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Detection of very weak forces and precise measurement of time are two of the many applications of
quantum metrology to science and technology. To sense an unknown physical parameter, one prepares
an initial state of a probe system, allows the probe to evolve as governed by a Hamiltonian H for some
time 7, and then measures the probe. If H is known, we can estimate ¢ by this method; if ¢ is known,
we can estimate classical parameters on which H depends. The accuracy of a quantum sensor can be
limited by either intrinsic quantum noise or by noise arising from the interactions of the probe with its
environment. In this work, we introduce and study a fundamental trade-off, which relates the amount by
which noise reduces the accuracy of a quantum clock to the amount of information about the energy
of the clock that leaks to the environment. Specifically, we consider an idealized scenario in which a
party Alice prepares an initial pure state of the clock, allows the clock to evolve for a time that is not
precisely known, and then transmits the clock through a noisy channel to a party Bob. Meanwhile, the
environment (Eve) receives any information about the clock that is lost during transmission. We prove
that Bob’s loss of quantum Fisher information about the elapsed time is equal to Eve’s gain of quantum
Fisher information about a complementary energy parameter. We also prove a similar, but more general,
trade-off that applies when Bob and Eve wish to estimate the values of parameters associated with two
noncommuting observables. We derive the necessary and sufficient conditions for the accuracy of the clock
to be unaffected by the noise, which form a subset of the Knill-Laflamme error-correction conditions. A
state and its local time-evolution direction, if they satisfy these conditions, are said to form a metrological
code. We provide a scheme to construct metrological codes in the stabilizer formalism. We show that there
are metrological codes that cannot be written as a quantum error-correcting code with similar distance in
which the Hamiltonian acts as a logical operator, potentially offering new schemes for constructing states
that do not lose any sensitivity upon application of a noisy channel. We discuss applications of the trade-
off relation to sensing using a quantum many-body probe subject to erasure or amplitude-damping noise.
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I. INTRODUCTION

Quantum mechanics places fundamental limits on how
well we can measure a physical quantity when using
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a quantum system as a probe [1]. Quantum metrol-
ogy is an active research area addressing how physi-
cal quantities can be estimated based on observations of
a probe system [2-4]. As methods for accurately con-
trolling quantum systems steadily advance, increasingly
sophisticated measurement strategies are becoming feasi-
ble [5,6], leading for example to more sensitive gravita-
tional wave detectors [7], improved frequency standards
[8], and ultra-precise quantum clocks [9]. These tech-
nological developments accentuate the need for a pre-
cise theoretical understanding of the potential of quantum
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metrology and of the ultimate limits on measurement
accuracy.

Fundamental accuracy limits in quantum metrology can
often be phrased in terms of uncertainty relations, wherein
the accuracy of one physical quantity trades off against
the accuracy of a complementary quantity. For example,
a particle with a definite position has a highly uncer-
tain momentum, and vice versa. Such trade-offs may be
captured conveniently by entropic uncertainty relations
[10,11]. One may envision a two-party scenario, where the
entropic uncertainty relation connects the first party’s igno-
rance about a quantity 4 with the second party’s lack of
knowledge about a complementary quantity B. Typically
these quantities are values of non-commuting observables.

In this work, we focus on a related but fundamen-
tally different type of uncertainty relation. Rather than
a trade-off between the values of two observables, we
consider an information-theoretic trade-off between time
and energy. Specifically, we envision preparing a probe
state i, Which then evolves for a time ¢ as determined
by some Hamiltonian H. By measuring the probe p(¥)
at time ¢, we attempt to infer the value of ¢ [12]. The
time-energy uncertainty relation relates the accuracy of
our estimate of ¢ to the energy fluctuations of the probe
state p(f) [13,14]; a state with larger energy fluctuations
evolves more rapidly, allowing the elapsed time to be esti-
mated more precisely. Here, too, it is helpful to envision
two parties, one attempting to measure time, the other
attempting to measure energy. Indeed, such entropic time-
energy uncertainty relations have recently been established
[15,16].

For our purposes, a clock is a quantum system used to
measure a time interval. The clock is initialized at some
initial time and is measured at a later time, with the aim
of the measurement being to reveal the difference in time
between the initialization and the measurement. We are
particularly interested in how a noise channel affects the
accuracy of a clock. For that purpose we consider the fol-
lowing idealized scenario, involving three parties referred
to as Alice, Bob, and Eve, which is amenable to precise
mathematical analysis (see Fig. 1). Alice prepares a noise-
less clock in the pure state vector |Yinit), then allows that
clock to evolve until some (a priori unknown) time f.
Rather than measuring the clock herself for the purpose
of estimating £, Alice stops the evolution of the clock and
sends it to Bob through a noisy quantum channel N}_, p.
As with any noisy channel, we can represent N4_p as an
isometric map from Alice’s system 4 to BE, where B is
Bob’s system and E is the channel’s environment, after
which E is discarded. In our scenario, Bob receives B and
Eve receives E. We wish to study the trade-off between
what Bob can learn about the elapsed time by measuring
B and what Eve can learn about the energy of the clock
by measuring E. Intuitively, such a trade-off is expected,
because leakage to the environment of information about
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FIG. 1. A noiseless clock is initialized by Alice in |y,;) and

evolves for a time ¢ under the Hamiltonian H. Then Alice
sends the clock through an instantaneous noisy channel Ay, p
to Bob, who receives the state pp, measures it, and estimates .
The complementary channel N, 4— £ describes the quantum infor-
mation that leaks to the environment. Eve receives the state
pe = N (¥r(f)), measures, and estimates the energy parameter of
| (f)). Our main result describes the trade-off between Bob’s
ability to estimate the time and Eve’s ability to estimate the
energy.

the clock’s energy causes the clock to dephase in the
energy-eigenstate basis, obscuring its evolution.

We consider the setting of local parameter estimation.
This means that the value of a parameter is already approx-
imately known, and we wish to determine it to greater
accuracy. In this setting, the optimal estimate of the param-
eter is determined by the quantum Fisher information
(QFI). For example, if Fj)ic., denotes the QFI of Alice’s
state with respect to the parameter £, then by performing
the optimal measurement on her state, Alice can estimate
the value of 7 with a mean-square error of 1/Fyjice,. For
the purpose of locally estimating t = £y + Af to first order
in Af, it suffices to know the quantum state p(#p) and its
first time derivative, and indeed the QFI is determined by
just these quantities.

Bob’s noisy clock, degraded by transmission through
the noisy channel AN p, has a reduced QFI compared
to Alice’s clock, and correspondingly Bob’s optimal mea-
surement yields a less accurate estimate of the time ¢ than
Alice’s. On the other hand, Eve receives the state of Alice’s
clock after transmission through the complementary noisy
channel ﬂ? A-E, the channel obtained if B is discarded after
A is isometrically mapped to BE. We imagine that Eve
wishes to learn about the energy of Alice’s clock, rather
than about the elapsed time. More precisely, Eve’s goal is
to determine an “energy parameter” denoted 1 and defined
in Sec. 1I B, which is complementary to the time . Because
Eve, like Bob, receives a state of the clock degraded by
noise, the QFI of her state with respect to 7 is in general
less than Alice’s. Our main result is an equality relating
Bob’s QFI about f to Eve’s QFI about i given by

F Bob,t F Eve,n

=1 (1)

Faticey  Falice
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This time-energy uncertainty relation, derived in Sec. 111
and Appendix E using semidefinite programming dual-
ity, substantially differs from previous results [12,17,18] in
that it characterizes the trade-off between Bob’s and Eve’s
QF]I, rather than the trade-off between the inherent energy
variance and time uncertainty of the noiseless clock.

Figure 2 illustrates the setting of Eq. (1) in a con-
crete example. Alice initializes a single qubit in the pure
state vector |[+) = (|1) + |1)) /ﬁ, which evolves under
the Hamiltonian H = wZ /2. Here and in the following,
X,Y,Z denote the qubit Pauli-X, ¥, Z operators, respec-
tively. The qubit basis states are denoted by [1),]]) for
consistency with which state is excited with respect to the
Hamiltonian H, with Z|1) = |1) and Z||) = —|]). Later
in this work, we also use the alternative notation |0) = |1)
and |1) = |]) whenever necessary to facilitate the rep-
resentation of states of multiple qubits using bit strings
or for consistency with the literature on quantum error-
correcting codes. At time f = #p + At, the partially dephas-
ing channel A, = (1 — p)id + pD; is applied to Alice’s
qubit, where Dz(-) = (PO I (T + (LION) )L
We may describe this channel by saying that the environ-
ment (Eve) measures the qubit with probability p in the
energy-eigenstate basis (i.e., along the Z axis of the Bloch
sphere). The partial dephasing attenuates the ¢ dependence
of Bob’s state pp(f) by the factor 1 — p, hindering his abil-
ity to estimate the time. Equation (1) captures the trade-off
between Bob’s information about the time (proportional
to 1 —p) and Eve’s information gain about the energy
(proportional to p).

The trade-off relation Eq. (1) can be a useful tool for
deriving upper bounds on QFI. The QFI for a mixed state
can be tricky to characterize in cases where a diagonal rep-
resentation of the state is not easily obtained. Along these
lines, it is useful to note that QFI obeys a data process-
ing inequality, which ensures that, for any state p and any
quantum channel AV, the QFI of A/(p) is no larger than the
QFI of p [19]. We can imagine that Eve applies a chan-
nel to her state pg, obtaining the state py, which she then
measures for the purpose of estimating 7. Using the data
processing inequality, we conclude that

i
F Bob,t F Eve,n

<L (2

Falicey  FAlice

where now F,. , denotes the QFI of pz with respect to 7.
Even if the QFI of pg is difficult to compute, the QFI of p,
may be easy to compute if the channel taking pg to pf is
artfully chosen; then Eq. (2) provides a computable upper
bound on Fgep. For example, in the case where Nisgis
an amplitude damping noise channel, a useful upper bound
on Bob’s QFI can be derived by applying a completely
dephasing channel to Eve’s state pg. We apply this idea
to an Ising spin chain in Sec. VIIL

Alice Bob

Outcome of energy measurement
(with probability p)

FIG. 2. [Illustration of Eq. (1) for a single qubit subjected to
partial dephasing. Alice’s clock state is initialized as |4) =
(IT}—|—|L}};‘«/§ and evolves according to the Hamiltonian
H = wZ/2, where Z denotes the qubit Pauli-Z operator. At

time #, the channel N,(-) = (1 —p)(-) +p [FHHOI) (M +
P LI is instantaneously applied to Alice’s clock
state. In effect, Eve measures the energy observable Z with proba-
bility p, and Bob receives the partially dephased clock. Equation
(1) relates Bob’s reduced information about the elapsed time to
Eve’s information gain about the clock’s energy. Unitary evo-
lution in Eve’s complementary energy variable 7, generated by
an optimal local time-sensing observable, rotates the state into
a direction that is orthogonal to the direction of the original
evolution in time ¢ (see Sec. [ B).

One consequence of Eq. (1) is a necessary and suffi-
cient condition for the clock’s sensitivity to be unaffected
by transmission through the noisy channel Ny_ 5: Froby =
FAlices if and only Fgy.; = 0. This condition can be use-
fully restated in terms of the Kraus operators {£}} of the
channel Ny p. Recall that we aim to estimate the time
t = tp + At in the setting of local parameter estimation,
i.e., to linear order in At. Suppose that after evolution for
time fp, the state of Alice’s clock is |}, and that [§) =
(H — (H)y)|¥) = PyH|Y) with Py =1 — |¢)(¢|. Then
the condition Fg,., = 0 is equivalent to

EIELE; 1Y) + (VIEJE|E) =0 forallk,j. (3)

Intuitively, Eq. (3) means that the action of the channel on
the clock cannot be confused with genuine time evolution.

Equation (3) may be recognized as a weakened ver-
sion of the Knill-Laflamme condition for quantum error
correction, the necessary and sufficient condition for the
action of a noisy channel on an encoded subspace to
be reversible by a suitable recovery channel [20]. This

condition may be stated as HLEIE} Il; o I for all &
and j, where I1; is the projector onto the encoded sub-
space. To write Eq. (3) in a similar form, consider
the two-dimensional subspace spanned by the mutually
orthogonal state vectors |¢) and |§); we call this two-
dimensional space a “virtual qubit.” Using the notation
[+)z = [¥), =)z == &) "[£), the orthogonal projec-
tor onto the virtual qubit is Iy = [+)(+]z + |—){—I|z,
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and Z; = |[+){—|r + |—)}{+|z is the logical Z Pauli oper-
ator acting on the virtual qubit. In this language, Eq. (3)
becomes

tr(MLE]E; I Z) =0 forallk,j. (4)

The condition Eq. (4) is reminiscent of a recently formu-
lated condition for quantum coding to improve how mea-
surement sensitivity scales with increasing sensing time
[21,22]. In Sec. VII, we explain how time-covariant quan-
tum error-correcting codes automatically fulfill Eq. (3),
providing some simple examples. In particular, we con-
sider spins on a graph with Ising or Heisenberg interactions
and construct a state vector |} that fulfills Eq. (3), where
the noise model inflicts a single located erasure.

We have derived the trade-off relation Eq. (1) in a highly
idealized setting, in which noiseless evolution of Alice’s
clock is followed by transmission to Bob through the noisy
channel Ny_ 5. For an actual clock, the noise acts con-
tinuously as the clock evolves, rather than after the time
evolution is complete. By focusing on the idealized set-
ting, we have been able to perform a particularly elegant
analysis of the time-energy trade-off. But in Sec. VI we
connect our results to the more realistic case of contin-
uous Markovian noise described by a master equation in
Lindblad form, noting that the two settings are actually
equivalent, or nearly equivalent, under certain conditions.
One can decompose the Lindbladian into a Hamiltonian
part and a noise part that contains all the jump operators;
if, for example, these two parts define commuting chan-
nels, then the Markovian evolution for time £ is equivalent
to Hamiltonian evolution for time ¢ followed by a noise
channel N;. Other cases where the Lindblad evolution is
compatible with a trade-off relation of the form Eq. (1) (at
least to a good approximation) are identified in Sec. VL.

Although the time-energy trade-off provided the primary
motivation for this work, we find that a trade-off relation
similar to Eq. (1) can be derived in a more general setting.
Suppose that 4 and B are Hermitian operators, and that
¥ = |¢¥ )} (] is a pure quantum state. We may consider the
“flow” in Hilbert space generated by 4 or by B. That is,
we consider a one-parameter family of pure states close
to ¥, generated by 4 and parameterized by a, and a one-
parameter family generated by B and parametrized by b,
such that

Y = —i[d,¥], WY = —i[B,¥]. )
In the setting of local parameter estimation, we suppose
that Bob wishes to estimate the parameter a and Eve wants
to estimate the parameter b, where a and b are both small.
Alice’s QFI about a is Fajiceq, but Bob receives the state
via the noisy channel N_, p, so his QFI about a (FBob,a)
is in general smaller than Alice’s. Alice’s QFI about b is
FAlicep, but Eve receives the state via the complementary

channel ﬂ? 4—E, 50 her QFI about b (Fgyep) is in general
smaller than Alice’s. In Sec. III we derive the trade-off
relation

F Bob,a F Eve,b

<142

Falicea  FAlicep

where oy = [(M?)y — (M)fb]”2 denotes the standard
deviation of the observable M. Note that, in contrast to
Eq. (1), this relation is an inequality rather than an equal-
ity. It is reminiscent of the Robertson uncertainty relation,
with the commutator quantifying the incompatibility of the
observables 4 and B.

Figure 3 summarizes the structure of this work and pro-
vides an overview of our results. In Sec. 1, we introduce
the setting of local parameter estimation, recall some use-
ful properties of the QFI, define the energy parameter 7,
and review the concept of a complementary quantum chan-
nel. We sketch the proof of the trade-off relation Eq. (1) and
its generalization Eq. (6) in Sec. IIl (more details can be
found in Appendix E), and discuss some examples in Sec.
IV. We use the trade-off relation to derive upper bounds on
the QFI in Sec. V. In Sec. VI we discuss how the setting in
Fig. 1 is connected with the more realistic setting of contin-
uous Markovian noise. In Sec. VII we derive the necessary
and sufficient condition Eq. (3) for the clock’s sensitivity
to be undiminished by transport through the noisy channel
N4_p, and discuss some of the implications of this con-
dition. Numerical results for our upper bound on QFI in
many-body systems are reported in Sec. VIII. We summa-
rize and comment on our results in Sec. IX. Many further
details are presented in the appendices.

IL. SETTING

We review the standard setting in quantum metrology of
single-parameter estimation. We then introduce our noise
model and the quantities that are relevant to formulate our
uncertainty relation.

A. Quantum parameter estimation

Consider a quantum state p(f) that depends on a single
parameter £. The task we study is how well the parameter
t can be estimated by performing suitable measurements
(Fig. 4). In the context of this work, the parameter # is iden-
tified with physical time, although the results hold for any
general real parameter that the quantum state might depend
on.

We consider the setting of local sensitivity, where the
goal of the quantum measurement is to refine the preci-
sion to which we determine the parameter if the value
of the parameter is already known to be close to a given
value fp. More precisely, we seek a measurement operator
T with minimal variance such that the expectation value of
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FIG. 3. Overview of our main results and structure of this work.

T reveals the value of the parameter locally around #y to
first order in dt, i.e.,

(T pitgsdey = to + dt + O(dr®). (7

measure T to
<= estimate ¢y + dt

. t

---.?

FIG. 4. In the setting of quantum parameter estimation, the
task is to infer a parameter # in a one-parameter family of states
t > p(t) through suitable measurements. For local parameter
estimation, we assume the value of the parameter is already
known to lie in the neighborhood of a given value #y. The
measurement is required to refine the parameter estimation by
optimally distinguishing p(#) from p(fy + dt) to first order in 4.
This setting is standard in the field of quantum metrology, and
the optimal sensitivity is quantified by a quantity known as the
Fisher information.

Identifying the orders in df we see that Eq. (7) is equivalent
to

and tr(T 9,p (t0)) = 1,

(T o) =1o (8)

using the notation d;p = dp/3t. (We write a partial deriva-
tive instead of a total derivative in anticipation of other
variables, which will be introduced later.) In the literature,
it is common to reuse the symbol 7 for both the parameter
on which p depends as well as the reference value of the
parameter fy. We keep the distinction for clarity.

Here, we restricted the measurement to be projective, as
described by the Hermitian observable 7. A more general
positive operator-valued measure (POVM) does not offer
any more sensitivity in sensing the parameter [1,12].

A central result in quantum metrology is the quantum
Cramér-Rao bound, which states that the optimal sensi-
tivity to which one can determine the parameter £ locally
around fy is determined by a quantity called the quantum
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Fisher information [1,23,24]. The quantum Fisher infor-
mation of the state p(fp) with respect to a direction 9;p (#o)
is defined as

F(p; dp) = tr(p R?), 9)

where R is any Hermitian operator that solves the equation
1/2{p,R} = 1/2(pR + Rp) = d;p, and where the quanti-
ties p and 9;p are evaluated at fy. The Cramér-Rao bound
can be formulated for our purposes as follows: for any
observable T that satisfies Eq. (8), we must have

1

T—10)%) 0 = ’
(( 0) )p(fo) F(p(to) ;0P (tﬂ))

(10)

and furthermore, the equality in Eq. (10) can always be
achieved by a suitable choice of T. We refer to a choice of
T, which is optimal in Eq. (10) as an optimal local sensing
observable for t.

The operator R in Eq. (9) is called a symmetric log-
arithmic derivative. When p and 9;p commute, we can
choose R = p~'8;p = (8/3f) Inp. A general construction
of R in terms of an eigendecomposition of p is given
as follows [25]. Consider an eigenbasis {[k)} of p that
spans the full Hilbert space, such that p = )", A|k) (k| and
k=1,2,...,dim(5#), then

2
R= —— (k|8:p|K) |K) K], 11
§ xkﬂy”“"l ) [k (K| (11)
My #0

where the sum ranges over all pairs of indices k, kK’ except
those for which both A; = 0 and Ay = 0. The expression
for the Fisher information becomes I (p : 3,,0), where

2
Flpsaw)= 3 = lkaelk). a2

kK-
g+ #0

The solution to the anticommutator equation 1/2{p,R} =
d;p 1s unique up to transformations of the form R+~
R+ PjMPj‘, where M is an arbitrary Hermitian operator,
where Pf; =1 — P,, and where P, denotes the projector

onto the support of p. In the event that Pf; %Pj # 0, there
is no solution for R. In such a situation, the optimal estima-
tion variance (10) is zero and the Fisher information is not
defined; such cases do not arise in the setting we consider
in this work.

We review the solutions to the anticommutator equation
1/2{p,R} = d;p in Appendix B. In Appendix C, the
definition and elementary properties of the Fisher infor-
mation are reviewed using simple techniques based on
semidefinite programming. In Appendix D, we review a
derivation of the Cramér-Rao bound using these methods.

Observables T that estimate the time parameter £ with an
accuracy that achieves the Cramér-Rao bound (10), i.e., the
optimal local sensing observables, turn out to be the pro-
jective measurements with outcomes associated with the
eigenspaces of a symmetric logarithmic derivative [1,23].
Specifically, any optimal local sensing observable for £ is
of the form

T=to+ R, (13)

F(p; %

where R is as above any solution to the anticommutator
equation 1/2{p, R} = dp/dt (see Appendix D for a review
of the proof). Due to the freedom in the choice of R, all
optimal local sensing observables for £ differ by a term of
the form Pf;MPj where M is any Hermitian operator.

In the remaining part of this section, we review a few
properties of the Fisher information for later use (see
Appendix C for details). First is a scaling property: if
0 <a < land 8 € R, we have

2

F(ap; Bap) = b F(p:dmp),

— (14)
o

where the definition (9) is formally extended to positive
semidefinite operators p that satisfy tr p < 1. Second, in
case the state p and derivative d;p commute, the Fisher
information takes the simple form

[0,801=0 = F(p;ap)=t[p~" @p)’] (15

Finally, for general p, 8,0, we can express the Fisher infor-

mation in terms of a pair of convex optimization problems
[26-28] as

1

-F(p: o

2F(p: 9p)

_ ;nasgri{tr[(a,p) S] - tfp SE]} (16a)
— Enairg{tr(LTL) o 2L 4 LT\ = 3,p}. (16b)

These two optimizations can be cast as semidefinite prob-
lems that are dual to each other. These optimizations are
convenient to derive bounds on the Fisher information, as
it suffices to exhibit suitable candidates in Eqs. (16a) or
(16b).

B. Time and energy parameters of the noiseless clock

Now we turn to the setup depicted in Fig. 1, in which
Alice possesses a noiseless quantum clock, which she
sends to Bob through a given noisy channel. In this sub-
section, we study Alice’s noiseless quantum clock, and in
the following subsection we study the effect of the noise.
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1. The noiseless clock

Suppose that Alice prepares a quantum clock in a pure
state living in a finite-dimensional Hilbert space .%;. She
lets it evolve according to a Hamiltonian H(#), generating
a one-parameter family of state vectors ¢+ |Y¥(f)). The
time evolution of ¥ (#) = [¥ () (¥ (#)| is governed by the
standard Schrédinger time evolution

)
&w'::-éézz-—iﬂ¥,W]

(17)
We now compute the Fisher information associated with
Alice’s clock locally around a time of interest #j, following
the definition (9). For any #, we can choose R =23, =
—2i[H, V], because {8, v} = 8 (¥?) = d. Alice’s
Fisher information Fyjice, for the evolution | (¢)) at the
time of interest #y is therefore given by

Faees i=F (v —iTH,¥1) =40, (18)
where ¢ and H are evaluated at time #, and where again,
we denote by oy = [(MZ)‘;, — (M)fb]”2 the standard devi-
ation of an observable M. Alternative expressions of the
standard deviation are given by

oy = (M — (M))*) = —(IM, ¥ T),

writing (M) := (M)y for brevity.

Around the point fp, any optimal local sensing observ-
able for £ takes the form given by Eq. (13), which we can
rewrite in this context as

iH,y] 1051
T'=ty— ———+P,;MP,,
0 20.13 v ¥

(19)

(20)

where M is any Hermitian operator. In the case where H
is time independent, then Fajice, does not depend on the
time of interest fp, but the optimal sensing observable T
depends on fy not only directly but also indirectly through
Y and d,¥. In the following, we fix #p and we consider only
the evolution [ (#)) locally at #p. Furthermore, we use the

shorthand |V) := | (%)).

2. The energy parameter

The optimal local time-sensing observable T in Eq. (20),
being a Hermitian operator, can be used to generate a dif-
ferent evolution in an alternative direction in the space of
quantum states. In our setup, we define 79 = (H), and
we consider any family of state vectors 1 +— |{(n)) such
that |Yr(n = no)) = |¥) = |¥ (¢ = fp)) and such that at the

point |¥ (7 = np)) we have
o =i[T, ).

This evolution can be interpreted as a Schrodinger
equation with the effective Hamiltonian —7. An example

21)

generated Ot
by 1 i[T, ) generated
by H
sense *:* .
with H ¢ o =

FIG. 5. We define a parameter 7 that is complementary to time
evolution and that represents the energy of the state. Consider
a quantum clock modeled as a pure state { evolving accord-
ing to the Schrédinger equation 3,y = —i[H, ], where H is the
Hamiltonian. Locally around £y, the observable T that optimally
distinguishes the neighboring states 1 (#y) and v (fy + df) defines
an optimal local time-sensing observable. T is the relevant mea-
surement to carry out to optimally read out the information about
time stored in the quantum clock. We now consider locally
around ¥ (fy) the direction in state space defined by 9,y =
i[T, ], i.e., a Schrodinger-type evolution with —T playing the
role of an effective Hamiltonian. It turns out that the optimal
estimation procedure for the parameter 5 is to measure H itself.
Therefore, the parameter 1 represents the energy of ¥(n). The
parameters f and 7 are, therefore, complementary to each other in
the sense that the generator associated with one parameter opti-
mally distinguishes neighboring values of the other parameter
and vice versa.

of such an evolution is

) =T |y). (22)
Interestingly, the evolution generated in this way locally
around |¢) turns out to be complementary to time evolu-
tion in the sense that we can derive a meaningful uncer-
tainty relation and that the parameter 5 can be identified
with the average energy of the state vector | (7)) (see
Fig. 5).

More formally and to clarify the dependencies of |r)
on f and 71, we consider a two-parameter family of state

vectors (7,1) = [ (¢, n)) with [y (f0,70)} = |¢) and such
that at the point (¢, 7o) we have

where T is given by Eq. (20). For example, we could

choose

¥ (t,m) = exp{—il(t — t))H — (n — no) T1} [¥). (24)

Unless indicated otherwise, the state vector |¢) and the
corresponding derivatives 9./, 9,1 are henceforth implic-
itly evaluated at (%, no). We use the shorthands |y (¢)) :=

|¥(£,m0)) and |¥(n)) := [¥(to, 7)) to denote the respec-
tive evolutions according to £ and 1 in which the other
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parameter is fixed to ng or fy, respectively; the name of
the argument (¢ or n) determines which evolution is meant.

Let us re-express the derivative d,¥ of ¥ = |¥)(¢¥] in
terms of the Hamiltonian. Using Eq. (20), we have

1
b =T V] =57 [HALY] @)

A brief computation reveals that [[H ,w],g&] =Hy +
vH —2(H)Y = {H — (H), ¥} and therefore

1
3nWZE{H—(H),W}- (26)

Alice’s Fisher information with respect to the parameter n
is given by the same expression as Eq. (18), but with H
and f replaced by —T and n, to get

1
Faiceg i= F(v31(1.91) =dof = . (2)

where the last equality follows from

—([H,y1)
ot = 7)== o

(28)

To justify that the parameter 5 in the evolution (21) can
be associated with the energy of the state vector locally
around |yr), we compute the optimal sensing observable
for n and show that it is the Hamiltonian H itself (up
to terms lying outside of the support of ¥). The opti-
mal local-sensing observable that distinguishes () from
¥(n +dn) is given by Eq. (13), but with the parameter
t replaced by the parameter 5. Using Eq. (26), observe
that the operator R = (H — (H)) /0"% solves the equation
{¥,R'}/2 = 8,¥. From Eq. (13) and substituting £ by n, we
see that the optimal local-sensing observable for 5 is sim-
ply no + H — (H) = H. That is, the optimal measurement
distinguishing | (ng))} from [¢¥ (0o +dn)) is the Hamil-
tonian H itself, up to a term Pj,;MPi for any Hermitian
M. [Alternatively, the same conclusion would have been
reached had we started from Eq. (20) with 7, H replaced
by 1,—7. A more detailed computation is provided in
Appendix D.] Therefore, the parameter i describes an evo-
lution along which, locally around |y}, we have g + dn =
(H )y (no+dn)- In this sense, n represents the energy of the
probe | (n)) locally around no.

To summarize, the evolution of ¥ (f) = |¥ () (¥ (F)] is
generated by the Hamiltonian H; nearby states ¥ (fp) and
Y (to + dif) are optimally distinguished by a local time-
sensing observable 7. The complementary evolution ¥ (1)
is one that inverts the roles of H and T the evolution ¥ (1)
is generated by T, and H is the operator that optimally
distinguishes neighboring states ¥ (o) and ¥ (no + dn).

3. Single-qubit example
Consider a qubit initialized in the state vector |Yinit) =
|+), where |£) = [|1) & |J,)]/\/§, and let the qubit evolve
according to the Hamiltonian H = wZ/2 (i.e., Alice’s sys-

tem in Fig. 2). The time evolution of the clock is given by
[¥(f)) = U|+), where U, = e ; we see that

(1) = %[e—%m + % 10)]

wt .. [t .
= cos(?) |+) —i sm(j) [—). (29)
It is also convenient to note that
s 1 1 + .
Y () = U+ (+IU; = s+ EUfXUt (30a)
1 1 ) .
=3 + E[cos(wt)X + sin(w?) Y], (30b)

using the identity |+){(+|=[1 +X]/2 along with
e 92 X2 = cos(2a) X + sin(2a) Y. The time derivative
of the state is

B () = —iTH, Y ()] = —"7“’ [Z. Ul (U]

2 2
w + )
=5 U, YU (31a)
w . .

= 5[cos(mr) Y — sin(wf) X |, (31b)

using e “?Ye"? = cos(2a) Y — sin(2a) X. The expres-
sions (30a) and (31a) manifest the fact that the state and
the derivative evolve in time by rotation around the Z
axis of the Bloch sphere, whereas we can read out from
the expressions (30b) and (31b) the information about the
time evolution of the components of the Bloch vector. The
average energy (H)y is

wZ .
Hyo =[G 2] =0 ()
for all ¢, noting that U; commutes with Z and that

(+1Z]+4) = 0. The energy’s standard deviation at time £ is
then

w?

on = (H?), = 4

33)
noting that Z2 = 1.
We now compute the time sensitivity and the optimal

time-sensing observable locally around a given time #. We
write [{) = |¥ (%)) for short. The optimal time-sensing
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observable is given by Eq. (20), which we can compute
as (ignoring the degree of freedom Pj;MPi‘),

1 Lo
T—t= H oY (to) = . U, YU,

= é[cos(wtg) Y — sin(wt) X | (34)

The optimal sensing observable T is therefore aligned with
the direction on the Bloch sphere that is tangent to the
state’s evolution.

We now determine the parameter 7. It is generated by
T as per Eq. (21), and we can compute the associated
derivative using Eq. (26) as

w
=2z ()
, (36)

recalling that the Pauli matrices along different directions
anticommute. The direction associated with the n parame-
ter is aligned with the Z axis of the Bloch sphere (Fig. 2),
which is the direction in which the Hamiltonian is oriented.
We can now compute the sensitivities with respect to ¢
and 7 using Eqs. (18) and (27) as
Ftcos = 403 = @, Faiay = — = — 37
Alices = 407 = ©°,  Fijlicey = % == (37)
Finally, we can check that H is an optimal local-sensing
observable for 5. First observe with no = (H)y = 0 that

(H)y (to.n0+dn) = dn tr(H 3,9) = dn, (38)

using Eq. (36) along with Z?> = 1. Hence, H satisfies the
condition (7) for the parameter 1. The variance of this
observable was computed above as

)
) 2o ]
\(H = (H))) =0y = 4 Falicen

, (39)

and therefore H also saturates the Cramér-Rao bound. It is
an optimal local-sensing observable.

C. The noisy channel and the environment
1. The noisy clock

Suppose that Alice sends the clock from its noiseless
environment to a receiver Bob through a noisy channel
Nisp (Fig. 1). Bob has access to the noisy clock state

pB(t) = N p(¥ (1)). (40)

We consider the sensitivity of Bob’s clock locally around
fo, i.e., we ask how well Bob can distinguish pp(fp) from

pp(ty + df). We assume that the noisy channel Ni_, p does
not depend on £. This setting is nonstandard in the context
of quantum metrology. Usually, one considers a quantum
clock that is exposed to continuous noise as it evolves
in time instead of the noise being applied separately and
instantaneously after the system has evolved unitarily for
a given amount of time. This alternative setting represents
the situation where Alice would like to send a quantum
reference frame to Bob over a noisy channel [29]. We
defer the discussion of the connections between these two
settings to Sec. VL.

Locally around fy, Bob’s optimal sensitivity is given via
the Cramér-Rao bound (10) by Bob’s Fisher information
with respect to time,

Fiobs == F(pp(to) : dp8 (t0)). (41)

We may furthermore express pp and 9,p0p as

o8 = Nasp(¥),

42
o = Ny (9¥) = Nyep(—ilH, ¥]). @

Determining Fpgp, ; in principle requires the usage of a gen-
eral expression of the Fisher information for mixed states
such as Eq. (9) or Eq. (12), which can be significantly
more cumbersome to manipulate as opposed to computing
the variance of the Hamiltonian in the case of a pure-state
evolution.

2. The environment

Any quantum channel N,_p can be expressed as a
unitary evolution over a larger system, where the envi-
ronment is initialized in a pure state. This construction is
known as a Stinespring dilation. The initial pure state of
the environment can be contracted with the global unitary
to give a more concise description of the Stinespring dila-
tion in terms of an isometry 4 — BE. More precisely, any
quantum channel N4_,p can be written as

Na_p() = trg(Vape O V'), (43)

where E is a suitable environment system, and where
V4_.pE 1s an isometry mapping states of 4 into B® E.

The system E, which we call Eve, represents the quan-
tum information that is discarded by the channel Nisp.
Instead, we can consider a quantum channel that describes
what Eve gets if Bob’s system B is discarded. By tracing
out B instead of E in Eq. (43) we obtain the complementary
channel,

Nie() = trg(Va e () V). (44)
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If we write the noisy channel in an operator-sum represen-
tation with Kraus operators {E}} as

NGO =Y EOE], (45)
k

we may write a corresponding complementary channel as

N =Y u(ELEO) 1K, (46)
k&

for some orthonormal basis {|k)} on the environment sys-
tem E. The complementary channel is unique up to a
partial isometry on the environment system.

Our main result involves Eve’s sensitivity to the n
parameter of the state that she obtains if Alice’s quantum
clock is sent to E via the complementary channel. Namely,
we define

pe(m) = N s (¥ (). (47)
Recalling Eq. (26), we have

1
pE = 2—2mqg<w — (H),¥)). (48)
O

As for ¥, 8;¥, and 9,V, the states pp, pg and the deriva-
tives d;pp, 9, pp are implicitly evaluated at (fp, ng) unless

specified otherwise. We also abbreviate Ny_pand Nyop
by N and N for convenience and whenever it is unam-
biguous to do so.

III. BIPARTITE UNCERTAINTY RELATION FOR
THE FISHER INFORMATION

A. Equality Fisher information trade-off for time and
energy and expression for sensitivity loss

Sending Alice’s clock to Bob through the noisy channel
N,_, p reduces the clock’s sensitivity to the time parameter
£. On the other hand, sending the clock to Eve through the
complementary channel Ni_& enables Eve to gain sen-
sitivity with respect to the energy parameter n. Our main
result characterizes how these two effects are related.

Theorem 1 (Bipartite time-energy uncertainty rela-
tion)—Suppose Alice prepares a probe in a quantum state
vector |) and consider the local parameters #,  defining
directions in state space generated by H and T and centered
at|y¥) = |Y(fy, no)) as in Eq. (23). Alice sends her probe to
Bob through a channel N4_p: let Eve represent the output

of the corresponding complementary channel N4_. g (see
Fig. 1). Then
F 0 F Ve,
Bob,t Even _ 1 (49)
FAlicey  FAlice

provided the rank of N (¥(£)) does not change at f.

Recalling Eqs. (18) and (27), our uncertainty relation is
equivalently stated as

Fgob,s

2 N
40_1% + oy FEve,n =1 (50)

Using the Cramér-Rao bound (10) we can relate the opti-
mal sensing accuracies (6t230b,est), (Sn%ve,esl) associated
with the parameters £, n on Bob and Eve’s systems,

1 1 1 1
+— <
40’.%’ (S%Ob,est) 401'2' (3n%ve,est)

1, (51)

noting that equality can be achieved with sensing strategies
that saturate the Cramér-Rao bound provided the rank of
N (¥ (#)) does not change at t = to.

A proof of Theorem 1 proceeds by writing the Fisher
information on Bob’s end, i.e., after the application of the
noise channel, in terms of the Bures metric. The envi-
ronment Eve is introduced as the purifying space over
which the fidelity is computed via Uhlmann’s theorem.
The resulting expression is expressed as a semidefinite
program as in Refs. [30,31]; suitably manipulating the cor-
responding dual problem yields the relation (49). The full
proofis provided in Appendix E. We also provide an alter-
native proof using a semidefinite characterization of the
Fisher information.

The condition the rank of N (¥ (f)) does not change
locally at the time #p ensures that we avoid edge cases
where the correspondence between the Fisher information
and the Bures metric is incomplete [32—34]. In edge cases
where this condition is violated, the uncertainty relation
(49) can be shown to hold as an inequality instead of an
equality (see below and Appendix E). The no rank change
condition is typically associated with situations where the
quantum Fisher information is discontinuous. In such cases
its operational relevance can be questioned; we further dis-
cuss these points below in the context of independent and
identically distributed (IID) noise as well as in Appendix F.

The condition that the rank of A/ (¥ (¢)) does not change
at t = fy is formalized by requiring that for any eigen-
value pg(f) of N (¥ (f)) such that pi(fp) = 0 we also have
3fpk (tp) = 0. This more precise formulation is the form of
the assumption that is used in the proof. Observe that any
eigenvalue pg(f) of N (¥ (1)) that satisfies pg(fo) = 0 nec-
essarily also satisfies d;py (fp) = 0, since the value zero is
necessarily a minimum for pg(?).

Another equivalent form of our uncertainty relation
(49) is one that quantifies directly the difference between
the sensitivity of the noiseless clock and the resulting
sensitivity on Bob’s end. Let us define

AFgobt = Falices — Fobt = 40/ — FRoby- (52)
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A few simple algebraic manipulations of Eq. (49) lead to

Falice,s

Falicet — FBoby = Fiye s (53)

FAlice,n

which gives us an expression for AFpg,,. We can fur-
ther spell out this expression using Eqgs. (18) and (27)
along with simple scaling properties that follow from the
definition of the Fisher information to find

AF'Bob,( = (2U§)2FEve,n = F(pE; 20’1‘213??005)

= F(pg: N({H, ¥D). (54)
where we have used Eq. (48) in the last equality.

Summarizing the above argument, we obtain an alterna-
tive form of Theorem 1 as an expression for the sensitivity
loss AFgob, in terms of the Fisher information that Eve
obtains with respect to a direction associated with the
anticommutator of H and .

Corollary 1 (Expression for Bob’s sensitivity loss via
Eve).—consider the setting of Theorem 1 and assume that
the rank of N (¥ (¢)) does not change locally at #y. Then

AFgg, =F(N@): N(H, YY), (55)
where AFBobs = Falice; — FBob,s and where we recall the
shorthand H = H — (H). Asa consequence,

Foons = 4ofy — FINW): N(H,¥D).  (56)

Two extreme cases can readily be identified. One is
where there is no noise and A" = id is the identity pro-
cess; in this case, the complementary channel is a channel
that outputs a constant state regardless of the input, N ()=
tr(-) tr for some state tg. In this case Eve obtains no infor-
mation about the probe’s energy, which can be seen in
our formalism by the fact that N ({H,¢}) = 0 and there-
fore AFgobs = 0. In the opposite extreme case, the noise
destroys its input entirely and sends it to the environment,
with correspondingly N' = id. In this case, Eve has max-
imal sensitivity to the n parameter, Fiye, = Falice,y, and
therefore Fob; = 0 and AFpgps = 40'12],.

B. Trade-off relation in terms of a virtual qubit

In this section we simplify the setting required to pro-
duce the relation in Theorem 1, in an effort to identify the
fundamental concepts required for our uncertainty relation
to hold. It turns out that Theorem 1 can be rephrased as an
uncertainty relation between Bob and Eve distinguishing
states, respectively, along the ¥ and Z Pauli directions of
a virtual qubit space, which in the setting of Theorem 1 is
defined by the clock state vector |y) and its image H|{)
under application of the Hamiltonian.

