n
i n e q u alit y t h at is v ali d f or a n y t w o ar bitr ar y p ar a m et ers
( S e c. III  C).  T h e tr a d e- o ff b et w e e n t h e Fis h er i nf or m a-
ti o n t h at  Ali c e a n d  B o b, r es p e cti v el y, h a v e  wit h r es p e ct t o
eit h er p ar a m et er is t h e n q u a nti fi e d b y a v al u e t h at d e p e n ds
o n t h e c o m m ut at or of t h e g e n er at ors of t h e t w o p ar a m e-
t ers ( T h e or e m 3).  T h e a p p e ar a n c e of t h e c o m m ut at or i n
t his e x pr essi o n r ei nf or c es its c e ntr al r ol e i n q u a ntif yi n g
t h e i n c o m p ati bilit y of p h ysi c al o bs er v a bl e q u a ntiti es.  O ur
m ai n ti m e- e n er g y tr a d e- o ff r el ati o n c a n b e r e c o v er e d fr o m
t h e  m or e g e n er al  T h e or e m 3 b y pl u g gi n g i n t h e l o c al g e n-
er at ors f or ti m e a n d e n er g y.  W hil e  T h e or e m 3 a p p e ars t o
b e ti g ht  w h e n e v er t h e  R o b erts o n- We yl u n c ert ai nt y r el a-
ti o n ( 6 6) is s at ur at e d f or t h e t w o g e n er at ors, t h e b o u n d
c a n li k el y b e i m pr o v e d  w h e n c o nsi d eri n g t w o g e n er at ors
t h at h a v e a s m all c o m m ut at or.  We als o pr es e nt a s u ffi-
ci e nt c o n diti o n u n d er  w hi c h a tr a d e- o ff r el ati o n f or a n y
t w o p ar a m et ers c a n b e o bt ai n e d i n t h e f or m of a n e q u alit y,
mirr ori n g t h e e q u alit y st at e m e nt i n o ur  m ai n tr a d e- o ff r el a-
ti o n f or t h e ti m e a n d e n er g y p ar a m et ers.  O n e  mi g ht h a v e
t h o u g ht t h at e q u alit y i n o ur g e n er al u n c ert ai nt y r el ati o n
w o ul d h a p p e n o nl y if t h e p ar a m et ers ar e c o m pl e m e nt ar y i n
t h e s e ns e of S e c. II  B a n d Fi g. 5 ; i n f a ct, it s u ffi c es t h at t h e
p ar a m et ers o b e y s o m e s uit a bl e c o m pl e m e nt arit y r el ati o n
o n t h e s u p p ort of t h e c o m pl e m e nt ar y c h a n n el.  T h er ef or e,
e q u alit y i n o ur g e n er al u n c ert ai nt y r el ati o n d o es n ot si m-
pl y d e p e n d o n t h e str u ct ur e of t h e p ar a m et ers a , b , b ut als o
o n t h e n ois y c h a n n el N .
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4.  B o u n ds o n t h e q u a nt u m  Fis h er i nf or m ati o n

C o m p uti n g t h e q u a nt u m Fis h er i nf or m ati o n f or g e n er al
st at es i n v ol v es t h e c al c ul ati o n of t h e s y m m etri c l o g arit h-
mi c d eri v ati v e i n  E q. ( 9).  T his o bj e ct is str ai g htf or w ar d t o
d et er mi n e f or p ur e st at es, it is si m pl e  w h e n r e pr es e nt e d
i n t h e di a g o n al b asis of t h e st at e, a n d it c a n b e c o m-
p ut e d usi n g n u m eri c al  m et h o ds s u c h as t h e  B art els- St e w art
al g orit h m [ 7 7 ].  H o w e v er, i n t h e a bs e n c e of a si m pl e di a g-
o n al r e pr es e nt ati o n of t h e st at e, it is i n g e n er al di ffi c ult
t o c h ar a ct eri z e a n al yti c all y t h e Fis h er i nf or m ati o n or t o
d eri v e us ef ul b o u n ds o n t h e Fis h er i nf or m ati o n t h at a p pl y
i n g e n er al s etti n gs of  mi x e d st at es, es p e ci all y if t h e st at e
is r a n k d e fi ci e nt or cl os e t o t h e b o u n d ar y of st at e s p a c e.
O ur r es ults pr o vi d e a n alt er n ati v e e x pr essi o n f or t h e Fis h er
i nf or m ati o n i n t h e s c e n ari o of Fi g. 1 .  C o m bi n e d  wit h t h e
p o w erf ul s e mi d e fi nit e  m et h o ds f or t h e Fis h er i nf or m ati o n
r e vi e w e d i n  A p p e n di x C ,  w e pr o vi d e a g e n er al t o ol b o x t o
c h ar a ct eri z e t h e Fis h er i nf or m ati o n f or  mi x e d st at es i n a
v ari et y of sit u ati o ns. F or i nst a n c e, f or a n i nt er a cti n g  m a n y-
b o d y s yst e m s u bj e ct t o n ois e t h at a cts l o c all y, t h e n ois e
pr o c ess  mi g ht b e  w ell a p pr o xi m at e d b y a n e n vir o n m e nt
t h at is s m all r el ati v e t o t h e f ull  m a n y- b o d y s yst e m. I n t his
c as e, t h e c o m p ut ati o n of t h e Fis h er i nf or m ati o n o n  E v e’s
e n d h a p p e ns o n a s m all er- di m e nsi o n al s yst e m.  T his o bs er-
v ati o n is, f or i nst a n c e, a  m ai n c o m p o n e nt of o ur b o u n d
( 1 1 8).

B y a p pl yi n g k n o w n Fis h er i nf or m ati o n b o u n ds o n  E v e’s
s yst e m, o ur tr a d e- o ff r el ati o n e n a bl es us t o str ai g htf or-
w ar dl y o bt ai n a n o p p osit e b o u n d f or t h e Fis h er i nf or m ati o n
of  B o b’s n ois y st at e (s e e S e c. V ). ( U p p er b o u n ds o n
t h e Fis h er i nf or m ati o n c a n b e di ffi c ult t o o bt ai n; s e e, f or
i nst a n c e,  R efs. [3 1 ,7 8 ].)  A n e x a m pl e of s u c h a b o u n d t o
a p pl y is t h e d at a- pr o c essi n g i n e q u alit y f or t h e Fis h er i nf or-
m ati o n [ 1 9 ]: f urt h er pr o c essi n g of a st at e t h at h as b e e n
e x p os e d t o t h e u n k n o w n p ar a m et er c a n o nl y d e cr e as e t h e
s e nsiti vit y  wit h r es p e ct t o t h at p ar a m et er.  T his pr o c e d ur e is
us ef ul  w h e n  E v e o bt ai ns a st at e t h at is n ot di a g o n al i n t h e
c o m p ut ati o n al b asis,  m a ki n g t h e Fis h er i nf or m ati o n h ar d er
t o c o m p ut e. I n s u c h c as es,  w e c a n d e p h as e  E v e’s st at e t o
s et all t h e o ff- di a g o n al  m atri x el e m e nts t o z er o.  T h e r es ult-
i n g Fis h er i nf or m ati o n f or  E v e c a n o nl y d e cr e as e; b y o ur
tr a d e- o ff r el ati o n t his i m m e di at el y yi el ds a n u p p er b o u n d
o n  B o b’s Fis h er i nf or m ati o n.  T his b o u n d, f or i nst a n c e,
f a cilit at es t h e c o m p ut ati o n of t h e s e nsiti vit y l oss of a st at e
e x p os e d t o  w e a k a m plit u d e- d a m pi n g n ois e, as dis c uss e d i n
S e c. VIII .

5.  M etr ol o gi c al c o d es

O ur  m ai n u n c ert ai nt y r el ati o n l e a ds t o n e c ess ar y a n d
s u ffi ci e nt c o n diti o ns f or  w h e n a cl o c k st at e l os es z er o
s e nsiti vit y  w h e n a gi v e n n ois y c h a n n el is a p pli e d ( S e c.
VII ).  T h es e c o n diti o ns ar e a  w e a k er v ersi o n of t h e  K nill-
L a fl a m m e c o n diti o ns f or q u a nt u m err or c orr e cti o n.  Gi v e n

a cl o c k st at e v e ct or |ψ a n d a  H a milt o ni a n H ,  w e c a n c o n-
si d er t h e virt u al q u bit L s p a n n e d b y t h e v e ct ors |ψ a n d
H |ψ .  T h e cl o c k st at e v e ct or |ψ l os es n o s e nsiti vit y u n d er
t h e a p pli c ati o n of a n ois y c h a n n el  wit h  Kr a us o p er at ors

{E k } if a n d o nl y if all o p er at ors of t h e f or m E
†
k E k ,  w h e n

pr oj e ct e d o nt o t h e virt u al q u bit, d o n ot h a v e a n y o v erl a p
wit h t h e P a uli- Z o p er at or o n t h e virt u al q u bit. It  w o ul d
b e, i n pri n ci pl e, p ossi bl e t o pr o v e t h es e z er o s e nsiti vit y-
l oss c o n diti o ns dir e ctl y o n  Ali c e’s a n d  B o b’s s yst e ms,
wit h o ut i n v o ki n g o ur tr a d e- o ff r el ati o n; h o w e v er, c h ar a c-
t eri zi n g  w h e n  E v e’s Fis h er i nf or m ati o n is z er o pr o vi d es a n
i m m e di at e pr o of  w h os e si m pli cit y  w e h a v e n ot b e e n a bl e
t o  m at c h  wit h alt er n ati v e t e c h ni q u es.

T h e z er o s e nsiti vit y-l oss c o n diti o ns ( 1 4 8) b e ar si mil ari-
ti es  wit h cl assi c al c o d es,  w h er e t h er e is o nl y a c o m m ut a-
ti v e al g e br a of o bs er v a bl es t h at o n e  wis h es t o r e pr o d u c e
[4 8 ,5 0 ]. I nt uiti v el y, t h e c o n diti o ns si m pl y e ns ur e t h at t h er e
is a  m e as ur e m e nt o n  B o b’s s yst e m t h at  will r e v e al t h e ti m e
p ar a m et er as  w ell as t h e l o c al ti m e s e nsi n g o bs er v a bl e o n
Ali c e’s s yst e m. I n c o ntr ast t o f ull y q u a nt u m err or c orr e c-
ti o n, h o w e v er, t h er e is i n g e n er al n o r e c o v er y o p er ati o n t h at
will r est or e t h e p ur e cl o c k st at e a c c ur at el y t o first or d er
i n t h e p ar a m et er (s e e S e c. VII  H 1 f or a si m pl e c o u nt er e x-
a m pl e).  A n i ntri g ui n g as p e ct of t h e z er o s e nsiti vit y-l oss
c o n diti o ns ar e t h at t h e y d o n ot a p p e ar t o b e f or m all y e q ui v-
al e nt t o q u a nt u m err or c orr e cti o n  wit h r es p e ct t o s p e ci fi c
s et of n ois e o p er at ors. ( T h e r es ults of  R efs. [ 2 2 ,5 2 ] a p p e ar
t o i n di c at e t h at it  mi g ht b e p ossi bl e t o i m pl e m e nt c ert ai n
m etr ol o gi c al c o d es as a n err or- c orr e cti n g c o d e i n v ol vi n g
a n cill ar y s yst e ms.) I n s o m e c as es, s u c h as t h e q u bit e x a m-
pl e of S e c. VII  H 1 , t h e cl o c k st at e c a n b e t h o u g ht of as
a n err or- c orr e cti n g c o d e t h at c orr e cts o nl y a c ert ai n t y p e
of err or ( X or Y P a uli err ors).  B ut t his is n ot g e n er all y t h e
c as e —t h er e ar e e x a m pl es of a cl o c k st at e a n d a ( hi g hl y
n o nl o c al)  H a milt o ni a n t h at f ul fill t h e  m etr ol o gi c al c o d e
c o n diti o n f or l o w- w ei g ht err ors, b ut t h at ar e n ot q u a nt u m
err or- c orr e cti n g c o d es  wit h r es p e ct t o n eit h er l o w- w ei g ht
X err ors n or l o w- w ei g ht Z err ors ( S e c. VII  H 2 ).

T h e c o n diti o ns f or z er o s e nsiti vit y l oss ar e cl os el y
r el at e d t o t h e r e c e nt s eri es of  w or ks d et aili n g h o w t o us e
q u a nt u m err or c orr e cti o n f or  m etr ol o g y i n t h e pr es e n c e
of n ois e [ 2 1 ,2 2 ,5 2 ,7 2 ,7 3 ,7 9 ,8 0 ].  T h e  m ai n di ff er e n c e  wit h
o ur r es ults is t h e s etti n g t h at is b ei n g c o nsi d er e d.  We as k
w hi c h i niti al cl o c k st at es o n e c a n pr e p ar e o n t h e cl o c k s ys-
t e m s u c h t h at n o s e nsiti vit y is l ost  w h e n a n ois y c h a n n el is
a p pli e d ( a n d  w h at t h e ass o ci at e d o pti m al s e nsi n g  m e as ur e-
m e nt aft er t h e a p pli c ati o n of t h e n ois y c h a n n el is),  w h er e as
t h e  m e nti o n e d r ef er e n c es c o nsi d er t h e s etti n g  w h er e, d ur-
i n g t h e ti m e a pr o b e s yst e m is e x p os e d t o t h e si g n al a n d
t h e c o nti n u o us n ois e, o n e c a n c o ntr ol t h e pr o b e [8 1 ] t o
r e p e at e dl y a p pl y t h e r e c o v er y pr o c e d ur e ass o ci at e d  wit h
t h e q u a nt u m err or- c orr e cti n g c o d e.

M etr ol o gi c al c o d es  mi g ht b e us ef ul f or a n cill ar y  m e a-
s ur e m e nts of err or s y n dr o m es [ 8 2 ].  C o nsi d er a n a n cill ar y
q u dit ( of di m e nsi o n gr e at er t h a n t w o)  w hi c h e xtr a cts a

0 4 0 3 3 6- 4 2



TI M E- E N E R G Y  U N C E R T AI N T Y  R E L A TI O N. . . P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

bit- v al u e d err or s y n dr o m e vi a a n e nt a n gli n g g at e, c orr e-
l ati n g a p air of st at es |ψ , |ξ wit h r es p e cti v e bi n ar y s y n-
dr o m e v al u es 0, 1. If t h e a n cill ar y s u bs p a c e p arti ci p ati n g i n
s y n dr o m e e xtr a cti o n s atis fi es t h e z er o s e nsiti vit y-l oss c o n-
diti o ns ( 1 4 8) a g ai nst p h ysi c al n ois e, t h e n, b y d e fi niti o n, a
m e as ur e m e nt i n t h e {|ψ , |ξ } b asis  will n ot b e a ff e ct e d b y
s u c h n ois e. I n ot h er  w or ds, t h e l oss c o n diti o ns e ns ur e pr o-
t e cti o n a g ai nst X -t y p e l o gi c al n ois e, yi el di n g  m or e r o b ust
s y n dr o m e e xtr a cti o n usi n g a Z -t y p e  m e as ur e m e nt.  H o w-
e v er, s u c h c o n diti o ns d o n ot pr e cl u d e a n y Y -t y p e l o gi c al
n ois e.  T h e y als o d o n ot g u ar a nt e e f a ult t ol er a n c e,  w hi c h
w o ul d r e q uir e t h at a n cill a err ors n ot s pr e a d t o a n y l o gi c al
e n c o di n g vi a b a c k a cti o n.

6.  N u m eri cs f or  m a n y- b o d y s yst e ms

C h ar a ct eri zi n g t h e q u a nt u m Fis h er i nf or m ati o n of a st at e
e x p os e d t o a n ois e c h a n n el usi n g t h e b o u n d pr es e nt e d i n
S e c. V A is c o n v e ni e nt i n t h e s etti n g of a  m a n y- b o d y s ys-
t e m s u bj e ct t o n ois e t h at a cts l o c all y. I n t h e c as e of n q u bits
pr e p ar e d i n a p er m ut ati o n-i n v ari a nt st at e a n d e x p os e d t o a n
II D a m plit u d e- d a m pi n g n ois e c h a n n el,  w e e m piri c all y fi n d
t h at t h e b o u n d ( 1 1 8) wit h k = n a p p e ars r e as o n a bl y ti g ht
f or t h e st at es t h at  w e i n v esti g at e d a n d f or s m all v al u es of
t h e n ois e p ar a m et er p ; f urt h er m or e, f or a s el e cti o n of st at es
i n cl u di n g t h e  G H Z st at e, t h e b o u n d a p p e ars t o r e m ai n ti g ht
e v e n i n t h e r e gi m e of hi g h v al u es of p .  O ur b o u n d c a n b e
c o m p ut e d f or s yst e ms of si z e n 5 0 o n a st a n d ar d d es kt o p
c o m p ut er.

If i nst e a d of o n-sit e t er ms  w e c o nsi d er o nl y Isi n g-t y p e
n e ar est- n ei g h b or i nt er a cti o ns,  w e c a n st u d y t h e r o b ust-
n ess of t h e e x a m pl e “ m etr ol o gi c al c o d e ” i ntr o d u c e d i n
S e c. VII F t o a n II D a m plit u d e- d a m pi n g c h a n n el  wit h l o c al
n ois e p ar a m et er p .  T his st at e r et ai ns its s e nsiti vit y aft er a
si n gl e l o c at e d err or.  O ur n u m eri cs s h o w t h at i n t h e pr es-
e n c e of II D n ois e, t h e d e cr e as e i n t h e q u a nt u m Fis h er
i nf or m ati o n s c al es o nl y as p 2 , a n d n ot li n e arl y i n p as
f or t h e ot h er st u di e d st at es  wit h si mil ar s e nsiti vit y.  We
o bs er v e t h at if  w e e x p os e t h e i nt er a cti n g s yst e m t o c o n-
ti n u o us a m plit u d e- d a m pi n g n ois e, t h e n t h e n ois e p art a n d
t h e u nit ar y p art of t h e  Li n d bl a d e v ol uti o n d o n ot c o m m ut e
as s u p er o p er at ors (i. e., t h e s etti n g is n ot t h at of p h as e-
c o v ari a nt n ois e); it is t h e n p ossi bl e t h at t h e a d v a nt a g es of
t h e  m etr ol o gi c al c o d e st at e  mi g ht n ot p ersist i n t h e s etti n g
of c o nti n u o us n ois e.

B.  O utl o o k

O ur tr a d e- o ff r el ati o n is p er h a ps  m ost r el e v a nt i n a n
i nt er m e di at e r e gi m e  w h er e t h e cl o c k is e x p os e d t o a si g n al
wit h o ut t h e p ossi bilit y f or i nt er mitt e nt q u a nt u m c o ntr ol.
I n s u c h c as es, t h e n ois e is e x p e ct e d t o s p oil a n y  H eis e n-
b er g s c ali n g t h at c o ul d b e a c hi e v e d usi n g q u a nt u m err or-
c orr e cti n g s c h e m es d u e t o t h e l a c k of r e c o v er y o p er ati o ns
d uri n g t h e e v ol uti o n (s e e, e. g.,  R efs. [ 2 2 ,3 1 ]). Pr o vi d e d t h e
s etti n g c a n b e  m o d el e d  wit h a si n gl e n ois y c h a n n el, o ur

r es ults pr es e nt a n alt er n ati v e e x pr essi o n f or t h e s e nsiti v-
it y of t h e n ois y pr o b e i n t his r e gi m e  w h er e t h e s e nsiti vit y
is n ot y et d o mi n at e d b y t h e as y m pt oti c s c ali n g.  O ur r es ults
mi g ht t h er ef or e h el p i d e ntif y  w hi c h st at es pr es e nt s u ffi ci e nt
r o b ust n ess t o t h e n ois e t o pr es e nt a n a d v a nt a g e i n s e nsiti v-
it y  wit h r es p e ct t o c o m m o nl y us e d st at es (s u c h as a  G H Z
st at e or a s pi n- c o h er e nt st at e).

I n t h e sit u ati o n  w h er e t h e cl o c k e v ol v es a c c or di n g t o
a  Li n d bl a di a n  m ast er e q u ati o n, a n d t h e  H a milt o ni a n a n d
n ois e p arts of t h e  Li n d bl a di a n f ail t o c o m m ut e as s u p er-
o p er at ors, o n e  mi g ht e x p e ct i n c ert ai n c as es t o still b e
a bl e t o c o nsi d er ti m e- d e p e n d e nt n ois e usi n g t h e f oll o w-
i n g tri c k.  L et us i d e ntif y t h e s yst e m A as a f ull c o p y of
t h e bi p artit e s yst e m B ⊗ E , a n d l et t h e u nit ar y e v ol uti o n of
|ψ ( t) c o v er b ot h s yst e ms.  A ti m e- d e p e n d e nt c h a n n el E t(·)
c a n b e  writt e n as E t(·) = trE U (t)(·)U † (t) w h er e all t h e
ti m e d e p e n d e n c e is e n c o d e d i n t h e u nit ar y U (t) a n d  w h er e
t h e e n vir o n m e nt s yst e m E is c h os e n s uit a bl y.  We t h e n
s el e ct t h e n ois y c h a n n el N A → B = trE t h at si m pl y p erf or ms
t h e p arti al tr a c e o v er E ; t h e c o m pl e m e nt ar y c h a n n el is
c orr es p o n di n gl y N A → E = trB .  W hil e  writi n g a  M ar k o vi a n
m ast er e q u ati o n i n t his f or m  mi g ht r e q uir e a h u g e e n vi-
r o n m e nt s yst e m E wit h r a pi dl y  mi xi n g i nt er n al d y n a mi cs,
w e e x p e ct t h at o ur f or m alis m c a n still a c c o u nt f or si m pl e
ti m e d e p e n d e n c e i n t h e n ois y c h a n n el i n t his  w a y.  N ot e
als o t h at t h e u nit ar y U (t) o nl y h as t o a p pr o xi m at e o n B
t h e n ois y c h a n n el E t l o c all y t o first or d er ar o u n d a fi x e d
v al u e of t h e p ar a m et er ( e. g., t = 0) i n or d er t o d et er mi n e
t h e Fis h er i nf or m ati o n.

A p ot e nti al d o m ai n of a p pli c ati o n of o ur  m ai n u n c er-
t ai nt y r el ati o n is f or q u a nt u m t h er m o m etr y [8 3 ],  w h er e t h e
g o al is t o esti m at e t h e t e m p er at ur e of a q u a nt u m s yst e m.
I n t h e si m pl e s etti n g of q u a nt u m t h er m o m etr y  w h er e t h e
t e m p er at ur e of t h e s yst e m is k n o w n t o s o m e a p pr o xi m a-
ti o n, a n d a  m e as ur e m e nt is p erf or m e d i n or d er t o r e fi n e
t h at k n o wl e d g e, t h e o pti m al  m e as ur e m e nt t o c arr y o ut
is a n e n er g y  m e as ur e m e nt [8 3 ]. Si n c e o ur  m ai n r es ult
( 1) i n v ol v es t h e s e nsiti vit y of a p art y  wit h r es p e ct t o
a p ar a m et er r e pr es e nti n g t h e e n er g y,  w hi c h is o pti m all y
m e as ur e d usi n g t h e  H a milt o ni a n of t h e n ois el ess s yst e m,
w e e x p e ct t h at o n e c a n l e v er a g e o ur  m ai n r es ults t o yi el d
n e w s e nsiti vit y b o u n ds f or q u a nt u m t h er m o m etr y.

O ur r es ults ar e als o li k el y t o b e r el e v a nt i n sit u ati o ns
w h er e o nl y a r estri ct e d s et of o p er at ors c a n b e  m e as ur e d
o n a s yst e m. S u c h a r estri cti o n c o ul d b e i m p os e d b y li mit a-
ti o ns i n c o ntr ol f or a gi v e n e x p eri m e nt al pl atf or m. S u p p os e
w e pr e p ar e a cl o c k st at e v e ct or |ψ e v ol vi n g n ois el essl y
a c c or di n g t o a  H a milt o ni a n H .  We  w o ul d li k e t o  m e a-
s ur e t h e cl o c k at ti m e t ≈ t0 , b ut  w e ar e o nl y p er mitt e d
t o us e a  m e as ur e m e nt fr o m a gi v e n s et of  m e as ur e m e nts.
W h at is t h e o pti m al l o c al s e nsiti vit y t h at  w e c a n a c hi e v e ?
S h o ul d t h e s et of all o w e d  m e as ur e m e nt o p er at ors f or m
a n al g e br a, t h e n t h e pr o bl e m is e q ui v al e nt t o s e n di n g
t h e cl o c k t hr o u g h a c h a n n el t h at r e pr es e nts t h e pr oj e c-
ti o n o nt o t h at al g e br a.  O ur r es ults t h e n i m pl y t h at t h e
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r es ulti n g s e nsiti vit y tr a d es o ff e x a ctl y  wit h t h e s e nsiti v-
it y t h at o n e c a n a c hi e v e  wit h t h e s et of  m e as ur e m e nts
i n t h e c o m m ut a nt of t h at al g e br a,  wit h r es p e ct t o t h e
c o m pl e m e nt ar y p ar a m et er η .

It  mi g ht b e p ossi bl e t o e xt e n d o ur r es ults t o t h e  m ulti p a-
r a m et er  m etr ol o g y r e gi m e  w h er e  m or e t h a n o n e p ar a m et er
is esti m at e d b y  B o b.  T h er e ar e k n o w n u n c ert ai nt y r el a-
ti o ns t h at d et er mi n e tr a d e- o ffs b et w e e n t h e pr e cisi o n t o
w hi c h i n di vi d u al p ar a m et ers c a n b e si m ult a n e o usl y esti-
m at e d b y a si n gl e p art y [ 1 8 ,7 2 ,8 4 – 8 7 ]. I n f a ct, t h e t a n d η
p ar a m et ers f or m a s o- c all e d D-i n v ari a nt  m o d el [8 6 ,8 8 ,8 9 ],
t h e l att er r ef erri n g t o a  m ulti p ar a m et er q u a nt u m st atisti c al
m o d el i n  w hi c h t h e t a n g e nt s p a c e is i n v ari a nt u n d er t a ki n g
s y m m etri c l o g arit h mi c d eri v ati v es of t h e p ossi bl e g e n-
er at e d st at e- e v ol uti o n dir e cti o ns. D -i n v ari a nt  m o d els ar e
i nt er esti n g i n  m ulti p ar a m et er q u a nt u m  m etr ol o g y, b e c a us e
di ff er e nt s e nsiti vit y b o u n ds,  w hi c h i n g e n er al ar e di ffi c ult
t o r el at e, c a n b e s h o w n t o c oi n ci d e [8 6 ]. It s e e ms pl a u-
si bl e t h at k n o w n  m ulti p ar a m et er u n c ert ai nt y r el ati o ns c a n
b e e xt e n d e d t o t h e pr es e nt bi p artit e s etti n g, eit h er  w h er e all
p ar a m et ers ar e si m ult a n e o usl y esti m at e d b y  B o b  w hil e  E v e
si m ult a n e o usl y esti m at es a s et of c o m pl e m e nt ar y p ar a m e-
t ers, or  w h er e a n u m b er of p arti es esti m at e e a c h i n di vi d u al
p ar a m et er,  w h er e e a c h p art y  mi g ht b e p art of t h e o ut p ut or
t h e e n vir o n m e nt.

O ur  m ai n u n c ert ai nt y r el ati o n  mi g ht o ff er a c o n n e cti o n
b et w e e n t h e s etti n g of q u a nt u m  m etr ol o g y hi n d er e d b y a
n ois y q u a nt u m c h a n n el a n d t h e s etti n g of  m ulti p ar a m e-
t er, n ois el ess q u a nt u m  m etr ol o g y. It a p p e ars t h at a k e y
i n gr e di e nt f or o ur  m ai n u n c ert ai nt y r el ati o n is t h at t h e t
a n d η p ar a m et ers f or m a D -i n v ari a nt  m o d el, i n t h e s e ns e
of t h e pr e c e di n g p ar a gr a p h.  B y c o nstr u cti o n, o ur u n c er-
t ai nt y r el ati o n a p pli es t o a n y p ur e st at e D -i n v ari a nt  m o d el
c o nsisti n g of t w o c o m pl e m e nt ar y g e n er at ors r el at e d b y
E q. ( 2 0), gi v e n t h at  w e  m a d e n o s p e ci fi c ass u m pti o ns a b o ut
t h e p ar a m et er t or its l o c al  H er miti a n g e n er at or H .

H o w e v er, it r e m ai ns u n cl e ar  w h et h er o ur r es ults e xt e n d
t o g e n er al  m ulti p ar a m et er D -i n v ari a nt  m o d els, as o ur pr o of
s e e ms t o utili z e t h e f a ct t h at t h e s p a c e is s p a n n e d b y
o nl y t w o c o m pl e m e nt ar y g e n er at ors T a n d H . D -i n v ari a nt
m o d els h a v e a ri c h g e o m etri c str u ct ur e [ 8 8 ],  w hi c h  mi g ht
pr o v e a n ess e nti al c o n c e pt u al c o m p o n e nt of o ur r es ults;
s u c h c o n n e cti o ns n e v ert h el ess r e m ai n t o b e b ett er u n d er-
st o o d.  A f urt h er c o n n e cti o n t o D -i n v ari a nt  m o d els a p p e ars
i n  E q. ( 6 9),  w hi c h a p p e ars t o b e a D -i n v ari a n c e c o n-
diti o n r estri ct e d o nt o t h e s u p p ort of t h e c o m pl e m e nt ar y
c h a n n el N . I n f a ct, o n e c a n vi e w  B o b’s a n d  E v e’s  m e a-
s ur e m e nts T B a n d E as  m e as ur e m e nt o p er at ors N † (T B )
a n d N † (E ) o n  Ali c e’s s yst e m t hr o u g h t h e a cti o n of t h e
a dj oi nt c h a n n els N † a n d N † .  We c o ul d as k  w h et h er o ur
u n c ert ai nt y r el ati o n tr a nsl at es i nt o a tr a d e- o ff i n h o w t h e
t w o p ar a m et ers t a n d η c a n b e esti m at e d b y  Ali c e, if t h e
esti m ati o n of t (r es p e cti v el y, η ) is r e q uir e d t o e m pl o y a n
o bs er v a bl e i n t h e s et of o p er at ors t h at is s p e ci fi e d as t h e
i m a g e of N † (r es p e cti v el y, of N † ). It is n ot cl e ar if t his

is t h e c as e, as t h e q u a nt u m Fis h er i nf or m ati o n att ai n e d
b y t h e o bs er v a bl e N † (T B ) [r es p e cti v el y, N † (E )] o n t h e
st at e ψ is n ot n e c ess aril y e x p e ct e d t o  m at c h t h e c orr e-
s p o n di n g v al u e of t h e q u a nt u m Fis h er i nf or m ati o n of T B

o n N [ψ ] (r es p e cti v el y, of E o n N [ψ ]). It is t h us u n cl e ar
if or h o w o ur  m ai n u n c ert ai nt y r el ati o n is c o n n e ct e d  wit h
g e n er al b o u n ds t h at h ol d i n t h e  m ulti p ar a m et er r e gi m e,
s u c h as  m ulti p ar a m et er v ersi o ns of t h e q u a nt u m  Cr a m ér-
R a o b o u n d [ 8 6 ] or t h e  Gill- M ass ar i n e q u alit y [9 0 ,9 1 ].  We
mi g ht e x p e ct t h at d e e p er c o n n e cti o ns c a n b e d e v el o p e d
b et w e e n t h e s etti n g of p ar a m et er esti m ati o n aft er t h e a p pli-
c ati o n of a n ois y c h a n n el a n d n ois el ess  m ulti p ar a m et er
esti m ati o n.

Als o, o ur r es ults a p pl y l o c all y t o first or d er ar o u n d
a gi v e n fi x e d v al u e of t h e u n k n o w n p ar a m et er;  w h et h er
si mil ar r es ults c a n b e d eri v e d i n t h e gl o b al p ar a m et er
esti m ati o n r e gi m e [ 8 9 ,9 2 – 9 5 ] is u n k n o w n.  Gl o b al p ar a m-
et er esti m ati o n  mi g ht b e  m or e r el e v a nt f or a p pli c ati o ns t o
at o mi c q u a nt u m cl o c ks [ 9 6 ,9 7 ].  We als o a nti ci p at e e xt e n-
si o ns of o ur r es ults t o t h e fi nit e-s a m pl e r e gi m e  w h er e t h e
q u a nt u m Fis h er i nf or m ati o n  mi g ht n o l o n g er a c c ur at el y
q u a ntif y t h e s e nsiti vit y of a q u a nt u m st at e t o a n u n k n o w n
p ar a m et er [ 9 8 ].

Al o n g a si mil ar v ei n, t h er e ar e s etti n gs  w h er e o n e
s e e ks t o c o m p ut e di ff er e nt v ari a nts of t h e q u a nt u m Fis h er
i nf or m ati o n. F or i nst a n c e, t h e s o- c all e d ri g ht-l o g arit h mi c
d eri v ati v e (s e e, e. g.,  R ef. [8 7 ]) is oft e n us e d t o b o u n d t h e
st a n d ar d q u a nt u m Fis h er i nf or m ati o n.  Alt er n ati v e s e nsiti v-
it y  m e as ur es i n cl u d e t h e tr u n c at e d Fis h er i nf or m ati o n [5 4 ],
w hi c h n ot o nl y gi v e us ef ul b o u n ds o n t h e st a n d ar d q u a n-
t u m Fis h er i nf or m ati o n b ut c a n b e  m or e r el e v a nt i n t h e
r e gi m e of li mit e d  m e as ur e m e nt d at a.  A n i nt er esti n g q u es-
ti o n  w o ul d b e t o st u d y  w h et h er o ur r es ults e xt e n d t o s u c h
g e n er ali z e d s e nsiti vit y  m e as ur es.

E ntr o pi c u n c ert ai nt y r el ati o ns pl a y a c e ntr al r ol e i n
q u a nt u m cr y pt o gr a p h y [ 1 1 ,1 5 ,1 6 ,9 9 ], a n d cr y pt o gr a p hi c
s c h e m es h a v e b e e n st u di e d f or q u a nt u m  m etr ol o g y [ 1 0 0 ].
It is p ossi bl e t h at o ur p ar a m et er- esti m ati o n tr a d e- o ff c a n
si mil arl y f or m t h e b asis of cr y pt o gr a p hi c s c h e m es i n  w hi c h
a p ar a m et er e n c o d e d i n a q u a nt u m st at e is t o b e s hi el d e d
fr o m a  m al e v ol e nt e a v es dr o p p er. F urt h er m or e, t h e Fis h er
i nf or m ati o n is cl os el y r el at e d t o r el ati v e e ntr o p y  m e a-
s ur es [ 8 7 ,1 0 1 ,1 0 2 ];  w e  mi g ht e x p e ct o ur tr a d e- o ff r el a-
ti o n t o tr a nsl at e i nt o a st at e m e nt a b o ut  R é n yi r el ati v e
e ntr o pi es.

T h e d e v el o p m e nt of q u a nt u m at o mi c cl o c ks as ultr a pr e-
cis e ti m e r ef er e n c es [ 1 0 3 ]  m a k es it all t h e  m or e i m p ort a nt
t o a c hi e v e a t h or o u g h u n d erst a n di n g of h o w n ois e c a n
b e pr e v e nt e d fr o m s p oili n g s e nsiti vit y.  We als o a nti ci-
p at e t h at o ur r es ults  will b e r el e v a nt f or r e c e ntl y d e v el-
o p e d at o mi c cl o c ks b uilt  wit h a l atti c e of i nt er a cti n g
at o ms [ 9 ] a n d c orr el at e d  m a n y- b o d y s e nsi n g pr o b es [6 ,
1 0 4 ], as t h es e pl atf or ms  will o ff er n e w p ossi biliti es f or
m etr ol o g y b y e x pl oiti n g t h e str o n g i nt er a cti o ns b et w e e n
t h e p arti cl es.
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A C K N O W L E D G M E N T S

T h e a ut h ors ar e gr at ef ul t o F er n a n d o  Br a n d ã o, J o n at h a n
C o nr a d,  R af ał  D e m k o wi c z- D o br z a ń s ki,  Ri c h ar d  K ü n g,
J o h a n n es  M e y er,  Yi n g k ai  O u y a n g,  R e n at o  R e n n er,  R al p h
Sil v a,  R y a n S w e k e, a n d  N at h a n  Wal k f or dis c ussi o ns.
We  w ar ml y t h a n k  Gi a n  Mi c h el e  Gr af f or his i n v al u a bl e
i n p ut f or o ur pr o ofs i n i n fi nit e- di m e nsi o n al s p a c es.  M.
W. a c k n o wl e d g es s u p p ort fr o m t h e S wiss  N ati o n al S ci-
e n c e F o u n d ati o n ( S N S F) vi a a n  A m bi zi o n e F ell o ws hi p
( P Z 0 0 P 2 _ 1 7 9 9 1 4). J. M. R. a c k n o wl e d g es s u p p ort fr o m t h e
S wiss  N ati o n al S ci e n c e F o u n d ati o n Si n er gi a gr a nt  C R SII 5
1 8 6 3 6 4.  M. W. a n d J. M. R. a c k n o wl e d g e t h e  N ati o n al  C e n-
tr e of  C o m p et e n c e i n  R es e ar c h  Q SI T. P h. F. a n d J. E.
a c k n o wl e d g e s u p p ort fr o m t h e  D F G ( F O R 2 7 2 4,  C R C
1 8 3,  EI 5 1 9/ 2 1- 1), t h e F Q Xi, t h e  Q u a nt E R A ( H Q C C),
t h e  B M B F ( R e alisti Q,  H y bri d,  M u ni Q C- At o ms) t h e  E R C
( D e b u g Q C) a n d t h e  Ei nst ei n  R es e ar c h  U nit o n q u a nt u m
d e vi c es.  T his r es e ar c h is als o p art of t h e  M u ni c h  Q u a n-
t u m  Vall e y ( K 8),  w hi c h is s u p p ort e d b y t h e  B a v ari a n st at e
g o v er n m e nt  wit h f u n ds fr o m t h e  Hi g ht e c h  A g e n d a  B a y-
er n Pl us.  V. V. A. a c k n o wl e d g es f u n di n g fr o m  N S F  Q L CI
A w ar d  N o.  O M A- 2 1 2 0 7 5 7.  C o ntri b uti o ns t o t his  w or k b y
NI S T, a n a g e n c y of t h e  U. S. g o v er n m e nt, ar e n ot s u bj e ct
t o  U. S. c o p yri g ht.  A n y  m e nti o n of c o m m er ci al pr o d u cts
d o es n ot i n di c at e e n d ors e m e nt b y  NI S T. J. P. a c k n o wl-
e d g es f u n di n g fr o m t h e  U. S.  D e p art m e nt of  E n er g y  O ffi c e
of S ci e n c e ( D E- N A 0 0 0 3 5 2 5,  D E- S C 0 0 2 0 2 9 0,  D E- A C O 2-
0 7 C H 1 1 3 5 9,  D E- S C 0 0 1 8 4 0 7), t h e Si m o ns F o u n d ati o n It
fr o m  Q u bit  C oll a b or ati o n, t h e  Air F or c e  O ffi c e of S ci e n-
ti fi c  R es e ar c h ( F A 9 5 5 0- 1 9- 1- 0 3 6 0), a n d t h e  N ati o n al S ci-
e n c e F o u n d ati o n ( P H Y- 1 7 3 3 9 0 7).  T h e I nstit ut e f or  Q u a n-
t u m I nf or m ati o n a n d  M att er is a n  N S F P h ysi cs Fr o nti ers
C e nt er.