Consider the subspace of Alice’s Hilbert space spanned
by the probe state |} and its time derivative o< H|{). This

subspace defines a virtual qubit. We choose to identify the
probe state with the +1 Pauli-X eigenvector. It turns out
that our uncertainty relation admits a restatement as a rela-
tion between the sensitivity that Bob and Eve can achieve
with respect to Pauli-Y and logical Pauli-Z directions of the
virtual qubit. More precisely, we first define

&) = PyH|Y) = (H — (H)) [¥) = H|¥), (57)
recalling P+ =1 — . The norm of |&) satisfies
le)|”* = c1€) = o (58)

Here, we assume that |§) # 0, otherwise the probe does not
evolve in time and all the terms in our uncertainty relation
are trivially zero. We can write the following derivatives in
terms of |£):

0y = —i[H,¥] = —i(1€) (Y] — [¥)(£]),
205 8,0 = (H,¥) = |E)(W] + [¥) (&

(59a)
(59b)

An orthonormal basis of the virtual qubit can be chosen as

1
=) |-=—1I%8). (60)
oH

As the logical computational basis of the virtual qubit, we
choose

1

0 =
[0)L NG

1
[ +1-)], 1Dz \/E[H-)L |—)z]
(61)

This choice of basis is motivated to match the qubit opera-
tors of a single spin-1/2 particle prepared in the +.X eigen-
state and evolving according to a magnetic field pointing
along the Z axis.

Consider the logical Pauli-X, Y and Z operators defined
as usual with respect to the basis (61). They are expressed
in the |%); basis as

XL = |+ {(+L — [-){~IL, (62a)
Yy = —il={+r +il+) (—lz, (62b)
Zp = |=}{+g + [+ {~=Iz, (62¢)
with furthermore
Vo= "R, Zi= Ay (63)
oy OH

We see that the logical Pauli-Y and Pauli-Z operators are
parallel to the evolution, respectively, along ¢ and along
n locally at |¥) = |¥(fo, o)), as we recall Eq. (59). Our
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uncertainty relation can be stated in terms of a metrological
logical qubit as follows.

Theorem 2 (Uncertainty relation for the metrological
logical qubit).—let A, B, and E be finite-dimensional quan-
tum systems. Let Ay p be a completely positive, trace
nonincreasing map. Let V,_ pr be such that N () =
trg(V(-)V") and V'V < 1, ie, V is a Stinespring dilation
of N. Consider the complementary channel ﬂ?,,qg(.) =
trg(V(-)Vf). Let |+); be any two orthogonal and normal-
ized state vectors on system 4, and let Xz, ¥;, Z; be defined
via Eq. (62). If (P, ® P, )V]—), = 0, then

FINW): N () + FN (¥):

N @) = 4-INT@)-). (64)

If (P, ® P, )V|—)L # 0, then we have the inequality

FINW): N(T) + FN (@)

N @) < 4=INT@)|-)e.  (65)

The above theorem provides a more formal statement
that generalizes the earlier statement Theorem 1 to trace-
non-increasing maps and to subnormalized states. The
metrological qubit construction also provides a clearer
mathematical picture of the symmetric role of Bob and
Eve in our uncertainty relation: Bob and Eve can be
interchanged (i.e., N <> \) provided we correspondingly
interchange |&€) <> i|§). For a state vector |{) evolving
with respect to a Hamiltonian H, the state |§) = H|Y¥) is
the derivative of |¢) with respect to time, and i|€) can
be thought of the derivative of |y} with respect to imag-
inary time. The symmetry in Theorem 2 between Bob and
Eve, which involves the interchange |§) <> i|&), is repro-
duced at the level of the parameters f and n by choosing
n to parametrize the one-family parameter of state vectors
[¥(n)) in Eq. (21) governed by the imaginary-time evo-
lution (24). The full proof of Theorem 2 is provided in
Appendix E 2.

In Theorem 2 a different condition is stated for equality
as in Theorem 1, where we require the rank of A (¥ (f))
not to change. These conditions turn out to be equivalent,
as shown in the following proposition. We defer the proof
to Appendix E 2.

Proposition 1 (Conditions for equality in the uncertainty
relation).—let {E;} be a set of Kraus operators for N;_ p
and V4, pr be a Stinespring dilation of N. The following
conditions are equivalent:

(a) (PL @ PL)VIE) = 0;

(b) pp(t) does not change rank as a function of  locally
at the point fo;

(c) for any linear combination E = ) cxEx (with ¢x €
C) such that E|yr) = 0, then P$E|§) =0

In particular, it suffices that either pp = N (¥) or pp =

() has full rank to ensure that these conditions are sat-
isfied, and thereby that our uncertainty relation holds with
equality [Eq. (64)].

As a consequence, the situations for which the con-
ditions (1) do not hold, and correspondingly for which
our uncertainty relation does not necessarily hold with
equality, are edge cases that can be infinitesimally per-
turbed into situations where the corresponding conditions
hold. Indeed, one can mix A’ with an infinitesimal amount
of depolarizing noise to ensure that Bob’s state is full
rank, and therefore to ensure that equality holds in our
uncertainty relation.

C. General uncertainty relation for any two
parameters

The uncertainty relation between position and momen-
tum can be generalized to any arbitrary pair of observables.
The Robertson uncertainty relation states that for any two
observables 4, B, we have

o408 = %|(E[A,B])|. (66)
In the same spirit, we derive a generalization of (49) that
is valid for any two observables. Suppose Alice prepares a
pure state ¥ that can evolve along two possible directions
3, and 3¢, and sends the state through the noisy channel
N to Bob as in Fig. 1. We assume that the directions along
a, b are generated by two Hermitian operators 4, B acting

onyr = |¢)(¥| as

0¥ = —il4,¥], WY = —i[B,¥]. (67)
Bob is tasked with estimating a deviation locally to first
order around A (¥) in the a direction, whereas Eve tries
to distinguish N (¥) from neighboring states along the b
direction. The parameters a, b are analogous to the param-
eters £, § considered above, but the two directions d, V¥, 9, ¥
can be arbitrary.

Theorem 3 (Bipartite uncertainty relation for any two
parameters)—let Y be a state vector and suppose that
A, B are two Hermitian operators that generate evolutions
locally at ¥ in directions d,v, dp¥ via (67). Suppose we
apply a noisy channel as depicted in Fig. 1. Then

F Eve,b
-+ — < 1+2
Flice,p

Fi Bob,a

(68)

F, Alice,a
where

FA]ice,a = F(W aalﬁ), FBob,a = F(N(lﬁ) ; N(aalﬁ)),
Frtices = F(¥: V), Frvep = FIN @) ; N(@359)).
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Furthermore, assume that A'[y (a)] does not change rank
locally and that

N (~i[B/os, ¥]) = +N ({4 — () /o4, ¥}).  (69)
Then

F Bob,a F Eve,b

=1. (70)

Faticea  FAlicep

The proof of this statement is presented in Appendix E 4.
The argument of the square root in Eq. (68) never becomes
negative, thanks to the Robertson uncertainty relation (66)
for A and B. The proof we present in Appendix E4 con-
siders in fact a more general statement in which the two
sides of Eq. (69) are proportional to one another rather than
differing only by a sign.

We can identify two extreme cases of interest to gain
some intuition for the relation (68). First consider 4, B
to be two complementary observables in the sense that
they saturate the Robertson inequality (66). Consider, for
instance, the Pauli-Y and the Pauli-Z operators on a qubit.
In this case the right-hand side of the inequality (68) equals
one. There is a trade-off between the sensitivity losses
associated with Bob sensing along the N'(3,v) direction
and Eve sensing along the N (8py) direction, as both terms
on the left-hand side of Eq. (68) cannot simultaneously
be equal to one. On the other hand, we can consider two
Hermitian generators 4, B that commute. (Perhaps 4, B act
on different subsystems of Alice’s noiseless clock.) In this
case, the right-hand side of Eq. (68) evaluates to the con-
stant 3. Our uncertainty relation no longer presents any
obstruction to both Bob and Eve sensing along the respec-
tive directions a, b as well as Alice could, as there is room
for both terms on the left-hand side of Eq. (68) to be equal
to one. This is the case, for instance, if 4, B act on different
subsystems of Alice’s clock, and the respective subsys-
tems are sent to Bob and Eve via the noisy channel and
its complementary channel.

We can recover our Theorem 1 if we consider the two
generators 4 = H and B = —T, with H, T defined in Sec.
II B, leading to 3, = 9,y and 9% = 3,V . To see this, we
first compute

. Lo
(T, T1) = 5 (T, ~iTH. ¥1)

1
=5 (2HYH -2H) =1 (T1)
H

Using Eq. (27) we further see that 4050# = 1. Therefore,
the square root on the right-hand side of Eq. (68) vanishes
and the entire right-hand side of the inequality evalu-
ates to the constant 1. With the identifications Fajc.; =
FAlice,as FBobt = FBobas Flicey = Falice,ps FEvep = FEvebs
we recover the expression (49) with an inequality instead

of an equality. In this case, the additional condition (69)
is in fact also satisfied, since i[T, ¥] o« {H — (H), ¥} [cf.
Egs. (25) and (26)]. We thus fully recover the equality
statement of Theorem 1 subject to our additional condition
on the absence of a rank change of the noisy state.

The strategy of the proof of Theorem 3 (Appendix E 4)
is to first apply our main uncertainty relation (Theorem 2)
between Bob’s sensitivity to the parameter a and Eve’s
sensitivity to a parameter ¢ that is complementary to a
using the construction in Sec. [IB and Fig. 5 identify-
ing f — a,n — c. We then apply a general bound relating
the quantum Fisher information with respect to two arbi-
trary evolution directions (Proposition 16 in Appendix C)
to bound the difference between Eve’s sensitivity to the
parameters b and c.

One might have assumed that the equality (70) can only
be achieved if the parameters a, b are complementary in
the sense of Fig. 5. Yet it suffices for this property to hold
on the support of the complementary channel, as seen in
the condition (69). As a simple extreme example, consider
N =idand N'(-) = tr(-) T is a constant channel preparing
some fixed quantum state 7. Then our uncertainty rela-
tion equality (70) necessarily holds for any parameters a, b,
since Eve’s sensitivity to any parameter b is zero and Bob’s
sensitivity to any parameter a is equal to Alice’s. This
example also illustrates how the right-hand side of Eq. (68)
should necessarily be improved to depend on the channel
N if we wanted the inequality to be tight for a fixed .
Such an improvement can be obtained from our proof in
Appendix E 4.

We furthermore provide a proof that the general uncer-
tainty relation (68) also holds in infinite-dimensional
Hilbert spaces, and even for unbounded operators. The
details of this proof are given in Appendix F. The proof
proceeds by considering a limiting case of the finite-
dimensional setting for larger and larger system sizes, with
additional care given to the definition of the Fisher infor-
mation in the infinite-dimensional case and to the fact that
the considered operators are not necessarily bounded.

It is expected that the bound (68) can be further tight-
ened for observables that do not saturate the Robertson
bound. For instance, consider two independent systems in
a pure tensor product state, with one system evolving with
a parameter f and the other with z: if we hand the first
system to Bob and the second to Eve, then there is no
sensitivity loss for either parties and the sum of the Fisher
information ratios should be 2. But the right-hand side of
our bound is 3.

IV. A SELECTION OF EXAMPLES

We now explore some examples illustrating the applica-
tion of our main results.
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A. Single qubit subject to partial dephasing

Consider the setup in Fig. 2 and described in Sec. 11 B,
in which Alice prepares a pure qubit in the |4) state vector
and lets it evolve according to the Hamiltonian H = wZ/2.
At time £, the qubit is in the state ¥ (#) given in Eq. (30) and
its derivative 9,y is given by Eq. (31).

Suppose that at time #p we apply the partially dephasing
noisy channel

N, =1 —p)id+p Dy, (72)
where

Dz() = (AN DT+ WD) DAL (T3)

In the following, we will verify that our uncertainty rela-
tion holds in this setting, by first computing directly Bob’s
Fisher information with respect to ¢, and then computing
Eve’s Fisher information with respect to 7.

1. Direct computation of Fyob.

Using Dz(X) = 0 = Dz(Y) we find from Eq. (30b) that
Bob receives the state

_1 1 (1 —p)e o
pB(tﬂ) - E |:(l _p)efmto 1 ] . (?4}

Using Eq. (30a) along with the fact that the superoperator
action of U, = e " and J\';, commute and that Np X) =
(1 — p) X, we can alternatively write Bob’s state as

1+(-p)X
2 Uy

= (1 - %)I"‘fo)(—}'fo‘ +%|_fo)(_fo

defining the rotated basis state vectors |+;) := U;|%). For
the time derivative, using Eq. (31a) along with N, (Y) =
(1 —p) Y we find

pa(t) = Uy,

s (75)

dow (10) =Ny (3% (1)) = 51 —p) Uy YU, (76)

We may compute the Fisher information with the for-
mula (12), using the eigendecomposition of pp(f) given
by Eq. (75)

2
_ w2 1 2
Fons = =-(1=p) [l_p/2|(+m+)|
+2[(+Y-) P + 2 1=
1 2
+ = l=m-)P]
= w?(1 —p)?, (77)

using  (+|Y|—=) = (+|YZ]+) = i(+|X[+) =i  and
(FHY+) = 0= (-[Y]-).

Recalling Eq. (37), the ratio of the Fisher information of
the noisy versus the noiseless clock is

bt _(_py2 (78)

FAlice,s

2. Computation of Fiye,

Now we turn to Eve’s picture. We start with comput-
ing a complementary channel to \,. We can use Eq. (46)
for this effect from any Kraus representation of N,. It is
useful to choose a representation with the fewest possi-
ble Kraus operators to simplify our computation of Fiyey.
From Eq. (72), and using Dz(-) = 1()1/2 + Z(-)Z/2 we
can read off a representation of N, with the two Kraus
operators

EP = [1-21, E® :\/’—72. (79)
2 2 -

The complementary channel constructed via Eq. (46) takes

the form
V51 —§)tlZO)]

L ()

(1-3)t0)

V3-8 uizo)

Hence Eve’s state is

N,y =

(80)

_2
pg(ro)zﬁ;(w(ro)):[loi g] 1)

The derivative in the n direction is given by the image of
Eq. (36) under.ﬁp, namely

2 :
aex () = Ny (0,9 ) == [E(1-5)x. 2

We may now directly compute Fgy., using Eq. (12),

_4p P
Fiveq = — 5 (1 _E)[0+2+2+0]
4 |
== (2p —p?). (83)

Using Eq. (37) we find that the ratio of Eve’s Fisher infor-
mation to Alice’s Fisher information with respect to n
is

FEve .
= —p—pl=1-(1-p?  (84)
FAlice,n

The fact that Eqgs. (78) and (84) sum to unity is a manifes-
tation of Theorem 1 in the present setting.
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Consider now our Fisher information loss formula (55).
Using Eq. (35)and H = H — (H) = H we have

@({H,w})zgﬂﬁ,(z):w %(1—%)){. (85)

Then we can compute F(pg : .ﬁp({ﬁ, ¥})) using Eq. (12)
as
Floe; Ny ({H,9})) =@ (2p —p%).  (86)

We can then verify that the difference in Fisher information
between the noiseless clock and the noisy clock is indeed

AFpgh; = Falices — Fpoby = 0 (1 — (1 — p)?)

= F(pe; N, ({H, 1)) (87)
B. Single qubit subject to complete dephasing along a
transversal axis

Now we consider a variant of the above single-qubit
example: we replace the noisy channel by a complete
dephasing along the X axis (Fig. 6). The qubit is initial-
ized in the state vector |{in) = |+), where |£) = [|1) £
N,)]/ﬁ, with a Hamiltonian H = w/(2)Z. After a time
t, the state is given by Eq. (29) and at all times we have
(H)y@ =0 and 0'}21 = w?/4. At time t ~ fty the clock is
completely dephased in the X basis, as described by the
noisy channel

Dx () = (+1H) [ (FH + (=1=) =)= (88)
This completely dephasing map acts on the Pauli opera-
tor basis as Dy (1) =1, Dy(X) =X, and Dy (Y) =0=
Dy (Z). Bob receives the density matrix

wt . 5Ot
pp = cos’ (S )Y+ +sin® () =) (—I. (89)
Now the complementary channel of Dy is again ﬁx =
Dy, and so Eve gets the same density matrix as Bob.

1. Computation of Fiye,
Recalling Eq. (35), we find

Dy ({(H — (H),¥}) = % Dx@) =0,  (90)

because Dy maps the Pauli-Y and Pauli-Z operators to
zero. Therefore, Eve obtains zero information about 7, i.e.,
FEyey = 0. Therefore, there is no sensitivity loss for Bob
regardless of the time ¢~ fp at which the noisy channel
is applied, as long as the rank of pp(#;) does not change
locally at fy. The state pp changes rank whenever either
term of Eq. (89) vanishes, i.e., when #p is a multiple of

[+Y1Zm, Alice Bob
P x
1
-“‘--.. 'l L’J DX
-
X ! “‘*“ Y -
|+) : v‘-a " - Pee
1 n
T
W O

outcome of Pauli-X
measurement

FIG. 6. Single-qubit probe evolving according to the Hamil-
tonian H = wZ /2 and subject to complete dephasing along the
X direction at time close to #;. For almost every fy, the noisy
probe remains maximally sensitive to time to first order around
ty. This property might sound surprising, because Bob’s state can
be very mixed. In the purified picture, Eve is given the outcome
of a measurement of Alice’s state along the X axis. Observe that
in contrast to the setting in Fig. 2, this information does not reveal
any information about the energy of Alice’s state.

7 /w. At those discrete points, we hit the edge cases where
our main uncertainty relation does not hold with equality
and we cannot deduce that Bob has maximal sensitivity at
those points. However, at all other points fy the clock does
not lose any sensitivity when sent to Bob.

The same conclusions apply for any noisy channel that
is a complete dephasing operation along an axis that lies in
the equatorial plane, by rotational symmetry of the prob-
lem around the Z axis. (Any axis in the equatorial plane can
be described as a rotation of the X axis that is equivalent
to a time evolution of the system for some given time #,.
Because the Fisher information is invariant under unitary
transformations, the calculation of Bob’s Fisher informa-
tion of this qubit after complete dephasing along that given
axis at time #p is equivalent to calculating the Fisher infor-
mation after a complete dephasing along the X axis at the
time ty — fp — t*.)

2. Check by direct computation of Fy,p,,

We now compute Fpg,, = F(pg: Dz(3,%)) directly,
by using the definition of the Fisher information. From
Eq. (31b) we find

Dy (B = —% sin(wlo) X . 1)

If sin(wtp) = 0, which happens when # is a multiple of
7 /@, we find that Bob’s state is locally stationary and Bob
has no sensitivity to first order in £ (For this discrete set
of points one could argue that the Fisher information no
longer represents the relevant sensitivity for Bob, since the
evolution should be considered to its leading order—here
the second order—and no longer only to first order.)
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We now compute Fgob, for all times fy where sin(wtg) #
0. Observe that pg and Dy (3;¢¥) commute. Using Eq. (15)
and X2 = 1, we find

2 . -
FRobs = % sin’(wty) tr(pp') =’ [sin(%) cos(%)]

1 1
x [cosz(%l) + sinz(“’T’“)]
= w?, (92)

using sin(wty) = 2 sin(wly/2) cos(wity/2) in the second
equality.

Overall, we see that Bob still has maximal sensitivity
even after application of the completely dephasing chan-
nel along the transversal X axis, for all times except for
the discrete set of times fy where the rank of pp changes.
This conclusion matches our earlier conclusions obtained
via considerations from Eve’s perspective (except for a
discrete set of times ).

It might appear counterintuitive that Bob’s state still has
as high a sensitivity as Alice’s noiseless state for almost
all #y, especially as Bob’s state can get arbitrarily mixed.
Indeed, pp coincides with the maximally mixed state for
times #; that are midpoints between the multiples of 7 /w.
However, we see that pp(f) still varies with ¢ sufficiently to
enable optimal discrimination of nearby states to first order
around f;.

C. Probe in a GHZ state with one partial erasure

Consider as initial state an n-party GHZ state vector,

1
GHZ = — ‘e ‘e 93
|GHZ) ﬁ[IT N+ D] (93)

and let the system evolve according to the local Hamil-
tonian H = ), (0/2)Z? where Z? denotes the Pauli-Z
operator acting on the ith site. Suppose that the first qubit
is lost with probability p. This is represented by the noisy
channel

N =plor) gl @tri() + (1 —p) (), (94)

where tr; traces out the first qubit and where |¢, ) is a state
vector in a new, orthogonal dimension that has no overlap
with the input state. A Stinespring dilation of the first term
in \V' is described as giving the first qubit of Alice’s sys-
tem to Eve, and the remaining qubits to Bob; any missing
qubits on either Bob or Eve’s side is replaced by [¢ ). The
complementary channel can thus be computed as

N()=p trn() + (1= p)te() [$L) (@] (95)

We compute the sensitivity loss associated with the noise
according to Eq. (55). We have

hw
HiY)=—[1*--- 1) =1 - V)] =P:H 96
[¥) 2\/5[” N =W - W] =PyHIY), (96)

noting that H|y) is already orthogonal to |Y) since
(H)y = 0. The optimal noiseless sensitivity is

Falicey = 40, = 4(Y|H*|Y) = n*o?, (97)

exhibiting the expected Heisenberg scaling for optimally
entangled probe states. We write {v,H} = Pﬂ;H v+
h.c. = oy Z;, with Z; defined in Eq. (63). The local reduced
operator of {W,H}ona single site is

_ nw nw nw
tr;({Y.H}) = TH)(N - TN)(H +hec. = sz,
(98)

where try; denotes the partial trace over all subsystems
except the ith subsystem. Noting that tr({y, H}) = 0, we
obtain

Ny =p=2. (99)

On the other hand, the reduced state of ¥ on a single site
is simply the maximally mixed state 1,/2 and thus

1
pe=N@)=p=+1-p)gL)igl. (100

As pg and ﬁ({w,ﬁ}) commute, we can use Eq. (15) to
see that

2 2
AFpobs = tr|;l—? (p %Z) ] :pnzwz.

(101)
If p =1, Eve is maximally disturbing and completely
blocks Bob’s ability to measure time, if p = 0 there is no
sensitivity loss. Any value in between interpolates between
these two cases.

Note that while it might appear here that Heisenberg
scaling (Fpop, O¢ n?) is achieved for p > 0, this is an arti-
fact of the lack of scaling in n of our choice of noisy
channel and does not contradict the findings of, e.g., Ref.
[22,31].

D. Estimating a signal Hamiltonian term

In this subsection, we briefly comment on the case
where the parameter to estimate is not time £ itself, but a
parameter f in the Hamiltonian that influences time evolu-
tion. In other words, we now account for possible other
terms in the Hamiltonian that contribute to time evolu-
tion but that reveal nothing about the parameter of interest.

040336-16



TIME-ENERGY UNCERTAINTY RELATION...

PRX QUANTUM 4, 040336 (2023)

We assume that the noiseless probe evolves according to a
Hamiltonian

Hy = Hy + G, (102)
where Hy does not depend on f, and where Hy and G are
time independent. References [35,36] have determined that
the Fisher information with respect to f that one achieves
by initializing the system in some initial state vector |yyg)
and letting the system evolve according to Hy for some
fixed time T. Let Uy (T) = e T be the time-evolution
operator, and define |y) = Ur (T)|vo). The question is,
how much sensitivity does the family of state vectors f
[¥¢) offer with respect to f? The derivative relevant for
the Fisher information is given by [36]

d vy = —ilKr Yy, (103)
where
db} (—iT)¥
Ky = —iU;'—= Z(k—l-l)' diy (G),  (104)
where ady (G) := [M, G] and
ad,(G) .= [M,[M,...,[M,G]] (105)

is the kth commutator of M with G. The operator Ky can
be thought of as an effective “Hamiltonian” for the param-
eter /', driving an “evolution” in |y) with respect to f
according to Eq. (103).

If we send this probe state through a noisy channel fol-
lowing the setting in Fig. 1, then our uncertainty relation
can be applied, where the complementary parameter evolu-
tion is generated by the operator L = —i[Kr, ¥ ]/ (20"%).
That is, Bob’s sensitivity to f trades oftf with Eve’s sensi-
tivity to the parameter generated by L.

E. Symmetric codes against erasures via
superpositions of Dicke states

Based on the relevance of Dicke states for metrology
[37—41] and for quantum error correction [42—44], we can
ask whether our uncertainty relation can guide a search
for good clock states. To ensure good sensitivity even in
the noiseless setting, we seek probe states with a large
spread over energy eigenstates. So we consider a general
superposition of Dicke states corresponding to different
numbers of excitations. We note an important class of
permutation-invariant codes are those developed in Refs.
[41,42].

Consider the n-spin noninteracting Hamiltonian H =
Y (0/2) ZP. A Dicke state is an eigenstate of H that

is symmetric under permutations of the sites. Consider the
Dicke state

-1,2
n
= (1) X s (06
q si==%1
Y si=n—2gq
where s; = %1 represents the eigenstates of Z and where
q = 0,...,n. We construct our probe states as a superpo-

sition of Dicke states of different values of ¢g. In general,
such a state vector can be written as

W) =) glhy), (107)
g=0

for some arbitrary complex amplitudes {,} that satisfy
el = 1.

As a noise model, we assume that k systems chosen at
random are entirely erased. Because the probe state is com-
pletely symmetric, it does not matter which subsystems are
erased; we may assume that the first & sites are erased. The
complementary channel to the erasure of k subsystems is a
channel that provides those lost subsystems to Eve,

N =t (), (108)

where triy1., denotes the partial trace over sites kK + 1 to
n.

We compute numerical values for the quantities AFpy,
and 40'}21, enabling us to infer Fgop,. Consider the probe
state vector consisting of an even superposition of two
Dicke states with associated parameters q1, g3

W) = [IKS) + 1K )1/V/2. (109)
The sensitivity of this probe state for n = 100 and sub-
ject to k = 9 erasures is plotted as a function of g1, 42 in
Fig. 7 (with /2 = 1). The sensitivity Fpgq, is obtained
by computing AFpep, and 0"%' via Eq. (52). On the one
hand, our trade-off relation facilitates the calculation of
the remaining Fisher information after the erasures. On the
other hand, the trade-off relation explains that the high sen-
sitivity loss experienced for states with a broad spread in
energy (q; — 0 and g, — n) is directly related to the fact
that the environment can well infer the energy of the state
from few-site reduced states.

Because the noise is local, numerical computations only
have to take place on a smaller system representing the
local degrees of freedom. Because of permutation sym-
metry globally and also locally (the reduced state also
lives in the local symmetric subspace), our computations
run on k+ 1 dimensions and not on the full (n+ 1)-
dimensional symmetric subspace. We will return to the
example of permutation-invariant states on » spins in Sec.
VIII, where we consider an 1D amplitude-damping noise
model instead of erasures.
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FIG. 7. Fisher information of an even superposition of two
Dicke states of magnetizations m; =n — 2q; and my = n — 2q;
on a n-site noninteracting spin chain with local terms H; =
(w/2)Z. A good probe state has m;,m; far from one another
(for a large energy spread), but also far from the edges —n and
n (to avoid decoherence caused by the erasures). Here we set
n = 100 total spins, w/2 = 1, and k = 9 spins are lost to the envi-
ronment. Our trade-off relation facilitates the calculation of the
Fisher information plotted above. It also gives an interpretation
of the loss in sensitivity with respect to the noiseless case (where
the GHZ state m; = —my = +n would be optimal; leftmost and
rightmost edges of the plot) as the sensitivity that Eve gains with
respect to the energy of the state.

V. BOUNDS ON THE FISHER INFORMATION

Because it might not always be simple to compute the
Fisher information trade-off quantity AFpep, in Eq. (55),
we provide a few bounds that might be applicable to differ-
ent settings, and that avoid the calculation of the symmetric
logarithmic derivative on Eve’s system.

A. Upper bound on Bob’s sensitivity by postprocessing
Eve’s system

A useful bound for the Fisher information is the data
processing inequality [19]. The inequality states that for
any p(f), and for any t-independent completely positive,
trace-non-increasing map £, the sensitivity after applica-
tion of the channel can only decrease:

F(p(®) =2 F(E(p (). (110)
A trace-non-increasing map can be used to describe only
a subspace of interest of a larger Hilbert space while
accounting for leakage outside of that subspace.

Consider our setup with Alice, Bob, and Eve as in Fig. 1.
Suppose now that Eve sends her state to another agent,
Eve/, through a trace-non-increasing, completely positive
map N’ as depicted in Fig. 8(a). The data-processing
inequality ensures that Fgyey = Fgye’,. Combining this

Alice -
\'.f
(b) N SN Bob
@é — > (R
o U o

e,

Alice ﬁ’u\n 4

— | ;iu' Eve
Eveo %ﬂ‘ J'\,"_J v‘"'v{’

FIG. 8. Combining our uncertainty relation with the data pro-
cessing inequality for the Fisher information yields new bounds
for the Fisher information. (a) Suppose Eve applies a suitably
chosen map N\’ to her system, resulting in a system we denote
by Eve', on which the sensitivity to energy might be signifi-
cantly easier to compute. Eve’ can only have a worse sensitivity
to energy than Eve, so our uncertainty relation gives an upper
bound to Bob’s sensitivity to time. (b) Suppose that Eve’s out-
put can be written as a composition of two maps f\?o and N’
via an intermediate system Evej. Then we obtain a lower bound
on Bob’s sensitivity to time by computing Evey’s sensitivity to
energy.

with our uncertainty relation (49) yields

FBoby  Frvwey

<1 (111)

Faticer  FAlicen

We can also obtain this inequality by starting from the
quantum Fisher information loss on Bob’s end, Eq. (55),

AFgopy = F(Pg;ﬁ({ﬁ, ¥})

> F(N"(op): N' (N GH.L¥D)),  (112)
which in turn provides an upper bound on Bob’s Fisher
information via Eq. (52) as

Faony < 40fy — F(N"(pe) : N'(N (L ¥D)).  (113)
By choosing the map N’ suitably, one can potentially
significantly simplify the computation of the Fisher infor-
mation. For instance, N’ can be a dephasing map that
ensures that N’ (pg) and ' ’(ﬂ? {¥,H}) commute, there-
fore enabling the use of Eq. (15) and removing the neces-
sity of computing the symmetric logarithmic derivative.
Alternatively NV’ can be chosen to enforce some symmetry
that might be convenient for the computation of the Fisher
information.

The bound (113) can be spelled out in the case of I[ID
noise on a many-body probe state. Consider a single-
site noisy channel A with Kraus operators {E,} for x =
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0,...,m—1. The full noisy channel is N'=NP". Its
Kraus operators are E,, where x = (xy,...,X,) is a collec-
tion of indices x; = 0,...,m — 1 indicating which Kraus
operator is applied on the ith site

(114)

E, :%})Ex,_.

The complementary channel N can then be written in
terms of the Kraus operators of A" as

N =Y u(ELE )],

xx’

(115)

where {[x}} is a basis of the Hilbert space of E.

Computing the Fisher information analytically on the
output of either A/ or N might not be straightforward if
the state and its derivative are mapped to operators whose
eigenbases are not aligned in any obvious way, which
would complicate the calculation of the symmetric log-
arithmic derivative when computing the expression (55).
Here, we see that by completely dephasing the output of

in the computational basis, and projecting onto the
subspace of the environment associated with low-weight
Kraus operators of N, we obtain a lower bound on AF; Bob,t
which translates into a upper bound on Fp,,, that is easy to
compute. Here, we assume that the first Kraus operator Ey
is close to the identity and that the other Kraus operators
represent “jump terms.” We mean by “weight” the number
of Kraus operators that are jump terms.

We now choose a suitable completely positive, trace-
non-increasing map N in order to use Eq. (113) to obtain
an upper bound on the Fisher information at Bob’s end.
In the following, we assume that m = 2, but the argu-
ment generalizes straightforwardly to noisy channels that
have more Kraus operators. We design the map such
that it (i) completely dephases the environment system in
the computational basis, and (ii) projects its input onto
the subspace associated with basis vectors |x) with small
Hamming weight |x|. Fix £ > 0 and let

NG = D7 )] [x)(x]. (116)
x: x|k
Then we can see that
N o)) = > (B () x)(xl. (117)

x |x|<k

The upper bound on Bob’s Fisher information with respect
to time comes from Eq. (113). Starting from Eq. (112)
and since the two arguments of the Fisher information

commute, we can use Eq. (15) to find

AFgons > | [N o )] ' [V o N ctw, DT’

_y b Re(y |HELEL|¥)]"
x: x|k tr(EIEX 1:&)

(118)

where we have used the fact that the output of N’ o N
is diagonal in the computational basis. The completely
dephasing channel ensures that the expression (118) is a
classical Fisher information, which is easier to compute
than the quantum Fisher information in which the state and
the derivative do not commute.

The number of terms in the above sum, which cor-
responds to the dimension of the subspace associated
with basis vectors |x) satisfying |x| < &, is given by
() + (")) + -+ (§) = O). For fixed k, this number
scales polynomially in n. The complexity of computing
the numerator and denominator in Eq. (118) also scales
only polynomially in n as long as |¢¥) and H|Y¥) can
be expressed using a representation that enables efficient
computation of local expectation values, such as a superpo-
sition of a constant number of computational basis vectors,
or alternatively as matrix-product states [45]. We discuss
below the case of IID amplitude damping noise, where
numerical evidence indicates that for small values of p
(sayp < 0.1), even for n = 50 it can suffice to set k = 4 to
obtain meaningful bounds (see Sec. VIII).

B. Lower bound on Bob’s Fisher information by
preprocessing Eve’s system

Let us return to the original setting with Alice, Bob, and
Eve as in Fig. 1. Suppose now that we can find a com-
pletely positive, trace-preserving map Ny and a completely
positive, trace-non-increasing A/’ such that ' = N o N
That is, we suppose that Eve gets her state through an
intermediary, which we call Eveg as shown in Fig. 8(b).
The data-processing inequality now tells us that Fgy, <
FEyey,n- Combining this with our uncertainty relation gives
us

F Bob,t F Eveg.n

> 1. (119)

Faticey  FAliceq

A more explicit bound on Fpep can be obtained starting
from Eq. (55) and writing

AFgobs = F(pp; N({H, ¥}))
= FIN'No@)) ; N'No({H, ¥})))

< F(No) ;s No(H, ). (120)
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We present two simple example uses of this type of bound.
The first example applies to permutation-invariant sys-
tems. The second example applies to the setting where
Eve’s state is reasonably close to being diagonal.

1. Permutation-invariant system

Consider a permutation-invariant clock state ¥ and
Hamiltonian H. If the noise A/ acts only locally on at
most k known sites (or k/2 unknown sites), then J{%’ can be
written as the composition of a channel that traces out all
but £ sites, and another channel that completes the imple-
mentation of f\? To see this, observe that we can write
N = > tr(E;,Ej (+)) li"){j |, where {E; } are the Kraus

operators of A/. By assumption, Ef,E} acts nontrivially

on at most k sites. Therefore, the expression tr(E;,E} (-))
depends only on the k-site reduced state of the input. The
full complementary channel can be written as the composi-
tion of a channel that traces all but k sites, and the channel

Pk &> D i tr(E;,Ej Pr) J") | (where here we reuse the

notation E}T,E} to denote the action of those operators
on only the k sites where either operator acts nontriv-
ially). Therefore, the sensitivity loss AFpggp, can be upper
bounded, for any noisy channel consisting of Kraus opera-
tors of weight at most k/2, by the sensitivity loss associated
with k located erasures.

2. If Eve’s state is nearly diagonal

Computing useful expressions of the Fisher informa-
tion when a diagonal representation of the state is not
known can be tricky. The idea if pg is reasonably close to
being diagonal is to hope that one can essentially neglect
the off-diagonal elements of pg and still obtain a good
approximation of the Fisher information via the formula
(12).

Suppose we find an invertible matrix 4 (with hopefully
A~ 1) and a diagonal matrix T = diag(zg,...,Tz) =0
such that

pp=AtA'. (121)

Such a matrix is given, for instance, by the LDLT and

Cholesky decomposition of pg. [The eigendecomposition

of pg also gives such a matrix 4, but if we can compute an

eigendecomposition one might as well use Eq. (12) to com-

pute the Fisher information directly.] Now we decompose
by including a scaling factor & as

oN = N o N,

with a = [|4]|72[|4~"|~? and with the two completely
positive, trace-non-increasing maps

(122)

No() = AN ()4,

(123)
4= 1II2

N'()=—=A4() 4" (124)

IIAII2

If 4 is close to 1 then we have & = 1. Recalling the scaling
property (14) of the quantum Fisher information, we find

AFBob,
= F(pg: N(H,y))
1 —
= —F(eNW): N (H,y))

1 _
< EF(ﬂ?o(w):ﬁo({H,w}))
1 I ~1 1yt
=ar (ua—lu2 ANy ))

= 412 F (z: 4~ N (1, 97)(4™)Y).

4= 1||2
(125)

In the last expression, the Fisher information is evalu-
ated on a state that is diagonal, so one can directly use
Eq. (12). Furthermore, if 4 is determined by a LDLT and
Cholesky decomposition then it is lower triangular and its
inverse can be computed efficiently (matrix multiplication
of the inverse with another matrix can be done by forward
substitution).

C. Bound in terms of Eve’s access to the probe’s
energy

In this section, a further bound on Bob’s sensitivity to
time is presented, which is given in terms of how well Eve
can approximate a measurement of energy on the noise-
less clock state. The properties that Eve can measure on
the noiseless probe are given by the adjoint of the comple-
mentary channel: Eve applying an operator W on her sys-
tem can equivalently be described as the operator N fw)
being applied onto Alice’s system, because tr( ) W) =

(1/} ﬁT(W)) One measure of how well Eve can approx-
imate a measurement of the Hamiltonian around |y) with
an observable § on her system is the minimum root-mean-

squared error ming_gi [((ﬂ?‘f S) — H)Z}w]m. It turns out
that the minimum square of this quantity is a lower bound
to Bob’s Fisher information to time

. + _ 2 .
Foos > min4((V'®) - H)’) . (126)

While this bound is aesthetically interesting, finding the
optimal § in this expression is not significantly easier than
directly solving the semidefinite program (16a). Further-
more, a candidate for § in Eq. (16a) immediately provides
an upper bound on Fp,, whereas a candidate in Eq. (126)
does not provide any useful bound on Fp,p, because of the
direction of the inequality.
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The bound (126) is proven as follows. Starting from
Eq. (56) and using Eq. (16a),

1

—Fgy
7/ Bobs

= min[(A%) — u(y {1 $)}) + (V)]
> min[ (%) — ({H.N'©)}) + (V& F)]

— i _ AT 2
= min((# — N'1())?). (127)

where we have used N T(§?) > [ﬂ? (1 (see Corollary
2 in Appendix A). Finally, we can replace H by H in

Eq. (127) because any shifts of H by the identity can be
canceled out by corresponding shifts of S by the identity.

D. If Eve can measure the probe’s energy almost
perfectly

If Eve has (approximate) access to the energy of the
probe state, then this (approximately) kills sensitivity
on Bob’s end. Suppose we can find an observable §
on_Eve’s system such that ||./vT(S) — H| < ||H||§ and
W (s?) — H2|| < | H | 8. Then
128 | H %

FRobs < (128)

To show this inequality, we first write A =N S —H
and A’ = N'1($%) — A2, with [|A]| < |18 and [|A]| <
| H|?8. Then, from Eq. (56) and using Eq. (16a) we obtain

1

—FBob,s
4
= rrlin[(ﬁz) — ([, BYNT(S)) + (NT(5H)]
< min{—u({y,H} A) +u(y &)}
L20H| AN+ 1A' < 38 1HI™ (129)

E. Clock sensitivity loss for weak IID noise

Here, we consider an n-site system subject to weak
IID noise, where each site is affected by a noisy chan-
nel N, such that N, — id if ¢ — 0. Clearly for e =0
there is no sensitivity loss. For a given clock state and
Hamiltonian, we develop a set of tools to understand and
determine to which order m in € the Fisher information loss
is suppressed, AFggh; = O(e™).

The question is partly motivated by a similar question in
the context of quantum error correction. A quantum error-
correcting code of distance d can correct any (d — 1)/2
arbitrary single-site errors. In the case of a weak 11D noisy
channel JVE@’“ affecting the n sites, a weight-[(d — 1)/2]
error happens with probability of order O(e'“~1/2) if we

assume that a single-site error happens with probability
O(¢). This means that the chance of an uncorrectable error
occurring is upper bounded by O(e“~1/2)_ In this scenario,
we see that the higher the distance of the code, the better
robustness is achieved against weak [ID noise. In the con-
text of quantum metrology, we ask the following analogous
question: can we determine the robustness of the sensitiv-
ity of the clock to time when affected by a weak 1ID noisy
channel, a function of a certain feature (analogous to the
code distance) of the clock state, the Hamiltonian, and the
noisy channel?

There does not appear to be any obvious property of
the setup (analogous to the code distance) that immedi-
ately determines the order m in the Fisher information loss
AFgob = O(e™). Instead, we explain a general procedure
for how to obtain a bound on m when given a weak [ID
noisy channel, a clock state and a Hamiltonian.

The simplest case presents itself if the complementary
channel N/2" maps the clock state ¥ onto a full-rank state
pE = Y_ p«|x)(x|g that is diagonal in the tensor product
computational basis on E. (This is equivalent to all vec-
tors {Ex|¢¥) }x being orthogonal on Bob’s system.) In such a
case we can use Eq. (12) to express the Fisher information
loss as

AFpohs =Y - = (<IN (A, ypIx)[’

- pomy
- Q (Gmm(rx,r :))

= O(e’”) (130)

defining ry and gy,v via px = Q(€™) and |(x|/§7€®”({ﬁ, ¥vh
IX'}| = O(e%~), and with

m = min {2qxx — rx}. (131)

FxSTys

As we can see above, it is not obvious which x, X’ min-
imizes the expression in the exponent above. One might
have expected that events x whose probability of occur-
ring vanish faster than other events (large ry compared to
other ry) are less relevant and would not contribute signif-
icantly to the Fisher information loss. However, this is not
the case; terms with high ry, r¢ can contribute to leading
order to the sensitivity loss if the corresponding term gy y
is sufficiently small. If the state pg is not diagonal, then it is
unclear whether or not one can easily determine the order
of the Fisher information loss.
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VI. CLOCK SENSITIVITY IN THE PRESENCE OF
CONTINUOUS NOISE

The setting presented in Fig. 1 is nonstandard in metrol-
ogy, because in typical settings the noise and the signal
both get imprinted on the state in the same physical time-
evolution process. It is more common to consider, for
instance, a Lindbladian master equation that governs the
time evolution of the clock state, with terms that encode
any noise processes via jump operators.

Here we consider the situation where the noise is
described by a Lindbladian master equation. Under suit-
able conditions, we can decompose the time evolution into
a pure unitary evolution followed by some effective noisy
channel, and the time dependence of the effective noisy
channel can be neglected. In this case our Theorem 1
can be applied to compute the sensitivity loss after some
time fy.

One can follow a similar procedure in the setting where
the goal is to determine an unknown parameter in the
Hamiltonian when the overall evolution is governed by
a Lindbladian master equation. The full derivation is pre-
sented in Appendix G. We can carry out a similar decom-
position in the case of a clock sensing an unknown param-
eter in the Hamiltonian, while subject to continuous noise
described by a Lindblad evolution.

A. Decomposing a Lindbladian evolution of a clock
into a pure unitary time evolution and an
instantaneous noisy channel

Consider a clock initialized at time £ = 0 in the state vec-
tor [Vinit). Suppose that the dynamics p(#) of the clock are
given by the Lindblad master equation

0o = Litlp], (132a)
where
‘Ctot = ‘CU + ﬁ]s ‘cﬂ(p) = _I[H" p]'s (132b}
1
Li(p) = Z[Lij}—E{L}L-,p}]. (132¢)

J

Here we assume that the operators H and L; are time
independent. The evolution up to a time £ is given by the
completely positive, trace-preserving map

& = elbottn), (133)

The evolution driven by the Hamiltonian part £y of the
dynamics can be written as e'£0(-) = e~ (.) e/,

We would like to compute the sensitivity of the clock
at a given time fp, meaning that the relevant quantity to

compute is the Fisher information

Fclock,f(tﬂ) = F(p (tﬂ); 3t.0 (tﬂ))- (134)
We can decompose the evolution & as first a unitary
evolution according to H for a time ¢ followed by the
instantaneous application of an effective noisy channel ;.
Define

M — g{ e—tﬁo — e((£0+£1) e—h’:o. (135)

Here, e 0 is the inverse of the unitary evolution e“0. By
construction, if we apply A; after applying e/“0, then the
overall effect is the same as letting the system evolve for
time ¢ under the full Lindbladian dynamics Lo + L;:

& =N "o, (136)
An alternative expression for \V; is obtained from Eq. (135)
using the Baker-Campbell-Hausdorff formula,

N, = e:.{:.—-‘;[ﬁ:l,ﬁo]—i-..._ (137)
Observe that if [£1, L] = 0, then we simply have N =
e'“1. This situation is known as phase-covariant dynamics
(cf., e.g., Refs. [46,47]). This is the case if [L;, H] = 0 for
all jump operators L; . In other cases, the map can be deter-
mined from Eq. (135) directly if the superoperator & can
be computed.

Let us introduce the family of states ¥ (f) = e~ vy, ;; e’
associated with the (fictitious) pure unitary evolution of
Yinit if we artificially turn off the noise terms.

The derivative of the quantum state p(f) = £,(;,;) can
then be written as

dio () =4[ Ni(¥®) ]| = Ni(@w ©) + (3N5) (v @),
(138)

Therefore, the derivative of the noisy state can be decom-
posed into a sum of two terms, the first associated with
the unitary dynamics ¥ (), and the other associated with
the time dependence of the effective noisy channel N,.
Plugging into Eq. (134), this gives us

Faosks = F(N () N@w) + (GN) @), (139)

where now Fijock s, N, 3N, ¥, and 3,4 are all implicitly
evaluated at fy.

In the following, we consider settings where the local
time dependence of the state due to the time dependence
of the effective noisy channel terms can be neglected when
computing Fejocks. (We will study in greater depth below
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when exactly this situation arises.) In other words, for now
we assume that

Fclock,t = F(N(lﬁ) N N(aﬂff)) = Fc]oclgU,(- (140}
Expanding 9,%, we obtain
Faockus = F(N (W) : N (—i[H, ¥])). (141)

This quantity is what we defined as Fgqb, in the context of
our main uncertainty relation.

The complementary channel J(ZD is directly determined
by the complementary channel of the overall evolution up
to that time &, since the two channels differ only by a
unitary evolution e~0%0 on their input:

N, = & etobo, (142)
This means that the Fisher information on Eve’s end with
respect to the complementary direction can be expressed
entirely in terms of the complementary channel &, to the
entire evolution up to time #y:

AFgockuy = F (ao(lffinit) ; 2?0 ((H, Yinit})) (143)
with H = H — (H)y,), and Theorem 1 states that
FuockUs = 4075 — AFcock Uy (144)

Now we turn to discussing when the approximation (140)
is a reasonable assumption, by characterizing the error
induced on the Fisher information. First of all, the approx-
imation is exact in the case of phase-covariant dynamics,
where [L, Ly] = 0 (e.g., Refs. [46,47]). In other settings,
we can use a continuity bound of the Fisher information in
its second argument (Proposition 17 in Appendix C) to try
to get a handle on the error terms involved in the approx-
imation (140). Denote by é the error in the approximation
(140),

8= Fclock,t - Fc]oclgU,h (145}
then we have
18] < F(p: BN)(W))
+[F(o: GN)YW)) Fetockuy]'/%. (146)

That is, the relative error in the approximation (140) is
demonstrably small if F(p; (atN)(w)) is much smaller
than Fieck,u,. We can rewrite this term using (138) as

@N)YW) = 3ip(t) — Ni(—ilH, ¥ (1)])

= Liotlp ()] — E(—i[H, Yo)). (147)

The above expression is given in terms of the Lindbla-
dian map and the overall evolution map, and can aid in

determining an analytical or numerical upper bound to
the quantity F(p; (3¢N)(1/;)). In Appendix G, we study
two single-qubit examples that are subject to continuous
dephasing along various axes in order to illustrate the con-

nections between the Lindbladian setting and the setting in
Fig. 1.

VII. ERROR-CORRECTION CONDITIONS FOR
ZERO SENSITIVITY LOSS

The uncertainty relation (55) enables us to provide a
characterization of when the noise reduces a probe’s sensi-
tivity to time. In this section, we study the situation where
the sensitivity loss AFpep, introduced in Eq. (52) is equal
to zero. This is a situation where the probe is chosen clev-
erly enough such that the noise has no effect on sensitivity.
The main contribution of this section is a set of neces-
sary and sufficient conditions for AFgg,, = 0, which bear
resemblance to the Knill-Laflamme conditions for quan-
tum error correction [20] and which are closely related to

the Hamiltonian-not-in-Lindblad-span condition of Refs.
[21,22].

A. Conditions for zero sensitivity leakage

In the following, we suppose that our uncertainty rela-
tion holds with equality, i.e., that the conditions given in
Proposition 1 hold. Recall the expression for the Fisher
information loss on Bob’s end (55), and consider the
expression (16b) for the Fisher information. If AFpy,, =
0, then there exists an operator L such that tr(LYL) =0
and p'2L + Ltp'/? :ﬁ({y’;,ﬁ}); the former condition
implies L = 0 and thus the latter implies ﬁ({w,ﬁ}) =0.
Therefore, we see that AFgep = 0 if and only if

Nw,H)) =0, (148)

i.e., {¢, H} must lie in the kernel of the superoperator ./(7
It is instructive to rewrite this condition in terms of the
“virtual qubit” introduced in Sec. 111 B. With Z; defined in
Eq. (62), then Eq. (148) becomes
Nz =o. (149)
Alternatively, the above condition is equivalent to requir-
ing that for all operators O,
w[N(©0) 2] = o, (150)
meaning that error operations of the form N (0) should
not have any overlap with the “logical” Z; operator on the
qubit subspace.
So the task of finding probe states that perfectly counter

the noisy channel V' can be formulated as ensuring the log-
ical Z Pauli operator in the logical qubit subspace spanned
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by |+) = |¢¥)and |—-) o |&) = Pj;HW;) is in the kernel of
the complementary channel to the noisy channel.

Note that simply looking for zero sensitivity loss is not
sufficient to find the best probe states; we still need to make
sure that |Y) has as large energy variance as possible to
ensure good sensitivity.

An alternative representation of the zero sensitivity loss
condition can be obtained if we consider an operator-sum
representation of the noisy channel in terms of Kraus oper-
ators {Ex} as in Eq. (45). The condition (148) is then
equivalent to the condition

(VI ELE|E) + (E|ELEc|¥) =0  forall k,K.

(151)
These may be interpreted as Knill-Laflamme-like con-
ditions for optimal sensitivity. Whereas for a traditional
quantum error-correcting code, we require any two code
words [¥;), [¥;) to satisfy (1/;;|ELE;;|1/;J-) o 8;;, here we

require that the error operator EIEH cannot map the state
[/} onto the vector |&), or at least not in a way that is not
suitably antisymmetric. The weird antisymmetrization in
Eq. (151) can be expressed in a more elegant form if we
switch back to the picture of the logical qubit spanned by
[¥) and |&). Analogously to Eq. (149), we may rewrite the
condition (151) as

tr[Z, T EpEx T ] = 0, (152)
where I1; = [+){+|z + |—){—]|z is the projector onto the
virtual qubit subspace spanned by |y{) and |§). The full
Knill-Laflamme conditions applied to the subspace Iy
would require [T EpEfI1; o< I1z. The condition (152) is
simply a weaker condition where only the corresponding
projection onto the logical Pauli operator Z;, is considered
and where the projection onto the other Pauli operators is
unconstrained.

The form (152) also helps clarify that for zero sensi-
tivity loss, the terms in Eq. (151) need not vanish indi-
vidually. Indeed, only the Hilbert-Schmidt projection of
I1; EyE; T} onto Z; is required to vanish, and not in prin-
ciple on ¥; or X;. An example below in Sec. VIIH 1,
consisting of a single-qubit subject to transversal noise,
will illustrate this point.

The conditions (152) are reminiscent of quantum error
correction for operator algebras, where we require a code
to preserve the outcomes of any operator in a given algebra
[48-50]. In fact, if the algebra associated with any choice
of optimal sensing operator of the form (20) is preserved,
then our conditions (152) are satisfied. Indeed, suppose
that [T, N T(W)] = 0 for any operator W on Eve and for
a fixed choice of M in Eq. (20), meaning that the Abelian
algebra generated by T is correctable [48—50]. Then taking
the expectation value (-)y of this commutator we find 0 =

([m. N W) = te([y, INT (W) o te(2e N (W)), using

Eq. (25), which holds for all W, and therefore our Knill-
Laflamme-like condition (150) holds. The converse impli-
cation is unclear, in part because the optimal sensing
operator is not unique and different choices can generate
different algebras.

The conditions (151) are actually tightly related to the
Hamiltonian-not-in-Kraus-span condition of Refs. [21,22,
30,31,51-53]. There, it was shown that there exists a
clock state vector |/) that achieves Heisenberg scaling
in the presence of noise using quantum error correc-
tion if and only if the Hamiltonian signal term is not
in the linear span of the Lindblad noise operators. Here
we argue that the Hamiltonian-not-in-Kraus-span condi-
tion is in fact equivalent to the existence of a state |/)
that satisfies our zero sensitivity-loss conditions (151). (In
our setting, the clock state vector [{) is a given fixed
state.) As we have a discrete noisy channel, we consider
the Kraus operators {E;} of the noisy channel instead

of Lindblad operators. If H = Zak’,kELEk, and suppos-
ing the conditions (151) are satisfied for some |/), then
by taking a linear combination ) a4 of the conditions
(151) we obtain 0 = 2(y|H Pj;HW;) = 20’13,: therefore the
conditions (151) cannot be satisfied by any 1 that has
nonzero energy variance. Conversely, we know (see, e.g.,
Refs. [21,22,52]) that if the Hamiltonian is not in the
span of the noisy channel’s Kraus operators, then there
is a code space I, possibly involving an ancilla system,
with HEI,E;CH = cp4I1 such that [[T, H] =0 (i.e,, IT is
spanned by a subset of energy eigenvectors) and such
that IT contains a state vector |/) with nonzero energy

variance; then for any k, X' we have (1,&|ELE;(P$H|1/;) =
(WITE}ExP{HTI|Y) = (YITELEMT PEH|Y) = crrp(¥
P;H|¥) = 0 using the fact that [P, IT] = [H,TI] = 0, so
the conditions (151) are satisfied. Therefore, if the Hamil-
tonian is not in the span of the Kraus operators, then there
exists a clock state vector |¢) that suffers no sensitivity
loss after being exposed to the noise locally at #y. This state
is constructed in the above mentioned references using a
quantum error-correcting code.

We can ask whether there is a relation between our con-
ditions for no sensitivity loss and when the sensitivity can
achieve Heisenberg scaling in the system size [2]. The
Heisenberg scaling refers to situations where Fpop, scales
like n%, where n is the number of systems that are jointly
prepared in the clock state vector |¢},. (If no entanglement
is present between the n systems, the best scaling that can
be achieved is Fpob, o n.) We assume that the clock state
vector |¥), has a variance that scales quadratically in n,
i.e., [o (¥,)]* o n?, as otherwise even the noiseless clock
does not achieve Heisenberg scaling. Suppose the con-
ditions (151) are satisfied: then Fpops = 4[on (¥n)]* o n?
as there is no sensitivity loss, and the Fisher informa-
tion displays Heisenberg scaling. On the other hand, even
if there is some loss of sensitivity due to the noise, the
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Heisenberg scaling might survive. Suppose, for example,
that we consider two independent one-dimensional spin
chains, each consisting of n/2 sites that are prepared in a
GHZ state and that evolve according to an on-site Z Hamil-
tonian. Both spin chains are independent probes whose
sensitivity each scales as approximately n?, and there-
fore the overall probe state exhibits Heisenberg scaling.
Now consider the noisy channel that erases one of the
spin chains. Half the sensitivity is lost; because there is
sensitivity loss our Knill-Laflamme-like conditions can-
not be satisfied. However, the single spin chain that is left
for Bob still exhibits Heisenberg scaling. This shows that
Heisenberg scaling is guaranteed if the environment has
zero sensitivity to energy (and the noiseless probe itself
has Heisenberg scaling), but that there are also situations
where the environment induces sensitivity loss without
hindering the Heisenberg scaling of the probe. In the lan-
guage of Refs. [21,22], this corresponds to a Hamiltonian
that might have both a parallel component to the signal as
well as a perpendicular component that can be exploited
to achieve Heisenberg scaling. We see that zero sensitiv-
ity loss implies Heisenberg scaling for a family of state
vectors |Y) that are sufficiently entangled. But there are
states that achieve the Heisenberg scaling even if some
sensitivity is lost due to the noise.

When the zero sensitivity loss conditions (148) hold,
then by definition there must exist a sensing observable for
Bob to estimate the parameter £, whose sensitivity matches
that of Alice. We can extract this optimal sensing observ-
able from our technical analysis using semidefinite pro-
gramming (see Appendix E 2). Namely, in Appendix E3
we show that if the zero sensitivity-loss conditions hold,
then the operator ip/\/ (|€)(¥]) is Hermitian. Furthermore,
the operator

Ry = —2iN (IE)(WDp~" + 20~ ' N (W) (NP, (153)

is also Hermitian and satisfies 1/2{Rg, pg} = N' (Y1), i.e.,
we obtain an explicit expression of the symmetric log-
arithmic derivative on Bob’s end. The optimal sensing
observable on Bob’s system is then given via Eq. (13)
as Tp = [FBob‘,]_le + . That is, when a clock state and
associated Hamiltonian fulfill the metrological code con-
ditions for a given noise channel, we obtain an explicit
expression for the optimal measurement on Bob’s end.

B. Metrological codes and metrological distance

We now introduce the concept of a metrological code.
The idea is to study the qubit space spanned by the vectors
|¢¥) and |&) = H|Y) = (H - (H)) [¥). If the state loses
no sensitivity upon the action of a noisy channel, one could
expect these states to span some kind of quantum error-
correcting code space. We can see that they do not neces-
sarily form a full error-correcting code as follows. Con-
sider the single-qubit state |¢) = |+) = [|0) + |1)]/v/2

evolving under the Hamiltonian H = woz/2, which we
expose to an error channel whose Kraus operators are pro-
portional to 1 and X. We see that the condition (151) is
satisfied, given that |£) = |—) = [|0) — |1)]/+/2 is orthog-
onal to [+) and that [+) is an eigenstate of both 1 and
X. Yet a quantum state stored on this qubit would be
corrupted by the noise, as the bit flips would be uncor-
rectable. We identify a concept that is weaker than a full
error-correcting code, which applies precisely to states that
satisfy the condition (151). Here, we assume that the set-
ting is specified as a pair of orthogonal states |y),|£),
whereby [£) is presumably obtained from a Hamiltonian H
as |£€) = (H — (H))|¥). Specifying the full Hamiltonian is
not necessary as the relevant quantum Fisher information
quantities can be fully expressed only in terms of |y}, |£).
Metrological code. Let & be any set of operators. We
say that the state vectors |¢) and [§) form a mefrological
code against the errors & if forall E, E’ € &, we have

tr[ETE (1€)(¥| + 1) (€])] = 0. (154)

As a consequence of the zero sensitivity loss condition
(151), a metrological code prevents sensitivity loss against
any noise channel whose Kraus operators are linear com-
binations of elements in & (as long as the conditions of
Proposition 1 are satisfied).

A natural class of errors to consider is the set of all
operators that act on only a subset of n components of a
composite quantum system 4 = 41 @42 ® --- @ A,. The
weight wgt(O) of an operator O acting on the n systems is
defined as the number of systems on which O acts nontriv-
ially. Specifically, if O is expanded in the Pauli operator
basis (or in any tensor basis using a single-site operator
basis that includes the identity matrix), all nonidentity ele-
ments in tensor products of basis operators that appear in
the decomposition of O must be supported on a fixed set of
wgt(0) sites. Equivalently, the expectation value of O on
any state can be computed exactly even after tracing out all
but a given set of wgt(O) sites.

We say that the pair of state vectors |¢) and |&) form
a metrological code of distance d,, if it is a metrological
code against all operators of weight at most d,, — 1; in
other words, for all operators O satisfying wgt(O) < dpn,
we have

t[O(1E) (W] + 1¥)(El)] = 0. (155)

Metrological codes of distance d,, have the property that
for any noise channel N whose Kraus operators {Ej}
are such that wgt(ELEk) < d, for all k',k, the associ-
ated sensitivity loss is zero (as long as Proposition 1 is
satisfied).

Metrological codes are, roughly speaking, in between
classical and quantum codes. On one hand, they are
not full-blown classical codes because condition (155)
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requires protection against both X- and Z-type physi-
cal noise. Because of this, the pair |¥) oc |0)" + [1)" and
[£) oc |0)" — |1)" of GHZ states is not a metrological code
of nontrivial distance because single-qubit Z errors cause
a logical-X error, thereby violating Eq. (155). On the
other hand, metrological codes are not full-blown quantum
codes because the sensitivity conditions say nothing about
other types of logical noise. In other words, noise can cause
logical-Y and logical-Z errors for a metrological code, but
not for a bona-fide error-correcting code.

C. Uncertainty relation equality and conditions for
metrological codes

In order to deduce from Eve’s lack of sensitivity to
energy that Bob loses no sensitivity to time, it is necessary
to ensure that the conditions of Proposition 1 hold. When
we presented Proposition 1, we already noted that the situa-
tions where these conditions are not satisfied are edge cases
that can be perturbed away. Here, we strengthen this state-
ment for metrological codes: if a metrological code for a
given noise channel happens not to satisfy the conditions of
Proposition 1, then the noise channel can be infinitesimally
perturbed to obtain a situation for which these conditions
hold, and furthermore, the zero sensitivity loss conditions
(148) are preserved.

Proposition 2 (Perturbation bound for noise chan-
nels consistent with a metrological code)—Let V4_.pg
be an isometry, let |¥)4,|E)4 with (¥|E)4 =0 and let
N =tg(V() V), N () =trg(V(-) '). Suppose that
ﬁ(lé‘)(wl + [¥)}{€]) = 0. We furthermore assume that
there exists a unitary operator Gp acting on the system
B with the properties that 0 = P,,GpP,, = P;,GpP;, =
P,,GpP;, = Pr,GpP,,, where (p=N(|£)(£]). Then,
for any € > 0, there exists an isometry V) . with
IV — V]| <€ € such that

(P;®P;)V1E)=0: and (156a)
N'(1eyw1 + 1)l = o, (156b)

where pp = trg{ VY V'), pp = tg{Vy V'], and N () =
tep{ V' () V'T}.

The proof is presented as Proposition 22 in Appendix H.
Note that the existence of such an operator Gp can always
be ensured by augmenting the B system to include a qubit,
which N prepares in a fixed pure state vector |0) for all
inputs. The operator Gp can be chosen to flip the qubit to
[1}. The additional qubit can represent an additional “fail-
ure” flag such as, for instance, an additional photon that is
emitted at the output of the noise process.

D. Sensitivity loss of metrological codes under weak
IID noise

1. Sensitivity loss under weak IID noise

If we encode a logical quantum state using a quantum
error-correcting code of a distance d, and each site has
a small probability O(e) of incurring an error, then we
know that the errors that the code cannot correct occur with
probability at most O(e%/?). In turn, this implies that the
infidelity of recovery of the logical information also scales
as O(e°?) with a constant ¢ depending on which conven-
tion for the infidelity measure we choose. It is then natural
to conjecture that if |} and |&) form a metrological code
of metrological distance d,,, then the loss in Fisher infor-
mation must similarly be upper bounded by O(e®), for
some universal constant c.

Interestingly, the order of the Fisher information loss in
€ is not directly related to the metrological distance of a
metrological code. In fact, there are examples of metrolog-
ical codes with large metrological distance, but for which
the Fisher information loss is always of order €. This
behavior appears to contradict the expectation that events
of vanishing probability should not significantly influence
observable properties of the system (such as its sensitiv-
ity to time). An explanation stems from the fact that the
operational interpretation of the Fisher information via the
Cramér-Rao bound involves an implicit averaging of the
error over infinitely many samples. It might turn out in
the present case that events with vanishing probability can
contribute non-negligibly to the quantum Fisher informa-
tion. To remedy this issue, it would be desirable to consider
a measure of sensitivity that accounts for finite data acqui-
sition. One such measure has been put forward in Ref. [54].
We refer to Appendix 1 for a more detailed discussion.

E. Clock states from time-covariant quantum
error-correcting codes

Here, we explore a simple method to construct states
that satisfy the zero sensitivity-loss condition, using time-
covariant quantum error-correcting codes. A code is said to
be time-covariant code with respect to a given Hamiltonian
H if H (and hence also time evolution generated by H) is
a nontrivial logical operator. In the following, Pauli oper-
ators X, Y, Z carry an index indicating the qubit on which
the operator acts. This strategy is the one pursued by, e.g.,
Refs. [22,51-53].

1. Four nearest-neighbor interacting qubits in a square
pattern

As a warm-up example, we first consider how to lever-
age the [[4,2,2]] code for quantum metrology with a
Hamiltonian on four qubits with ZZ interactions arranged
in a square pattern. Consider four qubits arranged in a
square as depicted in Fig. 9. The Hamiltonian is defined
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FIG. 9. Metrology with interacting qubits. (a) Consider four
qubits in a square with nearest-neighbor ZZ Ising interactions
(alternatively with additional XX and YY interactions). A clock
state with maximal sensitivity and zero sensitivity loss under
a single located erasure can be obtained via the time-covariant
[[4,2,2]] code. (b) We can extend the construction based on the
[[4,2,2]] code to any number of qubits interacting with respect
to any graph of ZZ interactions (alternatively with additional XX
and YY interactions), while offering protection against a single
located erasure.

by placing a ZZ interaction on each side of the square,

H= a)(2122 S AVAR AR Z3Z4). (157)
The [[4, 2, 2]] code [55,56] has stabilizers X1 X, X3Xs and
Z1Z, 2374, The logical operators X1, Z; and X3, Z; for the
first and second logical qubits are X | = X1.X3, X, = X1 X,
21 =217, and 2y = Z17;.

Observe that the Hamiltonian is a logical operator: the
second and fourth terms in Eq. (157) have the same action
on the code space as the first and third terms, respectively,
because they differ only by the stabilizer Z;Z,7374. When
acting on the code space, we have

HI =20(Z +Z,)1. (158)
Let us choose the clock state as a logical state with the
largest possible energy spread under this Hamiltonian,

1 (—  —
V) = 7 [100) + [T1)], (159)

where |@) and |ﬁ) refer to logical state vectors with
the first and second logical qubits in the given logical
computational basis states.

Now we check our Knill-Laflamme-like condition. Hav-
ing distance 2, the code can correct a single erasure
at a known location. Crucially, the operator |§) = (H —
(H))|¥) = 2w[|00) — [T1)]/+/2 is still in the code space
because H is a logical operator. Then from the Knill-
Laflamme conditions we know that (§|O;|¢) = 0 for any
single-site operator O;, because |£) and |¢) are orthogonal
vectors in the code space, and hence our conditions (151)
are satisfied for single located errors.

If we have some freedom in engineering our Hamilto-
nian, there are other choices of logical operators to use in
the Hamiltonian that would achieve a similar sensitivity

while also offering protection against single located era-
sures. For instance, we could ignore the second logical
qubit (or treat it as a gauge qubit) and the Hamiltonian
could be chosen to act only on sites 1 and 2 as H =
2071 =207

We see that the probe state (159) does not lose any sen-
sitivity to time if a system is erased at a known location.
The variance of |¢) is given by

of = (V|H|Y) = 1607 (160)

Because we have not specified how this model scales with
n, we cannot talk yet about achieving Heisenberg scaling.

In this example, the sensitivity is in fact as good as you
can get without any noise at all, for any probe state: the
state (159) is a superposition between two states that have
extremal eigenvalues with respect to H, which is optimal
in the absence of noise. What is special about the state
vector |¢) is that it retains its sensitivity even after a sin-
gle located error, which is not in general the case of other
probe states that would be optimal in the noiseless setting.
For instance, the state vector [[0000) + [0 11 0)]/ﬁ has
the same sensitivity as |¢) if no noise is applied, but it
does not satisfy our conditions (151) and so is subject to
sensitivity loss under single-site errors.

The above construction can also be applied if we include
XX and YY interactions between the neighboring qubits on
top of the existing ZZ interactions (enabling us to model,
e.g., Heisenberg interactions):

H =) [sXX +sYY; + ZZ], (161)

(i)

with the additional coupling constants s,,s, allowing
for some anisotropy in the interaction strengths. In this
case, the interaction terms are again all logical opera-
tors, which can be seen from the fact that X;X2.X3.Xs and
Y1ITh Yy = (X1 XoX3Xa)(Z1Z2yZ324) are stabilizers. Our
zero sensitivity-loss conditions are therefore still satis-
fied. To compute the variance of [{¥) under this new
Hamiltonian, we need to determine the action of the addi-
tional terms on |¢). The X terms give us again X +
X, when acting on the code space following the same
argument as for the Z terms. Now |¢) is a maximally
entangled state vector between the two logical qubits, satis-
fying (4; @ D)|¢) = (1, ®z§)|¢) where ()T denotes the
matrix transpose in the (logical) computational basis, and
where 4; is a logical operator acting on the ith logical qubit.
For the ¥ terms, we then find

Nhly) = —Xa2ZilY) = —Z1X1|¥) = ih1|¥),
NlY) = —X1Z|¥) Z_—ylzlllﬂ = —i1|y), (162)
LLlY) = HhLlY) = —ih|y),

V3Yaly) = Nly) = iYi|y).
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Thus the sum of all four ¥ interacting terms vanishes when
applied onto |¢). The variance of H is hence given by

HY) =20[Z, + Z, + 5:(X1 + X)) ]I¥)

=4[ Z) + s X 1]1¥), (163)
using the fact that |¢) is a maximally entangled state
vector between the two logical qubits, and
oh = (YIH|Y) = 40?(1 + 52). (164)
The increase in the variance o when we switch on
transversal interactions can be simply associated with the
increased norm of the Hamiltonian. Had we defined the
clock state (159) with a —1 relative phase, then the YY

terms would contribute instead of the XX terms and we
would get o = 4w?(1 + si)

2. Time-covariant codes lead to states with no sensitivity
loss

The construction above based on the [[4,2,2]] code
exploited a key property of that code with respect to the
Hamiltonian, namely fime covariance [44,57—60]. A time-
covariant code with respect to a given Hamiltonian H
is a code for which the time evolution generated by H
is a (nontrivial) logical operator. If we can find a time-
covariant code with respect to the system’s Hamiltonian,
then the clock state can be chosen to lie within the code
space, so that errors that affect it can be corrected, all while
evolving nontrivially in time and thus serving as a clock.

However, there are constraints on the possibility of con-
structing time-covariant codes. Consider a Hamiltonian
that is a sum of terms of weight at most k, which we call
a k-local Hamiltonian. Any code that can correct up to k
arbitrary errors at known locations cannot be time covari-
ant with respect to a k-local Hamiltonian, because the
Hamiltonian would be a sum of correctable terms that can-
not have a nontrivial action that preserves the code space.
On the other hand, physical systems like spin chains and
the anti-de Sitter—conformal field theory (AdS-CFT) cor-
respondence as a model for quantum gravity offer natural
examples of time-covariant codes that can approximately
correct against low-weight errors [43]. The above example
using the [[4,2,2]] code is a concrete case of a time-
covariant code with respect to a 2-local Hamiltonian and
which can correct a single erasure at a known location.

We can see that whenever we can find a time-covariant
code with respect to a given Hamiltonian, then we can con-
struct from the code a clock state with zero sensitivity loss.
Consider a code space Il and suppose that the Hamilto-
nian H is a nontrivial logical operator. We can choose |/)
to be any logical state vector that has nonzero variance
with respect to H. Let [§) = (H — (H))|¥), noting that |&)

lies in the code space. Denoting by {E;} the Kraus opera-
tors of A, we see that (WlELEklé‘) o« (Y¥|€) = 0 from the
Knill-Laflamme conditions of the code, and therefore the
conditions (151) are satisfied. Therefore, the following can
be observed.

Observation 1 (Clock state from a time-covariant
code)—Let T1 be the projector onto a code space that
corrects errors of the error channel /. Assume that the
code is time covariant with respect to the Hamiltonian H.
Then any logical state vector |¢) and associated |&) =
(H — (H))|¥) satisfy the conditions (151). Furthermore, if
T defines a [[n, 1, d]] quantum code, then |y} and Pj;HW;)
define a metrological code of metrological distance d.

That is, any logical state of the code satisfies our Knill-
Laflamme-like conditions for zero sensitivity loss. The
sensitivity is maximized by picking the state with the
largest energy variance.

If we are given an e-approximate quantum error-
correcting code that is time-covariant, that is, if the error-
correction procedure is allowed to fail with some prob-
ability € > 0, then we can still use a state lying in the
code space to construct a clock state with little sensitiv-
ity loss. Approximate quantum error-correcting codes can
be characterized by the fact that the channel that maps
the code space to the environment, ﬂ?(n(-)n), is close
to a constant channel that always outputs a fixed state
[61,62]. Specifically, ﬁ(l’l(X)l'[) ~tr(X) g for all X,
for some fixed state tg. If we pick a logical state vec-
tor [¢) with nonzero energy variance, then we have that
%,H} = [{y, H}I is a logical operator and therefore

({v.H}) :N‘(n{w,H}n) ~tr({y,H}) e = 0 since
(EI) = 0. Therefore, AFpqb, in Eq. (55) satisfies AFpops &
0, and FRops = Falicer = 40’13.. This choice of a clock state
is hence expected to lose little sensitivity under action
of the noisy channel. Deriving a universal quantitative
bound on Fpup,, in this scenario in terms of € does not
appear easy. In such a scenario, a direct use of our uncer-
tainty relation (49) [or of a corresponding bound such as
Eq. (120)] seems likely to be the most straightforward
way to obtain useful quantitative expressions for Fggb,
in the case where the clock state is prepared using an
approximate error-correcting code.

F. Clock state for interacting many-body systems

Consider now an arbitrary interaction graph, where each
vertex is associated with a single qubit [Fig. 9(b)] and
consider the Hamiltonian

J
H = 3 Z(zizj + 5. XX +5,Y,Y;),

(i)

(165)

where the sum ranges over all graph vertices i,j that are
connected by an edge, and where sy, s, are arbifrary real
coefficients. (In fact, the coefficients s,,s, may also vary
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for each pair of sites i,j, though we omit the depen-
dence here for clarity.) We recover the Ising model with
sy =8, = 0 and the Heisenberg model with s, =s, = 1.
We denote by m the number of edges in the graph, which
is also the number of terms in the sum.

We define the clock-state vector |{) as follows. Denote
by |0") and |1"} the all-zero and the all-one state. Choose
any bit string x and let |x) be the corresponding spin con-
figuration, where each bit corresponds to one of the qubit
basis vectors on the corresponding vertex. We assume that
X violates a number ¢ out of the m possible ZZ-interaction
terms, i.e., we denote by ¢ the number of pairs of bits
in x that differ and that are connected by an edge in the
graph. (It might not be possible to violate all the interaction
terms simultaneously, as the graph might be frustrated.) An
assumption we will need later is that the bit strings 0", 1",
and x all differ on at least four sites. Now define

1
1Y) = E[IO") +11") + %) + [®)], (166)

where the bit string X is obtained by flipping all the bits of
x. We then have

J
HIYy) = 2 [ml0") +m|1") + (m = 20)|x) + (m — 200 ]
J
+ 3 2 (XX + 5,3 [¥). (167)
(i)

The XX and YY operators applied on |¢) generate terms
associated with new bit strings where, each time, two bits
are flipped and a possible phase is acquired. These new
configurations are all orthogonal to |07), [17), |x), and |X)
thanks to our assumption that the chosen configurations
differ on at least four sites. So we have

(H)y = %[2 xm+2x (m—2c)]= %(m —c). (168)
With H = H — J /2(m — ¢)1 and |§) = H|¥), we see that

J ~
&) = Z[CIO”) +c|1”) — clx) — clX)]

J

(/)

To check the zero sensitivity-loss conditions (148), we
compute the following expression for any single-site oper-
ator O;,

J
(V10;1§) = g[c (010:10) + ¢ (1]041)

— ¢ (x|04lx;) — ¢ (%:|0[%) ]

J
+3 (Z;onf(sxm +5,%,7)|¥)
if

J
= g[c tr(0;) — ctr(0O)] +0=0,  (170)

where x; (respectively ¥;) denote the value of the ith bit
in x (respectively, X). The terms corresponding to XX and
YY interactions vanish because all configurations 07, 1",
x, and X differ on at least four sites, and XX and YY flip
two bits of the basis vector state on which they are applied
(with a possible phase). Therefore, the zero sensitivity-loss
conditions (151) are satisfied, and the clock state can suffer
a single located erasure while retaining full sensitivity.
The energy variance of the probe state is given by

ofy = (WI(H — (H)*|¥) = (€I§)

1
= ZJ%J + (contrib. from XX /YYterms).  (171)

The contribution from XX and YY terms is zero if the con-
figurations 07, 1", x, X all differ on at least five sites (or in
the case of Ising interactions with s, = s, = 0).

The question of whether this achieves n“ scaling
depends on how we choose the graph and the string x to
grow with n. In the case of a square lattice with nearest-
neighbor interactions, we have that the number of edges
scales like the number of vertices (m ~ 2n) and we can
simultaneously violate all ZZ interaction terms by choos-
ing an alternating configuration of 0’s and 1’s. In this
case o7 ~ J?n?, achieving Heisenberg scaling. For other
graphs, the question of whether o ~ n? is determined by
how the number of edges scales with the number of ver-
tices in the graph, and how many of those ZZ-interaction
terms can be simultaneously violated. If there is a linear
relationship between these quantities then Heisenberg scal-
ing is achieved, noting that only a single error at a known
location can be incurred without sensitivity loss.

2

G. Metrological codes from stabilizer codes

In this section, we present a general scheme to con-
struct metrological codes based on the stabilizer formalism
[63] and study some simple examples. We show that
our construction is strictly more general than constructing
time-covariant error-correcting codes. Our aim is to study
and illustrate our general construction; the Hamiltonians in
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our examples are not intended as practical schemes to be
engineered with near-term technology.

Consider the Pauli group G, on n qubits, defined as
comprising all tensor product operators on n qubits of
single-site Pauli operators and the identity operator, with
all possible prefactors =1 and +i [63]. Consider a sub-
group & C G, presented as S = (S}, . ..,S;) with indepen-
dent commuting generators Si, . ..,S; such that —1 € S.
The normalizer of S in G, is N(§)={E€G, : Vge
S, EgE' € S). A state is said to be stabilized by S if it
lies in the simultaneous +1 eigenspace of all § € S; the
elements of S are called stabilizers. The code space asso-
ciated with the Pauli stabilizer group S is the subspace
spanned by all states that are stabilized by S. If & C G,
is a set of error operators such that for all E,E’ € & either
E"'E ¢ N(S) or E"'E lies in S up to a phase, then a fun-
damental theorem of quantum error-correction states that
the subspace of all common +1 eigenstates of the opera-
tors {S;} forms a code space that can correct any error in
& . One defines the distance d of the code as the minimal
weight of an element in N(S) \ S, i.e., of a nontrivial log-
ical operation. Then, the code can correct any ¢ errors at
unknown locations as long as 2t 4+ 1 < d.

As a simple example, consider the n-qubit GHZ state
vector [¢) = [|17) + N,")]/\/f and the Hamiltonian H =

>7—1Z;. We have |§) o [[17) — 11")]/+/2. Suppose our
error model consists of an arbitrary number of X errors.
From Eq. (151), since acting with X operators on |{r) can
never generate any overlap with [§), we see that |{), |§)
form a metrological code against any number of X errors.
We now present an overview of our procedure using this
example. In our procedure, we first find a set {S;} of inde-
pendent commuting Pauli operators that stabilize |{). We
fix a set of error operators &, which we choose in our
example to consist of all n-qubit Pauli operators that are
a product of only 1’s and X ’s. Suppose that we are given
an operator H with the following property: for any opera-
tors E,E’ € &, there exists a § € § such that {H,S} =0
and [E"E,S] = 0. The state vector |¢) is stabilized by
the choice of commuting Pauli operators Z,Z;, ZyZs, ...,
Zn_1Zy, X ®". Multiplying all but the last stabilizer by X ",
we obtain the following choice of independent stabilizer
generators:

VXX, .. . X,, -X\LhVsX... X, ...,

—Xy... X, oY, 1 Y,, X®. (172)

For any site j, the operator Z; anticommutes with all the
above stabilizer generators. Our structural constraint turns
out to apply in this case; it will be detailed later. Our
construction then implies that the pair (|¥), H|¢)) is a
metrological code. Here, |£) = H|¥) is in fact the state
vector that is stabilized by all the operators {—S;}.

1. Statement of the construction

Our construction is given by the following theorem.