A P P E N DI X  A:  N O T A TI O N,  P R E LI MI N A RI E S,
A N D  A U XI LI A R Y  L E M M A S

We first i ntr o d u c e s o m e pr eli mi n ari es a n d n ot ati o n t h at
will b e us e d t hr o u g h o ut t h e  A p p e n di c es.  All  Hil b ert s p a c es
ar e fi nit e di m e nsi o n al u nl ess ot h er wis e i n di c at e d, a n d all
pr oj e ct ors ar e  H er miti a n.  A p ur e q u a nt u m st at e is a v e c-
t or |ψ i n t h e  Hil b ert s p a c e t h at is n or m ali z e d t o u nit
n or m, a n d t h e t er mi n ol o g y p ur e q u a nt u m st at e is als o us e d
b y e xt e nsi o n f or t h e ass o ci at e d d e nsit y o p er at or |ψ ψ |.
Q u a nt u m st at es ar e p ositi v e s e mi d e fi nit e o p er at ors ρ wit h
u nit tr a c e, tr ( ρ ) = 1.  A s u b n or m ali z e d q u a nt u m st at e is
a p ositi v e s e mi d e fi nit e o p er at or ρ s atisf yi n g tr ( ρ ) 1.
St at es ar e n or m ali z e d t o u nit tr a c e u nl ess e x pli citl y s p e ci-
fi e d as b ei n g s u b n or m ali z e d.

F or a n y  H er miti a n o p er at or O ,  w e d e n ot e b y P O t h e
pr oj e ct or o nt o t h e s u p p ort of O , a n d b y P ⊥

O = 1 − P O its
c o m pl e m e nt. F or a n y p ositi v e s e mi d e fi nit e o p er at or A , w e
d e n ot e b y A − 1 it s  M o or e- P e nr os e ps e u d oi n v ers e, i. e., t h e
o p er at or o bt ai n e d b y t a ki n g t h e i n v ers e o n t h e s u p p ort of A .

We d e n ot e b y A t h e  m a xi m al si n g ul ar v al u e of a n
o p er at or A .  We als o d e fi n e t h e S c h att e n o n e- n or m as

A 1 = tr
√

A † A .
It  will pr o v e c o n v e ni e nt t o “ v e ct ori z e ” o p er at ors b y

vi e wi n g t h e m as v e ct ors i n  Hil b ert- S c h mi dt s p a c e usi n g
t h e f oll o wi n g r e pr es e nt ati o n.  T h e v e ct or s p a c e of o p er at ors
a cti n g o n a  Hil b ert s p a c e H is is o m or p hi c t o H ⊗ H .
L et |1 d e n ot e t h e el e m e nt

d

i= 1

|i ⊗ | i ∈ H ⊗ H , ( A 1)

w h er e {|i }d
i= 1 i s a fi x e d b asis of H .  We d e fi n e t h e “ v e c-

t ori z e d ” r e pr es e nt ati o n of a n y o p er at or A a cti n g o n H as

|A = (A ⊗ 1 )|1 . Si mil arl y,  w e d e fi n e 1 | = d
i= 1 i| ⊗

i| a n d A | = 1 |(A † ⊗ 1 ).  We r e c all t h e us ef ul i d e ntit y

(X ⊗ 1 )|1 = (1 ⊗ X T )|1 , ( A 2)

a n d n ot e t h at |1 = | 1 is t h e v e ct ori z e d o p er at or r e pr e-
s e nt ati o n of t h e i d e ntit y  m atri x 1 .  We d e n ot e a r a n k- o n e
o p er at or |φ ψ | i n t his r e pr es e nt ati o n as |φ , ψ ,  wit h
|φ , ψ = | φ ⊗ (|ψ )∗ a n d φ , ψ | = φ | ⊗ ( ψ |)∗ . T h e
Hil b ert- S c h mi dt i n n er pr o d u ct i n t his n ot ati o n is si m-
pl y tr (A † B ) = A |B .  T h e  m atri x el e m e nts of A i n a n y
b asis {| } ar e als o si m pl y gi v e n b y |A | = , |A .
A s u p er o p er at or E a cti n g o n a n o p er at or M is d e n ot e d
b y E |M .  T h e s u p er o p er at or c o nsisti n g of a l eft  m ul-
ti pli c ati o n b y A a n d a ri g ht  m ulti pli c ati o n b y B , i. e.,
M → A M B , is r e pr es e nt e d b y |M → (A ⊗ B T )|M . T h e
i d e ntit y s u p er o p er at or i d is r e pr es e nt e d b y 1 ⊗ 1 .  Als o,

A |E |B = B |E † |A ∗ ,  w h er e E † i s t h e us u al s u p er o p er-
at or a dj oi nt d e fi n e d b y tr (M E † (N )) = tr(E (M ) N ). I n t h e
f oll o wi n g a n d u nl ess ot h er wis e st at e d, s u p er o p er at ors ar e
e x pr ess e d i n t his r e pr es e nt ati o n, u nl ess t h e y ar e e x pli citl y
a p pli e d o nt o a n o p er at or  wit h t h e n ot ati o n E (·).

We n o w c o m p ut e a f e w q u a ntiti es t h at oft e n r e c ur
t hr o u g h o ut t h es e a p p e n di c es.  L et |ψ b e a st at e v e ct or a n d
c o nsi d er t h e e v ol uti o n ∂ tψ = − i[H , ψ ],  w h er e H is a n y
H er miti a n o p er at or.  L et M b e a n y  H er miti a n o p er at or.  We
h a v e

d ψ

dt

2

= (− i[H , ψ ])2 = − tr ψ ( H ψ H ψ

− H ψ H − ψ H 2 ψ + ψ H ψ H )

= tr( ψ H 2 ) − [tr( ψ H )]2 ; ( A 3)

− i[i[M , ψ ], ψ ] = (M ψ − ψ M ) ψ − ψ ( M ψ − ψ M )

= { M , ψ } − 2 M ψ

= { M − M , ψ }. ( A 4)

T h e n oti o n of S c h ur c o m pl e m e nt  will s er v e  m ulti pl e
ti m es i n t h es e a p p e n di c es, s o  w e st at e it h er e.
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T h e or e m 5 ( P ositi v e s e mi d e fi nit e n ess vi a S c h ur c o m pl e-
m e nt). — l et A ∈ C n × n , B ∈ C m × m b e p ositi v e s e mi d e fi nit e
m atri c es.  L et W ∈ C n × m b e a n ar bitr ar y c o m pl e x  m atri x.
T h e f oll o wi n g st at e m e nts ar e e q ui v al e nt:

(i)
A W

W † B
0 ,

(ii) W P ⊥
B = 0 a n d A W B − 1 W † ,

(iii) P ⊥
A W = 0 a n d B W † A − 1 W .

M or e o v er, (ii) i m pli es P ⊥
A W = 0 a n d (iii) i m pli es

W P ⊥
B = 0.

F or a pr o of, s e e, e. g.,  R ef. [ 1 0 5 ].  Wit h r es p e ct t o t h e
pr o of of si mil ar st at e m e nts i n st a n d ar d t e xt b o o ks,  w e
c a n s e e t h at (ii) i m pli es P ⊥

A W = 0 as f oll o ws: hitti n g t h e
i n e q u alit y  wit h P ⊥

A (·)P ⊥
A a n d n oti n g t h at W B − 1 W † 0,  w e

s e e t h at P ⊥
A W B − 1 W † P ⊥

A = 0,  w hi c h i m pli es P ⊥
A W B − 1 / 2 =

0.  T h er ef or e, P ⊥
A W = 0 usi n g t h e f a ct t h at W P ⊥

B = 0.
Si mil arl y, (iii) i m pli es W P ⊥

B = 0.
N o w  w e pr es e nt a si m pl e  m et h o d t o r el at e o p er at or

i n e q u aliti es b ef or e a n d aft er t h e a p pli c ati o n of a c o m-
pl et el y p ositi v e  m a p.

L e m m a 1 ( P ositi v e s e mi d e fi nit e n ess of bl o c k  m atri c es
u n d er c o m pl et el y p ositi v e  m a ps). — l et A , B , W ∈ C n × n b e
c o m pl e x  m atri c es a n d ass u m e t h at

A W
W † B

0. ( A 5)

L et b e a n y c o m pl et el y p ositi v e  m a p t h at  m a ps o p er at ors
o n C n t o o p er at ors o n C m . T h e n

(A ) (W )
(W † ) (B )

0. ( A 6)

Pr o of. — T h e  m atri x ( A 6) is o bt ai n e d b y a p pl yi n g t h e
c o m pl et el y p ositi v e  m a p i d 2 ⊗ o nt o  E q. ( A 5).

W hil e t h e a b o v e l e m m a is f airl y tri vi al, p air e d  wit h
T h e or e m 5 it e n a bl es us t o s h o w l ess o b vi o us i n e q u aliti es
s u c h as t h e f oll o wi n g.

C or oll ar y 2 (I m a g e of  m atri x s q u ar e d u n d er a s u b u nit al,
c o m pl et el y p ositi v e  m a p). — l et M b e a  H er miti a n o p er a-
t or a n d l et b e a n y c o m pl et el y p ositi v e  m a p t h at s atis fi es

(1 ) 1 . T h e n (M 2 ) [ (M )]2 .

Pr o of. — O bs er v e first t h at
M 2 M
M 1

= M 1
†

M 1 0.  Wit h t h e s u b u nit alit y c o n diti o n o n a n d
L e m m a 1,  w e h a v e

(M 2 ) (M )
(M ) 1

(M 2 ) (M )
(M ) (1 )

0. ( A 7)

T h a n ks t o  T h e or e m 5, t his i m pli es (M 2 ) (M )
1 − 1 (M ) = [ (M )]2 .

A P P E N DI X  B: S O L U TI O N S  O F  T H E
A N TI C O M M U T A T O R  E Q U A TI O N

I n t his  A p p e n di x,  w e bri e fl y r e vi e w t h e s ol uti o ns of t h e
a nti c o m m ut at or e q u ati o n

1

2
{ρ , M } = N , ( B 1)

w h er e M is t h e u n k n o w n o p er at or, N is a fi x e d o p er at or, ρ
is a s u b n or m ali z e d q u a nt u m st at e, a n d {A , B } := A B + B A
d e n ot es t h e a nti c o m m ut at or.

F or a n y s u b n or m ali z e d st at e ρ , it is c o n v e ni e nt t o d e fi n e
t h e  H er miti cit y- pr es er vi n g s u p er o p er at or R ρ a s

R ρ (·) =
1

2
ρ , (·) . (B 2 )

N ot e t h at R ρ i s n eit h er c o m pl et el y p ositi v e n or
tr a c e pr es er vi n g.  T h e o p er at or R ρ i s s elf- a dj oi nt,

si n c e tr (N R ρ (M )) = 1
2

tr(N {ρ , M }) = 1
2

tr({ρ , N }M ) = tr
(R ρ (N ) M ). It is i nt er esti n g t o st u d y t h e s u p er o p er at or R ρ

a s a li n e ar o p er at or i n  Hil b ert- S c h mi dt s p a c e. I n v e ct ori z e d
o p er at or s p a c e, it is r e pr es e nt e d as

R ρ =
1

2
ρ ⊗ 1 + 1 ⊗ ρ T . ( B 3)

T his  m atri x is  H er miti a n a n d p ositi v e, a n d it is p ositi v e
d e fi nit e if a n d o nl y if ρ h as f ull r a n k.  T h e f a ct t h at t h e
v e ct ori z e d  m atri x r e pr es e nti n g R ρ i s p ositi v e is n ot t o b e
c o nf us e d  wit h t h e us u al n oti o n of a s u p er o p er at or b ei n g
p ositi v e,  w hi c h  m e a ns pr es er vi n g t h e p ositi vit y of its ar g u-
m e nt.  H er e, R ρ h as a p ositi v e s e mi d e fi nit e v e ct ori z e d
r e pr es e nt ati o n,  w hi c h  m e a ns t h at M |R ρ |M 0 f or all
o p er at ors |M .

S u p p os e f or a  m o m e nt t h at ρ h as f ull r a n k.  T h e n t h e
s u p er o p er at or R ρ c a n b e i n v ert e d, b e c a us e its v e ct ori z e d
o p er at or  m atri x r e pr es e nt ati o n h as f ull r a n k, a n d  w e d e n ot e
t h e i n v ers e b y R − 1

ρ .  T h e o p er at or M = R − 1
ρ (N ) is t h e n t h e

u ni q u e s ol uti o n t o t h e a nti c o m m ut at or e q u ati o n 1
2
{ρ , M } =

N . If {|k } is a b asis of t h e  Hil b ert s p a c e t h at di a g o n ali z es ρ
as ρ = k p k |k k |, t h e n  E q. ( B 3) pr o vi d es a di a g o n al r e p-
r es e nt ati o n of R ρ , a n d  w e o bt ai n t h e f a mili ar e x pr essi o n of
R − 1

ρ a s

R − 1
ρ |N =

k ,k

2

p k + p k
|k , k k , k |N , i. e.,

R − 1
ρ (N ) =

k ,k

2

p k + p k
k |N |k |k k |. ( B 4)

If ρ is n ot f ull r a n k, t h e n  w e d e fi n e R − 1
ρ a s t h e  M o or e-

P e nr os e i n v ers e of t h e s u p er o p er at or R ρ , i. e.,  w e t a k e t h e
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i n v ers e o n its s u p p ort. Fr o m  E q. ( B 3) w e c a n i d e ntif y
t h e k er n el k er R ρ of t h e s u p er o p er at or R ρ a s t h e s p a c e
s p a n n e d b y o p er at ors of t h e f or m |φ , ψ w h er e P ρ |φ =
P ρ |ψ = 0,  w h er e P ρ i s t h e pr oj e ct or o nt o t h e s u p p ort of
ρ . If {|k } is a b asis of t h e  Hil b ert s p a c e t h at di a g o n ali z es ρ
as ρ = k p k |k k |, t h e n  E q. ( B 3) is di a g o n al i n t h e b asis
{|k , k } a n d  w e s e e t h at t h e e x pr essi o n ( B 4) r e m ai ns t h e
c orr e ct e x pr essi o n f or R − 1

ρ , pr o vi d e d  w e o nl y k e e p t h os e
t er ms i n t h e s u m f or  w hi c h p k + p k = 0.

We  m a y n o w st at e t h e f oll o wi n g us ef ul pr o p ositi o n t h at
c h ar a ct eri z es t h e f ull s ol uti o n s et of t h e a nti c o m m ut at or
e q u ati o n 1 / 2 {ρ , M } = N f or M .

Pr o p ositi o n 3 ( S ol uti o ns t o t h e a nti c o m m ut at or
e q u ati o n). — l et ρ b e a n y s u b n or m ali z e d q u a nt u m st at e, l et
N b e a n y o p er at or, a n d l et R ρ b e gi v e n b y  E q. ( B 2).
L et P ρ d e n ot e t h e pr oj e ct or o nt o t h e s u p p ort of ρ a n d l et
P ⊥

ρ = 1 − P ρ .  T h e n t h e s et S of s ol uti o ns of t h e e q u ati o n
Y = R ρ (M ) f or t h e o p er at or M is

S =
∅ if P ⊥

ρ N P ⊥
ρ = 0 ;

R − 1
ρ (N ) + P ⊥

ρ M P ⊥
ρ : M a n y o p er at or if P ⊥

ρ N P ⊥
ρ = 0,

( B 5)

w h er e R − 1
ρ d e n ot es as a b o v e t h e  M o or e- P e nr os e ps e u d oi n v ers e of t h e s u p er o p er at or R ρ . F urt h er m or e, if Y is  H er miti a n,

t h e n t h e s et S H of  H er miti a n s ol uti o ns of t h e e q u ati o n N = R ρ (M ) f or t h e o p er at or M is

S H =
∅ if P ⊥

ρ N P ⊥
ρ = 0 ;

R − 1
ρ (N ) + P ⊥

ρ M P ⊥
ρ : M a n y  H er miti a n o p er at or if P ⊥

ρ N P ⊥
ρ = 0,

( B 6)

w h er e R − 1
ρ (Y ) is al w a ys a  H er miti a n o p er at or.

T his pr o p ositi o n is ess e nti all y o b vi o us if  w e t hi n k
of s u p er o p er at ors as li n e ar o p er at ors i n  Hil b ert- S c h mi dt
s p a c e. I n d e e d, it is  w ell k n o w n t h at t h e g e n er al s ol uti o n t o a
s yst e m of e q u ati o ns gi v e n i n  m atri x f or m c a n b e e x pr ess e d
b y t h e  m atri x ps e u d oi n v ers e, pl us a n yt hi n g t h at is i n t h e
m atri x k er n el.

Pr o of. — L et P ⊥ b e t h e s u p er o p er at or pr oj e ct or o nt o t h e
k er n el of R ρ . I n t h e v e ct ori z e d- o p er at or r e pr es e nt ati o n,  w e
h a v e P ⊥ := P ⊥

ρ ⊗ (P ⊥
ρ ) T a s c a n b e s e e n fr o m  E q. ( B 3).

L et P = i d − P ⊥ b e t h e s u p er o p er at or pr oj e ct or o nt o t h e
c o m pl e m e nt ar y o p er at or s u bs p a c e,  w hi c h is t h e s u p p ort
of R ρ .  O bs er v e t h at R ρ R − 1

ρ = R − 1
ρ R ρ = P a n d t h at R ρ

P ⊥ = 0.
T h e cl ai m  w e  w a nt t o s h o w is t h at if P ⊥ |N = 0,

t h e n t h er e is n o s ol uti o n t o t h e e q u ati o n |N = R ρ |M ;
ot h er wis e, t h e n t h e e q u ati o n is s atis fi e d if a n d o nl y if

|M = R − 1
ρ |N + P ⊥ |M ( B 7)

f or s o m e o p er at or |M .  T h e c o n diti o n P ⊥ |N = 0 is
n e c ess ar y f or a n y s ol uti o n t o t h e e q u ati o n |N = R ρ |M
t o e xist, as ot h er wis e |N w o ul d n ot b e i n t h e r a n g e of
R ρ .  We c a n t h er ef or e ass u m e f or t h e r est of t his pr o of t h at
P ⊥ |N = 0.

S u p p os e M s ol v es R ρ |M = | N .  A p pl yi n g R − 1
ρ o n

b ot h si d es,  w e h a v e P |M = R − 1
ρ |N ,  w hi c h d et er mi n es

|M o n t h e o p er at or s p a c e pr oj e ct e d o nt o b y P .  O n t h e
c o m pl e m e nt ar y s p a c e ( ass o ci at e d  wit h P ⊥ ), t h e o p er at or
|M c a n b e ar bitr ar y b e c a us e t his s u bs p a c e is t h e k er n el of

R ρ .  A g e n er al o p er at or i n t his s u bs p a c e c a n b e  writt e n as
P ⊥ |M f or s o m e o p er at or M .  T his pr o v es t h at t h e s ol u-
ti o n M m ust h a v e t h e f or m gi v e n i n t h e cl ai m.  C o n v ers el y,
if

|M = R − 1
ρ |N + P ⊥ |M ( B 8)

f or s o m e o p er at or |M , t h e n  w e s e e t h at R ρ |M =
R ρ R − 1

ρ |N + P ⊥ |X = P |N = | N , t h us pr o vi n g
t h e cl ai m.

If N is  H er miti a n, t h e n R − 1
ρ (N ) is  H er miti a n b e c a us e

R ρ , a n d h e n c e R − 1
ρ , is  H er miti cit y pr es er vi n g.  A n y t w o

H er miti a n s ol uti o ns M 0 , M 1 , as s e e n a b o v e,  m ust di ff er b y
a t er m P ⊥

ρ M P ⊥
ρ f or s o m e ar bitr ar y M ; b e c a us e t h e dif-

f er e n c e M 0 − M 1 i s  H er miti a n, M c a n b e c h os e n t o b e
H er miti a n as  w ell [s p e ci fi c all y, o n e c a n s et M = (M +

M † ) /2].
We n o w c o m p ut e t h e  m a p R − 1

ψ (·) i n t h e c as e t h e
r ef er e n c e st at e is a p ur e ( n or m ali z e d) st at e v e ct or |ψ .

Pr o p ositi o n 4 ( C o m p uti n g R − 1
ρ w h e n ρ is a p ur e

st at e). — l et |ψ b e a ( n or m ali z e d) st at e v e ct or a n d l et P ⊥
ψ =

1 − | ψ ψ |.  T h e n f or a n y  H er miti a n O w e h a v e

R − 1
ψ (O ) = 2 (O − P ⊥

ψ O P ⊥
ψ ) − O ψ ψ . ( B 9)

Pr o of. — D e fi n e Ō := O − P ⊥
ψ O P ⊥

ψ − O ψ ψ .  B y li n e ar-
it y,  w e h a v e

R − 1
ψ ( Ō ) = R − 1

ψ (O ) − O ψ ψ , ( B 1 0)

0 4 0 3 3 6- 4 7



P HI LI P P E F AI S T et al. P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

n oti n g t h at 1 / 2 {ψ , ψ } = ψ a n d t h er ef or e R − 1
ψ ( ψ ) = ψ .

T h e o p er at or Ō s atis fi es P ⊥
ψ Ō P ⊥

ψ = 0 a n d Ō ψ = 0, t h e

l att er i m pl yi n g t h at Ō ψ = P ⊥
ψ Ō ψ . T h e n

Ō = ( ψ + P ⊥
ψ ) Ō ( ψ + P ⊥

ψ ) = P ⊥
ψ Ō ψ + ψ Ō P ⊥

ψ = ψ , Ō ,

a n d t h er ef or e R − 1
ψ ( Ō ) = 2 Ō . Fr o m E q. ( B 1 0) w e t h e n fi n d

R − 1
ψ (O ) = 2 Ō + O ψ = 2 (Z − P ⊥

ψ O P ⊥
ψ ) − O ψ .

A P P E N DI X  C: S E MI D E FI NI T E  P R O G R A M MI N G
M E T H O D S  F O R  T H E  FI S H E R I N F O R M A TI O N

I n t his  A p p e n di x,  w e r e vi e w s o m e  m et h o ds b as e d
o n s e mi d e fi nit e pr o gr a m mi n g [ 7 5 ,7 6 ] f or c o m p uti n g t h e
Fis h er i nf or m ati o n, a n d r e vi e w s o m e el e m e nt ar y pr o p er-
ti es of t h e Fis h er i nf or m ati o n.  L et ρ b e a n y s u b n or m ali z e d
q u a nt u m st at e, a n d l et D b e a n y  H er miti a n o p er at or t h at
s atis fi es P ⊥

ρ D P ⊥
ρ = 0 (r e c all P ⊥

ρ i s t h e pr oj e ct or o nt o t h e
k er n el of ρ ).  D e fi n e t h e q u a ntit y

F ρ ; D := tr ρ R 2 , ( C 1)

w h er e R is a n y s ol uti o n t o (1 / 2 ) ρ , R = D . F or a n or-

m ali z e d st at e ρ a n d f or tr a c el ess D , t h e q u a ntit y F ρ ; D
c orr es p o n ds t o t h e Fis h er i nf or m ati o n ass o ci at e d  wit h a
o n e- p ar a m et er f a mil y of st at es λ → ρ λ t a k e n at a v al u e
of λ w h er e ρ λ = ρ a n d d ρ λ / d λ = D .  We all o w s u b n or-
m ali z e d st at es ρ a n d o p er at ors D wit h n o n z er o tr a c e i n
t h e d e fi niti o n ( C 1) f or l at er t e c h ni c al c o n v e ni e n c e.  We

r e q uir e t h at P ⊥
ρ D P ⊥

ρ = 0 as ot h er wis e t h e a nti c o m m ut at or

e q u ati o n (1 / 2 ) ρ , R = D h as n o s ol uti o n f or R .

T h e d e fi niti o n of F ρ ; D d o es n ot d e p e n d o n t h e c h oi c e

of R t h at s ol v es (1 / 2 ) ρ , R = D . I n d e e d, Pr o p ositi o n 3
g u ar a nt e es t h at a n y t w o s ol uti o ns di ff er o nl y b y a t er m
P ⊥

ρ M P ⊥
ρ ; s u c h a t er m d o es n ot c o ntri b ut e t o t h e tr a c e i n

E q. ( C 1).  We  m a y t h er ef or e  writ e, usi n g t h e n ot ati o n of
A p p e n di x B ,

F ρ ; D = tr ρ R − 1
ρ (D )

2
. ( C 2)

We n o w  writ e t his e x pr essi o n as a p air of c o n v e x o pti-
mi z ati o ns.  T h es e e x pr essi o ns h a v e b e e n d eri v e d i n  R efs.
[2 6 ,2 8 ];  w e pr o vi d e a pr o of usi n g o ur n ot ati o n f or s elf-
c o nsist e n c y.

Pr o p ositi o n 5 ( Fis h er i nf or m ati o n i n t er ms of c o n v e x
o pti miz ati o n pr o bl e ms). — l et ρ b e a s u b n or m ali z e d q u a n-
t u m st at e a n d D b e a  H er miti a n o p er at or t h at s atis fi es
P ⊥

ρ D P ⊥
ρ = 0.  T h e q u a ntit y F ρ ; D d e fi n e d i n  E q. ( C 1)

is e q ui v al e ntl y e x pr ess e d as t h e f oll o wi n g o pti mi z ati o ns:

F ρ ; D = m a x
S = S †

4 tr(D S ) − tr( ρ S 2 ) ( C 3 a)

= mi n 4 tr (L † L ) : ρ 1 / 2 L + L † ρ 1 / 2 = D , ( C 3 b)

w h er e t h e first o pti mi z ati o n r a n g es o v er all  H er miti a n
o p er at ors S a n d  w h er e i n t h e s e c o n d o pti mi z ati o n L is a n
ar bitr ar y c o m pl e x  m atri x.  O pti m al c h oi c es f or t h e v ari-
a bl es ar e S = (1 / 2 )R − 1

ρ D a n d L = ρ 1 / 2 S , n oti n g t h at
{ρ , S } = D . F urt h er m or e, alt er n ati v e f or ms f or t h e  mi ni-
mi z ati o n ar e

F ρ ; D = 4 mi n tr(N ) :
ρ O
O † N

0  wit h O + O † = D , N 0 ( C 3 c)

= mi n tr(J ) :
ρ D + i K

D − i K J
0  wit h K = K † , J 0 , ( C 3 d)

i n  w hi c h o pti m al c h oi c es ar e O = ρ S , N = S ρ S , K =

− i[ρ , S ], a n d J = R − 1
ρ (D ) ρ R − 1

ρ (D ).
N ot e t h at t h e c o n diti o n i n t h e o pti mi z ati o n ( C 3 d) i m pli c-

itl y e nf or c es t h e f a ct t h at P ⊥
ρ (D + i K) = 0 (s e e  T h e or e m

5); t his c a n  m a k e it  m or e c o m pli c at e d t o g u ess a c a n-
di d at e f or K i n  E q. ( C 3 d) if ρ d o es n ot h a v e f ull r a n k,
es p e ci all y if P ⊥

ρ D = 0.  Als o, n ot e t h at if t h er e is a n y f e asi-
bl e c h oi c e of c a n di d at es i n  E q. ( C 3 c), t h e n a ut o m ati c all y

P ⊥
ρ O = 0 a n d O † P ⊥

ρ = 0, s u c h t h at P ⊥
ρ D P ⊥

ρ = P ⊥
ρ (O +

O † )P ⊥
ρ = 0.  T h er ef or e, fi n di n g f e asi bl e c a n di d at es a ut o-

m ati c all y e nf or c es t h e c o n diti o n i n t h e d e fi niti o n ( C 1). A
si mil ar ar g u m e nt h ol ds if f e asi bl e c a n di d at es ar e f o u n d i n
E qs. ( C 3 b) or ( C 3 d).

Pr o of. — T h e  m a xi mi z ati o n ( C 3 a) is a q u a dr ati c o pti-
mi z ati o n c a n b e c ast i nt o a s e mi d e fi nit e pr o gr a m usi n g
S c h ur c o m pl e m e nts ( T h e or e m 5).  We sti c k cl os el y t o t h e
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f or m alis m of  Watr o us [7 6 ,1 0 6 ].  We i ntr o d u c e a v ari a bl e
Q 0  wit h t h e c o nstr ai nt Q S 2 e x pr ess e d as a S c h ur
c o m pl e m e nt c o n diti o n:

1

4
m a xi mi z ati o n i n  E q. ( C 3 a)

= m a xi mi z e tr(D S ) − tr( ρ Q )

o v er v ari a bl es S = S † , Q 0

s u bj e ct t o
Q − S
− S 1

0.

( C 4)

( T h e si g n of − S i n t h e l ast c o nstr ai nt is f or l at er c o n-
v e ni e n c e.)  We n o w d et er mi n e t h e c orr es p o n di n g d u al
pr o bl e m.  L et M O

O † N
0 b e t h e  L a gr a n g e d u al v ari a bl e

c orr es p o n di n g t o t h e pri m al c o nstr ai nt,  wit h M , N 0 a n d
O ar bitr ar y.  T h e pri m al c o nstr ai nt c a n b e  writt e n as

− 1 0
0 0

⊗ Q +
0 1
1 0

⊗ S
0 0
0 1

⊗ 1 . ( C 5)

T h e d u al o bj e cti v e is o bt ai n e d b y c oll e cti n g t h e c o nst a nt
t er ms of t h e c o nstr ai nts a n d t a ki n g t h e i n n er pr o d u ct  wit h
t h e c orr es p o n di n g d u al v ari a bl e.  H er e  w e o nl y h a v e t h e
ri g ht- h a n d si d e of  E q. ( C 5) a n d  w e o bt ai n t h e o bj e c-
ti v e t h at is si m pl y t o  mi ni mi z e tr(N ).  T h er e ar e t w o d u al
c o nstr ai nts, o n e f or e a c h pri m al v ari a bl e S a n d Q ; t o a
H er miti a n v ari a bl e c orr es p o n ds a n e q u alit y c o nstr ai nt a n d
t o a p ositi v e s e mi d e fi nit e v ari a bl e c orr es p o n ds a p ositi v e
s e mi d e fi nit e c o nstr ai nt.  T h e pri m al o bj e cti v e gi v es t h e
c o nst a nt t er ms f or e a c h c o nstr ai nt,  w hi c h ar e (. . .) = D
a n d (. . .) − ρ . F or t h e l eft- h a n d si d e of t h e first c o n-
str ai nt  w e o bt ai n t h e t er m tr 1

M O
O † N

0 1
1 0 = O + O † .

F or t h e l eft- h a n d si d e of t h e s e c o n d c o nstr ai nt,  w e fi n d
− tr1

M O
O † N

1 0
0 0

= − M .  We t h us o bt ai n t h e f oll o wi n g
d u al pr o bl e m:

( C 4) = mi ni mi z e tr (N )

o v er v ari a bl es M 0, N 0, O ,

s u bj e ct t o O + O † = D ,

M ρ ,

M O
O † N

0.

( C 6)

E q u alit y  wit h t h e pri m al o pti mi z ati o n pr o bl e m h ol ds
t h a n ks t o str o n g d u alit y,  w hi c h is e ns ur e d b y t h e Sl at er c o n-
diti o ns [ 7 6 ,1 0 6 ].  We c a n f urt h er si m plif y t h e d u al pr o bl e m.
First, t h e c h oi c e M = ρ is o pti m al: i n d e e d, f or a n y o pti m al
c h oi c es of v ari a bl es  wit h M ρ ,  w e c a n r e pl a c e M b y ρ

w hil e still a c hi e vi n g t h e s a m e v al u e.  T h er ef or e,

( C 6) = mi ni mi z e tr (N )

o v er v ari a bl es N 0, O ,

s u bj e ct t o O + O † = D ,

ρ O
O † N

0.

( C 7)

Usi n g t h e S c h ur c o m pl e m e nt ar g u m e nt a g ai n ( T h e or e m
5),  w e fi n d t h at n O † ρ − 1 O , a n d f or t h e s a m e r e as o n
as a b o v e, t h er e is a n o pti m al c h oi c e of v ari a bl es  wit h
Y = O † ρ − 1 O .  H e n c e

( C 7) = mi ni mi z e tr (O † ρ − 1 O )

o v er v ari a bl es O ar b.

s u bj e ct t o O + O † = D

P ⊥
ρ O = 0.

( C 8)

We  m a y i ntr o d u c e t h e v ari a bl e L = ρ − 1 / 2 O ,  w hi c h yi el ds

( C 8) = mi ni mi z e tr (L † L )

o v er v ari a bl es L ar b.

s u bj e ct t o ρ 1 / 2 L + L † ρ 1 / 2 = D .

( C 9)

We r e c o g ni z e t h e o pti mi z ati o n i n  E q. ( C 3 b).  At t his p oi nt
w e h a v e s h o w n t h at b ot h o pti mi z ati o ns i n t h e cl ai m,
E qs. ( C 3 a) a n d ( C 3 b), ar e e q u al t h a n ks t o s e mi d e fi nit e pr o-
gr a m mi n g d u alit y. It r e m ai ns t o s h o w t h at t h e c o m m o n
o pti m al v al u e is F ρ ; D as gi v e n b y  E q. ( C 2).

T o fi n d o pti m al v ari a bl es,  w e e x a mi n e t h e c o m pl e-
m e nt ar y sl a c k n ess c o n diti o ns [ 1 0 6 ] c orr es p o n di n g t o t h e
pri m al- d u al pr o bl e m p air ( C 4) a n d ( C 6).  N a m el y, t a ki n g
t h e pr o d u ct of a n i n e q u alit y c o nstr ai nt  wit h t h e c orr e-
s p o n di n g d u al v ari a bl e t ur ns t h e i n e q u alit y i nt o a n e q u alit y
f or o pti m al pri m al a n d d u al c h oi c es of v ari a bl es. F or t h e
pri m al c o nstr ai nt t his gi v es us t h e e q u aliti es

Q M − S O † = 0 ; Q O − S N = 0;

− S M + O † = 0 ; − S O + N = 0.
( C 1 0)

Fr o m − S M + O † = 0 al o n g  wit h t h e o pti m al M = ρ w e
d e d u c e t h at ρ S = O a n d t h us ρ 1 / 2 S = ρ − 1 / 2 O = L . Pl u g-
gi n g t his i nt o t h e c o nstr ai nt i n  E q. ( C 9) w e fi n d

ρ S + S ρ = D . ( C 1 1)

T h e s ol uti o ns of t his a nti c o m m ut at or e q u ati o n h a v e b e e n
st u di e d i n  A p p e n di x B , l e a di n g us t o t h e pri m al c a n di d at e

S =
1

2
R − 1

ρ D . ( C 1 2)
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Pl u g gi n g t his c h oi c e i nt o  E q. ( C 4), al o n g  wit h t h e c h oi c e
Q = S 2 ,  w e o bt ai n

( C 4)
1

2
tr D R − 1

ρ (D )

−
1

4
tr ρ R − 1

ρ (D )
2

=
1

4
F ρ ; D , ( C 1 3)

w h er e  w e h a v e us e d t h e f a ct t h at tr D R − 1
ρ (D ) =

D |R − 1
ρ | D = D |R − 1

ρ R ρ R − 1
ρ | D = R − 1

ρ (D )|R ρ

|R − 1
ρ (D ) = tr ρ R − 1

ρ (D )
2

.

B y c o nstr u cti o n, L = ρ 1 / 2 S s atis fi es t h e c o nstr ai nt i n
E q. ( C 9), n oti n g t h at  w e h a v e us e d t h e ass u m pti o n t h at
P ⊥

ρ D P ⊥
ρ = 0 as i n t h e pr o p ositi o n st at e m e nt.  T h e c orr e-

s p o n di n g v al u e att ai n e d i n t h e d u al pr o bl e m is

( C 9) tr(L † L ) =
1

4
tr ρ R − 1

ρ (D )
2

=
1

4
F ρ ; D ,

( C 1 4)

n oti n g t h at tr (L † L ) = tr( ρ S 2 ).  C o m bi ni n g  E qs. ( C 1 3) a n d
( C 1 4) wit h t h e a b o v e st at e m e nt t h at ( C 4) = ( C 9) pr o v es t h e
first p art of t h e cl ai m.

T h e alt er n ati v e f or m ( C 3 c) is n ot hi n g els e t h a n  E q. ( C 7).
N o w  w e s h o w t h e alt er n ati v e f or m ( C 3 d).  C o nsi d er t h e
o pti mi z ati o n ( C 7).  D e c o m p os e O = O R + i OI i nt o  H er-
miti a n a n d a nti- H er miti a n p arts  wit h O R = (O + O † ) /2 =

O
†
R , O I = − i(O − O † ) /2 = O

†
I .  T h e c o nstr ai nt o n O i n di-

c at es t h at t h e  H er miti a n p art O R of O m ust s atisf y 2 O R =
D .  T h e s e c o n d c o nstr ai nt t h e n b e c o m es

ρ D / 2 + i OI
D / 2 − i OI N

0. ( C 1 5)

C o nj u g ati n g b y
1 0
0 2 1

,  w e s e e t h at t his c o n diti o n is

e q ui v al e nt t o

ρ D + 2 i OI
D − 2 i OI 4 N

0. ( C 1 6)

N o w  w e s et K = 2 O I a n d J = 4 N , s h o wi n g t h at t h e o pti-
mi z ati o n ( C 3 d) is e q ui v al e nt t o  E q. ( C 7) ( u p t o a f a ct or of
4), a n d t h er ef or e e q u al t o F ρ ; D .