Theorem 4 (Metrological codes from stabilizer states).—
let S C G, be an abelian subgroup of the Pauli group with
—1 ¢ &, and let |) be stabilized by S. Let H be any Her-
mitian operator such that H|yr) # 0 and let & C G, be any
set of Pauli error operators. Assume that for all E,E’ € &,
there exists § € S such that {H,S} = 0 and [E"E,S] = 0.
Then |¢), H|Y) form a metrological code against &

We recall the definition of a metrological code as sat-
isfying the condition (154). On the other hand, a defining
property of a time-covariant code (recall definition in Sec.
VIIE) is that the Hamiltonian A must be a logical oper-
ator, and thus, for a stabilizer code, must commute with
all the stabilizers of the code. This is not in contradic-
tion with Theorem 4 since the stabilizer group S in the
theorem is not necessarily that of the code for which H is
a logical operator. Below, we present examples of metro-
logical codes; some are error-correcting time-covariant
codes in disguise, yet others cannot be written as a time-
covariant error-correcting code with similar distance as the
metrological code.

Proof—First, let Sy € S with {H,Sp} = 0; such a stabi-
lizer must exist from our assumption. We then have

(WIHIY) = (WIHS 1Y) = —(WISsHIY) = —(Y[HIY)
(173)

and thus (H)y = 0. Let

&) = H|Y),

with (§|y) = 0 automatically satisfied. Let E,E’' € &. We
need to show that Eq. (154) holds. From our assumption
there exists an S € S with {H,S} = 0 and [E"E,S] = 0.
We have

(174)

(EIETE|Y) = (Y|HETES|Y)
= —(V|SHEE|y)
= —(E|E"E|Y),

and thus (£|ETE|Y) = 0, confirming that Eq. (154) holds
and that |¢),|£) indeed constitute a metrological code
against &. |

In the remainder of this section we review some exam-
ples of codes resulting from the construction of Theorem
4. We begin by connecting our construction with error-
correcting codes in which the Hamiltonian is a nontriv-
ial logical operator, i.e., time-covariant error-correcting
codes. We present an example of a time-covariant code
based on the seven-qubit Steane code, and we then show
that all time-covariant error-correcting codes are special
cases of Theorem 4. We then show that there are metro-
logical codes that cannot be formulated in terms of a cor-
responding time-covariant error-correcting code; in other

(175)
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words, there are schemes that enable the communication
of a clock state through a noisy channel that achieve zero
sensitivity loss without having to construct a full quantum
error-correcting code.

2. Example based on the ||7, 1, 3]] Steane code

As an example of a time-covariant code, we consider an
example deriving from the Steane stabilizer code [64]. The
latter is given by the following generators and logical X, Z
operators:

81 = XaXsXeXr,
Sy = X X3 XX,
Sy = X1 X3 X5X7,
Sy = Z4Z5ZsZ5,

R (176)
Ss = 2237577,

Se = 21232577,

X = XiXo X3 Xq X5 Xe X7,
7 = 7,2,2: 7477 7.

Let |[/) = |+) be the state vector in the logical _space asso-
ciated with the +1 logical eigenspace of the X operator,
and consider the Hamiltonian

H =78 = Z12,75. (177)

The Hamiltonian is a logical operator, being stabilizer-
equivalent to the logical Z operator, and rotates the state
vector |¥) to |€) = H|¢¥) = |=). (The above choice of H
was preferred to the choice H = Z because it has lower
weight.) The code is therefore time covariant with respect
to the action of H, and we for this reason already know
that it is a metrological code of metrological distance 3. To
illustrate our construction, we explain how the same con-
clusion can be reached by applying Theorem 4. We now
define a set of stabilizer generators that serve to define the
state vector [{) of the resulting metrological code. The
new stabilizer generators {S;} are obtained by multiplying
each of the §,~ by X, all while including X itself, as

S) = X8 = X1.XXa,

S, =X8, = Xi X, Xs,

Sy =X8; = X, Xu X,

Sy = XS4 = X1 X0 X3 Y4 YsYe Y7, (178)
S5 = XS5 = X1 V2 V3 X4 X5 Y6 Y7,

S = X586 = Y1 X, Y3.X, Ys X Y7,

§7 =X = X1 XX Xa Xs X6 X

One can verify that H anticommutes with each §; listed
above. (For the application of Theorem 4, it is convenient
to use a choice of stabilizer generators that anticommute
with H.) Let & be the set of all single-site operators. For
any E,E' € &, we will show that there is a § € S with
{H,S} = 0 and [E"E, S] = 0. If one of the S; has support
outside of that of E'TE, it will do the job. Alternatively,
any product of an odd number of the §; will also do, for
instance,

85185283 = X3X5Xs,
S185:87 = X1.Xe X7,
§528387 = X3.X4.X7.

(179)

One can verify that for any two among the seven sites, at
least one operator among S1, 82, 83, 515293, 815257, $28387
has its support outside of those two sites. Since these oper-
ators all anticommute with H, we have that for all E,E’ €
&, there is a S € (S, ...,S7) such that [ETE, S] = 0 and
{S,H} = 0. From Theorem 4, we see that |¢) and |&) =
H|y) must form a metrological code against &, and is
therefore a metrological code with metrological distance 3.

3. Time-covariant codes

In this paragraph, we show that the assumptions of
Theorem 4 are in fact always satisfied for time-covariant
stabilizer codes like the seven-qubit Steane code example
above.

Let S = (Sl,...,gg) be a stabilizer code with a non-
trivial logical operator Z. Let X be a logical opera-
tor that anticommutes with Z, and define the stabilizer
group S = (ygl,ygg, .. ,ysg,y). Observe that Z anti-
commutes with all the chosen generators for S. (Such an
operator X must always exist, cf. e.g., [63, Proposition
10.4].)

We show the following: for any Pauli operator 4 ¢
N(S)\ S, there exists S €S such that [S,4] = 0 and
{S,Z} = 0. This property implies that for a given set of
errors & that are correctable for 3, i.e., if we have EE ¢
N(.§) \.§ forall E,E’ € &, then the conditions of Theorem
4 are satisfied, where the Hamiltonian is H = Z.

Suppose first that 4 € S C S. Then A commutes with
all stabilizers in &, including X, which anticommutes
with Z. Now suppose that 4 € G, and 4 ¢ N(g), 1.e.,
there is a S € S with {4,8} = 0. If [4,X] = 0, then the
choice S =X € S satisfies [S,4] = 0 and {S,Z} = 0. If,
instead, we have {A,Y} =0, we can set § = XS to find
SZ =X8Z =XZ8 = -ZXS = —ZS and AS =AXS =
~XAS = XSA = SA, and thus {S,Z} = 0 and [S,4] = 0
as required.
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4. Example: a ||4, 2, 2]] code state with an auxiliary
qubit

Whereas in the earlier seven-qubit Steane code example
the state vectors [¢) and |&) both lie within a subspace
of a distance d = 3 code, the following example illus-
trates a situation in which |¢) and |&) cannot be contained
in a code space that can correct the same errors against
which the states form a metrological code. In other words,
Theorem 4 can be used to construct metrological codes
that cannot be formulated as time-covariant quantum error-
correcting codes with respect to the same errors. Consider
the five-qubit Pauli operators

S1 = X1 X,
S = X3Xy,
S; = X143, (180)
Sy =X,
Ss = Z1227374.
We can see that the stabilizer group & = (S1,...,S85) is

generated by

(1) the stabilizers for the [[4, 2, 2]] code on the first four
qubits (£12223Z4 = S5 and X1.X2X3X4 = 5152);

(i1) the logical X operators of the first and second log-
ical qubits of that [[4,2,2]] code (X1 X3 = §; and
X1X> = 81); and

(ii1) an independent stabilizer fixing the state of the fifth
qubit (X5 = Sy).

We choose the Hamiltonian

H = YZ4Ys. (181)

The Hamiltonian can be written as a product of three terms:
a logical Z operator on both logical qubits of the [[4, 2, 2]]
code (Z1Z4), a Y operation on the fifth physical qubit, and
a single X; on the first physical qubit. The Hamiltonian is
not a logical operator of the [[4, 2, 2]] code. Also, a suitable
permutation of the qubits would make H geometrically
local, should this property be desired.

We can verify that H anticommutes with each of the
stabilizers S, ...,Ss. Furthermore, for any two sites i,j,
one of the S acts as the identity on the sites i, ; therefore,
for any two-site operator 4, there always exists a stabilizer
S with [§,4] = 0 and {§, H} = 0. We can apply Theorem
4 to deduce that |y}, |&) define a distance-3 metrological
code.

The state vector |Y) can be expressed in terms of the
logical +1 X eigenvectors |[++) of the [[4, 2, 2]] code, and

in terms of the |t); physical state vectors, as

V) = [++) 1234 ® |+)5

(++++H+———+). (182

I
V2

Recalling Y|+) = Fi|F) and Z|£) = |F), we find

1
:H —_— e — —_— —_— -

|€) = H|Y) \5( |- +4+—=)+ [+——+-))

= (= = ++-) ® )

= ..
(183)

We see that

(VIXs|¥) =1, (E|X5[8) = —1, (184)

so it is not possible for ), |€) to lie in the code space of
a distance d = 3 quantum error-correcting code.

This example shows that metrological codes are a
class of codes that is broader than traditional error-
correction codes as there are certain errors that the former
does not have to completely correct. Metrological codes
might therefore offer additional possibilities to find noise-
resilient schemes for communicating clock states across a
noise channel.

5. Metrological toric code

A further example application of Theorem 4 is based
on Kitaev’s toric code [65,66]. We consider a two-
dimensional square lattice of dimension L x L that wraps
around a torus. We define star operators Ay and plaquette
operators By as depicted in Fig. 10(a), where x ranges over
all pairs of the lattice coordinates.

First, we can always use the toric code to form a time-
covariant code, by choosing a state vector |} in the code
space (for instance, |[++)), and choosing the Hamiltonian
to be a logical operator (for instance, Z; + Z,). This code
being by construction time covariant, it is necessarily a
metrological code with distance equal to the lattice side
length L.

For the sake of the example, we construct here a metro-
logical code from the toric code that cannot be written as
a time-covariant error-correcting code of similar distance.
Our example is meant to (i) illustrate our construction as
combining states that lie either in the simultaneous 41 or
simultaneous —1 eigenspaces of all the stabilizer gener-
ators of some given stabilizer code, (ii) furnish another
example of a metrological code that cannot be phrased in
terms of a time-covariant error-correcting code with simi-
lar distance, and (iii) illustrate how a metrological code can
be a terrible quantum error-correcting code—any single
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@

FIG. 10. Metrological code based on the toric code. (a) Star
(4x) and plaquette (B,) operators generate the stabilizer group
of the toric code, where x is a pair of integer coordinates on the
two-dimensional lattice. Two encoded logical qubits have logi-
cal Pauli operators X |, Z|, X2, Z» corresponding to strings of
physical Pauli X or Z operators that wrap around the torus. (b) In
our metrological code example based on the toric code, we map a
state from the toric code to a state of a related code, which we call
the antitoric code. The antitoric code is the subspace stabilized
by all the operators {—A4,} and {—By}. Assuming the lattice side
length is even, the depicted operator H anticommutes with all
star and plaquette operators, meaning that it maps a logical state
of the toric code to a logical state of the antitoric code. Picking
|3} in the code space of the toric code and choosing the depicted
operator H as the corresponding Hamiltonian yields an exam-
ple of a distance-Q(L?) metrological code. Interestingly, this
metrological code cannot be phrased in terms of a time-covariant
error-correcting code of similar distance, since |{) and H|y) can
be distinguished by measuring a single star or plaquette operator.
This example shows that there are additional possible schemes
for sending a clock state through a noisy channel without any
sensitivity loss, without resorting to a time-covariant quantum
error-correcting code.

plaquette or star operator acts nontrivially on the sub-
space spanned by the state and its time-evolution state. Our
example is more of a conceptual illustration than a prac-
tical proposal, as it requires a Hamiltonian that is highly
nonlocal.

To better explain our example, we first define the anfi-
foric code as the code whose code space is stabilized by all
negative star —A4, and negative plaquette operators —B.
Being equivalent to the standard toric code, the antitoric
code also has distance L and we can see it also has the
logical operators X.X,,Z,,Z, defined as for the toric
code.

As the state vector [{) of our metrological code, we
simply choose a logical state vector of the toric code; we
can conventionally fix it to be @)mﬁc stabilized by AW
along with all the toric code stabilizers {44} and {By}. For
the Hamiltonian we choose an operator H that anticom-
mutes with all star and all plaquette operators. Such an
operator is depicted in Fig. 10(b); we assume for conve-
nience that L is even. The operator H has the property that

it maps a code word of the toric code (i.e., a state vector |r)
satisfying Ax|¥) = [¥) = Bx|¢¥)) to a code word of the
antitoric code (we have A\H|Y) = —HA|Y) = —H|Y)
and similarly for By). We can verify that the assumptions
of Theorem 4 are satisfied. The operator H anticommutes
with our choice of stabilizer generators for |{). Also, for
any operator O of weight < L?/4, there must be a star or
plaquette operator that has disjoint support with, and there-
fore commutes with, O. [Indeed, there are (L/2)? disjoint
plaquette operators that cover all qubits; an operator that
has overlapping support with all plaquette operators must
therefore have support on one qubit in each plaquette. The
bound can presumably be improved by accounting for the
star operators as well.] As a consequence of Theorem 4, the
state vectors (|¥), &) = H|¢¥)) form a metrological code
of distance L2/4.

Is the space spanned by (|}, |§)) secretly a code space
of a similar-distance code in which H acts as a logi-
cal operator? We can rule out this possibility because the
state vectors |¢) and |§) can easily be distinguished by
measuring any single star or plaquette operator, recall-
ing that Ay|Y/) = By|¥) = |) but that A,|§) = By|§) =
—|&). The environment only has to measure a weight-4
operator to determine whether ) or |£) was encoded.

6. Simultaneous +1 eigenspace and simultaneous —1
eigenspace of stabilizers

The intuition behind the construction in Theorem 4
is that if we can choose |¢) to be stabilized by S =
(S1,...,8), then we might want to pick |§) to be
stabilized by the closely related stabilizer group &' =
(—S1,...,—8¢). This idea was already illustrated by the
example above based on the toric code, where the Hamil-
tonian maps a code word of the toric code to a code word
of the antitoric code. We now show in general that such a
construction is a special case of Theorem 4.

Let &=(S1,...,8) be a subgroup of the Pauli
group with —1 ¢ S, where Sy,...,S; are a choice of
independent commuting stabilizer generators. Let &' =
(—S1,...,—8¢). Let & denote any set of Pauli operators
with the following property: for any E, E’ € &, there exists
S € S such that —S € S’ and such that [E"E, S] = 0.

The two stabilizer groups S, S’ share many stabilizers,
including 8152, 8183, ..., $15¢. We can pick a Pauli oper-
ator H such that H anticommutes with §; and such that H
commutes with each of the operators 5152, $153, ..., S1.5¢
(see, e.g., Ref. [63, Proposition 10.4]). Observe that for all
i=2,...,£ wehave

HS; = HS?S; = —S1HS1S; = —S?S;H = —S;H  (185)

and thus we have that {H,S;} =0 foralli=1,...,£. Sup-
pose |¢) is stabilized by S. Then H|yr) is stabilized by &,
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since

S;H|Y) = —HSi|¥) = —H|Y). (186)
Furthermore, supposing E,E’ € &, by assumption we
have S € S such that —S € S’ and such that [ETE,S] =
0. We can write §=35;85;,---§;, in terms of our
choice of independent generators S; above. Writing —§ =
(—1)’"+1(—S;1)(—S;2)---(—Sl-m), we see that m must be
odd, as otherwise, we would have

—S = (=1)(=8y)(=Sy) - -- (=S,) €S (187)
This observation implies that {H, S} = 0, because we can
anticommute H through the product of an odd number of
S:’s. Therefore there exists S € S such that [ETE,S] =
0 and {H,S} = 0. At this point, all the assumptions of
Theorem 4 are satisfied, implying that [¢), H|Y) form a
metrological code that can protect against the error set &

H. Further examples of metrological codes

We now present two additional examples of state vec-
tors ), |&) that satisfy the zero sensitivity loss conditions
(152). These metrological codes serve to illustrate the
sense in which the conditions (152) are weaker than the
conditions for quantum error correction.

1. Single-qubit subject to complete X | Y dephasing

Consider the qubit example studied in Sec. IV B, where
the clock state vector |+) evolves according to H = wZ/?2
and is exposed to complete dephasing along the X axis
around a given time #y. From Eq. (90) we immediately see
that the zero sensitivity loss condition (148) is satisfied for
all #p. In this setting, the clock state loses no sensitivity
after complete dephasing in the X axis for any #y, with
the exception of possible discrete points where the rank
of pp(f) changes (see Sec. [V B).

Alternatively one could also check the form (151) of the
zero sensitivity-loss conditions. For any fy, we have from
Eq. (29) that

& (o)) = H|Y (o))

- g[cos(%ﬁ)y—) - isin(%ﬁ})l-}-)]. (188)

At this point, we can compute

(U HE) + El+) (1Y)
= ;[—icos(%ﬁ}) sin(%ﬁ)) —I—isin(%ﬁ}) cos(%tﬂ)]
=0, (189)

and  similarly for (¥[|=)(—[I§) + (§|[-(—I[¥) =0,
showing that Eq. (151) are satisfied for all #.

An interesting aspect of this example is that there exists
no recovery operation that can restore the noiseless clock
state vector |y (fp + df)) accurately to first order in df. Let
us consider for simplicity the point fy = 7 /(2w). Using
Egs. (29), (31), and (89), we have at that point

| =

Y (to) = |+i)(+il, ppto) =

]

(190)

— D

Y (to) = —gx, Dx B (t0)) = —%X,

where |+i) := [[1) + i|¢)]/\/§. We seek a completely
positive, trace-preserving map Rec such that Rec(pp(ty +
dt)) = ¥ (to + dt) + O(dt?), which means that

1
Rec(z) — |+i)(+i], Rec(X)=X.

(191)
There is no completely positive map that satisfies these
constraints. If there was such a Rec map, then we
would have Rec(|+)(+]) = Rec(1/2) + Rec(X/2) =
[+){+i| +X/2=1/2+Y/2+X/2. One can -easily
check that the final expression has a negative eigenvalue,
contradicting the requirement that Rec be completely pos-
itive. We conclude that in general, a metrological code
does not necessarily come with a recovery operation that
enables an agent to recover the noiseless clock state, even
if the agent can sense the parameter to the same precision
as before the application of the noise.

2. A superposition of a simple state and a generic pure
state

Consider a one-dimensional chain of n qubits. Consider
a generic pure state vector |x), chosen, for instance, ran-
domly from the Haar measure on the n-qubit system. For a
given d,, > 0, let us perturb the state vector [x) to |x) by
projecting it onto the subspace of all computational basis
states that do not contain fewer than a number d,, of 1°’s,

1) =TMix), = [T Kl

[x|Zdm

(192)

If | x) is generic in some suitable sense (e.g., chosen Haar
randomly), then |x) &~ |x) and [||x}|| & 1. The present
example metrological code is constructed by picking
[¢) = |0"), which is the computational basis all-zero state,
and [£) = [I1)1I7" 1X) = |x)-

We proceed to check that the zero sensitivity loss con-
ditions (148) are satisfied as long as operators of the
form EI,E;c have weight at mostd,, — 1. If u C {1,...,n}
denotes a subset of at most || = d,, — 1 systems, then the
reduced operator of |x){0"| on the sites labeled by p can
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be written as

try, [1X)(07[] = (L4, ® (0" ) [3) (0% =0, (193)
because | x) has no overlap with bit strings that have (n —
d,,) or more zeros. Hence,

(1) (€l + 1€)(W]) = 0. (194)
For any operator O of weight wgt(O) < d,,, the condition
(155) is thus satisfied and [v), |€) form a metrological code
of distance d,,.

An interesting observation is that this code does not
form a quantum error-correcting code in the usual sense.
The reason is that the environment, by receiving a few
sites, can tell the difference between whether the state vec-
tor |) or the state vector |£) was prepared. More precisely,
the environment can test whether the received qubits are all
in the state vector |0). If this is the case, it is much more
likely that the original state vector was |{) and not |&), as
long as try, () is sufficiently distinct from |0)(0[, (which
is the case for a Haar-random state).

For some choices of |x), the metrological code can be
interpreted as a quantum error-correcting code that protects
only against certain types of errors. For instance, we can
choose |x) = [1)®" in the above and our conclusions still
hold; this choice corresponds to a classical repetition code
that can correct bit flips but which is vulnerable to phase
flips.

Yet, there are choices of |x) for which this interpreta-
tion appears more problematic. Consider for instance the
choice |x) = |+)®". From the above argument we have
that |) = |0)®" and |£) ~ |+)®" form again a metrologi-
cal code. Again, the environment can distinguish |¢) from
|€) with access only to a few sites. Here, the environment
can use either an X or a Z measurement to (imperfectly)
distinguish between the two state vectors |0) and |+).
It is hence not obvious how to interpret this code as an
error-correcting code that is tailored to biased noise.

While this example might illustrate the conceptual
differences between quantum error-correcting codes and
metrological codes, we expect this construction of a metro-
logical code to be of limited practical use as it would
require a Hamiltonian that is extremely nonlocal.

VIII. MANY-BODY SYSTEM SUBJECT TO IID
AMPLITUDE DAMPING NOISE

In this section we consider a system consisting of # spin-
1/2 particles evolving under a many-body Hamiltonian H
that is either noninteracting or that has Ising interaction
terms. The system is exposed to 1ID amplitude damping
noise. First, we consider a noninteracting Hamiltonian with
an on-site magnetic field, and in the second part of this
section we consider a Hamiltonian with Ising interactions.

We consider an 1ID amplitude damping noise model,
meaning that each site is independently exposed to the
noisy channel

NBO=EP OEP +EP O EPT,

g _ (V1-p 0 g _ (0 0 (195)
o=\ 0o 1) U=\ o)

sticking to the convention that the first basis vector is |1)
and the second one is || ). The amplitude-damping noise is
often also called the spontaneous emission channel.

Asin Fig. 1, the system is initialized in a state | ;) and
evolves according to H; at time #p we apply the noisy chan-
nel [V, g;)) ]®" to obtain Bob’s state. We seek to characterize
the Fisher information of Bob’s state with respect to time.

In this section, we present simple numerical computa-
tions of the upper bound (118) for IID amplitude damp-
ing noise for different clock states. In the first part of
this section, we suppose the spins are exposed to a uni-
form external magnetic field aligned along the Z axis. We
present numerical calculations of Bob’s Fisher information
and our lower bound (118) for a choice of clock states, and
we numerically optimize the initial state to achieve bet-
ter output sensitivity. In the second part of this section, we
place the spins on a 1D chain with strong Ising interactions.
We present numerical calculations of Bob’s Fisher infor-
mation and our lower bound (118) for a choice of clock
states; we numerically show that the sensitivity loss for the
metrological code state given in Eq. (166) is suppressed to
first order in the amplitude damping parameter.

A. Noninteracting Hamiltonians

The system of n spins is assumed to evolve under the
Hamiltonian

" w
H= Z 52 (196)
i=1

We compute Bob’s Fisher information with respect to time
of a selection of states after exposure to the channel N =

WV, A“]’:{]W. First we consider the GHZ state, which has the
optimal sensitivity if no noise is present:

1

= e e . 197
|¥Guz) ﬁ[ITT N+ D] (197)
The GHZ state satisfies
FrticedVonzl = 4(H?)guz = n’e?.  (198)

We can also consider the product state vector of all spins
pointing in the +X direction,

1

@n
ﬁ[IT)+I¢)] -

[Yy) = [+H)®" =

(199)
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Then

Falice [¥+] = 4(H) 4 = nos”. (200)
Our upper bound (118) on Bob’s Fisher information for
these states is presented for n = 12 and for n =50 in
Fig. 11. In Figs. 11(a) and 11(b) are also depicted an
ad hoc lower bound for the state vectors |Ygpz) and
|+") for the same values of n and w. We can see that
for our choice of the amplitude damping noise model
and at least for our choice of states, the upper bound
on Fgg,, provided by Eq. (118) is reasonably tight for
k = n. The inset of Fig. 11(a) depicts the same bound
for different choices of the value £k = 1,4,8,12. Recall
that the bound includes a projection onto Eve’s sub-
space associated with error operators of weight at most
k. The probability that this projection fails is the total
probability of observing an error with weight greater
than k; this probability is of the order of p**1. In the
inset of Fig. 11(a), for k = 1,4,8 we display gray lines
identifying the values of p for which p*! = 10—3. Val-
ues of p beyond the corresponding gray line represent

600 -
(a) 3 600 T,
uw = (k = 1,4,8)
500 A 400
k=4
400 200 :, / k=8
5 300 - 01, . k=12
L 0.0 0.5 p
200 7 =|guz) ==|+") =|tunit.)
100 J=3698 = [|Tn) + |h?>]/‘/§
0 =
) I T ) 1
0.0 0.2 0.4 0.6 0.8
On-site amplitude damping parameter p
FIG. 11.

situations in which the projection is expected to fail
with probability greater than the order of approximately
10~3. Here, we see that our bound is indeed reason-
ably tight up until the corresponding value of p. In the
inset of Fig. 11(b), we determine more precisely the
total weight of the events neglected by ignoring Kraus
operators of weight greater than k. Namely, for k£ =
1,2,5,10, we compute the smallest value of p for which
D iiok tr(EiEx [¥Ghz) (Venzl) > 1073, We see that these

values of p correspond approximately to where our upper
bound (118) fails to accurately predict the value of the
quantum Fisher information on the state vector [{¥guz).
We can ask, which state vector |{) has the best sen-
sitivity after application of the noisy channel for a given
value of p? Here we use the understanding brought by
our main Fisher information trade-off relation. In this case,
Eve receives any photons emitted by spontaneous emis-
sion, which tell her exactly which sites suffered a decay.
As a consequence, if Eve observes a number k of pho-
tons, then she can safely guess that the energy of Alice’s
state must have been at least the energy corresponding to k&
excitations. Eve has therefore obtained information about

(b) 10000 -
8000 -
6000 -
0.0 0.1 p

4000 - !?GHSP) | ) |1\‘{’umf )

258 = I + )1/ V2
2000 -
0 -

1 ] T T
0.00 0.05 0.10 0.15
p

Quantum Fisher information of a system of n spin-1/2 particles with the Hamiltonian H = ), wZ;/2 (with @ = 2) after

the application of an amplitude damping channel of parameter p on all sites. (a) Here n = 12. Solid lines depict our upper bound (118)
with k = n = 12 for the state vectors |Yguz) (red), |[+") (blue), and |yryif) (green), which are defined in the main text, as well as for
the family of states corresponding to an even superposition of the most excited state and a symmetric state (Dicke state) |A7) with
a fixed number n — j of excitations (shades of orange) with j = 3,6,9. Dotted lines are corresponding ad hoc lower bounds for the
state vectors |{¥guz) and |+") (see main text). Dash-dotted lines are the corresponding exact values of the quantum Fisher information,
which can still be directly computed for n = 12. The curves corresponding to the superpositions of pairs of Dicke states illustrate
situations where the upper bound is not tight. The inset depicts our upper bound (118) for different values of k = 1,4, 8, 12 for the state
vectors |Y¥guz), |[+") and |Yrmir). The value of k corresponds to a projection onto the subspace on Eve’s system associated with errors
of weight less than or equal to k, which is included in our bound (118). The three vertical gray lines indicate values of p for which
p1 =1073 for k = 1,4, 8; these lines roughly indicate the values of p beyond which the this projection is expected to fail with a
probability exceeding approximately 103, Indeed, for our choice of noisy channel and states, our bound (118) for each k is reasonably
tight up until values of p for which p**! is no longer negligibly small. (b) The same computations are repeated for n = 50 and @ = 2.
Solid lines depict our upper bound with k = » for the same states as in (a), and dotted lines depict an ad hoc lower bound for |+") and
|¥Guz)- The red vertical lines in the inset depict values for p for which the total weight of the IID amplitude-damping Kraus operators
E, with |x| > k exceeds 103 for k = 1,2, 5, 10 when applied onto the GHZ input state vector |guz). These values of p are where
our upper bound (118) for the corresponding k value is expected to no longer be accurate.
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the energy of Alice’s state. This observation provides a
simple explanation for why the GHZ state has a high Fisher
information loss even for small values of p: when Alice
exposes a GHZ state to the noise, then Eve can estimate the
energy of Alice’s GHZ state by noting whether or not she
observes a photon. If Eve observes even a single photon,
then she can safely guess the energy associated with the
all-excited state, and if she observes no decay, she guesses
the energy of the ground state. [Her guess is wrong with
probability (1 — p)”, corresponding to the probability of
the all-excited state suffering no decay.] Our trade-off rela-
tion thus tells us that we seek a state with a large energy
spread, but for which a decay would not betray the value
of the total energy of the state. As the effect of the decay
becomes more significant with increasing p, some of the
energy spread is sacrificed in order to make the state more
resilient to Eve’s probe.

Here we consider states that are invariant under permu-
tations of the n spins, motivated by the fact that the Hamil-
tonan is permutation invariant (see also Refs. [41,42]).
These states live in the symmetric subspace and can be
written in the basis of Dicke states of the symmetric sub-
space. A Dicke state is a permutation-invariant state with
a fixed number of excitations. More specifically, for g =
0,...,n we define

n —1/2
LARS (q) > v,

[x|=q

(201)

where the sum ranges over all strings x withx; = 1, |, and
where |x| denotes the number of sites i where x; = |. In the
standard basis {|0) = [1),|1) = || )} for spin-1/2 particles,
the value |x| is the Hamming weight of the corresponding
computational basis state x.

A general pure symmetric state vector can therefore be
written as

W) =D VqlHy). (202)
g=0

We consider symmetric states for convenience, although
the optimal state in such settings need not be symmetric
[67].

We can consider an even superposition of two Dicke
states (as in Sec. IVE). Namely, for 0 < q1,q2 < n we
consider the state vector

~ 1
1Vay:0,) = E[Ihzl) + 1hy,)]- (203)

Our upper bound on the sensitivity of the state vector
[¥q,:4,) for all g1,q> is depicted in Fig. 12 for n = 50 and
the values of p = 0.01,0.05,0.1,0.25. In contrast to the
case of erasures (Sec. IVE), the states among this fam-
ily where our bound is large have one of the terms being

close to the maximally excited state (g1 = 0 or g2 = 0).
[The bound is not necessarily expected to be tight, in light
of the gap that is apparent for » = 12 in Fig. 11(a) between
our bound and the exact value of the quantum Fisher infor-
mation. The discussion that follows aims to identify states
that can potentially have high sensitivity, while ruling out
states that are certain to have low sensitivity.] This prop-
erty can again be understood from our trade-off relation. In
the case of erasures, Eve receives the entire reduced state
of the systems that have been lost. If g = 0 or g2 = 0, then
the reduced state on each subsystem is the pure state vector
[1); since it is a pure state, it is easier for Eve to distinguish
it from the reduced state of the other Dicke state vector
|27,). In the case of amplitude damping, Eve knows only
whether a decay happened or not on each site and she can-
not access the full reduced state. An alternative phrasing of
this argument is to express erasures as a random operation
X, Y, Z applied onto each site; equivalently, a random oper-
ation from the set {0y, 0_, Z} is applied on each site, where
oL =[X x£iY]/ V/2 are the creation and annihilation oper-
ators of the qubit excitation on a specific site. In the case
of amplitude damping, the Kraus operators have no over-
lap with o, meaning that physically, there is no event in
which excitations are created in the system. Such events,
however, happen in the case of erasures. If Eve receives
the information that k such events have occurred, she can
safely assert that the energy of Alice’s state could not have
exceeded the energy of the state that can still accommodate
k further excitations. Thus, the state g; = 0 can easily be
ruled out by Eve in the case of erasures if she receives a
report of even a single o, event.

Another interesting choice of state is the uniform super-
position of all Dicke states, giving rise to

| Yamif) = (204)

1 n
hLAR
vn+1.7

The intuitive reason we expect this state to achieve a
good sensitivity after the noise is that if Eve observes
emitted photons, she gains comparatively little informa-
tion about the energy of Alice’s state as opposed to if the
state is a superposition of few spaced-out Dicke states. The
Fisher information of this state after the application of the
amplitude damping noisy channel is depicted in Fig. 11.
A more systematic, numerical optimization of Fpep by
varying Alice’s state using different Ansitze for the coef-
ficients {,} indicate that the Fisher information obtained
by states of the form (203) can be marginally exceeded for
specific values of p by states for which the amplitudes {1/}
are concentrated around two values g = 0 and some value
q>, but with some broadening to include some weight on
neighboring Dicke states to g3. Interestingly, there appears
to be many states with very different profiles of {y,} that
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FIG. 12. Upper bound (118) on the quantum Fisher informa-
tion of a superposition of two Dicke states on n = 50 spin-1,/2
particles after being exposed to IID amplitude-damping noise.
A Dicke state with g excitations is an even superposition of all
states with exactly g excitations. For each g, 2, the considered
state is an even superposition of the two Dicke states with a num-
ber q; and g; of downwards-pointing spins, respectively. Each
plot corresponds to a different value of the single-site amplitude-
damping noise parameter p. Our bound attains its maximum
on this family of states (black crosses) for states that are an
even superposition of the highest excited state and of a weakly
excited Dicke state that is separated from the ground state. This
separation hinders Eve from accurately guessing the energy of
Alice’s state, which via our trade-off relation improves the state’s
sensitivity after application of the noisy channel. The bound is
computed with k = n = 50.

achieve a very similar sensitivity after the application of
the noisy channel.

One particular such state is the state vector |Y¥half.Gauss)
of the form (202) where the ¥, coefficients are a half-
Gaussian centered on the all-excited state as

n 1 _¢ )2
Whatcomss) = Y Valif), Vo= ¢ 22, (205)
q

where c is determined from the normalization condition.
Empirically, we find that this state with a value of w = 0.4
yields a sensitivity after application of the noisy channel
that is competitive with respect to the other studied states.
The half-Gaussian spreads over the entire Dicke basis.
The amplitude of the ground state is ¥, = e~ /@)y ~
0.044. Here again, the state vector | Y. eGauss) balances
a broad spread in energy values while still preventing Eve
from easily finding out the energy of Alice’s state.

For our numerical calculations, we employed the stan-
dard Python NumPy and SciPy toolboxes along with
QuTip [68,69]. The permutation invariance of our set-
ting greatly simplifies the calculation of terms of the form

U'(E:,Exlff) and tr(EI,Ex{H,i,&}) because Ey is a tensor

product of single-site operators. Similarly, the reduced
operator on a given number & of sites of any operator act-
ing on the symmetric subspace can be computed easily by
combinatorial considerations in a basis of the symmetric
subspace [41-43]. Even for n = 50, our pinched bound
is easy to compute even for k ~ n in the permutation-
invariant setting: to determine the diagonal matrix ele-
ments associated with J(?(uf;) and ﬁ({ﬂ, ¥}, it suffices to
compute terms of the form tr(EIExlff) and tr(EIE‘{H, v})

for operators Ey of the form E®" @ ES"™™ (the other
terms are determined by symmetry).

B. Strongly interacting Ising Hamiltonian with a noisy
channel

Consider a one-dimensional spin chain with nearest-
neighbor ZZ couplings, with the Hamiltonian

(206)

Our upper bound on Bob’s sensitivity to time, computed
using the expression (118) for various states, is plotted
in Fig. 13 for n =12 and n = 50, with J =2 in both
plots. We first consider the state vector corresponding to
an even superposition of a ferromagnetic all-zero state and
an antiferromagnetic state vector

1

V2

Since [lJ44 ...) and |[ 1)1 ...) are energy eigenvec-
tors of respective energies w(n — 1) and —w(n — 1), we
see that the state vector |Yr_ar) has energy variance
off(i,h:_AF) = w*(n — 1)2. For comparison, we compute the
true values of the Fisher information (for n = 12), plotted
as dashed lines in Fig. 13(a), as well as an ad hoc lower
bound, plotted as dotted lines. As can be seen in Fig. 13,
our upper bound yields tight bounds on the time sensitiv-
ity of the many-body interacting probe, as witnessed by its
proximity to the true value and to the ad hoc lower bound,
provided p is not too large and k can be taken to be large
enough.
The next probe state vector we consider is

[VEar) =

[HALL )+ 1At 0] (207)

1
|Vcode-F-AF) = E[IHH It

+HA ) FINI LD (208)
The state vector |Ycoder-aF) 1S the state (166) using the
antiferromagnetic configuration as the bit string x. Recall
that this state satisfies our Knill-Laflamme-like conditions
for a single located error. Here we study how this state’s
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FIG. 13. Numerical calculation of the upper bound on the sensitivity of a many-qubit state after [ID amplitude-damping noise,

for different states evolving according to the one-dimensional Ising Hamiltonian H = Zj (J/2)Z; Z; . (a) Upper bound on Bob’s
Fisher information Fpg(f) for n = 12 qubits as a function of amplitude-damping parameter p, for the state |1/p_ar), which is an even
superposition of a ferromagnet state and an antiferromagnet state (in red), for |Vcoderar), Which satisfies our Knill-Laflamme-like
conditions for a single located error (in green), and for the spin-coherent state vector |+)®" where |4) is the +1 eigenvector of X (in
blue). Spin-coherent states are typically used in non-quantum-enhanced metrology. For each state, bounds are shown for various values
of k, where k is a parameter in the additional noisy channel acting on Eve’s system, which is used to derive the upper bound; bounds
with larger values of k are harder to compute but are tighter. The upper bounds can increase again for p 2 0.4 because the bound
accounts only for low-weight Kraus operators, and higher-weight errors cannot be ignored in this regime. Dashed curves indicate the
true Fisher information values, determined by direct computation, and the dotted lines are lower bounds associated with |{g_sF) and
|¥coder-ar)- The red curves for k = 6,7, 8, the associated true value, and the lower bound appear superimposed. (b) Upper bounds
for the states | g ar) and |Ycoge-r-AF) for n = 50 qubits, enlargement of low values of p. Dotted lines are lower bounds on the Fisher
information for these states. Computing the true values of the Fisher information in this regime would require more advanced methods,

such as tensor networks [28].

sensitivity is affected when exposed to IID amplitude-
damping noise. Our upper bound on Bob’s Fisher infor-
mation via Eq. (118) is plotted in Fig. 13 for n = 12 and
n = 50, alongside that of |{g_ag). The probe state remains
almost maximally sensitive when p is small, in contrast to
the probe |Yr.ar), which immediately loses sensitivity at
what appears to be a linear rate with p. This is a manifes-
tation of the fact that the sensitivity of the probe state is
unaffected by a single error, and only in the event that two
simultaneous errors occur does the sensitivity decrease.

Finally, we consider for comparison the natural probe
state given by an ensemble of independent spins, each
pointing in the X direction

+) =1+ +)® - ®|+), (209)

where |[4+) = [|1) + |J,)]/«/§ is the +1 eigenvector of X.
Our upper bound computed for the spin-coherent state vec-
tor |[+") is plotted in blue in Fig. 13. We can see that this
probe state performs significantly worse than the entangled
probe states for p < 0.4. This is expected, since such a
probe’s noiseless sensitivity scales only linearly in n, as
opposed to the quadratic scaling of the sensitivity of the

[¥raF) and |Yeode-F-AF) probe states. However, the robust-
ness of the spin-coherent state to the noise is significant. At
larger values of the amplitude damping parameter (p ~ 0.5
for n = 12), the other probe states have all but lost their
advantage in sensitivity.

For our numerical calculations, we employed the stan-
dard Python NumPy and SciPy toolboxes along with
QuTip [68,69]. Our source code is published on Github
[70]. To compute the trace terms in Eq. (118) we express
[¥) and H|v) as superpositions of a small number of com-
putational basis vectors over the n sites. The traces then
factorize into tensor factors enabling their efficient com-
putation. For the spin-coherent state we work with the
local X basis instead of the Z basis, such that the spin-
coherent state becomes a basis state in this picture. The
direct computation of the Fisher information is performed
via an eigenvalue decomposition of the full n-body noisy
probe state pp to transform the anticommutator equation
1/2{ps,R} = N (—i[H, ¥]) in a basis where pp is diag-
onal, and then solving elementwise to determine R. The
ad hoc lower bound is computed by numerically solving
the symmetric logarithmic derivative in a restricted sub-
space consisting of the computational basis vectors that
appear in the decomposition of the probe state and those bit
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strings that are close by in Hamming distance. The result-
ing value is guaranteed to be a lower bound, because the
map that projects the state down to any subspace of the
state space is a trace-non-increasing, completely positive
map for which one can apply the data-processing inequal-
ity satisfied by the Fisher information [19] (see Proposition
13 in Appendix C for details). It is likely the quantum
Fisher information in this setting can also be computed
based on existing techniques, such as those introduced in
Refs. [21,31,53,71].

IX. CONCLUSIONS AND OUTLOOK

Our results present a new paradigm for characterizing
the sensitivity of a quantum clock or sensor when exposed
to noise, by establishing a quantitative trade-off between
the quantum Fisher information of the noisy system with
respect to the parameter of interest and the quantum Fisher
information that the environment acquires with respect to a
complementary parameter. Information trade-offs are inter-
esting because they reveal properties of the mathematical
structure of quantum theory, which in turn determine what
tasks can be accomplished within the laws of quantum
mechanics. Here, our results provide a guiding principle
for finding noise-resilient clock states: in order to avoid
sensitivity loss due to the application of a noise channel,
clock states should hide their energy from the environment.

Energy-time uncertainty relations have historically been
harder to formulate than position-momentum-type uncer-
tainty principles, because there is no global time observ-
able in quantum mechanics in the same sense as there is
a position observable. Our work contributes an additional
type of time-energy uncertainty relation, complement-
ing existing uncertainty relations such as Mandelstamm-
Tamm-type uncertainty relations [13], Fisher-based uncer-
tainty relations with a single system [12], and entropic
uncertainty relations [15]. Our relation exploits a type of
complementarity between the local optimal sensing oper-
ator for time and the Hamiltonian (Fig. 5), in the same
spirit as uncertainty relations derived in Refs. [1,12]. Our
relation furthermore connects the estimation capabilities
of two distinct parties (Bob and Eve); in this sense our
results can be seen as a Fisher information counterpart of
the entropic uncertainty relations for time and energy [15].

A. Summary and discussion

An overview of the results presented in this work can be
found in Fig. 3.

1. Time-energy sensitivity trade-off

Our main result is a quantitative time-energy sensitivity
trade-off relation in the setting of Fig. 1. If a quantum sys-
tem is subjected to an instantaneous noisy channel, then
the loss in sensitivity to time trades off exactly with the

environment’s ability to sense the energy of the system as
laid out in Eq. (1).

The setting of our uncertainty relation (Fig. 1) is uncon-
ventional for quantum metrology: a quantum clock usually
accumulates noise continuously as time evolves, much
like a quantum probe usually accumulates noise continu-
ously while sensing an unknown parameter. Our setting is
instead the communication scenario studied in Ref. [29]:
Alice possesses a noiseless quantum clock that already
encodes some time value, and she sends it to Bob over
a noisy communication channel. In this alternative set-
ting one can analyze the quantum information that leaks
to the environment, which is more challenging to do if we
consider continuous noise.

An appealing feature of our trade-off relation is that
Bob’s time sensitivity and Eve’s sensitivity to energy are
related by an equality. Concretely, this feature means that
not only does a gain in energy sensitivity imply a time
sensitivity loss by Bob, but also a loss in time sensitivity
for Bob automatically implies a gain in energy sensitiv-
ity by Eve. In contrast, uncertainty relations in quantum
mechanics often relate two observable uncertainties or
two entropic quantities via an inequality. For instance, a
Schrodinger particle in one dimension that has a large vari-
ance in the momentum observable need not have a narrow
variance in the position observable.

Our results furthermore hold for an arbitrary pure probe
state vector |¢) and Hamiltonian H. We evade the ques-
tion of formally optimizing over the probe state vec-
tor |y) itself—a central question in quantum metrology
that many contributions on using quantum error correc-
tion for metrology address [21,22,52,72,73}—by identify-
ing instead what features a probe state vector |¢) must
exhibit to avoid being affected by the noise. The alterna-
tive expression of the Fisher information obtained by our
trade-off relation can potentially facilitate the computa-
tion of the Fisher information when optimizing the clock
or probe state, potentially improving state optimization
schemes such as those in Refs. [67,74] in the presence of
noise. Our trade-off relation also offers a guideline to seek
good clock states, especially in settings where it might not
be possible to reliably prepare the probe state that has the
absolute best sensitivity: noise-resilient clock states need
to hide their energy from the environment.

Importantly, it is not necessarily the probe state which
is least affected by the noise that is the most sensi-
tive. Another state might exhibit a better sensitivity after
the noisy channel, even if its sensitivity loss is greater,
by ensuring that it is initially sufficiently more sensi-
tive. As an extreme case, this point is illustrated by the
ground state of a qubit affected by amplitude-damping
noise; the ground state trivially remains unaffected by
the noise but has no sensitivity, whereas the +X eigen-
state has a better sensitivity, even if it is affected by the
noise.
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A key technique in our approach is the formulation
of the quantum Fisher information as a semidefinite pro-
gram [26,28] (see Appendix C). Semidefinite program-
ming offers a versatile toolbox in which an alternate
expression for an optimization (known as dual problem)
can be derived and bounds on such optimizations can
be proven more easily [75,76]. The technical proof of
our main trade-off result (Appendix E 2) offers additional
insight into the meaning of the dual problem associated
with the semidefinite programming formulation of the
quantum Fisher information.

2. The setting of continuous noise

In certain specific settings, the setup in Fig. 1 remains
a good approximation of a quantum clock exposed to con-
tinuous noise described by a Lindbladian master equation
(see Sec. VI). A sufficient condition that guarantees the
accuracy of this approximation is to ensure, on one hand,
that the Hamiltonian part £ of the evolution commutes
(as a superoperator) with the noise part £; of the Lind-
bladian that contains all the noise operators, and, on the
other hand, that the time derivative of the state is primar-
ily driven by the Hamiltonian and not by the noise. More
precisely, in the notation of Sec. VI, the sufficient con-
dition consists in checking that [Ly, £;] =0 as well as
ensuring that 3.\ contributes only a negligible part of the
Fisher information F (p ; 3;,0) [for which a rigorous bound
can, for instance, be computed in Eq. (146)]. The second
condition is rarely expected to be violated, as sensors are
typically designed to have their signal imprinted on their
state through their Hamiltonian evolution; noise is usually
a degrading process and is typically not the mechanism
by which the signal is acquired. If the Hamiltonian of a
many-body system consists only of single-site Z terms,
then both IID dephasing noise and IID amplitude-damping
noise commute (as a superoperator) with the Hamiltonian
part of the Lindbladian. Furthermore if the Hamiltonian
H commutes with the individual Lindblad jump opera-
tors, then the corresponding evolutions also commute as
superoperators; this is the case, for instance, if H consists
of arbitrary-weight terms containing only Z operators and
in the presence of 1ID dephasing noise. In the case where
[Lo, £1] # 0 the setting can still formally be mapped onto
the setting of Fig. 1, by defining the effective noise as the
full evolution map with a unitary applied on the input, as
long as the time dependence of the effective noisy chan-
nel can be neglected. In this case, determining the effective
noisy channel in general might be difficult.

3. Trade-off with generalized parameters

The trade-off relation for time and energy can be
extended to other parameter evolutions. First of all, there
is a choice in how ¥ evolves along the ¢ and n parame-
ters: any choice of | (¢,7n)) such that Eq. (23) is satisfied

at (fo,no) (but not necessarily at other even neighbor-
ing points) leads to the same Fisher information quan-
tities Falicesr, FAlice,ys FBobys and FEyey, so our trade-off
relation directly applies. An alternative choice for the n
parameter is an evolution generated by the Lindbladian

master equation d,¥ = L[Y] with L[p] = Zk[LkaI —

{L;Lk,p}ﬂ], where Ly = O'Elq/(ek + ¢)|¥)(ex|, where
{lex)} are eigenvectors of the Hamiltonian, where H =
> exlex){ek|, and where ¢ > 0 is chosen large enough such
that ex + ¢ = 0 for all k. (We have the opposite sign for
d,¥, but this can be corrected by redefining 1+ —n,
and this does not impact the Fisher information.) We can
check that this choice of 9,y satisfies Eq. (26) at (fo, 10),
and therefore also Eq. (23). Another interesting choice

for v (1,n) s to set | (to,n) = =™/ y (10, no))
for n in a neighborhood of 1y, recalling H=H- (H)y.
Again, we see that Eq. (26) is satisfied. This evolution
is nonunitary, but one can check that it does preserve
the trace of ¢ locally to first order at mo: we have
3y te(¥)|, = tr({H,¥}) = 0. Either of these choices of
evolution might be relevant depending on the specific
application, though we expect the primary application of
our trade-off relation is to help characterize Bob’s Fisher
information to time, in which case the specific choice of
how the clock state is stated to evolve along 1 might not be
important.

The trade-off relation can further be extended to an
inequality that is valid for any two arbitrary parameters
(Sec. IIIC). The trade-off between the Fisher informa-
tion that Alice and Bob, respectively, have with respect to
either parameter is then quantified by a value that depends
on the commutator of the generators of the two parame-
ters (Theorem 3). The appearance of the commutator in
this expression reinforces its central role in quantifying
the incompatibility of physical observable quantities. Our
main time-energy trade-off relation can be recovered from
the more general Theorem 3 by plugging in the local gen-
erators for time and energy. While Theorem 3 appears to
be tight whenever the Robertson-Weyl uncertainty rela-
tion (66) is saturated for the two generators, the bound
can likely be improved when considering two generators
that have a small commutator. We also present a suffi-
cient condition under which a trade-off relation for any
two parameters can be obtained in the form of an equality,
mirroring the equality statement in our main trade-off rela-
tion for the time and energy parameters. One might have
thought that equality in our general uncertainty relation
would happen only if the parameters are complementary in
the sense of Sec. II B and Fig. 5; in fact, it suffices that the
parameters obey some suitable complementarity relation
on the support of the complementary channel. Therefore,
equality in our general uncertainty relation does not sim-
ply depend on the structure of the parameters a, b, but also
on the noisy channel N
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4. Bounds on the quantum Fisher information

Computing the quantum Fisher information for general
states involves the calculation of the symmetric logarith-
mic derivative in Eq. (9). This object is straightforward to
determine for pure states, it is simple when represented
in the diagonal basis of the state, and it can be com-
puted using numerical methods such as the Bartels-Stewart
algorithm [77]. However, in the absence of a simple diag-
onal representation of the state, it is in general difficult
to characterize analytically the Fisher information or to
derive useful bounds on the Fisher information that apply
in general settings of mixed states, especially if the state
is rank deficient or close to the boundary of state space.
Our results provide an alternative expression for the Fisher
information in the scenario of Fig. 1. Combined with the
powerful semidefinite methods for the Fisher information
reviewed in Appendix C, we provide a general toolbox to
characterize the Fisher information for mixed states in a
variety of situations. For instance, for an interacting many-
body system subject to noise that acts locally, the noise
process might be well approximated by an environment
that is small relative to the full many-body system. In this
case, the computation of the Fisher information on Eve’s
end happens on a smaller-dimensional system. This obser-
vation is, for instance, a main component of our bound
(118).

By applying known Fisher information bounds on Eve’s
system, our trade-off relation enables us to straightfor-
wardly obtain an opposite bound for the Fisher information
of Bob’s noisy state (see Sec. V). (Upper bounds on
the Fisher information can be difficult to obtain; see, for
instance, Refs. [31,78].) An example of such a bound to
apply is the data-processing inequality for the Fisher infor-
mation [19]: further processing of a state that has been
exposed to the unknown parameter can only decrease the
sensitivity with respect to that parameter. This procedure is
useful when Eve obtains a state that is not diagonal in the
computational basis, making the Fisher information harder
to compute. In such cases, we can dephase Eve’s state to
set all the off-diagonal matrix elements to zero. The result-
ing Fisher information for Eve can only decrease; by our
trade-off relation this immediately yields an upper bound
on Bob’s Fisher information. This bound, for instance,
facilitates the computation of the sensitivity loss of a state
exposed to weak amplitude-damping noise, as discussed in
Sec. VIIL

5. Metrological codes

Our main uncertainty relation leads to necessary and
sufficient conditions for when a clock state loses zero
sensitivity when a given noisy channel is applied (Sec.
VII). These conditions are a weaker version of the Knill-
Laflamme conditions for quantum error correction. Given

a clock state vector |¢) and a Hamiltonian H, we can con-
sider the virtual qubit L spanned by the vectors |¢) and
H|v¥r). The clock state vector |/) loses no sensitivity under
the application of a noisy channel with Kraus operators
{E%} if and only if all operators of the form ELE;C, when
projected onto the virtual qubit, do not have any overlap
with the Pauli-Z operator on the virtual qubit. It would
be, in principle, possible to prove these zero sensitivity-
loss conditions directly on Alice’s and Bob’s systems,
without invoking our trade-off relation; however, charac-
terizing when Eve’s Fisher information is zero provides an
immediate proof whose simplicity we have not been able
to match with alternative techniques.

The zero sensitivity-loss conditions (148) bear similari-
ties with classical codes, where there is only a commuta-
tive algebra of observables that one wishes to reproduce
[48,50]. Intuitively, the conditions simply ensure that there
is a measurement on Bob’s system that will reveal the time
parameter as well as the local time sensing observable on
Alice’s system. In contrast to fully quantum error correc-
tion, however, there is in general no recovery operation that
will restore the pure clock state accurately to first order
in the parameter (see Sec. VIIH 1 for a simple counterex-
ample). An intriguing aspect of the zero sensitivity-loss
conditions are that they do not appear to be formally equiv-
alent to quantum error correction with respect to specific
set of noise operators. (The results of Refs. [22,52] appear
to indicate that it might be possible to implement certain
metrological codes as an error-correcting code involving
ancillary systems.) In some cases, such as the qubit exam-
ple of Sec. VIIH 1, the clock state can be thought of as
an error-correcting code that corrects only a certain type
of error (X or Y Pauli errors). But this is not generally the
case—there are examples of a clock state and a (highly
nonlocal) Hamiltonian that fulfill the metrological code
condition for low-weight errors, but that are not quantum
error-correcting codes with respect to neither low-weight
X errors nor low-weight Z errors (Sec. VIIH 2).

The conditions for zero sensitivity loss are closely
related to the recent series of works detailing how to use
quantum error correction for metrology in the presence
of noise [21,22,52,72,73,79,80]. The main difference with
our results is the setting that is being considered. We ask
which initial clock states one can prepare on the clock sys-
tem such that no sensitivity is lost when a noisy channel is
applied (and what the associated optimal sensing measure-
ment after the application of the noisy channel is), whereas
the mentioned references consider the setting where, dur-
ing the time a probe system is exposed to the signal and
the continuous noise, one can control the probe [81] to
repeatedly apply the recovery procedure associated with
the quantum error-correcting code.

Metrological codes might be useful for ancillary mea-
surements of error syndromes [82]. Consider an ancillary
qudit (of dimension greater than two) which extracts a
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bit-valued error syndrome via an entangling gate, corre-
lating a pair of states |¢), |&) with respective binary syn-
drome values 0, 1. If the ancillary subspace participating in
syndrome extraction satisfies the zero sensitivity-loss con-
ditions (148) against physical noise, then, by definition, a
measurement in the {|¥), |£)} basis will not be affected by
such noise. In other words, the loss conditions ensure pro-
tection against X -type logical noise, yielding more robust
syndrome extraction using a Z-type measurement. How-
ever, such conditions do not preclude any Y-type logical
noise. They also do not guarantee fault tolerance, which
would require that ancilla errors not spread to any logical
encoding via backaction.

6. Numerics for many-body systems

Characterizing the quantum Fisher information of a state
exposed to a noise channel using the bound presented in
Sec. V A is convenient in the setting of a many-body sys-
tem subject to noise that acts locally. In the case of n qubits
prepared in a permutation-invariant state and exposed to an
IID amplitude-damping noise channel, we empirically find
that the bound (118) with k = n appears reasonably tight
for the states that we investigated and for small values of
the noise parameter p; furthermore, for a selection of states
including the GHZ state, the bound appears to remain tight
even in the regime of high values of p. Our bound can be
computed for systems of size n 2 50 on a standard desktop
computer.

If instead of on-site terms we consider only Ising-type
nearest-neighbor interactions, we can study the robust-
ness of the example “metrological code” introduced in
Sec. VII'F to an IID amplitude-damping channel with local
noise parameter p. This state retains its sensitivity after a
single located error. Our numerics show that in the pres-
ence of 1ID noise, the decrease in the quantum Fisher
information scales only as p?, and not linearly in p as
for the other studied states with similar sensitivity. We
observe that if we expose the interacting system to con-
tinuous amplitude-damping noise, then the noise part and
the unitary part of the Lindblad evolution do not commute
as superoperators (i.e., the setting is not that of phase-
covariant noise); it is then possible that the advantages of
the metrological code state might not persist in the setting
of continuous noise.

B. Outlook

Our trade-off relation is perhaps most relevant in an
intermediate regime where the clock is exposed to a signal
without the possibility for intermittent quantum control.
In such cases, the noise is expected to spoil any Heisen-
berg scaling that could be achieved using quantum error-
correcting schemes due to the lack of recovery operations
during the evolution (see, e.g., Refs. [22,31]). Provided the
setting can be modeled with a single noisy channel, our

results present an alternative expression for the sensitiv-
ity of the noisy probe in this regime where the sensitivity
is not yet dominated by the asymptotic scaling. Our results
might therefore help identify which states present sufficient
robustness to the noise to present an advantage in sensitiv-
ity with respect to commonly used states (such as a GHZ
state or a spin-coherent state).

In the situation where the clock evolves according to
a Lindbladian master equation, and the Hamiltonian and
noise parts of the Lindbladian fail to commute as super-
operators, one might expect in certain cases to still be
able to consider time-dependent noise using the follow-
ing trick. Let us identify the system A as a full copy of
the bipartite system B ® E, and let the unitary evolution of
[ (f)) cover both systems. A time-dependent channel &(-)
can be written as &(-) = UE[U(t)(-)M(t)] where all the
time dependence is encoded in the unitary U(#) and where
the environment system E is chosen suitably. We then
select the noisy channel N4, p = trg that simply performs
the partial trace over E; the complementary channel is
correspondingly Ny_g = trg. While writing a Markovian
master equation in this form might require a huge envi-
ronment system E with rapidly mixing internal dynamics,
we expect that our formalism can still account for simple
time dependence in the noisy channel in this way. Note
also that the unitary U(f) only has to approximate on B
the noisy channel & locally to first order around a fixed
value of the parameter (e.g., t = 0) in order to determine
the Fisher information.

A potential domain of application of our main uncer-
tainty relation is for quantum thermometry [83], where the
goal is to estimate the temperature of a quantum system.
In the simple setting of quantum thermometry where the
temperature of the system is known to some approxima-
tion, and a measurement is performed in order to refine
that knowledge, the optimal measurement to carry out
is an energy measurement [83]. Since our main result
(1) involves the sensitivity of a party with respect to
a parameter representing the energy, which is optimally
measured using the Hamiltonian of the noiseless system,
we expect that one can leverage our main results to yield
new sensitivity bounds for quantum thermometry.

Our results are also likely to be relevant in situations
where only a restricted set of operators can be measured
on a system. Such a restriction could be imposed by limita-
tions in control for a given experimental platform. Suppose
we prepare a clock state vector |¢) evolving noiselessly
according to a Hamiltonian H. We would like to mea-
sure the clock at time ¢ = fp, but we are only permitted
to use a measurement from a given set of measurements.
What is the optimal local sensitivity that we can achieve?
Should the set of allowed measurement operators form
an algebra, then the problem is equivalent to sending
the clock through a channel that represents the projec-
tion onto that algebra. Our results then imply that the
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resulting sensitivity trades off exactly with the sensitiv-
ity that one can achieve with the set of measurements
in the commutant of that algebra, with respect to the
complementary parameter 7.

It might be possible to extend our results to the multipa-
rameter metrology regime where more than one parameter
is estimated by Bob. There are known uncertainty rela-
tions that determine trade-offs between the precision to
which individual parameters can be simultaneously esti-
mated by a single party [18,72,84-87]. In fact, the f and n
parameters form a so-called D-invariant model [86,88,89],
the latter referring to a multiparameter quantum statistical
model in which the tangent space is invariant under taking
symmetric logarithmic derivatives of the possible gen-
erated state-evolution directions. D-invariant models are
interesting in multiparameter quantum metrology, because
different sensitivity bounds, which in general are difficult
to relate, can be shown to coincide [86]. It seems plau-
sible that known multiparameter uncertainty relations can
be extended to the present bipartite setting, either where all
parameters are simultaneously estimated by Bob while Eve
simultaneously estimates a set of complementary parame-
ters, or where a number of parties estimate each individual
parameter, where each party might be part of the output or
the environment.

Our main uncertainty relation might offer a connection
between the setting of quantum metrology hindered by a
noisy quantum channel and the setting of multiparame-
ter, noiseless quantum metrology. It appears that a key
ingredient for our main uncertainty relation is that the ¢
and n parameters form a D-invariant model, in the sense
of the preceding paragraph. By construction, our uncer-
tainty relation applies to any pure state D-invariant model
consisting of two complementary generators related by
Eq. (20), given that we made no specific assumptions about
the parameter ¢ or its local Hermitian generator H.

However, it remains unclear whether our results extend
to general multiparameter D-invariant models, as our proof
seems to utilize the fact that the space is spanned by
only two complementary generators 7 and H. D-invariant
models have a rich geometric structure [88], which might
prove an essential conceptual component of our results;
such connections nevertheless remain to be better under-
stood. A further connection to D-invariant models appears
in Eq. (69), which appears to be a D-invariance con-
dition restricted onto the support of the complementary
channel ﬂ? . In fact, one can view Bob’s and Eve’s mea-
surements Tp and E as measurement operators N T(Tp)
and N T(E) on Alice’s system through the action of the
adjoint channels N/t and N't. We could ask whether our
uncertainty relation translates into a trade-off in how the
two parameters £ and 7 can be estimated by Alice, if the
estimation of ¢ (respectively, n) is required to employ an
observable in the set of operators that is specified as the
image of A" (respectively, of N'T). It is not clear if this

is the case, as the quantum Fisher information attained
by the observable N Y(Tp) [respectively, N f(E)] on the
state ¥ is not necessarily expected to match the corre-
sponding value of the quantum Fisher information of Tp
on N[¥] (respectively, of E on ﬂ?[w]). It is thus unclear
if or how our main uncertainty relation is connected with
general bounds that hold in the multiparameter regime,
such as multiparameter versions of the quantum Cramér-
Rao bound [86] or the Gill-Massar inequality [90,91]. We
might expect that deeper connections can be developed
between the setting of parameter estimation after the appli-
cation of a noisy channel and noiseless multiparameter
estimation.

Also, our results apply locally to first order around
a given fixed value of the unknown parameter; whether
similar results can be derived in the global parameter
estimation regime [89,92-95] is unknown. Global param-
eter estimation might be more relevant for applications to
atomic quantum clocks [96,97]. We also anticipate exten-
sions of our results to the finite-sample regime where the
quantum Fisher information might no longer accurately
quantify the sensitivity of a quantum state to an unknown
parameter [98].

Along a similar vein, there are settings where one
seeks to compute different variants of the quantum Fisher
information. For instance, the so-called right-logarithmic
derivative (see, e.g., Ref. [87]) is often used to bound the
standard quantum Fisher information. Alternative sensitiv-
ity measures include the truncated Fisher information [54],
which not only give useful bounds on the standard quan-
tum Fisher information but can be more relevant in the
regime of limited measurement data. An interesting ques-
tion would be to study whether our results extend to such
generalized sensitivity measures.

Entropic uncertainty relations play a central role in
quantum cryptography [11,15,16,99], and cryptographic
schemes have been studied for quantum metrology [100].
It is possible that our parameter-estimation trade-off can
similarly form the basis of cryptographic schemes in which
a parameter encoded in a quantum state is to be shielded
from a malevolent eavesdropper. Furthermore, the Fisher
information is closely related to relative entropy mea-
sures [87,101,102]; we might expect our trade-off rela-
tion to translate into a statement about Rényi relative
entropies.

The development of quantum atomic clocks as ultrapre-
cise time references [103] makes it all the more important
to achieve a thorough understanding of how noise can
be prevented from spoiling sensitivity. We also antici-
pate that our results will be relevant for recently devel-
oped atomic clocks built with a lattice of interacting
atoms [9] and correlated many-body sensing probes [6,
104], as these platforms will offer new possibilities for
metrology by exploiting the strong interactions between
the particles.
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APPENDIX A: NOTATION, PRELIMINARIES,
AND AUXILIARY LEMMAS

We first introduce some preliminaries and notation that
will be used throughout the Appendices. All Hilbert spaces
are finite dimensional unless otherwise indicated, and all
projectors are Hermitian. A pure quantum state is a vec-
tor |¢) in the Hilbert space that is normalized to unit
norm, and the terminology pure quantum state is also used
by extension for the associated density operator |y)(y|.
Quantum states are positive semidefinite operators p with
unit trace, tr(p) = 1. A subnormalized quantum state is
a positive semidefinite operator p satisfying tr(p) < 1.
States are normalized to unit trace unless explicitly speci-
fied as being subnormalized.

For any Hermitian operator O, we denote by Pp the
projector onto the support of O, and by PJO- =1 - Pp its
complement. For any positive semidefinite operator 4, we
denote by 4~! its Moore-Penrose pseudoinverse, i.e., the
operator obtained by taking the inverse on the support of 4.

We denote by [|4] the maximal singular value of an
operator 4. We also define the Schatten one-norm as
4]l = tr/ATA.

It will prove convenient to “vectorize” operators by
viewing them as vectors in Hilbert-Schmidt space using
the following representation. The vector space of operators
acting on a Hilbert space ¢ is isomorphic to S @ 7.
Let |1)) denote the element

d
Yl ®l) € # @K,

i=1

(A1)

where {|1')}f=] is a fixed basis of .##. We define the “vec-
torized” representation of any operator A acting on 5 as
[4)) = (4 ® 1)|1)). Similarly, we define ({1| = Zle(il ®
(i] and ({4| = ((1|/(4" ® 1). We recall the useful identity

@ @DI) = A @XIN)), (A2)
and note that [1})} = |1)) is the vectorized operator repre-
sentation of the identity matrix 1. We denote a rank-one
operator |@)(¥| in this representation as |¢, 1)), with
16, V) = |9) @ (1¥)* and ((¢,¥| = (¢| ® ((¥])*. The
Hilbert-Schmidt inner product in this notation is sim-
ply tr(4'B) = ((4|B)). The matrix elements of 4 in any
basis {|£)} are also simply given by (£]|4|€") = ((£, '|4}).
A superoperator £ acting on an operator M is denoted
by £|M)). The superoperator consisting of a left mul-
tiplication by 4 and a right multiplication by B, i.e.,
M +— AMB, is represented by [M)) — (4 ® BT)|M)). The
identity superoperator id is represented by 1 ® 1. Also,
((4|€|B)) = ((BIET|4))*, where £ is the usual superoper-
ator adjoint defined by tr(MET(N)) = tr(£(M) N). In the
following and unless otherwise stated, superoperators are
expressed in this representation, unless they are explicitly
applied onto an operator with the notation £(-).

We now compute a few quantities that often recur
throughout these appendices. Let |/) be a state vector and
consider the evolution 8 = —i[H,¥], where H is any
Hermitian operator. Let M be any Hermitian operator. We
have

((S2)) = (it wD?) = — ey vy
— HYH — yHY + VHYH)]
=tu(WH) - [rWH)P; (A3
—iliM, Y1 Y] = (MY — Y M)V — ¥ (MY — Y M)
= (M} —200) ¥

= {M — (M), y}. (A4)

The notion of Schur complement will serve multiple
times in these appendices, so we state it here.
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Theorem 5 (Positive semidefiniteness via Schur comple-
ment).—let 4 € C™", B € C™™ be positive semidefinite
matrices. Let W € C"™™ be an arbitrary complex matrix.
The following statements are equivalent:

4 W
(ii)) WPf =0 and 4> WB~'w',
(iii) PfW=0 and B> WA'w.

Moreover, (i) implies PfW =0 and (iii) implies
WPz = 0.

For a proof, see, e.g., Ref. [105]. With respect to the
proof of similar statements in standard textbooks, we
can see that (ii) implies PfW = 0 as follows: hitting the
inequality with P+(-)P+ and noting that WB=' W' > 0, we
see that P WB—#W*Pf = 0, which implies P WB~'/? =
0. Therefore, P;W =0 using the fact that WP§ = 0.
Similarly, (iii) implies WPz = 0.

Now we present a simple method to relate operator
inequalities before and after the application of a com-
pletely positive map.

Lemma 1 (Positive semidefiniteness of block matrices
under completely positive maps)—let A,B,W € C"™" be
complex matrices and assume that

i 1o

Let @ be any completely positive map that maps operators
on C" to operators on C™. Then

(W)
Q(B)] > 0.

(AS)

[ o(4) (A6)

>

Proof—The matrix (A6) is obtained by applying the
completely positive map idy @ ® onto Eq. (AS). |

While the above lemma is fairly trivial, paired with
Theorem 35 it enables us to show less obvious inequalities
such as the following.

Corollary 2 (Image of matrix squared under a subunital,
completely positive map)—let M be a Hermitian opera-

tor and let @ be any completely positive map that satisfies
& (1) < 1. Then ®(M?) > [® (M)

M* M t
Proof—Observe first that [ M ]l] = [M ]l]

[M 1] > 0. With the subunitality condition on & and
Lemma 1, we have

dM?) (M) dM? M)
[(IJ(M) 1 ]2[¢(M) d}(]l)]20' (A7)

Thanks to Theorem 5, this implies d(M?) = dM)
11 dM) = [®M)]. [ |

APPENDIX B: SOLUTIONS OF THE
ANTICOMMUTATOR EQUATION

In this Appendix, we briefly review the solutions of the
anticommutator equation

1 .
E{p’M} =N, (BI)

where M is the unknown operator, N is a fixed operator, p
is a subnormalized quantum state, and {4, B} := AB + BA
denotes the anticommutator.

For any subnormalized state p, it is convenient to define
the Hermiticity-preserving superoperator R , as

1
Ro() = 3{p. O} (B2)

Note that R, is neither completely positive nor
trace preserving. The operator R, is self-adjoint,
since tr(NR,(M)) = 3 tr(N{p,M}) = $ tr({p,N}M) = tr
(R,(N) M). It is interesting to study the superoperator R,
as a linear operator in Hilbert-Schmidt space. In vectorized
operator space, it is represented as

1
R, =3(p@1+1®p") (B3)

This matrix is Hermitian and positive, and it is positive
definite if and only if p has full rank. The fact that the
vectorized matrix representing R, is positive is not to be
confused with the usual notion of a superoperator being
positive, which means preserving the positivity of its argu-
ment. Here, R, has a positive semidefinite vectorized
representation, which means that ((M|R,|M)) = 0 for all
operators |M)).

Suppose for a moment that p has full rank. Then the
superoperator R, can be inverted, because its vectorized
operator matrix representation has full rank, and we denote
the inverse by R;l. The operator M = R;l (N) is then the
unique solution to the anticommutator equation %{ p,M} =
N.If {|k)} is a basis of the Hilbert space that diagonalizes p
as p = ), pklk) (k|, then Eq. (B3) provides a diagonal rep-
resentation of R ,, and we obtain the familiar expression of

—1
Rp as

_ 2
Rp‘w»:Zp —

|k, K)){(k,K'IN)), ie.,

i P Pr
RIIWN) = kIN|K) |k) (K] B4
Slv) gjpﬁpyuunu (B4)

If p is not full rank, then we define R;l as the Moore-
Penrose inverse of the superoperator R, i.e., we take the

040336-46



TIME-ENERGY UNCERTAINTY RELATION...

PRX QUANTUM 4, 040336 (2023)

inverse on its support. From Eq. (B3) we can identify
the kernel ker R, of the superoperator R, as the space
spanned by operators of the form |¢, ¥)) where P,|¢) =
P,y = 0, where P, is the projector onto the support of
p. If {|k}} is a basis of the Hilbert space that diagonalizes p
as p = ) _, prlk)(k|, then Eq. (B3) is diagonal in the basis
{lk,k’})} and we see that the expression (B4) remains the
correct expression for R;], provided we only keep those
terms in the sum for which p; 4+ py # 0.

@
S= :
{{REI (N) +P;M'P; : M’ any operator} if PyNP, =0,

We may now state the following useful proposition that
characterizes the full solution set of the anticommutator
equation 1/2{p,M} =N for M.

Proposition 3 (Solutions to the anticommutator
equation).—let p be any subnormalized quantum state, let
N be any operator, and let R, be given by Eq. (B2).
Let P, denote the projector onto the support of p and let
Pf; =1 — P,. Then the set S of solutions of the equation
Y = R, (M) for the operator M is

if PLNPL£0 ;
1 g P# ? (BS}

where R>! denotes as above the Moore-Penrose pseudoinverse of the superoperator R ,. Furthermore, if ¥ is Hermitian,
then the set Sy of Hermitian solutions of the equation N = R, (M) for the operator M is

o
Sy =
. H{R;I(N) + PyM"Py : M” any Hermitian operator} if PANP; =0,

where R;l(Y) is always a Hermitian operator.

This proposition is essentially obvious if we think
of superoperators as linear operators in Hilbert-Schmidt
space. Indeed, it is well known that the general solution to a
system of equations given in matrix form can be expressed
by the matrix pseudoinverse, plus anything that is in the
matrix kernel.

Proof—Let P+ be the superoperator projector onto the
kernel of R . In the vectorized-operator representation, we
have Pt := Pj ® (Pf;)T as can be seen from Eq. (B3).
Let P = id — P be the superoperator projector onto the
complementary operator subspace, which is the support
of R,. Observe that R,R;! = R7'R, = P and that R,
P =0.

The claim we want to show is that if PL|N)) # 0,
then there is no solution to the equation |N)) = R ,|M));
otherwise, then the equation is satisfied if and only if

IM)) = R'IN)) + PHM')) (B7)
for some operator |[M’)). The condition P*|N)) =0 is
necessary for any solution to the equation |N)) = R,|M))
to exist, as otherwise |N})) would not be in the range of
R.,. We can therefore assume for the rest of this proof that
PLIN)) = 0.

Suppose M solves R,|M)) = |N)). Applying R;l on
both sides, we have P|M)) = R;l [N}), which determines
|M}) on the operator space projected onto by P. On the
complementary space (associated with 1), the operator
|M}) can be arbitrary because this subspace is the kernel of

if PLNPL£0 ;
1 2 g # (B6}

R ,. A general operator in this subspace can be written as
PLIM')) for some operator M. This proves that the solu-
tion M must have the form given in the claim. Conversely,
if
IM)) = R'IN)) + PHIM')) (B8)
for some operator [M’)), then we see that R,|M)) =
R, (R;'IN)) + PH1X")) = PIN)) = |N)), thus proving
the claim.
If N is Hermitian, then R;l(N ) is Hermitian because

R, and hence R;], is Hermiticity preserving. Any two
Hermitian solutions My, M}, as seen above, must differ by
a term PjM ’Pj for some arbitrary M’; because the dif-
ference My — M is Hermitian, M’ can be chosen to be
Hermitian as well [specifically, one can set M" = (M’ +
M2l [ |
We now compute the map R‘_bl(-) in the case the
reference state is a pure (normalized) state vector |yr).
Proposition 4 (Computing R;l when p is a pure
state).—let | ) be a (normalized) state vector and let P‘% =
1 — | )(¢|. Then for any Hermitian O we have
R, (0) = 2(0 — POP}) — (O)y . (B9)
_ Proof—Define 0:=0- P;OP; — (O)y . By linear-
ity, we have

Ry (0) =Ry (0) — (O)y ¥, (B10)
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noting that 1/2{yr, ¥} = ¢ and therefore R;](lﬁ) = .
The operator O satisfies Pj;@PJ- =0 and ((_))‘;, =0, the
latter implying that Oy = Pj;(_)w. Then

0 = (¥ + P;)O( + Py) = POy + yOP; = {y.0},
and therefore R;'(0) = 20. From Eq. (B10) we then find
R;'(0) =20 + (0)¥ = 2(Z — P;OPy) — (O)¥.

|

APPENDIX C: SEMIDEFINITE PROGRAMMING
METHODS FOR THE FISHER INFORMATION

In this Appendix, we review some methods based
on semidefinite programming [75,76] for computing the
Fisher information, and review some elementary proper-
ties of the Fisher information. Let p be any subnormalized
quantum state, and let D be any Hermitian operator that
satisfies PjDPf; = 0 (recall Pf; is the projector onto the
kernel of p). Define the quantity

F(p; D) := tr(pR?), (C1)
where R is any solution to (1/2){p,R} = D. For a nor-
malized state p and for traceless D, the quantity F(p : D)
corresponds to the Fisher information associated with a
one-parameter family of states A > p; taken at a value
of A where p;, = p and dp; /d\ = D. We allow subnor-
malized states p and operators D with nonzero trace in
the definition (C1) for later technical convenience. We

F(p: D) = 4min {tr(N) : [

= min {tr(J) : [DfiK Dju{

in which optimal choices are O = p§, N=Sp S, K =
—i[p,S], and J = R;1(D) p R;' (D).

Note that the condition in the optimization (C3d) implic-
itly enforces the fact that Pf;(D +iK) = 0 (see Theorem
5); this can make it more complicated to guess a can-
didate for K in Eq. (C3d) if p does not have full rank,
especially iijD # 0. Also, note that if there is any feasi-
ble choice of candidates in Eq. (C3c), then automatically

p O

: -
o N];o with 0+0'=D, N >0}

];0 with K:KT,Jzo},

require that Pf;DPf; = 0 as otherwise the anticommutator
equation (1/2){,0, R] = D has no solution for R.

The definition ofF(p : D) does not depend on the choice
of R that solves (1/2){,0,R] = D. Indeed, Proposition 3
guarantees that any two solutions differ only by a term
Pf;M ’Pf;; such a term does not contribute to the trace in
Eq. (C1). We may therefore write, using the notation of
Appendix B,

F(p: D) = tr(p [R; (D)]). (C2)
We now write this expression as a pair of convex opti-
mizations. These expressions have been derived in Refs.
[26,28]; we provide a proof using our notation for self-
consistency.

Proposition 5 (Fisher information in terms of convex
optimization problems).—let p be a subnormalized quan-
tum state and D be a Hermitian operator that satisfies
P,DP, =0. The quantity F(p: D) defined in Eq. (C1)
is equivalently expressed as the following optimizations:

F(p:D) = grlaS}T( 4[tr(DS) — tr(pSz)] (C3a)

= min {4tr(L'L) : p'2L+L'p'> =D},  (C3b)
where the first optimization ranges over all Hermitian
operators S and where in the second optimization L is an
arbitrary complex matrix. Optimal choices for the vari-
ables are S = (1/2)?3;](1)) and L = p'/2S, noting that
{p,S8} = D. Furthermore, alternative forms for the mini-
mization are

(C3c)

(C3d)

PrO=0 and O'P+ =0, such that P-DPy = P-(O+
OT)Pf; = 0. Therefore, finding feasible candidates auto-
matically enforces the condition in the definition (C1). A
similar argument holds if feasible candidates are found in
Egs. (C3b) or (C3d).

Proof—The maximization (C3a) is a quadratic opti-
mization can be cast into a semidefinite program using
Schur complements (Theorem 5). We stick closely to the
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formalism of Watrous [76,106]. We introduce a variable
Q > 0 with the constraint Q > S? expressed as a Schur
complement condition:

1
7 {maximization in Eq. (C3a)}

= maximize [tr(DS) — tr(pQ)]
over variables S =S7,0>0

. Qo -5
subject to [—S 1 = 0.

(C4)

(The sign of —S in the last constraint is for later con-
venience.) We now determine the corresponding dual
problem. Let [gﬁ g] > 0 be the Lagrange dual variable
corresponding to the primal constraint, with M, N > 0 and
O arbitrary. The primal constraint can be written as

-1 0 0 1 0 0
[0 O]®Q+[1 0]@54[0 1]@11. (C5)

The dual objective is obtained by collecting the constant
terms of the constraints and taking the inner product with
the corresponding dual variable. Here we only have the
right-hand side of Eq. (C5) and we obtain the objec-
tive that is simply to minimize tr(N). There are two dual
constraints, one for each primal variable § and Q; to a
Hermitian variable corresponds an equality constraint and
to a positive semidefinite variable corresponds a positive
semidefinite constraint. The primal objective gives the
constant terms for each constraint, which are (...) =D
and (...) = —p. For the left-hand side of the first con-
straint we obtain the term tr ([{"fT 2] [fi])=0+0"
For the left-hand side of the second constraint, we find
—try ([ X 9]} 0]) = —M. We thus obtain the following

o' nlloo
dual problem:

(C4) = minimize tr(N) (Co)
overvariables M =0, N =20, O,
subjectto O+ 0" =D,

M<p,
M O
[OT N] > 0.

Equality with the primal optimization problem holds
thanks to strong duality, which is ensured by the Slater con-
ditions [76,106]. We can further simplify the dual problem.
First, the choice M = p is optimal: indeed, for any optimal
choices of variables with M < p, we can replace M by p

while still achieving the same value. Therefore,

(Co) = minimize tr(N) (CT)
over variables N =0, O,
subjectto O+ 0" =D,

p O
[o‘f N] > 0.

Using the Schur complement argument again (Theorem
5), we find that n = OTp_lO, and for the same reason
as above, there is an optimal choice of variables with
Y = O%p~10. Hence

(C7) = minimize tr(OTp~'0) (C8)
over variables O arb.
subjectto O+ 0" =D
1l
P,0=0.

We may introduce the variable L = p~'/20, which yields

tr(L'L)
L arb.

(C8) = minimize

(C9)
over variables

subject to me + Lﬂo”2 =D.