F or c o m pl et e n ess,  w e e x hi bit o pti m al c h oi c es f or K , J .
C h o os e K t o b e t h e a nti- H er miti a n p art of ρ R − 1

ρ (D ), i. e.,

K = ( ρ R − 1
ρ (D ) − R − 1

ρ (D ) ρ ) /(2 i). T h e n

D + i K =
1

2
ρ R − 1

ρ (D ) + R − 1
ρ (D ) ρ

+
1

2
ρ R − 1

ρ (D ) − R − 1
ρ (D ) ρ = ρ R − 1

ρ (D ),

( C 1 7)

a n d its  H er miti a n c o nj u g at e is D − i K = R − 1
ρ (D ) ρ .  N o w

c h o os e J = (D − i K) ρ − 1 (D + i K) = R − 1
ρ (D ) ρ R − 1

ρ (D );

t h e c o nstr ai nt i n  E q. ( C 3 d) is s atis fi e d t h a n ks t o  T h e or e m
5.  T h e v al u e r e a c h e d b y t his c h oi c e of c a n di d at es is t h e n
t h e o pti m al v al u e tr(J ) = F ρ ; D .

T h e e x pr essi o ns i n Pr o p ositi o n 5 l e a d t o si m pl e pr o ofs
of el e m e nt ar y pr o p erti es of t h e Fis h er i nf or m ati o n.

Pr o p ositi o n 6 ( Si m pl e b o u n ds f or t h e  Fis h er i nf or m a-
ti o n). —l et ρ b e a s u b n or m ali z e d q u a nt u m st at e a n d D b e
a  H er miti a n o p er at or t h at s atis fi es P ⊥

ρ D P ⊥
ρ = 0.  T h e n  w e

h a v e

D 2 F ρ ; D tr( ρ − 1 D 2 ), ( C 1 8)

w h er e D = 2 D − P ρ D P ρ .
Pr o of. — First  w e s h o w t h e l o w er b o u n d.  L et |φ b e a

( n or m ali z e d) ei g e n v e ct or ass o ci at e d  wit h t h e l ar g est ei g e n-
v al u e of D (i n  m a g nit u d e), s u c h t h at φ |D |φ = D . F or
s o m e s ∈ R t o b e d et er mi n e d l at er,  w e c h o os e t h e o pti-
mi z ati o n c a n di d at e S = s|φ φ | i n  E q. ( C 3 a).  T h e n t h e
c orr es p o n di n g o bj e cti v e v al u e is

F ρ ; D 4 tr (D S ) − 4 tr ( ρ S 2 ) = 4 s D − 4 s 2 φ |ρ |φ .

( C 1 9)

T h e l att er e x pr essi o n is  m a xi m al  w h e n 0 = (d / ds )( · · · ) =
4 D − 8 s φ |ρ |φ , i. e.,  w h e n s = D /( 2 φ |ρ |φ ). We
o bt ai n t h e b o u n d

F ρ ; D 2
D 2

φ |ρ |φ
−

D 2

φ |ρ |φ
=

D 2

φ |ρ |φ
D 2 ,

( C 2 0)

r e c alli n g f urt h er m or e t h at φ |ρ |φ 1.
F or t h e u p p er b o u n d, c o nsi d er t h e o pti mi z ati o n pr o bl e m

( C 3 b) a n d c h o os e t h e c a n di d at e L = ρ − 1 / 2 D / 2.  T his is a
f e asi bl e c a n di d at e b e c a us e

ρ 1 / 2 L + L † ρ 1 / 2 = P ρ D + (h. c. )

= 2 P ρ D − P ρ D P ρ + (h. c. )

= 2 P ρ D (P ρ + P ⊥
ρ ) − P ρ D P ρ + (h. c. )

= P ρ D P ρ + 2 P ρ D P ⊥
ρ + (h. c. )

= 2 (P ρ D P ρ + P ρ D P ⊥
ρ + P ⊥

ρ D P ρ ) = 2 D ,

( C 2 1)

w h er e h. c. st a n ds f or t h e  H er miti a n c o nj u g at e of t h e e ntir e
pr e c e di n g e x pr essi o n, a n d  w h er e  w e f urt h er m or e r e c all t h at
P ⊥

ρ D P ⊥
ρ = 0.  T h e o bj e cti v e v al u e att ai n e d b y t his c h oi c e of

c a n di d at e is F ρ ; D 4 tr L † L = tr ρ − 1 D 2 .
P r o p ositi o n 7 ( Ri g ht l o g arit h mi c d eri v ati v e ( R L D)

b o u n d [ 8 9 ]). — l et ρ b e a s u b n or m ali z e d q u a nt u m st at e a n d
l et D b e a  H er miti a n o p er at or s atisf yi n g P ⊥

ρ D P ⊥
ρ = 0.  L et

G b e a n y o p er at or ( p ossi bl y n o n- H er miti a n) t h at s atis fi es
ρ G + G † ρ / 2 = D . T h e n

F ρ ; D tr( ρ G G † ). ( C 2 2)
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Pr o of. — Us e L = ρ 1 / 2 G / 2 i n E q. ( C 3 b).
Pr o p ositi o n 8 ( Fis h er i nf or m ati o n u n d er p ar a m et er

r es c ali n g). — l et ρ b e a s u b- n or m ali z e d q u a nt u m st at e a n d
D b e a  H er miti a n o p er at or t h at s atis fi es P ⊥

ρ D P ⊥
ρ = 0.  T h e n

f or a n y α ≤ 1, β ∈ R ,

F α ρ ; β D =
β 2

α
F ρ ; D . ( C 2 3)

Pr o of. — L et S , L b e o pti m al v ari a bl es i n  E q. ( C 3 a)
a n d ( C 3 b) f or F α ρ ; β D . L et S = ( α / β )S a n d L =

(
√

α / β ) L . T h e n

1

4
F α ρ ; β D = tr( β D S ) − tr( α ρ S 2 )

=
β 2

α
tr(D S ) − tr( ρ S 2 )

β 2

α

1

4
F ρ ; D ;

( C 2 4 a)

1

4
F α ρ ; β D = tr(L L † ) =

β 2

α
tr(L L † )

β 2

α

1

4
F ρ ; D ,

( C 2 4 b)

n oti n g t h at L is a v ali d c h oi c e of o pti mi z ati o n c a n di-
d at e i n ( C 3 b) f or F ρ ; D b e c a us e ρ 1 / 2 L + L † ρ 1 / 2 =

(1 / β ) ( α ρ )1 / 2 L + L † ( α ρ )1 / 2 = D .
Pr o p ositi o n 9 ( Fis h er i nf or m ati o n b o u n d f or tr a c e- d e-

cr e asi n g  m a ps). — l et |ψ b e a ( n or m ali z e d) st at e v e ct or
a n d l et |ξ b e a n y v e ct or s u c h t h at ψ |ξ = 0.  L et N b e
a n y c o m pl et el y p ositi v e, tr a c e- n o n-i n cr e asi n g  m a p a n d l et
0 α ≤ 1 s u c h t h at N † (1 ) α 1 . T h e n

F N (|ψ ψ |) ; N (|ξ ψ | + |ψ ξ |) 4 α ξ |ξ . ( C 2 5)

Pr o of. — L et O = N (|ψ ξ |) a n d N = N (|ξ ξ |). T h es e
c h oi c es ar e f e asi bl e i n  E q. ( C 3 c) b e c a us e a p pl yi n g
t h e c o m pl et el y p ositi v e  m a p N ⊗ i d2 o nt o t h e p ositi v e
s e mi d e fi nit e  m atri x

|ψ ψ | |ψ ξ |
|ξ ψ | |ξ ξ |

=
|ψ
|ξ

ψ | ξ | 0 ( C 2 6)

gi v es a g ai n a p ositi v e s e mi d e fi nit e  m atri x.  T his c h oi c e
of v ari a bl e yi el ds t h e o bj e cti v e v al u e tr N (|ξ ξ |) =

tr N † (1 ) |ξ ξ | α ξ |ξ , pr o vi n g t h e cl ai m.
Pr o p ositi o n 1 0 ( J oi nt c o n v e xit y of t h e  Fis h er i nf or m a-

ti o n). —l et {ρ k } b e a s et of s u b n or m ali z e d st at es a n d {D k } b e
a s et of  H er miti a n o p er at ors s u c h t h at P ⊥

ρ k
D k P

⊥
ρ k

= 0.  L et

{α k } b e a r e al p ositi v e c o e ffi ci e nts s u c h t h at k α k tr( ρk )
1.  T h e n

F
k

α k ρ k ;
k

α k D k

k

α k F ρ k ; D k . ( C 2 7)

Pr o of. — F or e a c h k , l et K k , J k b e o pti m al c h oi c es i n
E q. ( C 3 d) f or F ρ k ; D k . S et K = k α k K k a n d J =

k α k J k . T h e n

ρ D + i K
D − i K J

=
k

α k
ρ k D k + i Kk

D k − i Kk J k
0,

( C 2 8)

a n d s o K , J ar e f e asi bl e c a n di d at es i n t h e pr o bl e m
( C 3 d) f or F ρ ; D .  T h e o bj e cti v e v al u e a c hi e v e d f or t his

c h oi c e of v ari a bl es gi v es t h e b o u n d F ρ ; D tr(J ) =

k α k tr(J k ) = k α k F ρ k ; D k .
Pr o p ositi o n 1 1 ( A d diti vit y of i n d e p e n d e nt pr o b es). —

l et ρ A , ρ B b e t w o s u b n or m ali z e d q u a nt u m st at es o n t w o
s yst e ms A , B , a n d l et D A , D B b e t w o tr a c el ess  H er mi-
ti a n o p er at ors s u c h t h at P ⊥

ρ A
D A P ⊥

ρ A
= 0 a n d P ⊥

ρ B
D B P ⊥

ρ B
= 0.

T h e n

F ρ A ⊗ ρ B ; D A ⊗ ρ B + ρ A ⊗ D B

= F ρ A ; D A + F ρ B ; D B . ( C 2 9)

O bs er v e t h at t h e s e c o n d ar g u m e nt o n t h e l eft- h a n d si d e
c orr es p o n ds t o t h e d eri v ati v e of t h e st at e of a c o m p os-
it e s yst e m t h at r e m ai ns i n a t e ns or pr o d u ct, (d / dt )( ρA ⊗
ρ B ) = (d ρ A / dt ) ⊗ ρ B + ρ A ⊗ (d ρ B / dt ).

Pr o of. — H er e  w e  m a y dir e ctl y g u ess a s ol uti o n R t o
R ρ A ⊗ ρ B

(R ) = D A ⊗ ρ B + ρ A ⊗ D B .  C o m p ut e first

R ρ A ⊗ ρ B
1 A ⊗ M B =

1

2
ρ A ⊗ ρ B , 1 A ⊗ M B

=
1

2
ρ A ⊗ ρ B , M B , ( C 3 0)

s o  w e s e e t h at, s etti n g

R = 1 A ⊗ R − 1
ρ B

(D B ) + R − 1
ρ A

(D A ) ⊗ 1 B , ( C 3 1)

w e h a v e R ρ A ⊗ ρ B
(R ) = ρ A ⊗ D B + D A ⊗ ρ B . T h e n

F ρ A ⊗ ρ B ; D A ⊗ ρ B + ρ A ⊗ D B = tr ( ρA ⊗ ρ B ) R 2

= tr ( ρA ⊗ ρ B ) 1 A ⊗ R − 1
ρ B

(D B )
2

+ R − 1
ρ A

(D A )
2

⊗ 1 B

+ 2 R − 1
ρ A

(D A ) ⊗ R − 1
ρ B

(D B )

= F ρ A ; D A + F ρ B ; D B , ( C 3 2)

w h er e i n t h e l ast li n e  w e h a v e us e d tr ρ A R − 1
ρ A

(D A ) =

tr D A − P ⊥
ρ A

D A P ⊥
ρ A

= tr(D A ) = 0.
Pr o p ositi o n 1 2 ( Fis h er i nf or m ati o n f or p ur e st at es). — l et

|ψ b e a s u b n or m ali z e d st at e v e ct or a n d l et D b e a  H er mi-
ti a n o p er at or s atisf yi n g tr(D ) = 0 a n d P ⊥

ψ D P ⊥
ψ = 0.  T h e n
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D ψ = 0 a n d

F ψ ; D =
1

(tr ψ ) 2
4 tr ψ D 2 . ( C 3 3)

F urt h er m or e, if tr ( ψ ) = 1 a n d D = − i[H , ψ ] f or s o m e
H er miti a n o p er at or H , t h e n

F ψ ; D = 4 σ 2
H = 4 H 2

ψ − H 2
ψ . ( C 3 4)

Pr o of. — First of all t h a n ks t o Pr o p ositi o n 8  w e ass u m e
wit h o ut l oss of g e n er alit y t h at tr ( ψ ) = 1.  T h e n, t o s e e t h at
D = 0  w e  writ e

0 = tr(D ) = tr ( ψ + P ⊥
ψ )D = D + tr P ⊥

ψ D P ⊥
ψ = D .

( C 3 5)

Usi n g  E q. ( C 2) a n d Pr o p ositi o n 4,  w e t h e n fi n d

F ψ ; D = tr ψ ( 2 D )2 = 4 tr ( ψ D 2 ). ( C 3 6)

If f urt h er m or e D = − i[H , ψ ] f or s o m e  H er miti a n H , t h e n
w e us e  E q. ( A 3) t o s e e t h at tr( ψ D 2 ) = H 2

ψ − H 2
ψ .

P r o p ositi o n 1 3 ( D at a- pr o c essi n g i n e q u alit y f or t h e
Fis h er i nf or m ati o n [ 1 9 ]). — l et ρ b e a s u b n or m ali z e d q u a n-
t u m st at e a n d D b e a  H er miti a n o p er at or t h at s atis fi es
P ⊥

ρ D P ⊥
ρ = 0.  L et E b e a n y c o m pl et el y p ositi v e, tr a c e- n o n-

i n cr e asi n g  m a p.  T h e n

F ρ ; D F E ( ρ ) ; E (D ) . ( C 3 7)

Pr o of. — First  w e s h o w t h at P ⊥
E ( ρ ) E (D )P ⊥

E ( ρ ) = 0, e ns ur-
i n g t h at t h e ri g ht- h a n d si d e i n  E q. ( C 3 7) is  w ell
d e fi n e d.  D e c o m p os e D = P ρ D P ρ + P ⊥

ρ D P ρ + P ρ D P ⊥
ρ =

D 0 + D
†
0 , d e fi ni n g D 0 = (P ρ D P ρ ) /2 + P ρ D P ⊥

ρ s u c h t h at

P ⊥
ρ D 0 = 0. F or c > 0 l ar g e e n o u g h,  w e h a v e

ρ D 0

D
†
0 c 1

0 t h a n ks t o  T h e or e m 5.  A p pl yi n g t h e c o m pl et el y p osi-

ti v e  m a p i d2 ⊗ E w e o bt ai n
E ( ρ ) E (D 0 )

E (D
†
0 ) c E (1 )

0, a n d

t h er ef or e t h a n ks t o  T h e or e m 5, P ⊥
E ( ρ ) E (D 0 ) = 0.  T h e n

P ⊥
E ( ρ ) E (D )P ⊥

E ( ρ ) = 0 r e c alli n g D = D 0 + D
†
0 .

L et S b e o pti m al i n  E q. ( C 3 a) f or F E ( ρ ) ; E (D ) , t h us

s atisf yi n g F E ( ρ ) ; E (D ) = 4 tr S E (D ) − tr E ( ρ ) S 2 .

C h o osi n g t h e c a n di d at e E † (S ) i n  E q. ( C 3 a) f or F ρ ; D w e
o bt ai n

F ρ ; D 4 tr D E † (S ) − tr ρ [E † (S )]2

4 tr E (D ) S − tr ρ E † (S 2 )

= 4 tr E (D ) S − tr E ( ρ ) S 2

= F E ( ρ ) ; E (D ) , ( C 3 8)

w h er e  w e h a v e us e d  C or oll ar y 2 i n t h e s e c o n d i n e q u alit y.

I n t h e c as e of c o m m uti n g st at e a n d di ff er e nti al, t h e s y m-
m etri c l o g arit h mi c d eri v ati v e r e d u c es t o a  m atri x i n v ers e
as d es cri b e d b y t h e f oll o wi n g pr o p ositi o n.

Pr o p ositi o n 1 4 ( Fis h er i nf or m ati o n f or c o m m uti n g st at e
a n d d eri v ati v e). — l et ρ b e a n y s u b n or m ali z e d q u a nt u m
st at e a n d l et D b e a  H er miti a n o p er at or t h at s atis fi es
P ⊥

ρ D P ⊥
ρ = 0. S u p p os e t h at ρ a n d D c o m m ut e.  T h e n

F ρ ; D = tr ρ − 1 D 2 . ( C 3 9)

Pr o of. — T his c a n b e s h o w n fr o m t h e pr o p erti es of t h e
s y m m etri c l o g arit h mi c d eri v ati v e, b ut  w e gi v e a si m-
pl e alt er n ati v e pr o of usi n g o ur c o n v e x o pti mi z ati o ns f or
f u n.  C h o os e S = ρ − 1 D / 2 i n E q. ( C 3 a),  w hi c h  w e n ot e
is a  H er miti a n o p er at or b e c a us e ρ a n d D c o m m ut e.  T his
gi v es F ρ ; D ( D 3 9)( C 3 9). Si mil arl y, t h e c h oi c e L =

ρ − 1 / 2 D / 2 i n E q. ( C 3 b) pr o vi d es t h e o p p osit e b o u n d.
T h e f oll o wi n g pr o p ositi o n i nt er pr ets t h e Fis h er i nf or m a-

ti o n f or s u b n or m ali z e d st at es a c c or di n g t o t h e d e fi niti o n
( C 1) as t h e Fis h er i nf or m ati o n of a n or m ali z e d st at e t h at
w as pr oj e ct e d o nt o a s m all er s u bs p a c e.  T his i nt er pr et ati o n
w or ks as l o n g as t h e s u b n or m ali z e d st at e d o es n ot c h a n g e
tr a c e al o n g its e v ol uti o n,  m e a ni n g t h at t h e d eri v ati v e D h as
z er o tr a c e.

Pr o p ositi o n 1 5 ( Fis h er i nf or m ati o n f or s u b n or m aliz e d
a n d n or m aliz e d st at es). — l et ρ b e a n y s u b n or m ali z e d q u a n-
t u m st at e a n d l et D b e a n y  H er miti a n o p er at or t h at s atis fi es
b ot h tr (D ) = 0 a n d P ⊥

ρ D P ⊥
ρ = 0.  D e fi n e ρ , D ,  wit h a n

a d diti o n al n e w  Hil b ert s p a c e di m e nsi o n, as

ρ =
ρ 0

0 1 − tr( ρ )
; D =

D 0
0 0

. ( C 4 0)

T h e n

F ρ ; D = F ρ ; D . ( C 4 1)

Pr o of. — L et P d e n ot e t h e pr oj e ct or o nt o t h e s u bs p a c e of
t h e  Hil b ert s p a c e o n  w hi c h t h e u p p er l eft bl o c k of ρ , D
a cts.  L et R = R − 1

ρ (D ), a n d d e fi n e

R =
R 0
0 0

. ( C 4 2)

M ulti pl yi n g t o g et h er bl o c k- di a g o n al  m atri c es pr es er v es
t h e bl o c k- di a g o n al str u ct ur e, h e n c e

1

2
{ρ , R } =

1
2
{ρ , R } 0

0 0
= D . ( C 4 3)

T h e n  wit h t h e d e fi niti o n ( C 1),

F ρ ; D = tr ρ R 2 = tr ρ R 2 = F ρ ; D .
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We c a n f urt h er m or e pr o v e a r el ati o n b et w e e n t h e Fis h er
i nf or m ati o n of t w o di ff er e nt dir e cti o ns i n st at e s p a c e t h at
mi g ht b e ass o ci at e d  wit h t w o di ff er e nt p ar a m etri z e d e v ol u-
ti o ns.

Pr o p ositi o n 1 6 ( R el ati o n b et w e e n t h e  Fis h er i nf or m a-
ti o n of t w o dir e cti o ns). —l et ρ b e a s u b n or m ali z e d q u a nt u m
st at e a n d l et D , D b e t w o  H er miti a n o p er at ors t h at s atisf y
P ⊥

ρ D P ⊥
ρ = P ⊥

ρ D P ⊥
ρ = 0.  T h e n

F ρ ; D F ρ ; D

+ F ρ ; D + D F ρ ; D − D
1 / 2

. ( C 4 4)

C o ns e q u e ntl y,

F ρ ; D − F ρ ; D

F ρ ; D + D F ρ ; D − D
1 / 2

. ( C 4 5)

F urt h er m or e, e q u alit y h ol ds i n  E q. ( C 4 5) if a n d o nl y if
D , D ar e li n e arl y d e p e n d e nt.

Pr o of. — D e fi n e t h e s h ort h a n d ± = D ± D . We c o m-
p ut e

F ρ ; D = tr ρ R − 1
ρ D + R − 1

ρ −

2

= F ρ ; D + tr ρ R − 1
ρ −

2

+ R − 1
ρ D , R − 1

ρ −

= F ρ ; D + tr ρ
1

2
R − 1

ρ −

+ R − 1
ρ D , R − 1

ρ − , ( C 4 6)

w h er e i n t h e l ast e q u alit y  w e h a v e us e d M 2 = { 1
2
M , M }

f or a n y o p er at or M al o n g  wit h t h e li n e arit y of t h e a nti-
c o m m ut at or i n t h e first ar g u m e nt. F urt h er m or e,  w e s e e
fr o m t h e d e fi niti o n of − t h at

D +
1

2
− =

1

2
D + D =

1

2
+ . ( C 4 7)

T h e n

( C 4 6) = F ρ ; D +
1

2
tr ρ R − 1

ρ + , R − 1
ρ −

= F ρ ; D + R e tr ρ R − 1
ρ + R − 1

ρ −

= : F ρ ; D + C ρ + , − , ( C 4 8)

w h er e C ρ + , − i s d e fi n e d as t h e s e c o n d t er m i n t h e
a b o v e e x pr essi o n. Fr o m t h e  C a u c h y- S c h w ar z i n e q u alit y,

C ρ + , −
2

tr ρ R − 1
ρ +

2

tr ρ R − 1
ρ −

2

.

( C 4 9)

H e n c e,

( C 4 8) F ρ ; D + F ρ ; + F ρ ; −

1 / 2

. ( C 5 0)

E q u ati o n ( C 4 5) f oll o ws b y r e p e ati n g t h e ar g u m e nt  w hil e
i n v erti n g t h e r ol es of D a n d D .

E q u alit y i n  E q. ( C 4 5) is e q ui v al e nt t o t h e  C a u c h y-
S c h w ar z i n e q u alit y b ei n g ti g ht. I n t ur n is e q ui v al e nt t o t h e
o p er at ors ρ 1 / 2 R − 1

ρ + a n d ρ 1 / 2 R − 1
ρ − b ei n g li n e arl y

d e p e n d e nt, i. e., t h er e e xist α 1 , α 2 ∈ R , ( α1 , α 2 ) = (0, 0 ),
s u c h t h at

α 1 ρ
1 / 2 R − 1

ρ + + α 2 ρ
1 / 2 R − 1

ρ − = 0. ( C 5 1)

Si n c e t h e o p er at or R − 1
ρ ± v a nis h es o n t h e o p er at or s u b-

s p a c e s p a n n e d b y P ⊥
ρ (·)P ⊥

ρ ,  w e h a v e t h at  E q. ( C 5 1) is
e q ui v al e nt t o

α 1 R
− 1
ρ + + α 2 R

− 1
ρ − = 0, ( C 5 2)

a n d t h er ef or e t o

R − 1
ρ α 1 + + α 2 − = 0. ( C 5 3)

B e c a us e t h e k er n el of t h e s u p er o p er at or R − 1
ρ i s s p a n n e d b y

P ⊥
ρ (·) P ⊥

ρ , o nt o  w hi c h ± h a v e n o s u p p ort b y ass u m pti o n,
t h e n  E q. ( C 5 3) is f urt h er e q ui v al e nt t o

α 1 + + α 2 − = 0. ( C 5 4)

T h er ef or e, e q u alit y i n  E q. ( C 4 5) is a c hi e v e d if a n d o nl y if

± ar e li n e arl y d e p e n d e nt,  w hi c h is e q ui v al e nt t o t h e li n e ar
d e p e n d e n c e of D wit h D .

Usi n g a si mil ar i d e a,  w e c a n als o pr o v e a c o nti n uit y
b o u n d o n t h e Fis h er i nf or m ati o n  wit h r es p e ct t o its s e c o n d
ar g u m e nt.

Pr o p ositi o n 1 7 ( A c o nti n uit y b o u n d of t h e  Fis h er i nf or-
m ati o n i n its s e c o n d ar g u m e nt). — l et ρ b e a n y s u b n or m al-
i z e d q u a nt u m st at e a n d l et D , b e a n y  H er miti a n o p er at ors
s u c h t h at P ⊥

ρ D P ⊥
ρ = 0 = P ⊥

ρ P ⊥
ρ . T h e n

F ρ ; D + − F ρ ; D − F ρ ;

2 F ρ ; D F ρ ; 1 / 2 . ( C 5 5)

As a c o ns e q u e n c e,

F ρ ; D + − F ρ ; D

F ρ ; + 2 F ρ ; D F ρ ; 1 / 2 . ( C 5 6)
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Pr o of. — Usi n g t h e f or m ul a F ρ ; D = tr(D R − 1
ρ (D ))

f or t h e Fis h er i nf or m ati o n,  w e  writ e

F ρ ; D + = tr (D + ) R − 1
ρ (D + )

= F ρ ; D + F ρ ; + 2 tr D R − 1
ρ ( ) ,

( C 5 7)

r e c alli n g t h at R − 1
ρ i s s u p er o p er at or s elf- a dj oi nt.  T h e cl ai m

f oll o ws b y b o u n di n g t h e l ast t er m i n t h e a b o v e e x pr essi o n
usi n g t h e  C a u c h y- S c h w ar z i n e q u alit y, t o g et

tr D R − 1
ρ ( ) tr D R − 1

ρ (D ) tr R − 1
ρ ( )

= F ρ ; D F ρ ; .

We c a n c o nsi d er  m or e pr e cis el y h o w F B o b, t b e h a v es
w h e n s e e n as a f u n cti o n of t h e n ois e c h a n n el N , f or c h a n-
n els N t h at ar e cl os e t o t h e i d e ntit y c h a n n el i d.  M or e

s p e ci fi c all y,  w e pr o v e a c o nti n uit y b o u n d f or t h e q u a n-
t u m Fis h er i nf or m ati o n F N ( ψ ) ; N ( ∂tψ ) at t h e p oi nt
N = i d,  w h e n t h at q u a ntit y is s e e n as a f u n cti o n of N .

Pr o p ositi o n 1 8. — l et |ψ b e a p ur e st at e a n d l et D b e a
H er miti a n o p er at or s u c h t h at D ψ = 0 a n d P ⊥

ψ D P ⊥
ψ = 0.

L et > 0 a n d l et N b e a c h a n n el  wit h N − i d .
T h e n

F ψ , D F N ( ψ ), N (D ) F ψ , D

− 8 D 1 D ∞ . ( C 5 8)

O bs er v e t h at t h e st at e d c o n diti o ns o n D ar e s atis fi e d if
D = − i[H , ψ ] f or s o m e  H er miti a n o p er at or H .

Pr o of. — L et > 0 a n d l et N = i d + w h er e is a
H er miti cit y- pr es er vi n g s u p er o p er at or  wit h . T h e
first cl ai m e d i n e q u alit y i m m e di at el y f oll o ws fr o m t h e d at a
pr o c essi n g i n e q u alit y.  We n o w pr o v e t h e s e c o n d i n e q u al-
it y.  Usi n g Pr o p ositi o n 4, l et S = 1

2
R − 1

ψ (D ) = D . Si n c e t his

S is k n o w n t o b e o pti m al i n  E q. ( C 3 a) f or F ψ ; D ,  w e c a n
c o m p ut e

F ψ ; D = 4 tr (D ) S − tr ψ S 2

= 4 tr N (D ) S − tr N ( ψ ) S 2 − 4 tr (D ) S − tr ( ψ ) S 2

F N ( ψ ), N (D ) + 4 (D )
1

S ∞ + 4 ( ψ )
1

S 2
∞

F N ( ψ ), N (D ) + 8 D 1 D ∞ , ( C 5 9)

usi n g D ∞ D 1 , a n d t h us pr o vi n g t h e cl ai m.

A P P E N DI X  D:  O P TI M A L  L O C A L S E N SI N G  A N D
T H E  C R A M É R- R A O  B O U N D

H er e  w e r e vi e w  w hi c h o p er at ors a c hi e v e t h e o pti m al
v ari a n c e i n esti m ati n g a n u n k n o w n p ar a m et er [ 1 ,1 2 ,2 3 ,
2 4 ,8 9 ].  A n u n k n o w n p ar a m et er t of a n e v ol uti o n ρ t of
a ( n or m ali z e d) q u a nt u m st at e is esti m at e d l o c all y ar o u n d
t0 u si n g a n o bs er v a bl e T ,  w h os e  m e as ur e m e nt o ut c o m es
ar e t h e esti m at es of t h e p ar a m et er.  We as k f or t h e o bs er v-
a bl e t o h a v e t h e c orr e ct a v er a g e a n d first or d er d e vi ati o n,
T ρ t0 + dt = t0 + dt + O (dt 2 ); e x c e pt i n e d g e c as es, t his

c o n diti o n c a n b e e nf or c e d b y a s uit a bl e s c ali n g f a ct or a n d
a s uit a bl e s hift b y t h e i d e ntit y.  T h e c o n diti o ns t h e n b e c o m e
T ρ t0

= t0 a n d tr ( ∂tρ t|t0 ) T = 1.  We s e e k t o  mi ni mi z e

t h e o p er at or T ’s v ari a n c e T 2
ρ t0

− T 2
ρ t0

. We c all s u c h a n

o p er at or  wit h  mi ni m al v ari a n c e a n o pti m al l o c al s e nsi n g
o p er at or , a n d t h e s q u ar e r o ot of t h e  mi ni m al v ari a n c e is t h e
o pti m al esti m ati o n err or tu n c (t0 ) l o c all y at t0 .  T h at is, t h e

o pti m al esti m ati o n err or l o c all y at t0 , al o n g  wit h a n o pti-
m al l o c al s e nsi n g o p er at or at t0 , ar e gi v e n b y t h e f oll o wi n g
o pti mi z ati o n pr o bl e m:

t2u n c (t0 ) = mi n T = T † tr ρ t0 (T − t0 1 )2 ,
s u c h t h at tr ρ t0 T = t0 , tr ( ∂tρ t|t0 ) T = 1.

( D 1)

I n t h e e v e nt t h at ∂ tρ t|t0 = 0, t h er e is n o o p er at or T t h at s at-
is fi es t h e gi v e n c o n diti o ns.  We c o n v e nti o n all y s et tu n c =
∞ , si n c e t h e st at e is l o c all y st ati o n ar y a n d n o o bs er v a bl e
is a bl e t o d et e ct a first- or d er d e vi ati o n i n t h e p ar a m et er t.

A  m or e g e n er al s c h e m e  w o ul d e n a bl e a n a g e nt t o us e
a g e n er ali z e d  m e as ur e m e nt gi v e n b y a P O V M i nst e a d of
a n o bs er v a bl e T .  H o w e v er, as s h o w n i n, e. g.,  R ef. [1 ],
t h e o pti m al P O V M c a n i n f a ct b e c h os e n t o b e a pr oj e c-
ti v e  m e as ur e m e nt.  T h er ef or e, o n e c a n n ot s e ns e a p ar a m et er
m or e a c c ur at el y usi n g a P O V M i nst e a d of a n o bs er v a bl e.
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T h e f oll o wi n g pr o p ositi o n f ull y c h ar a ct eri z es t h e l o c all y
o pti m al s e nsi n g o bs er v a bl es ( cf., e. g.,  R ef. [ 1 ]). I n t h e f ol-
l o wi n g,  w e  writ e as a s h ort h a n d ρ a n d ∂ tρ i nst e a d of ρ t0
a n d ∂ tρ t|t0 .

P r o p ositi o n 1 9 ( L o c all y o pti m al s e nsi n g). — ass u m e
∂ tρ = 0.  T h e n a n y o p er at or T t h at is o pti m al i n  E q. ( D 1)
is of t h e f or m

T = t1 + ( t2u n c ) R − 1
ρ ∂ tρ + P ⊥

ρ M P ⊥
ρ , ( D 2)

f or s o m e  H er miti a n o p er at or M .
If P ⊥

ρ ( ∂tρ ) P ⊥
ρ = 0, t h e n t2u n c = [F ρ ; ∂ tρ ]− 1 wit h t h e

Fis h er i nf or m ati o n d e fi n e d i n  E q. ( C 1), a n d M c a n b e
ar bitr ar y.

If P ⊥
ρ ( ∂tρ ) P ⊥

ρ = 0, t h e n t2u n c = 0 a n d M s atis fi es

tr M P ⊥
ρ ∂ tρ P ⊥

ρ = 1.
L et us f urt h er n ot e t h at if ∂ tρ = 0,  w e h a v e F ( ρ ; ∂ tρ ) =

0.  T h er ef or e, pr o vi d e d t h at P ⊥
ρ ∂ tρ P ⊥

ρ = 0,  w e c a n i n f ull
g e n er alit y  writ e

t2u n c =
1

F ρ ; ∂ tρ
, ( D 3)

al o n g  wit h t h e c o n v e nti o n t h at tu n c = ∞ if F ρ ; ∂ tρ =
0. I n o ur s etti n g, t h e o pti m al s e nsi n g s c h e m e al w a ys
a c hi e v es t h e v al u e of t h e  Cr a m ér- R a o b o u n d.

Pr o of of  Pr o p ositi o n 1 9. — Wit h o ut l oss of g e n er alit y,
w e ass u m e t0 = 0 t hr o u g h o ut t his pr o of; t his is a c hi e v e d
b y s hifti n g t h e p ar a m et er t o c e nt er it at z er o, i m pl yi n g t h e
c orr es p o n di n g s hift T → T = T − t0 1 .  We t h us c o nsi d er
t h e o pti mi z ati o n pr o bl e m

t2u n c = mi n T = T † tr ρ t0 T
2 ,

s u c h t h at tr ρ t0 T = 0 , tr ( ∂tρ t|t0 ) T = 1.

( D 4)

First of all  w e o bs er v e t h at t h e first c o n diti o n,
tr( ρ T ) = 0, c a n b e i g n or e d  wit h o ut c h a n gi n g t h e o pti-
m al v al u e of t h e pr o bl e m. I n d e e d, f or a n y T t h at s atis-
fi es tr ( ∂tρ ) T = 1 b ut  wit h tr ( ρ T ) = 0,  w e c a n d e fi n e

T = T − tr( ρ T ) 1 ,  wit h tr( ρ T ) = 0 a n d tr ( ∂tρ ) T =

tr ( ∂tρ ) T si n c e tr ( ∂tρ ) = ∂ t tr( ρ ) = 0; t h e n tr ( ρ T 2 ) =

tr( ρ T 2 ) − [tr( ρ T )]2 tr( ρ T 2 ),  m e a ni n g t h at T n ot o nl y
s atis fi es tr ( ρ T ) = 0 i n a d diti o n t o t h e ot h er c o n diti o n, b ut
it a c hi e v es a b ett er o bj e cti v e f u n cti o n v al u e.

We c a n r e c ast t his o pti mi z ati o n as s e mi d e fi nit e pr o bl e m,
f oll o wi n g  R efs. [8 9 ,1 0 7 ], b y usi n g S c h ur c o m pl e m e nts
( T h e or e m 5):

t2u n c = mi n Q ≥ 0, T = T † tr( ρ Q )
s u c h t h at tr ( ∂tρ ) T = 1;

Q − T
− T 1

0.

( D 5)

T h e ass o ci at e d d u al pr o bl e m t a k es t h e f oll o wi n g f or m, n ot-
i n g t h at str o n g d u alit y h ol ds t h a n ks t o Sl at er’s c o n diti o ns

[7 6 ,1 0 6 ].

t2u n c = m a x A ,C ≥ 0, B ar b., μ ∈ R μ − tr(C )
s u c h t h at A ρ

B + B † = μ ∂ tρ
A B
B † C

0

= m a x B ar b., μ ∈ R μ − tr(B † ρ − 1 B )
s u c h t h at B + B † = μ ∂ tρ

P ρ B = B

( D 6)

= m a x L ar b., μ ∈ R μ − tr(L † L )
s u c h t h at ρ 1 / 2 L + L † ρ 1 / 2 = μ ∂ tρ ,

( D 7)

usi n g a g ai n S c h ur c o m pl e m e nts a n d  w h er e  w e i ntr o d u c e d
t h e v ari a bl e L vi a B = ρ 1 / 2 L , a n d  w h er e P ρ = 1 − P ⊥

ρ i s
t h e pr oj e ct or o nt o t h e s u p p ort of ρ .