We recognize the optimization in Eq. (C3b). At this point
we have shown that both optimizations in the claim,
Egs. (C3a) and (C3b), are equal thanks to semidefinite pro-
gramming duality. It remains to show that the common
optimal value is F(p ; D) as given by Eq. (C2).

To find optimal variables, we examine the comple-
mentary slackness conditions [106] corresponding to the
primal-dual problem pair (C4) and (C6). Namely, taking
the product of an inequality constraint with the corre-
sponding dual variable turns the inequality into an equality
for optimal primal and dual choices of variables. For the
primal constraint this gives us the equalities

OM —S0"=0;
—SM +0"=0;

00 — SN = 0;
—SO+N =0.

(C10)

From —SM + O = 0 along with the optimal M = p we
deduce that pS = O and thus p'/2S = p~'20 = L. Plug-
ging this into the constraint in Eq. (C9) we find

pS+Sp =D. (C11)

The solutions of this anticommutator equation have been
studied in Appendix B, leading us to the primal candidate

1
S = EREI(D). (C12)
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Plugging this choice into Eq. (C4), along with the choice
Q = 57, we obtain

(C4) > %tr(DR;](D))

1 1
-3 tr(,o[R;l (D)]z) = ZF(p ; D),
where we have used the fact that tr(DR;l(D)) =

(DIR;'IDY) = (DIR;'R,R;' D) = ((R;' (D)IR,
IR;U(D))) = tr(p [R5 (D)]).

By construction, L = p'/2S satisfies the constraint in
Eq. (C9), noting that we have used the assumption that
PLDP; =0 as in the proposition statement. The corre-
sponding value attained in the dual problem is

(C13)

(©9) < W'D = 6(p[R; ) = 3F (o D).
(C14)

noting that tr(L'L) = tr(pS?). Combining Eqs. (C13) and
(C14) with the above statement that (C4) = (C9) proves the
first part of the claim.

The alternative form (C3c) is nothing else than Eq. (C7).
Now we show the alternative form (C3d). Consider the
optimization (C7). Decompose O = O + iO; into Her-
mitian and anti-Hermitian parts with O = (O + oh/2 =
Oh, O; = —i(0 — 0%)/2 = O}. The constraint on O indi-
cates that the Hermitian part Or of O must satisfy 20 =
D. The second constraint then becomes

P D/2 +i0;
[D/Q —io, N |20

(C15)
L 1 0 . e
Conjugating by 0 op | We see that this condition is

equivalent to

D+2io’] >0. (C16)

P
D — 2i0f 4N

Now we set K = 20; and J = 4N, showing that the opti-
mization (C3d) is equivalent to Eq. (C7) (up to a factor of
4), and therefore equal to F(p ; D).

For completeness, we exhibit optimal choices for K,J.
Choose K to be the anti-Hermitian part of pR;l(D), ie.,

K = (pR;'(D) — R;'(D)p)/(2i). Then
1
D+iK = E(pREI(D) + R, (D)p)

1
+3 (R, D) = R (D)p) = PR, (D),
(C17)

and its Hermitian conjugate is D — iK = R;l(D)p. Now
choose J = (D —iK)p~'(D +iK) = R;'(D)pR;"(D):

the constraint in Eq. (C3d) is satisfied thanks to Theorem
5. The value reached by this choice of candidates is then
the optimal value tr(J) = F(p: D). [ ]

The expressions in Proposition 5 lead to simple proofs
of elementary properties of the Fisher information.

Proposition 6 (Simple bounds for the Fisher informa-
tion)—let p be a subnormalized quantum state and D be
a Hermitian operator that satisfies Pf;DPf; = 0. Then we
have

IDI* < F(p: D) < tr(p~'D?), (C18)

where D' = 2D — P,DP,,.

Proof—First we show the lower bound. Let |¢) be a
(normalized) eigenvector associated with the largest eigen-
value of D (in magnitude), such that (¢|D|¢) = ||D||. For
some s € R to be determined later, we choose the opti-
mization candidate § = s|¢)(¢| in Eq. (C3a). Then the
corresponding objective value is

F(p: D) > 4tr(DS) — 4tr(pS?) = 4s||D|| — 45*($| ol ).
(C19)

The latter expression is maximal when 0 = (d/ds)(---) =

4||D|| — 8s{p|p|@), i.e., when s = ||D|/Q2{d|pld)). We
obtain the bound

22 2 G 12
(@leld)  (dleld)  (dlpld)

> DI,
(C20)

F(p:D) >2

recalling furthermore that (¢|p|¢) < 1.

For the upper bound, consider the optimization problem
(C3b) and choose the candidate L = p~'/2D’/2. This is a
feasible candidate because

p'PL+L'p'* = P,D' + (h.c.)
= 2P,D — P,DP, + (h.c.)
=2P,D(P, + Py) — P,DP, + (h.c)
= P,DP, + 2P,DP;- + (h.c)

= 2(P,DP, + P,DPy + P;DP,) = 2D,
(C21)

where h.c. stands for the Hermitian conjugate of the entire
preceding expression, and where we furthermore recall that
Pf;DPf; = 0. The objective value attained by this choice of
candidate is F(p : D) < 4tr(L'fL) = tr(p‘lDa). |

Proposition 7 (Right logarithmic derivative (RLD)
bound [89]).—let p be a subnormalized quantum state and
let D be a Hermitian operator satisfying PjDPj = 0. Let
G be any operator (possibly non-Hermitian) that satisfies
(pG+ G'p)/2 = D. Then

F(p: D) < tr(pGG"). (€22)
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Proof—Use L = p'/?G/2 in Eq. (C3b). [ |

Proposition 8 (Fisher information under parameter
rescaling)—let p be a sub-normalized quantum state and
D be a Hermitian operator that satisfies PjDPj = 0. Then
foranya < 1,B e R,

2
F(ep: 8D) = 2 F(p: D). (€23)

Proof—Let S,L be optimal variables in Eq. (C3a)
and (C3b) for F(ap; BD). Let §' = (¢/B)S and L' =
(/@/B)L. Then

7F(@p: BD) = t(BDS)  r(aps?)

B? 2 B
= ;[tr(DS’) — tr(pS?)] < = ZF(‘O : D);
(C24a)

1 2 2
ZF(.af,o : BD) = tr(LL") = % tr(L’L™) > % ZF(,o : D),
(C24b)

noting that L’ is a valid choice of optimization candi-
date in (C3b) for F(p; D) because p'?L' + LT p'/? =
(1/B)((@p) 'L + L' (@p)'/?) = D. _

Proposition 9 (Fisher information bound for trace-de-
creasing maps)—let |Y¥) be a (normalized) state vector
and let |€) be any vector such that (¥|€) = 0. Let A be
any completely positive, trace-non-increasing map and let
0 < @ < 1 such that V(1) < a1. Then

FNYXUD s NUENY | + [¥)(ED) < 4ar(£]E). (C25)

Proof—Let O = N'(|¢)(£]) and N = N'(J€)(&]). These
choices are feasible in Eq. (C3c) because applying
the completely positive map N ® id; onto the positive
semidefinite matrix

V)l 1Y)l V)

[|§)<w| |§)<s|] = [Ié‘)] [l €l]=0 (20
gives again a positive semidefinite matrix. This choice
of variable yields the objective value tr(N(|.§)(£,~'|)) =
tr(NT(1) €)(£]) < a(£]£), proving the claim. [ |

Proposition 10 (Joint convexity of the Fisher informa-
tion)—let { p;} be a set of subnormalized states and { D} be
a set of Hermitian operators such that Pj;Dkij = 0. Let

{ak} be a real positive coefficients such that ) ", o tr(pr) <
1. Then

F(Z QP Za':ch) < Z&'kF(.Ok :Dy). (C27)
p k p

Proof—For each k, let Ki,Ji be optimal choices in
Eq. (C3d) for F(pk; D). Set K =) ,o4Ky and J =
>« %Ji. Then

p D+iK]| ok Dr+iKy
[D—:‘K J ]—Zk:“*[p,,—m AN
(C28)

and so K,J are feasible candidates in the problem
(C3d) for F(p: D). The objective value achieved for this
choice of variables gives the bound F(p : D) <tr(J) =
Yrartr(Jy) = Y arF (pox : Dy). [

Proposition 11 (Additivity of independent probes)—
let p4, pp be two subnormalized quantum states on two
systems 4,B, and let Dy, Dy be two traceless Hermi-
tian operators such that Pj; DAPj; = 0and P%, DpP+ = 0.

i ]

Then

F(p4® py: Da ® py + pa ® Djp)

= F(p4; D4) + F(pp; Dj)- (C29)
Observe that the second argument on the left-hand side
corresponds to the derivative of the state of a compos-
ite system that remains in a tensor product, (d/df)(ps ®
ph) = (dpa/dt) ® py + p4 ® (dpy/dt).
Proof—Here we may directly guess a solution R to
Rp,;@pj; (R) = D4 ® pp + p4 @ Dp. Compute first

1
Rp,,@qu(]lfi ® M) = 3 {.OA ® pp. 14 ®M3]

1
= = p4 ® { pp. Mz},

C30
so we see that, setting
R=14® R (Dp) + R, (Ds) ® 1p, (C31)

we have RPA@,%(R) = p4 ® Dy + D4y ® pp. Then

F(p4 ® pp: D4 ® pp + pa ® D) = tr((ps ® p) R?)
= tr((pA ® pg)(l 4A® [R;;l (D%)]E +[R;) (DA)]2 R1p

+2R, /(D) @R (Dp))
= F(pa; Da) + F(pp: D), (C32)

where in the last line we have used tr(p,; R; Al (DA)) =
tr(DA - PjADAPjA) =tr(Dy) = 0. |

Proposition 12 (Fisher information for pure states).—let
|[¥/) be a subnormalized state vector and let D be a Hermi-
tian operator satisfying tr(D) = 0 and PiDPi‘ = 0. Then
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(D)y = 0and

i
T [4 tr(l/;Dz)]. (C33)

Furthermore, if tr(y) =1 and D = —i[H,y¥] for some
Hermitian operator H, then

F(y:D) =

Proof—TFirst of all thanks to Proposition 8 we assume
without loss of generality that tr(y) = 1. Then, to see that
(D) = 0 we write

F(l/;;D):

dof; = 4((H?)y — (H)3,). (C34)

0 = tr(D) = e[ (¥ + P;)D] = (D) + tr[ P;DP;| = (D).

(C35)
Using Eq. (C2) and Proposition 4, we then find
F(¥: D) = tr(¥ 2D)*) = 4tr(y D?).

If furthermore D = —i[H, ] for some Hermitian H, then
we use Eq. (A3) to see that tr(y:D?) = (H?), — (H)],. W

Proposition 13 (Data-processing inequality for the
Fisher information [19])—let p be a subnormalized quan-
tum state and D be a Hermitian operator that satisfies
Pf;DPf; = 0. Let £ be any completely positive, trace-non-
increasing map. Then

F(p:D) = F(E(p); ED)).

Proof—First we show that Pg-( € (D)P‘J.,f(pJ = 0, ensur-
ing that the right-hand side in Eq. (C37) is well
defined. Decompose D = P,DP, + P+DP, + P,DP; =

Dy + D:;, defining Dy = (P,DP,)/2 +PpDPj such that

(C36)

(C37)

D
Pf;Dg = 0. For ¢ > 0 large enough, we have [pT 0] =

Dy cl
0 thanks to Theorem 5. Applying the completely posi-
£ E(D
tive map idy @ £ we obtain [5(53% Cé(;g] >0, and

therefore thanks to Theorem 5, E( p)S (Dy) = 0. Then

P£,,E(D)P,, = 0 recalling D = Do + D},
Let S be optimal in Eq. (C3a) for F(E(p) S(D)), thus
satisfying F(£(p) ; £(D)) = 4[tr(SED)) — tr(E(p) $?)].
Choosing the candidate £1(S) in Eq. (C3a) for F(p ; D) we
obtain
4[tr(DEVS)) — tr(p [ET()1)]
4tr(ED) S) — tr(p ET(SH)]
= 4[tr(E(D) S) — tr(E(p) $?)]
=F(£(p); E(D)),

where we have used Corollary 2 in the second inequality.

(C38)

In the case of commuting state and differential, the sym-
metric logarithmic derivative reduces to a matrix inverse
as described by the following proposition.

Proposition 14 (Fisher information for commuting state
and derivative)—let p be any subnormalized quantum
state and let D be a Hermitian operator that satisfies
Pf;DPf; = 0. Suppose that p and D commute. Then

F(p:D) = tr(p_lDz).

Proof—This can be shown from the properties of the
symmetric logarithmic derivative, but we give a sim-
ple alternative proof using our convex optimizations for
fun. Choose S = p~'D/2 in Eq. (C3a), which we note
is a Hermitian operator because p and D commute. This
gives F(p; D) > (D39)(C39). Similarly, the choice L =
p~2D/2 in Eq. (C3b) provides the opposite bound. W

The following proposition interprets the Fisher informa-
tion for subnormalized states according to the definition
(C1) as the Fisher information of a normalized state that
was projected onto a smaller subspace. This interpretation
works as long as the subnormalized state does not change
trace along its evolution, meaning that the derivative D has
zero trace.

Proposition 15 (Fisher information for subnormalized
and normalized states).—let p be any subnormalized quan-
tum state and let D be any Hermitian operator that satisfies
both tr(D) = 0 and PyDP; = 0. Define p/, D, with an
additional new Hilbert space dimension, as

r 0 . r_ 0 .
p_@ l—tr(p))' D‘@ 0)' (¢40)

Then
F(p:D)=F(p'; D).

Proof—Let P denote the projector onto the subspace of
the Hilbert space on which the upper left block of p’, D/
acts. Let R = R;l(D), and define

-0 )

Multiplying together block-diagonal matrices preserves
the block-diagonal structure, hence

(C39)

(C41)

(C42)

1
Lo R) = ( 2l 0) =D. (C43)
2 0 0
Then with the definition (C1),
F(¢': DY) = w{o/R?) = (k) = F(p: D).
|
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We can furthermore prove a relation between the Fisher
information of two different directions in state space that
might be associated with two different parametrized evolu-
tions.

Proposition 16 (Relation between the Fisher informa-
tion of two directions) —let p be a subnormalized quantum
state and let D, D)’ be two Hermitian operators that satisfy
P.DP, = PyD'P; = 0. Then

F(p:D) < F(p: D)

+ [F(p;D+D’)F(p:D—D’)]m. (C44)
Consequently,
|[F(p: D) = F(p:D)|
<[F(p:D+D)F(p;D-D)] o (a3

Furthermore, equality holds in Eq. (C45) if and only if
D, D’ are linearly dependent.

Proof—Define the shorthand Ay = D + D'. We com-
pute

F(o: D) = u(p [R;'(0) + %5 (a)])
= F(o: D) +1r(p [(R7'(a0))
+{R;'0). ”;'(a0)}])
= F(p: D) +u(p {5R;'(a0)
+R;ND). RG(A)]). (c46)

where in the last equality we have used M? = {%M, M}
for any operator M along with the linearity of the anti-
commutator in the first argument. Furthermore, we see
from the definition of A_ that

o1 1 N
D +30.=5(D+D) =344 (C47)

2
Then
(C46) = F(p: D) + % (o |R;'(44), R;' (a0)})
=F(p: D) +Retr(p R;'(84) R;'(A))
= F(p: D)+ Cp(As, AL), (C483)

where C,(A4,A_) is defined as the second term in the
above expression. From the Cauchy-Schwarz inequality,

co(ar A < (o[ R5 (2 0)] ) ([R5 (a0)]).

(C49)

Hence,

172
(043)SF(p;D)+[F(p;A+)F(p;A_)] . (C50)

Equation (C45) follows by repeating the argument while
inverting the roles of D and D).

Equality in Eq. (C45) is equivalent to the Cauchy-
Schwarz inequality being tight. In turn is equivalent to the
operators p'/*R71(AL) and p'>R71(A_) being linearly
dependent, i.e., there exist aj,a2 € R, (1,a2) # (0,0),
such that

alme;l(A+) + OEE.OUEREI(A—) =0. (C31)

Since the operator R;l (Ai) vanishes on the operator sub-
space spanned by Pf;(-)Pl, we have that Eq. (C51) is
equivalent to

aR;(AL) + R, N(AZ) =0, (C52)

and therefore to

(C53)

R;l[a,A+ + azA_] —0.

Because the kernel of the superoperator R;l is spanned by
Pf; () Pf;, onto which A have no support by assumption,
then Eq. (C53) is further equivalent to
aAy +a A =0. (C54)
Therefore, equality in Eq. (C45) is achieved if and only if
A are linearly dependent, which is equivalent to the linear
dependence of D with D'. |
Using a similar idea, we can also prove a continuity
bound on the Fisher information with respect to its second
argument.
Proposition 17 (A continuity bound of the Fisher infor-
mation in its second argument)—let p be any subnormal-

ized quantum state and let D, A be any Hermitian operators
such that Py DP; = 0 = P> AP, Then

|F(p;D+A)—F(.o;D)—F(p:A)|

< 2[F(p: D)F(p; A)]V2 (C55)
Asa consequence,
|F(.0;D+A) —F(p;D)|
<F(p: A)+2[F(p: D)F(p: A)]Y2  (C56)
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Proof—Using the formula F(p ; D) = tr(D/
for the Fisher information, we write

R;1(D))

F(p: D+ A)=tu((D+ AR, (D+ 1))

=F(p:D)+F(p: A)+2tu(DR,'(A)),
(C57)

recalling that R;l is superoperator self-adjoint. The claim
follows by bounding the last term in the above expression
using the Cauchy-Schwarz inequality, to get

lr(DR;'(A))| < Jtr(D R;UD) (AR (A))

= JF(p: D)F(p: A).

[ |

We can consider more precisely how Fpg, behaves
when seen as a function of the noise channel A/, for chan-
nels N\ that are close to the identity channel id. More

F(v; D) = 4{u[(D) 8] — e[ wsz]}

{
{

<SFW
< F(

4

using ||Dllec < [|D]l1, and thus proving the claim. |

APPENDIX D: OPTIMAL LOCAL SENSING AND
THE CRAMER-RAO BOUND

Here we review which operators achieve the optimal
variance in estimating an unknown parameter [1,12,23,
24,89]. An unknown parameter ¢ of an evolution p; of
a (normalized) quantum state is estimated locally around
fp using an observable 7, whose measurement outcomes
are the estimates of the parameter. We ask for the observ-
able to have the correct average and first order deviation,
(T)Ptg+dr =ty + dt + O(df?); except in edge cases, this
condition can be enforced by a suitable scaling factor and
a suitable shift by the identity. The conditions then become
(T, =to and tr{(3:0els,) T} = 1. We seek to minimize
(T)?%. We call such an

operator with minimal variance an optimal local sensing
operator, and the square root of the minimal variance is the
optimal estimation error Aty (fo) locally at #. That is, the

the operator T’s variance (T2) po

u[N'(D) S] - t[N' (%) SE]}

specifically, we prove a continuity bound for the quan-
tum Fisher information F(N(l/f) ; N(atw)) at the point
N = id, when that quantity is seen as a function of N/
Proposition 18—et |{) be a pure state and let D be a
Hermitian operator such that (D)y = 0 and PJ-DPj; = 0.

Let € > 0 and let ' be a channel with [N —id|, < e.
Then
F(y.D) > F(N ). N (D)) > F(y.D)
— 8e|IDI[1 1Dl - (C58)

Observe that the stated conditions on D are satisfied if
D = —i[H, ¥] for some Hermitian operator H.

Proof. =id+ A where A is a
Hermiticity-preserving superoperator with ||A|l, < €. The
first claimed inequality immediately follows from the data
processing inequality. We now prove the second inequal-
ity. Using Proposition 4, let § = ZR‘,, (D) = D. Since this

S is known to be optimal in Eq. (C3a) for F(¥ ; D), we can
compute

{tr[A(D) S| - t[A (W) SE]}

W), N (D)) + 4| AD)|, IS0 + 4[| AW, 15113
N @), N (D)) + 8¢ lID]I1 1Dl oo,

(C59)

optimal estimation error locally at #;, along with an opti-
mal local sensing operator at fy, are given by the following
optimization problem:

AL (to) = ming_pr trfp, (T — to1)?},
such that  tr{p, T} = to, tr{(Bol) T} = 1.

(DT)

In the event that 9,0,,, = 0, there is no operator T that sat-
isfies the given conditions. We conventionally set Afyp. =
00, since the state is locally stationary and no observable
is able to detect a first-order deviation in the parameter £.
A more general scheme would enable an agent to use
a generalized measurement given by a POVM instead of
an observable T. However, as shown in, e.g.,, Ref. [1],
the optimal POVM can in fact be chosen to be a projec-
tive measurement. Therefore, one cannot sense a parameter
more accurately using a POVM instead of an observable.
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The following proposition fully characterizes the locally
optimal sensing observables (cf., e.g., Ref. [1]). In the fol-
lowing, we write as a shorthand p and 9,0 instead of py,
and 3;Pt|ro-

Proposition 19 (Locally optimal sensing).—assume
d;p # 0. Then any operator T that is optimal in Eq. (D1)
is of the form

T=d+ (AL) R, (3p) + Py MP;,

unc

D2)

for some Hermitian operator M.

If Py (8,p)Py = 0, then Ats. = [F(p; dip)]~" with the
Fisher information defined in Eq. (Cl), and M can be
arbitrary.

If Pr(3p)Py #0, then A3 =0 and M satisfies
tr(M P;3,pP)) = 1.

Let us further note that if 3,0 = 0, we have F(p;d;p) =
0. Therefore, provided that Pf;aprf; =0, we can in full
generality write

1
AR =L
" F(psdp)

along with the convention that At = 00 if F(p: 8,0) =
0. In our setting, the optimal sensing scheme always
achieves the value of the Cramér-Rao bound.

Proof of Proposition 19—Without loss of generality,
we assume fp = 0 throughout this proof; this is achieved
by shifting the parameter to center it at zero, implying the
corresponding shift T — T" = T — fy1. We thus consider
the optimization problem

(D3)

AL, = ming_p trfp,T?},
such that  tr{p, T} =0, tr{(@ply) T} = 1.
(D4)

First of all we observe that the first condition,
tr(pT) = 0, can be ignored without changing the opti-
mal value of the problem. Indeed, for any T that satis-
fies tr((3,0)T) = 1 but with tr(pT) # 0, we can define
T'=T—tr(pD 1, with tr(pT) =0 and tr((dp)7T) =
tr((8p) T') since tr(d,p) = 3 tr(p) = 0; then tr(pT?) =
tr(pT?) — [tr(p D < tr(pT?), meaning that 7" not only
satisfies tr(p7") = 0 in addition to the other condition, but
it achieves a better objective function value.

We can recast this optimization as semidefinite problem,
following Refs. [89,107], by using Schur complements
(Theorem 5):

Aty = ming, gt tr(pQ) (D5)
such that tr((atp) T) =1;
0 -T
7 1|2

The associated dual problem takes the following form, not-
ing that strong duality holds thanks to Slater’s conditions

[76,106].
Afl. = Maxycso B, pcr u — tr(C)
such that A< p
B+ B =pudp
A B
[B‘f c] >0
= mMaXpRarb., uck n— tI'(BT,O_]B) (D6}
such that B+Bf=puap
P,B=B
= MaxXjamh, pck H— tI'(LTL) (D?}

such that PV2L 4 L1pl2 = pnd,p,

using again Schur complements and where we introduced
the variable L via B = p!'/?L, and where P, =1 — Pf; is
the projector onto the support of p.

A powerful characterization of the whole family of opti-
mal solutions to a semidefinite problem with strong duality
are the complementary slackness relations. An inequality
constraint multiplied by the corresponding dual variable
becomes an equality for any choice of primal and dual
optimal solutions [76,106]. Here, this means that

-T A B __
[—an][afc =0.

This gives us the following relations that must be satisfied
for any choice of optimal variables:

(D8)

QOp=TB"; OB=TC, B'=Tp; C=TB. (DY)

The third equality (Bt = Tp) along with the dual constraint
in Eq. (D6) implies that pT + Tp = p d;p. Proposition 3
asserts that the solutions are necessarily of the form 7 =
(n/2R;1(8,p) + PMP:- for some Hermitian M.

Now first suppose that Py (3,0) Py =0. The primal

value achieved for a T of this form, and for any p and M,
is

2
primal achieved = tr(,oTz) = %F(t), (D10)

with F(f) as in Eq. (9). From complementary slack-

ness we have B! = T and hence tr(B'p~'B) = tr(pT?) =

w?F(f)/4. The dual problem therefore reaches the value
dual achieved = u — uzF(t)/4. (D11)

Optimality implies that the primal and dual values
are equal, w2F(t)/4 = p — u?F(t)/4 and therefore u =
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2/F(t) [note ;& = 0 is ruled out because the primal con-
straint tr((3;0) T) = 1 would be impossible to satisfy].
Therefore, the optimal solution to the problem is

ARy = ——. (D12)
F(t)
Now suppose that Pj (B,p)Pj # 0. Then there cannot be
any solution for L in the constraint in Eq. (D7) unless
s =0 [the left-hand side vanishes entirely if we hit it
with PJ-(-)P, but not the right-hand side if s« # 0]. Then
T = P, XP,, which implies tr(p7?) = 0, and furthermore
M must satisfy tr((B,p)PjMPj-) = 1 from the primal con-
straint. The dual candidate L = 0 yields objective value of
zero in the dual problem, and therefore the optimal value
of the optimization problem is zero, Af2,. = 0. |

APPENDIX E: PROOF OF THE SENSITIVITY
UNCERTAINTY RELATION

The goal of this section is to prove the statements made
in Sec. III. The setting is the one introduced in Sec. II.
We provide two independent proofs of the uncertainty rela-
tion. The first proof is more intuitive and straightforward.
The second proof is slightly more general and provides
greater insight into some technicalities that underpin the
uncertainty relation. The second proof directly relates the
semidefinite characterizations of the quantities Fggp, and
FEvey, making it easier to analyze edge cases, to gain
insight on what choices of semidefinite variables are opti-
mal, and to consider the more general situation where A
is a trace-non-increasing map.

1. Proof via the second-order expansion of the fidelity

The strategy of our first proof of our uncertainty relation
is to provide a direct proof of the statement presented as
Corollary 1; we have already seen in the main text that the
statement in Theorem 1 is equivalent to Corollary 1.

First observe that without loss of generality, we can
assume that the Hamiltonian is time independent. This is
because the Fisher information depends only on the state
and its local time derivative at £, which is given by Eq. (42)
and depends only on the value of the Hamiltonian at the
fixed value # of interest.

Our proof proceeds in a similar fashion to that of the
channel-extension bound developed in Refs. [30,31,78].
While our uncertainty relation could also be derived from
the results in those references, we provide a self-contained
proof for completeness and consistency of notation.

A remarkable property of the Fisher information is that
it is directly related to the Bures distance and the fidelity
of quantum states [1,12,25,108] according to

2

Fpoby = —4 —

|, F(pp(t), pp(1)),

(E1)

where F(p, p') = [|[p'2p" 2|y = te[ (02 p' p'/2)1/2] is the
root fidelity between two quantum states [63], where ||4]|;
denotes trace norm, i.e., the sum of the singular values of
A. Note that at ¥ = ¢, the fidelity reaches its maximum
value 1. We assume that p(#) is does not change rank at
f =t, avoiding edge cases where the expression (El) is
incomplete [32—34].

By Uhlmann’s theorem, and writing |p(#))pe =
Va_pe|¥ (1)) 4 in terms of the Stinespring dilation V4_. pg
of A/ given in Eq. (43), we have that

F(pp(0), pp(t)) = wﬂﬂi’fm“p(i )z We lp())ge|, (E2)

where W is a unitary operation on E. We therefore have
the following equivalent expressions:

Fos(®, pa(!)) = max Re (W (¢4 V! W Vo 1/ ()4
(E3a)
= max Re (¥ (/)L N W) 19 () 4
(E3b)
= max Re (¢ ()l DN W) 1 (1)) 4
(E3¢)
= max Re tr(fv(t,h () eM0) wp)
(E3d)

= Ve )],

(E3¢)

where the complementary channel Nis given by Eq. (44).
In the above expressions, the maximization can be taken
over operators Wy that are unitary, or equivalently, it can
be relaxed to all operators W satisfying | Wg| < 1.

The optimal unitary W is given by the polar decompo-
sition of the operator f\?(we"H("_“). For# =t +dt with a
small df, we have that the optimal W is close to the iden-
tity, which is the optimal for ¢ = ¢. Let us expand Wg =
1 — idtS — (1/2)dt*S, + O(df®) for general matrices S and

S2 to be determined. The unitary constraint WI: Wg=1g
for all dt implies that S = St and that S, —I—S; =25t =

252, Starting from Eq. (E3c) and expanding up to order df*
we find
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2
F(pp(0), p(?)) = S{r;_?u(s Re trlw (11 + idtH — HTdtz) Nt (11 — idtS — %dtz)] + 0(df’)

=1+ max {d: Retr[iyH — iy N (8)] + d Re tr[——sz _ —w(?' t(Sy) + yHN (S)] + O(dz3)}

_1+§ max Rete|—yH? —y () + 20 HAT©)] + 0@,

s=st, 5

(E4)

recalling that Nt (1) = 1, and where the first-order term vanishes because a product of two Hermitian operators has a real
trace; with the factor i the term is killed by taking the real part. Continuing with only the second-order term we find

2
ar?|,_,

= max{

where we have used the identity 2 Retr(40) = tr(4(0 +
0")) for Hermitian A, the identity 2 Retr(4BC) =
tr({4, B} C) for Hermitian A, B, C, as well as the condition
S —I—S; = 252 that came from enforcing the unitarity of
WE.

It is instructive to briefly comment on the situation of a
time-dependent Hamiltonian. The derivation of the above
expression, especially Eq. (E3c) and the expansion of the
time-evolution operator leading up to Eq. (E4), looks like
it necessitated the assumption of time independence of the
Hamiltonian and that a time-dependent Hamiltonian might
have led to a different result. In fact, we obtain the same
result with a time-dependent Hamiltonian, which can be
seen as follows. Write

H() =H +tH + 0() (E6)

and expand the time-evolution operator via the time-
ot gy

ordered exponential as UT(¢ — 1) = T&'li #HE) = | 4
iffarH@) - [farH@) [T dH@E") + 0@) = 1 +
idtH + (d*/2)(iH' — H*) + O(df’), then we see that the
only difference in the expressions leading up to Eq. (E4) is
an additional term Re tr{l,&iH ’dtz}, which is equal to zero.

Now, we proceed to prove the uncertainty relation. With
the definition AFgobs = Falicer — FBob,, We have

AFgyy; = 4(tr(WH?) — (tr(wH))?)
2

d
4 =
T am

F(pp(1), p3(1))

=t

- rsnj.;{ur[ﬁ (tv.H)) S] - 46N () 7]

—4(eym)’ |, (E)

Fps(0, ps(®)) = max {—tr(sz) - %tr(ﬁ‘(w) (2 +51)) + (v, (4N T(S)]]
—tr(VH?) — e(N () %) + [N ({v, H}) 5]},

(ES)

recalling that Fyjce; = 407, = 4((H?) — (H)?) and using
the expression (E5). Observe that AFpeps iS necessar-
ily invariant under a constant shift of the Hamiltonian
H — H + cl, because such a shift does not influence the
evolution ¥ (#) and therefore both Fyjice; and Fpops are
invariant under such shifts. [This invariance can also be
checked explicitly by carrying out the corresponding trans-
formations H +— H +cl and § — S+l in Eq. (E7).]
Applying the shift H — H — (H)y yields

(F7) = gn:g{4tr[ﬁ({w,ﬁ}) S] - 4t[N(w) sz]}, (ES)

using the shorthand H := H — (H)y. At this point we
recognize the expression of the Fisher information from
Proposition 5, with p :ﬂ?(w) and D :ﬁ({w,H}). Let
us briefly check that the requirement PrDPL =0 in
Proposition 5 and in the definition of the Fisher infor-
mation (Cl) is satisfied. Thanks to Theorem 5, we

have I:—"f’ VA = 0, and furthermore, by Lemma 1,

By ByA | 7
[ Nw) KwH)

N (#Hy) NEHYH) K
that PEA (Y H) = 0. Therefore, PN ({y, H})PE = 0. 1t

follows that

= 0; by Theorem 5 again, this implies

AFgoy; = (F8) = (E9)

F(Nw): N (. ),

as claimed.

2. Direct proof using the semidefinite characterization
of the Fisher information

For this section, we fix [V/), |€) be such that ({|y) =
1 and (Y¥|€) =0, and let N be a completely positive,
trace-non-increasing map. Let V4, pr be a Stinespring

040336-57



PHILIPPE FAIST et al.

PRX QUANTUM 4, 040336 (2023)

dilation of NV, i.e., N'(-) = trg(V'(-) V1), and let N'(-) =
trp(V (-) VT). Let

DZ = E) (W] + V) (E].
(E10)

DY = —i(1EMY ] — 1¥)(E]) 5

Suppose that |®p.£) is a maximally entangled ket between
two suitable subspaces of B and E that are sufficiently large
to ensure that there exist M, A matrices on B satisfying
Vig) = (A@1)|Ppe): VI§) = (M Q1)|Ppk).
(E11)

(Alternatively, one can embed both B and E into larger sys-
tems B',E' with B’ ~ E’, on which one can consider the
canonical maximally entangled ket |®}, ) = Y |k)p'|k)
with respect to the canonical bases of B', E’. We then define
|®p.£) by projecting down |®, ) onto B ® E.) Through-
out the following, we only ever consider operators that are
in the support of the reduced operators of ®p.zr on B and E.

We define the operation tp_.g(:):= trg{dlg,_g [HO®
1 E]}, which is the partial transpose operation with respect
to the bases used to define |®p.g). Equivalently, a defin-
ing property of this operation is that for any operator Xp,
we have (Xp ® 1g)|Pp.p) = (15 @ 15, £(Xp))|Pp.g). Fur-
thermore, for any M, we have fp_.p(M T) = [tg_,g(M )]T
and forany X, Ywe have tp_,p(MN) = tp_.g(N) tp.g(M).
Similarly, we define the inverse operation tz_,p() =
tl'{(bgv_g 1 ® (-)]], which has the same properties.

Observe that AAT = N([¢)(¥]) = pp and MMT =
N (|€)(€]). Furthermore, we define W via the polar decom-
position of A = p'/2W, with

A=p'Pw; AT =W

A =W AT =7 (E12)
The operators A~! and A~ are the Moore-Penrose pseu-
doinverses of A and A', respectively, as can be seen
by computing AA~! = P, and ATA = WTPpWas well
as ATA=T = WP, W and A~TAT = P,. Furthermore, we
have

N (DY) = —i(MAT—AM?), (E13a)
JV(Dj) = tl‘B{MB¢B;EA§ - AB‘DB:EM;}
= tg_ 5[ ATM + MTA]. (E13b)

We may also relate these objects to the state on Eve’s
system, via the partial transpose operation fz_,g. Observe
that V|¢) = (A @ 1)|®p:£) = (1 @ tp.£(A))|Pp:E), and
therefore o = trp(VY V) = [t5_p(A)][t55(A)]" =
tg g (ATA) =tp g (W' ppW). Then P, =tp .g(W'P,, W)
and Pf;E = fg_,g(pVTPj} W). We begin with a characteriza-
tion of when our uncertainty relation holds with equality.

Proposition 20 (Conditions for uncertainty relation
equality).—the following statements are equivalent:

(i) (PL @ PL)VIE)=0.
(ii) We have Po MWTPL =0.
(i) We have PLN(€)(ENPL = PLN(€)(W])o5!
N(¥)EDPL.
(iv) We have PLN(§)(ENPL =PLN(£)(W D)oz

N () EDPy,.-
(v) Let {E;} are Kraus operators for A/. For any lin-

ear combination E = ), cxEy with ¢; € C and such
that E|y) = 0, we have PjBEH;) =0.

Furthermore, consider the setting of Theorem 1 and sup-
pose that [§) is defined as |§) = (H — (H))|¢¥). Then
(iyHv) are furthermore equivalent to the following.

(vi) For any eigenvalue pi(f) of N (¥ (#) such that
pi(to) = 0, we have 82p; (to) = 0.

Observe that all the conditions above do not depend on
the choice of Stinespring dilation and/or on the choice of
the Kraus operator representation, as all such choices differ
by a partial isometry on the E system. In other words, if the
conditions above hold for particular choices of V, .K? , and
{E}}, they hold for all other choices as well.

Proof of Proposition 20—We have the following impli-
cations. (i) < (ii): consider

(P ®P VIE) = (P2, M) ® Py )| ®)se

= ((P,M tr_p(P,)) ® 1)|®)zs. (E14)
Since V]¥) = (A @ 1)|®) = (1 @ tz_g(A))| D), we have
pE = tgg(A) tap (M) = ta g (ATA) = tg_. g (W' ppW).
Then Py, = tp_.g (WP, W) and P = tg_.p (W PLW) =
t3£(P,,), and

(F14) = ((P,MPL)®1)|®)gz.  (EI5)

Therefore, we have that (Pj}; ® Pf;E) V1€) = Ois equivalent
_ pl pl
to0=PLMP-. .

(i) = Gii):  let K =PIN(€)(WDpg ' = Pltrg
(MoppAt)pp'? = PLMW'P,. Now assume that (i)
holds; then K = P, MW" and we have KKt = P-MM*P
= Py N (I€)(E)P,, showing (iii).

(iii) = (ii): conversely, assuming (iii) and if K =
Pf;BJ'\'r(lé‘)(1)'f|),0§]‘(2 :Pf;MWTPp, we have by assump-
tion that KK' = P-MM'P- = (P, MW'P,)(P,MW'P,)}
+ Py MW' P, WM'P;-. This means that 0 = (P; MW'P;)
(Pf; WM 1'Pf;). The latter equation can only hold if
PyMW'P, = 0, showing (ii).
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(i) < (iv): condition (i) is symmetric if we replace B <
E (and correspondingly A/ <> '), meaning that the con-
dition holds if and only if the condition with B and F
swapped also holds. Therefore, we can swap B <> E in
the other conditions and those will also hold if and only
if (1) holds. Condition (iv) is obtained by performing this
transformation on (iii).

(i) = (v): we choose the representation V' =3 E; ®
|k) g and assume (i), i.e., that we have

(P ®P V) =0. (E16)

Let {c;} withc; € Csuchthat ) ", ciE¢|Yy) = OandletE =
> i ckEr. Define |e}r = ) cf|k)g. We have

eIV W)le) = Y (elk) tr(ExWE]) (Ke)

k!

= tr[(z CkEk) v (Z C"E")T]

2
= |Ew)|" =0, (E17)
which implies that |e)r € kerﬁ(g&), ie., Pj-E|e)g = |le)g.
Applying (1 ® (e]) onto Eq. (E16) we find

0= (Pl elPL YVIE) =

k
(E18)

showing that (v) holds.
(i) < (v): we now suppose that condition (v) holds. Let

[x;)e be a set of orthonormal states that span the sup-

port of Pf;E, ie., Pf;E = Zjb{j)(){j |[g. Fix any such |x;)

and define EV) = )" (x;|k) Ex. We repeat Eq. (E17) by

replacing |e) — [x;), cx — (x; k) to find

= [EV1)],

0=(INWIx) = ... (E19)

which implies that EV)|yy) = 0. We use the assumption
that (v) holds to deduce that PjBEUJP;) = 0; we note the
latter expression holds for all j by repeating this argument
for each j individually. Then

(PLOPL)VIE) = (PL® D _1x) (1) V1)
=Y (PLE:E) ® (1x;) (1K)
kj

=Y (PLEDE) ®[x) =0, (E20)
i
showing that (i) holds.

(iii) < (vi): now consider the setting of Theorem 1 and
suppose that |&) is defined as |§) = (H — (H))|¢). We

3 (PL EdE)) (elk) = P Ele),

invoke Ref. [33, Eq. (B15)], which in the present context
reads

Aeld0lhe)|?
PJ_ag Z Pk+2z [(Axl0:0|Ae)] . (E21)
k:pr=0 Kt Pk
pr=0
pe=0

where {|A;)} is a complete eigenbasis of p with eigenval-
ues pi. Using Eq. (11) one can check that the second term
on the right-hand side satisfies

|(Aeldupl2e) -
2) =2l @) Py ()]
Pi=0
pe=0

=2tr{p N (W) ED PN (E)(¥ D)
(E22)

using the fact that 8,0 = N (—i[H,¥]) = N (—i|E)(¢| +
i|Y)(&]) and that N(XW)P; =0 for any X. On the

other hand, we can see that 33,0 =N (—i[H,y¥]) =
N (=ild,H,y]— [H,[H,¥]]), and recalling that N'(X ¢)
P =0 for any X we obtain

tr(P, 0} p) = tr(Py NQHYH)) =
=2tr(P; N (1) (£D),

tr(Py N (Hy H))
(E23)

writing H = H — (H)y and where [£)
Now suppose that (iii) holds. Then

= H|y).

(E22),
(E24)

(E23) = 2tr(Py N (€)W ) o~ N (1) (£]) =

and therefore the first term on the right-hand side of
Eq. (E21) must vanish, and since 82p; > 0 for all k for
which px = 0 as pi reaches a minimum at that point, we
must necessarily have that 32p; = 0 for all those k.

Conversely, if the first term on the right-hand side of
Eq. (E21) vanishes, then we have

tr(Pr N (&) (W] p~ N (W) (ED) = (PN (€)(ED).
(E25)

By applying the completely positive map id; ® N onto

the matrix (w)(w 1) {&|

E)WI  1E)(E |) and further conjugating by
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" n)
L | we find that
(* »

p N(1¥)(EDP;
[PlN (&)W PEN ()G I)Pl] >0.  (E26)

From the Schur complement (Theorem 5) we find that

PE[N (e ED - N (&YW o~ N ED]PE > 0
(E27)

But a positive semidefinite operator has trace zero if and
only if it is identically equal to zero, so with Eq. (E25) we
find that P[N(§)(ED) — N XY o~ N (I¥)(ED]P,
= 0, showing that (iii) holds. |

Our main technical theorem is the following.

Theorem 6 (Time-energy uncertainty relation in the
virtual metrological qubit picture)—let A, B, and E be
finite-dimensional quantum systems. Let N4_.p be acom-
pletely positive, trace-non-increasing map. Let V,_, pr be
such that Ny p(-) = trg(V(-)V') and VTV <1, ie, Vis

[Nuwwn N(|w>(§|)] 0:
NAEY WD Ng)ED

Then, Theorem 5 ensures that PN(w)N(|¢)(§|) =0
and therefore PJJQ(WN(DDPN(W = 0; likewise Pﬁ(w)

NPk, =0.
Proof of Theorem 6—Let A, M be operators acting on

B such that V]{) = (A ®1)|®) and V&) = (M @ 1)|D).
We can write
Dp = N'(D)) = trg(—i(M&) (¥ |V =Wy ) (] 7T))
= —i(MAT-AMY), (E31a)
Dy = N(D%) = mpg) (v IV + Vv ) gvh
= trg(M®AT + AdMT); (E31b)

a Stinespring dilation of /. Let m_,g(-) = trg(V(-) W).
Let |¢) be any subnormalized state on A4, and let |&)
be any vector on A such that (Y¥|&) = 0. Define Di =

—i(|E)(¥] — 1¥)(€]) and DF = |E)(¥| + [¥)(E]. Then
FINW); N(DD) + F(N(v); N (D%)
4EINT@D)E). (E28)

Furthermore, if (P, ® P,.)¥]§) = 0, then equality holds.

First, we remark that both Fisher information expres-
sions in Eq. (E28) are well defined in_that we always
have Py, N (D})Py;,, = 0and Pk, wﬂ? (D%)P%, =0
as required in the definition (C1). These conditions can be
verified by first noting that the following matrix is positive
semidefinite:

[I%&)(v'fl

[¥)EL _ | 1Y)
1€) (W B

|E)(E] |§)] [(wv] (€] =0, (E29)

and applying either completely positive map id; ® N or
id; ® N to obtain

[ﬂ?(IW)(lﬁl) ﬁ(ll/f)(é‘l)] (E30)

Nagywl)  Nagyen

where in Eq. (E31b) the operators M, A act only on B with

a tensor product with the identity on E implied but ® =
®&pr = |P)(P|pr. Now consider

1 ~
—{4<5|N*(11)|s> — F(pz: DE)} = tr(MM")
— max {U'(DESE) —tr(pgsg)} (E32)
SE_S
using Eq. (C3a) and noting that (EINTD)|E) = r(NV

(IE)E]) = tr(MM™). Then, using Eq. (E31b), and writing
t(-) = tg_.p(-) as a shorthand,

(E32) = min {tr(MM‘f) — tr((MOAT + AdM™)S;) + tr(sEAchTSE)}

Sg=S}

Sg

= min {tr(MM‘f) — (M (Sg) AT + A 1(Sp) MT) + tr(A(t(SE))zAT)}
S

= min frM") - tr(MS'AT + ASMY) + tr(AS?AT)],

sr=g't

= min tr((M — AS)(M — AS’)T),

sr=g't

(E33)
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where the optimization now ranges over all Hermi-
tian operators S’ acting on B. On the other hand, using
Eq. (C3b),

1
7F(p: D) = min{tr(L'fL) L pWPL Lt = D},

(E34)

where p, D refer to operators on B. To prove the inequality
(E28), which is the first part of our main theorem claim, our
strategy is to show that for any candidate S’ in Eq. (E33),
there is a valid candidate L in Eq. (E34) that achieves the
same value. This statement then implies that (E34) < (E33)
as desired.

Recall that AAT = p (where p = pp for short in this
proof), and therefore the polar decomposition of A can
be written as A = p'/2W for some unitary matrix . Let
S’ be any Hermitian operator that is candidate in the opti-
mization (E33), and let L = iW(M' — §’A"). Then one can
verify that

P PL4+ LTp'? = iAMT—S'AT) —i(M — AS)AT
= —i(MA'—AM") =D, (E35)

and thus L is a feasible candidate in Eq. (E34). Further-
more it holds that tr(L'L) = tr((M — AS)(M — AS")Y),
thus proving the inequality (E28).

We now show that, assuming (PJ- ® PJ- )V|S,~') =0, the
inequality becomes an equality. The proof strategy isto go
in reverse direction above, starting with an optimal can-
didate L in Eq. (E34), and constructing a candidate ' in
Eq. (E33) that achieves the same value. From Proposition
20 we see that (PjB ® Pj}s) V1) = 0 is equivalent to

PrMW'P =0 (E36)

Let L be an optimal candidate in Eq. (E34), i.e., such
that p'/2L + LYp'/2 = D and F(p ; D) = 4tr(LTL). With-
out loss of generality, we may assume that P,L = L, since
otherwise P,L would yield a better optimization candidate
in Eq. (E34). Denoting by Py*" and Py® the projectors
onto the support and the range of an operator X, and
defining P, = WP, W, we have

mg __ pSupp __
PRE=PY =P,

Pr=1-P,

Py =P} =W'P,W =P,

Pr=1-P,

(E37)

Let us compute the object LPf;:

LPj = Pprj = p ("L LT,olﬂ)Pj

= p A (—iMAT—AMY))P;
=ip~ *(AM")P = iP,WM'P, = iWP,M'P;
=iWM'P, (E38)

where we have employed Eq. (E36) in the last equality.
Now let us get started with constructing §’. Our goal is
to find a Hermitian matrix S’ such that
L=iwMi—s'A"). (E39)
Indeed, this would ensure a valid candidate in Eq. (E33)
reaching the same value as tr(LTL). The equality (E39) is
equivalent to both simultaneous conditions
LP, = iw(M'—S'AY)P,; LP; = iwm* —S'AYP;.
(E40)

The latter follows immediately from Eq. (E38), noting that
ATPj = 0. It suffices, therefore, to find a Hermitian matrix
S’ such that the first equality in Eq. (E40) is satisfied.

Let A~' =W p~1/2 noting that A~'A = Pp and
AA~' = P,. Define

S = A [AM'f + :'AWTL](A—‘)T + Mt A

+ A~ MP;. (E41)

First we show that S’ is Hermitian by proving that the term
in brackets in the first term above is, in fact, Hermitian.
Using AW = p!/2 we can compute

T
[AMT + fAW’fL] _ [AM‘f +iA W*L]
= (AM'—MAY) +i(p' 2L+ Ltp'7?)

= —iD+iD =0, (E42)

using properties of L noted above and using Eq. (E31a).
Therefore, 8" is Hermitian. Then

iwM*—S' AP, = iwM'P, — iWP,M'P,

+P,LP, — iWP;M'P, = LP,, (E43)
noting that PLA'r =0, (A HIAT=(AA-Ht =P, and
recalling that P L = L. With this choice of &, the first
equality in Eq. {E40) is thus also satisfied, thereby com-
pleting the proof. |
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3. Additional equivalent conditions for zero sensitivity
loss

The following theorem provides additional conditions
under which zero sensitivity loss is achieved (see Sec.
VII), leading to an explicit form of Bob’s optimal sensing
observable whenever these conditions are satisfied.

Theorem 7.—we use the notation of Appendix E 2. Sup-
pose that the conditions for our uncertainty relation equal-
ity (Proposition 20) hold. Then the following statements
are equivalent:

(i) We have F(N'(¥); N(D))) = 4EINT(D)§).
(ii) We have tr(ELEkDi) = 0 for all k, k', where {E}} is
any set of Kraus operators for \.
(iii) We have N (D%) = 0.
(iv) We have AT™M + MTA = 0.
(v) The operator ip'/2MW? is Hermitian.
(vi) The operator ip N (|€){¥|) is Hermitian and
NE)ED = NAEYY D~ N(¥)(ED.
(vii) The operator ip N'(|€){(¥]) is Hermitian and

EINT@)1E) = [N E) WD~ N (¥ )ED].

Furthermore, if these conditions are satisfied then

R,IN(D)) = 2N (1) (wDp™!

+2ip” N (W) ()P (E44)

Proof—The proof of (i)<(i1)<>(iii) is presented in the
main text (Sec. VII).

(i) = (iv) : write 0 =N (D%) = trp{®pe[ATM +
MTA]]. Observe that trg{dlg,_g (-)} is the partial trans-
pose map with respect to the bases used to define ®p.x;
therefore, ATM + MTA = 0.

(iv) < (v) : we compute

ip MW —(ip" P MWh = iw(ATM + MTA) A,
(E45)

which vanishes thanks to the assumption that (iv) holds.
Conversely, because W is unitary we may only have
Eq. (E45)=0if ATM + MTA = 0.

(iv) = (vi) : recall that p = AAT and N(|€)(¥]) =

trg(VIE) (¥ |VT) = MAT. Thenip N (|€)(y]) = iAATMAT.

To check that ip/ N (|€)(¥|) is Hermitian we compute

ibN () (W]) — GoN (E) (W 1)!
=iA(AT™M + MTA)AT =0, (E46)
using our assumption that (iv) holds. Furthermore, we have
0=p~ PW(A'M + M'A)W'P; = P,MW'P): (E47)
recalling point (ii) of Proposition 20, we find that

MW'P = 0. (E48)

Then
N(g)Eh = MM = MW (P, + P, WM'

=N W Do N () ED). (E49)

(vi) = (vii) : this implication follows immediately from
ENT@)1E) = eV (1§) (D).

(vii) = (i) : our proof strategy for this implication is
to show that the expression of the symmetric logarithmic
derivative in Eq. (E44) is correct, and that the correspond-
ing Fisher information at Bob’s end has no sensitivity loss.
Let

R=-2N(E)WDp~" +2ip”' N(I¥)EDP,. (E50)
We can see that R is Hermitian by writing

R=—2i(P,+ Py N(§)(Wp~" +2ip~ N () EDP,

= =2ip~' [pPN (€)W D] + (—2PrN (€)Y~
+he). (ES1)

The first term is Hermitian by assumption and the second
term is manifestly Hermitian. We note for convenience that

RP, = =2iN(1)(¥])p~" and P,R =2ip~'N'(I¥)(§)).

We can compute

1
3 (0R +Rp) = N (¥)(ED — N (€)W = N (D).
(E52)

Combining with the fact that Pf;RPf; = 0 we have that
R;](N(Dy)) = R (see also Proposition 3), thus proving
Eq. (E44). The Fisher information at the output of the
mapping N is therefore

FN(): N (D)) = tr(pR?)
= trlp ip N (W) (ED) (—2iN (18) (W Dp~")]
= 4tr(N (&) WD N (1Y) (€D)

= 4(EINT@D) ). (E53)

We conclude that (i) holds. |

4. Proof of the generalized bipartite Fisher
information uncertainty relation for any two
parameters

In this Appendix, we prove the generalized uncertainty
relation (68) that applies to any two parameters generated
by unitary evolutions.

Proposition 21 (Uncertainty relation for any two param-
eters with associated generators)—let |J) be a state
vector on Alice’s system, and let 4, B be two Hermitian
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operators. The latter generate two respective parametrized
evolutions

0¥ = —il4,¥]: Y = —i[B,V]. (E54)
Consider the setting depicted in Fig. 1, where A\ can be

any completely positive, trace-non-increasing map. Then

F Bob,a F Eve,b

+ <142 (E55)

Faticea  Falicep

Furthermore, assume that A'[y (a)] does not change rank
locally as a function of @ and that there exists § € R, 8 # 0
such that

Sl )-rs(f52 o)) o

Then

F 1 Feve
Boba Beb 1. (E57)

B? Falice.p

F, Alicea

Corollary 3 (Uncertainty relation for any two param-
eters).—let |Y(a,b)) be any state vector depending on
parameters a, b. Then

(T, 359)’
4(@v)2)(@v)?)
(E58)

F Bob,a F Eve,b

<142 (1-

Flicea  FAlicep

We first prove the following lemma.

Lemma 2—let |¢) be any state vector and let M be
any completely positive, trace-non-increasing map. Con-
sider two Hermitian operators C, B generating respective
evolutions

oY = —i[C. Y], Y =—i[B, Y] (E59)

We write p = M), 8.0 = M(—i[C,¥]) and 9pp =
M(—i[B, ¥]). Then for any x,y > 0,

Y X
_F - < .
7 (p . Bbp) = _ZF("O . Bcp)

xy  4[Re(CB)’
(x +y)? aé.oﬁ

+4x+y) |1 , (E60)

where C = C — (O)1 and B = B — (B)1. In addition, sup-
pose that C can be written as C = ix[4,y¥] for some

Hermitian operator 4 and some a € R. Then the above
inequality takes the form

y x
—F(p:app) < F(o:d,
0'§ (p, bp) azoff (,0 ,0)

xy (i8]’

+4(x + 1 -
( Y) (x + y);! oﬁoﬁ

(E61)

Furthermore, let x, y > 0. If there exists s € {41, —1} such

that
I R | W
ap ac
then
(E63)

y X
ZF(p:0yp) = —F(p: 8.p).
22 (0 3ep) o2 (p30cp)

Proof of Lemma 2—For any x,y > 0, define the short-
hands

ﬁ’:ﬁ(C—(C)), E:j—f(g—w)). (E64)

oc

Observe that 0'(% =x and 0'5 = y. Furthermore, we define
for convenience Dy = M(—i[(-),¥]), observing that
D¢ = 8.p and Dg = 9,p. Then using Proposition 8 we see
that

F(p:Dg) = =F(p:Dc); F(p:Dp) = 25F(p: Dp).
oc Op
(E65)
Invoking Proposition 16,

12
F(p:Dg) <F(p; Dg) +[Flos A)F(p: A)]
(E66)
where Ay = Dy &+ Dy = Dy, 5. We proceed to compute
the second term on the right-hand side of this inequal-

ity. The data-processing inequality (Proposition 13), along
with Proposition 12, gives us

F(p: Ay) < F(¥: —i[C+ B,y]) = 4Var, (C£ B),
(E67)

where we write Var,(X) = (X2), — ((X),)?. We find

4Vary (C+B) =4((C£B)*) =4(C* + B+ {C,B))
= 4(x +y) = 8Re (CB). (E68)
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Then
4*Vary, (6’ + f?)\/ar‘;, (6’ — f?) =4 (x +y)2

xy — = 12
— 82 [Re (CB)]", (E69)

atoj
where C=C— (C) and B=B — (B). Combining the

above,

[Flo: 8)F(0: 8)] "

xy  4[Re(CB)]’
(x+y)? ag-oﬁ

<4x+y) [1- (E70)

Plugging this expression back into Eq. (E66), along with
Eq. (E65), proves Eq. (E60). Now suppose that C =
ia[A,y] for some Hermitian operator 4 and for a real
number «. Then (C) = 0so C = C and

Re (CB) = a Re (i[4, Y] B) = a Re ((V|iH |¥) (V|BI¥)

— (Y1idBlY))
= aRe(—i(4B)) = ( i(AB) + i(BA))
a, . - o,
= 5 (il4. B)) = ={il4.B)). (E71)

Equation (E61) follows from this and wusing the
fact that od = (C?) = a®(—(AY — Y A)?) = ?((4%) —
(4)?) = a0 1.

Now assume that Eq. (E62) is satisfied. Recalling
that Ay = Dp & Dy = M(—i[C £ B,¥]), we find that
condition (E62) immediately implies that either A, =
0 or A_=0 and therefore either F(p:A,)=0 or
F(p; A_) = 0. In this case, Proposition 16 immediately
implies that F(p:Dg) = F(p; Dg). We conclude that
Eq. (E63) holds, recalling Eq,. (E65). |

Proof of Proposition 21 —Consider the evolution ¥
(a, c), where the parameter a is generated by the first given
Hermitian operator 4 and where the parameter c is gener-
ated by the complementary generator C (as per Fig. 5 in
the main text) given by

a.¥ = iC, ], (—il4,v]).  (ET2)

1
~ 2Vary (4)

Recall Fapjicee = 4()'(2j = o:;z from Eq. (27) with H — 4
and T — C. Our time-energy uncertainty relation, in its
form of Theorem 6, asserts that

1

2
QFBob,a + gy FEve,c "-<-. 1. (E?3}

Now we invoke Lemma 2, with M :./v , ¢ b C=
i[4,¥], a= —(20' )y, B, and x =y =1/4. From

Eq. (E61) we find

1
_FEveb

O'F\,e +2
403 A¥ Evec

(E74)

We find, applying Eqs. (E73) and (E74) in succession,

1 1 1

_Fo Fve 1_ Fvec Fve
40:3 Bb,a+4UBEb O4FE +4G§E,b
i[4, B]}* _
<142 ——F—. (E75)
o

This shows the desired uncertainty relation.

Now assume that AV/Ty] does not change rank locall
as a function of a and that Eq. (E56) holds. Let M = J’Vy
pe = N1, C=ia[4,¥], and @ = —(202)~". Then as
computed above oc = |a|og = 1/(204). Let us compute
now

o4
- _f[

—il4, Y] %&]

04

(A) ]

recalling that [[4,¢], ] ={4 — (4),¥}. Lety =1, x =
|B]> and s = sign(B) such that Sﬁ/ﬁ = B. We then

have

M(—i[\/fo% +s«/:?£, w])
-8([irs]) (55
=) - (=)

=0. (E77)

(E76)

The latter expression then vanishes thanks to our assump-
tion that Eq. (E56) holds. Thanks to Lemma 2 we find

FEve,b . 1 _i .
Frlicep 403 202 F(ee: ) 40(%5'(.05.36,05)

2 F Eve,c

. E78)
F Alice,c ( .

Thanks to our assumption that A'[y/] does not change
rank locally as a function of a, we know that our main
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uncertainty relation (Theorem 6) holds with equality:
1

— Fpopa + 04 Feyee = 1. (E79)
4o
We therefore find, recalling aj =1/ (40'%),
Frol 1 FEye 1 Fhye
Boba =3 Eveb = |:1 —O'jFEve,c] + =7 = 2,1:
Frticea  B* Fhalice,p B” 4o
1 FVBC 1 FVB
— 1 — fEvec > ___Eveb ;” =1, (E80)
B? 408 = B? 4o}
using Eq. (E78), thus proving the claim. |

Proof of Corollary 3.—The main idea of this corollary
is to note that the Fisher information depends only on the
state and its first derivative with respect to the parameter,
and that any derivative ;¥ can be written in the form
.Y = —i[A, ] for some Hermitian generator 4. There-
fore, we seek Hermitian operators 4, B such that d,¢ =
—i[4,¥] and 8y = —i[B, Y], such that we can apply
Proposition 21. We let 4 = i[3,¢, ] and B = i[9y, ¥/,
and we compute

—I[A,w] = —I[I[aaws w]’ ‘&] = {aaw"w}
= Ba(wz) = aaw-s

using Eq. (A4) and the fact that (d,¥) = tr[d,¥] =
dg tr(¥) = 0. Similarly,

—i[B,. Y] = 3.

We can therefore apply Proposition 21. It remains to com-
pute the quantities appearing in the right-hand side of
Eq. (E55). We have

(E81)

(E82)

(14, B) = ite| v [it2,v, ¥, i3, v1]
= ite] [y, il 1] (199, )}
= wl—i[iTa¥, v, ¥] (0359 V1))
= | @) (0¥, )
= (il8.v, 95¥),

using the cyclicity of the trace and invoking Eq. (E81) for
the fourth equality. Furthermore,

(E83)

o} = (4% — (4)* = (0¥, V1)) — (T8, V)’
= —((@¥) ¥ — ¥ @a¥)) (V) ¥ — ¥ @a¥)))
= (¥ @.¥) @a¥) ¥) = (@.¥)%), (E84)

where we have made use of v (d,¢¥) ¢ = 0. Similarly
o} = ((8¥)?), which ends the proof. [ |

APPENDIX F: GENERALIZATIONS TO
INFINITE-DIMENSIONAL HILBERT SPACES

While the main text has put an emphasis on dis-
cussing notions of quantum metrology making use of
finite-dimensional quantum systems, in this section, we
generalize the above findings to the setting of infinite-
dimensional Hilbert spaces. A specific attention is given
to unbounded operators, as many physical systems of
practical use fall under this category.

1. Uncertainty relation for any two parameters

We start with a generalisation of Theorem 3 to infinite
dimensions (cf. Proposition 21).

Theorem 8 (Uncertainty relation for infinite-dimen-
sional systems)—let A,B be two self-adjoint opera-
tors (possibly unbounded) on a separable Hilbert space
¢ with domains D(2) and D(B), respectively. Let
|¥) e D@®)ND(B) and |¥(a)) € D(A), |¥ (b)) € D(B)
for some b,a € R where |¥(a)) := e 2|y), |¥ (b)) =
e ™B|yr). Let V4_pr be any isometry 5¢ — 3 ® H#%,
where the Hilbert spaces .73, .77 associated with Bob
and Eve are also separable and possibly of infinite dimen-
sions. Consider the two pure state evolutions given by
Eq. (E54). Then Eq. (E55) holds, with the following
quantities defined by

(i[a, B]) == i(ay, BY) — i(BY, Ay), (F1)
(a?) := (ay, Ay) (F2)

and
Fy(y) i=limnftr [p},? (V)RZ] cR, (F3)

where M € {B,E}, y € {a,b} and p)(;) is an /-dimensional

subnormalised density operator and R = R() is defined

in Eq. (11) on an /-dimensional Hilbert space for pi?.

Specifically,
P ) =t [PV acmera OV psPSl ] (F4)
where \E := B,\B :=E, and Pgﬁ is the orthogonal projec-

tion onto the first / basis elements of a basis for 7% @ 5#%.
Furthermore, the derivative of pﬂr) (y) is defined via

d d

@ ) = tryy [P.%%VAqsgapA(y)Viﬁsgpﬁ%] ;
(F5)

where

d
ZoP1@ =ilY @)Y @A — Ay @) (Y@l  (F6)

d
P10 =Y @)Y @)IB — By G) (Y ®B)|.  (F7)

040336-65



PHILIPPE FAIST et al.

PRX QUANTUM 4, 040336 (2023)

Proof of Theorem 8—The proof will proceed in two
steps. First we will approximate B and A by bounded oper-
ators (if they are already bounded, then this first step is
not necessary, although the approximation will neverthe-
less be well defined). Second, we will approximate these
bounded operators by finite dimensional operators. Then
we will apply Eq. (E55) before taking a sequence of limits
in which the approximations vanish. We start with a few
elementary definitions and results, which will be necessary
for our proof.

Let A, (44)n, be bounded operators on a Hilbert space
. We define all bounded operators we consider to have
domain equal to the entire Hilbert space. We say that 4,
converges (as n — 00) to 4 in the strong limit if 4,¥ —

AW as n — oo for any ¥ € . We denote this as A4, >
A. Some properties are the following.

(1) Let A, (An)n, B, (Bn)u, C, (Cy)n, be bounded oper-
ators on a Hilbert space . 4, 5 A, B, % Band
C, - Cimply A4,B, - AB and 4,B,C, > ABC.
Proof. (ApBn — AB)V = A,(By — B)V + (4, — A)
BW. By the uniform boundedness principle, 4, — A4

implies [|4,|| < ¢ for some ¢ € R for all n. There-
fore,

(4,8, — AB)V| < cl[(B, — B)Y|
+ [|(4n — A)BY||, (F8)

where the rhs tends to zero as n — 00. This proves
the first claim. For the second, simply define 4, :=
A,B,. Hence A, — AB and thus 4,C, — (4B)C,
hence proving the second claim.

(i) An — A implies e=“n* 55 = for t € R.
PP‘OOf e—iAnt _ e—z‘A( — —iA,,s —i4(t—s) = S f[)ds
e s (4, — A)e M9 But we have (An — A)
e~ =9 2 ( pointwise in s, where 0 is the bounded
operator mapping all vectors in # to the zero vec-
tor in J#. Thus via (i), e4*(4, — A)e= =9 3
pointwise in s and the result follows by dominated
convergence.

(ii1) Let A be self-adjoint and possibly unbounded. Let
[ (fi)n : R — C be uniformly bounded functions
with f, — f as n — 00 point-wise. Then f;,(4) -

S A).
Proof. See Ref. [109].

We can now prove the theorem. Let (Pf,\?)),, be the orthog-
onal projections onto the span of the first n basis elements
of a separable Hilbert space .7#%. Consider two bounded
operators A and B on % and define 4, B, by

A, :=PPAPY, B,:=P{BP{. (F9)
Furthermore, consider the sequence of states (pf;"‘n),,,; on
%3, and (p D),,; on 7%, where

o5 @ = wg [P Va 6Py (@) Wa@D PPV Pl .

P () 1= twg [P VarssP (Vn ) Wn ) PPV Pl |

(F10)

where |Y,(a)) = e_"“ﬂ"lllf), |Yn(b)) = e_fbﬁ"|1,&) and the sequences of derivatives, (dapB I)(t)),,; on %, and

(L oD (@) on 5 are

da
d

db

We can use Eqgs. (F10) and (F11) to construct the Fisher

information for these states. Since Vy_.pr VA_> pe = 1BE,
where 1 g is the identity operator on .43, it follows that

PP — (Pvaese?) (PlVaessP) >0 (F12)

for all I,n. Hence, by Kraus’ theorem, Eq. (F10) are
completely positive and trace nonincreasing maps evalu-
ated on inputs |, (a))(¥n(a)|. Since Proposition 21 holds

d
= 0§ (@) = trp [PV 5P ({190(@) Y @)1y — a9 (@) (@) PV 5P

(F11)

P (6) = teg [PV s5PL (119 B W (B) B — Baln(0)) W) P Vi g PE .

for any completely positive, trace nonincreasing map, we
can apply it to our setup. This yields

(n,0) (n,0)
F@) (ko)

F(o @)  F (o ®) she

(F13)
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recalling that the uncertainty relation also applies to sub-
normalized positive operators, and where

F (o @) =462,

F (o' ®)) =462,

(F14)
(F15)
~ ~ 5 0 1/2
= ((Bv.50) - (v.50)") . (F16)

- - - 1/2
Gon = ((Bav. Bav) — (W, Bv)) . (F17)

We can now take the limit » — 00 on both sides of
Eq. (F13). Due to property (i), it follows

limy_o0 F (,og*'f) (a)) lim,_o0 F (,og*'f) (b))
F(o@) F (o5 ®)

= (F18)

F (pj,m)(a)) =462, (F19)
F (pj,m)(b)) =452, (F20)
s i= (B dv) - def) . @21
= (Bv.3v)-(w.5uf) . 22

Observe that the quantities lim, . F(p D(a)) lim,_, o

F (p("f)(b)) cannot diverge, since it would contradict the
inequality (since the Fisher information is non-negative).
This observation follows alternatively from applying the
data processing inequality (110) to bound Bob’s Fisher
information in terms of Alice’s, followed by talking the
n — o0 limit. Similarly for Eve’s Fisher information. By
direct calculation, we observe that the Fisher information
F of a state p on a d-dimensional Hilbert space, according
to Eqgs. (9) and (11), is given by

w22 pe)|

e
F = F23
Z ©x +pe)? (F25)

kK=1
s.t. pptpp =0

where p = Zgzlpﬂk) (k|. Hence

) dg(l) p(n,l)

. n, _ . k

nl—1>r§oF (pB (ﬂ)) - nl—II& Z (“ iy} + (n, 0)2
kK =1

s.t. pé”’n +p:f‘n =0

dpl™ 2
(om | Ol n )| (F24)

where dp(l) is the dimension of Bob’s reduced system,
which is / independent, and (nb(a) Zd"’(’) ™Dk, 1)
(k,n,I|. Observe that all terms in the summatlon must
be finite in the limit, since they are all non-negative and
we are guaranteed that the rhs of Eq. (F24) does not
diverge. Observe that for terms in the summation for which
lim,,_, o p(”l) + pl(;”n > 0, the summation can be inter-
changed with the limit. However, while for terms such that
b +po D > 0 for all n, but lim,_,.p™" +p§f0 =0,
the summation and integration cannot be interchanged, the
interchange of the limit and summation will result in the
lower bound

i dp(l) p(oo,!)
lim F( ’(a)) 3 k
k=1 P +p.é'm'0)2
st (00-’) (00-’) -0
k’
d (CXJJ)
(k,oo,l|'%—@|k’,oo,i) , (F25)
a
where py*" (@) = %29 pD |k, 00, 1) (k, 00, 1], with

P (@) = Tim trg [Pg; VieseP (1V0(@)) (Y (@)])

POV, Pl #20
= trg [P}g% Vi BE (llﬁ(ﬂ))(%}(ﬂﬂ) VEABEPE(?%] )
(F27)

where | (@) := e 4|¢) and using properties (i) and (ii).
Similarly, use properties (i) and (ii) again to obtain

p§*(@) = lim trg [PBEVA_,BEP(")

da”
(i1Ym(@) (Yn(@)| By — iBa|¥n(@)) (¥n(a)])
POV BEPg%] (F28)

= trg [PV (117 @) (F @IA

—iBV @) (F@]) ViopePht] - (F29)
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Likewise, we obtain the same expression for lim, .
F (p(" D (b)) that we have achieved for

Jim, F (ef " @).

but interchanging a +> b, A > B and trg > trp.

Now that we have an expression for the bound, which
holds for bounded operators A and B, our next step is to
move to unbounded operators. For this task, we define
sequences of bounded operators (A,,),, and (B,,), as

(F30)

A B

———, By i=— F31
1+22/m’ 14 B2/m (F31)

A, =
We now evaluate Eq. (F18) choosing A equal to A,, and
A equal to A,, followed by taking the limit m — 00 on
both sides of the equation. Since by (iii), it follows that
1/(1 + 22/m) > 14 and 1/(1 + B?*/m) > 1, where 14
is the identity operator on %}, we have that A, — Ay
and B,y — By for all ¥ € D(a) N D(B), and we find

ity o0 im0 F (0§ (@) )

)

. hm,,Hmhm,HmF( ”(b))

F (o))
<142 1—%, (F32)
where
( (°°°°)(a)) =402, (F33)
( (°°°°)(b)) =402, (F34)
on = ((w.2v) - (w.20) ", (@39)
172

os = ((Bv.BY) - (v.BY)) . (F36)

The rhs of this inequality is now of the form in the corollary
statement. We continue with the lhs. First observe that

Jm fim F (o' @) > @37
kK =1 (Pfgmoo0+p.§'m’oo’0)2
stpéooooﬂ Loo,oo,n}o
o> (a) ’
(k,oo,oo,i| — |K,00,00,0)| , (F38)

@) =

where 1) dBw P(m'oo’n |k, 00, 00, 1)

(k, 00, 00, 1|, with
PE @ = lim ez [P Vacs5s (V@) V(@)

i (0
VapeP BE] ’

d (0o,00,0)
Za Pp (a)

= lim trg [PS,’E Vi (110m(@) (T (@) B

(F39)

— Bl (@) T (@) VPSS
(F40)

and |¥,,(a)) = e ™n|y). To see that Eq. (F38) holds,
observe that the same reasoning to why the limit and sum-
mation could be interchanged going from Eq. (F23) to
Eq. (F24), holds for the limit m — 00 also. Now define

fn(x) = eiax/(+x7/m) apq f(x) = e, Assumptions in
(iii) hold, thus e—?m S e~ hence using (i1) 1/(1 +
A2/m)e~aBm > g=ia®  Fyrthermore, since, by definition
e 2 |y) € D(n), we have H|y(a)) € ;. Taking all
these things into account, we conclude that

psoD (@) = trg [PYLV 4 pe (1¥(a))

V@D V. 5P| (F41)
d

—p5* (@) = trg [ PR Va e (1Y (@) (¥ @A

— BV @) (V@D V. pPlE] - (F4)

Likewise, we obtain the same expression for lim,,_, o
lim,_, o F (p(" < (b)) that we have achieved for lim,,
lim,,_, o0 F(p(" f)(a)), but interchanging aw+— b, A+
B and trg > trp. Lastly, by comparing the rhs of
Eq. (F38) with the rhs of Eq. (F23), one sees that
limy,_ o0 limy_, o0 F' (pé"’l)(a)) is given by evaluating the
Fisher information for o> (a) [defined by Eq. (F41)]

with derivative - p(oo 00 n(a) [defined by Eq. (F41)]
according to Eqgs. (9) and (11). The same observation holds
for Eve’s Fisher information. Hence to conclude the proof,
we take lim inf}_, , on both sides of the equation. |

2. Time-energy uncertainty equality in infinite
dimensions

In fact, building on the previous result, we get the fol-
lowing statement in the case where the commutator in
the previous theorem vanishes. This can be viewed as a
generalization of Theorem 1 to the unbounded operator
case.
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Theorem 9 (Time-energy uncertainty relation for
infinite-dimensional systems)—let |{¥) be a state vec-
tor in a separable Hilbert space .7#; of possibly infinite
dimensions, let H,X be self-adjoint operators (possibly
unbounded) with domains D(H) and D(X), respectively,
so that |[{) € D(H) N D(X). Define oy := [(HY,HYr) —
(w Hvy)?1Y2, which is finite due to |¢) € D(H), and

Pp =1 — P,, where P, denotes the projector onto the
support of p. Define analogously as before
H,
Tty — ULY] + PLXPS, (F43)
20’H

where X captures the freedom left when defining the
optimal local time sensing observable, and consider for
real £, 1 and £y, g the two-parameter family | (¢, n)) with

|¥(t0,m0)) = |¥), again ¥ = [¢) (¢ and
[V (2, m)) = exp{—il(t — to)H — (n — no)T1} |¥). (F44)

Let, as in Theorem 8, V4_,pr be any isometry 5¢; —
F3 ® 7, where the Hilbert spaces .3, .5 associated
with Bob and Eve are also separable and possibly of infi-
nite dimensions, and define Fy, Fp, Fg analogously as in
Theorem 8. Then the uncertainty principle

Fs®) | Fe(n) _ |
Fu(t)y =~ Fa(m)

(F45)

holds.

Indeed, even in the infinite-dimensional setting for
unbounded operators, the uncertainty principle can be
attained with equality, so that

Fa(t) | Fe(n) _
Fah) ' Fatn)

(F46)

still holds true.

Proof of Theorem 9.—The proof follows the same line
of thought as that of Theorem 8, with some differences. To
start with, consider the bounded operators H and X on 5%
and define for a positive integer n the truncated operators
H, as

H, :=PPHPY (F47)
and
T, :=PYTPY, (F48)

with T being defined as in Eq. (F43) with T being replaced
by T and X by X. As above, one can define the time-
evolved states as

[¥n(t, 1)) = exp{—il(t — to)Hy — (n — o) T,1} 1¥),
(F49)

with [{,) := |¥n(f0, n0)). In the same way as before, for
positive integers / (and n), we can consider the sequence of

positive operators (pf;"‘l)),,,; on .3 defined as

o8t m) =t [ PRV P (10t ) (a6 )

POV

o nePB | (F50)

and

o2t m) 2=ty [ PYV AP (¥ tm) (Wt )

POV sPiE | (Fs1)

Using these quantities, and proceeding as in the proof of
Theorem 8, since this is a valid finite-dimensional set-
ting in which the above proof in terms of a semidefinite
program holds true, one has

FRoby
4(1__}‘:&1!1&“‘&:1) - (Wmﬁnlffn)z
- (‘:&m gﬂ‘:&n)z FEve,r} = 1,

+ (Hy Y, Hy V)

(F52)

with equality, since |¥) € D(H) N D(X) and hence the
state vector is in the domains of H and X . Here,

Faane = F (o5 (t0) : 8upy™" (10)), (F53)
with
o5 = pg (5 mo), (F54)

and Fgy, defined analogously based on pp ’D(n) with

("’0 )= p("n(tﬂ, .). The limit to the infinite-dimensional
setting involving the suitable limit of n — oo and / — 00
can be performed as in Theorem 8, while maintaining
equality for each n and 1. |

APPENDIX G: CALCULATIONS FOR THE CASE
OF CONTINUOUS LINDBLADIAN NOISE

1. Sensing an unknown parameter in the Hamiltonian

Consider a probe initialized in the state vector |Ynit) and
subject to the Lindblad dynamics

= LG (p), (G1)
with
LY =LY+ Lew: LL(p) = —ilwG. pl;
1
ﬂcrest(p) = _i[Hrest-, P] + ZI:LJ'OL;_E{L;L’ p]]
J
(G2)
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Here, @ is the unknown parameter to be estimated. The
overall evolution up to some total time 7 is given by

(@)
g}m) T['cmg +£rest] (G3}

As we did earlier, we can decompose the overall evolu-
tion into the unitary evolution driven by the signal (which
depends on the unknown parameter @), followed by an
effective instantaneous noisy channel N'T,:

@

EW = Ny, e s (G4)
where N7, is given by
@
N = £@ &5 (G5)

We are interested in the sensitivity of the probe to the
parameter @, locally around wy, after letting the probe
evolve for some fixed time 7. The sensitivity is given in
terms of the Fisher information

Fr,(@0) = F(pLay : (0upTw) (@0))- (G6)
Defining the (fictitious) family of states
—iTwG iTwG
o =€ ini e .
v, Vinit (G7)

amwi".cu = —IT[G, Wr,m],

we may write

Fr,(@0) = F(pr; N1(0u¥710) + 0uNT0) (¥1)), (G8)

where we omit the subscript (:),, on all objects, which are
ultimately evaluated at @ = wy.

Again as earlier we assume that we can neglect the sec-
ond term in the derivative in Eq. (G8), and carry on with
the approximation

Fr, ~ F(Nﬁﬂ’o (‘&T@O) ;Nﬂuo (3ﬂle¢U)) umt - (G9)

As above we are now in the setting of our main uncertainty
relation; we can identify the above quantity with Fggp,, in
Theorem 1, where now the relevant evolution generator is
TG. Theorem 1 then implies that

uni 2 2 nit. ,
Fiit — 47%% — AFP;

FEt = T2 (K70 (V100) s N (1G5 ¥rn )
(G10)

where N, T, 1S @ channel that is complementary to N7y,
and where G = G — (G) with (G) = tr[G Y7, ]. As ear-
lier, the complementary channel can be written

- ()
—TLY
g e s

T,&JD =

The absolute error § in the approximation (G9) can be
bounded as earlier using Proposition 17 in Appendix C as

181 < F(p ;3 (30NTw) (¥r0p))
+ [F(p: BuNTw) UTwy)) Fra

Similar arguments to those presented earlier apply when
computing 3,/NT,, in order to bound §; we have

(3oNT0) (VTw) = dup — EX7(—ITIG, Po)).

Any numerical or analytical upper bound on F (p:

(8N T@)(wf,mo)) then directly gives an upper bound to |4]
in Eq. (G11).

R (e} §)

(G12)

2. Example: continuous dephasing noise along the Z
axis

A qubit is initialized in the state vector

[Vinit) = [+) = 1)+ 1], (G13)

5
V2
and evolves according to the Hamiltonian H = wZ /2. Sup-
pose that the qubit is subject to continuous dephasing along
the Z axis. This noise is represented by the Lindbladian
jump operators

L=yt Li=JvILH{

In vectorized operator notation (same conventions as in the
appendices of our work, i.e., row-major convention), we
have

(G14)

I
= Z[Lf ol —s[LiLet+1e (L;Lf)z]]

0
_ -y
-y
0
0
—iw
Lo=(.)= i , & = Loty
0
1
e—y(—itcu
= e—yt+i'(m

1

The full evolution map, represented as an operator in terms
of matrix elements p; = (i|p|j}), is

£00 pme—irw—y(
&) = [P]Oem_” P11 '

The next steps for this example are (a) a direct computation
of Bob’s sensitivity; (b) a calculation of Eve’s sensitivity

(G15)
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to energy via our effective picture; and (c) an assessment
of the error made in the approximation (140).

a. Direct computation of the sensitivity of the noisy
probe

At a time ¢, the state is

1 1 e—ircu—y(
pt) = 3 [eicm—y: 1 ]

—yt 1 —th
=U,[ Loe ]UI:UfLUI

e vt 1 2
1 +e?! 1 —e 7t
= ——UH)(+U] + ——Ul-)(-IU}.