A p o w erf ul c h ar a ct eri z ati o n of t h e  w h ol e f a mil y of o pti-
m al s ol uti o ns t o a s e mi d e fi nit e pr o bl e m  wit h str o n g d u alit y
ar e t h e c o m pl e m e nt ar y sl a c k n ess r el ati o ns.  A n i n e q u alit y
c o nstr ai nt  m ulti pli e d b y t h e c orr es p o n di n g d u al v ari a bl e
b e c o m es a n e q u alit y f or a n y c h oi c e of pri m al a n d d u al
o pti m al s ol uti o ns [ 7 6 ,1 0 6 ].  H er e, t his  m e a ns t h at

Q − T
− T 1

A B
B † C

= 0. ( D 8)

T his gi v es us t h e f oll o wi n g r el ati o ns t h at  m ust b e s atis fi e d
f or a n y c h oi c e of o pti m al v ari a bl es:

Q ρ = T B † ; Q B = T C ; B † = T ρ ; C = T B . ( D 9)

T h e t hir d e q u alit y ( B † = T ρ ) al o n g  wit h t h e d u al c o nstr ai nt
i n  E q. ( D 6) i m pli es t h at ρ T + T ρ = μ ∂ tρ . Pr o p ositi o n 3
ass erts t h at t h e s ol uti o ns ar e n e c ess aril y of t h e f or m T =
( μ /2 )R − 1

ρ ∂ tρ + P ⊥
ρ M P ⊥

ρ f or s o m e  H er miti a n M .

N o w first s u p p os e t h at P ⊥
ρ ( ∂tρ ) P ⊥

ρ = 0.  T h e pri m al
v al u e a c hi e v e d f or a T of t his f or m, a n d f or a n y μ a n d M ,
is

pri m al a c hi e v e d = tr( ρ T 2 ) =
μ 2

4
F (t), ( D 1 0)

wit h F (t) as i n  E q. ( 9). Fr o m c o m pl e m e nt ar y sl a c k-
n ess  w e h a v e B † = T ρ a n d h e n c e tr (B † ρ − 1 B ) = tr( ρ T 2 ) =
μ 2 F (t) /4.  T h e d u al pr o bl e m t h er ef or e r e a c h es t h e v al u e

d u al a c hi e v e d = μ − μ 2 F (t) /4. ( D 1 1)

O pti m alit y i m pli es t h at t h e pri m al a n d d u al v al u es
ar e e q u al, μ 2 F (t) /4 = μ − μ 2 F (t) /4 a n d t h er ef or e μ =
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2 / F (t) [ n ot e μ = 0 is r ul e d o ut b e c a us e t h e pri m al c o n-
str ai nt tr ( ∂tρ ) T = 1  w o ul d b e i m p ossi bl e t o s atisf y].
T h er ef or e, t h e o pti m al s ol uti o n t o t h e pr o bl e m is

t2u n c =
1

F (t)
. ( D 1 2)

N o w s u p p os e t h at P ⊥
ρ ( ∂tρ ) P ⊥

ρ = 0.  T h e n t h er e c a n n ot b e
a n y s ol uti o n f or L i n t h e c o nstr ai nt i n  E q. ( D 7) u nl ess
μ = 0 [t h e l eft- h a n d si d e v a nis h es e ntir el y if  w e hit it
wit h P ⊥

ρ (·)P ⊥
ρ b ut n ot t h e ri g ht- h a n d si d e if μ = 0].  T h e n

T = P ⊥
ρ X P ⊥

ρ ,  w hi c h i m pli es tr( ρ T 2 ) = 0, a n d f urt h er m or e

M m ust s atisf y tr ( ∂tρ ) P ⊥
ρ M P ⊥

ρ = 1 fr o m t h e pri m al c o n-
str ai nt.  T h e d u al c a n di d at e L = 0 yi el ds o bj e cti v e v al u e of
z er o i n t h e d u al pr o bl e m, a n d t h er ef or e t h e o pti m al v al u e
of t h e o pti mi z ati o n pr o bl e m is z er o, t2u n c = 0.

A P P E N DI X  E:  P R O O F  O F  T H E S E N SI TI VI T Y
U N C E R T AI N T Y  R E L A TI O N

T h e g o al of t his s e cti o n is t o pr o v e t h e st at e m e nts  m a d e
i n S e c. III.  T h e s etti n g is t h e o n e i ntr o d u c e d i n S e c. II.
We pr o vi d e t w o i n d e p e n d e nt pr o ofs of t h e u n c ert ai nt y r el a-
ti o n.  T h e first pr o of is  m or e i nt uiti v e a n d str ai g htf or w ar d.
T h e s e c o n d pr o of is sli g htl y  m or e g e n er al a n d pr o vi d es
gr e at er i nsi g ht i nt o s o m e t e c h ni c aliti es t h at u n d er pi n t h e
u n c ert ai nt y r el ati o n.  T h e s e c o n d pr o of dir e ctl y r el at es t h e
s e mi d e fi nit e c h ar a ct eri z ati o ns of t h e q u a ntiti es F B o b, t a n d
F E v e, η ,  m a ki n g it e asi er t o a n al y z e e d g e c as es, t o g ai n
i nsi g ht o n  w h at c h oi c es of s e mi d e fi nit e v ari a bl es ar e o pti-
m al, a n d t o c o nsi d er t h e  m or e g e n er al sit u ati o n  w h er e N
is a tr a c e- n o n-i n cr e asi n g  m a p.

1.  P r o of vi a t h e s e c o n d- o r d e r e x p a nsi o n of t h e fi d elit y

T h e str at e g y of o ur first pr o of of o ur u n c ert ai nt y r el ati o n
is t o pr o vi d e a dir e ct pr o of of t h e st at e m e nt pr es e nt e d as
C or oll ar y 1;  w e h a v e alr e a d y s e e n i n t h e  m ai n t e xt t h at t h e
st at e m e nt i n  T h e or e m 1 is e q ui v al e nt t o  C or oll ar y 1.

First o bs er v e t h at  wit h o ut l oss of g e n er alit y,  w e c a n
ass u m e t h at t h e  H a milt o ni a n is ti m e i n d e p e n d e nt.  T his is
b e c a us e t h e Fis h er i nf or m ati o n d e p e n ds o nl y o n t h e st at e
a n d its l o c al ti m e d eri v ati v e at t,  w hi c h is gi v e n b y  E q. ( 4 2)
a n d d e p e n ds o nl y o n t h e v al u e of t h e  H a milt o ni a n at t h e
fi x e d v al u e t of i nt er est.

O ur pr o of pr o c e e ds i n a si mil ar f as hi o n t o t h at of t h e
c h a n n el- e xt e nsi o n b o u n d d e v el o p e d i n  R efs. [ 3 0 ,3 1 ,7 8 ].
W hil e o ur u n c ert ai nt y r el ati o n c o ul d als o b e d eri v e d fr o m
t h e r es ults i n t h os e r ef er e n c es,  w e pr o vi d e a s elf- c o nt ai n e d
pr o of f or c o m pl et e n ess a n d c o nsist e n c y of n ot ati o n.

A r e m ar k a bl e pr o p ert y of t h e Fis h er i nf or m ati o n is t h at
it is dir e ctl y r el at e d t o t h e  B ur es dist a n c e a n d t h e fi d elit y
of q u a nt u m st at es [ 1 ,1 2 ,2 5 ,1 0 8 ] a c c or di n g t o

F B o b, t = − 4
d 2

dt 2
t = t

F ( ρB (t), ρ B (t )), ( E 1)

w h er e F ( ρ , ρ ) = ρ 1 / 2 ρ 1 / 2
1 = tr ( ρ 1 / 2 ρ ρ 1 / 2 ) 1 / 2 i s t h e

r o ot fi d elit y b et w e e n t w o q u a nt u m st at es [6 3 ],  w h er e A 1

d e n ot es tr a c e n or m, i. e., t h e s u m of t h e si n g ul ar v al u es of
A .  N ot e t h at at t = t, t h e fi d elit y r e a c h es its  m a xi m u m
v al u e 1.  We ass u m e t h at ρ ( t) is d o es n ot c h a n g e r a n k at
t = t, a v oi di n g e d g e c as es  w h er e t h e e x pr essi o n ( E 1) is
i n c o m pl et e [3 2 – 3 4 ].

B y  U hl m a n n’s t h e or e m, a n d  writi n g |ρ ( t) B E =
V A → B E |ψ ( t) A i n t er ms of t h e Sti n es pri n g dil ati o n V A → B E

of N gi v e n i n  E q. ( 4 3), w e h a v e t h at

F ( ρB (t), ρ B (t )) = m a x
W E u nit ar y

ρ ( t )|B E W E |ρ ( t) B E , ( E 2)

w h er e W E i s a u nit ar y o p er ati o n o n E .  We t h er ef or e h a v e
t h e f oll o wi n g e q ui v al e nt e x pr essi o ns:

F ( ρB (t), ρ B (t )) = m a x
W E

R e ψ ( t )|A V † W E V A → B E |ψ ( t) A

( E 3 a)

= m a x
W E

R e ψ ( t )|A N † (W E ) |ψ ( t) A

( E 3 b)

= m a x
W E

R e ψ ( t)|A e i H(t − t) N † (W E ) |ψ ( t) A

( E 3 c)

= m a x
W E

R e tr N ψ A (t) e i H(t − t) W E

( E 3 d)

= N ψ e i H(t − t)
1
, (E 3 e )

w h er e t h e c o m pl e m e nt ar y c h a n n el N is gi v e n b y  E q. ( 4 4).
I n t h e a b o v e e x pr essi o ns, t h e  m a xi mi z ati o n c a n b e t a k e n
o v er o p er at ors W E t h at ar e u nit ar y, or e q ui v al e ntl y, it c a n
b e r el a x e d t o all o p er at ors W E s atisf yi n g W E 1.

T h e o pti m al u nit ar y W E i s gi v e n b y t h e p ol ar d e c o m p o-
siti o n of t h e o p er at or N ψ e i H(t − t) . F or t = t + dt wit h a
s m all dt ,  w e h a v e t h at t h e o pti m al W E i s cl os e t o t h e i d e n-
tit y,  w hi c h is t h e o pti m al f or t = t.  L et us e x p a n d W E =
1 − i dt S − (1 / 2 )dt 2 S 2 + O (dt 3 ) f or g e n er al  m atri c es S a n d

S 2 t o b e d et er mi n e d.  T h e u nit ar y c o nstr ai nt W
†
E W E = 1 E

f or all dt i m pli es t h at S = S † a n d t h at S 2 + S
†
2 = 2 S † S =

2 S 2 . St arti n g fr o m  E q. ( E 3 c) a n d e x p a n di n g u p t o or d er dt 2

w e fi n d
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F ( ρB (t), ρ B (t )) = m a x
S = S † , S 2

R e tr ψ 1 + i dt H −
H 2

2
dt 2 N † 1 − i dt S −

S 2

2
dt 2 + O (dt 3 )

= 1 + m a x
S = S † , S 2

dt R e tr iψ H − iψ N † (S ) + dt 2 R e tr −
1

2
ψ H 2 −

1

2
ψ N † (S 2 ) + ψ H N † (S ) + O (dt 3 )

= 1 +
dt 2

2
m a x

S = S † , S 2

R e tr − ψ H 2 − ψ N † (S 2 ) + 2 ψ H N † (S ) + O (dt 3 ), (E 4 )

r e c alli n g t h at N † (1 ) = 1 , a n d  w h er e t h e first- or d er t er m v a nis h es b e c a us e a pr o d u ct of t w o  H er miti a n o p er at ors h as a r e al
tr a c e;  wit h t h e f a ct or i t h e t er m is kill e d b y t a ki n g t h e r e al p art.  C o nti n ui n g  wit h o nl y t h e s e c o n d- or d er t er m  w e fi n d

d 2

dt 2
t = t

F ( ρB (t), ρ B (t )) = m a x
S = S † , S 2

− tr ψ H 2 −
1

2
tr N ( ψ ) S 2 + S

†
2 + tr {ψ , H } N † (S )

= m a x
S = S †

− tr ψ H 2 − tr N ( ψ ) S 2 + tr N {ψ , H } S , ( E 5)

w h er e  w e h a v e us e d t h e i d e ntit y 2  R e tr (A O ) = tr(A (O +
O † )) f or  H er miti a n A , t h e i d e ntit y 2  R e tr(A B C ) =
tr({A , B } C ) f or  H er miti a n A , B , C , as  w ell as t h e c o n diti o n

S 2 + S
†
2 = 2 S 2 t h at c a m e fr o m e nf or ci n g t h e u nit arit y of

W E .
It is i nstr u cti v e t o bri e fl y c o m m e nt o n t h e sit u ati o n of a

ti m e- d e p e n d e nt  H a milt o ni a n.  T h e d eri v ati o n of t h e a b o v e
e x pr essi o n, es p e ci all y  E q. ( E 3 c) a n d t h e e x p a nsi o n of t h e
ti m e- e v ol uti o n o p er at or l e a di n g u p t o  E q. ( E 4), l o o ks li k e
it n e c essit at e d t h e ass u m pti o n of ti m e i n d e p e n d e n c e of t h e
H a milt o ni a n a n d t h at a ti m e- d e p e n d e nt  H a milt o ni a n  mi g ht
h a v e l e d t o a di ff er e nt r es ult. I n f a ct,  w e o bt ai n t h e s a m e
r es ult  wit h a ti m e- d e p e n d e nt  H a milt o ni a n,  w hi c h c a n b e
s e e n as f oll o ws.  Writ e

H (t) = H + t H + O (t2 ) ( E 6)

a n d e x p a n d t h e ti m e- e v ol uti o n o p er at or vi a t h e ti m e-

or d er e d e x p o n e nti al as U † (t − t) = T e i t
t dt H (t ) = 1 +

i
t

t dt H (t ) −
t

t dt H (t )
t

t dt H (t ) + O (t 3 ) = 1 +

i dt H + (dt 2 / 2 ) i H − H 2 + O (dt 3 ), t h e n  w e s e e t h at t h e
o nl y di ff er e n c e i n t h e e x pr essi o ns l e a di n g u p t o  E q. ( E 4) is
a n a d diti o n al t er m  R e tr ψ i H dt 2 ,  w hi c h is e q u al t o z er o.

N o w,  w e pr o c e e d t o pr o v e t h e u n c ert ai nt y r el ati o n.  Wit h
t h e d e fi niti o n F B o b, t = F Ali c e, t − F B o b, t,  w e h a v e

F B o b, t = 4 tr( ψ H 2 ) − tr( ψ H )
2

+ 4
d 2

dt 2
t = t

F ( ρB (t), ρ B (t ))

= m a x
S = S †

4 tr N {ψ , H } S − 4 tr N ( ψ ) S 2

− 4 tr( ψ H )
2

, ( E 7)

r e c alli n g t h at F Ali c e, t = 4 σ 2
H = 4 H 2 − H 2 a n d usi n g

t h e e x pr essi o n ( E 5).  O bs er v e t h at F B o b, t i s n e c ess ar-
il y i n v ari a nt u n d er a c o nst a nt s hift of t h e  H a milt o ni a n
H → H + c 1 , b e c a us e s u c h a s hift d o es n ot i n fl u e n c e t h e
e v ol uti o n ψ ( t) a n d t h er ef or e b ot h F Ali c e, t a n d F B o b, t ar e
i n v ari a nt u n d er s u c h s hifts. [ T his i n v ari a n c e c a n als o b e
c h e c k e d e x pli citl y b y c arr yi n g o ut t h e c orr es p o n di n g tr a ns-
f or m ati o ns H → H + c 1 a n d S → S + c 1 i n  E q. ( E 7).]
A p pl yi n g t h e s hift H → H − H ψ yi el ds

( F 7) = m a x
S = S †

4 tr N {ψ , H̄ } S − 4 tr N ( ψ ) S 2 , ( E 8)

usi n g t h e s h ort h a n d H̄ := H − H ψ .  At t his p oi nt  w e
r e c o g ni z e t h e e x pr essi o n of t h e Fis h er i nf or m ati o n fr o m
Pr o p ositi o n 5,  wit h ρ = N ( ψ ) a n d D = N {ψ , H̄ } . L et

us bri e fl y c h e c k t h at t h e r e q uir e m e nt P ⊥
ρ D P ⊥

ρ = 0 i n
Pr o p ositi o n 5 a n d i n t h e d e fi niti o n of t h e Fis h er i nf or-
m ati o n ( C 1) is s atis fi e d.  T h a n ks t o  T h e or e m 5,  w e

h a v e ψ ψ H̄

H̄ ψ H̄ ψ H̄
0, a n d f urt h er m or e, b y  L e m m a 1,

N ( ψ ) N ( ψ H̄ )

N ( H̄ ψ ) N ( H̄ ψ H̄ )
0; b y  T h e or e m 5 a g ai n, t his i m pli es

t h at P ⊥
ρ N ψ H̄ = 0.  T h er ef or e, P ⊥

ρ N {ψ , H̄ } P ⊥
ρ = 0. It

f oll o ws t h at

F B o b, t = ( F 8) = F N ( ψ ) ; N {ψ , H̄ } , ( E 9)

as cl ai m e d.

2.  Di r e ct p r o of usi n g t h e s e mi d e fi nit e c h a r a ct e ri z ati o n
of t h e  Fis h e r i nf o r m ati o n

F or t his s e cti o n,  w e fi x |ψ , |ξ b e s u c h t h at ψ |ψ =
1 a n d ψ |ξ = 0, a n d l et N b e a c o m pl et el y p ositi v e,
tr a c e- n o n-i n cr e asi n g  m a p.  L et V A → B E b e a Sti n es pri n g
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dil ati o n of N , i. e., N (·) = trE V (·) V † , a n d l et N (·) =

trB V (·) V † . L et

D Y
A = − i |ξ ψ | − |ψ ξ | ; D Z

A = | ξ ψ | + |ψ ξ |.

( E 1 0)

S u p p os e t h at | B :E i s a  m a xi m all y e nt a n gl e d k et b et w e e n
t w o s uit a bl e s u bs p a c es of B a n d E t h at ar e s u ffi ci e ntl y l ar g e
t o e ns ur e t h at t h er e e xist M , m atri c es o n B s atisf yi n g

V |φ = ( ⊗ 1 )| B :E ; V |ξ = (M ⊗ 1 )| B :E .
( E 1 1)

( Alt er n ati v el y, o n e c a n e m b e d b ot h B a n d E i nt o l ar g er s ys-
t e ms B , E wit h B E , o n  w hi c h o n e c a n c o nsi d er t h e
c a n o ni c al  m a xi m all y e nt a n gl e d k et | B :E = |k B |k E

wit h r es p e ct t o t h e c a n o ni c al b as es of B , E .  We t h e n d e fi n e
| B :E b y pr oj e cti n g d o w n | B :E o nt o B ⊗ E .)  T hr o u g h-
o ut t h e f oll o wi n g,  w e o nl y e v er c o nsi d er o p er at ors t h at ar e
i n t h e s u p p ort of t h e r e d u c e d o p er at ors of B :E o n B a n d E .

We d e fi n e t h e o p er ati o n tB → E (·) := trB B :E [(·) ⊗

1 E ] ,  w hi c h is t h e p arti al tr a ns p os e o p er ati o n  wit h r es p e ct
t o t h e b as es us e d t o d e fi n e | B :E .  E q ui v al e ntl y, a d e fi n-
i n g pr o p ert y of t his o p er ati o n is t h at f or a n y o p er at or X B ,
w e h a v e (X B ⊗ 1 E )| B :E = (1 B ⊗ tB → E (X B ))| B :E . F ur-

t h er m or e, f or a n y M ,  w e h a v e tB → E (M † ) = tB → E (M )
†

a n d f or a n y X , Y w e h a v e tB → E (M N ) = tB → E (N ) tB → E (M ).
Si mil arl y,  w e d e fi n e t h e i n v ers e o p er ati o n tE → B (·) =
tr B :E [1 B ⊗ (·)] ,  w hi c h h as t h e s a m e pr o p erti es.

O bs er v e t h at † = N (|ψ ψ |) = ρ B a n d M M † =
N (|ξ ξ |). F urt h er m or e,  w e d e fi n e W vi a t h e p ol ar d e c o m-
p ositi o n of = ρ 1 / 2 W ,  wit h

= ρ 1 / 2 W ; † = W † ρ 1 / 2 ;

− 1 = W † ρ − 1 / 2 ; − † = ρ − 1 / 2 W . ( E 1 2)

T h e o p er at ors − 1 a n d − † ar e t h e  M o or e- P e nr os e ps e u-
d oi n v ers es of a n d † , r es p e cti v el y, as c a n b e s e e n
b y c o m p uti n g − 1 = P ρ a n d − 1 = W † P ρ W a s  w ell
as † − † = W † P ρ W a n d − † † = P ρ . F urt h er m or e,  w e
h a v e

N (D Y
A ) = − i(M † − M † ), ( E 1 3 a)

N (D Z
A ) = trB M B B :E

†
B + B B :E M

†
B

= tB → E
† M + M † . ( E 1 3 b)

We  m a y als o r el at e t h es e o bj e cts t o t h e st at e o n  E v e’s
s yst e m, vi a t h e p arti al tr a ns p os e o p er ati o n tB → E .  O bs er v e
t h at V |ψ = ( ⊗ 1 )| B :E = (1 ⊗ tB → E ( ))| B :E , a n d

t h er ef or e ρ E = trB (V ψ V † ) = tB → E ( ) tB → E ( )
†

=

tB → E ( † ) = tB → E (W † ρ B W ). T h e n P ρ E = tB → E (W † P ρ B W )
a n d P ⊥

ρ E
= tB → E (W † P ⊥

ρ B
W ).  We b e gi n  wit h a c h ar a ct eri z a-

ti o n of  w h e n o ur u n c ert ai nt y r el ati o n h ol ds  wit h e q u alit y.

Pr o p ositi o n 2 0 ( C o n diti o ns f or u n c ert ai nt y r el ati o n
e q u alit y). — t h e f oll o wi n g st at e m e nts ar e e q ui v al e nt:

(i) (P ⊥
ρ B

⊗ P ⊥
ρ E

)V |ξ = 0 .

(ii)  We h a v e P ⊥
ρ B

M W † P ⊥
ρ B

= 0 .

(iii)  We h a v e P ⊥
ρ B

N (|ξ ξ |)P ⊥
ρ B

= P ⊥
ρ B

N (|ξ ψ |) ρ − 1
B

N (|ψ ξ |)P ⊥
ρ B

.

(i v)  We h a v e P ⊥
ρ E

N (|ξ ξ |)P ⊥
ρ E

= P ⊥
ρ E

N (|ξ ψ |) ρ − 1
E

N (|ψ ξ |)P ⊥
ρ E

.
( v)  L et {E k } ar e  Kr a us o p er at ors f or N . F or a n y li n-

e ar c o m bi n ati o n E = k c k E k wit h c k ∈ C a n d s u c h
t h at E |ψ = 0,  w e h a v e P ⊥

ρ B
E |ξ = 0.

F urt h er m or e, c o nsi d er t h e s etti n g of  T h e or e m 1 a n d s u p-
p os e t h at |ξ is d e fi n e d as |ξ = (H − H )|ψ . T h e n
(i) –( v) ar e f urt h er m or e e q ui v al e nt t o t h e f oll o wi n g.

( vi) F or a n y ei g e n v al u e p k (t) of N ( ψ (t)) s u c h t h at
p k (t0 ) = 0,  w e h a v e ∂ 2

t p k (t0 ) = 0.

O bs er v e t h at all t h e c o n diti o ns a b o v e d o n ot d e p e n d o n
t h e c h oi c e of Sti n es pri n g dil ati o n a n d/ or o n t h e c h oi c e of
t h e  Kr a us o p er at or r e pr es e nt ati o n, as all s u c h c h oi c es di ff er
b y a p arti al is o m etr y o n t h e E s yst e m. I n ot h er  w or ds, if t h e
c o n diti o ns a b o v e h ol d f or p arti c ul ar c h oi c es of V , N , a n d
{E k }, t h e y h ol d f or all ot h er c h oi c es as  w ell.

Pr o of of  Pr o p ositi o n 2 0. — We h a v e t h e f oll o wi n g i m pli-
c ati o ns. (i) ⇔ (ii): c o nsi d er

(P ⊥
ρ B

⊗ P ⊥
ρ E

)V |ξ = (P ⊥
ρ B

M ) ⊗ P ⊥
ρ E

| B E

= (P ⊥
ρ B

M t E → B (P ⊥
ρ E

)) ⊗ 1 | B E . ( E 1 4)

Si n c e V |ψ = ( ⊗ 1 )| = (1 ⊗ tB → E ( ))| ,  w e h a v e
ρ E = tB → E ( ) tB → E ( )† = tB → E ( † ) = tB → E (W † ρ B W ).
T h e n P ρ E = tB → E (W † P ρ B W ) a n d P ⊥

ρ E
= tB → E (W † P ⊥

ρ B
W ) =

tB → E ( P̃ ⊥
ρ B

), a n d

( F 1 4) = (P ⊥
ρ B

M P̃ ⊥
ρ B

) ⊗ 1 | B E . ( E 1 5)

T h er ef or e,  w e h a v e t h at (P ⊥
ρ B

⊗ P ⊥
ρ E

)V |ξ = 0 is e q ui v al e nt

t o 0 = P ⊥
ρ B

M P̃ ⊥
ρ B

.

(ii) ⇒ (iii): l et K = P ⊥
ρ N (|ξ ψ |) ρ

− 1 / 2
B = P ⊥

ρ trE

M B E
† ρ

− 1 / 2
B = P ⊥

ρ M W † P ρ .  N o w ass u m e t h at (ii)

h ol ds; t h e n K = P ⊥
ρ M W † a n d  w e h a v e K K † = P ⊥

ρ M M † P ⊥
ρ

= P ⊥
ρ N (|ξ ξ |)P ⊥

ρ , s h o wi n g (iii).
(iii) ⇒ (ii): c o n v ers el y, ass u mi n g (iii) a n d if K =

P ⊥
ρ B

N (|ξ ψ |) ρ
− 1 / 2
B = P ⊥

ρ M W † P ρ ,  w e h a v e b y ass u m p-

ti o n t h at K K † = P ⊥
ρ M M † P ⊥

ρ = (P ⊥
ρ M W † P ρ )(P ρ M W † P ρ ) †

+ P ⊥
ρ M W † P ⊥

ρ W M † P ⊥
ρ .  T his  m e a ns t h at 0 = (P ⊥

ρ M W † P ⊥
ρ )

(P ⊥
ρ W M † P ⊥

ρ ).  T h e l att er e q u ati o n c a n o nl y h ol d if

P ⊥
ρ M W † P ⊥

ρ = 0, s h o wi n g (ii).
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(i) ⇔ (iv ) : c o n diti o n (i) is s y m m etri c if  w e r e pl a c e B ↔
E ( a n d c orr es p o n di n gl y N ↔ N ),  m e a ni n g t h at t h e c o n-
diti o n h ol ds if a n d o nl y if t h e c o n diti o n  wit h B a n d E
s w a p p e d als o h ol ds.  T h er ef or e,  w e c a n s w a p B ↔ E i n
t h e ot h er c o n diti o ns a n d t h os e  will als o h ol d if a n d o nl y
if (i) h ol ds.  C o n diti o n (i v) is o bt ai n e d b y p erf or mi n g t his
tr a nsf or m ati o n o n (iii).

(i) ⇒ ( v ):  w e c h o os e t h e r e pr es e nt ati o n V = E k ⊗
|k E a n d ass u m e (i), i. e., t h at  w e h a v e

(P ⊥
ρ B

⊗ P ⊥
ρ E

)V |ξ = 0. ( E 1 6)

L et {c k } wit h c k ∈ C s u c h t h at k c k E k |ψ = 0 a n d l et E =

k c k E k . D e fi n e |e E = c ∗
k |k E .  We h a v e

e |N ( ψ )|e =

k ,k

e |k tr E k ψ E
†
k k |e

= tr c k E k ψ c k E k
†

= E |ψ
2

= 0, ( E 1 7)

w hi c h i m pli es t h at |e E ∈ k er N ( ψ ), i. e., P ⊥
ρ E

|e E = | e E .

A p pl yi n g 1 ⊗ e | o nt o  E q. ( E 1 6) w e fi n d

0 = P ⊥
ρ B

⊗ e |P ⊥
ρ E

V |ξ =
k

P ⊥
ρ B

E k |ξ e |k = P ⊥
ρ B

E |ξ ,

( E 1 8)

s h o wi n g t h at ( v) h ol ds.
(i) ⇐ ( v ):  w e n o w s u p p os e t h at c o n diti o n ( v) h ol ds.  L et

|χ j E b e a s et of ort h o n or m al st at es t h at s p a n t h e s u p-
p ort of P ⊥

ρ E
, i. e., P ⊥

ρ E
= j |χ j χ j |E . Fi x a n y s u c h |χ j

a n d d e fi n e E (j ) = χ j |k E k .  We r e p e at  E q. ( E 1 7) b y
r e pl a ci n g |e → | χ j , c k → χ j |k t o fi n d

0 = χ j |N ( ψ )|χ j = . . . = E (j ) |ψ
2
, ( E 1 9)

w hi c h i m pli es t h at E (j ) |ψ = 0.  We us e t h e ass u m pti o n
t h at ( v) h ol ds t o d e d u c e t h at P ⊥

ρ B
E (j ) |ξ = 0;  w e n ot e t h e

l att er e x pr essi o n h ol ds f or all j b y r e p e ati n g t his ar g u m e nt
f or e a c h j i n di vi d u all y.  T h e n

P ⊥
ρ B

⊗ P ⊥
ρ E

V |ξ = P ⊥
ρ B

⊗ |χ j χ j | V |ξ

=
k ,j

(P ⊥
ρ B

E k |ξ ) ⊗ (|χ j χ j |k )

=
j

(P ⊥
ρ B

E (j ) |ξ ) ⊗ | χ j = 0, ( E 2 0)

s h o wi n g t h at (i) h ol ds.
(iii) ⇔ ( v i): n o w c o nsi d er t h e s etti n g of  T h e or e m 1 a n d

s u p p os e t h at |ξ is d e fi n e d as |ξ = (H − H )|ψ . We

i n v o k e  R ef. [3 3 ,  E q. ( B 1 5)],  w hi c h i n t h e pr es e nt c o nt e xt
r e a ds

tr P ⊥
ρ ∂ 2

t ρ =
k : p k = 0

∂ 2
t p k + 2

k , :
p k > 0
p = 0

| λ k |∂ tρ |λ |2

p k
, ( E 2 1)

w h er e {|λ k } is a c o m pl et e ei g e n b asis of ρ wit h ei g e n v al-
u es p k .  Usi n g  E q. ( 1 1) o n e c a n c h e c k t h at t h e s e c o n d t er m
o n t h e ri g ht- h a n d si d e s atis fi es

2
k , :

p k > 0
p = 0

| λ k |∂ tρ |λ |2

p k
= 2 tr ρ − 1 ( ∂tρ ) P ⊥

ρ ( ∂tρ )

= 2 tr ρ − 1 N (|ψ ξ |) P ⊥
ρ N (|ξ ψ |) ,

( E 2 2)

usi n g t h e f a ct t h at ∂ tρ = N (− i[H , ψ ]) = N (− i|ξ ψ | +
i|ψ ξ |) a n d t h at N (X ψ ) P ⊥

ρ = 0 f or a n y X .  O n t h e

ot h er h a n d,  w e c a n s e e t h at ∂ 2
t ρ = ∂ tN (− i[H , ψ ]) =

N − i[∂ tH , ψ ] − [H , [H , ψ ]] , a n d r e c alli n g t h at N (X ψ )

P ⊥
ρ = 0 f or a n y X w e o bt ai n

tr P ⊥
ρ ∂ 2

t ρ = tr P ⊥
ρ N (2 H ψ H ) = 2 tr P ⊥

ρ N ( H̄ ψ H̄ )

= 2 tr P ⊥
ρ N (|ξ ξ |) , ( E 2 3)

writi n g H̄ = H − H ψ a n d  w h er e |ξ = H̄ |ψ .
N o w s u p p os e t h at (iii) h ol ds.  T h e n

( E 2 3) = 2 tr P ⊥
ρ N (|ξ ψ |) ρ − 1 N (|ψ ξ |) = ( E 2 2),

( E 2 4)

a n d t h er ef or e t h e first t er m o n t h e ri g ht- h a n d si d e of
E q. ( E 2 1) m ust v a nis h, a n d si n c e ∂ 2

t p k 0 f or all k f or
w hi c h p k = 0 as p k r e a c h es a  mi ni m u m at t h at p oi nt,  w e
m ust n e c ess aril y h a v e t h at ∂ 2

t p k = 0 f or all t h os e k .
C o n v ers el y, if t h e first t er m o n t h e ri g ht- h a n d si d e of

E q. ( E 2 1) v a nis h es, t h e n  w e h a v e

tr P ⊥
ρ N (|ξ ψ |) ρ − 1 N (|ψ ξ |) = tr P ⊥

ρ N (|ξ ξ |) .

( E 2 5)

B y a p pl yi n g t h e c o m pl et el y p ositi v e  m a p i d 2 ⊗ N o nt o

t h e  m atri x
|ψ ψ | |ψ ξ |
|ξ ψ | |ξ ξ |

a n d f urt h er c o nj u g ati n g b y
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P HI LI P P E F AI S T et al. P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

1
P ⊥

ρ
w e fi n d t h at

ρ N (|ψ ξ |)P ⊥
ρ

P ⊥
ρ N (|ξ ψ |) P ⊥

ρ N (|ξ ξ |)P ⊥
ρ

0. ( E 2 6)

Fr o m t h e S c h ur c o m pl e m e nt ( T h e or e m 5)  w e fi n d t h at

P ⊥
ρ N (|ξ ξ |) − N (|ξ ψ |) ρ − 1 N (|ψ ξ |) P ⊥

ρ 0.

( E 2 7)

B ut a p ositi v e s e mi d e fi nit e o p er at or h as tr a c e z er o if a n d
o nl y if it is i d e nti c all y e q u al t o z er o, s o  wit h  E q. ( E 2 5) w e
fi n d t h at P ⊥

ρ N (|ξ ξ |) − N (|ξ ψ |) ρ − 1 N (|ψ ξ |) P ⊥
ρ

= 0, s h o wi n g t h at (iii) h ol ds.
O ur  m ai n t e c h ni c al t h e or e m is t h e f oll o wi n g.
T h e or e m 6 ( Ti m e- e n er g y u n c ert ai nt y r el ati o n i n t h e

virt u al  m etr ol o gi c al q u bit pi ct ur e). — l et A , B , a n d E b e
fi nit e- di m e nsi o n al q u a nt u m s yst e ms.  L et N A → B b e a c o m-
pl et el y p ositi v e, tr a c e- n o n-i n cr e asi n g  m a p.  L et V A → B E b e
s u c h t h at N A → B (·) = trE V (·)V † a n d V † V 1 , i. e., V is

a Sti n es pri n g dil ati o n of N . L et N A → E (·) = trB V (·)V † .
L et |ψ b e a n y s u b n or m ali z e d st at e o n A , a n d l et |ξ
b e a n y v e ct or o n A s u c h t h at ψ |ξ = 0.  D e fi n e D Y

A =
− i |ξ ψ | − |ψ ξ | a n d D Z

A = | ξ ψ | + |ψ ξ |. T h e n

F N ( ψ ) ; N (D Y
A ) + F N ( ψ ) ; N (D Z

A )

4 ξ |N † (1 )|ξ . ( E 2 8)

F urt h er m or e, if (P ⊥
ρ B

⊗ P ⊥
ρ E

)V |ξ = 0, t h e n e q u alit y h ol ds.
First,  w e r e m ar k t h at b ot h Fis h er i nf or m ati o n e x pr es-

si o ns i n  E q. ( E 2 8) ar e  w ell d e fi n e d i n t h at  w e al w a ys
h a v e P ⊥

N ( ψ ) N (D Y
A )P ⊥

N ( ψ ) = 0 a n d P ⊥
N ( ψ )

N (D Z
A )P ⊥

N ( ψ )
= 0

as r e q uir e d i n t h e d e fi niti o n ( C 1).  T h es e c o n diti o ns c a n b e
v eri fi e d b y first n oti n g t h at t h e f oll o wi n g  m atri x is p ositi v e
s e mi d e fi nit e:

|ψ ψ | |ψ ξ |
|ξ ψ | |ξ ξ |

=
|ψ
|ξ

ψ | ξ | 0, ( E 2 9)

a n d a p pl yi n g eit h er c o m pl et el y p ositi v e  m a p i d 2 ⊗ N or
i d2 ⊗ N t o o bt ai n

N (|ψ ψ |) N (|ψ ξ |)
N (|ξ ψ |) N (|ξ ξ |)

0;
N (|ψ ψ |) N (|ψ ξ |)

N (|ξ ψ |) N (|ξ ξ |)
0. ( E 3 0)

T h e n,  T h e or e m 5 e ns ur es t h at P ⊥
N ( ψ ) N (|ψ ξ |) = 0

a n d t h er ef or e P ⊥
N ( ψ ) N (D Y

A )P ⊥
N ( ψ ) = 0; li k e wis e P ⊥

N ( ψ )

N (D Z
A )P ⊥

N ( ψ )
= 0.

Pr o of of T h e or e m 6. — L et , M b e o p er at ors a cti n g o n
B s u c h t h at V |ψ = ( ⊗ 1 )| a n d V |ξ = (M ⊗ 1 )| .
We c a n  writ e

D B = N (D Y
A ) = trE − i V |ξ ψ |V † − V |ψ ξ |V †

= − i M † − M † , ( E 3 1 a)

D E = N (D Z
A ) = trB (V |ξ ψ |V † + V |ψ ξ |V † )

= trB (M † + M † ); ( E 3 1 b)

w h er e i n  E q. ( E 3 1 b) t h e o p er at ors M , a ct o nl y o n B wit h
a t e ns or pr o d u ct  wit h t h e i d e ntit y o n E i m pli e d b ut =

B E = | |B E .  N o w c o nsi d er

1

4
4 ξ |N † (1 )|ξ − F ρ E ; D E = tr(M M † )

− m a x
S E = S

†
E

tr(D E S E ) − tr( ρE S 2
E ) , ( E 3 2)

usi n g  E q. ( C 3 a) a n d n oti n g t h at ξ |N † (1 )|ξ = tr(N
(|ξ ξ |)) = tr(M M † ).  T h e n, usi n g  E q. ( E 3 1 b), a n d  writi n g
t(·) = tE → B (·) as a s h ort h a n d,

( E 3 2) = mi n
S E = S

†
E

tr(M M † ) − tr (M † + M † )S E + tr S E
† S E

= mi n
S E = S

†
E

tr(M M † ) − tr M t (S E ) † + t(S E ) M † + tr (t(S E ))2 †

= mi n
S = S †

tr(M M † ) − tr M S † + S M † + tr S 2 † ,

= mi n
S = S †

tr (M − S )(M − S )† , ( E 3 3)
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w h er e t h e o pti mi z ati o n n o w r a n g es o v er all  H er mi-
ti a n o p er at ors S a cti n g o n B .  O n t h e ot h er h a n d, usi n g
E q. ( C 3 b),

1

4
F ρ ; D = mi n tr(L † L ) : ρ 1 / 2 L + L † ρ 1 / 2 = D ,

( E 3 4)

w h er e ρ , D r ef er t o o p er at ors o n B .  T o pr o v e t h e i n e q u alit y
( E 2 8),  w hi c h is t h e first p art of o ur  m ai n t h e or e m cl ai m, o ur
str at e g y is t o s h o w t h at f or a n y c a n di d at e S i n  E q. ( E 3 3),
t h er e is a v ali d c a n di d at e L i n  E q. ( E 3 4) t h at a c hi e v es t h e
s a m e v al u e.  T his st at e m e nt t h e n i m pli es t h at ( E 3 4) ≤ ( E 3 3)
as d esir e d.

R e c all t h at † = ρ ( w h er e ρ ≡ ρ B f or s h ort i n t his
pr o of), a n d t h er ef or e t h e p ol ar d e c o m p ositi o n of c a n
b e  writt e n as = ρ 1 / 2 W f or s o m e u nit ar y  m atri x W . L et
S b e a n y  H er miti a n o p er at or t h at is c a n di d at e i n t h e o pti-
mi z ati o n ( E 3 3), a n d l et L = i W(M † − S † ).  T h e n o n e c a n
v erif y t h at

ρ 1 / 2 L + L † ρ 1 / 2 = i (M † − S † ) − i(M − S ) †

= − i M † − M † = D , ( E 3 5)

a n d t h us L is a f e asi bl e c a n di d at e i n  E q. ( E 3 4). F urt h er-
m or e it h ol ds t h at tr (L † L ) = tr (M − S )(M − S )† ,
t h us pr o vi n g t h e i n e q u alit y ( E 2 8).

We n o w s h o w t h at, ass u mi n g (P ⊥
ρ B

⊗ P ⊥
ρ E

)V |ξ = 0, t h e
i n e q u alit y b e c o m es a n e q u alit y.  T h e pr o of str at e g y is t o g o
i n r e v ers e dir e cti o n a b o v e, st arti n g  wit h a n o pti m al c a n-
di d at e L i n  E q. ( E 3 4), a n d c o nstr u cti n g a c a n di d at e S i n
E q. ( E 3 3) t h at a c hi e v es t h e s a m e v al u e. Fr o m Pr o p ositi o n
2 0  w e s e e t h at (P ⊥

ρ B
⊗ P ⊥

ρ E
)V |ξ = 0 is e q ui v al e nt t o

P ⊥
ρ M W † P ⊥

ρ = 0. ( E 3 6)

L et L b e a n o pti m al c a n di d at e i n  E q. ( E 3 4), i. e., s u c h
t h at ρ 1 / 2 L + L † ρ 1 / 2 = D a n d F ρ ; D = 4 tr (L † L ).  Wit h-
o ut l oss of g e n er alit y,  w e  m a y ass u m e t h at P ρ L = L , si n c e
ot h er wis e P ρ L w o ul d yi el d a b ett er o pti mi z ati o n c a n di d at e
i n  E q. ( E 3 4).  D e n oti n g b y P

s u p p
X a n d P

r n g
X t h e pr oj e ct ors

o nt o t h e s u p p ort a n d t h e r a n g e of a n o p er at or X , a n d
d e fi ni n g P̃ ρ = W † P ρ W ,  w e h a v e

P
r n g

= P
s u p p

† = P ρ , P
s u p p

= P
r n g

† = W † P ρ W = P̃ ρ ,

P ⊥
ρ = 1 − P ρ , P̃ ⊥

ρ = 1 − P̃ ρ .

( E 3 7)

L et us c o m p ut e t h e o bj e ct L P ⊥
ρ :

L P ⊥
ρ = P ρ L P ⊥

ρ = ρ − 1 / 2 ρ 1 / 2 L + L † ρ 1 / 2 P ⊥
ρ

= ρ − 1 / 2 − i(M † − M † ) P ⊥
ρ

= iρ − 1 / 2 M † P ⊥
ρ = i Pρ W M † P ⊥

ρ = i WP̃ ρ M † P ⊥
ρ

= i W M † P ⊥
ρ , ( E 3 8)

w h er e  w e h a v e e m pl o y e d  E q. ( E 3 6) i n t h e l ast e q u alit y.
N o w l et us g et st art e d  wit h c o nstr u cti n g S .  O ur g o al is

t o fi n d a  H er miti a n  m atri x S s u c h t h at

L
!
= i W(M † − S † ). ( E 3 9)

I n d e e d, t his  w o ul d e ns ur e a v ali d c a n di d at e i n  E q. ( E 3 3)
r e a c hi n g t h e s a m e v al u e as tr(L † L ).  T h e e q u alit y ( E 3 9) is
e q ui v al e nt t o b ot h si m ult a n e o us c o n diti o ns

L P ρ
!
= i W(M † − S † )P ρ ; L P ⊥

ρ
!
= i W(M † − S † )P ⊥

ρ .

( E 4 0)

T h e l att er f oll o ws i m m e di at el y fr o m  E q. ( E 3 8), n oti n g t h at
† P ⊥

ρ = 0. It s u ffi c es, t h er ef or e, t o fi n d a  H er miti a n  m atri x
S s u c h t h at t h e first e q u alit y i n  E q. ( E 4 0) is s atis fi e d.

L et − 1 = W † ρ − 1 / 2 n oti n g t h at − 1 = P̃ ρ a n d
− 1 = P ρ . D e fi n e

S = − 1 M † + i W † L ( − 1 ) † + P̃ ⊥
ρ M † ( − 1 ) †

+ − 1 M P̃ ⊥
ρ . ( E 4 1)

First  w e s h o w t h at S is  H er miti a n b y pr o vi n g t h at t h e t er m
i n br a c k ets i n t h e first t er m a b o v e is, i n f a ct,  H er miti a n.
Usi n g W † = ρ 1 / 2 w e c a n c o m p ut e

M † + i W † L − M † + i W † L
†

= M † − M † + i ρ 1 / 2 L + L † ρ 1 / 2

= − i D + i D = 0, ( E 4 2)

usi n g pr o p erti es of L n ot e d a b o v e a n d usi n g  E q. ( E 3 1 a).
T h er ef or e, S is  H er miti a n.  T h e n

i W(M † − S † )P ρ = i W M † P ρ − i WP̃ ρ M † P ρ

+ P ρ L P ρ − i WP̃ ⊥
ρ M † P ρ = L P ρ , ( E 4 3)

n oti n g t h at P̃ ⊥
ρ

† = 0, ( − 1 ) † † = ( − 1 ) † = P ρ , a n d
r e c alli n g t h at P ρ L = L .  Wit h t his c h oi c e of S , t h e first
e q u alit y i n  E q. ( E 4 0) is t h us als o s atis fi e d, t h er e b y c o m-
pl eti n g t h e pr o of.
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3.  A d diti o n al e q ui v al e nt c o n diti o ns f o r z e r o s e nsiti vit y
l oss

T h e f oll o wi n g t h e or e m pr o vi d es a d diti o n al c o n diti o ns
u n d er  w hi c h z er o s e nsiti vit y l oss is a c hi e v e d (s e e S e c.
VII ), l e a di n g t o a n e x pli cit f or m of  B o b’s o pti m al s e nsi n g
o bs er v a bl e  w h e n e v er t h es e c o n diti o ns ar e s atis fi e d.

T h e or e m 7. — w e us e t h e n ot ati o n of  A p p e n di x E 2 . S u p-
p os e t h at t h e c o n diti o ns f or o ur u n c ert ai nt y r el ati o n e q u al-
it y ( Pr o p ositi o n 2 0) h ol d.  T h e n t h e f oll o wi n g st at e m e nts
ar e e q ui v al e nt:

(i)  We h a v e F N ( ψ ) ; N (D Y
A ) = 4 ξ |N † (1 )|ξ .

(ii)  We h a v e tr E
†
k E k D

Z
A = 0 f or all k , k ,  w h er e {E k } is

a n y s et of  Kr a us o p er at ors f or N .
(iii)  We h a v e N (D Z

A ) = 0.
(i v)  We h a v e † M + M † = 0.
( v)  T h e o p er at or iρ 1 / 2 M W † i s  H er miti a n.
( vi)  T h e o p er at or iρ N (|ξ ψ |) is  H er miti a n a n d

N (|ξ ξ |) = N (|ξ ψ |) ρ − 1 N (|ψ ξ |).
( vii)  T h e o p er at or iρ N (|ξ ψ |) is  H er miti a n a n d

ξ |N † (1 )|ξ = tr N (|ξ ψ |) ρ − 1 N (|ψ ξ |) .

F urt h er m or e, if t h es e c o n diti o ns ar e s atis fi e d t h e n

R − 1
ρ B

N (D Y
A ) = − 2 iN (|ξ ψ |) ρ − 1

+ 2 iρ − 1 N (|ψ ξ |)P ⊥
ρ . ( E 4 4)

Pr o of. — T h e pr o of of (i) ⇔ (ii)⇔ (iii) is pr es e nt e d i n t h e
m ai n t e xt ( S e c. VII ).

(iii) ⇒ (iv ) :  writ e 0 = N (D Z
A ) = trB B :E

† M +

M † .  O bs er v e t h at trB B :E (·) is t h e p arti al tr a ns-
p os e  m a p  wit h r es p e ct t o t h e b as es us e d t o d e fi n e B :E ;
t h er ef or e, † M + M † = 0.

(iv ) ⇔ ( v ) :  w e c o m p ut e

iρ 1 / 2 M W † − (iρ 1 / 2 M W † ) † = i W † M + M † W † ,

( E 4 5)

w hi c h v a nis h es t h a n ks t o t h e ass u m pti o n t h at (i v) h ol ds.
C o n v ers el y, b e c a us e W is u nit ar y  w e  m a y o nl y h a v e
E q. ( E 4 5) = 0 if † M + M † = 0.

(iv ) ⇒ ( v i) : r e c all t h at ρ = † a n d N (|ξ ψ |) =
trE V |ξ ψ |V † = M † . T h e n iρ N (|ξ ψ |) = i † M † .
T o c h e c k t h at iρ N (|ξ ψ |) is  H er miti a n  w e c o m p ut e

iρ N (|ξ ψ |) − (iρ N (|ξ ψ |))†

= i † M + M † † = 0, ( E 4 6)

usi n g o ur ass u m pti o n t h at (i v) h ol ds. F urt h er m or e,  w e h a v e

0 = ρ − 1 / 2 W † M + M † W † P ⊥
ρ = P ρ M W † P ⊥

ρ ; ( E 4 7)

r e c alli n g p oi nt (ii) of Pr o p ositi o n 2 0,  w e fi n d t h at

M W † P ⊥
ρ = 0. ( E 4 8)

T h e n

N (|ξ ξ |) = M M † = M W † (P ρ + P ⊥
ρ )W M †

= N (|ξ ψ |) ρ − 1 N (|ψ ξ |). ( E 4 9)

( v i) ⇒ ( v ii) : t his i m pli c ati o n f oll o ws i m m e di at el y fr o m
ξ |N † (1 )|ξ = tr(N (|ξ ξ |)).

( v ii) ⇒ (i) : o ur pr o of str at e g y f or t his i m pli c ati o n is
t o s h o w t h at t h e e x pr essi o n of t h e s y m m etri c l o g arit h mi c
d eri v ati v e i n  E q. ( E 4 4) is c orr e ct, a n d t h at t h e c orr es p o n d-
i n g Fis h er i nf or m ati o n at  B o b’s e n d h as n o s e nsiti vit y l oss.
L et

R = − 2 iN (|ξ ψ |) ρ − 1 + 2 iρ − 1 N (|ψ ξ |)P ⊥
ρ . ( E 5 0)

We c a n s e e t h at R is  H er miti a n b y  writi n g

R = − 2 i (P ρ + P ⊥
ρ ) N (|ξ ψ |) ρ − 1 + 2 iρ − 1 N (|ψ ξ |)P ⊥

ρ

= − 2 iρ − 1 ρ N (|ξ ψ |) ρ − 1 + − 2 i P⊥ρ N (|ξ ψ |) ρ − 1

+ h. c. . ( E 5 1)

T h e first t er m is  H er miti a n b y ass u m pti o n a n d t h e s e c o n d
t er m is  m a nif estl y  H er miti a n.  We n ot e f or c o n v e ni e n c e t h at
R P ρ = − 2 iN (|ξ ψ |) ρ − 1 a n d P ρ R = 2 iρ − 1 N (|ψ ξ |).
We c a n c o m p ut e

1

2
ρ R + R ρ = iN (|ψ ξ |) − iN (|ξ ψ |) = N (D Y

A ).

( E 5 2)

C o m bi ni n g  wit h t h e f a ct t h at P ⊥
ρ R P ⊥

ρ = 0  w e h a v e t h at

R − 1
ρ (N (D Y )) = R (s e e als o Pr o p ositi o n 3), t h us pr o vi n g

E q. ( E 4 4).  T h e Fis h er i nf or m ati o n at t h e o ut p ut of t h e
m a p pi n g N is t h er ef or e

F N ( ψ ) ; N (D Y
A ) = tr( ρ R 2 )

= tr ρ 2 iρ − 1 N (|ψ ξ |) − 2 iN (|ξ ψ |) ρ − 1

= 4 tr N (|ξ ψ |) ρ − 1 N (|ψ ξ |)

= 4 ξ |N † (1 )|ξ . ( E 5 3)

We c o n cl u d e t h at (i) h ol ds.

4.  P r o of of t h e g e n e r ali z e d bi p a rtit e  Fis h e r
i nf o r m ati o n u n c e rt ai nt y r el ati o n f o r a n y t w o

p a r a m et e rs

I n t his  A p p e n di x,  w e pr o v e t h e g e n er ali z e d u n c ert ai nt y
r el ati o n ( 6 8) t h at a p pli es t o a n y t w o p ar a m et ers g e n er at e d
b y u nit ar y e v ol uti o ns.

Pr o p ositi o n 2 1 ( U n c ert ai nt y r el ati o n f or a n y t w o p ar a m-
et ers  wit h ass o ci at e d g e n er at ors). — l et |ψ b e a st at e
v e ct or o n  Ali c e’s s yst e m, a n d l et A , B b e t w o  H er miti a n
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o p er at ors.  T h e l att er g e n er at e t w o r es p e cti v e p ar a m etri z e d
e v ol uti o ns

∂ a ψ = − i[A , ψ ]; ∂ b ψ = − i[B , ψ ]. ( E 5 4)

C o nsi d er t h e s etti n g d e pi ct e d i n Fi g. 1 ,  w h er e N c a n b e
a n y c o m pl et el y p ositi v e, tr a c e- n o n-i n cr e asi n g  m a p.  T h e n

F B o b, a

F Ali c e, a
+

F E v e, b

F Ali c e, b
1 + 2 1 −

i[A , B ]
2

4 σ 2
A σ 2

B

. ( E 5 5)

F urt h er m or e, ass u m e t h at N [ψ ( a )] d o es n ot c h a n g e r a n k
l o c all y as a f u n cti o n of a a n d t h at t h er e e xists β ∈ R , β = 0
s u c h t h at

N − i
B

σ B
, ψ = β N

A − A

σ A
, ψ . ( E 5 6)

T h e n

F B o b, a

F Ali c e, a
+

1

β 2

F E v e, b

F Ali c e, b
= 1. ( E 5 7)

C or oll ar y 3 ( U n c ert ai nt y r el ati o n f or a n y t w o p ar a m-
et ers). — l et |ψ ( a , b ) b e a n y st at e v e ct or d e p e n di n g o n
p ar a m et ers a , b . T h e n

F B o b, a

F Ali c e, a
+

F E v e, b

F Ali c e, b
1 + 2 1 −

i[∂ a ψ , ∂ b ψ ]
2

4 ( ∂a ψ ) 2 ( ∂b ψ ) 2
.

( E 5 8)

We first pr o v e t h e f oll o wi n g l e m m a.
L e m m a 2. — l et |ψ b e a n y st at e v e ct or a n d l et M b e

a n y c o m pl et el y p ositi v e, tr a c e- n o n-i n cr e asi n g  m a p.  C o n-
si d er t w o  H er miti a n o p er at ors C , B g e n er ati n g r es p e cti v e
e v ol uti o ns

∂ c ψ = − i[C , ψ ], ∂ b ψ = − i[B , ψ ]. ( E 5 9)

We  writ e ρ = M ( ψ ), ∂ c ρ = M (− i[C , ψ ]) a n d ∂ b ρ =
M (− i[B , ψ ]).  T h e n f or a n y x , y > 0,

y

σ 2
B

F ρ ; ∂ b ρ
x

σ 2
C

F ρ ; ∂ c ρ

+ 4 (x + y ) 1 −
x y

(x + y )2

4 R e C̄ B̄
2

σ 2
C σ 2

B

, ( E 6 0)

w h er e C̄ = C − C 1 a n d B̄ = B − B 1 . I n a d diti o n, s u p-
p os e t h at C c a n b e  writt e n as C = iα [A , ψ ] f or s o m e

H er miti a n o p er at or A a n d s o m e α ∈ R .  T h e n t h e a b o v e
i n e q u alit y t a k es t h e f or m

y

σ 2
B

F ρ ; ∂ b ρ
x

α 2 σ 2
A

F ρ ; ∂ c ρ

+ 4 (x + y ) 1 −
x y

(x + y )2

i[A , B ]
2

σ 2
A σ 2

B

. ( E 6 1)

F urt h er m or e, l et x , y > 0. If t h er e e xists s ∈ { + 1, − 1 } s u c h
t h at

M − i

√
y B

σ B
+ s

√
x C

σ C
, ψ = 0, ( E 6 2)

t h e n

y

σ 2
B

F ρ ; ∂ b ρ =
x

σ 2
C

F ρ ; ∂ c ρ . ( E 6 3)

Pr o of of L e m m a 2. — F or a n y x , y > 0, d e fi n e t h e s h ort-
h a n ds

C̃ =

√
x

σ C
C − C , B̃ =

√
y

σ B
B − B . ( E 6 4)

O bs er v e t h at σ 2
C̃

= x a n d σ 2
B̃

= y . F urt h er m or e,  w e d e fi n e

f or c o n v e ni e n c e D (·) = M (− i[(·), ψ ]), o bs er vi n g t h at
D C = ∂ c ρ a n d D B = ∂ b ρ .  T h e n usi n g Pr o p ositi o n 8  w e s e e
t h at

F ρ ; D C̃ =
x

σ 2
C

F ρ ; D C ; F ρ ; D B̃ =
y

σ 2
B

F ρ ; D B .

( E 6 5)

I n v o ki n g Pr o p ositi o n 1 6,

F ρ ; D B̃ F ρ ; D C̃ + F ρ ; + F ρ ; −

1 / 2

,

( E 6 6)

w h er e ± = D C̃ ± D B̃ = D C̃ ± B̃ .  We pr o c e e d t o c o m p ut e
t h e s e c o n d t er m o n t h e ri g ht- h a n d si d e of t his i n e q u al-
it y.  T h e d at a- pr o c essi n g i n e q u alit y ( Pr o p ositi o n 1 3), al o n g
wit h Pr o p ositi o n 1 2, gi v es us

F ρ ; ± F ψ ; − i[C̃ ± B̃ , ψ ] = 4 Var ψ C̃ ± B̃ ,

( E 6 7)

w h er e  w e  writ e  Var ρ (X ) = X 2
ρ − ( X ρ ) 2 . We fi n d

4 Var ψ C̃ ± B̃ = 4 ( C̃ ± B̃ ) 2 = 4 C̃ 2 + B̃ 2 ± { C̃ , B̃ }

= 4 x + y ± 8 R e C̃ B̃ . ( E 6 8)
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T h e n

4 2 Var ψ C̃ + B̃ Var ψ C̃ − B̃ = 4 2 x + y
2

− 8 2 x y

σ 2
C σ 2

B

R e C̄ B̄
2
, ( E 6 9)

w h er e C̄ = C − C a n d B̄ = B − B .  C o m bi ni n g t h e
a b o v e,

F ρ ; + F ρ ; −

1 / 2

4 (x + y ) 1 −
x y

(x + y )2

4 R e C̄ B̄
2

σ 2
C σ 2

B

. ( E 7 0)

Pl u g gi n g t his e x pr essi o n b a c k i nt o  E q. ( E 6 6), al o n g  wit h
E q. ( E 6 5), pr o v es  E q. ( E 6 0).  N o w s u p p os e t h at C =
iα [A , ψ ] f or s o m e  H er miti a n o p er at or A a n d f or a r e al
n u m b er α . T h e n C = 0 s o C̄ = C a n d

R e C̄ B̄ = α R e i[A , ψ ] B̄ = α R e ψ |i H|ψ ψ |B̄ |ψ

− ψ |i AB̄ |ψ

= α R e − i A B̄ =
α

2
− i A B̄ + i B̄ A

=
α

2
i[A , B̄ ] =

α

2
i[A , B ] . ( E 7 1)

E q u ati o n ( E 6 1) f oll o ws fr o m t his a n d usi n g t h e
f a ct t h at σ 2

C = C̄ 2 = α 2 − (A ψ − ψ A )2 = α 2 A 2 −

A 2 = α 2 σ 2
A .

N o w ass u m e t h at  E q. ( E 6 2) is s atis fi e d.  R e c alli n g

t h at ± = D C̃ ± D B̃ = M − i[C̃ ± B̃ , ψ ] ,  w e fi n d t h at
c o n diti o n ( E 6 2) i m m e di at el y i m pli es t h at eit h er + =
0 or − = 0 a n d t h er ef or e eit h er F ρ ; + = 0 or

F ρ ; − = 0. I n t his c as e, Pr o p ositi o n 1 6 i m m e di at el y

i m pli es t h at F ρ ; D C̃ = F ρ ; D B̃ .  We c o n cl u d e t h at
E q. ( E 6 3) h ol ds, r e c alli n g  E q,. ( E 6 5).

Pr o of of  Pr o p ositi o n 2 1. — C o nsi d er t h e e v ol uti o n ψ
(a , c ),  w h er e t h e p ar a m et er a is g e n er at e d b y t h e first gi v e n
H er miti a n o p er at or A a n d  w h er e t h e p ar a m et er c is g e n er-
at e d b y t h e c o m pl e m e nt ar y g e n er at or C ( as p er Fi g. 5 i n
t h e  m ai n t e xt) gi v e n b y

∂ c ψ = i[C , ψ ], C =
1

2 Var ψ (A )
− i[A , ψ ] . ( E 7 2)

R e c all F Ali c e, c = 4 σ 2
C = σ − 2

A fr o m  E q. ( 2 7) wit h H → A
a n d T → C .  O ur ti m e- e n er g y u n c ert ai nt y r el ati o n, i n its
f or m of  T h e or e m 6, ass erts t h at

1

4 σ 2
A

F B o b, a + σ 2
A F E v e, c 1. ( E 7 3)

N o w  w e i n v o k e  L e m m a 2,  wit h M = N , c , b , C =
iα [A , ψ ], α = − (2 σ 2

A ) − 1 , B , a n d x = y = 1 / 4. Fr o m

E q. ( E 6 1) w e fi n d

1

4 σ 2
B

F E v e, b σ 2
A F E v e, c + 2 1 −

i[A , B ]
2

4 σ 2
A σ 2

B

. ( E 7 4)

We fi n d, a p pl yi n g  E qs. ( E 7 3) a n d ( E 7 4) i n s u c c essi o n,

1

4 σ 2
A

F B o b, a +
1

4 σ 2
B

F E v e, b 1 − σ 2
A F E v e, c +

1

4 σ 2
B

F E v e, b

1 + 2 1 −
i[A , B ]

2

4 σ 2
A σ 2

B

. ( E 7 5)

T his s h o ws t h e d esir e d u n c ert ai nt y r el ati o n.
N o w ass u m e t h at N [ψ ] d o es n ot c h a n g e r a n k l o c all y

as a f u n cti o n of a a n d t h at  E q. ( E 5 6) h ol ds.  L et M = N ,
ρ E = N [ψ ], C = iα [A , ψ ], a n d α = − (2 σ 2

A ) − 1 . T h e n as
c o m p ut e d a b o v e σ C = | α |σ A = 1 /( 2 σ A ).  L et us c o m p ut e
n o w

− i
√

x
C

σ C
, ψ = − i

√
x
− i[A , ψ ]

σ A
, ψ

= −
√

x
A − A

σ A
, ψ , ( E 7 6)

r e c alli n g t h at [A , ψ ], ψ = { A − A , ψ }. L et y = 1, x =

|β |2 a n d s = si g n ( β ) s u c h t h at s
√

x /
√

y = β .  We t h e n
h a v e

M − i
√

y
B

σ B
+ s

√
x

C

σ C
, ψ

= N − i
√

y
B

σ B
, ψ + sN − i

√
x

C

σ C
, ψ

=

√
y

2
N − i

B

σ B
, ψ − β N

A − A

σ A
, ψ

= 0. ( E 7 7)

T h e l att er e x pr essi o n t h e n v a nis h es t h a n ks t o o ur ass u m p-
ti o n t h at  E q. ( E 5 6) h ol ds.  T h a n ks t o  L e m m a 2  w e fi n d

F E v e, b

F Ali c e, b
=

1

4 σ 2
B

F ρ E ; ∂ b ρ E =
x

4 σ 2
C

F ρ E ; ∂ c ρ E

= β 2 F E v e, c

F Ali c e, c
. ( E 7 8)

T h a n ks t o o ur ass u m pti o n t h at N [ψ ] d o es n ot c h a n g e
r a n k l o c all y as a f u n cti o n of a ,  w e k n o w t h at o ur  m ai n
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u n c ert ai nt y r el ati o n ( T h e or e m 6) h ol ds  wit h e q u alit y:

1

4 σ 2
A

F B o b, a + σ 2
A F E v e, c = 1. ( E 7 9)

We t h er ef or e fi n d, r e c alli n g σ 2
A = 1 /( 4 σ 2

C ),

F B o b, a

F Ali c e, a
+

1

β 2

F E v e, b

F Ali c e, b
= 1 − σ 2

A F E v e, c +
1

β 2

F E v e, b

4 σ 2
B

= 1 −
1

β 2

F E v e, c

4 σ 2
C

+
1

β 2

F E v e, b

4 σ 2
B

= 1, ( E 8 0)

usi n g  E q. ( E 7 8), t h us pr o vi n g t h e cl ai m.
Pr o of of  C or oll ar y 3. — T h e  m ai n i d e a of t his c or oll ar y

is t o n ot e t h at t h e Fis h er i nf or m ati o n d e p e n ds o nl y o n t h e
st at e a n d its first d eri v ati v e  wit h r es p e ct t o t h e p ar a m et er,
a n d t h at a n y d eri v ati v e ∂ a ψ c a n b e  writt e n i n t h e f or m
∂ a ψ = − i[A , ψ ] f or s o m e  H er miti a n g e n er at or A . T h er e-
f or e,  w e s e e k  H er miti a n o p er at ors A , B s u c h t h at ∂ a ψ =
− i[A , ψ ] a n d ∂ b ψ = − i[B , ψ ], s u c h t h at  w e c a n a p pl y
Pr o p ositi o n 2 1.  We l et A = i ∂ a ψ , ψ a n d B = i ∂ b ψ , ψ ,
a n d  w e c o m p ut e

− i[A , ψ ] = − i i[∂ a ψ , ψ ], ψ = ∂ a ψ , ψ

= ∂ a ( ψ 2 ) = ∂ a ψ , ( E 8 1)

usi n g  E q. ( A 4) a n d t h e f a ct t h at ∂ a ψ = tr[∂ a ψ ] =
∂ a tr( ψ ) = 0. Si mil arl y,

− i[B , ψ ] = ∂ b ψ . ( E 8 2)

We c a n t h er ef or e a p pl y Pr o p ositi o n 2 1. It r e m ai ns t o c o m-
p ut e t h e q u a ntiti es a p p e ari n g i n t h e ri g ht- h a n d si d e of
E q. ( E 5 5).  We h a v e

i[A , B ] = i tr ψ i[∂ a ψ , ψ ], i[∂ b ψ , ψ ]

= i tr ψ , i[∂ a ψ , ψ ] i[∂ b ψ , ψ ]

= tr − i i[∂ a ψ , ψ ] , ψ i[∂ b ψ , ψ ]

= tr ( ∂a ψ ) i[∂ b ψ , ψ ]

= i[∂ a ψ , ∂ b ψ ] , ( E 8 3)

usi n g t h e c y cli cit y of t h e tr a c e a n d i n v o ki n g  E q. ( E 8 1) f or
t h e f o urt h e q u alit y. F urt h er m or e,

σ 2
A = A 2 − A 2 = (i[∂ a ψ , ψ ])2 − i[∂ a ψ , ψ ]

2

= − ( ∂a ψ ) ψ − ψ ( ∂ a ψ ) ( ∂a ψ ) ψ − ψ ( ∂ a ψ )

= ψ ( ∂ a ψ ) ( ∂ a ψ ) ψ = ( ∂a ψ ) 2 , ( E 8 4)

w h er e  w e h a v e  m a d e us e of ψ ( ∂ a ψ ) ψ = 0. Si mil arl y
σ 2

B = ( ∂b ψ ) 2 ,  w hi c h e n ds t h e pr o of.

A P P E N DI X  F:  G E N E R A LI Z A TI O N S  T O
I N FI NI T E- DI M E N SI O N A L  HI L B E R T S P A C E S

W hil e t h e  m ai n t e xt h as p ut a n e m p h asis o n dis-
c ussi n g n oti o ns of q u a nt u m  m etr ol o g y  m a ki n g us e of
fi nit e- di m e nsi o n al q u a nt u m s yst e ms, i n t his s e cti o n,  w e
g e n er ali z e t h e a b o v e fi n di n gs t o t h e s etti n g of i n fi nit e-
di m e nsi o n al  Hil b ert s p a c es.  A s p e ci fi c att e nti o n is gi v e n
t o u n b o u n d e d o p er at ors, as  m a n y p h ysi c al s yst e ms of
pr a cti c al us e f all u n d er t his c at e g or y.

1.  U n c e rt ai nt y r el ati o n f o r a n y t w o p a r a m et e rs

We st art  wit h a g e n er alis ati o n of  T h e or e m 3 t o i n fi nit e
di m e nsi o ns ( cf. Pr o p ositi o n 2 1).

T h e or e m 8 ( U n c ert ai nt y r el ati o n f or i n fi nit e- di m e n-
si o n al s yst e ms). — l et A , B b e t w o s elf- a dj oi nt o p er a-
t ors ( p ossi bl y u n b o u n d e d) o n a s e p ar a bl e  Hil b ert s p a c e
H A wit h d o m ai ns D (A ) a n d D (B ), r es p e cti v el y.  L et
|ψ ∈ D (A ) ∩ D (B ) a n d |ψ ( a ) ∈ D (A ), |ψ ( b ) ∈ D (B )
f or s o m e b , a ∈ R w h er e |ψ ( a ) := e − i aA |ψ , |ψ ( b ) :=
e − i bB |ψ . L et V A → B E b e a n y is o m etr y H A → H B ⊗ H E ,
w h er e t h e  Hil b ert s p a c es H B , H E a ss o ci at e d  wit h  B o b
a n d  E v e ar e als o s e p ar a bl e a n d p ossi bl y of i n fi nit e di m e n-
si o ns.  C o nsi d er t h e t w o p ur e st at e e v ol uti o ns gi v e n b y
E q. ( E 5 4).  T h e n  E q. ( E 5 5) h ol ds,  wit h t h e f oll o wi n g
q u a ntiti es d e fi n e d b y

i[A , B ] := i A ψ , B ψ − i B ψ , A ψ , ( F 1)

A 2 := A ψ , A ψ ( F 2)

a n d

F M (y ) := li m i nf
l→ ∞

tr ρ (l)
M (y )R 2 ∈ R , ( F 3)

w h er e M ∈ { B , E }, y ∈ { a , b } a n d ρ (l)
X i s a n l- di m e nsi o n al

s u b n or m alis e d d e nsit y o p er at or a n d R = R (l) is d e fi n e d

i n  E q. ( 1 1) o n a n l- di m e nsi o n al  Hil b ert s p a c e f or ρ (l)
M .

S p e ci fi c all y,

ρ (l)
M (y ) := tr\ M P (l)

B E V A → B E ρ A (y )V
†
A → B E P (l)

B E , ( F 4)

w h er e \ E := B , \ B := E , a n d P (l)
B E i s t h e ort h o g o n al pr oj e c-

ti o n o nt o t h e first l b asis el e m e nts of a b asis f or H B ⊗ H E .
F urt h er m or e, t h e d eri v ati v e of ρ (l)

M (y ) is d e fi n e d vi a

d

d y
ρ (l)

M (y ) := tr\ M P (l)
B E V A → B E

d

d y
ρ A (y )V

†
A → B E P (l)

B E ,

( F 5)

w h er e

d

d a
ρ A (a ) := i|ψ ( a ) ψ ( a )|A − iA |ψ ( a ) ψ ( a )|, ( F 6)

d

d b
ρ A (b ) := i|ψ ( b ) ψ ( b )|B − iB |ψ ( b ) ψ ( b )|. ( F 7)
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Pr o of of T h e or e m 8. — T h e pr o of  will pr o c e e d i n t w o
st e ps. First  w e  will a p pr o xi m at e B a n d A b y b o u n d e d o p er-
at ors (if t h e y ar e alr e a d y b o u n d e d, t h e n t his first st e p is
n ot n e c ess ar y, alt h o u g h t h e a p pr o xi m ati o n  will n e v ert h e-
l ess b e  w ell d e fi n e d). S e c o n d,  w e  will a p pr o xi m at e t h es e
b o u n d e d o p er at ors b y fi nit e di m e nsi o n al o p er at ors.  T h e n
w e  will a p pl y  E q. ( E 5 5) b ef or e t a ki n g a s e q u e n c e of li mits
i n  w hi c h t h e a p pr o xi m ati o ns v a nis h.  We st art  wit h a f e w
el e m e nt ar y d e fi niti o ns a n d r es ults,  w hi c h  will b e n e c ess ar y
f or o ur pr o of.

L et A , (A n )n , b e b o u n d e d o p er at ors o n a  Hil b ert s p a c e
H .  We d e fi n e all b o u n d e d o p er at ors  w e c o nsi d er t o h a v e
d o m ai n e q u al t o t h e e ntir e  Hil b ert s p a c e.  We s a y t h at A n

c o n v er g es ( as n → ∞ ) t o A i n t h e str o n g li mit if A n →

A as n → ∞ f or a n y ∈ H .  We d e n ot e t his as A n
s

→
A . S o m e pr o p erti es ar e t h e f oll o wi n g.

(i)  L et A , (A n )n , B , (B n )n , C , (C n )n , b e b o u n d e d o p er-

at ors o n a  Hil b ert s p a c e H . A n
s

→ A , B n
s

→ B a n d

C n
s

→ C i m pl y A n B n
s

→ A B a n d A n B n C n
s

→ A B C .
Pr o of. (A n B n − A B ) = A n (B n − B ) + (A n − A )

B .  B y t h e u nif or m b o u n d e d n ess pri n ci pl e, A n
s

→ A
i m pli es A n c f or s o m e c ∈ R f or all n . T h er e-
f or e,

(A n B n − A B ) c (B n − B )

+ (A n − A )B , (F 8 )

w h er e t h e r hs t e n ds t o z er o as n → ∞ .  T his pr o v es
t h e first cl ai m. F or t h e s e c o n d, si m pl y d e fi n e Ā n :=

A n B n .  H e n c e Ā n
s

→ A B a n d t h us Ā n C n
s

→ (A B )C ,
h e n c e pr o vi n g t h e s e c o n d cl ai m.

(ii) A n
s

→ A i m pli es e − i An t s
→ e − i At f or t ∈ R .

Pr o of. e − i An t − e − i At = e − i An s e − i A(t− s)
s= t

s= 0
= − i

t

0 d s

e − i An s (A n − A )e − i A(t− s) .  B ut  w e h a v e (A n − A )

e − i A(t− s) s
→ 0̄ p oi nt wis e i n s,  w h er e 0̄ i s t h e b o u n d e d

o p er at or  m a p pi n g all v e ct ors i n H t o t h e z er o v e c-

t or i n H .  T h us vi a (i), e − i As(A n − A )e − i A(t− s) s
→ 0̄

p oi nt wis e i n s a n d t h e r es ult f oll o ws b y d o mi n at e d
c o n v er g e n c e.

(iii)  L et A b e s elf- a dj oi nt a n d p ossi bl y u n b o u n d e d.  L et
f , (fn )n : R → C b e u nif or ml y b o u n d e d f u n cti o ns

wit h fn → f as n → ∞ p oi nt- wis e.  T h e n fn (A )
s

→
f (A ).
Pr o of. S e e  R ef. [ 1 0 9 ].

We c a n n o w pr o v e t h e t h e or e m.  L et (P (n )
N ) n b e t h e ort h o g-

o n al pr oj e cti o ns o nt o t h e s p a n of t h e first n b asis el e m e nts
of a s e p ar a bl e  Hil b ert s p a c e H N .  C o nsi d er t w o b o u n d e d
o p er at ors Ã a n d B̃ o n H A a n d d e fi n e Ã n , B̃ n b y

Ã n := P (n )
A Ã P (n )

A , B̃ n := P (n )
A B̃ P (n )

A . ( F 9)

F urt h er m or e, c o nsi d er t h e s e q u e n c e of st at es ( ρ (n ,l)
B ) n ,l o n

H B , a n d ( ρ (n ,l)
E ) n ,l o n H E ,  w h er e

ρ (n ,l)
B (a ) := trE P (l)

B E V A → B E P (n )
A (|ψ n (a ) ψ n (a )|) P (n )

A V
†
A → B E P (l)

B E ,

ρ (n ,l)
E (b ) := trB P (l)

B E V A → B E P (n )
A (|ψ n (b ) ψ n (b )|) P (n )

A V
†
A → B E P (l)

B E ,
( F 1 0)

w h er e |ψ n (a ) := e − i aÃ n |ψ , |ψ n (b ) := e − i bB̃ n |ψ a n d t h e s e q u e n c es of d eri v ati v es, ( d
d a

ρ (n ,l)
B (t))n ,l o n H B , a n d

( d
d a

ρ (n ,l)
E (a ))n ,l o n H E ar e

d

d a
ρ (n ,l)

B (a ) = trE P (l)
B E V A → B E P (n )

A i|ψ n (a ) ψ n (a )|Ã n − iÃ n |ψ n (a ) ψ n (a )| P (n )
A V

†
A → B E P (l)

B E ,

d

d b
ρ (n ,l)

E (b ) = trB P (l)
B E V A → B E P (n )

A i|ψ n (b ) ψ n (b )|B̃ n − iB̃ n |ψ n (b ) ψ n (b )| P (n )
A V

†
A → B E P (l)

B E .