(G16)

where we use the shorthand U, = e=". The last expres-
sion in Eq. (G16) provides a diagonal form for p, which
will serve in the calculation of the Fisher information. The
derivative of the state is

1
Liylp®] = p(t) = 3

0 (—iw — y)e !
(iw — y)e'rt 0
—yt

= [y v} + o urt]). (G17)

— it
noting that UXU' = [egﬂ, € 0 ] and UYU =
0 —ie™ : o
it 0 . We can interpret this derivative in terms

of two different dynamics: one & @ U,YUI, which drives
the rotation around the Bloch sphere and one o —y U,XU*,
which drives decoherence (Fig. 14). The matrix elements
of the derivative in the eigenbasis {U;|+)} of p are

' e o e

(+1U; p U+) = —VT, (+U; p Uil =) = HUT,

) ] e—yr ) e—y(

(—1U! p Ul+) = —io——, (—IU! pUI-) = Y-
(G18)

where (+|Y]—) = (+|YZ|+) = i(+]|X|+) =i. Now we
compute the Fisher information using Eq. (12) as

—yio
€ 2

2

Fuocks = F(p(t0) : p(to)) = Y

14 evho

e_?’f(} e_?’fﬂ

2

2 4 2liw

iw

+2

yl\

FIG. 14. Top view of the Bloch sphere for a single qubit pre-
pared in the +X eigenstate, evolving under the Hamiltonian
H = wZ /2 and subject to continuous dephasing along the Z axis.
The derivative of the state can be decomposed into a “longitudi-
nal part” along oy(f) associated with the Hamiltonian dynamics,
and a “radial part” along —X (#) associated with the noise terms.
The assumption that enables the mapping from the Lindblad set-
ting to our bipartite uncertainty relation setting is that the noise
component (“radial” component) contributes negligibly to the
overall time sensitivity of the clock.

2 e v,
e |2
2e~2rto
— re—2r 2
= w°e +y o (G19)

b. Eve’s Fisher information with respect to energy

Now we turn to using the methods of our paper to char-
acterize the sensitivity of the noisy probe. As described in
Sec. VI A, we turn to computing

Faoekus = F(p(to) s Ny (3 (10))), (G20)
for the instantaneous effective noisy channel N; and ficti-
tious unitary evolution ¥ (f) defined in Sec. VI A. We will
then later discuss how good of an approximation Fieck,u,s
is to the original desired quantity Fjocy ;-

We decompose the full evolution & as in Eq. (136).
Since [H,L;] = 0, we have

L
M:e’lz e_y( —

proe ! P11 (G21)

Ny = [ e, .

This channel can be described by the two Kraus operators

= =
E“’:,/“LTel; E}‘):,/Tez. (G22)
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The (fictitious) pure unitary evolution of the initial state
vector [Yinit) = |+) is

1 —itw

. ot ! 1 e
w(:)_u,wm.tu_z[em 1].

(G23)
We compute Eve’s Fisher information with respect to
energy, which characterizes the sensitivity loss of the noisy
probe. For any £, a complementary channel to Eq. (G21) is
given by

L gy A zp)

Nip) = Z 2 (G24)
N wzp) 2 (o)
We would like to compute
F(N:) : Ni({H — (H), ¥)). (G25)

Noting that (H)y =0 for all 7 and that Yy = (1 +
X)/2, we can compute

(H — ). ¥} = {32, U v U]

_lulzlE Vw22 (6o
— 2 f{ £l 2 } r — 2 . ( }
We then see that
lj:e_yf O )
Niw) = [ 2 ,_e-w} N(32)
2
w 0 1 —e2rt
= — G27
2 [\/ [—e 2 0 (G27)

Then using Eq. (12) we find
FINW): N(H — (H), ¥))
2
=042 [%(1 — e_zm)] + (same term) + 0

= o? (1 —e72"). (G28)
In the present picture of the effective noisy channel being
applied instantly after unitary evolution of duration #,
we see that Eve obtains no information about the energy
direction for f ~ 0. However, for large ¢ Eve obtains near-
perfect information, which hinders Bob’s sensitivity. Since
the noiseless Fisher information is @?, we have via our
uncertainty relation that

Fpop; = w270, (G29)
Our method therefore correctly gives us the first term in
Eq. (G19). We can also check by direct calculation that the

first term in Eq. (G19) is indeed the Fisher information of
the noisy clock state if we neglect the term in the derivative
that is associated with the time derivative of the effective
noise channel itself. First observe that

1 0 —iwe e .

oY = 3 [iwef’“’ 0 ] 5 (G30)

1 0 —iweto—v! we™ V! +

N(arlff) = 5 [fweirw—y( 0 ] = D U( YU(
(G31)

We see that the object AV (8,¥) is exactly the part of the
derivative p with respect to the full dynamics that is asso-
ciated with the Hamiltonian evolution of p, i.e., it is the
“longitudinal” component of the derivative depicted in
Fig. 14.

We use again Eq. (12) of our manuscript, recalling the
diagonal form for p given in Eq. (G16):

we v

Fc]oclgU,( = F(P . N(adﬁ)) =0+ 2‘

—Ytp

+2 “’ez F0=wle 0. (G32)

The difference between Fiock,u,s and Feloeky 1S
26_2}“0 )
8 = Fulocks — Felock Uy = ¥ Fpp=—rre (G33)

The relative error of the approximation is
8 2 1

Y (G34)

Foockus @ 1 —e 2’

(We computed the relative error with respect to Fjock,u,s
because it is simpler.) We can see that § is small relative
to Felock,uy if the ratio y /w of the loss rate to the qubit’s
energy gap is small.

Numerical plots for @ =1,y = 0.1 are presented in
Fig. 15.

¢. Error bound for the mapping from the Lindblad
master equation to our setting

As a sanity check we compute the error bound (146). We
have

0
_ye_yt

B(N = _ye_yf ] (G35)
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12
1.0 1
0.8 1 —— Flof noiseless clock (=403)
0.6 4 = F| of noisy state with respect to full dynamics
= Fl of noisy state with respect to unitary component only
0.4 1 = Fl of noisy state with respect to noise component only
0.2 1 N
0.0 1
0 10 20 30 40 50
15.01 — relative Fl of noiseless clock (=F1 x £3)
12.5 1 - relative Fl of noisy state with respect to full dynamics
10.0 === relative Fl of noisy state with respect to unitary component only
' m—— relative Fl of noisy state with respect to noise component only
7.5
5.0 1
254
0.0 1 —

0 10 20

FIG. 15.

30 40 50

Fisher information (FI) of a single qubit prepared in a +X eigenstate evolving according to the Hamiltonian H = wZ/2 and

subject to continuous dephasing along the Z axis. The horizontal axis represents the time #j at which we consider the clock sensitivity,
and the vertical axis is the value of the different versions of the Fisher information (top plot) and relative Fisher information (bottom
plot). The relative Fisher information is the Fisher information times t%, which is relevant if we are interested in the relative sensitivity
to time. In these plots we have set @ = 1 and y = 0.1 (see main text). We verify from these plots that the time dependency 3,/; of the
effective Inoisy channel contributes negligibly to the overall Fisher information; this example in the setting of continuous noise can

therefore be reduced to a setting as in Fig. 1.

and thus

1 _ —yt ,—iwt
ON)W®) =5 [_},ef)yrem s ]

= —ye "'UXU.. (G36)
The matrix elements in the state’s eigenbasis are
(HU @NU+) = —ye™,  (+IU]@N)U|-) =0,
(—IU@QNYUI+) =0, (—IU[@N)Ul|-) = ye .

(G37)
Then we can compute
2 —yip|2
F(p: dN@)) = ml}’e v
2 et
—yig|2 __ 2
(G38)
Our bound (146) on the error § becomes
e—Z}'(@ e—ZyIQ
8 < 4y? 2 : G39
Y 1 —6_2}'(0 + ye 1l —e— Yip ( }

The bound is consistent with our computed value of 4.
However, in this case our bound is loose: The second
term in our bound would suggest that the relative error
with respect to Feioek,u, 4, behaves only as y /o (if ¥y < ),
whereas we know from our explicit calculation of § that
the behavior of this relative error is y2/w?.

3. Example: continuous dephasing noise along the
transversal X axis

Consider the qubit state vector

1
V) =1+) = E[IT) +10]- (G40)

Suppose that the evolution of the qubit is given by the
Lindbladian (132) with

H=2Z Lo=J7I+){+

> Ly = Jy1=) (-l

(G41)
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One checks that the action of L,y on the Pauli operators
and the identity are

Liot(1) =0, LX) =wY,

Lit(Y) = —0X —yY, Li(Z)=-yZ. (G42)

Therefore, L,; can be represented in the orthonormal basis

{11))/v/2,1X))/~2,1Y))/~/2,1Z)) /+/2} of Pauli operators
(denoted with subscript P) as

0 0 0 0
0 0 —w O
[Lolp=]¢ o 0 (G43)
00 0 —-v/,
One can verify that this matrix is diagonalized as
0
At 1
[ﬁtot]p =38 A S » (G44}
-y
1
p— —% +tia, «= E\X 4w? — y2, Aph_
:w21 k-|- +A‘— =Y,
(1 0 0 0
0 - & 9
5= 0 1 1 0
\0 0 0 1
/10 0 0
0 = 2+
s = 2o Ja G45
0 £ £ o (@
\0 1

We can solve the dynamics analytically using this diagonal
representation to compute the matrix exponential as

1

eﬂ.+
g{ — [e(ﬁ:tol]P =5 eﬂ—
e V!
1 0 0 0
1|0 ex ey 0
5= 0 ex e, 0 ’
0 0 0 e p
_u Yy . ]
e =¢€ 5 [cos(at) + o sin(af) |, ey = —€,
o « - (G46)
ey = —e T sin(af), €,y = €4y
o »

This gives us a useful expression of the linear operator &
acting on the operator basis of Pauli operators. If we let the

1.0 1
0.5 -
> 0.0 1
=0.5 1
_1_0 -

T T T

-1 0 1

X

FIG. 16. Trajectory on the equatorial slice of the Bloch sphere
of the state of a qubit initialized in the state vector |+), evolving
under the Hamiltonian H = (w/2)Z and subject to continuous
dephasing along the X axis. Here w = 1 and y = 0.1.

initial state ¥inie = |[+) (4| evolve for a time ¢, we obtain
1+X 1
p(0) = EWimi) = S(T) -2

t

+ eT [(cos(at) + % sin(at)) X+ g sin(af) Y].
(G47)

See Fig. 16 for a plot of the trajectory of the state p(#) in
the X -Y plane of the Bloch sphere.

We can compute the derivative d,p by directly differ-
entiating the expression (G47) or by simply applying the
Lindbladian since we have determined its action in the
Pauli basis:

t

%
dp = eT [(cos(at) + 21 sin(a't))a)}’
o
@ .
+ = sin(af) (—wX — yY)]
= %e_g [—g sin(af) X + (cos(&'t) — % sin(c:'t)) Y].
(G48)

The approximation we make to apply our uncertainty
relation is to replace this expression for d;p by

. Jo_ 1+X ®
E(—ilH, Yinit]) = gr(—fl:EZ, T]) =3 &)

= ge_}; [—2 sin(af) X + (cos(af)
2 o«

+ L sin(&'t)) Y]. (G49)

2 '
We see that the two expressions (G48) and (G49) differ by
aterm (2a) 'y we "2 sin(af) Y, which is small as long as
Yy < o.
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The Fisher information Fecks given by Eq. (134) and
Faock,us given by Eq. (140) are plotted in Fig. 17 as a
function of ;. Our approximation matches the exact Fisher
information well, except for an out-of-phase oscillation of
relatively small amplitude. This error to the contribution
of the phase damping is expected to be attributable to the
difference in sign of the smaller terms in Eqs. (G48) and
(G49).

APPENDIX H: PERTURBING THE NOISY
CHANNEL TO RESTORE EQUALITY IN THE
UNCERTAINTY RELATION FOR
METROLOGICAL CODES

In this Appendix, we study how to perturb a noisy chan-
nel A in order to restore uncertainty relation equality for
a metrological code. We prove Proposition 2 of the main
text, which shows that equality in the uncertainty rela-
tion can be restored by an infinitesimal perturbation of the
Stinespring isometry, all while preserving the zero sensitiv-
ity loss conditions (148) (it might be necessary to enlarge
Bob’s system with an auxiliary qubit). The proposition is
slightly reformulated to emphasize the fact that we can
apply the same construction also without regards to the
zero sensitivity loss condition.

Proposition 22—let V4 _.pp be an isometry, let
19)4.18)4 with (¥[6)4 = 0 and let N'() = trg(V () 1),
NG = trg(V () V). For any € >0, there exists an
isometry V)  pr with [V —V| <€ and such that
(Pjg ® P;E)mg) = 0, where pp = trg{ V¢ V'T} and pj, =
up{Vy ).

Furthermore, assume that ./V(If;) (V| + |¥r)(&]) =0 and
assume that there exists a unitary operator Gp acting
on the system B with the properties that P,,GpP,;, = 0,
PGPy =0, PppyGpPry =0, and P, GpP,y = 0, where
ts = N(1€)(&]) and g = N'(£)(&]). Then the perturbed
isometry 7’ can be chosen to also satisfy f\?’(|§‘)(w| +
¥)(€1) = 0, where N(-) = trg{ 7" () '}.

Proof—Write N'(-) = trg(V (-) V') and let

ps=N®W); pe=N®W). (H1)

The strategy to perturb Vis to include an infinitesimal rota-
tion that rotates the state ¥]i) into the direction of another
suitably chosen state | x)pr. We first compute some prop-
erties of a general such rotation, and then we will prove the
stated claims.

Let € > 0. Let a > 0 such that 4sin2(&'/2) < e. Let
| x )& be a state with the property that the reduced state on
B lies in a subspace that is orthogonal to the reduced state
ppof V), ie., Pylx) = 0, or equivalently, | x)ag lies in
the support of Pj:q ® 1. The state | x)pg will be fixed later.

Let {|,u.m)}j be a basis of BE with |u")pg = V]¥) and

|u®)pg = |x)pE- Let
WaE_.pE = (COS(‘I)W(])) + sin(a)lﬂm))(#U”
+ (cos(@)1n®) — sin(@)|n®) ) (|

+ ) 1)),

j=3,...

(H2)

and note that Wpp_.pr is a unitary close to the iden-
tity, effecting the rotation Wy = I:m(‘” _S'"(“J] between

sin{a) cos{a)

|uD)pg and |u@)pg. The eigenvalues 61,6, of Wy are
determined from 6; + 6, = tr(Wy) = 2 cos(a) and 6,6, =
det(Wp) =1 as 6; =65 = €. As the operator norm
is the maximal singular value, we find ||Wy — 1|l =
max{le® — 1],]e7™ — 1]} = (1 — cos@)? + (sina)? =2
— 2cos(a) = 4sin’*(/2) < e, and | W — 1| <e Now
let V' = WggV, with

IV = Voo < IW — Lol Vlloo < €. (H3)

We find
pi = trp(Vy V)
= trg cos’ @) |1) 1] + cos(@) sin(@)
x (1) (2] + 2) (1)
+ sint(@) |u2) iz
= cos?(a) pr + cos(a) sin(a) trp
x [ xl + 0 wIr ] + sin@) e

= cos’(a) pg + sin*(@) X- (H4)
The last equality holds thanks to our assumption that
Ppylx) = 0.

We now prove the first part of the proposition. We
can assume without loss of generality that rank(PjE) <
rank(PjB), by exchanging the roles of the B and E systems
if necessary. Let {|xk)3}f=1, “X;)E}f:l be two orthonor-
mal families of states lying in the support of Pj:q and

PL | respectively, with K = min{rank(PjB), rank(Pj-E)} =

PE’
rank(P,). Define | x)pz = (1/vVK) Y 4lxe)s ® Ixa)e- By
construction, we have that xgr = (1/K) Zlelk) (klg =
P, /tr(P;.). It follows that the state (H4) has full rank,
and therefore our conditions for our uncertainty relation
equality are fulfilled.

Now we prove the second part of the proposition, and
we assume that JV(D%) = 0, with Di = |EV(Y| + | )(E].
The proof strategy is similar to above, to introduce a
small “rotation” to fix the support of the state pg all while
preserving the zero sensitivity loss conditions (148).
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FIG. 17. Relative Fisher information with respect to time of a single qubit prepared in |+) and evolving according to the Hamiltonian
(@/2)Z and exposed to continuous dephasing along the X axis at a rate y. The blue curve shows the sensitivity as a function of time #,
of the probe to the signal if we turn off the noise. In orange, the exact Fisher information F' (p ; amp) is computed directly. In green, an
approximation to the desired Fisher information ignores the contribution of the time dependency 3,\/; of the effective noisy channel.
This approximation is the quantity that appears in our trade-off relation in the alternative setting where Alice sends a noiseless quantum
clock over a noisy channel to Bob. Because the unitary and noise parts of the Lindbladian do not commute as superoperators, invoking
our the trade-off relation requires the channel \; to be determined via Eq. (135). Herew = 1,y = 0.1.

Without loss of generality, we may assume that || &) || =
1. We define for later convenience

Zr = EYYI+ 1Y) El L= [¥) (Y] + &)

Zp=27+ 1 —1IIp), (H5)
noting that 7, is the unitary operator that flips the nor-
malized states [{) and |£) and acts as the identity on the
subspace that is orthogonal to |¢), |&).

As stated in the claim, we assume that there exists a uni-
tary operator Gp with the properties that P,;GpP,; =0,
Pr,GpPry =0, PpyGpPry, = 0, and P, GpP,p = 0.

Let0 <e<l.Letaa=¢/2with0 <o < 1/2 and let

V' = (cos(a)V + sin(a) Gp V'Z1). (H6)
Then
IV = V|| = | (cos(er) — 1) ¥ + sin() GaVZ|
< (1 —cos(@)) | V] + sin(e) | GzVZ|
<2 sinz(&'/2) + sin(a) < 2|a|, (H7)

using sin() < || and with |a| < 1/2.
We first show that the perturbed isometry ¥ also sat-
isfies the zero sensitivity-loss conditions. Let N ()=

trp { V() V'T} and we compute

N'@p) = trB{VZL V’T}

= trg{cosz(a:) VZ; vt

+ cos(a) sin(a) [VZL LG+ GoVZ, 7, Vf]
+sin2() GV 712171 V*GL}

=0, (H8)

using trp{ VZ V1) = N'(Z1) = 0and Z, 2171, = Zy, as well
as the fact that

tep[ GaVZrZe V1] = tep[GaVIIW) (W] + 1€)(€11V']
= trg[GpP,, V¥ VP,

+ GpP, VEVIP,] =0, (H9)
using the fact that P,y GpP,y = 0 = P, GpPyy.
We then have
p;_;: = tI’B{ V' VT}
= tI’B{COSZ(O:‘) Vr 4+ cos () sin(a)
x [V Gl + Gane) w1/ ]
+ sin () GpVE VGTB}
= cos’(a) pg + sin’(@) Lz, (H10)

where the two middle terms in the long expression vanish

because trg{GgV]E)(llflVT} = tTB{PpBGBng V]é‘)(‘/ﬂw} =
0.
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Similarly,
& =tra| VeVt
= trg{cosé* (@) VEV! + cos(@) sin(a)
x [1e) w1V Gl + Gany) 61/ ]
+ sin®(@) G V¥ VfGL}
= cos’(a) {x + sin’(@) px. (H11)

Any state |c)g that lies in the kernel of pg must satisfy

0 = (clpglc) = cos’(a) (clpglc) + sin(a) (cl¢zlc),
(H12)

which in turn implies 0 = (c|pg|c) = (c|¢E|c). We then
find

s ® (cle) V1) = (el tra(VEVT) Io)e

= (clg}le)
= (el [cosz(a) ¢p + sin? () ,o.a;] o),
=0. (H13)

Therefore, (]lg@Pj,)V%‘) =0, implying that (Pj, ®
E B
Pj,) V'|€) = 0 and our uncertainty relation equality con-
E

ditions are satisfied. [ |

APPENDIX I: BEHAVIOR OF METROLOGICAL
CODES FOR WEAK IID NOISE;
METROLOGICAL CODES, UNCERTAINTY
RELATION EQUALITY, AND DISCONTINUITIES
OF THE QUANTUM FISHER INFORMATION

In this Appendix, we consider a metrological code
(I¥), |€)) on n qubits, with a metrological distance d,, > 1.
For any noise channel that acts on fewer than d,, qubits,
we have seen in Sec. VII that AFgy,; = 0. Instead of noise
acting on few qubits, we now consider examples of IID
noise channels [\, lip)]@’“, where each channel N, l(p ) acts on
a single qubit and depends on a noise parameter p such
that Nl(p=0J = id. We ask, for constant n, to what order
in p is the loss in quantum Fisher information AFpgp
suppressed?

Let us first consider a similar question in the conven-
tional setting of quantum error correction, where a logical
state is encoded into a physical state, is exposed to a noise
channel, and is subsequently decoded to attempt to recover
the initial state. If a state |¢), encoded with a distance-d
quantum error-correcting code, is exposed to a weak IID
noise channel in which a single-site error happens with

probability p, then after a subsequent decoding operation,
the fidelity of the state with respect to the original state
differs with the ideal value one by at most O(p%/?). In
other words, the fidelity loss is suppressed by the quantum
error-correction procedure to an order in the noise param-
eter that is proportional to the distance of the code. This
suppressed fidelity loss is explained by a fundamental prin-
ciple in quantum information: Two states (respectively,
two channels) that are € close in trace distance (respec-
tively, diamond distance) may not be distinguished by any
physical operation, except with probability of the order at
most O(¢). In the case of weak 11D noise, any error oper-
ator whose weight is larger than (d — 1)/2 occurs only
with probability at most O(p?/?). Consequently, no exper-
iment should be able to distinguish the weak 1ID noise
from a noise operator with only weight-[(d — 1)/2] oper-
ators with probability better than O(p?/2), for which the
quantum error-correction scheme enables perfect recovery.

By analogy, it is natural to expect that the quantum
Fisher information loss AFgob, should scale as approxi-
mately p°, where d,, is the metrological distance of the
metrological code, and where ¢ is some constant. However,
this is not the case, as we will see in the remainder of this
Appendix. While AFgqb, exhibits the expected behavior
for certain examples of metrological codes, we can find
counterexamples in which the quantum Fisher informa-
tion loss scales as AFpgp ~ p despite the state forming a
metrological code of an arbitrarily large, but fixed, metro-
logical distance d,,. This counterexample shows that when
measuring the accuracy of Bob’s estimate to the time
parameter in terms of the quantum Fisher information,
the code distance is not necessarily related to the loss in
sensitivity of the state. This might be worrying, since the
metrological distance of the metrological code would not
be related to the degree of protection offered by such codes
in suppressing the sensitivity loss. We argue, however,
that the quantum Fisher information might not be the rel-
evant sensitivity measure to study in such regimes. More
specifically, we know that there are regimes in which we
should question the operational relevance of the quantum
Fisher information, because infinitesimal perturbations in
the state or the noise channel result in observable con-
sequences in the purported sensitivity as reported by the
quantum Fisher information. We attribute this behavior to
the fact that it ignores the error associated with the esti-
mation of the expectation value of the optimal sensing
observable from a finite number of measurement repeti-
tions. Based on our examples, we hypothesize that the
settings where AFpop, £ O(pm/?) fall into this regime.
While confirming this hypothesis would invalidate known
counterexamples in which a high metrological distance
can still lead to a high accuracy loss, a full proof of the
protection offered by metrological codes in the general set-
ting remains elusive. Such a result would further require
(a) establishing a measure of sensitivity that is robust to
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perturbations of the physical setting by accounting for lim-
its on the number of available measurement repetitions and
(b) showing that its loss is suppressed as a function of the
metrological distance of the metrological code.

In the following, we first compute the quantum Fisher
information loss of some states that form metrological
codes after exposure to weak IID noise. In order to explore
the cause of the behavior of some examples that appear
problematic, we study more closely some properties of
the quantum Fisher information: we argue that there are
regimes in which the quantum Fisher information, being
discontinuous, cannot be a representative measure of sen-
sitivity, and we attribute this problematic behavior to the
failure to account for the number of finite available mea-
surement repetitions. Finally, we consider a restricted set-
ting with additional assumptions on the state and the noise
channel, in which we prove the expected bound on the
quantum Fisher information loss AFpy,, < O(pdm/ 7).

1. Examples of metrological codes exposed to weak 11D
noise

We now consider three single-site noise channels: the
amplitude-damping channel, the dephasing channel in the
Z basis, and the bit-flip channel. In the basis {|1),[])},
the single-qubit amplitude-damping channel has Kraus
operators

VIi=p 0 0 0
Eg;;‘o:( o 7 1): E%‘lz(ﬁ ) (11)

The second noise channel we consider is the dephasing
channel in the Z basis, described by the Kraus operators

_}_i' 1 0 _E(p) . }_i' 1 0
2 0o 1) dephas., 1 — 2 0o —1/)

) _
E dephas.,0 — 1

(12)
Finally, the bit-flip channel is described by the Kraus
operators
@) p(1 0\ @) P (0 1
Episipo =/ 1 — 5 (0 1)= Epit fiip,1 = \/;(1 0/

(13)

a. Four-qubit code state based on the [[4, 2, 2]] code

Consider the state vector introduced in Secs. VIIE and
VIIF,

1
Weote) = 5[ ITH1) + 1L + 111D + 110D .
14)

Consider the Hamiltonian consisting of ZZ terms on the
edges connecting the four qubits when they are arranged

10* 4 gt

—— dephasing noise
—— amplitude damping

1072 1071 10°
p

FIG. 18. Quantum Fisher information loss AFpgp, after expo-
sure of |Weoge) [cf. Eq. (I4)] to IID amplitude-damping or dephas-
ing noise in the Z basis, as a function of the noise parameter
p- Based on our intuition of standard error-correcting codes, we
might have expected that AFpg, depends only on an order in p
(for p — 0) that is directly related to d,, (or d,/2). In the case
of either noise model, we fit the data points where p < 0.1 to
In(y) = aln(p) + b (which corresponds to a power law y oc p?)
to obtain the order in p to which AFpq, is affected. We see that
for amplitude-damping noise, the loss in quantum Fisher infor-
mation is suppressed to depend only on p to second order; for
dephasing noise, the loss is affected to first order in p. The quan-
tum Fisher information loss due to an IID bit-flip noise channel
(not shown) behaves very similarly to the dephasing noise.

in a square, as in Fig. 9(a); with a suitable normalization
we obtain

1
boote) = S[ I + 1L = 11440 — 1041 |
(15)

We have seen that (| ¥ oge)s |Ecode)) forms a metrological
code of metrological distance 2.

Let us consider how the quantum Fisher information of
this state drops when exposed to IID amplitude-damping
noise and to IID dephasing noise. The quantum Fisher
information loss AFgep, is plotted in a log-log plot as a
function of p in Fig. 18. We fit the computed values for
points with p < 0.1 to the model In(y) = aln(p) + & in
order to determine the quantum Fisher information loss
order (as y o p?). We observe that while the quantum
Fisher information loss is indeed affected only to sec-
ond order in p for amplitude-damping noise, it is directly
affected to first order for dephasing noise. The behavior
of this small-scale example is not necessarily surprising,
although it rules out an optimistic conjecture that states of
the form (I4) could have their loss in quantum Fisher infor-
mation be protected to second order in p against any 11D
noise channel, as could have been suggested from Fig. 13.

b. Repetition code in the 4+/— basis

Now we investigate a larger example that shows that the
metrological distance is not always indicative of the order
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of quantum Fisher information loss in the noise parameter.
On n qubits, let

-)e.

1Y) =) &) = (16)

Here, the Hamiltonian corresponding to these states is the
nonlocal operator H = Z®". (Note that this example dif-
fers starkly from a standard ensemble of n spins where
the Hamiltonian is as a sum of Z terms on each site. In
that case, |&§) would be a superposition of strings that con-
sist of all |+) state vectors and a single |—) state vector.)
The (|¥),|€)) given above form a metrological code of
distance d,, = n. Indeed, any operator O with wgt(0O) < n
cannot make |¢¥) nonorthogonal to |£), and the conditions
(155) are satisfied.

We show that if we expose this state to [ID dephasing
noise along the Z axis, the quantum Fisher information loss
is indeed suppressed to the order O(p™?), as we would
expect. On the other hand, if we expose the state to [ID
bit-flip noise, which can be seen as dephasing noise along
the X axis, then the quantum Fisher information loss is not
suppressed as expected and we find AFpghs ~ p.

pp, = N () (+D) =

l\JI

s () (=) =

l\JI

We can then compute

AFBobs =

“(
(e

o) i[5

Let us first consider 1ID dephasing noise along the Z
axis. We show that the quantum Fisher information loss
is indeed suppressed to order O(p™/?) for this noise chan-
nel. We now prove this statement. We may choose for the
noise channel N2y () = (1 = p/2)() + (p/2)Z(-)Z the
Stinespring isometry

Vions = /1 —%mw)ﬁ‘/gmmg

= lp)e(tla @ M)+ Ip-)ella @ N)p,  (I7)
with respect to some basis |0), |1) on E, and with
P P
lpe) = /1 > 10) i\/;ll)- (I8)

This choice leads to the complementary channel

ionas() = (A1) [P Pyl + (L) lp) (-l

~50-BIA((5" ) )

_ P\" 2
—4p"2 “(1—_)
P 2 gxﬁl‘:

where x, X’ are bit strings and where A, = (1 — p)Xp"—Ixl
is the eigenvalue of pE" associated with the eigenvec-
tor |x). Observe that (x|X®“|x’) = 8y, where X is the bit
string obtained by flipping all the bits of x. Then

Aot ax = (1= p)Mp"M + (1 = pyp

= Q(pmin(xln=iDy — Q (p"/2), (112)

(19)
We find
(et + 0] = (157 )
(110)
0 1
[Pt - 0] = 2 (1-2) (7 )
[N s () D] s [N 2 ([ (—11%" + [1— )<+|]®"))
Py /(0 1\1®"
-3) (1 o)] +h'°')
2
e (1
[
noting that min(|x|,n — |x|) < n/2. Therefore,
=0@"%.  (113)

A =p" Y 0(p™7?)

In other words, the quantum Fisher information on Bob’s
end after exposure of the state to [ID dephasing noise along
the Z axis is well protected, in that the loss is suppressed to
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the order O(p”f 2). Observe that pg is full rank, and there-
fore our uncertainty relation holds with equality in this
setting.

Consider now the 11D bit-flip noise channel [Nb(ﬂ_)ﬂip]@’"
determined by the single-site Kraus operators Eéfgﬂip‘o and

E&) 4. 1- We find

N (YD = [0+ Mg (0=

= (1 =p)[+){-I. (114)

We would like to compute
Fons = F(ING g2 (1) (H®") s NG 31"
X (—il=)(+HI®" +ill4+)(-1"))
= F(I) (" 5 =il(1 = p)I-)+1®" + he.)

2
= 4 (41 =00 = P)I=) I + b ] 147,
(115)

where the last equality follows from Proposition 12. With

1[I0 = PN +he] =i — )=,

(I16)
we find
(115) = 4(1 — p)* = 4 — 8np + O(p?). (I117)
Therefore, for bit-flip I1D noise, we have
AFgg [bit-flip] = 8np + O(p?), (118)

meaning that the quantum Fisher information loss is linear
in p despite the high metrological distance d,,,.

Note that, in the case of IID bit-flip noise, our uncer-
tainty relation equality conditions are not satisfied, since
the rank of pp changes locally as a function of time. In
other words, we should not expect our uncertainty relation
to hold with equality. This fact does not impact our calcu-
lation of the quantum Fisher information loss (118), since
we determined this value by direct computation on Bob’s
side. However, based on this example, we are tempted to
hypothesize that settings in which a high metrological dis-
tance does not inhibit a high accuracy loss under weak 11D
noise coincide with the settings in which our uncertainty
relation does not hold with equality. In the remainder of
this Appendix, we provide additional indications in favor
of this hypothesis.

2. Discontinuities of the quantum Fisher and
uncertainty relation equality conditions

We briefly return to study the behavior of the quantum
Fisher information in a simple example in which our uncer-
tainty relation equality conditions are not satisfied. In such
cases, the state on Bob’s side changes rank, and it is known
that the quantum Fisher information can be discontinuous
[33,34,110].

The definition of the quantum Fisher information that
we use [Eq. 9], which can differ from the expression stem-
ming from the second-order expansion of the Bures met-
ric [33,34,110], directly expresses the accuracy to which
one can sense an unknown parameter via an observable
that reveals the true value of the parameter locally in
expectation value (see Proposition 19 in Appendix D).

It is a fundamental principle in quantum information that
a quantity that is measurable in a physical setting should be
robust to infinitesimal perturbations of the quantum state.
Yet, how is it possible that the quantum Fisher information
is discontinuous, if it directly corresponds to the physi-
cally operational sensitivity to which one can estimate an
unknown parameter locally? We attribute this discontinu-
ity to the assumption, in Proposition 19 in Appendix D,
that the sensing observable reveals the true parameter
value in expectation value. An expectation value needs
to be estimated using multiple rounds of measurements,
and depending on the outcome distribution of the observ-
able, an arbitrary large number of measurements might be
required to accurately estimate its expectation value. In
the following example, we study how the optimal sens-
ing observable diverges close to discontinuity points of the
quantum Fisher information; namely, the discontinuity can
be associated with diverging eigenvalues of the observable
associated with eigenstates that are outside the support of
the state at the discontinuity point.

Overall, this example indicates that the operational rel-
evance of the quantum Fisher information might break
down in certain regimes where it is not possible to accu-
rately estimate the expectation value of the optimal sensing
observable.

The following example is based on Refs. [33,34,110].
Consider the example of Sec. IV B: a qubit state evolving
along the equator of the Bloch sphere is collapsed by the
noise channel along the X axis of the Bloch sphere. Bob’s
quantum Fisher information is constant and equal to w?
almost all the time, except when the state is exactly a =X
eigenstate, in which case Bob’s quantum Fisher informa-
tion is equal to zero. The state on Bob’s end is given by
Eq. (89) as

pp = p|+){+ +p_|-){—I;

Py = cosz(%to): p-= Sinz(%ﬁ))- (I19)
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When Bob’s quantum Fisher information Fgep, is nonzero,
there is always an observable O whose expectation value
reveals the true parameter value locally, i.e., (O) ,¢y+an =
fo + dt + O(dt*), and whose variance is (0?) — (0)? =
1/w? (cf. Appendix D). The optimal sensing observable
is given by the suitably normalized symmetric logarithmic
derivative (Proposition 19) and can be computed, when wfy
is not a multiple of 7, as follows:

1 1
O—1l = ;RP:; (3;,0) = E

2
k| (8,0) |} | k) (K
x ZPHW(I( PIK) k) (K|

kK=t

- (+](8,
o aadt @, OO

(=@ =) =) I

+ 2w? sin? (52)
- =g n( e+ 5 on(5] "1
(120)

using the relation (8;0) = —(w/2) sin(wty) X [cf. Eq. (91)],

which implies (%|(3;0)|E) = F(w/2) sin(wty) = Fw
sin(wty/2) cos(wty/2).
As a sanity check, we can verify that O satisfies
(0) ptgtan = 1o + dt + Odr’), (121)
as well as
1
7= (0, = (O, = —. (122)

As the state gets closer to a discontinuity (for instance,
at fp = 0), this optimal sensing observable has one eigen-
value that diverges (for fy = 0, this eigenvalue is associ-
ated with the eigenvector |—)). At the discontinuous point,
the derivative is zero locally, so no observable will ever be
able to correctly reveal the true value of the parameter to
first order locally. The state does not change to first order
in ¢ at alll We can attribute the discontinuity to the fact
that an optimal sensing observable for one state might turn
out to no longer be an acceptable sensing observable for a
neighboring point. In other words, while the variance of an
observable is continuous both as a function of the state and
of the observable, the optimal variance in the local sens-
ing scenario is discontinuous because the conditions of the
optimization (D1) are discontinuous.

At the discontinuity fp = 0, the derivative d;p vanishes
locally, and it is impossible to find an observable O such
that (O)(ty4dy = to + dt + O(d#*). By convention we set
the corresponding quantum Fisher information to be zero;
first, it is convenient because we do not have to mod-
ify the definition of the quantum Fisher information, and

second, it expresses the fact that we cannot have any sen-
sitivity locally to first order in the parameter by measuring
the expectation value of an observable. If the quantum
Fisher information is defined starting from the Bures dis-
tance, a mismatch will be observed; this mismatch could
be interpreted as a failure of the Cramér-Rao bound.

Operationally, even for #p not at one of the discontinu-
ities, the use of the expectation value as the way of reading
out the parameter in the estimation process might be prob-
lematic. Estimating the expectation value of O to good
accuracy, for #p &~ 0, requires that we observe sufficiently
many times the |—) outcome, even though the latter only
appears with the vanishing probability sin®(w (fo + df)/2).
If we do not repeat the measurement on enough copies, we
would only empirically observe |+) events and we would
erroneously estimate the expectation value of O to be equal
to —[tan(wtg/Z)]/a), and that its variance is zero. Not only
this result would be wrong as it does not depend on the
actual value df that we wanted to measure, but the vari-
ance is certainly incorrect since the optimal variance when
an infinite number of measurements is available is 1/w?.
There might be opportunities for defining and investigat-
ing refined measures of sensitivity that can account for
the finite amount of measurement outcomes that can be
collected in the estimation process.

The above example illustrates that the quantum Fisher
information can be problematic to interpret in certain
regimes close to points where the rank of the state can
change. This type of regime can occur for metrological
codes, if the noise happens to fix the state vector |} while
not fixing other states that are infinitesimally close to |y},
resulting in a rank change for Bob and Eve’s states. We
observe that in the context of metrological codes exposed
to weak IID noise, the quantum Fisher information is not
actually discontinuous as a function of the noise parame-
ter; rather, it is the order in p of the Fisher information loss
that can behave unexpectedly. That the quantum Fisher
information loss must be suppressed at least to the order
O(p) follows from our continuity bound Proposition 18,
noting that the weak 1ID noise channel is O(p) close to the
identity channel.

3. Suppression of quantum Fisher information loss in a
restricted setting

Here we show that, when considering a metrological
code exposed to weak IID noise in a restricted setting with
additional assumptions, the quantum Fisher information
loss AFgob, is suppressed to the expected order O(pn/2),
where d,, is the metrological distance of the metrological
code.

Proposition 23—et |}, |§) define a metrological code
of metrological distance d,,. Let N} be a single-site noise
operator with a Kraus representation {Efk) }K | that is

such that ||E§k’J llo = O(\/P) for k' # 1. Furthermore, if
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x denotes a string of Kraus operator labels with x; €
{1,....K}, and if Ex = (Q}, Efx"J), we assume that the
states {Ex|y)}_ are all nonzero and orthogonal, and that
IEI¥) | > Q(p™?). Then AFpa, = O(pn’?).

This result follows fairly straightforwardly from
Eq. (130) in Sec. VE.

Proof—Using the notation in Eq. (130), withe = p, we
have that AFgo,; = O(p™) with

m= mip{qu,‘f — min(rx,rxf)}, (123)
where ry and g, v are defined via
(VIELE|Y) = Q(p™):
tr{ELE(16) (W] + [¥)(E])} = O(p™v),  (124)

setting by convention g,y = 00 whenever we have
tr{EI,Exﬂé)(t,H +1¥)(§])} =0. From our assumption
that E;|¢) # 0, we see that r, is always finite.

We now consider different cases for x, x". Suppose first
that |x| + |x'| < dy. Then, since |y}, |€) form a metrolog-
ical code of metrological distance d,,, we have g, v = 00.
Now suppose instead that |x| + [x/| = d, implying that
either |x| = dp/2 or |X'| = dy;/2. Then, since |Ex|¥)| =
Q(p™/2), we find

(VIELE(|¥) = |Ev)I* = Q(p™), (125)
so we can pick r, = |x|. Since E{x") = O(,/p) foreachx; #
0, we have

tw{ELE(1) (W] + 1) (€1))
= (E|ELEY) + (WIELEL &)

— (ﬁ)l"l+IXI o(l) = O(AU(IX’IH‘I)KE), (126)

so we can pick gy = (x| + |x])/2. Then

2gyy — min{ry, ry} = |x| + |x'| — min{|x], [x[}

= max{|x], [X]} > dp/2. (127)

In all cases, we have 2gy xy — min{ry, v} = dn/2 and thus

AFgob; < O(p™/?), (128)
as claimed. |

There are two strong assumptions made in the above
proposition. First, we assume that the Kraus operator repre-
sentation satisfies tr{E:,Ex ¥} o 8, v, or equivalently, that
pr 1s diagonal; such a representation always exists but
might be difficult to find. Second, the state on Eve must
not be rank-deficient, or equivalently, there is no Kraus

operator Ey that has zero probability of occurring when
the channel is applied onto the state . It is not imme-
diately clear to us how to generalize the above proposition
to weaken either of these assumptions.
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