( F 1 1)

We c a n us e  E qs. ( F 1 0) a n d ( F 1 1) t o c o nstr u ct t h e Fis h er

i nf or m ati o n f or t h es e st at es. Si n c e V A → B E V
†
A → B E = 1 B E ,

w h er e 1 B E i s t h e i d e ntit y o p er at or o n H B E , it f oll o ws t h at

P (n )
A − P (l)

B E V A → B E P (n )
A

†

P (l)
B E V A → B E P (n )

A 0 ( F 1 2)

f or all l, n .  H e n c e, b y  Kr a us’ t h e or e m,  E q. ( F 1 0) ar e
c o m pl et el y p ositi v e a n d tr a c e n o ni n cr e asi n g  m a ps e v al u-
at e d o n i n p uts |ψ n (a ) ψ n (a )|. Si n c e Pr o p ositi o n 2 1 h ol ds

f or a n y c o m pl et el y p ositi v e, tr a c e n o ni n cr e asi n g  m a p,  w e
c a n a p pl y it t o o ur s et u p.  T his yi el ds

F ρ (n ,l)
B (a )

F ρ (n )
A (a )

+
F ρ (n ,l)

E (b )

F ρ (n )
A (b )

1 + 2 1 −
i[Ã n , B̃ n ]

2

4 σ̃ 2
A ,n σ̃

2
B ,n

,

( F 1 3)
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r e c alli n g t h at t h e u n c ert ai nt y r el ati o n als o a p pli es t o s u b-
n or m ali z e d p ositi v e o p er at ors, a n d  w h er e

F ρ (n )
A (a ) = 4 σ̃ 2

A ,n , ( F 1 4)

F ρ (n )
A (b ) = 4 σ̃ 2

B ,n , ( F 1 5)

σ̃ A ,n := Ã n ψ , Ã n ψ − ψ , Ã n ψ
2 1 / 2

, ( F 1 6)

σ̃ B ,n := B̃ n ψ , B̃ n ψ − ψ , B̃ n ψ
2 1 / 2

. ( F 1 7)

We c a n n o w t a k e t h e li mit n → ∞ o n b ot h si d es of
E q. ( F 1 3).  D u e t o pr o p ert y (i), it f oll o ws

li mn → ∞ F ρ (n ,l)
B (a )

F ρ (∞ )
A (a )

+
li mn → ∞ F ρ (n ,l)

E (b )

F ρ (∞ )
A (b )

1 + 2 1 −
i[Ã , B̃ ]

2

4 σ̃ 2
A σ̃ 2

B

, ( F 1 8)

w h er e

F ρ (∞ )
A (a ) := 4 σ̃ 2

A , ( F 1 9)

F ρ (∞ )
A (b ) := 4 σ̃ 2

B , ( F 2 0)

σ̃ A := Ã ψ , Ã ψ − ψ , Ã ψ
2 1 / 2

, ( F 2 1)

σ̃ B := B̃ ψ , B̃ ψ − ψ , B̃ ψ
2 1 / 2

. ( F 2 2)

O bs er v e t h at t h e q u a ntiti es li m n → ∞ F ( ρ (n ,l)
B (a )), li mn → ∞

F ( ρ (n ,l)
E (b )) c a n n ot di v er g e, si n c e it  w o ul d c o ntr a di ct t h e

i n e q u alit y (si n c e t h e Fis h er i nf or m ati o n is n o n- n e g ati v e).
T his o bs er v ati o n f oll o ws alt er n ati v el y fr o m a p pl yi n g t h e
d at a pr o c essi n g i n e q u alit y ( 1 1 0) t o b o u n d  B o b’s Fis h er
i nf or m ati o n i n t er ms of  Ali c e’s, f oll o w e d b y t al ki n g t h e
n → ∞ li mit. Si mil arl y f or  E v e’s Fis h er i nf or m ati o n.  B y
dir e ct c al c ul ati o n,  w e o bs er v e t h at t h e Fis h er i nf or m ati o n
F of a st at e ρ o n a d - di m e nsi o n al  Hil b ert s p a c e, a c c or di n g
t o  E qs. ( 9) a n d ( 1 1), is gi v e n b y

F =

d

k ,k = 1
s.t. p k + p k > 0

p k

(p k + p k ) 2
k

d ρ

d a
k

2

, ( F 2 3)

w h er e ρ = d
k = 1 p k |k k |.  H e n c e

li m
n → ∞

F ρ (n ,l)
B (a ) = li m

n → ∞

d B (l)

k ,k = 1

s.t. p
(n ,l)
k + p

(n ,l)
k

> 0

p (n ,l)
k

(p (n ,l)
k + p (n ,l)

k ) 2

k , n , l
d ρ (n ,l)

B (a )

d a
k , n , l

2

, ( F 2 4)

w h er e d B (l) is t h e di m e nsi o n of  B o b’s r e d u c e d s yst e m,

w hi c h is l i n d e p e n d e nt, a n d ρ (n ,l)
B (a ) = d B (l)

k = 1 p (n ,l)
k |k , n , l

k , n , l|.  O bs er v e t h at all t er ms i n t h e s u m m ati o n  m ust
b e fi nit e i n t h e li mit, si n c e t h e y ar e all n o n- n e g ati v e a n d
w e ar e g u ar a nt e e d t h at t h e r hs of  E q. ( F 2 4) d o es n ot
di v er g e.  O bs er v e t h at f or t er ms i n t h e s u m m ati o n f or  w hi c h

li mn → ∞ p (n ,l)
k + p (n ,l)

k > 0, t h e s u m m ati o n c a n b e i nt er-
c h a n g e d  wit h t h e li mit.  H o w e v er,  w hil e f or t er ms s u c h t h at

p (n ,l)
k + p (n ,l)

k > 0 f or all n , b ut li mn → ∞ p (n ,l)
k + p (n ,l)

k = 0,
t h e s u m m ati o n a n d i nt e gr ati o n c a n n ot b e i nt er c h a n g e d, t h e
i nt er c h a n g e of t h e li mit a n d s u m m ati o n  will r es ult i n t h e
l o w er b o u n d

li m
n → ∞

F ρ (n ,l)
B (a )

d B (l)

k ,k = 1

s.t. p
(∞ ,l)
k + p

(∞ ,l)
k

> 0

p (∞ ,l)
k

(p (∞ ,l)
k + p (∞ ,l)

k ) 2

k , ∞ , l
d ρ (∞ ,l)

B (a )

d a
k , ∞ , l

2

, ( F 2 5)

w h er e ρ (∞ ,l)
B (a ) =

d B (l)
k = 1 p (∞ ,l)

k |k , ∞ , l k , ∞ , l|,  wit h

ρ (∞ ,l)
B (a ) := li m

n → ∞
trE P (l)

B E V A → B E P (n )
A (|ψ n (a ) ψ n (a )|)

P (n )
A V

†
A → B E P (l)

B E ( F 2 6)

= trE P (l)
B E V A → B E | ˜ψ ( a ) ˜ψ ( a )| V

†
A → B E P (l)

B E ,

( F 2 7)

w h er e | ˜ψ ( a ) := e − iÃ a |ψ a n d usi n g pr o p erti es (i) a n d (ii).
Si mil arl y, us e pr o p erti es (i) a n d (ii) a g ai n t o o bt ai n

d

d a
ρ (∞ ,l)

B (a ) := li m
n → ∞

trE P (l)
B E V A → B E P (n )

A

i|ψ n (a ) ψ n (a )|Ã n − iÃ n |ψ n (a ) ψ n (a )|

P (n )
A V

†
A → B E P (l)

B E ( F 2 8)

= trE P (l)
B E V A → B E i| ˜ψ ( a ) ˜ψ ( a )|Ã

− iÃ | ˜ψ ( a ) ˜ψ ( a )| V
†
A → B E P (l)

B E . ( F 2 9)
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Li k e wis e,  w e o bt ai n t h e s a m e e x pr essi o n f or li m n → ∞

F ( ρ (n ,l)
E (b )) t h at  w e h a v e a c hi e v e d f or

li m
n → ∞

F ρ (n ,l)
B (a ) , ( F 3 0)

b ut i nt er c h a n gi n g a → b , Ã → B̃ a n d tr E → trB .
N o w t h at  w e h a v e a n e x pr essi o n f or t h e b o u n d,  w hi c h

h ol ds f or b o u n d e d o p er at ors Ã a n d B̃ , o ur n e xt st e p is t o
m o v e t o u n b o u n d e d o p er at ors. F or t his t as k,  w e d e fi n e
s e q u e n c es of b o u n d e d o p er at ors (A m )m a n d (B m )m a s

A m :=
A

1 + A 2 / m
, B m :=

B

1 + B 2 / m
. ( F 3 1)

We n o w e v al u at e  E q. ( F 1 8) c h o osi n g Ã e q u al t o Ã m a n d
Ã e q u al t o Ã m , f oll o w e d b y t a ki n g t h e li mit m → ∞ o n
b ot h si d es of t h e e q u ati o n. Si n c e b y (iii), it f oll o ws t h at

1 /( 1 + A 2 / m )
s

→ 1 A a n d 1 /( 1 + B 2 / m )
s

→ 1 A ,  w h er e 1 A

i s t h e i d e ntit y o p er at or o n H A ,  w e h a v e t h at A m ψ → A ψ
a n d B m ψ → B ψ f or all ψ ∈ D (A ) ∩ D (B ), a n d  w e fi n d

li mm → ∞ li mn → ∞ F ρ (n ,l)
B (a )

F ρ (∞ ,∞ )
A (a )

+
li mm → ∞ li mn → ∞ F ρ (n ,l)

E (b )

F ρ (∞ ,∞ )
A (b )

1 + 2 1 −
i[A , B ]

2

4 σ A
2 σ B

2
, ( F 3 2)

w h er e

F ρ (∞ ,∞ )
A (a ) := 4 σ 2

A , ( F 3 3)

F ρ (∞ ,∞ )
A (b ) := 4 σ 2

O , ( F 3 4)

σ A := A ψ , A ψ − ψ , A ψ
2 1 / 2

, ( F 3 5)

σ B := B ψ , B ψ − ψ , B ψ
2 1 / 2

. ( F 3 6)

T h e r hs of t his i n e q u alit y is n o w of t h e f or m i n t h e c or oll ar y
st at e m e nt.  We c o nti n u e  wit h t h e l hs. First o bs er v e t h at

li m
m → ∞

li m
n → ∞

F ρ (n ,l)
B (a ) ( F 3 7)

d B (l)

k ,k = 1

s.t. p
(∞ ,∞ ,l)
k + p

(∞ ,∞ ,l)
k

> 0

p (∞ ,∞ ,l)
k

(p (∞ ,∞ ,l)
k + p (∞ ,∞ ,l)

k ) 2

k , ∞ , ∞ , l
d ρ (∞ ,∞ ,l)

B (a )

d a
k , ∞ , ∞ , l

2

, ( F 3 8)

w h er e ρ (∞ ,∞ ,l)
B (a ) =

d B (l)
k = 1 p (∞ ,∞ ,l)

k |k , ∞ , ∞ , l
k , ∞ , ∞ , l|,  wit h

ρ (∞ ,∞ ,l)
B (a ) := li m

m → ∞
trE P (l)

B E V A → B E | ˜ψ m (a ) ˜ψ m (a )|

V
†
A → B E P (l)

B E , ( F 3 9)

d

d a
ρ (∞ ,∞ ,l)

B (a )

:= li m
m → ∞

trE P (l)
B E V A → B E i| ˜ψ m (a ) ˜ψ m (a )|A m

− iA m | ˜ψ m (a ) ˜ψ m (a )| V
†
A → B E P (l)

B E ,

( F 4 0)

a n d | ˜ψ m (a ) = e − i aA m |ψ .  T o s e e t h at  E q. ( F 3 8) h ol ds,
o bs er v e t h at t h e s a m e r e as o ni n g t o  w h y t h e li mit a n d s u m-
m ati o n c o ul d b e i nt er c h a n g e d g oi n g fr o m  E q. ( F 2 3) t o
E q. ( F 2 4), h ol ds f or t h e li mit m → ∞ als o.  N o w d e fi n e

fm (x ) = e − i a x/( 1 + x 2 / m ) a n d f (x ) = e − i a x.  Ass u m pti o ns i n

(iii) h ol d, t h us e − i aA m
s

→ e − i aA , h e n c e usi n g (ii) 1/( 1 +

A 2 / m )e − i aA m
s

→ e − i aA . F urt h er m or e, si n c e, b y d e fi niti o n
e − i aA |ψ ∈ D (A ),  w e h a v e H |ψ ( a ) ∈ H A .  T a ki n g all
t h es e t hi n gs i nt o a c c o u nt,  w e c o n cl u d e t h at

ρ (∞ ,∞ ,l)
B (a ) = trE P (l)

B E V A → B E (|ψ ( a )

ψ ( a )|) V
†
A → B E P (l)

B E , ( F 4 1)

d

d a
ρ (∞ ,∞ ,l)

B (a ) = trE P (l)
B E V A → B E (i|ψ ( a ) ψ ( a )|A

− iA |ψ ( a ) ψ ( a )|) V
†
A → B E P (l)

B E . ( F 4 2)

Li k e wis e,  w e o bt ai n t h e s a m e e x pr essi o n f or li m m → ∞

li mn → ∞ F ( ρ (n ,l)
E (b )) t h at  w e h a v e a c hi e v e d f or li mm → ∞

li mn → ∞ F ( ρ (n ,l)
B (a )), b ut i nt er c h a n gi n g a → b , A →

B a n d tr E → trB .  L astl y, b y c o m p ari n g t h e r hs of
E q. ( F 3 8) wit h t h e r hs of  E q. ( F 2 3), o n e s e es t h at

li mm → ∞ li mn → ∞ F ( ρ (n ,l)
B (a )) is gi v e n b y e v al u ati n g t h e

Fis h er i nf or m ati o n f or ρ (∞ ,∞ ,l)
B (a ) [ d e fi n e d b y  E q. ( F 4 1)]

wit h d eri v ati v e d
d a

ρ (∞ ,∞ ,l)
B (a ) [ d e fi n e d b y  E q. ( F 4 1)]

a c c or di n g t o  E qs. ( 9) a n d ( 1 1).  T h e s a m e o bs er v ati o n h ol ds
f or  E v e’s Fis h er i nf or m ati o n.  H e n c e t o c o n cl u d e t h e pr o of,
w e t a k e li m i nf l→ ∞ o n b ot h si d es of t h e e q u ati o n.

2.  Ti m e- e n e r g y u n c e rt ai nt y e q u alit y i n i n fi nit e
di m e nsi o ns

I n f a ct, b uil di n g o n t h e pr e vi o us r es ult,  w e g et t h e f ol-
l o wi n g st at e m e nt i n t h e c as e  w h er e t h e c o m m ut at or i n
t h e pr e vi o us t h e or e m v a nis h es.  T his c a n b e vi e w e d as a
g e n er ali z ati o n of  T h e or e m 1 t o t h e u n b o u n d e d o p er at or
c as e.
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T h e or e m 9 ( Ti m e- e n er g y u n c ert ai nt y r el ati o n f or
i n fi nit e- di m e nsi o n al s yst e ms). —l et |ψ b e a st at e v e c-
t or i n a s e p ar a bl e  Hil b ert s p a c e H A of p ossi bl y i n fi nit e
di m e nsi o ns, l et H , X b e s elf- a dj oi nt o p er at ors ( p ossi bl y
u n b o u n d e d)  wit h d o m ai ns D (H ) a n d D (X ), r es p e cti v el y,
s o t h at |ψ ∈ D (H ) ∩ D (X ). D e fi n e σ H := [ H ψ , H ψ −
ψ , H ψ 2 ]1 / 2 ,  w hi c h is fi nit e d u e t o |ψ ∈ D (H ), a n d

P ⊥
ρ := 1 − P ρ ,  w h er e P ρ d e n ot es t h e pr oj e ct or o nt o t h e

s u p p ort of ρ .  D e fi n e a n al o g o usl y as b ef or e

T := t0 −
i[H , ψ ]

2 σ 2
H

+ P ⊥
ψ X P ⊥

ψ , ( F 4 3)

w h er e X c a pt ur es t h e fr e e d o m l eft  w h e n d e fi ni n g t h e
o pti m al l o c al ti m e s e nsi n g o bs er v a bl e, a n d c o nsi d er f or
r e al t, η a n d t0 , η 0 t h e t w o- p ar a m et er f a mil y |ψ ( t, η ) wit h
|ψ ( t0 , η 0 ) = | ψ , a g ai n ψ = | ψ ψ | a n d

|ψ ( t, η ) = e x p − i[(t − t0 )H − ( η − η 0 )T ] |ψ . ( F 4 4)

L et, as i n  T h e or e m 8, V A → B E b e a n y is o m etr y H A →
H B ⊗ H E ,  w h er e t h e  Hil b ert s p a c es H B , H E a ss o ci at e d
wit h  B o b a n d  E v e ar e als o s e p ar a bl e a n d p ossi bl y of i n fi-
nit e di m e nsi o ns, a n d d e fi n e F A , F B , F E a n al o g o usl y as i n
T h e or e m 8.  T h e n t h e u n c ert ai nt y pri n ci pl e

F B (t)

F A (t)
+

F E ( η )

F A ( η )
1 ( F 4 5)

h ol ds.
I n d e e d, e v e n i n t h e i n fi nit e- di m e nsi o n al s etti n g f or

u n b o u n d e d o p er at ors, t h e u n c ert ai nt y pri n ci pl e c a n b e
att ai n e d  wit h e q u alit y, s o t h at

F B (t)

F A (t)
+

F E ( η )

F A ( η )
= 1 ( F 4 6)

still h ol ds tr u e.
Pr o of of T h e or e m 9. — T h e pr o of f oll o ws t h e s a m e li n e

of t h o u g ht as t h at of  T h e or e m 8,  wit h s o m e di ff er e n c es.  T o
st art  wit h, c o nsi d er t h e b o u n d e d o p er at ors H̃ a n d X̃ o n H A

a n d d e fi n e f or a p ositi v e i nt e g er n t h e tr u n c at e d o p er at ors
H̃ n a s

H̃ n := P (n )
A H̃ P (n )

A ( F 4 7)

a n d

T̃ n := P (n )
A T̃ P (n )

A , ( F 4 8)

wit h T̃ b ei n g d e fi n e d as i n  E q. ( F 4 3) wit h T b ei n g r e pl a c e d
b y T̃ a n d X b y X̃ .  As a b o v e, o n e c a n d e fi n e t h e ti m e-
e v ol v e d st at es as

|ψ n (t, η ) = e x p − i[(t − t0 ) H̃ n − ( η − η 0 ) T̃ n ] |ψ ,

( F 4 9)

wit h |ψ n := | ψ n (t0 , η 0 ) . I n t h e s a m e  w a y as b ef or e, f or
p ositi v e i nt e g ers l ( a n d n ),  w e c a n c o nsi d er t h e s e q u e n c e of

p ositi v e o p er at ors ( ρ (n ,l)
B ) n ,l o n H B d e fi n e d as

ρ (n ,l)
B (t, η ) := trE P (l)

B E V A → B E P (n )
A (|ψ n (t, η ) ψ n (t, η ) |)

P (n )
A V

†
A → B E P (l)

B E , ( F 5 0)

a n d

ρ (n ,l)
E (t, η ) := trB P (l)

B E V A → B E P (n )
A (|ψ n (t, η ) ψ n (t, η ) |)

P (n )
A V

†
A → B E P (l)

B E . ( F 5 1)

Usi n g t h es e q u a ntiti es, a n d pr o c e e di n g as i n t h e pr o of of
T h e or e m 8, si n c e t his is a v ali d fi nit e- di m e nsi o n al s et-
ti n g i n  w hi c h t h e a b o v e pr o of i n t er ms of a s e mi d e fi nit e
pr o gr a m h ol ds tr u e, o n e h as

F B o b, t

4 H̃ ψ n , H̃ n ψ n − ψ n , H̃ n ψ n
2

+ H̃ n ψ n , H̃ n ψ n

− ψ n , H̃ n ψ n
2 F E v e, η = 1, ( F 5 2)

wit h e q u alit y, si n c e |ψ ∈ D (H ) ∩ D (X ) a n d h e n c e t h e
st at e v e ct or is i n t h e d o m ai ns of H a n d X .  H er e,

F B o b, t := F ρ (n ,l)
B (t0 ) ; ∂ tρ

(n ,l)
B (t0 ) , ( F 5 3)

wit h

ρ (n ,l)
B (.) := ρ (n ,l)

B (., η 0 ), ( F 5 4)

a n d F E v e, η d e fi n e d a n al o g o usl y b as e d o n ρ (n ,l)
E ( η ) wit h

ρ (n ,l)
E (.) := ρ (n ,l)

E (t0 , .).  T h e li mit t o t h e i n fi nit e- di m e nsi o n al
s etti n g i n v ol vi n g t h e s uit a bl e li mit of n → ∞ a n d l → ∞
c a n b e p erf or m e d as i n  T h e or e m 8,  w hil e  m ai nt ai ni n g
e q u alit y f or e a c h n a n d l.

A P P E N DI X  G:  C A L C U L A TI O N S  F O R  T H E  C A S E
O F  C O N TI N U O U S  LI N D B L A DI A N  N OI S E

1. S e nsi n g a n u n k n o w n p a r a m et e r i n t h e  H a milt o ni a n

C o nsi d er a pr o b e i niti ali z e d i n t h e st at e v e ct or |ψ i nit a n d
s u bj e ct t o t h e  Li n d bl a d d y n a mi cs

ρ̇ = L ( ω)
t ot ( ρ ), ( G 1)

wit h

L ( ω)
t ot = L ( ω)

si g + L r est ; L ( ω)
si g ( ρ ) = − i[ω G , ρ ];

L r est( ρ ) = − i[H r est, ρ ] +
j

L j ρ L
†
j −

1

2
L

†
j L j , ρ .

( G 2)
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H er e, ω is t h e u n k n o w n p ar a m et er t o b e esti m at e d.  T h e
o v er all e v ol uti o n u p t o s o m e t ot al ti m e T is gi v e n b y

E ( ω)
T = e

T [L
( ω )
si g + L r est ]. ( G 3)

As  w e di d e arli er,  w e c a n d e c o m p os e t h e o v er all e v ol u-
ti o n i nt o t h e u nit ar y e v ol uti o n dri v e n b y t h e si g n al ( w hi c h
d e p e n ds o n t h e u n k n o w n p ar a m et er ω ), f oll o w e d b y a n
e ff e cti v e i nst a nt a n e o us n ois y c h a n n el N T ,ω :

E ( ω)
T = N T ,ω e

T L
( ω )
si g , ( G 4)

w h er e N T ,ω i s gi v e n b y

N T ,ω = E ( ω)
T e

− T L
( ω )
si g . ( G 5)

We ar e i nt er est e d i n t h e s e nsiti vit y of t h e pr o b e t o t h e
p ar a m et er ω , l o c all y ar o u n d ω 0 , aft er l etti n g t h e pr o b e
e v ol v e f or s o m e fi x e d ti m e T .  T h e s e nsiti vit y is gi v e n i n
t er ms of t h e Fis h er i nf or m ati o n

F T ,ω ( ω 0 ) = F ρ T ,ω 0
; ( ∂ω ρ T ,ω ) ( ω0 ) . ( G 6)

D e fi ni n g t h e ( fi ctiti o us) f a mil y of st at es

ψ T ,ω = e − i Tω G ψ i nit e
i Tω G ;

∂ ω ψ T ,ω = − i T[G , ψ T ,ω ],
( G 7)

w e  m a y  writ e

F T ,ω ( ω 0 ) = F ρ T ; N T ∂ ω ψ T ,ω + ( ∂ω N T ,ω ) ψ T , ( G 8)

w h er e  w e o mit t h e s u bs cri pt (·)ω 0
o n all o bj e cts,  w hi c h ar e

ulti m at el y e v al u at e d at ω = ω 0 .
A g ai n as e arli er  w e ass u m e t h at  w e c a n n e gl e ct t h e s e c-

o n d t er m i n t h e d eri v ati v e i n  E q. ( G 8), a n d c arr y o n  wit h
t h e a p pr o xi m ati o n

F T ,ω ≈ F N T ,ω 0
ψ T ,ω 0

; N T ,ω 0
∂ ω ψ T ,ω = : F u nit.

T ,ω . ( G 9)

As a b o v e  w e ar e n o w i n t h e s etti n g of o ur  m ai n u n c ert ai nt y
r el ati o n;  w e c a n i d e ntif y t h e a b o v e q u a ntit y  wit h F B o b, t i n
T h e or e m 1,  w h er e n o w t h e r el e v a nt e v ol uti o n g e n er at or is
T G .  T h e or e m 1 t h e n i m pli es t h at

F u nit.
T ,ω = 4 T 2 σ 2

G − F u nit.
T ,ω ;

F u nit.
T ,ω = T 2 F N T ,ω 0

ψ T ,ω 0
; N T ,ω 0

Ḡ , ψ T ,ω 0
,

( G 1 0)

w h er e N T ,ω 0
i s a c h a n n el t h at is c o m pl e m e nt ar y t o N T ,ω 0

,

a n d  w h er e Ḡ = G − G wit h G = tr[G ψ T ,ω 0
].  As e ar-

li er, t h e c o m pl e m e nt ar y c h a n n el c a n b e  writt e n N T ,ω 0
=

E T ,ω 0
e

− T L
( ω )
si g .

T h e a bs ol ut e err or δ i n t h e a p pr o xi m ati o n ( G 9) c a n b e
b o u n d e d as e arli er usi n g Pr o p ositi o n 1 7 i n  A p p e n di x C as

|δ | F ρ ; ( ∂ω N T ,ω )( ψT ,ω 0
)

+ F ρ ; ( ∂ω N T ,ω )( ψT ,ω 0
) F u nit.

T ,ω
1 / 2

. ( G 1 1)

Si mil ar ar g u m e nts t o t h os e pr es e nt e d e arli er a p pl y  w h e n
c o m p uti n g ∂ ω N T ,ω i n or d er t o b o u n d δ ;  w e h a v e

∂ ω N T ,ω ( ψT ,ω ) = ∂ ω ρ − E ( ω)
T (− i T[G , ψ 0 ]). ( G 1 2)

A n y n u m eri c al or a n al yti c al u p p er b o u n d o n F ρ ;

( ∂ω N T ,ω )( ψT ,ω 0
) t h e n dir e ctl y gi v es a n u p p er b o u n d t o |δ |

i n  E q. ( G 1 1).

2.  E x a m pl e: c o nti n u o us d e p h asi n g n ois e al o n g t h e Z
a xis

A q u bit is i niti ali z e d i n t h e st at e v e ct or

|ψ i nit = | + =
1

√
2

| ↑ + | ↓ , ( G 1 3)

a n d e v ol v es a c c or di n g t o t h e  H a milt o ni a n H = ω Z / 2. S u p-
p os e t h at t h e q u bit is s u bj e ct t o c o nti n u o us d e p h asi n g al o n g
t h e Z a xis.  T his n ois e is r e pr es e nt e d b y t h e  Li n d bl a di a n
j u m p o p er at ors

L 0 =
√

γ | ↑ ↑| , L 1 =
√

γ | ↓ ↓| . ( G 1 4)

I n v e ct ori z e d o p er at or n ot ati o n (s a m e c o n v e nti o ns as i n t h e
a p p e n di c es of o ur  w or k, i. e., r o w- m aj or c o n v e nti o n),  w e
h a v e

L 1 = L j ⊗ L T
j −

1

2
L

†
j L j ⊗ 1 + 1 ⊗ (L

†
j L j )

T

=

⎡

⎢
⎣

0
− γ

− γ
0

⎤

⎥
⎦ ;

L 0 = (. . .) =

⎡

⎢
⎣

0
− iω

iω
0

⎤

⎥
⎦ , E t = e t(L 0 + L 1 )

=

⎡

⎢
⎣

1
e − γ t− itω

e − γ t+ itω

1

⎤

⎥
⎦ .

T h e f ull e v ol uti o n  m a p, r e pr es e nt e d as a n o p er at or i n t er ms
of  m atri x el e m e nts ρ ij = i|ρ |j , is

E t( ρ ) =
ρ 0 0 ρ 0 1 e

− itω − γ t

ρ 1 0 e
itω − γ t ρ 1 1

. ( G 1 5)

T h e n e xt st e ps f or t his e x a m pl e ar e ( a) a dir e ct c o m p ut ati o n
of  B o b’s s e nsiti vit y; ( b) a c al c ul ati o n of  E v e’s s e nsiti vit y
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t o e n er g y vi a o ur e ff e cti v e pi ct ur e; a n d ( c) a n ass ess m e nt
of t h e err or  m a d e i n t h e a p pr o xi m ati o n ( 1 4 0).

a.  Di r e ct c o m p ut ati o n of t h e s e nsiti vit y of t h e n ois y
p r o b e

At a ti m e t, t h e st at e is

ρ ( t) =
1

2

1 e − itω − γ t

e itω − γ t 1

= U t
1 e − γ t

e − γ t 1
U

†
t = U t

1 + e − γ tX

2
U

†
t

=
1 + e − γ t

2
U t| + +| U

†
t +

1 − e − γ t

2
U t| − −| U

†
t ,

( G 1 6)

w h er e  w e us e t h e s h ort h a n d U t = e − i Ht.  T h e l ast e x pr es-
si o n i n  E q. ( G 1 6) pr o vi d es a di a g o n al f or m f or ρ ,  w hi c h
will s er v e i n t h e c al c ul ati o n of t h e Fis h er i nf or m ati o n.  T h e
d eri v ati v e of t h e st at e is

L t ot[ρ ( t)] = ρ̇ ( t) =
1

2

0 (− iω − γ ) e − itω − γ t

(iω − γ ) e itω − γ t 0

=
e − γ t

2
− γ U tX U

†
t + ω U tY U

†
t , ( G 1 7)

n oti n g t h at U tX U
†
t =

0 e − itω

e itω 0
a n d U tY U

†
t =

0 − i e− itω

i eitω 0
.  We c a n i nt er pr et t his d eri v ati v e i n t er ms

of t w o di ff er e nt d y n a mi cs: o n e ∝ ω U tY U
†
t ,  w hi c h dri v es

t h e r ot ati o n ar o u n d t h e  Bl o c h s p h er e a n d o n e ∝ − γ U tX U
†
t ,

w hi c h dri v es d e c o h er e n c e ( Fi g. 1 4 ).  T h e  m atri x el e m e nts
of t h e d eri v ati v e i n t h e ei g e n b asis {U t| ± } of ρ ar e

+| U
†
t ρ̇ U t| + =  − γ

e − γ t

2
, +| U

†
t ρ̇ U t| − = iω

e − γ t

2
,

−| U
†
t ρ̇ U t| + =  − iω

e − γ t

2
, −| U

†
t ρ̇ U t| − = γ

e − γ t

2
,

( G 1 8)

w h er e +| Y | − = +| Y Z | + = i +| X | + = i.  N o w  w e
c o m p ut e t h e Fis h er i nf or m ati o n usi n g  E q. ( 1 2) as

F cl o c k, t = F ρ ( t0 ) ; ρ̇ ( t0 ) =
2

1 + e − γ t0
γ

e − γ t0

2
2

+ 2 iω
e − γ t0

2
2 + 2 iω

e − γ t0

2
2

FI G. 1 4.  T o p vi e w of t h e  Bl o c h s p h er e f or a si n gl e q u bit pr e-
p ar e d i n t h e + X ei g e nst at e, e v ol vi n g u n d er t h e  H a milt o ni a n
H = ω Z / 2 a n d s u bj e ct t o c o nti n u o us d e p h asi n g al o n g t h e Z a xis.
T h e d eri v ati v e of t h e st at e c a n b e d e c o m p os e d i nt o a “l o n git u di-
n al p art ” al o n g σ Y (t) ass o ci at e d  wit h t h e  H a milt o ni a n d y n a mi cs,
a n d a “r a di al p art ” al o n g − X (t) ass o ci at e d  wit h t h e n ois e t er ms.
T h e ass u m pti o n t h at e n a bl es t h e  m a p pi n g fr o m t h e  Li n d bl a d s et-
ti n g t o o ur bi p artit e u n c ert ai nt y r el ati o n s etti n g is t h at t h e n ois e
c o m p o n e nt ( “r a di al ” c o m p o n e nt) c o ntri b ut es n e gli gi bl y t o t h e
o v er all ti m e s e nsiti vit y of t h e cl o c k.

+
2

1 − e − γ t0
γ

e − γ t0

2
2

= ω 2 e − 2 γ t0 + γ 2 2 e − 2 γ t0

1 − e − 2 γ t0
. ( G 1 9)

b.  E v e’s  Fis h e r i nf o r m ati o n  wit h r es p e ct t o e n e r g y

N o w  w e t ur n t o usi n g t h e  m et h o ds of o ur p a p er t o c h ar-
a ct eri z e t h e s e nsiti vit y of t h e n ois y pr o b e.  As d es cri b e d i n
S e c. VI  A ,  w e t ur n t o c o m p uti n g

F cl o c k, U, t = F ρ ( t0 ) ; N t0 ( ∂ tψ ( t0 )) , ( G 2 0)

f or t h e i nst a nt a n e o us e ff e cti v e n ois y c h a n n el N t a n d fi cti-
ti o us u nit ar y e v ol uti o n ψ ( t) d e fi n e d i n S e c. VI  A .  We  will
t h e n l at er dis c uss h o w g o o d of a n a p pr o xi m ati o n F cl o c k, U, t

i s t o t h e ori gi n al d esir e d q u a ntit y F cl o c k, t.
We d e c o m p os e t h e f ull e v ol uti o n E t a s i n  E q. ( 1 3 6).

Si n c e [ H , L j ] = 0,  w e h a v e

N t = e tL 1 =

⎡

⎢
⎣

1
e − γ t

e − γ t

1

⎤

⎥
⎦ →

N t( ρ ) =
ρ 0 0 ρ 0 1 e − γ t

ρ 1 0 e − γ t ρ 1 1
. ( G 2 1)

T his c h a n n el c a n b e d es cri b e d b y t h e t w o  Kr a us o p er at ors

E (t)
0 =

1 + e − tγ

2
1 ; E (t)

1 =
1 − e − tγ

2
Z . ( G 2 2)
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T h e ( fi ctiti o us) p ur e u nit ar y e v ol uti o n of t h e i niti al st at e
v e ct or |ψ i nit = | + is

ψ ( t) = U t ψ i nit U
†
t =

1

2

1 e − itω

e itω 1
. ( G 2 3)

We c o m p ut e  E v e’s Fis h er i nf or m ati o n  wit h r es p e ct t o
e n er g y,  w hi c h c h ar a ct eri z es t h e s e nsiti vit y l oss of t h e n ois y
pr o b e. F or a n y t, a c o m pl e m e nt ar y c h a n n el t o  E q. ( G 2 1) is
gi v e n b y

N t( ρ ) =

⎡

⎣
1 + e − γ t

2
tr( ρ )

√
1 − e − 2 γ t

2
tr(Z ρ )√

1 − e − 2 γ t

2
tr(Z ρ ) 1 − e − γ t

2
tr( ρ )

⎤

⎦ . ( G 2 4)

We  w o ul d li k e t o c o m p ut e

F N t( ψ ) ; N t({H − H , ψ }) . ( G 2 5)

N oti n g t h at H ψ ( t) = 0 f or all t a n d t h at ψ i nit = (1 +
X ) /2,  w e c a n c o m p ut e

{H − H , ψ } =
ω

2
Z , U t ψ i nit U

†
t

=
ω

2
U t Z ,

1 + X

2
U

†
t =

ω

2
Z . ( G 2 6)

We t h e n s e e t h at

N t( ψ ) =
1 + e − γ t

2
0

0 1 − e − γ t

2

; N t
ω

2
Z

=
ω

2

0
√

1 − e − 2 γ t
√

1 − e − 2 γ t 0
. ( G 2 7)

T h e n usi n g  E q. ( 1 2) w e fi n d

F N ( ψ ) ; N ({H − H , ψ })

= 0 + 2
ω 2

4
1 − e − 2 γ t0 + (s a m e t er m ) + 0

= ω 2 1 − e − 2 γ t0 . ( G 2 8)

I n t h e pr es e nt pi ct ur e of t h e e ff e cti v e n ois y c h a n n el b ei n g
a p pli e d i nst a ntl y aft er u nit ar y e v ol uti o n of d ur ati o n t0 ,
w e s e e t h at  E v e o bt ai ns n o i nf or m ati o n a b o ut t h e e n er g y
dir e cti o n f or t ≈ 0.  H o w e v er, f or l ar g e t E v e o bt ai ns n e ar-
p erf e ct i nf or m ati o n,  w hi c h hi n d ers  B o b’s s e nsiti vit y. Si n c e
t h e n ois el ess Fis h er i nf or m ati o n is ω 2 ,  w e h a v e vi a o ur
u n c ert ai nt y r el ati o n t h at

F B o b, t = ω 2 e − 2 γ t0 . ( G 2 9)

O ur  m et h o d t h er ef or e c orr e ctl y gi v es us t h e first t er m i n
E q. ( G 1 9).  We c a n als o c h e c k b y dir e ct c al c ul ati o n t h at t h e

first t er m i n  E q. ( G 1 9) is i n d e e d t h e Fis h er i nf or m ati o n of
t h e n ois y cl o c k st at e if  w e n e gl e ct t h e t er m i n t h e d eri v ati v e
t h at is ass o ci at e d  wit h t h e ti m e d eri v ati v e of t h e e ff e cti v e
n ois e c h a n n el its elf. First o bs er v e t h at

∂ tψ =
1

2

0 − iω e − itω

iω e itω 0
, ( G 3 0)

N ( ∂tψ ) =
1

2

0 − iω e − itω − γ t

iω e itω − γ t 0
=

ω e − γ t

2
U t Y U

†
t .

( G 3 1)

We s e e t h at t h e o bj e ct N ( ∂tψ ) is e x a ctl y t h e p art of t h e
d eri v ati v e ρ̇ wit h r es p e ct t o t h e f ull d y n a mi cs t h at is ass o-
ci at e d  wit h t h e  H a milt o ni a n e v ol uti o n of ρ , i. e., it is t h e
“l o n git u di n al ” c o m p o n e nt of t h e d eri v ati v e d e pi ct e d i n
Fi g. 1 4 .

We us e a g ai n  E q. ( 1 2) of o ur  m a n us cri pt, r e c alli n g t h e
di a g o n al f or m f or ρ gi v e n i n  E q. ( G 1 6):

F cl o c k, U, t = F ρ ; N ( ∂tψ ) = 0 + 2
ω e − γ t0

2

+ 2
ω e − γ t0

2
+ 0 = ω 2 e − 2 γ t0 . ( G 3 2)

T h e di ff er e n c e b et w e e n F cl o c k, U, t a n d F cl o c k, t i s

δ = F cl o c k, t − F cl o c k, U, t = γ 2 2 e − 2 γ t0

1 − e − 2 γ t0
. ( G 3 3)

T h e r el ati v e err or of t h e a p pr o xi m ati o n is

δ

F cl o c k, U, t
=

γ 2

ω 2

1

1 − e − 2 γ t0
. ( G 3 4)

( We c o m p ut e d t h e r el ati v e err or  wit h r es p e ct t o F cl o c k, U, t

b e c a us e it is si m pl er.)  We c a n s e e t h at δ is s m all r el ati v e
t o F cl o c k, U, t if t h e r ati o γ / ω of t h e l oss r at e t o t h e q u bit’s
e n er g y g a p is s m all.

N u m eri c al pl ots f or ω = 1, γ = 0. 1 ar e pr es e nt e d i n
Fi g. 1 5 .

c.  E r r o r b o u n d f o r t h e  m a p pi n g f r o m t h e  Li n d bl a d
m ast e r e q u ati o n t o o u r s etti n g

As a s a nit y c h e c k  w e c o m p ut e t h e err or b o u n d ( 1 4 6). We
h a v e

∂ tN =

⎡

⎢
⎣

0
− γ e − γ t

− γ e − γ t

0

⎤

⎥
⎦ , ( G 3 5)
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FI G. 1 5. Fis h er i nf or m ati o n ( FI) of a si n gl e q u bit pr e p ar e d i n a + X ei g e nst at e e v ol vi n g a c c or di n g t o t h e  H a milt o ni a n H = ω Z / 2 a n d
s u bj e ct t o c o nti n u o us d e p h asi n g al o n g t h e Z a xis.  T h e h ori z o nt al a xis r e pr es e nts t h e ti m e t0 at  w hi c h  w e c o nsi d er t h e cl o c k s e nsiti vit y,
a n d t h e v erti c al a xis is t h e v al u e of t h e di ff er e nt v ersi o ns of t h e Fis h er i nf or m ati o n (t o p pl ot) a n d r el ati v e Fis h er i nf or m ati o n ( b ott o m
pl ot).  T h e r el ati v e Fis h er i nf or m ati o n is t h e Fis h er i nf or m ati o n ti m es t20 ,  w hi c h is r el e v a nt if  w e ar e i nt er est e d i n t h e r el ati v e s e nsiti vit y
t o ti m e. I n t h es e pl ots  w e h a v e s et ω = 1 a n d γ = 0. 1 (s e e  m ai n t e xt).  We v erif y fr o m t h es e pl ots t h at t h e ti m e d e p e n d e n c y ∂ tN t of t h e
e ff e cti v e l n ois y c h a n n el c o ntri b ut es n e gli gi bl y t o t h e o v er all Fis h er i nf or m ati o n; t his e x a m pl e i n t h e s etti n g of c o nti n u o us n ois e c a n
t h er ef or e b e r e d u c e d t o a s etti n g as i n Fi g. 1 .

a n d t h us

( ∂tN )( ψ (t)) =
1

2

0 − γ e − γ te − iω t

− γ e − γ te iω t 0

= − γ e − γ tU tX U
†
t . ( G 3 6)

T h e  m atri x el e m e nts i n t h e st at e’s ei g e n b asis ar e

+| U
†
t ( ∂tN )U t| + =  − γ e − γ t, +| U

†
t ( ∂tN )U t| − = 0,

−| U
†
t ( ∂tN )U t| + = 0, −| U

†
t ( ∂tN )U t| − = γ e − γ t.

( G 3 7)

T h e n  w e c a n c o m p ut e

F ρ ; ∂ tN ( ψ ) =
2

1 + e − γ t0
γ e − γ t0 2

+
2

1 − e − γ t0
γ e − γ t0 2 = 4 γ 2 e − 2 γ t0

1 − e − 2 γ t0
.

( G 3 8)

O ur b o u n d ( 1 4 6) o n t h e err or δ b e c o m es

δ 4 γ 2 e − 2 γ t0

1 − e − 2 γ t0
+ 2 γ ω

e − 2 γ t0

√
1 − e − 2 γ t0

. ( G 3 9)

T h e b o u n d is c o nsist e nt  wit h o ur c o m p ut e d v al u e of δ .
H o w e v er, i n t his c as e o ur b o u n d is l o os e:  T h e s e c o n d
t er m i n o ur b o u n d  w o ul d s u g g est t h at t h e r el ati v e err or
wit h r es p e ct t o F cl o c k, U, t0 b e h a v es o nl y as γ / ω (if γ ω ),
w h er e as  w e k n o w fr o m o ur e x pli cit c al c ul ati o n of δ t h at
t h e b e h a vi or of t his r el ati v e err or is γ 2 / ω 2 .

3.  E x a m pl e: c o nti n u o us d e p h asi n g n ois e al o n g t h e
t r a ns v e rs al X a xis

C o nsi d er t h e q u bit st at e v e ct or

|ψ = | + =
1

√
2

| ↑ + | ↓ . ( G 4 0)

S u p p os e t h at t h e e v ol uti o n of t h e q u bit is gi v e n b y t h e
Li n d bl a di a n ( 1 3 2)  wit h

H =
ω

2
Z , L 0 =

√
γ | + +| , L 1 =

√
γ | − −| .

( G 4 1)
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O n e c h e c ks t h at t h e a cti o n of L t ot o n t h e P a uli o p er at ors
a n d t h e i d e ntit y ar e

L t ot(1 ) = 0, L t ot(X ) = ω Y ,

L t ot(Y ) = − ω X − γ Y , L t ot(Z ) = − γ Z . ( G 4 2)

T h er ef or e, L t ot c a n b e r e pr es e nt e d i n t h e ort h o n or m al b asis
{|1 /

√
2, |X /

√
2, |Y /

√
2, |Z /

√
2 } of P a uli o p er at ors

( d e n ot e d  wit h s u bs cri pt P ) as

L t ot P
=

⎛

⎜
⎝

0 0  0  0
0 0 − ω 0
0 ω − γ 0
0 0  0 − γ

⎞

⎟
⎠

P

. ( G 4 3)

O n e c a n v erif y t h at t his  m atri x is di a g o n ali z e d as

L t ot P
= S

⎛

⎜
⎝

0
λ +

λ −

− γ

⎞

⎟
⎠ S − 1 , ( G 4 4)

λ ± = −
γ

2
± iα , α =

1

2
4 ω 2 − γ 2 , λ + λ −

= ω 2 , λ + + λ − = − γ ,

S =

⎛

⎜
⎜
⎝

1 0  0 0

0 − λ −
ω

− λ +
ω

0
0 1  1 0
0 0  0 1

⎞

⎟
⎟
⎠

S − 1 =

⎛

⎜
⎜
⎝

1 0  0  0

0 − iω
2 α

− iλ +
2 α

0

0 iω
2 α

iλ −
2 α

0
0 0  0  1

⎞

⎟
⎟
⎠ . ( G 4 5)

We c a n s ol v e t h e d y n a mi cs a n al yti c all y usi n g t his di a g o n al
r e pr es e nt ati o n t o c o m p ut e t h e  m atri x e x p o n e nti al as

E t = e tL t ot
P

= S

⎛

⎜
⎝

1
e tλ +

e tλ −

e − γ t

⎞

⎟
⎠

S − 1 =

⎛

⎜
⎝

1 0  0  0
0 e x x e x y 0
0 e y x e y y 0
0 0  0 e − γ t

⎞

⎟
⎠

P

,

e x x = e − γ t
2 c o s ( α t) +

γ

2 α
si n ( α t) , e x y = − e y x ,

e y x =
ω

α
e − γ t

2 si n ( α t), e y y = e x x .
( G 4 6)

T his gi v es us a us ef ul e x pr essi o n of t h e li n e ar o p er at or E t

a cti n g o n t h e o p er at or b asis of P a uli o p er at ors. If  w e l et t h e

FI G. 1 6.  Tr aj e ct or y o n t h e e q u at ori al sli c e of t h e  Bl o c h s p h er e
of t h e st at e of a q u bit i niti ali z e d i n t h e st at e v e ct or | + , e v ol vi n g
u n d er t h e  H a milt o ni a n H = ( ω /2 )Z a n d s u bj e ct t o c o nti n u o us
d e p h asi n g al o n g t h e X a xis.  H er e ω = 1 a n d γ = 0. 1.

i niti al st at e ψ i nit = | + +| e v ol v e f or a ti m e t,  w e o bt ai n

ρ ( t) = E t( ψi nit) = E t
1 + X

2
=

1

2

+
e − γ t

2

2
c o s ( α t) +

γ

2 α
si n( α t) X +

ω

α
si n( α t) Y .

( G 4 7)

S e e Fi g. 1 6 f or a pl ot of t h e tr aj e ct or y of t h e st at e ρ ( t) i n
t h e X -Y pl a n e of t h e  Bl o c h s p h er e.

We c a n c o m p ut e t h e d eri v ati v e ∂ tρ b y dir e ctl y di ff er-
e nti ati n g t h e e x pr essi o n ( G 4 7) or b y si m pl y a p pl yi n g t h e
Li n d bl a di a n si n c e  w e h a v e d et er mi n e d its a cti o n i n t h e
P a uli b asis:

∂ tρ =
e − γ t

2

2
c o s ( α t) +

γ

2 α
si n( α t) ω Y

+
ω

α
si n( α t) − ω X − γ Y

=
ω

2
e − γ t

2 −
ω

α
si n ( α t) X + c os ( α t) −

γ

2 α
si n( α t) Y .

( G 4 8)

T h e a p pr o xi m ati o n  w e  m a k e t o a p pl y o ur u n c ert ai nt y
r el ati o n is t o r e pl a c e t his e x pr essi o n f or ∂ tρ b y

E t(− i[H , ψ i nit]) = E t − i
ω

2
Z ,

1 + X

2
=

ω

2
E t(Y )

=
ω

2
e − γ t

2 −
ω

α
si n ( α t) X + (c os ( α t)

+
γ

2 α
si n( α t) Y . ( G 4 9)

We s e e t h at t h e t w o e x pr essi o ns ( G 4 8) a n d ( G 4 9) di ff er b y
a t er m (2 α ) − 1 γ ω e − γ t/ 2 si n ( α t)Y ,  w hi c h is s m all as l o n g as
γ ω .
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T h e Fis h er i nf or m ati o n F cl o c k, t gi v e n b y  E q. ( 1 3 4) a n d
F cl o c k, U, t gi v e n b y  E q. ( 1 4 0) ar e pl ott e d i n Fi g. 1 7 as a
f u n cti o n of t0 .  O ur a p pr o xi m ati o n  m at c h es t h e e x a ct Fis h er
i nf or m ati o n  w ell, e x c e pt f or a n o ut- of- p h as e os cill ati o n of
r el ati v el y s m all a m plit u d e.  T his err or t o t h e c o ntri b uti o n
of t h e p h as e d a m pi n g is e x p e ct e d t o b e attri b ut a bl e t o t h e
di ff er e n c e i n si g n of t h e s m all er t er ms i n  E qs. ( G 4 8) a n d
( G 4 9).

A P P E N DI X  H:  P E R T U R BI N G  T H E  N OI S Y
C H A N N E L  T O  R E S T O R E  E Q U A LI T Y I N  T H E

U N C E R T AI N T Y  R E L A TI O N  F O R
M E T R O L O GI C A L  C O D E S

I n t his  A p p e n di x,  w e st u d y h o w t o p ert ur b a n ois y c h a n-
n el N i n or d er t o r est or e u n c ert ai nt y r el ati o n e q u alit y f or
a  m etr ol o gi c al c o d e.  We pr o v e Pr o p ositi o n 2 of t h e  m ai n
t e xt,  w hi c h s h o ws t h at e q u alit y i n t h e u n c ert ai nt y r el a-
ti o n c a n b e r est or e d b y a n i n fi nit esi m al p ert ur b ati o n of t h e
Sti n es pri n g is o m etr y, all  w hil e pr es er vi n g t h e z er o s e nsiti v-
it y l oss c o n diti o ns ( 1 4 8) (it  mi g ht b e n e c ess ar y t o e nl ar g e
B o b’s s yst e m  wit h a n a u xili ar y q u bit).  T h e pr o p ositi o n is
sli g htl y r ef or m ul at e d t o e m p h asi z e t h e f a ct t h at  w e c a n
a p pl y t h e s a m e c o nstr u cti o n als o  wit h o ut r e g ar ds t o t h e
z er o s e nsiti vit y l oss c o n diti o n.

Pr o p ositi o n 2 2. — l et V A → B E b e a n is o m etr y, l et
|ψ A , |ξ A wit h ψ |ξ A = 0 a n d l et N (·) = trE V (·) V † ,

N (·) = trB V (·) V † . F or a n y > 0, t h er e e xists a n
is o m etr y V A → B E wit h V − V a n d s u c h t h at
P ⊥

ρ B
⊗ P ⊥

ρ E
V |ξ = 0,  w h er e ρ B = trE V ψ V † a n d ρ E =

trB V ψ V † .

F urt h er m or e, ass u m e t h at N (|ξ ψ | + |ψ ξ |) = 0 a n d
ass u m e t h at t h er e e xists a u nit ar y o p er at or G B a cti n g
o n t h e s yst e m B wit h t h e pr o p erti es t h at P ρ B G B P ρ B = 0,
P ζ B G B P ζ B = 0, P ρ B G B P ζ B = 0, a n d P ζ B G B P ρ B = 0,  w h er e

ζ B = N (|ξ ξ |) a n d ζ E = N (|ξ ξ |).  T h e n t h e p ert ur b e d
is o m etr y V c a n b e c h os e n t o als o s atisf y N |ξ ψ | +

|ψ ξ | = 0,  w h er e N (·) = trB V (·) V † .

Pr o of. — Writ e N (·) = trE V (·) V † a n d l et

ρ B = N ( ψ ); ρ E = N ( ψ ). ( H 1)

T h e str at e g y t o p ert ur b V is t o i n cl u d e a n i n fi nit esi m al r ot a-
ti o n t h at r ot at es t h e st at e V |ψ i nt o t h e dir e cti o n of a n ot h er
s uit a bl y c h os e n st at e |χ B E .  We first c o m p ut e s o m e pr o p-
erti es of a g e n er al s u c h r ot ati o n, a n d t h e n  w e  will pr o v e t h e
st at e d cl ai ms.

L et > 0.  L et α > 0 s u c h t h at 4 si n 2 ( α /2 ) . L et
|χ B E b e a st at e  wit h t h e pr o p ert y t h at t h e r e d u c e d st at e o n
B li es i n a s u bs p a c e t h at is ort h o g o n al t o t h e r e d u c e d st at e
ρ B of V |ψ , i. e., P ρ B |χ = 0, or e q ui v al e ntl y, |χ B E li es i n
t h e s u p p ort of P ⊥

ρ B
⊗ 1 .  T h e st at e |χ B E will b e fi x e d l at er.

L et |μ (j )
j

b e a b asis of B E wit h |μ (1 )
B E = V |ψ a n d

|μ (2 )
B E = | χ B E . L et

W B E → B E = c os ( α )|μ (1 ) + si n ( α )|μ (2 ) μ (1 ) |

+ c os ( α )|μ (2 ) − si n ( α )|μ (1 ) μ (2 ) |

+
j = 3, ...

|μ (j ) μ (j ) |, ( H 2)

a n d n ot e t h at W B E → B E i s a u nit ar y cl os e t o t h e i d e n-

tit y, e ff e cti n g t h e r ot ati o n W 0 = c os ( α ) − si n( α )
si n( α ) c os ( α ) b et w e e n

|μ (1 )
B E a n d |μ (2 )

B E .  T h e ei g e n v al u es θ 1 , θ 2 of W 0 ar e
d et er mi n e d fr o m θ 1 + θ 2 = tr(W 0 ) = 2 c os ( α ) a n d θ 1 θ 2 =
d et (W 0 ) = 1 as θ 1 = θ ∗

2 = e iα .  As t h e o p er at or n or m
is t h e  m a xi m al si n g ul ar v al u e,  w e fi n d W 0 − 1 ∞ =
m a x |e iα − 1 |, |e − iα − 1 | = (1 − c os α ) 2 + (si n α ) 2 = 2

− 2 c os ( α ) = 4 si n 2 ( α /2 ) , a n d W − 1
∞

.  N o w
l et V = W B E V ,  wit h

V − V ∞ W − 1 ∞ V ∞ . ( H 3)

We fi n d

ρ E = trB V ψ V †

= trB c os 2 ( α ) |μ 1 μ 1 | + c os ( α ) si n ( α )

× |μ 1 μ 2 | + |μ 2 μ 1 |

+ si n 2 ( α ) |μ 2 μ 2 |

= c os 2 ( α ) ρ E + c os ( α ) si n ( α ) trB

× V |ψ χ | + |χ ψ |V † + si n 2 ( α )  χ E .

= c os 2 ( α ) ρ E + si n 2 ( α )  χ E . ( H 4)

T h e l ast e q u alit y h ol ds t h a n ks t o o ur ass u m pti o n t h at
P ρ B |χ = 0.

We n o w pr o v e t h e first p art of t h e pr o p ositi o n.  We
c a n ass u m e  wit h o ut l oss of g e n er alit y t h at r a n k (P ⊥

ρ E
)

r a n k(P ⊥
ρ B

), b y e x c h a n gi n g t h e r ol es of t h e B a n d E s yst e ms

if n e c ess ar y.  L et {|χ k B }K
k = 1 , {|χ k E }K

k = 1 b e t w o ort h o n or-
m al f a mili es of st at es l yi n g i n t h e s u p p ort of P ⊥

ρ B
a n d

P ⊥
ρ E

, r es p e cti v el y,  wit h K = mi n r a n k(P ⊥
ρ B

), r a n k(P ⊥
ρ E

) =

r a n k(P ⊥
ρ E

). D e fi n e |χ B E = (1 /
√

K ) k |χ k B ⊗ | χ k E . B y

c o nstr u cti o n,  w e h a v e t h at χ E = (1 / K ) K
k = 1 |k k |E =

P ⊥
ρ E

/ tr(P ⊥
ρ E

). It f oll o ws t h at t h e st at e ( H 4) h as f ull r a n k,
a n d t h er ef or e o ur c o n diti o ns f or o ur u n c ert ai nt y r el ati o n
e q u alit y ar e f ul fill e d.

N o w  w e pr o v e t h e s e c o n d p art of t h e pr o p ositi o n, a n d
w e ass u m e t h at N (D Z

A ) = 0,  wit h D Z
A = | ξ ψ | + |ψ ξ |.

T h e pr o of str at e g y is si mil ar t o a b o v e, t o i ntr o d u c e a
s m all “r ot ati o n ” t o fi x t h e s u p p ort of t h e st at e ρ E all  w hil e
pr es er vi n g t h e z er o s e nsiti vit y l oss c o n diti o ns ( 1 4 8).
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FI G. 1 7.  R el ati v e Fis h er i nf or m ati o n  wit h r es p e ct t o ti m e of a si n gl e q u bit pr e p ar e d i n | + a n d e v ol vi n g a c c or di n g t o t h e  H a milt o ni a n
( ω /2 )Z a n d e x p os e d t o c o nti n u o us d e p h asi n g al o n g t h e  X a xis at a r at e γ .  T h e bl u e c ur v e s h o ws t h e s e nsiti vit y as a f u n cti o n of ti m e t0
of t h e pr o b e t o t h e si g n al if  w e t ur n o ff t h e n ois e. I n or a n g e, t h e e x a ct Fis h er i nf or m ati o n F ρ ; ∂ ω ρ is c o m p ut e d dir e ctl y. I n gr e e n, a n
a p pr o xi m ati o n t o t h e d esir e d Fis h er i nf or m ati o n i g n or es t h e c o ntri b uti o n of t h e ti m e d e p e n d e n c y ∂ tN t of t h e e ff e cti v e n ois y c h a n n el.
T his a p pr o xi m ati o n is t h e q u a ntit y t h at a p p e ars i n o ur tr a d e- o ff r el ati o n i n t h e alt er n ati v e s etti n g  w h er e  Ali c e s e n ds a n ois el ess q u a nt u m
cl o c k o v er a n ois y c h a n n el t o  B o b.  B e c a us e t h e u nit ar y a n d n ois e p arts of t h e  Li n d bl a di a n d o n ot c o m m ut e as s u p er o p er at ors, i n v o ki n g
o ur t h e tr a d e- o ff r el ati o n r e q uir es t h e c h a n n el N t t o b e d et er mi n e d vi a  E q. ( 1 3 5). H er e ω = 1, γ = 0. 1.

Wit h o ut l oss of g e n er alit y,  w e  m a y ass u m e t h at |ξ =
1.  We d e fi n e f or l at er c o n v e ni e n c e

Z L = | ξ ψ | + |ψ ξ |; L = | ψ ψ | + |ξ ξ |;

Z L = Z L + (1 − L ), ( H 5)

n oti n g t h at Z L i s t h e u nit ar y o p er at or t h at fli ps t h e n or-
m ali z e d st at es |ψ a n d |ξ a n d a cts as t h e i d e ntit y o n t h e
s u bs p a c e t h at is ort h o g o n al t o |ψ , |ξ .

As st at e d i n t h e cl ai m,  w e ass u m e t h at t h er e e xists a u ni-
t ar y o p er at or G B wit h t h e pr o p erti es t h at P ρ B G B P ρ B = 0,
P ζ B G B P ζ B = 0, P ρ B G B P ζ B = 0, a n d P ζ B G B P ρ B = 0.

L et 0 < 1.  L et α = / 2  wit h 0 < α 1 / 2 a n d l et

V = c os ( α )V + si n ( α ) G B V Z L . ( H 6)

T h e n

V − V = (c os ( α ) − 1 ) V + si n( α ) G B V Z

(1 − c os ( α )) V + si n ( α ) G B V Z

2 si n 2 ( α /2 ) + si n ( α ) 2 |α |, ( H 7)

usi n g si n ( α ) |α | a n d  wit h |α | 1 / 2.
We first s h o w t h at t h e p ert ur b e d is o m etr y V als o s at-

is fi es t h e z er o s e nsiti vit y-l oss c o n diti o ns.  L et N (·) =

trB V (·) V † a n d  w e c o m p ut e

N (Z L ) = trB V Z L V †

= trB c os 2 ( α ) V Z L V †

+ c os ( α ) si n ( α ) V Z L Z L V † G
†
B + G B V Z L Z L V †

+ si n 2 ( α ) G B V Z L Z L Z L V † G
†
B

= 0, ( H 8)

usi n g tr B V Z L V † = N (Z L ) = 0 a n d Z L Z L Z L = Z L , as  w ell
as t h e f a ct t h at

trB G B V Z L Z L V † = trB G B V [|ψ ψ | + |ξ ξ |]V †

= trB G B P ρ B V ψ V † P ρ B

+ G B P ζ B V ξ V † P ζ B = 0, ( H 9)

usi n g t h e f a ct t h at P ρ B G B P ρ B = 0 = P ζ B G B P ζ B .
We t h e n h a v e

ρ E = trB V ψ V †

= trB c os 2 ( α ) V ψ V † + c os ( α ) si n ( α )

× V |ψ ξ |V † G
†
B + G B V |ξ ψ |V †

+ si n 2 ( α ) G B V ξ V G
†
B

= c os 2 ( α ) ρ E + si n 2 ( α ) ζ E , ( H 1 0)

w h er e t h e t w o  mi d dl e t er ms i n t h e l o n g e x pr essi o n v a nis h
b e c a us e tr B G B V |ξ ψ |V † = trB P ρ B G B P ζ B V |ξ ψ |V † =
0.
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Si mil arl y,

ζ E = trB V ξ V †

= trB c os 2 ( α ) V ξ V † + c os ( α ) si n ( α )

× V |ξ ψ |V † G
†
B + G B V |ψ ξ |V †

+ si n 2 ( α ) G B V ψ V † G
†
B

= c os 2 ( α ) ζ E + si n 2 ( α ) ρ E . ( H 1 1)

A n y st at e |c E t h at li es i n t h e k er n el of ρ E m ust s atisf y

0 = c |ρ E |c = c os 2 ( α ) c |ρ E |c + si n 2 ( α ) c |ζ E |c ,
( H 1 2)

w hi c h i n t ur n i m pli es 0 = c |ρ E |c = c |ζ E |c .  We t h e n
fi n d

(1 B ⊗ c |E ) V |ξ
2

= c |E trB V ξ V † |c E

= c |ζ E |c

= c |E c os 2 ( α ) ζ E + si n 2 ( α ) ρ E |c
E

= 0. ( H 1 3)

T h er ef or e, 1 B ⊗ P ⊥
ρ E

V |ξ = 0, i m pl yi n g t h at P ⊥
ρ B

⊗

P ⊥
ρ E

V |ξ = 0 a n d o ur u n c ert ai nt y r el ati o n e q u alit y c o n-

diti o ns ar e s atis fi e d.

A P P E N DI X I:  B E H A VI O R  O F  M E T R O L O GI C A L
C O D E S  F O R  W E A K II D  N OI S E;

M E T R O L O GI C A L  C O D E S,  U N C E R T AI N T Y
R E L A TI O N  E Q U A LI T Y,  A N D  DI S C O N TI N UI TI E S

O F  T H E  Q U A N T U M  FI S H E R I N F O R M A TI O N

I n t his  A p p e n di x,  w e c o nsi d er a  m etr ol o gi c al c o d e
(|ψ , |ξ ) o n n q u bits,  wit h a  m etr ol o gi c al dist a n c e d m > 1.
F or a n y n ois e c h a n n el t h at a cts o n f e w er t h a n d m q u bits,
w e h a v e s e e n i n S e c. VII t h at F B o b, t = 0. I nst e a d of n ois e
a cti n g o n f e w q u bits,  w e n o w c o nsi d er e x a m pl es of II D

n ois e c h a n n els [ N (p )
1 ]⊗ n ,  w h er e e a c h c h a n n el N (p )

1 a cts o n
a si n gl e q u bit a n d d e p e n ds o n a n ois e p ar a m et er p s u c h

t h at N (p = 0 )
1 = i d.  We as k, f or c o nst a nt n , t o  w h at or d er

i n p is t h e l oss i n q u a nt u m Fis h er i nf or m ati o n F B o b, t

s u p pr ess e d ?
L et us first c o nsi d er a si mil ar q u esti o n i n t h e c o n v e n-

ti o n al s etti n g of q u a nt u m err or c orr e cti o n,  w h er e a l o gi c al
st at e is e n c o d e d i nt o a p h ysi c al st at e, is e x p os e d t o a n ois e
c h a n n el, a n d is s u bs e q u e ntl y d e c o d e d t o att e m pt t o r e c o v er
t h e i niti al st at e. If a st at e |ψ , e n c o d e d  wit h a dist a n c e-d
q u a nt u m err or- c orr e cti n g c o d e, is e x p os e d t o a  w e a k II D
n ois e c h a n n el i n  w hi c h a si n gl e-sit e err or h a p p e ns  wit h

pr o b a bilit y p , t h e n aft er a s u bs e q u e nt d e c o di n g o p er ati o n,
t h e fi d elit y of t h e st at e  wit h r es p e ct t o t h e ori gi n al st at e
di ff ers  wit h t h e i d e al v al u e o n e b y at  m ost O (p d / 2 ). I n
ot h er  w or ds, t h e fi d elit y l oss is s u p pr ess e d b y t h e q u a nt u m
err or- c orr e cti o n pr o c e d ur e t o a n or d er i n t h e n ois e p ar a m-
et er t h at is pr o p orti o n al t o t h e dist a n c e of t h e c o d e.  T his
s u p pr ess e d fi d elit y l oss is e x pl ai n e d b y a f u n d a m e nt al pri n-
ci pl e i n q u a nt u m i nf or m ati o n:  T w o st at es (r es p e cti v el y,
t w o c h a n n els) t h at ar e cl os e i n tr a c e dist a n c e (r es p e c-
ti v el y, di a m o n d dist a n c e)  m a y n ot b e disti n g uis h e d b y a n y
p h ysi c al o p er ati o n, e x c e pt  wit h pr o b a bilit y of t h e or d er at
m ost O ( ). I n t h e c as e of  w e a k II D n ois e, a n y err or o p er-
at or  w h os e  w ei g ht is l ar g er t h a n (d − 1 ) /2 o c c urs o nl y
wit h pr o b a bilit y at  m ost O (p d / 2 ).  C o ns e q u e ntl y, n o e x p er-
i m e nt s h o ul d b e a bl e t o disti n g uis h t h e  w e a k II D n ois e
fr o m a n ois e o p er at or  wit h o nl y  w ei g ht-[(d − 1 ) /2] o p er-
at ors  wit h pr o b a bilit y b ett er t h a n O (p d / 2 ), f or  w hi c h t h e
q u a nt u m err or- c orr e cti o n s c h e m e e n a bl es p erf e ct r e c o v er y.

B y a n al o g y, it is n at ur al t o e x p e ct t h at t h e q u a nt u m
Fis h er i nf or m ati o n l oss F B o b, t s h o ul d s c al e as a p pr o xi-
m at el y p c d m ,  w h er e d m i s t h e  m etr ol o gi c al dist a n c e of t h e
m etr ol o gi c al c o d e, a n d  w h er e c is s o m e c o nst a nt.  H o w e v er,
t his is n ot t h e c as e, as  w e  will s e e i n t h e r e m ai n d er of t his
A p p e n di x.  W hil e F B o b, t e x hi bits t h e e x p e ct e d b e h a vi or
f or c ert ai n e x a m pl es of  m etr ol o gi c al c o d es,  w e c a n fi n d
c o u nt er e x a m pl es i n  w hi c h t h e q u a nt u m Fis h er i nf or m a-
ti o n l oss s c al es as F B o b, t ∼ p d es pit e t h e st at e f or mi n g a
m etr ol o gi c al c o d e of a n ar bitr aril y l ar g e, b ut fi x e d,  m etr o-
l o gi c al dist a n c e d m .  T his c o u nt er e x a m pl e s h o ws t h at  w h e n
m e as uri n g t h e a c c ur a c y of  B o b’s esti m at e t o t h e ti m e
p ar a m et er i n t er ms of t h e q u a nt u m Fis h er i nf or m ati o n,
t h e c o d e dist a n c e is n ot n e c ess aril y r el at e d t o t h e l oss i n
s e nsiti vit y of t h e st at e.  T his  mi g ht b e  w orr yi n g, si n c e t h e
m etr ol o gi c al dist a n c e of t h e  m etr ol o gi c al c o d e  w o ul d n ot
b e r el at e d t o t h e d e gr e e of pr ot e cti o n o ff er e d b y s u c h c o d es
i n s u p pr essi n g t h e s e nsiti vit y l oss.  We ar g u e, h o w e v er,
t h at t h e q u a nt u m Fis h er i nf or m ati o n  mi g ht n ot b e t h e r el-
e v a nt s e nsiti vit y  m e as ur e t o st u d y i n s u c h r e gi m es.  M or e
s p e ci fi c all y,  w e k n o w t h at t h er e ar e r e gi m es i n  w hi c h  w e
s h o ul d q u esti o n t h e o p er ati o n al r el e v a n c e of t h e q u a nt u m
Fis h er i nf or m ati o n, b e c a us e i n fi nit esi m al p ert ur b ati o ns i n
t h e st at e or t h e n ois e c h a n n el r es ult i n o bs er v a bl e c o n-
s e q u e n c es i n t h e p ur p ort e d s e nsiti vit y as r e p ort e d b y t h e
q u a nt u m Fis h er i nf or m ati o n.  We attri b ut e t his b e h a vi or t o
t h e f a ct t h at it i g n or es t h e err or ass o ci at e d  wit h t h e esti-
m ati o n of t h e e x p e ct ati o n v al u e of t h e o pti m al s e nsi n g
o bs er v a bl e fr o m a fi nit e n u m b er of  m e as ur e m e nt r e p eti-
ti o ns.  B as e d o n o ur e x a m pl es,  w e h y p ot h esi z e t h at t h e
s etti n gs  w h er e F B o b, t O (p d m / 2 ) f all i nt o t his r e gi m e.
W hil e c o n fir mi n g t his h y p ot h esis  w o ul d i n v ali d at e k n o w n
c o u nt er e x a m pl es i n  w hi c h a hi g h  m etr ol o gi c al dist a n c e
c a n still l e a d t o a hi g h a c c ur a c y l oss, a f ull pr o of of t h e
pr ot e cti o n o ff er e d b y  m etr ol o gi c al c o d es i n t h e g e n er al s et-
ti n g r e m ai ns el usi v e. S u c h a r es ult  w o ul d f urt h er r e q uir e
( a) est a blis hi n g a  m e as ur e of s e nsiti vit y t h at is r o b ust t o
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p ert ur b ati o ns of t h e p h ysi c al s etti n g b y a c c o u nti n g f or li m-
its o n t h e n u m b er of a v ail a bl e  m e as ur e m e nt r e p etiti o ns a n d
( b) s h o wi n g t h at its l oss is s u p pr ess e d as a f u n cti o n of t h e
m etr ol o gi c al dist a n c e of t h e  m etr ol o gi c al c o d e.

I n t h e f oll o wi n g,  w e first c o m p ut e t h e q u a nt u m Fis h er
i nf or m ati o n l oss of s o m e st at es t h at f or m  m etr ol o gi c al
c o d es aft er e x p os ur e t o  w e a k II D n ois e. I n or d er t o e x pl or e
t h e c a us e of t h e b e h a vi or of s o m e e x a m pl es t h at a p p e ar
pr o bl e m ati c,  w e st u d y  m or e cl os el y s o m e pr o p erti es of
t h e q u a nt u m Fis h er i nf or m ati o n:  w e ar g u e t h at t h er e ar e
r e gi m es i n  w hi c h t h e q u a nt u m Fis h er i nf or m ati o n, b ei n g
dis c o nti n u o us, c a n n ot b e a r e pr es e nt ati v e  m e as ur e of s e n-
siti vit y, a n d  w e attri b ut e t his pr o bl e m ati c b e h a vi or t o t h e
f ail ur e t o a c c o u nt f or t h e n u m b er of fi nit e a v ail a bl e  m e a-
s ur e m e nt r e p etiti o ns. Fi n all y,  w e c o nsi d er a r estri ct e d s et-
ti n g  wit h a d diti o n al ass u m pti o ns o n t h e st at e a n d t h e n ois e
c h a n n el, i n  w hi c h  w e pr o v e t h e e x p e ct e d b o u n d o n t h e
q u a nt u m Fis h er i nf or m ati o n l oss F B o b, t O (p d m / 2 ).

1.  E x a m pl es of  m et r ol o gi c al c o d es e x p os e d t o  w e a k II D
n ois e

We n o w c o nsi d er t hr e e si n gl e-sit e n ois e c h a n n els: t h e
a m plit u d e- d a m pi n g c h a n n el, t h e d e p h asi n g c h a n n el i n t h e
Z b asis, a n d t h e bit- fli p c h a n n el. I n t h e b asis {| ↑ , | ↓ },
t h e si n gl e- q u bit a m plit u d e- d a m pi n g c h a n n el h as  Kr a us
o p er at ors

E
(p )
A D, 0 =

√
1 − p 0
0 1

; E
(p )
A D, 1 =

0 0
√

p 0
. (I 1)

T h e s e c o n d n ois e c h a n n el  w e c o nsi d er is t h e d e p h asi n g
c h a n n el i n t h e Z b asis, d es cri b e d b y t h e  Kr a us o p er at ors

E
(p )
d e p h as., 0 = 1 −

p

2

1 0
0 1

; E
(p )
d e p h as., 1 =

p

2

1 0
0 − 1

.

(I 2)

Fi n all y, t h e bit- fli p c h a n n el is d es cri b e d b y t h e  Kr a us
o p er at ors

E
(p )
bit- fli p, 0 = 1 −

p

2

1 0
0 1

; E
(p )
bit- fli p, 1 =

p

2

0 1
1 0

.

(I 3)

a.  F o u r- q u bit c o d e st at e b as e d o n t h e [[ 4, 2, 2]] c o d e

C o nsi d er t h e st at e v e ct or i ntr o d u c e d i n S e cs. VII  E a n d
VII F ,

|ψ c o d e =
1

2
| ↑ ↑ ↑ ↑ + | ↓ ↓ ↓ ↓ + | ↑ ↓ ↑ ↓ + | ↓ ↑ ↓ ↑ .

(I 4)

C o nsi d er t h e  H a milt o ni a n c o nsisti n g of Z Z t er ms o n t h e
e d g es c o n n e cti n g t h e f o ur q u bits  w h e n t h e y ar e arr a n g e d

a = 2. 0 4

a = 1. 0 1

FI G. 1 8.  Q u a nt u m Fis h er i nf or m ati o n l oss F B o b, t aft er e x p o-
s ur e of |ψ c o d e [ cf.  E q. (I 4)] t o II D a m plit u d e- d a m pi n g or d e p h as-
i n g n ois e i n t h e Z b asis, as a f u n cti o n of t h e n ois e p ar a m et er
p .  B as e d o n o ur i nt uiti o n of st a n d ar d err or- c orr e cti n g c o d es,  w e
mi g ht h a v e e x p e ct e d t h at F B o b, t d e p e n ds o nl y o n a n or d er i n p
(f or p → 0) t h at is dir e ctl y r el at e d t o d m ( or d m / 2). I n t h e c as e
of eit h er n ois e  m o d el,  w e fit t h e d at a p oi nts  w h er e p < 0. 1 t o
l n(y ) = a l n(p ) + b ( w hi c h c orr es p o n ds t o a p o w er l a w y ∝ p a )
t o o bt ai n t h e or d er i n p t o  w hi c h F B o b, t i s a ff e ct e d.  We s e e t h at
f or a m plit u d e- d a m pi n g n ois e, t h e l oss i n q u a nt u m Fis h er i nf or-
m ati o n is s u p pr ess e d t o d e p e n d o nl y o n p t o s e c o n d or d er; f or
d e p h asi n g n ois e, t h e l oss is a ff e ct e d t o first or d er i n p .  T h e q u a n-
t u m Fis h er i nf or m ati o n l oss d u e t o a n II D bit- fli p n ois e c h a n n el
( n ot s h o w n) b e h a v es v er y si mil arl y t o t h e d e p h asi n g n ois e.

i n a s q u ar e, as i n Fi g. 9( a) ;  wit h a s uit a bl e n or m ali z ati o n
w e o bt ai n

|ξ c o d e =
1

2
| ↑ ↑ ↑ ↑ + | ↓ ↓ ↓ ↓ − | ↑ ↓ ↑ ↓ − | ↓ ↑ ↓ ↑ .

(I 5)

We h a v e s e e n t h at (|ψ c o d e , |ξ c o d e ) f or ms a  m etr ol o gi c al
c o d e of  m etr ol o gi c al dist a n c e 2.

L et us c o nsi d er h o w t h e q u a nt u m Fis h er i nf or m ati o n of
t his st at e dr o ps  w h e n e x p os e d t o II D a m plit u d e- d a m pi n g
n ois e a n d t o II D d e p h asi n g n ois e.  T h e q u a nt u m Fis h er
i nf or m ati o n l oss F B o b, t i s pl ott e d i n a l o g-l o g pl ot as a
f u n cti o n of p i n Fi g. 1 8 .  We fit t h e c o m p ut e d v al u es f or
p oi nts  wit h p < 0. 1 t o t h e  m o d el l n (y ) = a l n(p ) + b i n
or d er t o d et er mi n e t h e q u a nt u m Fis h er i nf or m ati o n l oss
or d er ( as y ∝ p a ).  We o bs er v e t h at  w hil e t h e q u a nt u m
Fis h er i nf or m ati o n l oss is i n d e e d a ff e ct e d o nl y t o s e c-
o n d or d er i n p f or a m plit u d e- d a m pi n g n ois e, it is dir e ctl y
a ff e ct e d t o first or d er f or d e p h asi n g n ois e.  T h e b e h a vi or
of t his s m all-s c al e e x a m pl e is n ot n e c ess aril y s ur prisi n g,
alt h o u g h it r ul es o ut a n o pti misti c c o nj e ct ur e t h at st at es of
t h e f or m (I 4) c o ul d h a v e t h eir l oss i n q u a nt u m Fis h er i nf or-
m ati o n b e pr ot e ct e d t o s e c o n d or d er i n p a g ai nst a n y II D
n ois e c h a n n el, as c o ul d h a v e b e e n s u g g est e d fr o m Fi g. 1 3 .

b.  R e p etiti o n c o d e i n t h e + / − b asis

N o w  w e i n v esti g at e a l ar g er e x a m pl e t h at s h o ws t h at t h e
m etr ol o gi c al dist a n c e is n ot al w a ys i n di c ati v e of t h e or d er
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of q u a nt u m Fis h er i nf or m ati o n l oss i n t h e n ois e p ar a m et er.
O n n q u bits, l et

|ψ = | + ⊗ n ; |ξ = | − ⊗ n . (I 6)

H er e, t h e  H a milt o ni a n c orr es p o n di n g t o t h es e st at es is t h e
n o nl o c al o p er at or H = Z ⊗ n . ( N ot e t h at t his e x a m pl e dif-
f ers st ar kl y fr o m a st a n d ar d e ns e m bl e of n s pi ns  w h er e
t h e  H a milt o ni a n is as a s u m of Z t er ms o n e a c h sit e. I n
t h at c as e, |ξ w o ul d b e a s u p er p ositi o n of stri n gs t h at c o n-
sist of all | + st at e v e ct ors a n d a si n gl e | − st at e v e ct or.)
T h e (|ψ , |ξ ) gi v e n a b o v e f or m a  m etr ol o gi c al c o d e of
dist a n c e d m = n . I n d e e d, a n y o p er at or O wit h  w gt (O ) < n
c a n n ot  m a k e |ψ n o n ort h o g o n al t o |ξ , a n d t h e c o n diti o ns
( 1 5 5) ar e s atis fi e d.

We s h o w t h at if  w e e x p os e t his st at e t o II D d e p h asi n g
n ois e al o n g t h e Z a xis, t h e q u a nt u m Fis h er i nf or m ati o n l oss
is i n d e e d s u p pr ess e d t o t h e or d er O (p n / 2 ), as  w e  w o ul d
e x p e ct.  O n t h e ot h er h a n d, if  w e e x p os e t h e st at e t o II D
bit- fli p n ois e,  w hi c h c a n b e s e e n as d e p h asi n g n ois e al o n g
t h e X a xis, t h e n t h e q u a nt u m Fis h er i nf or m ati o n l oss is n ot
s u p pr ess e d as e x p e ct e d a n d  w e fi n d F B o b, t ∼ p .

L et us first c o nsi d er II D d e p h asi n g n ois e al o n g t h e Z
a xis.  We s h o w t h at t h e q u a nt u m Fis h er i nf or m ati o n l oss
is i n d e e d s u p pr ess e d t o or d er O (p n / 2 ) f or t his n ois e c h a n-
n el.  We n o w pr o v e t his st at e m e nt.  We  m a y c h o os e f or t h e

n ois e c h a n n el N (p )
d e p h as (·) = (1 − p / 2 )(·) + (p / 2 )Z (·)Z t h e

Sti n es pri n g is o m etr y

V A → B E = 1 −
p

2
1 ⊗ | 0 E +

p

2
Z ⊗ | 1 E

= | p + E ↑| A ⊗ | ↑ B + | p − E ↓| A ⊗ | ↓ B , (I 7)

wit h r es p e ct t o s o m e b asis |0 , |1 o n E , a n d  wit h

|p ± = 1 −
p

2
|0 ±

p

2
|1 . (I 8)

T his c h oi c e l e a ds t o t h e c o m pl e m e nt ar y c h a n n el

N (p )
d e p h as (·) = ↑|·| ↑ A |p + p + |E + ↓|·| ↓ A |p − p − |E .

(I 9)

We fi n d

ρ E 1
= N (p )

d e p h as (| + +| ) =
1

2
|p + p + |E + | p − p − |E =

1 − p 0
0 p

;

N (p )
d e p h as (| + −| ) =

1

2
|p + p + |E − | p − p − |E =

p

2
1 −

p

2

0 1
1 0

.

(I 1 0)

We c a n t h e n c o m p ut e

F B o b, t = F N (p )
d e p h as (| + +| )

⊗ n
; N (p )

d e p h as
⊗ n

[| + −| ]⊗ n + [| − +| ]⊗ n

= F
1 − p 0

0 p

⊗ n

;
p

2
1 −

p

2

0 1
1 0

⊗ n

+ h. c.

= 4
p

2
1 −

p

2

n

F
1 − p 0

0 p

⊗ n

; X ⊗ n

= 4 p n 2 − n 1 −
p

2

n

x ,x

2

λ x + λ x
x |X ⊗ n |x

2

, (I 1 1)

w h er e x , x ar e bit stri n gs a n d  w h er e λ x = (1 − p )|x |p n −| x |

i s t h e ei g e n v al u e of ρ ⊗ n
E 1

a s s o ci at e d  wit h t h e ei g e n v e c-

t or |x .  O bs er v e t h at x |X ⊗ n |x = δ x ,x ,  w h er e x is t h e bit
stri n g o bt ai n e d b y fli p pi n g all t h e bits of x . T h e n

λ x + λ x = (1 − p )|x |p n −| x | + (1 − p )n −| x |p |x |

= (p mi n (|x |,n −| x |) ) = (p n / 2 ), (I 1 2)

n oti n g t h at  mi n (|x |, n − | x |) n / 2.  T h er ef or e,

(J 1 1) = p n

x

O p − n / 2 = O (p n / 2 ). (I 1 3)

I n ot h er  w or ds, t h e q u a nt u m Fis h er i nf or m ati o n o n  B o b’s
e n d aft er e x p os ur e of t h e st at e t o II D d e p h asi n g n ois e al o n g
t h e Z a xis is  w ell pr ot e ct e d, i n t h at t h e l oss is s u p pr ess e d t o
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t h e or d er O (p n / 2 ).  O bs er v e t h at ρ E i s f ull r a n k, a n d t h er e-
f or e o ur u n c ert ai nt y r el ati o n h ol ds  wit h e q u alit y i n t his
s etti n g.

C o nsi d er n o w t h e II D bit- fli p n ois e c h a n n el [ N (p )
bit- fli p ]

⊗ n

d et er mi n e d b y t h e si n gl e-sit e  Kr a us o p er at ors E
(p )
bit- fli p, 0 a n d

E
(p )
bit- fli p, 1 . We fi n d

N (p )
bit- fli p (| + +| ) = | + +| ; N (p )

bit- fli p (| + −| )

= (1 − p )| + −| . (I 1 4)

We  w o ul d li k e t o c o m p ut e

F B o b, t = F [N (p )
bit- fli p ]

⊗ n | + +| ⊗ n ; [N (p )
bit- fli p ]

⊗ n

× − i[| − +| ]⊗ n + i[| + −| ]⊗ n

= F | + +| ⊗ n ; − i[(1 − p )| − +| ]⊗ n + h. c.

= 4 + n | − i[(1 − p )| − +| ]⊗ n + h. c.
2

| +n ,

(I 1 5)

w h er e t h e l ast e q u alit y f oll o ws fr o m Pr o p ositi o n 1 2.  Wit h

+ n | − i[(1 − p )| − +| ]⊗ n + h. c. = i(1 − p )n − n |,

(I 1 6)

w e fi n d

(I 1 5) = 4 (1 − p )2 n = 4 − 8 n p + O (p 2 ). (I 1 7)

T h er ef or e, f or bit- fli p II D n ois e,  w e h a v e

F B o b, t[ bit- fli p] = 8 n p + O (p 2 ), (I 1 8)

m e a ni n g t h at t h e q u a nt u m Fis h er i nf or m ati o n l oss is li n e ar
i n p d es pit e t h e hi g h  m etr ol o gi c al dist a n c e d m .

N ot e t h at, i n t h e c as e of II D bit- fli p n ois e, o ur u n c er-
t ai nt y r el ati o n e q u alit y c o n diti o ns ar e n ot s atis fi e d, si n c e
t h e r a n k of ρ B c h a n g es l o c all y as a f u n cti o n of ti m e. I n
ot h er  w or ds,  w e s h o ul d n ot e x p e ct o ur u n c ert ai nt y r el ati o n
t o h ol d  wit h e q u alit y.  T his f a ct d o es n ot i m p a ct o ur c al c u-
l ati o n of t h e q u a nt u m Fis h er i nf or m ati o n l oss (I 1 8), si n c e
w e d et er mi n e d t his v al u e b y dir e ct c o m p ut ati o n o n  B o b’s
si d e.  H o w e v er, b as e d o n t his e x a m pl e,  w e ar e t e m pt e d t o
h y p ot h esi z e t h at s etti n gs i n  w hi c h a hi g h  m etr ol o gi c al dis-
t a n c e d o es n ot i n hi bit a hi g h a c c ur a c y l oss u n d er  w e a k II D
n ois e c oi n ci d e  wit h t h e s etti n gs i n  w hi c h o ur u n c ert ai nt y
r el ati o n d o es n ot h ol d  wit h e q u alit y. I n t h e r e m ai n d er of
t his  A p p e n di x,  w e pr o vi d e a d diti o n al i n di c ati o ns i n f a v or
of t his h y p ot h esis.

2.  Dis c o nti n uiti es of t h e q u a nt u m  Fis h e r a n d
u n c e rt ai nt y r el ati o n e q u alit y c o n diti o ns

We bri e fl y r et ur n t o st u d y t h e b e h a vi or of t h e q u a nt u m
Fis h er i nf or m ati o n i n a si m pl e e x a m pl e i n  w hi c h o ur u n c er-
t ai nt y r el ati o n e q u alit y c o n diti o ns ar e n ot s atis fi e d. I n s u c h
c as es, t h e st at e o n  B o b’s si d e c h a n g es r a n k, a n d it is k n o w n
t h at t h e q u a nt u m Fis h er i nf or m ati o n c a n b e dis c o nti n u o us
[3 3 ,3 4 ,1 1 0 ].

T h e d e fi niti o n of t h e q u a nt u m Fis h er i nf or m ati o n t h at
w e us e [ E q. 9 ],  w hi c h c a n di ff er fr o m t h e e x pr essi o n st e m-
mi n g fr o m t h e s e c o n d- or d er e x p a nsi o n of t h e  B ur es  m et-
ri c [3 3 ,3 4 ,1 1 0 ], dir e ctl y e x pr ess es t h e a c c ur a c y t o  w hi c h
o n e c a n s e ns e a n u n k n o w n p ar a m et er vi a a n o bs er v a bl e
t h at r e v e als t h e tr u e v al u e of t h e p ar a m et er l o c all y i n
e x p e ct ati o n v al u e (s e e Pr o p ositi o n 1 9 i n  A p p e n di x D ).

It is a f u n d a m e nt al pri n ci pl e i n q u a nt u m i nf or m ati o n t h at
a q u a ntit y t h at is  m e as ur a bl e i n a p h ysi c al s etti n g s h o ul d b e
r o b ust t o i n fi nit esi m al p ert ur b ati o ns of t h e q u a nt u m st at e.
Yet, h o w is it p ossi bl e t h at t h e q u a nt u m Fis h er i nf or m ati o n
is dis c o nti n u o us, if it dir e ctl y c orr es p o n ds t o t h e p h ysi-
c all y o p er ati o n al s e nsiti vit y t o  w hi c h o n e c a n esti m at e a n
u n k n o w n p ar a m et er l o c all y ?  We attri b ut e t his dis c o nti n u-
it y t o t h e ass u m pti o n, i n Pr o p ositi o n 1 9 i n  A p p e n di x D ,
t h at t h e s e nsi n g o bs er v a bl e r e v e als t h e tr u e p ar a m et er
v al u e i n e x p e ct ati o n v al u e.  A n e x p e ct ati o n v al u e n e e ds
t o b e esti m at e d usi n g  m ulti pl e r o u n ds of  m e as ur e m e nts,
a n d d e p e n di n g o n t h e o ut c o m e distri b uti o n of t h e o bs er v-
a bl e, a n ar bitr ar y l ar g e n u m b er of  m e as ur e m e nts  mi g ht b e
r e q uir e d t o a c c ur at el y esti m at e its e x p e ct ati o n v al u e. I n
t h e f oll o wi n g e x a m pl e,  w e st u d y h o w t h e o pti m al s e ns-
i n g o bs er v a bl e di v er g es cl os e t o dis c o nti n uit y p oi nts of t h e
q u a nt u m Fis h er i nf or m ati o n; n a m el y, t h e dis c o nti n uit y c a n
b e ass o ci at e d  wit h di v er gi n g ei g e n v al u es of t h e o bs er v a bl e
ass o ci at e d  wit h ei g e nst at es t h at ar e o utsi d e t h e s u p p ort of
t h e st at e at t h e dis c o nti n uit y p oi nt.

O v er all, t his e x a m pl e i n di c at es t h at t h e o p er ati o n al r el-
e v a n c e of t h e q u a nt u m Fis h er i nf or m ati o n  mi g ht br e a k
d o w n i n c ert ai n r e gi m es  w h er e it is n ot p ossi bl e t o a c c u-
r at el y esti m at e t h e e x p e ct ati o n v al u e of t h e o pti m al s e nsi n g
o bs er v a bl e.

T h e f oll o wi n g e x a m pl e is b as e d o n  R efs. [ 3 3 ,3 4 ,1 1 0 ].
C o nsi d er t h e e x a m pl e of S e c. I V  B: a q u bit st at e e v ol vi n g
al o n g t h e e q u at or of t h e  Bl o c h s p h er e is c oll a ps e d b y t h e
n ois e c h a n n el al o n g t h e X a xis of t h e  Bl o c h s p h er e.  B o b’s
q u a nt u m Fis h er i nf or m ati o n is c o nst a nt a n d e q u al t o ω 2

al m ost all t h e ti m e, e x c e pt  w h e n t h e st at e is e x a ctl y a ± X
ei g e nst at e, i n  w hi c h c as e  B o b’s q u a nt u m Fis h er i nf or m a-
ti o n is e q u al t o z er o.  T h e st at e o n  B o b’s e n d is gi v e n b y
E q. ( 8 9) as

ρ B = p + | + +|  + p − | − −| ;

p + = c os 2 ω t0

2
; p − = si n 2 ω t0

2
. (I 1 9)
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W h e n  B o b’s q u a nt u m Fis h er i nf or m ati o n F B o b, t i s n o n z er o,
t h er e is al w a ys a n o bs er v a bl e O w h os e e x p e ct ati o n v al u e
r e v e als t h e tr u e p ar a m et er v al u e l o c all y, i. e., O ρ ( t0 + dt ) =
t0 + dt + O (dt 2 ), a n d  w h os e v ari a n c e is O 2 − O 2 =
1 / ω 2 ( cf.  A p p e n di x D ).  T h e o pti m al s e nsi n g o bs er v a bl e
is gi v e n b y t h e s uit a bl y n or m ali z e d s y m m etri c l o g arit h mi c
d eri v ati v e ( Pr o p ositi o n 1 9) a n d c a n b e c o m p ut e d,  w h e n ω t0
i s n ot a  m ulti pl e of π , as f oll o ws:

O − t0 1 =
1

ω 2
R − 1

ρ t0
∂ tρ =

1

ω 2

×

k ,k = ±

2

p k + p k
k |( ∂tρ ) |k |k k |

=
2

2 ω 2 c os 2 ( ω t0
2

)
+| ( ∂tρ ) | + | + +|

+
2

2 ω 2 si n 2 ( ω t0
2

)
−| ( ∂tρ ) | − | − −|

= −
1

ω
t a n

ω t0

2
| + +|  +

1

ω
t a n

ω t0

2

− 1

| − −| ,

(I 2 0)

usi n g t h e r el ati o n ( ∂tρ ) = − ( ω /2 ) si n ( ω t0 ) X [ cf.  E q. ( 9 1)],
w hi c h i m pli es ±| ( ∂tρ ) | ± =  ∓ ( ω /2 ) si n ( ω t0 ) = ∓ ω
si n ( ω t0 / 2 ) c os ( ω t0 / 2 ).

As a s a nit y c h e c k,  w e c a n v erif y t h at O s atis fi es

O ρ ( t0 + dt ) = t0 + dt + O (dt 2 ), (I 2 1)

as  w ell as

σ 2
O = O 2

ρ t0
− O 2

ρ t0
=

1

ω 2
. (I 2 2)

As t h e st at e g ets cl os er t o a dis c o nti n uit y (f or i nst a n c e,
at t0 = 0), t his o pti m al s e nsi n g o bs er v a bl e h as o n e ei g e n-
v al u e t h at di v er g es (f or t0 = 0, t his ei g e n v al u e is ass o ci-
at e d  wit h t h e ei g e n v e ct or | − ).  At t h e dis c o nti n u o us p oi nt,
t h e d eri v ati v e is z er o l o c all y, s o n o o bs er v a bl e  will e v er b e
a bl e t o c orr e ctl y r e v e al t h e tr u e v al u e of t h e p ar a m et er t o
first or d er l o c all y.  T h e st at e d o es n ot c h a n g e t o first or d er
i n t at all!  We c a n attri b ut e t h e dis c o nti n uit y t o t h e f a ct
t h at a n o pti m al s e nsi n g o bs er v a bl e f or o n e st at e  mi g ht t ur n
o ut t o n o l o n g er b e a n a c c e pt a bl e s e nsi n g o bs er v a bl e f or a
n ei g h b ori n g p oi nt. I n ot h er  w or ds,  w hil e t h e v ari a n c e of a n
o bs er v a bl e is c o nti n u o us b ot h as a f u n cti o n of t h e st at e a n d
of t h e o bs er v a bl e, t h e o pti m al v ari a n c e i n t h e l o c al s e ns-
i n g s c e n ari o is dis c o nti n u o us b e c a us e t h e c o n diti o ns of t h e
o pti mi z ati o n ( D 1) ar e dis c o nti n u o us.

At t h e dis c o nti n uit y t0 = 0, t h e d eri v ati v e ∂ tρ v a nis h es
l o c all y, a n d it is i m p ossi bl e t o fi n d a n o bs er v a bl e O s u c h
t h at O ρ ( t0 + dt ) = t0 + dt + O (dt 2 ).  B y c o n v e nti o n  w e s et
t h e c orr es p o n di n g q u a nt u m Fis h er i nf or m ati o n t o b e z er o;
first, it is c o n v e ni e nt b e c a us e  w e d o n ot h a v e t o  m o d-
if y t h e d e fi niti o n of t h e q u a nt u m Fis h er i nf or m ati o n, a n d

s e c o n d, it e x pr ess es t h e f a ct t h at  w e c a n n ot h a v e a n y s e n-
siti vit y l o c all y t o first or d er i n t h e p ar a m et er b y  m e as uri n g
t h e e x p e ct ati o n v al u e of a n o bs er v a bl e. If t h e q u a nt u m
Fis h er i nf or m ati o n is d e fi n e d st arti n g fr o m t h e  B ur es dis-
t a n c e, a  mis m at c h  will b e o bs er v e d; t his  mis m at c h c o ul d
b e i nt er pr et e d as a f ail ur e of t h e  Cr a m ér- R a o b o u n d.

O p er ati o n all y, e v e n f or t0 n ot at o n e of t h e dis c o nti n u-
iti es, t h e us e of t h e e x p e ct ati o n v al u e as t h e  w a y of r e a di n g
o ut t h e p ar a m et er i n t h e esti m ati o n pr o c ess  mi g ht b e pr o b-
l e m ati c.  Esti m ati n g t h e e x p e ct ati o n v al u e of O t o g o o d
a c c ur a c y, f or t0 ≈ 0, r e q uir es t h at  w e o bs er v e s u ffi ci e ntl y
m a n y ti m es t h e | − o ut c o m e, e v e n t h o u g h t h e l att er o nl y
a p p e ars  wit h t h e v a nis hi n g pr o b a bilit y si n 2 ( ω (t0 + dt ) /2 ).
If  w e d o n ot r e p e at t h e  m e as ur e m e nt o n e n o u g h c o pi es,  w e
w o ul d o nl y e m piri c all y o bs er v e | + e v e nts a n d  w e  w o ul d
err o n e o usl y esti m at e t h e e x p e ct ati o n v al u e of O t o b e e q u al
t o − t a n( ω t0 / 2 ) / ω , a n d t h at its v ari a n c e is z er o.  N ot o nl y
t his r es ult  w o ul d b e  wr o n g as it d o es n ot d e p e n d o n t h e
a ct u al v al u e dt t h at  w e  w a nt e d t o  m e as ur e, b ut t h e v ari-
a n c e is c ert ai nl y i n c orr e ct si n c e t h e o pti m al v ari a n c e  w h e n
a n i n fi nit e n u m b er of  m e as ur e m e nts is a v ail a bl e is 1 / ω 2 .
T h er e  mi g ht b e o p p ort u niti es f or d e fi ni n g a n d i n v esti g at-
i n g r e fi n e d  m e as ur es of s e nsiti vit y t h at c a n a c c o u nt f or
t h e fi nit e a m o u nt of  m e as ur e m e nt o ut c o m es t h at c a n b e
c oll e ct e d i n t h e esti m ati o n pr o c ess.

T h e a b o v e e x a m pl e ill ustr at es t h at t h e q u a nt u m Fis h er
i nf or m ati o n c a n b e pr o bl e m ati c t o i nt er pr et i n c ert ai n
r e gi m es cl os e t o p oi nts  w h er e t h e r a n k of t h e st at e c a n
c h a n g e.  T his t y p e of r e gi m e c a n o c c ur f or  m etr ol o gi c al
c o d es, if t h e n ois e h a p p e ns t o fi x t h e st at e v e ct or |ψ w hil e
n ot fi xi n g ot h er st at es t h at ar e i n fi nit esi m all y cl os e t o |ψ ,
r es ulti n g i n a r a n k c h a n g e f or  B o b a n d  E v e’s st at es.  We
o bs er v e t h at i n t h e c o nt e xt of  m etr ol o gi c al c o d es e x p os e d
t o  w e a k II D n ois e, t h e q u a nt u m Fis h er i nf or m ati o n is n ot
a ct u all y dis c o nti n u o us as a f u n cti o n of t h e n ois e p ar a m e-
t er; r at h er, it is t h e or d er i n p of t h e Fis h er i nf or m ati o n l oss
t h at c a n b e h a v e u n e x p e ct e dl y.  T h at t h e q u a nt u m Fis h er
i nf or m ati o n l oss  m ust b e s u p pr ess e d at l e ast t o t h e or d er
O (p ) f oll o ws fr o m o ur c o nti n uit y b o u n d Pr o p ositi o n 1 8,
n oti n g t h at t h e  w e a k II D n ois e c h a n n el is O (p ) cl os e t o t h e
i d e ntit y c h a n n el.

3. S u p p r essi o n of q u a nt u m  Fis h e r i nf o r m ati o n l oss i n a
r est ri ct e d s etti n g

H er e  w e s h o w t h at,  w h e n c o nsi d eri n g a  m etr ol o gi c al
c o d e e x p os e d t o  w e a k II D n ois e i n a r estri ct e d s etti n g  wit h
a d diti o n al ass u m pti o ns, t h e q u a nt u m Fis h er i nf or m ati o n
l oss F B o b, t i s s u p pr ess e d t o t h e e x p e ct e d or d er O (p d m / 2 ),
w h er e d m i s t h e  m etr ol o gi c al dist a n c e of t h e  m etr ol o gi c al
c o d e.

Pr o p ositi o n 2 3. — l et |ψ , |ξ d e fi n e a  m etr ol o gi c al c o d e
of  m etr ol o gi c al dist a n c e d m . L et N 1 b e a si n gl e-sit e n ois e

o p er at or  wit h a  Kr a us r e pr es e nt ati o n {E (k )
1 } K

k = 1 t h at is

s u c h t h at E (k )
1 ∞ = O

√
p f or k = 1. F urt h er m or e, if

0 4 0 3 3 6- 8 1



P HI LI P P E F AI S T et al. P R X  Q U A N T U M 4, 0 4 0 3 3 6 ( 2 0 2 3)

x d e n ot es a stri n g of  Kr a us o p er at or l a b els  wit h x i ∈

{1, . . . , K }, a n d if E x = n
i= 1 E

(x i)
1 ,  w e ass u m e t h at t h e

st at es E x |ψ x
ar e all n o n z er o a n d ort h o g o n al, a n d t h at

E x |ψ (p |x |/ 2 ). T h e n F B o b, t = O p d m / 2 .
T his r es ult f oll o ws f airl y str ai g htf or w ar dl y fr o m

E q. ( 1 3 0) i n S e c. V E .
Pr o of. — Usi n g t h e n ot ati o n i n  E q. ( 1 3 0),  wit h = p , w e

h a v e t h at F B o b, t = O (p m ) wit h

m = mi n
x ,x

2 q x ,x − mi n r x , r x , (I 2 3)

w h er e r x a n d q x ,x ar e d e fi n e d vi a

ψ |E †
x E x |ψ = p rx ;

tr E
†
x E x |ξ ψ | + |ψ ξ | = O p q x ,x , (I 2 4)

s etti n g b y c o n v e nti o n q x ,x = ∞ w h e n e v er  w e h a v e

tr E
†
x E x |ξ ψ | + |ψ ξ | = 0. Fr o m o ur ass u m pti o n

t h at E x |ψ = 0,  w e s e e t h at r x i s al w a ys fi nit e.
We n o w c o nsi d er di ff er e nt c as es f or x , x . S u p p os e first

t h at |x | + |x | < d m .  T h e n, si n c e |ψ , |ξ f or m a  m etr ol o g-
i c al c o d e of  m etr ol o gi c al dist a n c e d m ,  w e h a v e q x ,x = ∞ .
N o w s u p p os e i nst e a d t h at |x | + |x | d m , i m pl yi n g t h at
eit h er |x | d m / 2 or |x | d m / 2.  T h e n, si n c e E x |ψ =

p |x |/ 2 , w e fi n d

ψ |E †
x E x |ψ = E x |ψ

2 = p |x | , (I 2 5)

s o  w e c a n pi c k r x = | x |. Si n c e E
(x i)
1 = O (

√
p ) f or e a c h x i =

0,  w e h a v e

tr E
†
x E x |ξ ψ | + |ψ ξ |

= ξ |E
†
x E x |ψ + ψ |E

†
x E x |ξ

= (
√

p )|x | +|x | O (1 ) = O p (|x | +|x |) /2 , (I 2 6)

s o  w e c a n pi c k q x ,x = (|x | + |x |) /2.  T h e n

2 q x ,x − mi n {r x , r x } = |x | + |x | − mi n {|x |, |x |}

= m a x {|x |, |x |} d m / 2. (I 2 7)

I n all c as es,  w e h a v e 2q x ,x − mi n {r x , r x } d m / 2 a n d t h us

F B o b, t O p d m / 2 , (I 2 8)

as cl ai m e d.
T h er e ar e t w o str o n g ass u m pti o ns  m a d e i n t h e a b o v e

pr o p ositi o n. First,  w e ass u m e t h at t h e  Kr a us o p er at or r e pr e-

s e nt ati o n s atis fi es tr {E
†
x E x ψ } ∝ δ x ,x , or e q ui v al e ntl y, t h at

ρ E i s di a g o n al; s u c h a r e pr es e nt ati o n al w a ys e xists b ut
mi g ht b e di ffi c ult t o fi n d. S e c o n d, t h e st at e o n  E v e  m ust
n ot b e r a n k- d e fi ci e nt, or e q ui v al e ntl y, t h er e is n o  Kr a us

o p er at or E x t h at h as z er o pr o b a bilit y of o c c urri n g  w h e n
t h e c h a n n el is a p pli e d o nt o t h e st at e ψ . It is n ot i m m e-
di at el y cl e ar t o us h o w t o g e n er ali z e t h e a b o v e pr o p ositi o n
t o  w e a k e n eit h er of t h es e ass u m pti o ns.
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S e k ats ki,  A d a pti v e q u a nt u m  m etr ol o g y u n d er g e n er al
M ar k o vi a n n ois e, P h ys. R e v. X 7 , 0 4 1 0 0 9 ( 2 0 1 7).

[ 2 2] S.  Z h o u,  M.  Z h a n g, J. Pr es kill, a n d  L. Ji a n g,  A c hi e vi n g
t h e  H eis e n b er g li mit i n q u a nt u m  m etr ol o g y usi n g q u a nt u m
err or c orr e cti o n, N at.  C o m m u n. 9 , 7 8 ( 2 0 1 8).

[ 2 3]  C.  H elstr o m,  Mi ni m u m  m e a n-s q u ar e d err or of esti m at es
i n q u a nt u m st atisti cs, P h ys.  L ett.  A 2 5 , 1 0 1 ( 1 9 6 7).

[ 2 4]  C.  W.  H elstr o m,  Q u a nt u m d et e cti o n a n d esti m ati o n t h e or y,
J. St at. P h ys. 1 , 2 3 1 ( 1 9 6 9).

[ 2 5]  M.  H ü b n er,  E x pli cit c o m p ut ati o n of t h e  B ur es dist a n c e f or
d e nsit y  m atri c es, P h ys.  L ett.  A 1 6 3 , 2 3 9 ( 1 9 9 2).

[ 2 6]  K.  M a ci es z c z a k,  Q u a nt u m Fis h er i nf or m ati o n:  Vari ati o n al
pri n ci pl e a n d si m pl e it er ati v e al g orit h m f or its e ffi ci e nt
c o m p ut ati o n,  Ar Xi v e- pri nts ar Xi v: 1 3 1 2. 1 3 5 6 ( 2 0 1 3).

[ 2 7]  K.  M a ci es z c z a k,  M. Fr a as, a n d  R.  D e m k o wi c z- D o br z a ń s ki,
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D e m k o wi c z- D o br z a ń s ki,  T e ns or- n et w or k a p pr o a c h f or
q u a nt u m  m etr ol o g y i n  m a n y- b o d y q u a nt u m s yst e ms, N at.
C o m m u n. 1 1 , 1 ( 2 0 2 0).

[ 2 9] P.  H a y d e n, S.  N e z a mi, S. P o p es c u, a n d  G. S alt o n,  Err or
c orr e cti o n of q u a nt u m r ef er e n c e fr a m e i nf or m ati o n, P R X
Q u a nt u m 2 , 0 1 0 3 2 6 ( 2 0 2 1).

[ 3 0]  B.  M.  Es c h er,  R.  L. d.  M. Fil h o, a n d  L.  D a vi d o vi c h,  G e n-
er al fr a m e w or k f or esti m ati n g t h e ulti m at e pr e cisi o n li mit
i n n ois y q u a nt u m- e n h a n c e d  m etr ol o g y, N at. P h ys. 7 , 4 0 6
( 2 0 1 1).

[ 3 1]  R.  D e m k o wi c z- D o br z ań s ki, J.  K oł o d y ń s ki, a n d  M.  G uţ ă,
T h e el usi v e  H eis e n b er g li mit i n q u a nt u m- e n h a n c e d
m etr ol o g y, N at.  C o m m u n. 3 , 1 0 6 3 ( 2 0 1 2).

[ 3 2]  A.  T.  R e z a k h a ni,  M.  H ass a ni, a n d S.  Ali p o ur,  C o nti n u-
it y of t h e q u a nt u m Fis h er i nf or m ati o n, P h ys. R e v.  A 1 0 0 ,
0 3 2 3 1 7 ( 2 0 1 9).

[ 3 3]  D. Š afr á n e k,  Dis c o nti n uiti es of t h e q u a nt u m Fis h er i nf or-
m ati o n a n d t h e  B ur es  m etri c, P h ys. R e v. A 9 5 , 0 5 2 3 2 0
( 2 0 1 7).

[ 3 4] S.  Z h o u a n d  L. Ji a n g,  A n e x a ct c orr es p o n d e n c e b et w e e n
t h e q u a nt u m Fis h er i nf or m ati o n a n d t h e  B ur es  m etri c,
Ar Xi v e- pri nts ar Xi v: 1 9 1 0. 0 8 4 7 3 ( 2 0 1 9).

[ 3 5] S. P a n g a n d  T.  A.  Br u n,  Q u a nt u m  m etr ol o g y f or a g e n er al
H a milt o ni a n p ar a m et er, P h ys. R e v. A 9 0 , 0 2 2 1 1 7 ( 2 0 1 4).

[ 3 6]  L. S u n,  X.  H e,  C.  Y o u,  C.  L v,  B.  Li, S.  Ll o y d, a n d
X.  Wa n g,  E x p o n e nti all y e n h a n c e d q u a nt u m  m etr ol o g y
usi n g r es o ur c es of li n e ar c o m pl e xit y,  Ar Xi v e- pri nts
ar Xi v: 2 0 0 4. 0 1 2 1 6 ( 2 0 2 0).

[ 3 7] I.  A p ell a ni z,  B.  L ü c k e, J. P eis e,  C.  Kl e m pt, a n d  G.  T ót h,
D et e cti n g  m etr ol o gi c all y us ef ul e nt a n gl e m e nt i n t h e vi ci n-
it y of  Di c k e st at es, N e w J. P h ys. 1 7 , 0 8 3 0 2 7 ( 2 0 1 5).

[ 3 8] S.  Alt e n b ur g, S.  W öl k,  G.  T ót h, a n d  O.  G ü h n e,  O pti mi z e d
p ar a m et er esti m ati o n i n t h e pr es e n c e of c oll e cti v e p h as e
n ois e, P h ys. R e v. A 9 4 , 0 5 2 3 0 6 ( 2 0 1 6).

[ 3 9]  Z.  Z h a n g a n d  L.  M.  D u a n,  Q u a nt u m  m etr ol o g y  wit h  Di c k e
s q u e e z e d st at es, N e w J. P h ys. 1 6 , 1 0 3 0 3 7 ( 2 0 1 4).

[ 4 0]  V. P a ulis c h,  M. P er ar n a u- Ll o b et,  A.  G o n z ál e z- T u d el a,
a n d J. I.  Cir a c,  Q u a nt u m  m etr ol o g y  wit h o n e- di m e nsi o n al
s u p err a di a nt p h ot o ni c st at es, P h ys.  R e v.  A 9 9 , 0 4 3 8 0 7
( 2 0 1 9).

[ 4 1]  Y.  O u y a n g,  N. S h ett ell, a n d  D.  M ar k h a m,  R o b ust q u a nt u m
m etr ol o g y  wit h e x pli cit s y m m etri c st at es, I E E E  Tr a ns. I nf.
T h e or y 6 8 , 1 8 0 9 ( 2 0 2 2).

[ 4 2]  Y.  O u y a n g, P er m ut ati o n-i n v ari a nt q u a nt u m c o d es, P h ys.
R e v.  A 9 0 , 0 6 2 3 1 7 ( 2 0 1 4).

[ 4 3] F.  G. S.  L.  Br a n d ã o,  E.  Cr oss o n,  M.  B. Ş a hi n o ğl u, a n d
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